

BART Model Plant Criteria with PM

BART Model Plant Criteria with PM

Jim Boylan

Georgia Department of Natural Resources

VISTAS BART Group August 29, 2006

Model Plant Criteria

- E < 500 tons & d > 50 km
- E < 1000 tons & d > 100 km
 - E = potential emissions of "SO2 or NOx or SO2 + NOx"
 - *d* is the distance to closest Class I area
- In the Southeastern U.S., SO2 (sulfate) typically has larger impact on light extinction than NOx (nitrate).
 - Conservative approach would be to assume 100% SO2 emissions
- What about adding PM to the model plant criteria?

Light Extinction

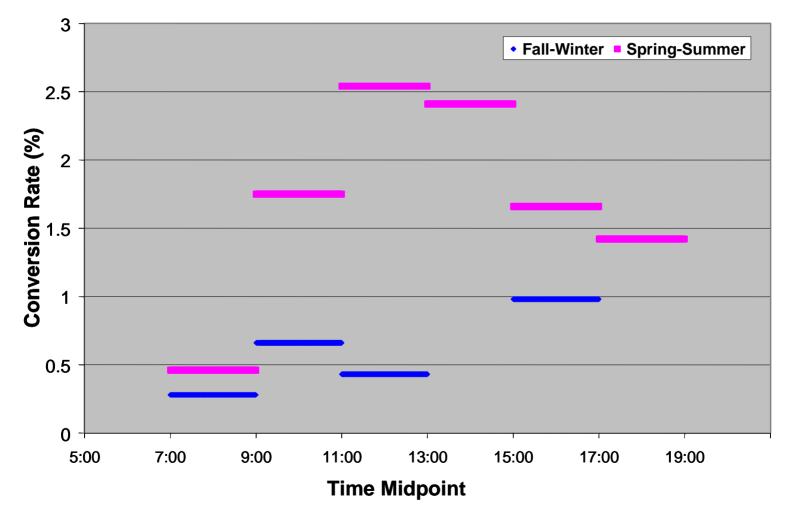
- *f(rh)* ranges from 2.3 4.7 with an average value of 3.2 in the VISTAS states
- Average contributions to b_{ext} (Mm⁻¹)
 - Sulfate = $3*f(RH)*[SO_4] = 9.6*[SO_4]$
 - $[SO_4]$ assumed to be in form of $(NH_4)_2SO_4$
 - Nitrate = $3*f(RH)*[NO_3] = 9.6*[NO_3]$
 - [NO₃] assumed to be in form of NH_4NO_3
 - Elemental Carbon = 10*[EC]
 - Organic Carbon = 4*[ORG]
 - Soils = 1*[Soils]
 - Coarse Mass = 0.6*[PMC]
- Conservative approach is to assume all PM is PM2.5
 - [PMC]=0

SO2 vs. PM Emissions

- SO2 does not impact light extinction
- Only a fraction of the SO2 becomes SO4 PM
- How much?
 - Function of SO2 to SO4 conversion rate
 - Function of distance downwind
 - Function of wind speed
- 100% of primary PM becomes PM
 - Speciation of PM will impact light extinction

Conversion Factor

• Calculate a "PM factor" to relate primary PM to secondary sulfate PM from SO2


- e.g., E = SO2 + NOx + 10*PM

- Lower SO2 to SO4 conversion results in higher PM factor
 - Higher PM factor is more conservative
- Conversion of 1 ton SO2 (MW=64) will produce 2.0625 tons (NH₄)₂SO₄ (MW=132)

Example

- Assume all primary PM is sulfate and ignore dry deposition
- 100 tons SO2 with 5% conversion rate
 - 100 tons SO2 * 5% conversion
 = 5 tons * 2.0625
 = 10.3125 tons SO4 PM produced
 - 100 tons PM = 100 tons PM
- E = SO2 + NOx + (100/10.3125)*PM= SO2 + NOx + 9.7*PM= SO2 + NOx + 10*PM

Mean SO₂ Conversion Rate in Power Plant Plume by Season and Time of Day

Assumptions

- Distance downwind = 50 km (31 miles)
 - Model plant criteria distance
- SO2 to SO4 conversion rate = 1.5% per hour
 - Max. sulfate production is during summer
 - Lower conversion rate produces higher PM Factor
- Wind speed = 5 m/s (11.2 mph)
 - Higher wind speeds produce higher PM Factor
 - Max. sulfate production occurs at lower WS
 - Likely < 5 m/s
 - *t* = 31 miles/11.2 mph = 2.77 hours

PM Factor

- SO2 conversion = 1.5% * 2.77 hours = 4.15%
 - 100 tons SO2 * 4.15% conversion
 = 4.15 tons * 2.0625
 = 8.56 tons SO4 PM produced
 100 tons DM = 100 tons DM
 - 100 tons PM = 100 tons PM
- E = SO2 + NOx + (100/8.56)*PM= SO2 + NOx + 11.7*PM= SO2 + NOx + 12*PM
 - Assumes all primary PM is sulfate

PM Speciation

- Not all primary PM will be sulfate
- Scale components of PM by ratio of species extinction coefficient to average sulfate extinction coefficient (9.6)
- E = SO2 + NOx + 12*PM*[(%SO4)*(9.6/9.6)+ (%NO3)*(9.6/9.6)+(%EC)*(10/9.6)+ (%OC)*(4/9.6)+(%Soils)*(1.0/9.6)]
- E = SO2 + NOx + 12*PM*[(%SO4)+(%NO3)+ 1.04*(%EC)+0.42*(%OC)+0.1*(%Soils)]

International Paper - Savannah

- SO2=0.0 tons, NOx=0.0 tons, PM=51.4 tons
- Distance to nearest Class I area = 83.6 km
 Need *E* < 500 tons to be exempt
- Assume 100% primary PM is sulfate
 E = 12 * 51.4 = 616.8 tons (> 500 → not exempt)
- PM Speciation from SMOKE profile (AP-42)
 SO4=20.40%, NO3=0.37%, EC=2.62%, OC=35.69%, Soils=40.91%
 - E = 12 * 51.4 * [(0.204) + (0.0037) + 1.04*(0.00262)+ 0.42*(0.3569) + 0.1*(0.4091)]

 $-E = 263.0 \text{ tons} (< 500 \rightarrow \text{EXEMPT!!})$