

July 29, 2016

Ms. Antonia Beavers Georgia Department of Natural Resources Environmental Protection Division Response and Remediation Program 2 Martin Luther King Dr., S.E., Suite 1054 East Atlanta, Georgia, 30334

RE: 4th SEMI-ANNUAL PROGRESS REPORT OMNI SOURCE FACILITY (FORMER LOEF COMPANY SITE) 590 OLD HULL ROAD, ATHENS, GEORGIA HSI SITE NO. 10376 VRP SITE NO. 802705980 Apex Project No.: 510393-002

Dear Ms. Beavers:

Apex Companies, LLC (Apex) is pleased to submit the 4th Semi-Annual Progress Report for the OmniSource Facility (Former Loef Company Site) located in Athens, Georgia. This report includes results from the April 2016 groundwater monitoring event.

OmniSource is currently reviewing and preparing the Uniform Environmental Covenant (UEC) document that was mentioned in the Division's letter dated March 9, 2016. Therefore, the draft UEC is not included with this Progress Report. OmniSource will submit the draft UEC under separate cover or with the next semi-annual progress report.

Should you have any questions concerning this, please do not hesitate to contact the undersigned.

Sincerely,

APEX COMPANIES, LLC

Kond thleeu

Kathleen Roush, P.G. Division Manager GA Registration No. 1799

Enclosure

cc: Peter Pozzo – OmniSource Corporation Brian Winters – OmniSource Corporation David Hatchett – Hatchett & Hauck, LLP

4th SEMI-ANNUAL PROGRESS REPORT OMNISOURCE FACILITY (FORMER LOEF COMPANY SITE) 590 OLD HULL ROAD ATHENS, GEORGIA HSI SITE NO. 10376 VRP SITE NO. 802705980

Submitted to:

Georgia Department of Natural Resources Environmental Protection Division Response and Remediation Program 2 Martin Luther King Dr., S.E., Suite 1054 East Atlanta, Georgia, 30334

Submitted by:

Apex Companies, LLC 10610 Metromont Parkway, Suite 206 Charlotte, North Carolina 28269

Apex Project No. 510393-002

July 29, 2016

Grant Wathins

S. Grant Watkins, PG, RSM Program Manager

Kathleen A. Roush, PG, RSI Division Manager

No. 1799

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	1
	1.1	Site Background and Regulatory Summary	1
	1.2	Work Scope for Current Progress Report	2
2.0	GROU	INDWATER MONITORING METHODS AND RESULTS	2
	2.1	Groundwater Gauging and Sampling Methods	
	2	2.1.1 Waste Management	
	2.3	Groundwater Analytical Results	
	2.4	Groundwater Geochemistry	
3.0	GROU	INDWATER PLUME TRANSPORT AND STABILITY EVALUATION	7
	3.1	General	
	3.2	Plume Degradation Lines of Evidence	
	-	3.2.1 Statistical Evaluation to Support Primary Lines of Evidence	
	3.3	BIOCHLOR Model Discussion and Update	
		3.3.1 Site Environmental History for Model Development	
		3.3.2 Model Overview and Rationale for Use	
		3.3.3 Model Calibration	
		3.3.4 Input Parameters	
		3.3.5 Model Results	
		3.3.6 Model Sensitivity	
4.0	REVIE	W OF CONCEPTUAL SITE MODEL	15
•	4.1	CSM Update	
	4.2	Point of Exposure (POE) Determination	
5.0	CONC	LUSIONS AND RECOMMENDATIONS	18
	5.1	Summary of Findings	
	5.2	Recommendations for Future VRP Activities	
	5.3	Updated VRP Schedule	
6.0	REGIS	STERED PROFESSIONAL SUPPORTING DOCUMENTATION	20

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan with Well Locations
Figure 3	Potentiometric Map-Surficial Aquifer Zone – April 2016
Figure 4	Groundwater Sampling Results – April 2016
Figure 5	TCE in Groundwater (April 2016)
Figure 6	Benzene in Groundwater (April 2016)

- Figure 7 Figure 8 1,1-DCE in Groundwater (April 2016) BIOCHLOR 30-Year Plume Prediction (2022)

TABLES

- Table 1
 Summary of Historical Groundwater Gauging and Elevations
- Table 2
 Groundwater Bio-Geochemical, Inorganic and Water Quality Parameters
- Table 3
 Historical Groundwater Analytical Results
- Table 4Historical Total VOC Concentrations in Groundwater
- Table 5
 Summary of BIOCHLOR Modeling Results

APPENDICES

- APPENDIX A Groundwater Sampling Forms
- APPENDIX B Laboratory Analytical Report and Chain-of Custody (Groundwater Samples)
- APPENDIX C IDW Waste Manifests (2015 Site Work)
- APPENDIX D Mann Kendall Statistical Analyses Worksheets
- APPENDIX E BIOCHLOR Output Sheets
- APPENDIX F Updated VRP Project Schedule
- APPENDIX G Summary of Hours Invoiced

1.0 INTRODUCTION

Apex Companies, LLC (Apex) has prepared this 4th Progress Report on behalf of OmniSource Athens Division LLC (OmniSource) for the Former Loef Company Site located on three parcels (0 Old Hull Road, 590 Old Hull Road and 305 Athena Drive) in Athens, Clarke County, Georgia (the "site"). The site is an active industrial scrap metals recycling facility that occupies 21.34 acres of land, inclusive of the three property parcels that are identified as the "VRP Property" under the Georgia Department of Natural Resources (DNR) Voluntary Remediation Program (VRP). The site was listed on the Georgia Hazardous Site Inventory (HSI) as a Class II site on June 9, 1995 (Site Number 10376) following discovery of soil and groundwater contamination at the facility. The site location on a regional topographic map is shown on **Figure 1**. A site plan that includes the facility layout and existing monitoring well locations is shown on **Figure 2**.

The primary objectives of this report are to document the tasks completed by OmniSource from July 2015 through July 2016 and to provide additional information as requested by the Georgia DNR, Environmental Protection Division (EPD) in their comments letter dated March 9, 2016. An updated schedule of VRP activities proposed for the site is also included in this report.

1.1 Site Background and Regulatory Summary

Hull Real Estate, LLC (Hull) was the prior owner of the site before OmniSource's acquisition of the property. On November 7, 2011 Peachtree Environmental (Peachtree) submitted a VRP application to the EPD on behalf of Hull, and EPD accepted the site into the VRP in May 2012. Hull had committed to completing the site remediation under the VRP after selling the property to OmniSource. However, Hull later reneged on that commitment and informed the EPD that they were no longer willing to complete site remediation work.

On March 12, 2015 OmniSource submitted a VRP application with the intent to complete regulatory closure at the site. The VRP application identified additional activities to be conducted for site closure. EPD accepted OmniSource as a participant in the VRP for the referenced property in a letter dated May 8, 2015.

Prior remedial activities at the site include excavation and off-site disposal of approximately 43,000 tons of soil impacted by volatile organic compounds (VOCs) and metals from 2002 through 2003. An in-situ groundwater treatment event was also completed in 2003. The groundwater treatment event included injection of Hydrogen Release Compound (HRC[®]) as a carbon substrate to promote enhanced anaerobic biodegradation of chlorinated volatile organic compounds (cVOCs) in groundwater. Both Hull and OmniSource have performed ongoing, routine groundwater sampling events to monitor migration of the VOC plume and the long-term effectiveness of the enhanced biodegradation treatment program combined with monitored natural attenuation as a groundwater cleanup remedy.

The most recent Progress Report previously submitted by OmniSource to EPD was the 3rd Semi-Annual Progress Report (Apex: July 30, 2015). Previous VRP site field activities and evaluations addressed by that report included the following:

- Repair of monitoring well MW-1;
- Resurveying of 11 existing site wells in January 2015;
- Sampling and permanent abandonment of former well MW-2A in May 2015;
- Installation and development of deep well MW-1D in May 2015;

- Aquifer slug testing in wells MW-4A, MW-11 and MW-12;
- Groundwater gauging and sampling at 11 existing site monitoring wells (MW-3A, MW-4A, MW-6, MW-7A, MW-8A, MW-9 and MW-10 through MW-14) in January 2015. The groundwater analyses included VOCs (Method 8260), lead and various bio-geochemical parameters such as dissolved gases, total organic carbon, and inorganic constituents;
- Groundwater sampling at repaired monitoring well MW-1 and new deep well MW-1D in June 2015 (analyses included VOCs and lead);
- Review and update of the Conceptual Site Model;
- Conducted a plume stability and degradation evaluation using existing data as primary lines of evidence, as well as a contaminant fate-and-transport evaluation using the one-dimensional BIOCHLOR model as an optional line of evidence for future plume migration.

1.2 Work Scope for Current Progress Report

In response to EPD's comment letter dated March 9, 2016, Apex submitted a letter to EPD on April 21, 2016 with an interim response to comments and notification of the proposed sampling plan and date for the next semi-annual groundwater monitoring event. This 4th Semi-Annual Progress Report presents information regarding VRP activities performed since submittal of the last progress report, which includes the following work components:

- 1. Methods and results of the April 2016 semi-annual groundwater monitoring event;
- 2. Professional surveying of well MW-1 and MW-1D locations and elevations in July 2016;
- 3. Detailed responses to EPD's comments 1-7 from the agency's March 9, 2016 letter (if not already addressed by Apex's April 21, 2016 interim response letter to EPD), including detailed BIOCHLOR model input/output information and updated conceptual site model.
- 4. Supplemental plume stability evaluations using Mann-Kindell statistical tests; and
- 5. An updated VRP schedule and recommendations for the next groundwater sampling event and Progress Report.

2.0 GROUNDWATER MONITORING METHODS AND RESULTS

This section describes the methods and results of the most recent groundwater monitoring event conducted at the site in April 2016.

2.1 Groundwater Gauging and Sampling Methods

The groundwater monitoring event was conducted on April 25-26, 2016 by Apex Companies, LLC. Groundwater levels were gauged and water samples were collected from the 13 existing site monitoring wells (MW-1, MW-1D, MW-3A, MW-4A, MW-6, MW-7A, MW-8A, MW-9, and MW-10 through MW-14) as shown in Figure 2.

Prior to purging and sampling, each of the wells were opened and allowed to equilibrate. Groundwater levels in the wells were then gauged with a decontaminated electronic water level probe and were recorded to the nearest 0.01-foot. The wells were gauged in order of known degree of contamination, moving from wells which have historically not exhibited detectable concentrations of VOCs to those which have exhibited the highest levels. Historical groundwater

gauging and elevation measurements that include data from the April 2016 gauging event are provided in **Table 1**.

Each of the 13 wells were purged and sampled by low flow protocol in accordance with the U.S. EPA Region IV Science & Ecosystem Support Division (SESD) March 6, 2013 Operating Procedure for Groundwater Sampling (SESDPROC-301-R3). The wells were purged using a peristaltic pump equipped with Teflon tubing with the intake placed near the middle of the screened interval. The wells were sampled in order of least to greatest impacts of VOCs based on historical sampling results.

During low-flow well purging, groundwater water quality indicator parameters of pH, temperature, specific conductance, dissolved oxygen (DO), oxidation-reduction potential (ORP), and turbidity were recorded at three-minute intervals using a Horiba U-52 multi-probe water quality meter. Generally, groundwater samples are collected when water chemistry parameters are stable (e.g., pH values within 0.1 standard unit, specific conductance within 5% and turbidity <10 NTUs) for three consecutive three-minute intervals. Groundwater sampling forms documenting the monitored groundwater quality indicator parameters are provided in **Appendix A**. Historical water quality parameters, inorganic parameters and bio-geochemical measurements for site wells are included in **Table 2**. Several wells had stabilized turbidity that exceeded 10 NTUs.

Following purging, groundwater samples from each well were collected into laboratory supplied sample containers using the peristaltic pump. In accordance with SESDPROC-301-R3, samples for VOC analyses were collected using the "soda straw" method. The sample containers were labelled with a unique sample number, date and time of collection, sampler's initials and analyses required. Following collection, the samples were placed in a cooler with ice. Chain-of-custody documentation was maintained throughout the sampling event.

In addition to the groundwater samples, quality assurance/quality control (QA/QC) samples were collected in accordance with SESD Procedures. QA/QC samples included:

- One trip blank (one blank per shipping cooler for VOCs);
- Two field duplicates (one duplicate collected per 10 samples); and
- One field blank (one collected per 20 samples).

The field duplicates (DUP-1, DUP-2) were collected at wells MW-12 and MW-13. Samples were transported under chain-of-custody to Shealy Environmental Services, Inc. (Shealy) of Columbia, South Carolina (GADNR Certification #E87653) and analyzed for VOCs using EPA Method 8260B in accordance with the sampling program letter submitted to EPD on April 21, 2016.

Table 3 summarizes the VOC analytical results from the April 2016 event. The laboratory analytical report and chain-of-custody records are provided in **Appendix B**. Discussions of the April 2016 groundwater monitoring results are provided in Section 2.2 and Section 3.3 of this report.

2.1.1 Waste Management

Investigation derived wastes (IDW), including well purge water and decontamination fluids were containerized in a 55-gallon Department of Transportation (DOT)-approved drum. The drum was labelled with the site name and address, contents and date of accumulation. It was staged in a secure location pending transportation to an off-site disposal facility following the next semi-

annual sampling event. Liquid samples of IDW were previously characterized and profiled for disposal from past sampling events. Historical analyses to characterize IDW have included VOCs, RCRA metals, corrosivity, and ignitability. Because there are existing profiles for IDW from this site, additional IDW characterization samples were not collected from the small volume of purge water generated during the April 2016 sampling event. Purge water from the next semi-annual event will be placed in the same drum prior to off-site transport and disposal at a future date.

Waste manifests for IDW generated during the 2015 site investigation were not available at the time that the 3rd Semi-Annual Progress Report was submitted. Disposal manifests from the 2015 site work are included in **Appendix C** of this report.

2.2 Groundwater Elevations and Flow Results

Groundwater elevation data from **Table 1** were used to construct a groundwater potentiometric map for April 25, 2016 as shown in **Figure 3**. The potentiometric map indicates that shallow groundwater was flowing generally toward the south-southeast over most of the site during the April 2016 event. The map also shows that groundwater flow becomes more radial and multi-directional near the southern property corner, where a south-southwest flow direction was observed in the vicinity of well MW-8A and a more easterly flow component was seen in the area between wells MW-9A and MW-4A. The April 2016 groundwater potentiometric flow results are consistent with historical groundwater flow maps.

Groundwater horizontal flow gradients in the surficial aquifer zone vary from the northern portion of the site, where the hydraulic gradient is lower, to the southern portion of the site where the gradient becomes steeper. Using three-point triangulation methods, a hydraulic gradient of 0.0128 ft/ft was calculated for the upgradient portion of the site between wells MW-12, MW-1 and MW-13. A steeper hydraulic gradient of 0.0263 ft/ft was calculated using triangulation methods for wells MW-11, MW-10 and MW-4A located near the east-southeastern property boundary. Additionally, a steeper gradient is evident in the vicinity of wells MW-14 and MW-7a near the southwest property boundary, where an approximate hydraulic gradient of 0.0417 ft/ft was estimated from equipotential contours on the potentiometric map in Figure 3.

Because there is not a multi-depth cluster of closely-spaced shallow and deep wells at the site, vertical hydraulic gradients could not be directly determined from groundwater elevation data at deep well MW-1D. Compared to the water level elevation of 688.90 feet mean sea level (ft MSL) at nearby shallow well MW-3A, the water level elevation at MW-1D (684.81 ft MSL) is 4.09 feet lower. This shows a downward vertical flow component between the shallow and deeper groundwater on this part of the site, indicative of a groundwater recharge zone. Another method to estimate the vertical gradient is to compare the potentiometric elevation at MW-1D with the shallow potentiometric contour value at that location. From Figure 3, the shallow groundwater potentiometric value is 687 ft MSL at the MW-1D well location and this value is assumed to represent both the water table elevation and the middle of the screen of a hypothetical shallow well at this location. The input values to calculate an estimated vertical gradient are:

- Ground elevation at MW-1D = 707.00 feet mean sea level (ft MSL)
- Depth to middle of well screen at MW-1D = 72.5 ft below land surface (bls)
- Middle-of-screen elevation at MW-1D = 634.5 ft MSL
- Vertical separation from water table to MW-1D mid-screen = (687-634.5) = 52.5 ft
- Change in potentiometric head at MW-1D location = (687-684.81) = 2.19 ft

The estimated vertical hydraulic gradient from these input values is 0.0417 ft/ft, and the flow direction is downward at the MW-1D well location.

Water level elevations for the April 2016 gauging event were generally higher across the site (but within 1.3 feet variation or less) compared to the May 2015 gauging event. Well MW-1 was repaired on May 21, 2015 by converting it from a stickup well to a flush-mount well. The larger differences in water levels following the May 18, 2015 gauging event at this well (see Table 1) are due to the repaired well casing being lowered by approximately three feet.

2.3 Groundwater Analytical Results

A summary of historical groundwater analytical results for VOCs is provided in Table 3. Laboratory analytical results are included in Appendix B. **Figure 4** is a site map that shows the concentrations of VOCs detected in groundwater at each well sampled.

Laboratory analytical results in Table 3 show that VOCs were detected at quantified or estimated (J-flagged) concentrations in ten of the thirteen wells sampled in April 2016. Only five of these wells (MW-1D, MW-3A, MW-11, MW-12 and MW-14) had one or more VOCs that exceeded their Type 1 Risk Reduction Standards (RRSs) for groundwater. The VOCs that exceeded their respective Type 1 RRS concentrations at various wells in April 2016 include the following:

- Trichloroethene (TCE): Wells MW-1D, MW-11;
- Tetrachlorethene (PCE): Well MW-11
- 1,1-Dichloroethene (1,1-DCE): Wells MW-11, MW-12 (and MW-12 duplicate);
- Vinyl Chloride (VC): Well MW-14
- Benzene: Wells MW-3A, MW-11

Seven VOCs that had previously not been tested or reported in site groundwater were detected at quantified or estimated (J-flagged) concentrations during the April 2016 event at one or more wells. These seven new VOCs included: 1,1,2-Trichloro-1,1,1-Trifluoroethane; Chloromethane; 1,2-Dichloroethane; Cyclohexane; Isopropylbenzene; Methylcyclohexane; and Methylene Chloride. None of these seven VOCs exceeded their Type 1 RRS, and three of the VOCs do not have assigned RRSs (see Table 3).

<u>MW-11 (Source Area)</u>

Laboratory analytical results indicate that monitoring well MW-11 continues to have the greatest concentrations of TCE and of total VOCs. A TCE concentration of 760 micrograms per liter (μ g/L) was reported for the April 2016 event, which represents a 50 percent reduction of TCE since the last sampling event at MW-11 in January 2015. Well MW-11 also had the only exceedance of Type 1 RRS for PCE, with a detected concentration of 5.8 μ g/L in April 2016.

Benzene (9.2 μ g/L) and 1,1-DCE (9 μ g/L) also exceeded their respective Type 1 RRSs at well MW-11 during the April 2016 event. The TCE degradation compound cis-1,2-Dichlorothene (cis-1,2-DCE) was detected in MW-11 at 7.5 μ g/L, which is an order of magnitude below its Type 1 RRS and 37 percent less than its previous concentration in January 2015. Concentrations of each of the VOCs detected in MW-11 during the April 2016 event were 30 to 66 percent lower than their respective concentrations during the January 2015 event.

<u>MW-1D (Deep Well)</u>

TCE was detected at a concentration of 22 μ g/L in deep monitoring well MW-1D, which is completed to a total depth of 75 feet bls and is located approximately 185 feet downgradient of source area well MW-11. TCE was previously detected at 17 μ g/L during the June 3, 2015 sampling event. Deep well MW-1D also contained PCE (2.2 μ g/L) and 1,1,2-Trichloro-1,1,1-Trifluoroethane (7.2 μ g/L) during the April 2016 event but at concentrations below their respective Type 1 RRSs.

Dissolved Plume Distribution and Perimeter Wells

Figure 4 shows the detections of VOCs in groundwater at each well sampled. The only VOCs that were detected at concentrations above their Type 1 RRS in more than one site well were TCE, benzene and 1,1-DCE. The extent of dissolved TCE in groundwater for the April 2016 sampling event is illustrated in **Figure 5**. The TCE iso-concentration contours, which were drawn for the shallow aquifer zone only, show that the residual TCE source area is in the vicinity of well MW-11 and the TCE plume does not migrate off-site above the Type 1 RRS.

The extent of benzene and 1,1-DCE in groundwater are shown in **Figure 6** and in **Figure 7**, respectively, for the April 2016 event. Benzene is limited to the on-site shallow groundwater and was not detected in deep well MW-1D. Similarly, 1,1-DCE is limited to the on-site shallow groundwater and was not detected in deeper groundwater. Figure 7 shows two distinct areas of the site around wells MW-11 and MW-12 where the remaining 1,1-DCE concentrations are an order of magnitude higher than at any other wells. These two active wells and abandoned well MW-2A have historically been the only monitoring wells where the Type 1 RRS for 1,1-DCE has been exceeded.

No VOCs were detected in down-gradient monitoring wells MW-9A and MW-10. Down-gradient wells MW-4A, MW-7A and MW-8A contained one or more VOCs at estimated (J-flagged) concentrations below 1 μ g/L and well below their Type 1 RRSs. Groundwater at well MW-14 contained 2.1 μ g/L of vinyl chloride, which slightly exceeds its Type 1 RBBS of 2 μ g/L. Well MW-14 is located hydraulically down-gradient at the site but is side-gradient to the historical source areas near MW-11 and MW-2A. Vinyl chloride was previously not detected in this well, and it is likely a biodegradation product of TCE.

No VOCs were detected in monitoring well MW-9A, previously designated as the site Point of Demonstration (POD) well by Hull. Well MW-4A, also proposed as a POD well by OmniSource, contained only TCE at an estimated (J-flagged) concentration of 0.35 μ g/L. These results, supported by earlier findings and by current plume maps, indicate that groundwater impacts above the Type 1 RRSs do not extend off-site.

Duplicate samples were collected during the site wide groundwater sampling event to meet the quality assurance/quality control protocol in accordance with applicable standards. The analytical results for the duplicate samples did not significantly differ from those for their corresponding primary samples and fall within acceptable ranges for relative percent difference. Further, there were no VOCs detected in the trip blank or in the field blank.

2.4 Groundwater Geochemistry

Bio-geochemical, inorganic and water quality parameters in groundwater were historically collected to track the progress of remediation by enhanced reductive dechlorination (ERD) and to

determine the ongoing viability of monitored natural attenuation (MNA) as a remedial alternative for the remaining dissolved cVOCs present in groundwater. Previous semi-annual progress reports presented these results, and they are summarized along with current data in Table 2.

For the April 2016 semi-annual monitoring event, only the field water quality indicators were collected in groundwater. A brief summary of the trends for several indicator parameters that are key to track MNA progress are discussed below.

Dissolved Oxygen (DO)

DO concentrations ranged from 0.57 milligrams per liter (mg/L) in MW-14 to 5.7 mg/L in background (upgradient) well MW-6. Groundwater conditions are anoxic (i.e., low DO) and generally remain below 1 mg/L in the source area, which is favorable for continued reductive dechlorination of cVOCs.

Acidity (pH)

Groundwater pH values ranged from 4.33 at well MW-4A to 6.74 at MW-9A. In general, pH values are moderately acidic within the source area. Although some TCE dechlorinating bacteria can thrive at pH levels below 5.0, microbes that specifically degrade cis-1,2-DCE and vinyl chloride generally require higher pH values.

Lower groundwater pH in the source area is likely due to the buildup of biologically-generated metabolic acids and hydrogen from the ERD process. However, it is interesting to note that upgradient, background well MW-6 has a pH value (4.39) similar to that in the source area. The pH of the groundwater increases at the perimeter of the plume with well MW-8A and MW-9A. In these wells the dissolved oxygen levels are also reduced to anaerobic levels.

Oxidation-Reduction Potential (ORP)

Efficient anaerobic degradation requires suppressed ORP values generally less than -50 millivolts (mV) in groundwater. The ORP readings in groundwater were all positive (+40 mV or higher) and were elevated (>150 mV) in many wells across the site. Abandoned well MW-2A is the only well that has historically shown a reducing condition (i.e., negative ORP value) in the past six years, which was the result of ERD bioremediation treatment in the vicinity of that well. The current ORP values indicate that groundwater conditions are no longer reducing.

3.0 GROUNDWATER PLUME TRANSPORT AND STABILITY EVALUATION

3.1 General

The initial release of VOCs was assumed to have occurred several decades ago in the early 1990's when metals recycling operations first began at the site. Impacted soils were removed from the site in the early-2000s; therefore, the remaining contaminant mass consists of dissolved phase VOCs present in the saturated aquifer media. The elevated concentrations of cVOCs around MW-2A were addressed in 2003 with the injection of Hydrogen Release Compound (HRC[®]) to promote anaerobic biodegradation of the cVOCs. Concentrations of the TCE were reduced by 76% following the HRC[®] injections. The previous remedial activities were conducted to move the site toward a monitored natural attenuation (MNA) remedy for groundwater. As these remedial activities were successfully completed, the site data were evaluated to determine if MNA and the use of environmental covenants is an appropriate method to protect human health and the environment in the future.

TCE was addressed in 2003 using active soil and groundwater remediation methods at the area around MW-2A. The highest TCE concentrations are now observed at well MW-11. During the January 2015 sampling event, TCE was measured at 1,500 μ g/L. The TCE concentration at well MW-11 has since declined to 760 μ g/L in April 2016. The area in the vicinity of MW-11 is considered the residual source area for current evaluations.

Groundwater data have been evaluated by several methods to evaluate the risk that constituents of concern (COCs) in groundwater could pose a potential receptor within 1,000 feet of the down gradient extent of the plume, and to establish the time required to achieve compliance with applicable RRSs for groundwater. Using a MNA remedy, groundwater contaminants may be allowed to naturally degrade and attenuate over time. In order to consider this option, the following conditions must apply:

- The source of contamination must be controlled or remediated;
- The COCs must have the capacity to degrade or attenuate at the site;
- The time and direction of the contaminant travel must be able to be predicted; and,
- The continued migration of the COCs may not impact any foreseeable receptor at concentrations above applicable Standards.

Significant effort was made to remove impacted soils and address the source area at MW-2A. In addition, the horizontal limits of the plume have been delineated to the Type 1 RRSs and the vertical extent is delineated at MW-1D within one order of magnitude of the Type 1 RRS for TCE.

3.2 Plume Degradation Lines of Evidence

Three lines of evidence to evaluate plume stability and the potential for future impacts to receptors were previously discussed in the 3^{rd} Semi-Annual Progress Report. The three lines of evidence include:

- Primary lines of evidence historical groundwater monitoring data;
- Secondary lines of evidence geochemical characteristics of the groundwater; and,
- Optional lines of evidence environmental fate and transport modeling results.

Primary Lines of Evidence

According to EPA guidance, the most reliable line of evidence to determine plume stability and if MNA is appropriate for a site is actual groundwater monitoring data (primary lines of evidence). The primary lines of evidence at this site indicate that the plume has reached steady state conditions and appears to be shrinking laterally. The 3rd Semi-Annual Progress Report discussed long-term data trends for individual VOCs monitored through January 2015, including the accelerated reduction parent cVOCs (i.e., TCE and PCE) following injections of the HRC[®] organic substrate. Current data from the April 2016 monitoring event continue to show a stable or shrinking plume with respect to individual VOCs.

Over the last 23 years, the core of the TCE plume has been contained within the center of the OmniSource property. TCE had previously been detected at downgradient well MW-4A at concentrations up to 51 μ g/L. The TCE concentration was 0.35J MW-4A during the April 2016

sampling event, and levels have remained below the Type I RRS for the past three years at this well. Historical TCE reductions at source area wells MW-2A and MW-11 illustrate the combined effects of active source area remediation and natural attenuation processes to significantly reduce TCE concentrations in the core of the plume. The daughter cVOCs initially produced by TCE biodegradation have also shown a decreasing trend.

As a result of contaminant mass reduction within the source area, a decreasing trend of total VOCs in groundwater is also observed. Compared to trends for individual VOCs, total VOC concentration trends can be used to account for changes in contaminant concentrations that may result from incomplete parent-daughter compound transformations (i.e. the conversion of TCE to cis-1,2-DCE to vinyl chloride). Monitoring the total VOC concentration trend allows a more accurate measurement of decreasing total contaminant mass in groundwater. The overall trends of total chlorinated and non-chlorinated VOCs in groundwater at several key wells are summarized in **Table 4**. These results show total VOC reductions in the source area that range from 41 percent at MW-11 (2013-2016 period) to 96 percent at MW-2A (2003-2015 period). Perimeter and downgradient wells showed similar total VOC reductions, which varied from 59 percent at MW-12 (2013-2105 period) to 99 percent at MW-4A (2004-2016 period). Mann-Kendall test were also performed on historical VOC data and is discussed in Section 3.2.1. of this report.

Secondary Lines of Evidence

Secondary lines of evidence consist of geochemical data used to evaluate if the conditions within the aquifer are suitable for biodegradation of the COCs present. Bio-geochemical data have been collected to evaluate the potential for continued reduction dechlorination of the cVOCs. Direct evidence of TCE reductive dechlorination in the groundwater include the presence of daughter compounds such cis-1,2-DCE, vinyl chloride, and ethene.

The current groundwater geochemistry suggests that the source area is becoming less reduced over time based on ORP, although DO levels remain suppressed. The most recent total organic carbon (TOC) concentrations from 2015 ranged from <1 milligram per liter (mg/L) to 12.2 mg/L. The organic carbon source likely includes both natural and anthropogenic sources, where the latter would include biomass and metabolic acids from the prior HRC[®] injections as well as aromatic hydrocarbons that are COCs in groundwater. The presence of organic carbon in the aquifer will continue to retard the migration of dissolved-phase VOCs in groundwater.

Strongly negative ORP values, TOC levels >20 mg/L, and pH >5.5 are considered ideal geochemical conditions for anaerobic reductive dechlorination of chlorinated ethenes in groundwater, which was the treatment goal of the HRC[®] injections. Although these ideal conditions for anaerobic reductive dechlorination of chlorinated ethenes do not exist uniformly throughout site groundwater at the present time, other biological TCE destruction pathways are possible under alternate geochemical conditions such as lower ph and higher ORP.

Optional Lines of Evidence

Peachtree Environmental and Apex previously utilized the one-dimensional screening groundwater contaminant transport model BIOCHLOR to help determine if natural attenuation is a feasible groundwater remedy for the site. BIOCHLOR was developed by Groundwater Services, Inc. (GSI) for the Air Force Center for Environmental Excellence. The model uses a combination of site-specific data and published literature values to determine the physical properties of the aquifer and plume. Since it is a one dimensional model it is not designed for a plume traveling in multiple directions, or estimating environmental fate within multiple groundwater zones.

BIOCHLOR modeling results were previously submitted to the GAEPD in historical reports, including the *3rd Semi-Annual Progress Report* (July 30, 2015) prepared by Apex. The GAEPD letter dated March 9, 2016 requested clarification of input and output values from the BIOCHLOR model submittal in that report. Those items are further addressed in Section 3.3 of this report.

3.2.1 Statistical Evaluation to Support Primary Lines of Evidence

Statistical analysis of groundwater contaminant trends is another important tool in the evaluation of primary lines of evidence. Two nonparametric statistical methods that are widely used are the Mann-Kendall and the Mann-Whitney tests. Both statistical tests can be used to demonstrate whether individual groundwater contaminants are decreasing, stable, or increasing over time. The Mann-Kendall test requires a minimum of four sets of sampling data that are not affected by large seasonal variations in concentrations. The Mann-Whitney test requires at least eight consecutive rounds of quarterly or semi-annual data, with the allowance that the data can show seasonal variations. Because large seasonal variations in VOC concentrations and changing groundwater flow directions are not evident at the site, Mann-Kendall tests were used to evaluate VOC data from several key wells in the source area, the mid-plume area, and the downgradient areas that have four or more sampling events. Software developed by GSI was used to perform the Mann-Kendall tests. Non-detect values were entered as one-half of their reporting limit.

Mann-Kendall statistical tests were run on post-2005 data for wells MW-2A, MW-3A, MW-4A, and MW-9A for the following most prevalent regulated VOCs in site groundwater: TCE; 1,1-DCE; cis-1,2-DCE, vinyl chloride; and benzene. **Appendix D** contains the GSI software output sheets for the tests. The statistical results by well and by VOC are summarized in the following table:

TCE				
Well	MW-2A	MW-3A	MW-4A	MW-9A
M-K Statistic (S)	-18	-37	-27	-9
Confidence Factor	93.4%	>99.9%	99.2%	75.8%
Trend Result	Prob. Decreasing	Decreasing	Decreasing	Stable
1,1-DCE				
Well	MW-2A	MW-3A	MW-4A	MW-9A
M-K Statistic (S)	-22	-10	-10	-9
Confidence Factor	97.1%	75.3%	75.3%	75.8%
Trend Result	Decreasing	Stable	Stable	Stable
Cis 1,2-DCE				
Well	MW-2A	MW-3A	MW-4A	MW-9A
M-K Statistic (S)	-13	-10	-9	-9
Confidence Factor	85.4%	75.3%	72.9%	75.8%
Trend Result	Stable	Stable	Stable	Stable
Vinyl Chloride				
Well	MW-2A	MW-3A	MW-4A	MW-9A
M-K Statistic (S)	7	-10	-10	-9
Confidence Factor	70.0%	75.3%	75.3%	75.8%
Trend Result	No Trend	Stable	Stable	Stable
Benzene				
Well	MW-2A	MW-3A	MW-4A	MW-9A
M-K Statistic (S)	-19	7	-23	-9
Confidence Factor	94.6%	70.0%	97.7%	75.8%
Trend Result	Prob. Decreasing	No Trend	Decreasing	Stable

Mann-Kendall Statistical Tests Summary

These statistical trend results indicate that TCE, the daughter products of TCE, and benzene are either decreasing, probably decreasing, or stable for source area and mid-plume wells where a trend could be established. Downgradient POD wells MW-4A and MW-9A show either decreasing or stable trend results for each of the five COCs evaluated. Only the data sets from 2006 to the present were evaluated to eliminate effects from potential concentration spikes in daughter compounds or enhanced dissolution anomalies that would most likely occur within the first few years following the HRC[®] injections in 2003. This 10-year data set best represents long term post-injection trends.

3.3 BIOCHLOR Model Discussion and Update

This section is provided to address items 5.A-D in the GAEPD March 9, 2016 response letter that were related to the BIOCHLOR model results presented in the 3rd Semi-Annual Progress Report. Apex performed this current analysis using the 2015 data that were previously submitted, since those were the basis of the comments regarding model input values and calibration at that time. Additional information regarding the model, input parameters, aquifer characteristics, etc. is provided below and in **Appendix E.**

3.3.1 Site Environmental History for Model Development

The release was initially discovered in 1993 and groundwater monitoring activities have been conducted since 2000. Concentrations of TCE were historically the highest at well MW-2A, which exhibited 9,600 μ g/L of TCE in 2003. This was also associated with elevated concentrations of associated TCE breakdown (daughter) products including cis-1,2-Dichloroethene (cis-1,2-DCE) (1,500 μ g/L) and vinyl chloride (130 μ g/L). Low concentrations of petroleum fuel related compounds including benzene, toluene, and xylenes were detected in wells MW-2A, MW-3A, and MW-4A through at least 2011. Petroleum fuels provide the necessary organic carbon necessary for the biodegradation of the cVOCs.

HRC[®] injections were conducted in the area around MW-2A in 2003. These injections decreased concentrations by a reported 76%. There has been little rebounding of concentrations since 2006. However, it should be noted that during the10-year period of 1993 to 2003, with concentrations of TCE as high as 9,600 µg/L, the plume did not migrate from the site. In fact, over the last 22 years, the TCE plume has remained relatively isolated within the center of the subject property. Further, low concentrations of TCE in MW-1D demonstrate that there was minimal vertical migration of cVOCs.

There were several suspected release areas, but as mentioned above, the area around MW-2A has been actively remediated and historical data indicates that remaining impacts will not result in off-site impacts. The secondary source area at MW-11, which is currently the most impacted well, was the focus of the modeling described below to evaluate current conditions at the site.

3.3.2 Model Overview and Rationale for Use

The BIOCHLOR model was selected as one of the optional lines of evidence to determine if MNA is a viable groundwater remedy and to predict downgradient receptor impacts. BIOCHLOR model is a Domenico analytical solute transport model. According to the USEPA website (https://www.epa.gov/water-research/biochlor-natural-attenuation-decision-support-system), the BIOCHLOR model can simulate one-dimensional advection, three-dimensional dispersion, linear adsorption, and biotransformation via reductive dechlorination. USEPA also states that the model utilizes three model types including solute transport without decay, solute transport with

biotransformation as a first-order decay process, and biotransformation modeled with two different reaction zones. Many of the input parameters were based on default values provided in the USEPA Users Manual (US EPA (March 2002) "<u>BIOCHLOR, Natural Attenuation Decision Support</u> <u>System - User's Manual, Version 2.2, Users Manual Addendum</u>." and <u>BIOCHLOR, Natural Attenuation Decision Support System - User's Manual, Version 1.0</u>. (Publication No. EPA/600/R-00/008. January 2000), collectively referenced herein as the BIOCHLOR Users Manual.

The purpose of the modeling is to predict the migration pattern of a chlorinated solvent plume where no engineering controls have been implemented and MNA is deemed a feasible groundwater remedial option. BIOCHLOR was used to estimate environmental fate of the COCs in the shallow aquifer assuming an overall groundwater flow toward the southeast. Since it is a one dimensional model, it is not designed for plume traveling in several directions, or for estimating environmental fate within multiple groundwater zones.

BIOCHLOR was determined to be suitable for use at this site because the area to be modeled consists of the area downgradient of MW-11 where groundwater flow is directly toward MW-4A and modeling vertical migration is not warranted. Additional assessment activities conducted confirmed that the majority of the cVOCs are limited to the surficial aquifer system at depths less than 75 ft bls. The well installed at depth (MW-1D) contained TCE at 17 μ g/L in June 2015, only slightly higher than the associated RRS. Although the TCE concentration at MW-1D was slightly higher in April 2016 (22 μ g/L), this well will continue to be monitored to determine if this increase was a one-time occurrence.

The most reliable lines of evidence are historical monitoring data and these data, which were statistically analyzed herein, indicate that steady state conditions have been reached without additional active source area treatment over the last decade. Since the most dependable data indicate steady state conditions, a screening level model such as BIOCHLOR was deemed appropriate to evaluate this theory. One potential limitation of the model is simulating a declining source term that could be accelerated by remediation of the source area. In this case, the remaining 'slug' of high-concentration residual groundwater contamination may still be present even though the source of this contamination has been removed. Therefore, these results are more indicative of a "worst case scenario" where continuing source is present.

3.3.3 Model Calibration

The model was calibrated to the current trend of the plume extending to the southeast within the saprolite unit from wells MW-11 to MW-4A. Well MW-4A was assumed to be the Point of Demonstration (POD) well for modeling purposes since concentrations in the well are below laboratory quantitation limits, and this well would yield a more conservative result than MW-9A. Model input parameters are provided below and are included in Appendix E.

The source area was assumed to be located approximately 70 feet upgradient of MW-11 and approximately 40 feet wide. Placing the source directly at MW-11 did not create the biodegradation products in the model run that were present at this well in 2015. This indicated an upgradient source area. In evaluating the remedial activities conducted by Hull, soils contaminated with TCE were removed upgradient of MW-11. With this as the assumed source area, the model was more easily calibrated, including degradation products of cis-1,2-DCE and ethene. The cVOC concentrations upgradient of MW-11 were assumed to be more than an order of magnitude higher than what was observed in MW-11. For example, cVOC concentrations in MW-11 have been observed as high as 15 µg/L (PCE) and 1,500 µg/L (TCE). The values used

for the source area were estimated at 150 μ g/L (PCE) and 13,000 μ g/L (TCE) based on historical data and back-calculations to match the current cVOC concentrations observed in MW-11.

The GAEPD comment letter of March 9, 2016 requested that the source area be at a higher concentration than the values observed at MW-11. The model was indeed run with these types of values, as discussed above. Without having the concentrations higher at the source zone, calibration of the model was not possible. It should be noted that constituent concentrations shown in the BIOCHLOR model are referenced in milligrams per liter (mg/L), whereas concentrations in the attached tables and figures are reported in units of μ g/L.

3.3.4 Input Parameters

A discussion of input parameters was initially included with the model runs. As requested the March 9, 2016 letter from GAEPD, a table summarizing the model input values is provided below.

Input Parameter	Result	Source of Input Value
Hydraulic Conductivity	2.3 x 10-4 cm/sec	Site-specific data. Average of slug test results from MW-4A & MW-11 is 0.6632 ft/day (2.3 x 10-4 cm/sec)
Hydraulic Gradient	0.023 ft/ft	Site-specific data. Measured on January 2015 potentiometric map, utilizing contours between MW-11 and MW-4A
Effective Porosity	18%	Literature value. Cannot be measured but is taken as equivalent to specific yield. Value based on average specific yield for silts. (Fetter, <i>Applied Hydrogeology</i> , Table 3.5, 2001)
Dispersion Coefficient	Dx = 29 Dy = 2.9 Dz = 0.29	Site-specific data. Utilized 1/10 th the plume length, which is standard default value specified in the BIOCHLOR Users Manual. Plume assumed to be 290 feet long based on distance between MW-4A and assumed source located 70 feet upgradient of MW-11. Dy was assumed to be 1/10th of Dx and Dz was assumed to be 1/10th of Dy, also standard default values from BIOCHLOR Users Manual.
Soil Bulk Density (rho)	1.7 Kg/L	BIOCHLOR Users Manual default value.
Partitioning Coefficient (K _{oc})	PCE = 95 L/Kg TCE = 61 L/Kg DCE = 40 L/Kg VC = 22 L/Kg	From EPA Region 9 Screening Tables, Chemical Specific Parameters (<u>https://www.epa.gov/sites/production/files/2016-06/documents/params sl table run may2016.pdf</u>) The values are a conservative estimation of the retardation for the COCs. The model is sensitive to retardation.
Fraction Organic Carbon (f _{oc})	0.002	Literature default value is 0.001, but was adjusted upward to account for anthropogenic organic carbon in the aquifer.
Decay (Half-Life)	PCE to TCE = 1.6 TCE to DCE = 2.0 DCE to VC = 1.3 VC to Ethene = 1.0	Half-lives of COCs were used to calibrate the model to current conditions. Values are approximately double the standard default values provided in the BIOCHLOR Users Manual. This provides a more conservative estimate of plume degradation.

BIOCHLOR Model Final Calibrated Input Values

Calibration of the model requires an iterative approach where the various input parameters are adjusted upward and downward to match the current site conditions based on the site conceptual model. There were dozens of calibration runs where each parameter was adjusted. Calibration runs of each parameter have not been included as requested in Item 5.C of your letter of March 9, 2016. Creation of an output file for each iterative step would involve the submittal of hundreds of pages with little overall value. Alternatively, Apex has provided the input values above and final calibrated run for review (see Appendix E).

Fraction Organic Carbon (foc)

The standard default value for f_{oc} is 0.001. However, for this model the value was adjusted slightly upward to 0.002 account for the anthropogenic organic carbon present in the aquifer. Petroleum hydrocarbons consisting of benzene and xylenes are present in many of the monitoring wells, including wells MW-2A, MW-3A, MW-4A, MW-10, TW-1, TW-2, and TW-5. Additionally, residual biomass and organic metabolic acids from the HRC[®] bioremediation process likely remain in the aquifer within the source area that was treated.

Using the standard f_{oc} default value of 0.001, the model could not be calibrated without increasing K_{oc} values much higher than default values established by EPA. Rather than adjusting the K_{oc} values upward, the f_{oc} value was adjusted slightly. However, an overall retardation factor of approximately 2.15 resulted in model calibration. Using BIOCHLOR, this can be achieved by modifying the f_{oc} or the K_{oc} for each compound. By utilizing an f_{oc} of 0.002 or utilizing the much higher K_{oc} values obtained from the BIOCHLOR User's Manual, either input adjustment will result in a retardation factor of approximately 2.15. For the reasons stated above, an f_{oc} value of 0.002 is appropriate as a model input.

Determining Source Concentrations

The following inputs and adjustments were considered in determined the source concentrations:

- Source area assumed to be 70 feet upgradient with concentrations of PCE and TCE an order of magnitude higher than what was observed at MW-11 in 2015 (150 μg/L (PCE) and 13,000 μg/L (TCE)).
- Model was calibrated to wells MW-11 (1,500 μg/L), MW-3A (10 μg/L) and MW-4A which ranged from BQL to 50 μg/L. MW-3A was measured as 85 feet downgradient and approximately 100 feet side gradient of MW-11.
- Model was initially calibrated with a release occurring 22 years ago, with anticipated spill and/or movement of COCs to groundwater in approximately 1993.
- Degradation was necessary to calibrate the model. Without any degradation, the model shows that the TCE should have extended approximately 300 feet off-site and have concentrations exceeding 100 µg/L at the property boundary, which are not the case.
- The model shows the generation of lower concentrations of ethene at MW-11 than what was observed. Ethene was present at concentrations of 330 µg/L in MW-11, but the model predicts concentrations of approximately 50 µg/L. Decreasing the half-life increases concentrations slightly but also results in higher predicted concentrations downgradient at MW-4A. Ethene was not observed in MW-4A.

3.3.5 Model Results

The model was calibrated to January 2015 site conditions and using groundwater gradients observed on the property. Based on the observed biodegradation rates, the modeling results confirm that if the current biodegradation rates are maintained the cVOC plume will remain steady. As requested in the EPD letter of March 9, 2016, a table of model output results is provided as **Table 5**. Output files show the final calibration run and predicted plume concentrations at time periods of 30, 40 and 50 years are provided in Appendix E. A map showing the progress of the plume after 30 years (Year 2022, or 5.5 years from the present) based on model results is included as **Figure 8**. The final output results of the BIOCHLOR model over-predict the future

downgradient extent of the TCE and vinyl chloride plumes compared to actual downgradient groundwater monitoring data and the statistical analyses of these data from wells along the center line of the plume. The model outputs are based on a continuing source being present. However, total VOC concentrations have been declining and the TCE concentrations observed in MW-11 have declined by nearly half over the last year. Therefore, even with a continuing source, the results indicate the plume is stable.

Once calibrated, the simulation was run for a 50-year period assuming a constant source. With no degradation, the plume will reach approximately 650 feet from the source area, or 400 feet from the property boundary. However, existing data show that significant degradation is occurring. The historical data and Mann Kendall statistical analyses indicate that the plume is already at steady state conditions based on the current biodegradation rates. If this degradation rate trend continues, the BIOCHLOR model indicates there will be little forward progression of the plume from its current location. These results were obtained despite using very conservative values for COC half-life and partitioning coefficients and assuming a constant source term.

The model is based on degradation and retardation rates remaining the same and on a continuing (non-depleted) source. The degradation and retardation rates are likely enhanced by the presence of petroleum fuel related compounds including benzene and xylenes. The ultimate degradation of the petroleum products could impact the retardation of the plume in the future.

Soil was excavated upgradient of well MW-11 during the remedial activities performed by Peachtree. The model results indicate that without removal of the source material, plume stability would still be achieved but with the lateral extent of the cVOCs slightly farther than the property boundary. However, based on the 2016 sampling results, concentrations of TCE have declined much further than what the model predicts indicating that the source was likely removed during the excavation activities. With these reductions, the overall length of the plume will also be reduced as well. Therefore, the BIOCHLOR model results obtained can be taken as "worst case scenario" results if the source area had not been addressed.

3.3.6 Model Sensitivity

The model was calibrated primarily utilizing source concentrations and degradation half-lives. Slight variations in K values have a significant impact on the predicted downgradient limit of the plume. Increases in K_{oc} values or reduction in the f_{oc} values will result in the plume being longer than currently observed. Modifications to dispersion values impact the shape of the concentration versus time output, but do not facilitate overall calibration. Modifications were not made to the default bulk density. Changes in bulk density have little overall impact on the final output results.

4.0 REVIEW OF CONCEPTUAL SITE MODEL

This section provides a review and update of the conceptual site model (CSM), including the current status of each exposure pathway. The initial VRP application submitted by Hull in 2011 included a description of the CSM developed by Peachtree Environmental, Inc. A CSM update was provided in the 2nd Semi-Annual Progress Report (April 2013) prepared by Peachtree. With few exceptions described below, findings of the current monitoring period do not create any major changes to the prior CSM understanding of the site.

4.1 CSM Update

Site Hydrogeology

Based on groundwater gauging data obtained by Apex in January 2015, May 2015 and April 2016, groundwater consistently flows toward the southeast. The estimated vertical hydraulic gradient in groundwater is 0.0417 ft/ft, and the flow direction is downward at the MW-1D well location.

The upper 80 feet or more of the soil column consists of saprolitic regolith. Partially weathered rock (PWR) and/or consolidated bedrock was not encountered in well MW-1D drilled to approximately 74 feet deep. Well MW-1D sampling data from June 2015 and April 2016 verify that VOC concentrations in the deeper portions of the saprolite are one to two orders of magnitude lower than the VOC concentrations in the shallower zones. These results indicate that the plume attenuates rapidly with depth, before reaching the PWR hydrostratigrahic zone. This limits the potential seepage velocity of the plume.

Slug test data indicate that the saprolitic material has a hydraulic conductivity (K) ranging from 0.3843 ft/day (downgradient perimeter) to 2.299 ft/day (upgradient). Groundwater flows to the southeast at a gradient ranging from 0.014 ft/ft (side wide) to 0.023 ft/ft across the plume area as measured from the January 2015 potentiometric map. The April 2016 groundwater gradients ranged from 0.0128 ft/ft in the upgradient portion of the site to 0.0263 ft/ft near source area well MW-11. A steeper gradient of 0.0417 ft/ft was estimated near MW-14.

Using an effective porosity of 18%, an average K of 0.6632 ft/day (average of 2015 values from MW-4A and MW-11), and a gradient of 0.023 (measured in the plume area perpendicular to potentiometric lines between MW-11 to MW-4A), the seepage velocity of the plume would be approximately 30.4 feet per year. Across the site, the seepage velocity could range from 65 to 107 ft/year using the more conservative K value observed in well MW-12, gradients ranging from 0.014 ft/ft (site wide) to 0.023 ft/ft (plume area), and an effective porosity of 18%.

Regulated Constituents

The list of regulated constituents for soil and groundwater was established in previous reports. Seven VOCs that had previously not been tested or reported in site groundwater were detected at quantified or estimated (J-flagged) concentrations during the April 2016 event at one or more wells. These seven VOCs included:

- 1,1,2-Trichloro-1,1,1-Trifluoroethane
- Chloromethane
- 1,2-Dichloroethane
- Cyclohexane
- Isopropylbenzene
- Methylcyclohexane
- Methylene Chloride

The following three VOCs that were detected do not have an assigned Type 1 RRS for groundwater: Cyclohexane; Isopropylbenzene; and Methylcyclohexane. None of the other four

VOCs exceeded their Type 1 RRS. Detections of these VOCs were generally limited to the wells located near the source area and mid-plume areas.

Soil Exposure Pathway

Soil COCs were previously identified and delineated to background concentrations by Peachtree. Remedial activities were conducted in 2002 and 2003 to address soil and groundwater. Prior remedial activities at the site include excavation and off-site disposal of approximately 43,000 tons of impacted soil. Compliance with non-residential Type 3 and Type 4 RRSs for soil was demonstrated in prior submittals to GAEPD. Based on this work, the impacts to unsaturated soil have been addressed and there is no known exposure pathway that remains in soil.

Groundwater Exposure Pathway

Impacted groundwater above RRSs is limited to on-site areas within the core of the residual plume found near MW-11. The COCs are now limited to those VOCs listed in Table 3 that have a RRS. Delineation to the Type 1 RRS for these VOCs is now completed horizontally.

Vertical delineation is sufficiently complete at MW-1D, even though one constituent (TCE) slightly exceeds its RRS at a depth of 74 feet (633 ft MSL elevation) at this well in the mid-plume area. Sampling data from 2015 and 2016 confirm that the plume is attenuating vertically, with TCE concentrations in the deeper saprolite that are one to two orders of magnitude lower than the upper (shallow) saprolite zones.

The closest surface water body is more than 1,000 feet from the site and groundwater is not being utilized on or near the site for drinking water purposes. Subsurface storm water piping at the site is positioned at elevations above the water table in the areas containing the VOCs in groundwater. Thus, discharge of impacted groundwater to storm water piping is not a completed pathway for VOCs to enter surface waters near the property.

Subsurface Vapor Intrusion Exposure Pathway

There are no occupied structures which overlay the groundwater plume which could result in a vapor intrusion exposure hazard. Since the plume is limited to the subject site and the perimeter of the plume is more than 300 feet from any downgradient structure, the impacts do not pose a vapor intrusion hazard to off-site areas.

4.2 Point of Exposure (POE) Determination

Well MW-9A was the original POD well identified since it is hydraulically downgradient of the historical source area in the vicinity of well MW-2A. Well MW-4 was added as a POD well in 2015 since it was determined to be more directly downgradient from the secondary source area in the vicinity of MW-11. Both wells MW-9A and MW-4A can be used as POD wells.

The basis of establishing a POE for well MW-4A will be similar to that previously used for MW-9A since these two POD wells are positioned at similar distances downgradient of their respective source areas and those source areas are in close proximity near the center of the site. Thus, the POE for MW-4A will be a location similar to the POE established for well MW-9A, which is 1,000 feet downgradient of the current plume boundary. These areas are known to be on municipal water supplies and do not have any known water supply wells.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Additional groundwater monitoring was completed in April 2016 for all existing wells at the site. Statistical trend analyses of the historical groundwater VOC data were also completed using Mann Kendall tests to supplement the evaluations of primary lines of evidence for plume attenuation and stability. Surveying of well MW-1D was completed, which allowed a calculation of vertical hydraulic gradients and flow components.

5.1 Summary of Findings

Groundwater analytical results show that VOCs were detected at quantified or estimated concentrations in ten of the thirteen wells sampled in April 2016. However, only five of the wells (MW-1D, MW-3A, MW-11, MW-12 and MW-14) had one or more VOCs that exceeded their Type 1 Risk Reduction Standards (RRSs) for groundwater. The VOCs that exceeded their respective Type 1 RRS concentrations at one or more wells in April 2016 included TCE, PCE, 1,1-DCE; Vinyl Chloride, and Benzene.

Seven VOCs previously not tested or reported in site groundwater were detected at quantified or estimated concentrations during the April 2016 event at one or more wells. None of these seven VOCs exceeded their Type 1 RRS, and three of these VOCs do not have assigned RRSs.

Well MW-11 continues to have the greatest concentrations of TCE and of total VOCs. A TCE concentration of 760 micrograms per liter (μ g/L) was reported for the April 2016 event, which represents a 50 percent reduction of TCE since the last sampling event at MW-11 in January 2015. Well MW-11 also had the only exceedance of Type 1 RRS for PCE, with a detected concentration of 5.8 μ g/L in April 2016.

No VOCs were detected in down-gradient monitoring wells MW-9A and MW-10. Down-gradient wells MW-4A, MW-7A and MW-8A contained one or more VOCs at estimated concentrations below 1 μ g/L and well below their Type 1 RRSs.

Current groundwater sampling analytical results indicate that:

- Groundwater impacts do not extend off-site;
- The TCE (and daughter products) plume is stable and is not migrating near POD wells MW-4A and MW-9A at concentrations above their Type 1 RRSs;
- Source area concentrations of PCE, TCE, cis-1,2-DCE, 1,1-DCE and benzene continue to decline in the vicinity of MW-11; and
- Total VOCs in groundwater continue to decline site wide.

The estimated vertical hydraulic gradient is 0.0417 ft/ft, with a downward flow direction at well MW-1D. This suggests that the center of the site lies within a groundwater recharge zone.

The Mann Kendall statistical trend results indicate that TCE, the daughter products of TCE, and benzene are either decreasing, probably decreasing, or stable for source area and mid-plume wells where a trend could be established. Downgradient POD wells MW-4A and MW-9A show either decreasing or stable trend results for each of the five COCs evaluated.

The BIOCHLOR model, which has been utilized as an optional line of evidence, demonstrates that the plume will remain stable at the current degradation rates. It provides a "worst case

scenario" for the environmental fate of site-related cVOCs because the model assumes a constant source term that is not depleted over time. Even though the model was calibrated to site conditions that existed in 2015, the results appear to over predict the extent of plume migration based on the actual site groundwater data trends that are the primary line of evidence. To this end, the model results also show that the plume will not migrate to the downgradient POE, located 1,000 feet downgradient of areas currently impacted above RSSs.

5.2 Recommendations for Future VRP Activities

Due to the quantity of data that has been collected at the site, one additional semi-annual groundwater sampling event is recommended to confirm the plume stability prior to site closure utilizing Uniform Environmental Covenants (UECs). The next scheduled semi-annual monitoring event will be in October 2016. OmniSource proposes to collect groundwater samples for laboratory analyses from all of the site wells except for MW-6, which will be gauged only. Each well will be analyzed for VOCs by Method 8260. A subset of the site wells may be selected for additional bio-geochemical analyses such as dissolved gases, TOC, metabolic acids, and alkalinity. The selection of various wells for further bio-geochemical analyses is discretionary and is not specified at this time.

Following the next round of semi-annual sampling, plume stability will be reassessed using updated Mann Kendall statistical analyses. Several additional wells, including MW-11, will be added to the statistical analyses list since the next semi-annual sampling event will be the fourth one conducted at those wells. These analyses are the most useful tool as a primary line of evidence to demonstrate plume stability trends.

Because the useful intent of the BIOCHLOR model has been achieved, additional or updated fate-and-transport modeling is not proposed at this time. Additionally, no further site assessment activities are recommended at this time. Draft UECs will be submitted under separate cover to GAEPD, or with the next progress report.

5.3 Updated VRP Schedule

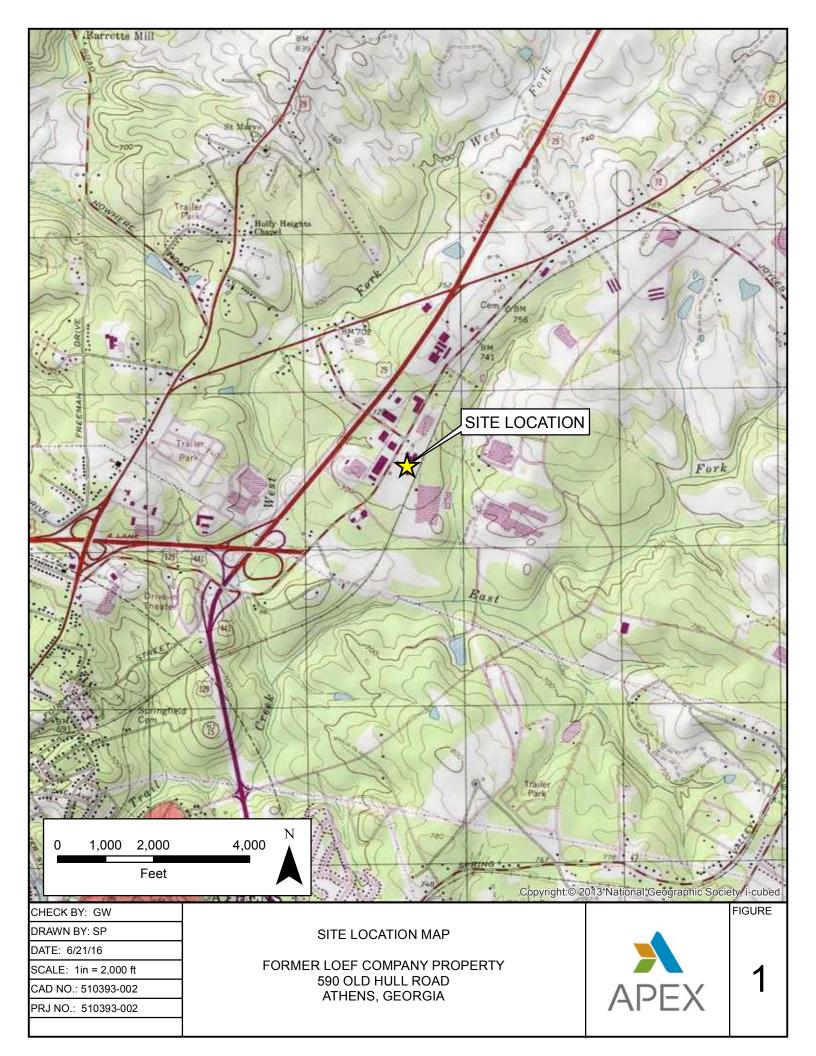
An updated schedule of VRP activities is provided in **Appendix F**. Apex has included a monthly summary of hours invoiced as **Appendix G**.

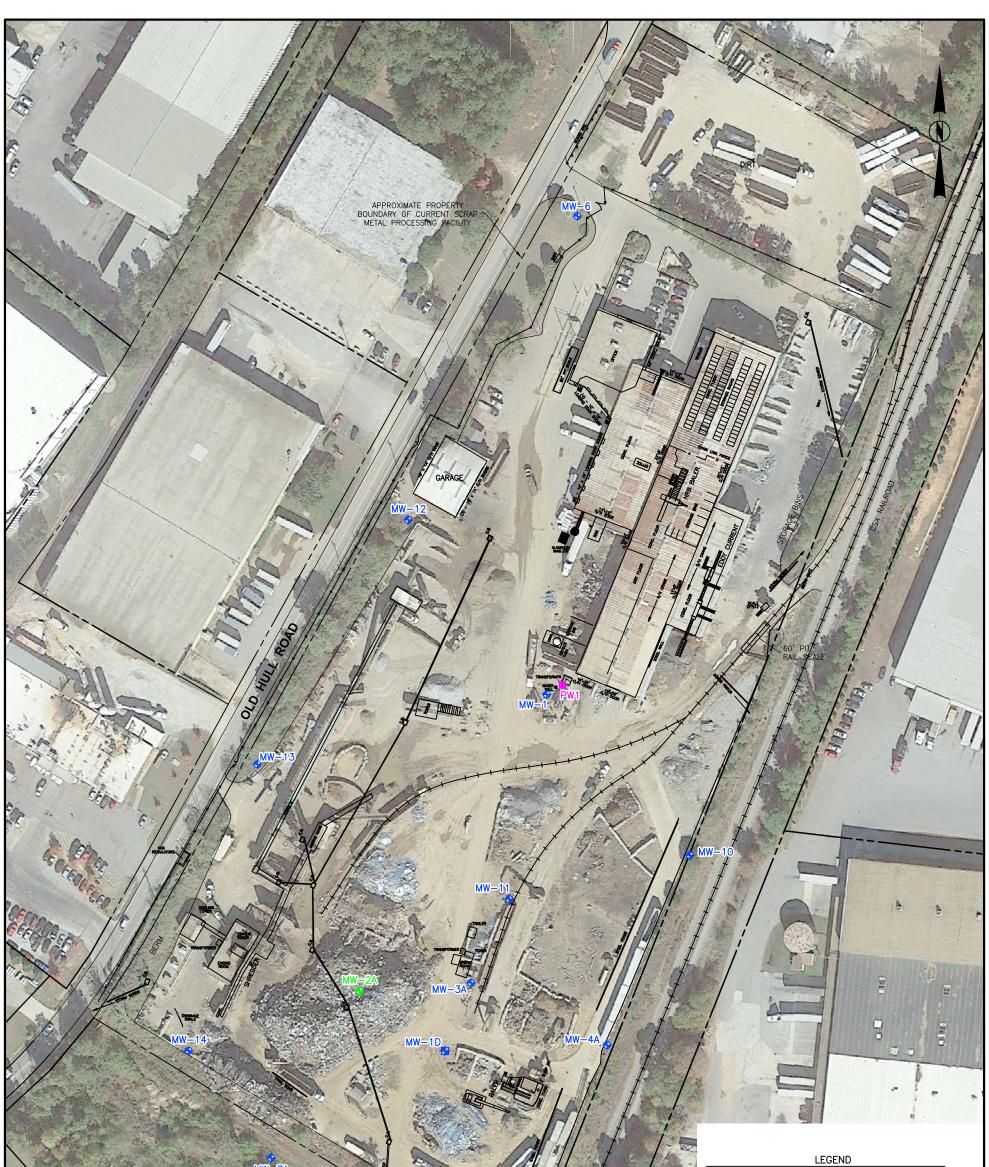
July 29, 2016 Page 20

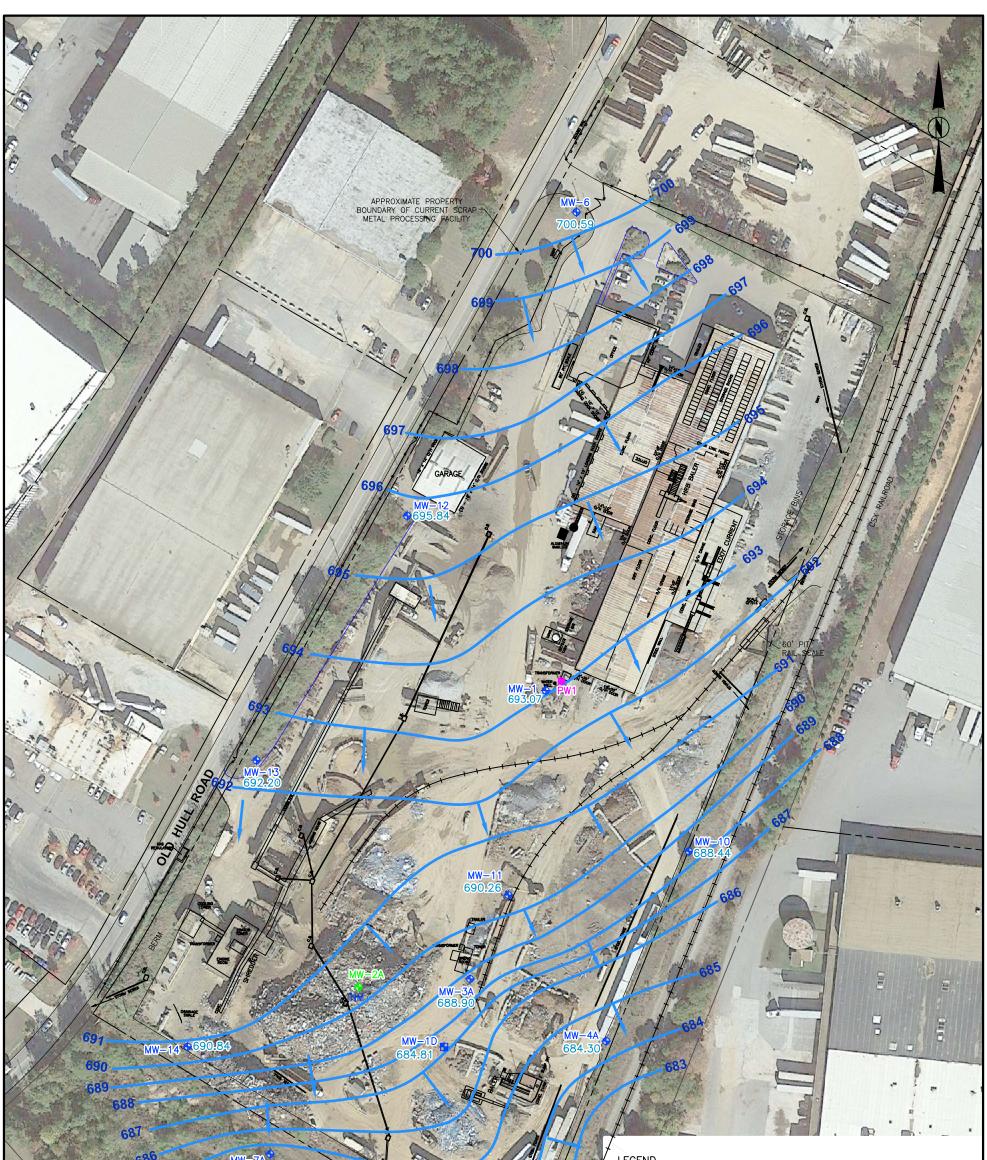
6.0 Registered Professional Supporting Documentation

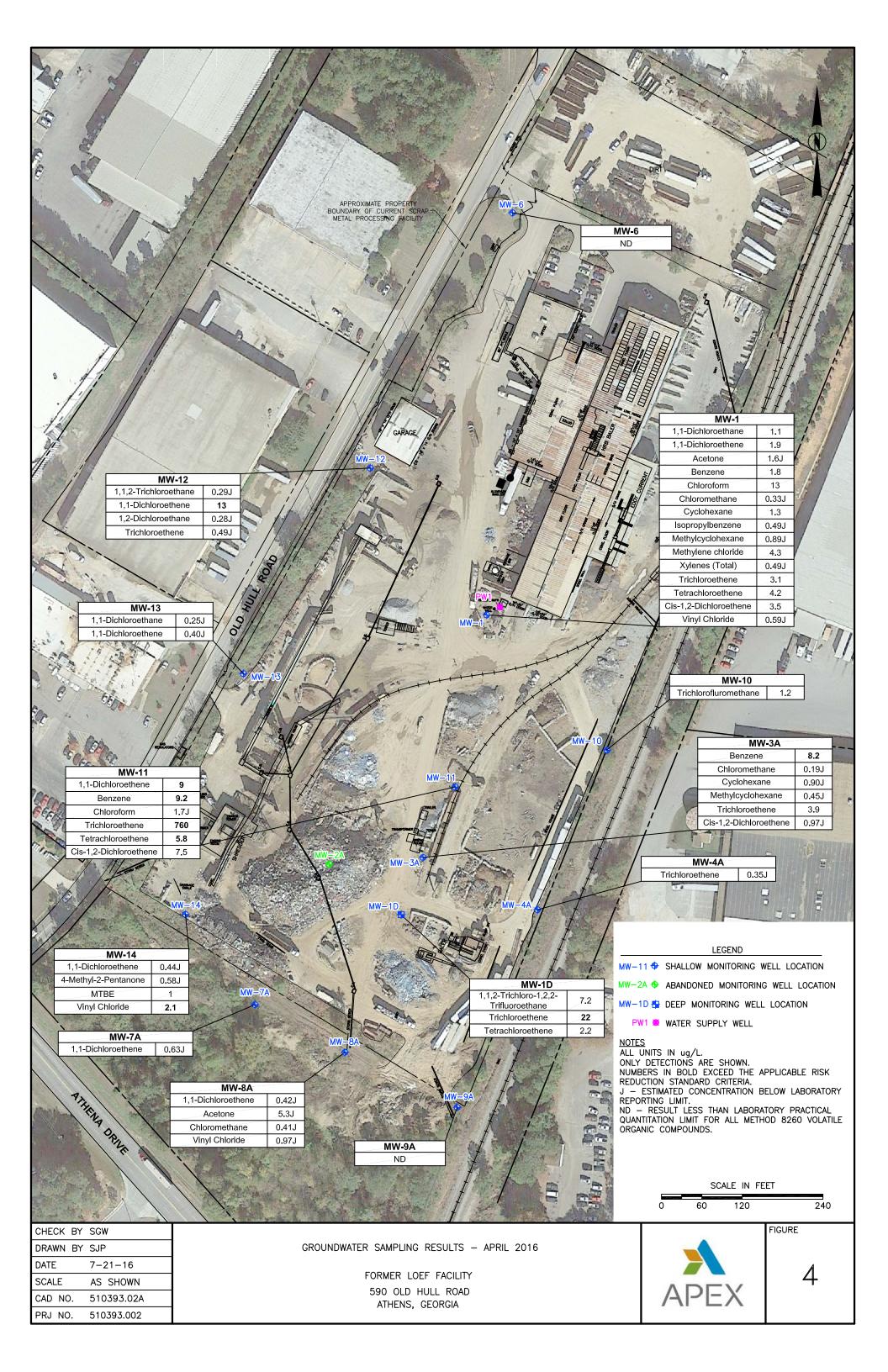
CERTIFICATION

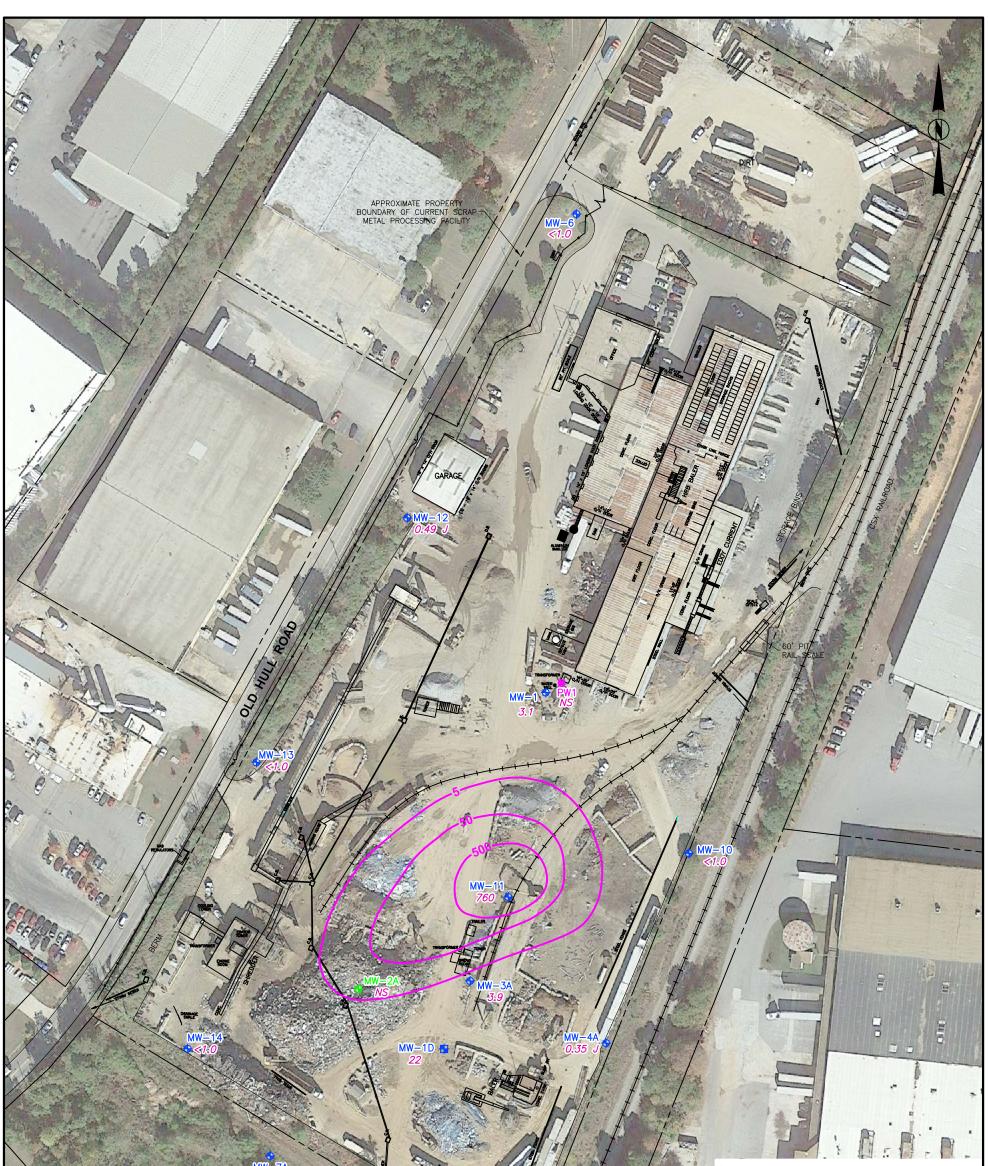
"I certify that I am a qualified groundwater scientist who has received a baccalaureate or post graduate degree in the natural sciences or engineering, and have sufficient training and experience in groundwater hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound professional judgements regarding groundwater monitoring and contaminant fate and transport. I further certify that this report was prepared by me or by my subordinate working under my direction."


Kathleen Roush, P.G. Georgia Registration No. 1799

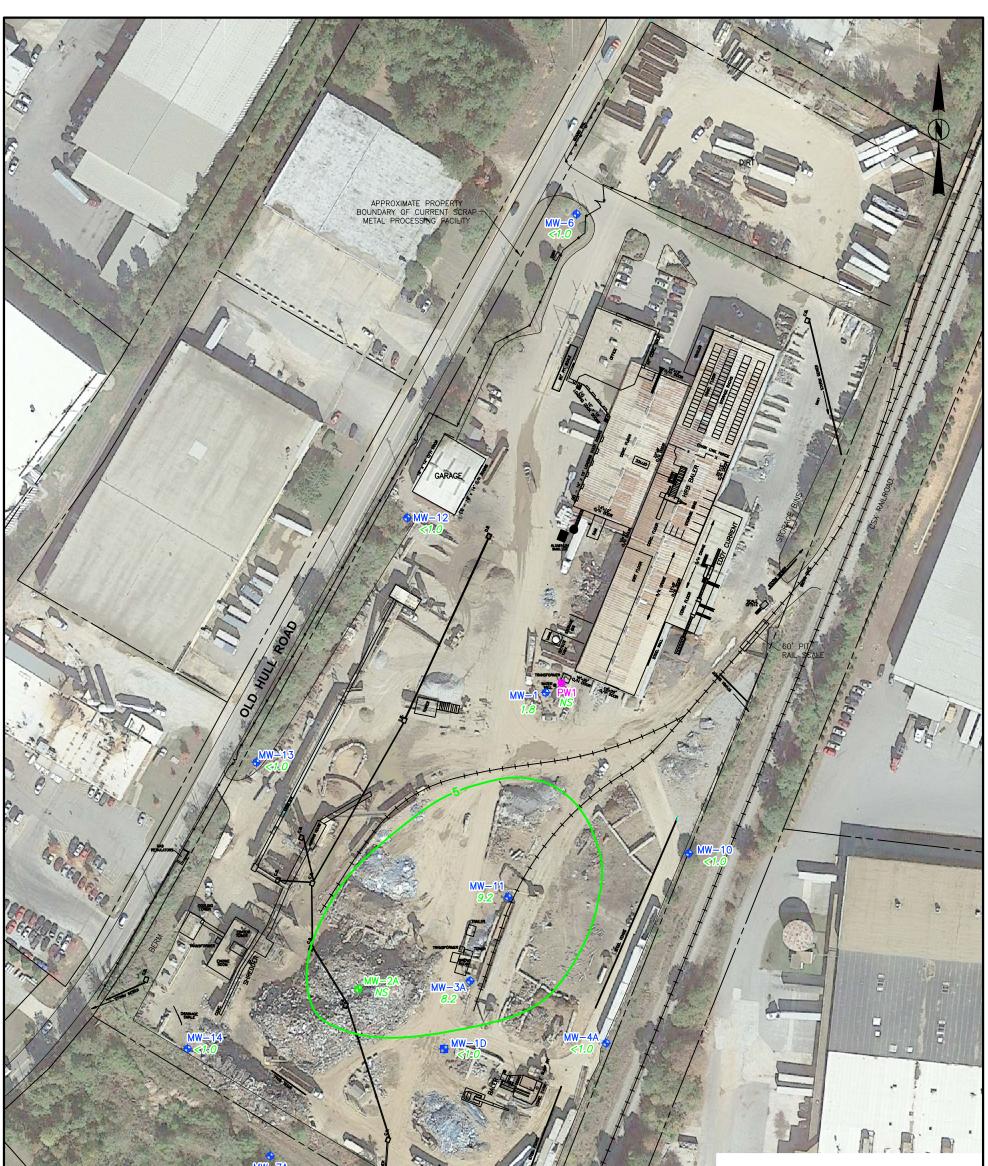



FIGURES

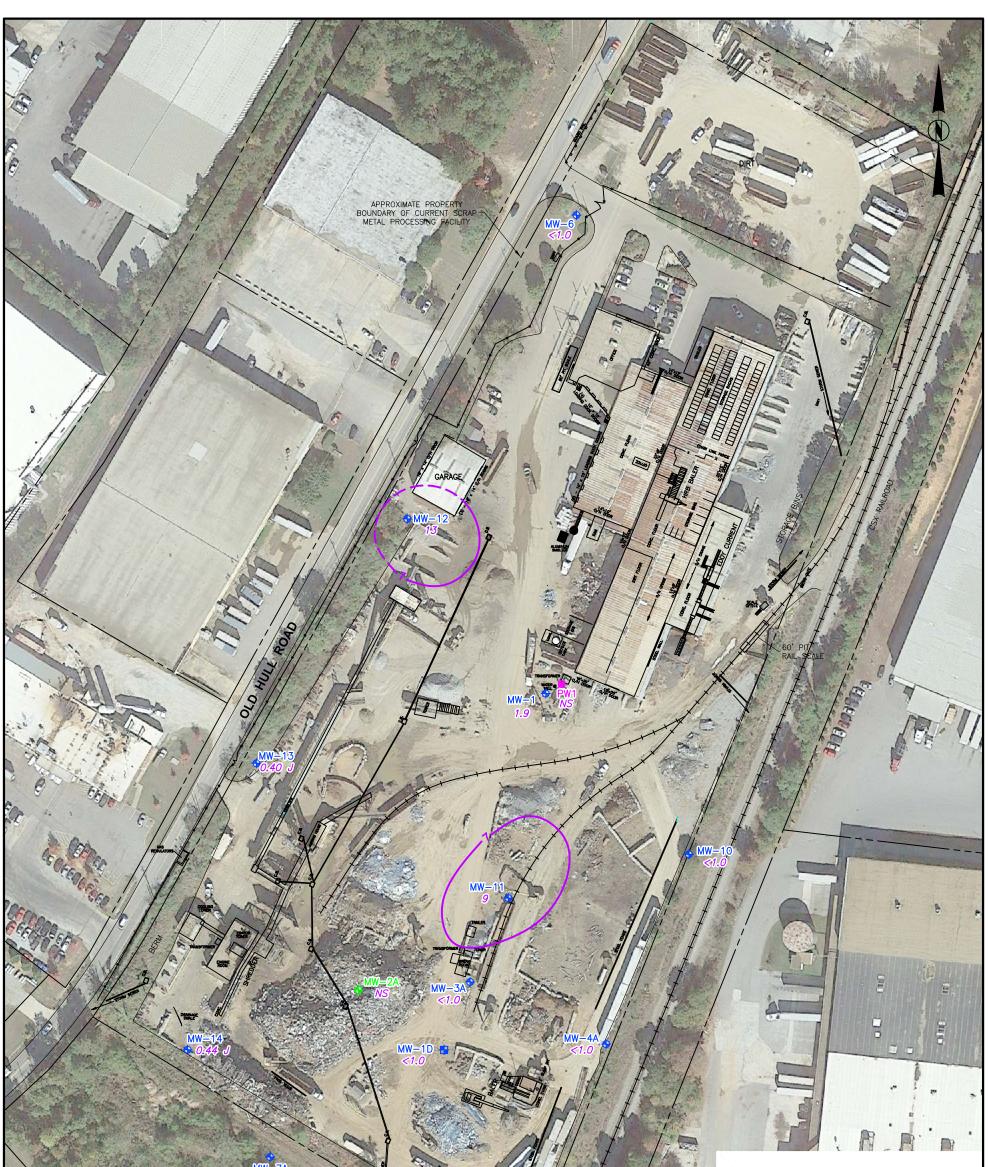


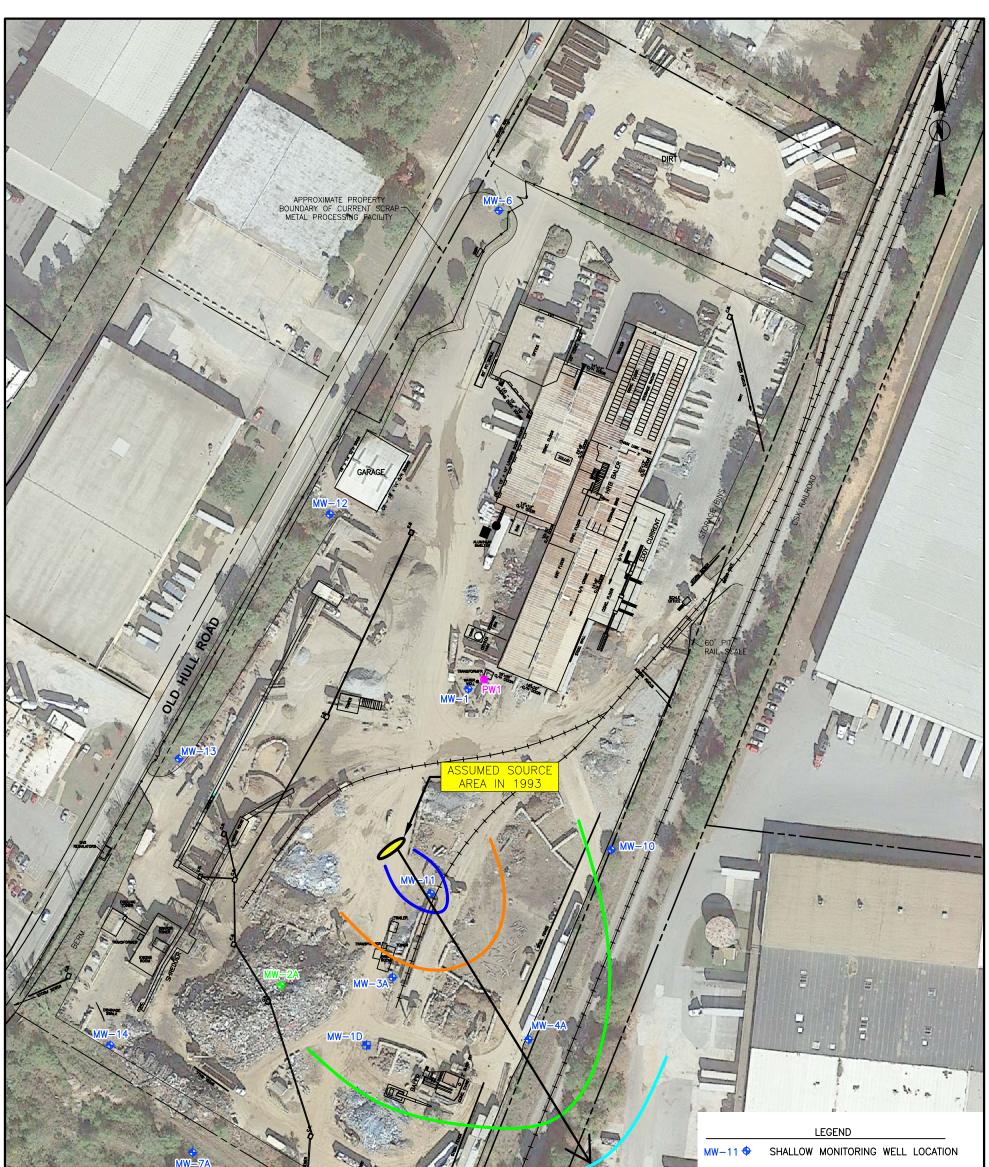


			LEOLIND	
		W-11 🕈	SHALLOW MONITORING	WELL LOCATION
		W-2A 🔶	ABANDONED MONITORI	NG WELL LOCATION
	MW=8A	W-1D 🖶	DEEP MONITORING WE	LL LOCATION
		PW1 🗮	WATER SUPPLY WELL	
PIL 1	4./1 ALRES			
ATTREAD DRIVE	MW-9A			
OR I				
in the second se				
A. I a concer				
	E B		SCALE IN FE	ET
		0	60 120	240
CHECK BY SGW				FIGURE
DRAWN BY SJP	SITE PLAN WITH WELL LOCATIONS			
DATE 7–21–16				\mathbf{O}
SCALE AS SHOWN	FORMER LOEF FACILITY			2
CAD NO. 510393.02A	590 OLD HULL ROAD ATHENS, GEORGIA	/-	APEX	



680	80 684.63	LEGEND		
6	82 684.63 m	MW−11 🕁	MONITORING WELL LOCATION	
		MW-1D 🖶	DEEP MONITORING WELL LOC	CATION
	MW-8A	MW-2A 🕈	ABANDONED MONITORING WE	LL
	60310//	PW1 🗮	WATER SUPPLY WELL	
NTHENA DRIVE	TI ARES		GROUNDWATER EQUIPOTENTIA (FT MSL)	L CONTOUR
TA DA	682.96	690.26	GROUNDWATER ELEVATION (F	T MSL)
ATT A			GROUNDWATER FLOW DIRECT LS MEASURED ON APRIL 25, FOR CONTOURING. SCALE IN FEET 60 120	
CHECK BY SGW				FIGURE
DRAWN BY SP	POTENTIOMETRIC MAP SURFICIAL AQUIFER ZONE APRIL 2016			
DATE 7–21–16				7
SCALE AS SHOWN	FORMER LOEF FACILITY			3
CAD NO. 510393-02B	590 OLD HULL ROAD ATHENS, GEORGIA		APEX	
PRJ NO. 510393-002				




	WW-7A <1.0	LEGEND	
NITHERAN DRAME.		MW-11 ↔ MONITORING WEI WW-1D ↔ DEEP MONITORIN MW-2A ↔ ABANDONED MOI PW1 ♥ WATER SUPPLY 760 TCE CONCENTRA NS NOT SAMPLED 	IG WELL LOCATION NITORING WELL WELL TION (ug/L) IRATION (ug/L) ROUNDWATER TANDARD NTOURING.
		0 60 120	240 FIGURE
CHECK BY SGW			FIGURE
DRAWN BY SP	TCE IN GROUNDWATER APRIL 2016		
DATE 7–21–16	FORMER LOEF FACILITY		5
SCALE AS SHOWN			J
CAD NO. 510393-02C	590 OLD HULL ROAD ATHENS, GEORGIA	APEX	
PRJ NO. 510393-002			

PITTER OF STREET	ENA DRUK	NW-8A	MW-2A PW1 WATER SUPPLY	NG WELL LOCATION NITORING WELL WELL ENTRATION (ug/L) NCENTRATION (ug/L) STANDARD DNTOURING.
CHECK BY	SGW			FIGURE
DRAWN BY	SP	BENZENE IN GROUNDWATER		
DATE	7-21-16	APRIL 2016		
SCALE	AS SHOWN	FORMER LOEF FACILITY		6
CAD NO.	510393-02C	590 OLD HULL ROAD ATHENS, GEORGIA	APEX	
PRJ NO.	510393-002	ATTENS, GEORGIA		

PATHERINA ORAUK	4.71 ACRES	MW-2A PW1 ABANDONED MC WATER SUPPLY 9 1,1-DCE CONC NS NOT SAMPLED	NG WELL LOCATION DNITORING WELL WELL ENTRATION (ug/L) INCENTRATION (ug/L) INFERRED STANDARD DNTOURING.
CHECK BY SGW			FIGURE
DRAWN BY SP	1,1-DCE IN GROUNDWATER		
DATE 7–21–16	APRIL 2016		
SCALE AS SHOWN	FORMER LOEF FACILITY		
CAD NO. 510393-02C	590 OLD HULL ROAD ATHENS, GEORGIA	APEX	
PRJ NO. 510393-002			

Constant Party of the		2A 🔶	ABANDONED MONITORI	NG WELL LOCATION
		1D 🖶	DEEP MONITORING WE	LL LOCATION
THE REAL POINT		W1 🗮	WATER SUPPLY WELL	
4.71 ACR	res	Ά	APPROXIMATE CENTER PLUME	LINE OF MODELED
	MW-9A		ESTIMATED EXTENT OF	VOC BY ITS RRS:
DRUK			PCE (5 ug/L)	
MA II			DCE (70 ug/L)	VINYL CHLORIDE (2 ug/L)
	NOTE: THE BIOCHLOR MODEL PREDICTED EXTENT OF VOCS IN GROUNDWATER IS A WORST-CASE ESTIMATE BECAUSE IT ASSUMES A CONSTANT FUTURE SOURCE TERM. SOURCE REDUCTION HAS OCCURRED AND MONITORING DATA SHOW A STABLE OR DECREASING PLUME WITH AN ACTUAL FOOTPRINT THAT IS SMALLER THAN DEPICTED IN THIS FIGURE.	0	SCALE IN FE	ET240
CHECK BY SGW				FIGURE
DRAWN BY SJP	BIOCHLOR 30-YEAR PLUME PREDICTION (2022)			
DATE 7-21-16				0
SCALE AS SHOWN	FORMER LOEF FACILITY			0
CAD NO. 510393.02A	590 OLD HULL ROAD ATHENS, GEORGIA		APEX	
PRJ NO. 510393.002				

TABLES

TABLE 1 SUMMARY OF HISTORICAL GROUNDWATER GAUGING AND ELEVATIONS FORMER LOEF FACILITY ATHENS, CLARK COUNTY, GEORGIA

Well Number	Date Measured	TOC Elevation (ft MSL)	Screen Interval (ft BGS)	Depth to Water (ft BTOC)	Water Table Elevation (ft MSL)
MW-1	5/18/2015	NS	14 to 24 ft	22.87	
	5/21/2015	711.50		18.52	692.98
	6/3/2015			19.53	691.97
	4/25/2016			18.43	693.07
MW-1D	5/21/2015	710.17	70 to 75 ft	22.18	687.99
	6/3/2015			26.75	683.42
	4/25/2016			25.36	684.81
MW-2A*	6/17/2009	710.20	23.15 to 33.15 ft	22.87	687.33
	6/24/2010			21.00	689.20
	2/24/2011			18.05	692.15
	8/4/2011*	706.70	20 to 30 ft	18.00	688.70
	2/24/2012			19.13	687.57
	9/20/2012			18.89	687.81
	3/7/2013			NM	NM
	3/7/2013			NM	NM
	1/21/2015	706.26		18.15	688.11
	5/18/2015			16.86	689.40
MW-3A	6/17/2009	712.23	20 to 30 ft	26.79	685.44
	6/24/2010			24.82	687.41
	2/24/2011			25.15	687.08
	8/4/2011			26.15	686.08
	2/24/2012			26.83	685.40
	9/20/2012			26.76	685.47
	3/7/2013			25.72	686.51
	1/22/2015	712.20		25.59	686.61
	5/18/2015			24.31	687.89
	4/25/2016			23.30	688.90
MW-4A	6/17/2009	709.18	19.5 to 29.5 ft	24.76	684.42
	6/24/2010			23.21	685.97
	2/24/2011			22.94	686.24
	8/4/2011			25.49	683.69
	2/24/2012			24.77	684.41
	9/20/2012			24.84	684.34
	3/7/2013			22.96	686.22
	1/22/2015	706.08		23.34	682.74
	5/18/2015			22.21	683.87
	4/25/2016			21.78	684.30
MW-6	6/17/2009	720.15	20 to 30 ft	23.00	697.15
	6/24/2010			20.42	699.73
	2/24/2011			20.62	699.53
	8/4/2011			20.50	699.65
	2/24/2012			22.90	697.25
	9/20/2012			23.81	696.34
	3/7/2013			22.38	697.77
	1/22/2015	719.87		22.36	697.51
	5/18/2015			20.54	699.33
	4/25/2016			19.28	700.59
MW-7A	6/17/2009	696.08	9.5 to 19.5 ft	15.47	680.61
	6/24/2010			12.46	683.62
	2/24/2011			12.81	683.27
	8/4/2011			18.05	678.03
	2/24/2012			14.51	681.57
	9/20/2012			15.52	680.56
	3/7/2013			11.97	684.11
	1/22/2015	697.15		12.61	684.54
	5/18/2015			13.05	684.10
	4/25/2016			12.52	684.63

TABLE 1 SUMMARY OF HISTORICAL GROUNDWATER GAUGING AND ELEVATIONS FORMER LOEF FACILITY ATHENS, CLARK COUNTY, GEORGIA

Well Number	Date Measured	TOC Elevation (ft MSL)	Screen Interval (ft BGS)	Depth to Water (ft BTOC)	Water Table Elevation (ft MSL)
MW-8A	6/17/2009	695.23	9.5 to 19.5 Ft	14.02	681.21
	6/24/2010			11.30	683.93
	2/24/2011			11.54	683.69
	8/4/2011			16.87	678.36
	2/24/2012			12.93	682.30
	9/20/2012			13.89	681.34
	3/7/2013			10.91	684.32
	1/22/2015	695.26		11.39	683.87
	5/18/2015			11.75	683.51
	4/25/2016			11.39	683.87
MW-9A	6/17/2009	697.13	10 to 20 Ft	16.51	680.62
	6/24/2010			12.79	684.34
	2/24/2010			12.65	684.48
	8/4/2011			19.80	677.33
	2/24/2012			11.21	685.92
	9/20/2012			10.46	686.67
	3/7/2013			10.21	686.92
	1/22/2015	696.14		12.42	683.72
	5/18/2015			13.58	682.56
	4/25/2016			13.18	682.96
MW-10**	3/7/2013	NS	25 to 35 Ft	20.86	NS
	1/22/2015	708.16		21.28	686.88
	5/18/2015			20.23	687.93
	4/25/2016			19.72	688.44
MW-11	3/7/2013	NS	25 to 35 Ft	25.37	NS
	1/22/2015	713.32		25.30	688.02
	5/18/2015			24.14	689.18
	4/25/2016			23.06	690.26
MW-12	3/7/2013	NS	25 to 35 Ft	15.81	NS
	1/22/2015	712.70		18.61	694.09
	5/18/2015			17.53	695.17
	4/25/2016			16.86	695.84
MW-13	3/7/2013	NS	25 to 35 Ft	17.29	NS
	1/22/2015	707.45		17.49	689.96
	5/18/2015			16.30	691.15
	4/25/2016			15.25	692.20
MW-14	3/7/2013	NS	25 to 35 Ft	18.78	NS
	1/22/2015	707.07		19.18	687.89
	5/18/2015			NM	
	4/25/2016			16.23	690.84

Notes:

TOC = Top of Casing

ft BGS = feet Below Ground Surface

BTOC = Below Top of Casing ft MSL - feet Mean Sea Level

NM = MW-2A was inaccessible in March 2013, so groundwater was not gauged in the well during that event.

NS = Not Surveyed. Wells MW-10 thru MW-14 were installed in December 2013 and were surveyed in January 2015.

Apex resurveyed all wells in January 2015 except MW-1 and MW-1D, which were surveyed in July 2016.

* - MW-2A was reinstalled and surveyed on March 18, 2011 then permanently abandoned in May 2015

**- Top of casing cut by Apex prior to survey

TABLE 2 GROUNDWATER BIO-GEOCHEMICAL, INORGANIC AND WATER QUALITY PARAMETERS FORMER LOEF FACILITY ATHENS, CLARKE COUNTY, GEORGIA

Monitoing Well ID	Date	Hď	Temperature (°C)	TT Conductivity (mS/cm) Set	Total Dissolved Solids (g/L)	Disslved Oxygen (mg/L)	Oxidation-Reduction Potential (mV)	Turbidity (NTU)	Methane	Ethane	Ethene	Total Organic Carbon	E S	Chicar be	Nitrate	Sulfate	Sulfide
	6/3/2015	NM	NM	NM	NM	NM	NINA	NM	NM	NM	NM	NM	r	NM	NM		NM
MW-1	4/26/2016	5.17	22.93	0.07			NM 99			NM	NM		NM			NM NM	NM
					NM	0.61		1.7	NM			NM	NM	NM	NM		
MW-1D	6/3/2015	NM	NM	NM	NM	NM	NM	0.0	NM	NM	NM	NM	NM	NM	NM	NM	NM
	4/26/2016	5.54	24.78	0.079	NM	1.52	121	0.8	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/24/2010	4.65	18.1	0.581	0.037	10.2	450		3.2	0.16	< 0.007	8.2	7.25	NM	0.49	<1	<2
	8/4/2011	5.45	20.78	0.295	NM	0.54	10		3.1	0.78	< 0.007	60.8	47	NM	0.25	<1	<2
MW-2A	2/24/2012	6.05	19.54	0.903	NM	0	-67		NM	NM	NM	NM	NM	NM	NM	NM	NM
	9/20/2012	5.25	22.42	0.91	NM	2.05	-9		NM	NM	NM	NM	NM	NM	NM	NM	NM
	3/8/2013	5.25	22.42	0.91	NM	2.05	-9	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	1/22/2015	4.76	17.3	0.568	NM	0.58	73.5	6	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/24/2010	4.63	19.2	0.852	0.054	9.64	398		4.2	0.36	<0.007	2.34	<0.1	NM	1.8	2	<2
	8/4/2011	4.4	20.94	0.57	NM	1.34	301		1.7	0.12	< 0.007	1.42	<0.1	NM	1.7	<1	<2
	2/24/2012	5.13	20.01	0.06	NM	1.91	327		NM	NM	NM	NM	NM	NM	NM	NM	NM
MW-3A	9/20/2012	4.21	22.44	0.067	NM	1.57	349		NM	NM	NM	NM	NM	NM	NM	NM	NM
	3/8/2013	4.21	22.44	0.067	NM	1.57	349	0.02	NM	NM	NM	NM	NM	NM	NM	NM	NM
	1/22/2015	4.63	19.51	0.075	NM	0.5	103.2	0.38	NM	NM	NM	NM	NM	NM	NM	NM	NM
	4/26/2016	5.11	23.08	0.133	NM	1.53	185	7.7	NM	NM	NM	NM	NM	NM	NM	NM	NM
	6/24/2010	4.66	18.8	0.164	0.11	9.54	414		0.34	0.029	<0.007	2.98	<0.1	NM	0.88	1.9	<2
	8/4/2011	4.62	21.76	0.093	NM	2.1	330		0.44	0.026	< 0.007	<5	<0.1	NM	0.84	1.7	<2
	2/24/2012	4.77	19.13	0.117	NM	0.00	377		NM	NM	NM	NM	NM	NM	NM	NM	NM
MW-4A	9/20/2012	4.16	22.98	0.134	NM	2.28	425		NM	NM	NM	NM	NM	NM	NM	NM	NM
	3/7/2013	4.16	22.98	0.134	NM	2.28	425	0	NM	NM	NM	NM	NM	NM	NM	NM	NM
	1/22/2015 4/26/2016	4.26 4.33	18.06 21.26	0.196	NM NM	0.96	126.3 225	1.61 0.8	<4 NM	<9 NM	<7 NM	<1 NM	NM NM	44 NM	1 NM	1.3 NM	<2 NM
								0.0									-
	6/24/2010 8/4/2011	4.9 4.25	19.7	0.044	0.03 NM	10.5	443		< 0.004	< 0.009	< 0.007	1.79	<0.1	NM	0.44	<1	<2 <2
	2/24/2011	4.25	19.7	0.03		8.51	366 354		<0.004 NM	<0.009 NM	< 0.007	<1	<0.1	NM NM	0.43 NM	<1 NM	<2 NM
MW-6*	9/20/2012	4.77	20.37 22.69	0.03	NM NM	3.75 4.72	354 681		NM	NM	NM NM	NM NM	NM NM	NM	NM	NM	NM
11111-0	3/7/2012	4.20	18.87	0.051	NM	5.51	359	0	< 0.004	<0.009	< 0.007	<1	NM	5.4	0.42	1.2	<2
	1/21/2015	4.48	19.5	0.048	NM	3.53	123.6	0.92	NM	×0.005 NM	NM	NM	NM	NM	NM	NM	NM
	4/26/2016	4.40	20.12	0.048	NM	5.7	208	0.92	NM	NM	NM	NM	NM	NM	NM	NM	NM
	3/8/2013	5.23	18.67	0.463	NM	3.44	301	7.23	NM	NM	NM	NM	NM	NM	NM	NM	NM
MW-7A	1/22/2015	4.89	14.9	0.465	NM	0.61	195.3	3.13	NM	NM	NM	NM	NM	NM	NM	NM	INIVI
mu /A	4/25/2016	5.54	22.78	0.443	NM	0.8	201	0.1	NM	NM	NM	NM	NM	NM	NM	NM	NM
	3/8/2013	5.37				2.25							NM				-
MW-8A	1/22/2015		18.33	0.83	NM		163	8.2	NM 830	NM	NM 17	NM	NM	NM	NM	NM 210	<2
WW-OA	4/26/2015	5.72 6.57	16.6 19.3	0.714 0.737	NM NM	0.56 0.8	130.7 72	5.7 57	NM	<9 NM	<7 NM	12.2 NM	NM	23 NM	<0.25 NM	210 NM	NM
	3/8/2013																
MW-9A	1/22/2015	5.56 6.04	18.65 14.91	0.676	NM NM	4.3 0.71	82 14.3	6.88 0.24	NM 11	NM <9	NM <7	NM 8.69	NM NM	NM 12	NM <0.25	NM 97	<2
MW-3A	4/26/2015	6.74	20.45	0.658 0.569	NM	0.65	40	36	NM	×9 NM	</td <td>8.69 NM</td> <td>NM</td> <td>NM</td> <td><0.25 NM</td> <td>97 NM</td> <td>NM</td>	8.69 NM	NM	NM	<0.25 NM	97 NM	NM
	3/7/2013																-
MW-10	1/22/2015	4.44 4.18	20.27 17.7	0.142	NM NM	1.45 1.06	503	0.62	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	NM
14144-10	4/25/2015	4.18	21.97	0.143	NM	2.3	106.3	4 2.1	NM		NM	NM	NM	NM	NM	NM	NM
			1	0.223			547			NM							-
MW-11	3/8/2013 1/22/2015	4.53	21.26	0.058	NM	1.09	414	1.28	NM	NM	NM	NM	NM	NM	NM	NM	<2
141 4 4 - 1 1		4.31	18.5	0.052	NM	1.85	120.6	0.65	3,600	330	<7	2.5	NM	4.8	2.1	<1	NINA
	4/26/2016	4.75	24.28	0.06	NM	0.74	240	3.8	NM	NM	NM	NM	NM	NM	NM	NM	NM
MAN 40	3/7/2013	4.95	21.73	0.046	NM	2.18	400	0.12	NM	NM	NM	NM	NM	NM	NM	NM	NM
MW-12	1/22/2015	4.9	17.63	0.048	NM	3.59	192.8	2.01	NM	NM	NM	NM	NM	NM	NM	NM	
	4/26/2016	5.14	23.5	0.051	NM	3.42	134	0.4	NM	NM	NM	NM	NM	NM	NM	NM	NM
	3/7/2013	4.82	22.29	0.05	NM	1.85	407	0.42	NM	NM	NM	NM	NM	NM	NM	NM	<2
MW-13	1/22/2015	4.48	18.71	0.049	NM	1.36	120.2	3.67	95	<9	<7	<1	NM	5	0.78	<1	
	4/26/2016	5.82	25.62	0.098	NM	2.6	225	0.9	NM	NM	NM	NM	NM	NM	NM	NM	NM
	3/7/2013	5.11	22.3	0.523	NM	1.5	362	1.12	NM	NM	NM	NM	NM	NM	NM	NM	NM
MW-14	1/21/2015	5.47	18.57	0.659	NM	0.51	109.9	1.66	NM	NM	NM	NM	NM	NM	NM	NM	\vdash
	4/26/2016	5.96	26.4	0.724	NM	0.57	103	28.9	NM	NM	NM	NM	NM	NM	NM	NM	NM

NOTES: NM - Parameter was not measured

µg/L = Micrograms per liter mg/L = Milligrams per liter * Background Well

mV = Millivolts SU = Standard Units

mS/cm = Millisiemens per centimeter

NTU = Nephelometric Turbidity Unit

°C = Degrees centigrade

TABLE 3 HISTORICAL GROUNDWATER ANALYTICAL RESULTS FORMER LOEF FACILITY ATHENS, CLARKE COUNTY, GEORGIA

Monitoing Well ID	Type 1 Risk Reduction Standard (μg/L)	1,1,2-Trichloro-1,2,2- Trifluoroethane	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	4-Methyl-2-Pentanone (Methyl isobutyl ketone)	2-Butanone (Methyl ethyl ketone)	2-Hexanone (Methyl butyl ketone)	Acetone	Benzene	Carbon Disulfide	Chloroform	Chloromethane (Methyl Chloride)	Cyclohexane	Toluene	Ethylbenzene	Isopropylbenzene (Cumene)	Methylcyclohexane	Methylene chloride	Xylenes (o)	Xylenes (m,p)	Xylenes (Total)	MTBE	Trichloroethene	Tetrachloroethene	Trichlorofluoromethane	Cis-1,2-Dichloroethene	Vinyl Chloride
		1.00E6	200	5	4,000	7	5	2,000	2,000	NE	4,000	5	4,000	80	3	NE	1,000	700	NE	NE	5	NE	NE	10,000	NE	5	5	2,000	70	2
	DATE 6/23/2000		<1	<1	1.5	<1						1.5			Analy	tical Resul	ts (μg/L) <1	<1				<3			<1	8.2	<1		<1	<3
MW-1*	6/3/2015		<5.0	<5.0	<5.0	<5.0		<10	<50	<10	<50	<5.0	<5.0	17			<5.0	<5.0				<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
	4/26/2016 6/3/2015	<1.0	<1.0 <5.0	<1.0 <5.0	1.1 <5.0	1.9 <5.0	<1.0	<1.0 <10	<10 <50	<10 <10	1.6 J <50	1.8 <5.0	<1.0 <5.0	13 <5.0	0.33 J	1.3	<1.0 <5.0	<1.0 <5.0	0.49 J	0.89 J	4.3	- <5.0	- <5.0	0.49 J <10	<1.0 <5.0	3.1 17	4.2 <5.0	<1.0 <5.0	3.5 <5.0	0.59 J <2.0
MW-1D	4/26/2016	7.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<10	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0			<1.0	<1.0	22	2.2	<1.0	<1.0	<1.0
	6/23/2000 6/26/2003		<10 9.7	<10 <5	12 30	26 43						<10 11					<10 <5	<10 <5				<30 11		<30 11	42 150	570 1800	<5 <5		100 250	31 52
	8/12/2003		9.7 32	<5	110	43 78						18					<5 8.9	<5				17		17	250	6500	<5		1300	52 170
	9/19/2003		28	<5	70	65						17					9.3	<5				18		18	200	4700	<5		700	98
	10/22/2003 11/18/2003		28 21	<5 <5	90 71	80 58						36 18					13 9.1	6.4 <5				26 17		26 17	250 250	3000 8100	<5 <5		590 1000	140 110
	12/24/2003		34	<5	91	70						16					9.4	<5				22		22	280	9600	<5		1500	130
	1/23/2004 3/29/2004		<50 16	<5 <5	55 54	60 46						<50 22					<50 6.9	<5 <5				<50 14		<50 14	370 250	4000 4000	<5 <5		560 790	130 83
	5/7/2004		11	<5	34	42						20					<5	5.8				14		14	210	2500	<5		420	54
	7/15/2004 9/30/2004		11 <5	<5 <5	38 10	32 23						25 21					7.1	8.5 46				18 58		18 58	280 190	1900	<5 <5		420 130	67 32
	5/9/2006		<5 9.4	<5 <5	54	23 38						13					130 <5	40 <5				10		10	77	430 2600	<5 <5		720	52
MW-2A**	6/17/2009		<5	<5	<5	<5						14					<5	<5				<10		<10	<5	70	<5		31	7
	6/24/2010 2/24/2011		<5 <5	<5 <5	23 19	17 14		 11			 90	12 7.2					<5 <5	<5 <5				1.9 <5		1.9 <5	15 20	710 730	<5 <5	 120	300 370	54 33
	3/18/2011**		<5	<5	6	14		11			<50	7.8	-	7			<5	<5				<5		<5	9.4	210	<5	<5	120	19
	8/4/2011		<5	<5	21	19		90	210	12	670	13	9	<5			13	<5				7.6	7.8	15.4	43	810	<5	<5	390	61
	8/4/2011(DUP) 2/24/2012		<5 <5	<5 <5	21 <5	18 7.7		79 160	150 210	10 19	630 700	11 11	7.2 <5	<5 <5			11 8.6	<5 <5				6.8 7.3	7.1 9.8	13.9 17.1	38 32	680 69	<5 <5	<5 <5	310 100	55 34
	9/20/2012		<5	<5	9.1	9.4		96	150	22	530	11	8.3	<5			6.9	<5				5.9	8.3	14.2	34	140	<5	<5	210	69
	3/7/2013		NS	NS	NS	NS		NS	NS	NS	NS	NS	NS	NS			NS	NS				NS	NS		NS	NS	NS	NS	NS	NS
	1/22/2015 DUP		<5.0	<5.0	<5.0	<5.0		<10	<50	<10	<50	<5.0	<5.0	<5.0			<5.0	<5.0				<5.0	<5.0	,10	5.4	23	<5.0	<5.0	21	29
	(FD012215B) 1/22/2015		<5.0	<5.0	<5.0	<5.0		<10	<50	<10	<50	5.2	<5.0	<5.0			<5.0	<5.0				<5.0	<5.0	<10	6	43	<5.0	<5.0	33	29
	5/20/2015		<5.0	<5.0	6.1	<5.0		<10	<50	<10	<50	8.7	<5.0	<5.0			<5.0	<5.0				<5.0	<5.0	<10	7.6	140	<5.0	<5.0	130	49
	6/23/2000		<1	<5	<1	<1						36					<1	<1				<3		<3	<1	30	<5		<1	<3
	5/7/2004 5/9/2006		<5 <5	<5 <5	<5 <5	<5 <5						<5 7.4					<5 <5	<5 <5				<5 <5		<5 <5	<5 <5	11 22	<5 <5		<5 <5	<2 <2
	6/17/2009		<5	<5	<5	<5						13					<5	<5				<5		<5	<5	15	<5		<5	<2
	6/24/2010		<5	<5	<5	<5						16					<5	<5				<5		<5	<5	17	<5		<5	<2
MW-3A	2/24/2011 8/4/2011		<5 <5	<5 <5	<5 <5	<5 <5		<10 <10	<50 <50	<10 <10	<50 <50	14 13	<5 <5	<5 <5			<5 <5	<5 <5				<5 <5	<5 <5	<10 <10	<5 <5	13 11	<5 <5	<5 <5	<5 <5	<2 <2
	2/24/2012		<5	<5	<5	<5		<10	<50	<10	<50	10	<5	<5			<5	<5				<5	<5	<10	<5	8	<5	<5	<5	<2
	9/20/2012		<5	<5	<5	<5		<10	<50	<10	<50	14	<5	<5			<5	<5				<5	<5	<10	<5	9.8	<5	<5	<5	<2
	3/7/2013 1/22/2015		<5 <5.0	<5 <5.0	<5 <5.0	<5 <5.0		<10 <10	<50 <50	<10 <10	<50 <50	14 22	<5 <5.0	<5 <5.0			<5 <5.0	<5 <5.0				<5 <5.0	<5 <5.0	<10 <10	<5 <5.0	9.6 8.8	<5 <5.0	<5 <5.0	<5 <5.0	<2 <2.0
	4/26/2016	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<10	<10	<20	8.2	<1.0	<1.0	0.19 J	0.90 J	<1.0	<1.0	<1.0	0.45 J	<1.0			<1.0	<1.0	3.9	<1.0	<1.0	0.97 J	<1.0
	6/23/2000		<1	<5	<1	<1						12					<1	<1				<1		<1	<1	<1	2.7		<1	<1
	5/7/2004 5/9/2006		<5 <5	<5 <5	<5 <5	<5 <5						27 37					<5 <5	<5 <5				<5 <5		<5 <5	<5 <5	29 51	<5 <5		<5 <5	<5 <2
	6/17/2009		<5	<5	<5	<5						<5					<5	<5				<5		<5	<5	7.2	<5		<5	<2
	6/24/2010		<5	<5	<5	<5						4.9					<5	<5				<5		<5	<5	6.1	<5		<5	<2
MW-4A	2/24/2011 8/4/2011		<5 <5	<5 <5	<5 <5	<5 <5		<10 <10	<50 <50	<10 <10	<50 <50	7 29	<5 <5	<5 <5			<5 <5	<5 <5				<5 <5	<5 <5	<10 <10	<5 <5	13 51	<5 <5	<5 <5	<5 9.5	<2 <2
	2/24/2012		<5	<5	<5	<5		<10	<50	<10	<50	<5	<5	<5			<5	<5				<5	<5	<10	<5	<5	<5	<5	<5	<2
	9/20/2012		<5	<5	<5	<5		<10	<50	<10	<50	<5	<5	<5			<5	<5				<5	<5	<10	<5	6.3	<5	<5	<5	<2
	3/7/2013 1/22/2015		<5 <5.0	<5 <5.0	<5 <5.0	<5 <5.0		<10 <10	<50 <50	<10 <10	<50 <50	<5 <5.0	<5 <5.0	<5 <5.0			<5 <5.0	<5 <5.0				<5 <5.0	<5 <5.0	<10 <10	<5 <5.0	<5 <5.0	<5 <5.0	<5 <5.0	<5 <5.0	<2 <2.0
	4/26/2016	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<10	<10	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0			<1.0	<1.0	0.35 J	<1.0	<1.0	<1.0	<1.0

TABLE 3 HISTORICAL GROUNDWATER ANALYTICAL RESULTS FORMER LOEF FACILITY ATHENS, CLARKE COUNTY, GEORGIA

Monitoing Well ID	Type 1 Risk Reduction Standard (μg/L)	1,1,2-Trichloro-1,2,2- Trifluoroethane	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	4-Methyl-2-Pentanone (Methyl isobutyl ketone)	2-Butanone (Methyl ethyl ketone)	2-Hexanone (Methyl butyl ketone)	Acetone	Benzene	Carbon Disulfide	Chloroform	Chloromethane (Methyl Chloride)	Cyclohexane	Toluene	Ethylbenzene	Isopropylbenzene (Cumene)	Methylcyclohexane	Methylene chloride	Xylenes (o)	Xylenes (m,p)	Xylenes (Total)	MTBE	Trichloroethene	Tetrachloroethene	Trichlorofluoromethane	Cis-1,2-Dichloroethene	Vinyl Chloride
	DATE	1.00E6	200	5	4,000	7	5	2,000	2,000	NE	4,000	5	4,000	80	3	NE	1,000	700	NE	NE	5	NE	NE	10,000	NE	5	5	2,000	70	2
MW-5	DATE 6/23/2000		1.5	<1	<1	<1						<1			Analy	tical Resul	ts (μg/L) <1	<1				<1			<1	<1	<1		<1	<1
WIW-J	11/5/2000		NA	<5	<1	NA						<1					NA	NA				NA			NA	<1	<1		<1	NA
	6/17/2009		<5	<5	<5	<5						<5					<5	<5				<5		<5	<5	<5	<5		<5	<2
	6/24/2010		<5	<5	<5	<5						<5					<5	<5				<5		<5	<5	<5	<5		<5	<2
	2/24/2011		<5	<5	<5	<5		<10	<50	<10	<50	<5	<5	<5			<5	<5				<5	<5	<10	<5	<5	<5	<5	<5	<2
MW-6	8/4/2011 2/24/2012		<5 <5	<5 <5	<5 <5	<5 <5		<10 <10	<50 <50	<10 <10	<50 <50	<5 <5	<5 <5	<5 <5			<5 <5	<5 <5				<5 <5	<5 <5	<10 <10	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<2 <2
	9/20/2012		<5	<5	<5	<5		<10	<50	<10	<50	<5	<5	<5			<5	<5				<5	<5	<10	<5	<5	<5	<5	<5	<2
	3/7/2013		<5	<5	<5	<5		<10	<50	<10	<50	<5	<5	<5			<5	<5				<5	<5	<10	<5	<5	<5	<5	<5	<2
	1/21/2015		<5.0	<5.0	<5.0	<5.0		<10	<50	<10	<50	<5.0	<5.0	<5.0			<5.0	<5.0				<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
	4/26/2016	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<10	<10	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	11/5/2000 5/7/2004		NA <5	NA <5	<1 <5	NA <5						<1 <5					NA <5	NA <5				NA <5		 <5	NA <5	5.4 <5	<1 <5		2.1 <5	NA <2
	5/9/2006		<5	<5	<5	<5						<5					<5	<5				<5		<5	<5	<5	<5		<5	<2
	6/17/2009		<5	<5	<5	<5						<5					<5	<5				<5		<5	<5	<5	<5		<5	<2
	6/24/2010		<5	<5	<5	<5						<5					<5	<5				<5		<5	<5	<5	<5		<5	<2
MW-7A	2/24/2011		<5	<5	<5	<5		<10	<50	<10	<50	<5	<5	<5			<5	<5				<5	<5	<10	<5	<5	<5	<5	<5	<2
	8/4/2011 2/24/2012		<5 <5	<5 <5	<5 <5	<5 <5		<10 <10	<50 <50	<10 <10	<50 <50	<5 <5	<5 <5	<5 <5			<5 <5	<5 <5				<5 <5	<5 <5	<10 <10	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<2 <2
	9/20/2012		<5	<5	<5	<5		<10	<50	<10	<50	<5	<5	<5			<5	<5				<5	<5	<10	<5	<5	<5	<5	<5	<2
	3/8/2013		<5	<5	<5	<5		<10	<50	<10	<50	<5	<5	<5			<5	<5				<5	<5	<10	<5	<5	<5	<5	<5	<2
	1/22/2015		<5.0	<5.0	<5.0	<5.0		<10	<50	<10	<50	<5.0	<5.0	<5.0			<5.0	<5.0				<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
	4/26/2016	<1.0	<1.0	<1.0	<1.0	0.63 J	<1.0	<10	<10	<10	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0			<1.0	<1.0 NA	<1.0 15	<1.0	<1.0	<1.0	<1.0 NA
	11/5/2000 5/7/2004		NA <5	NA <5	<1 <5	NA <5						<1 <5					NA <5	NA <5				NA <5		 <5	<5	<5	<1 <5		<1 <5	<2
	5/9/2006		<5	<5	<5	<5						<5					<5	<5				<5		<5	<5	<5	<5		<5	<2
	6/17/2009		<5	<5	<5	<5						<5					<5	<5				<5		<5	<5	<5	<5		<5	<2
	6/24/2010		<5	<5	<5	<5						<5					<5	<5				<5		<5	<5	<5	<5		<5	<2
MW-8A	2/24/2011 8/4/2011		<5 <5	<5 <5	<5 <5	<5 <5		<10 <10	<50 <50	<10 <10	<50 <50	<5 <5	<5 <5	<5 <5			<5 <5	<5 <5				<5 <5	<5 <5	<10 <10	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<2 <2
	2/24/2012		<5	<5	<5	<5		<10	<50	<10	<50	<5	<5	<5			<5	<5				<5	<5	<10	<5	<5	<5	<5	<5	<2
	9/20/2012		<5	<5	<5	<5		<10	<50	<10	<50	<5	<5	<5			<5	<5				<5	<5	<10	<5	<5	<5	<5	<5	<2
	3/8/2013		<5	<5	<5	<5		<10	<50	<10	<50	<5	<5	<5			<5	<5				<5	<5	<10	<5	<5	<5	<5	<5	<2
	1/22/2015		<5.0	<5.0	<5.0	<5.0		<10	<50	<10	<50	<5.0	<5.0	<5.0			<5.0	<5.0				<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
	4/26/2016 5/7/2004	<1.0	<1.0 <5	<1.0 <5	<1.0	0.42 J <5	<1.0	<10	<10	<10	5.3 J 	<1.0 <5	<1.0	<1.0	0.41 J	<1.0	<1.0 <5	<1.0 <5	<1.0	<5.0	<1.0	 <5		<1.0 <5	<1.0 <5	<1.0 <5	<1.0 <5	<1.0	<1.0 <5	0.97 J <2
	5/9/2006		<5	<5	<5 <5	<5 <5						<5					<5	<5				<5		<5	<5	<5	<5		<5	<2
	6/17/2009		<5	<5	<5	<5						<5					<5	<5				<5		<5	<5	<5	<5		<5	<2
	6/24/2010		<5	<5	<5	<5						<5					<5	<5				<5		<5	<5	<5	<5		<5	<2
	2/24/2011		<5	<5	<5	<5		<10	<50	<10	<50	<5	<5	<5			<5	<5				<5	<5	<10	<5	<5	<5	<5	<5	<2
MW-9A	8/4/2011 2/24/2012		<5 <5	<5 <5	<5 <5	<5 <5		<10 <10	<50	<10 <10	<50 <50	<5 <5	<5 <5	<5 <5			<5	<5 <5				<5 <5	<5	<10	<5 <5	<5 <5	<5 <5	<5	<5	<2 <2
	9/20/2012		<5	<5	<5	<5		<10	<50 <50	<10	<50	<5	<5	<5			<5 <5	<5				<5	<5 <5	<10 <10	<5	<5	<5	<5 <5	<5 <5	<2
	3/8/2013		<5	<5	<5	<5		<10	<50	<10	<50	<5	<5	<5			<5	<5				<5	<5	<10	<5	<5	<5	<5	<5	<2
	1/22/2015		<5.0	<5.0	<5.0	<5.0		<10	<50	<10	<50	<5.0	<5.0	<5.0			<5.0	<5.0				<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
	4/26/2016	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<10	<10	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0			<1.0	<1.0	<1.0	i i	<1.0	<1.0	<1.0
MW-10	3/7/2013		<5	<5	<5	<5		<10	<50	<10	<50	5.3	<5	<5			<5	<5				12	22	34	<5	<5	<5	<5	<5	<2
14144-10	1/22/2015 4/26/2016	 <1.0	<5.0 <1.0	<5.0 <1.0	<5.0 <1.0	<5.0 <1.0	 <1.0	<10 <10	<50 <10	<10 <10	<50 <20	<5.0 <1.0	<5.0 <1.0	<5.0 <1.0	 <1.0	 <1.0	<5.0 <1.0	<5.0 <1.0	 <1.0	<5.0	 <1.0	8.6	<5.0	8.6 <1.0	<5.0 <1.0	<5.0 <1.0	<5.0 <1.0	<5.0 1.2	<5.0 <1.0	<2.0 <1.0
	3/8/2013		<5	<5	<5	8.5		<10	<50	<10	<50	16	<5	<5			<5	<5				<5	<5	<10	<5	1,300	10	<5	12	<2
MW-11	1/22/2015		<5.0	<5.0	<5.0	13		<10	<50	<10	<50	27	<5.0	<5.0			<5.0	<5.0				<5.0	<5.0	<10	<5.0	1,500	15	<5.0	12	<2.0
1	4/26/2016	<5.0	<5.0	<5.0	<5.0	9	<5.0	<50	<50	<50	<100	9.2	<1.0	1.7 J	<5.0	<5.0	<5.0	<5.0	<5.0	<25.0	<5.0	-		<5.0	<5.0	760	5.8	<5.0	7.5	<5.0

TABLE 3 HISTORICAL GROUNDWATER ANALYTICAL RESULTS FORMER LOEF FACILITY ATHENS, CLARKE COUNTY, GEORGIA

Monitoing Well ID	Type 1 Risk Reduction Standard (μg/L)	1,1,2-Trichloro-1,2,2- Trifluoroethane	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	4-Methyl-2-Pentanone (Methyl isobutyl ketone)	2-Butanone (Methyl ethyl ketone)	2-Hexanone (Methyl butyl ketone)	Acetone	Benzene	Carbon Disulfide	Chloroform	Chloromethane (Methyl Chloride)	Cyclohexane	Toluene	Ethylbenzene	Isopropylbenzene (Cumene)	Methylcyclohexane	Methylene chloride	Xylenes (o)	Xylenes (m,p)	Xylenes (Total)	MTBE	Trichloroethene	Tetrachloroethene	Trichlorofluoromethane	Cis-1,2-Dichloroethene	Vinyl Chloride
	DATE	1.00E6	200	5	4,000	7	5	2,000	2,000	NE	4,000	5	4,000	80	3 Analys	NE tical Resu	1,000	700	NE	NE	5	NE	NE	10,000	NE	5	5	2,000	70	2
						20	1	.10	.50	.10	.50			- 00					1					.10				.5	, <u> </u>	.0
	3/7/2013 1/22/2015		<5 <5.0	<5 <5.0	<5 <5.0	30 45		<10 <10	<50 <50	<10 <10	<50 <50	<5 <5.0	<5 <5.0	28 5			<5 <5.0	<5 <5.0				<5 <5.0	<5 <5.0	<10 <10	<5 <5.0	<5 <5.0	<5 <5.0	<5 <5.0	<5 <5.0	<2 <2.0
	DUP		<5.0	<0.0	<0.0	40		<10	<00	<10	<50	<5.0	< 3.0	5			< 3.0	<0.0				×3.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
MW-12	(FD012215A)		<5.0	<5.0	<5.0	43		<10	<50	<10	<50	<5.0	<5.0	5.4			<5.0	<5.0				<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
	1/22/2015																												ļ]	
	4/26/2016 DUP-2	<1.0	<1.0	0.29 J	<1.0	13	0.28 J	<10	<10	<10	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0			<1.0	<1.0	0.49 J	<1.0	<1.0	<1.0	<1.0
	4/26/2016	<1.0	<1.0	0.29 J	<1.0	14	<1.0	<10	<10	<10	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0			<1.0	<1.0	0.43 J	<1.0	1.2	<1.0	<1.0
	3/7/2013		<5	<5	<5	<5		<10	<50	<10	<50	<5	<5	<5			<5	<5				<5	<5	<10	<5	<5	<5	<5	<5	<2
	1/22/2015		<5.0	<5.0	<5.0	<5.0		<10	<50	<10	<50	<5.0	<5.0	<5.0			<5.0	<5.0				<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
MW-13	4/26/2016	<1.0	<1.0	<1.0	0.25 J	0.40 J	<1.0	<10	<10	<10	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	DUP-1 4/26/2016	<1.0	<1.0	<1.0	0.25 J	0.44 J	<1.0	<10	<10	<10	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	3/7/2013		<5	<5	<5	<5		<10	<50	<10	<50	<5	<5	<5			<5	<5				<5	<5	<10	5.6	<5	<5	<5	<5	<2
MW-14	1/21/2015		<5.0	<5.0	<5.0	<5.0		<10	<50	<10	<50	<5.0	<5.0	<5.0			<5.0	<5.0				<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
	4/26/2016	<1.0	<1.0	<1.0	<1.0	0.44 J	<1.0	0.58 J	<10	<10	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0			<1.0	1	<1.0	<1.0	<1.0	<1.0	2.1
TW-1	5/4/2006		<5	<5	<5	<5						38					<5	<5				<5		<5	<5	10	<5		<5	<5
TW-2	5/4/2006		<5	<5	<5	<5						100					<5	<5				<5		<5	<5	15	6.6		<5	<5
TW-3	5/4/2006		<5	<5	<5	29						<5					<5	<5				<5		<5	<5	8.2	<5		<5	<5
TW-4	5/4/2006		<5	5.9	<5	150						<5					<5	<5				<5		<5	<5	<5	<5		<5	<5
TW-5	5/4/2006		<5	<5	<5	<5						24					<5	<5				<5		<5	<5	<5	<5		<5	<5
Equipment Blank	2/24/2011		<5	<5	<5	<5		<10	<50	<10	59	<5	<5	<5			<5	<5				<5	<5	<10	<5	<5	<5	<5	<5	<2
FB-1	4/26/2016	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<10	<10	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	8/5/2011		<5	<5	<5	<5		<10	<50	<10	<50	<5	<5	<5			<5	<5				<5	<5	<10	<5	<5	<5	<5	<5	<2
	1/21/2015		<5.0	<5.0	<5.0	<5.0		<10	<50	<10	<50	<5.0	<5.0	<5.0			<5.0	<5.0				<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
Trip Blank	1/22/2015		<5.0	<5.0	<5.0	<5.0		<10	<50	<10	<50	<5.0	<5.0	<5.0			<5.0	<5.0				<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
Trip Blank	5/21/2015		<5.0	<5.0	<5.0	<5.0		<10	<50	<10	<50	<5.0	<5.0	<5.0			<5.0	<5.0				<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
	6/5/2015		<5.0	<5.0	<5.0	<5.0		<10	<50	<10	<50	<5.0	<5.0	<5.0			<5.0	<5.0				<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
	4/26/2016	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<10	<10	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

NOTES:

"760" - Numbers in bold exceed the applicable Type 1 Risk Reduction Standard criteria.

* - Casing for MW-1 was damaged. Sampling access was not available on this date.

**- MW-2A was overdrilled and replaced 3/18/11.

NE - Not Established (no Type 1 Groundwater Risk Reduction Standard is assigned).

NS - Not Sampled (MW-2A was inaccessible in March 2013 and was not sampled).

NA - Not Analyzed.

MW-10 thru MW-14 were installed December 19 - 21, 2013.

Shaded cell: VOC was previously not reported or tested by lab. First reporting for this compound was April 2016 sampling event.

TABLE 4 HISTORICAL TOTAL VOC CONCENTRATIONS IN GROUNDWATER FORMER LOEF FACILITY ATHENS, CLARKE COUNTY, GEORGIA

Monitoring Well	Date	Total VOC Concentration* (μg/L)	Reduction in Total VOC Concentration** (%)	Trend Graphs for Key Source Area Wells
		ource Area Wells		
	8/12/2003	8,483.9		Total VOC Concentration (μg/L)
MW-2A	5/9/2006	3,572.4		MW-2A
10100 273	8/4/2011	2,376.4		10,000.0
	5/20/2015	341.4	96%	8,000.0
	6/23/2000	66.0		6,000.0
MW-3A	5/9/2006	29.4		
WW-SA	8/4/2011	24.0		4,000.0
	4/26/2016	14.61	78%	2,000.0
	3/8/2013	1,334.2		0.0
MW-11	1/22/2015	1,555.0		8/12/2003 5/9/2006 8/4/2011 5/20/2015
	4/26/2016	785.7	41%	
	Perime	ter/Downgradient W	ells	
	5/7/2004	56.0		Total VOC Concentration (µg/L)
	5/9/2006	88.0		MW-11
MW-4A	8/4/2011	89.5		2,000.0
	9/20/2012	6.3		1,600.0
	4/26/2016	0.35	99%	
	3/7/2013	39.3		1,200.0
MW-10	1/22/2015	17.2]	800.0
	4/26/2016	1.2	97%	400.0
	3/7/2013	58.0		0.0
MW-12	1/22/2015	50.0		1/1/2013 1/1/2014 1/1/2015 1/1/2016
	4/26/2016	14.06	59%	

Notes:

VOCs = Volatile Organc Compounds

*Total VOCs is the sum of all chlorinated and non-chlorinated Method 8260 VOCs detected, including estimated (J-flag) concentrations.

**Reduction compares total change between first date listed to last date listed. Intermediate reductions are not calculated.

TABLE 5 SUMMARY OF BIOCHLOR MODELING RESULTS FORMER LOEF FACILITY ATHENS, CLARKE COUNTY, GEORGIA

Compound	Modeled Date	Source Area Concentration (µg/L)	Maximum Plume Extent to 1 μg/L (ft)*	Approximate Maximum Plume Extent to RRS (ft)**	Type 1 RRS
	22 Years (2015): Calibration	150	200	100	
PCE	30 Years (2022)	150	150	75	5
FUE	40 Years (2032)	150	150	75	5
	50 Years (2042)	150	150	75	
	22 Years (2015): Calibration	13,000	500	450	
TCE	30 Years (2022)	13,000	500	390	5
TGE	40 Years (2032)	13,000	500	390	5
	50 Years (2042)	13,000	500	390	
	22 Years (2015): Calibration	<1	500	180	
DCE^{\dagger}	30 Years (2022)	<1	500	150	70 [†]
DCE	40 Years (2032)	<1	600	150	70
	50 Years (2042)	<1	600	150	
	22 Years (2015): Calibration	<1	500	480	
VC	30 Years (2022)	<1	500	450	2
vc	40 Years (2032)	<1	500	450	Z
	50 Years (2042)	<1	500	450	

Notes:

 μ g/L = micrograms per liter

PCE = perchloroethene TCE = trichloroethene VC = vinyl chloride

ft = feet

RRS = Risk Reduction Standard (Georgia EPD) DCE = dichloroethene

[†]DCE generated is assumed to be all cis-1,2-DCE isomer for comparison against a RRS.

*Maximum detected extent of plume along downgradient groundwater flow pathway, starting at source area located 70 feet upgradient of MW-11.

**Plume distance along downgradient groundwater flow pathway, starting from source area, that RRS concentration is met.

APPENDIX A

GROUNDWATER SAMPLING FORMS

Date:	-421	0/16	1	Time:	100	0					A
Apex Pers		<u> </u>	S-Sch	warz			-			Monitor Well Number	
Location (Site/Facility	Name):	Omr	IL SOU	rce					Purpose of Sampling Event	Hnval
Circle							-			Weather/Temp	cloudy /toop
Measuring	g Point (MP):	top of casing	g, top of gro	und	Low Flow	purge rate:	_ 10	OmL/mir	n	Well Type: surface completion.	
Depth to F	Product (MP)	<u>:</u>		_		Cover Bolted:	Yes	No			
Depth to V	Vater (MP):	18.4	+3		Well C	Cap Condition:	Good	Replaced		Well Screen Length: 5, 10, 15,	
Total Dep	th of Well (M	P): 24	+ (0.1')	-		Cap Locked:	Yes, No,			Pump Intake depth below water (M	
Water Col	umn thickne	ss (ft):	5.57	-		ig Present:	Yes (No		Purging/Sampling Device: Bailer,	(Peristaltic, Monsoon, Grundtos;
Well Mate	rial PVC.)	Stainless Stee	el. Other:	•		Info. On Tag:	(No		OTHER:	
		ood) Cracked				eter (inches)	$\hat{\mathbf{a}}$	110		Noticeable Odor: none	
					Weil Diam	eter (inches)	d			Sample Color: Clear	
Time	Depth to Water	Well volume	Low Flow Vol	Torre	Spec.				T	1	Field Comments/Site Conditions.,etc.:
	(MP)	Bailed	Purged	Temp.	Cond.	рH	ORP	DO	Turbidity	Water Quality Comments	Spec. Cond - m S/Cm
min.	Feet	gallons	Liters		MS/cm	and the second	mV	mg/L	NTU	indiana adding comments	Specie Conde and Specie Conde
Initial	18.54	-	0.5	22.89	090	5.19	I	0.96	T		
3	18.55		O.B		079		152		3.2		-
i			0.0		P	5.15	114	0.85	2.5		
6	18.56				,075	5.16	104	0.74	2.3		
	18.56		1.4	22.91	.073	5.17	101	0.70	2.0		
12	18.56		1.7	22.95	,071	5.16	99	0.67	1.7		-
15	18.56		2.0	and the second se	072	5.19	97	0	1.8		-
13	18.56		2.3	22.93	10				All and a second s		-
	10.30		d.)	12.12	N/U	5.17	99	0.61	1.7		
L											
											-
Criteria	0.22	0.2.0.5.1.6.1	A Parti Supervisi Int	11111111111111111111111111	Water N. Landon V.						
	0.33'	0.2-0.5 L/min	0.09.2" = 0.17	3" = 0.38 4" -	+/- 3%	+/- 0.1 , 8" - 2.6, 10" = 4	+/- 10 mV	+/- 0.3mg/L	+/- 10%	With any define of the second	
		ers Collected v						codo	chai	1 too of a non A	C
		A	\			Hanna turbidi	ty; Other	: Sana	-Sircu	v method used	TO VOC
Parameter	s Stabilized ((circle): YES	5) NO	If no, why	/?						
	Samples co	llected		Analysis			Bottle Type		Preservative		
	3			8260)		1				Sample date Sample Time
	\bigcirc			DOUL		4	OMCI	JOH	HCI	Shealy	4/26/16 1020
										J	

Date:	-4/26	116	- 0	Time:	_13	0					X
Apex Pers		<u> </u>		Terz			-			Monitor Well Numbe	MW-ID
	Site/Facility	Name):	OW	nso	urce		-			Purpose of Sampling Even	"Monval
Circle										Weather/Temp	sunny 7592
		top of casing	g, top of gro	und	Low Flow	purge rate:	(01	DmL/mii	n	Well Type: surface completion	
11	Product (MP)			-	Well	Cover Bolted:	Yes		KUP	<u> </u>	
Depth to V	Vater (MP):	<u>_25.3</u>	6	_	Well (Cap Condition:	Good	Replaced (Well Screen Length 5, 10, 15,	
Total Dep	th of Well (M	P): 75	(0.1')		Well	Cap Locked:	Yes, No,	Replaced		Pump Intake depth below water (N	
Water Col	umn thickne	ss (ft): 4	9.64		Well Ta	ag Present:		No		Purging/Sampling Device: Bailer,	(Peristaltic,) Monsoon, Grundtos,
Well Mate	rial: (PVC)	Stainless Stee	el, Other:	5	Well	Info. On Tag:		No		OTHER:	
		ood, Cracked				neter (inches)	2			Noticeable Odor: NOW	
		/								Sample Color:	ar
Time	Depth to Water	Well volume	Low Flow Vol	Temp.	Spec.						Field Comments/Site Conditions, etc.
	(MP)	Bailed	Purged	remp.	Cond.	рН	ORP	DO	Turbidity	Water Quality Comments	
min.	Feet	gallons	Liters	°C	MS/cm	St. Starter Conta	mV	mg/L	NTU .	trater quality comments	Spec. Cond mS/cm
Initial	25.53	(0.5	24.38	,080	5.68	110	1.02	1.9		-
3	ZS.61	~	O.B	24.85	07B	-					_
6	25.62				078	5.62	113	0.93	1.3		
			1-1	24.72		5.55	117	1.33	1.4		
9	25.62		1.4	24.79	,079	5.55	119	1.50	1.2		
12	25.62		1.7	24.73	,079	5.53	121	1.51	0.9		-
15	25.62		2.0	24.80	079	553	121	1.50	0.8		-
18	25.62		2.3	24.78	,079						_
			- E. J	01.10	NTI	5.54	12)	1.5Z	0.8		
											-
											-
Criteria	0.33'	0.2-0.5 L/min	TRANSFER P.		(8)						
	e Conversions	1" = 0.04, 1.5" = (0 09, 2" = 0 17	3" - U 38 4" -	+/- 3%	+/- 0.1 0. 8" = 2 6, 10" = 4	+/- 10 mV	+/- 0.3mg/L	+/- 10%		
		ers Collected v						SUC	lasma	an method used	for voc
		~	1)	Hanna turbidi	ty; Other				
Parameter	s Stabilized (circle): YES) NO	If no, why	1?						
	Samples co	llected		Analysis			Bottle Type		Preservation		
	3			8261	.)		1222 1222	:	Preservative		Sample date Sample Time
	0			0000			VOA		HIC I	Shealy	4/26/16 1200
										T	

Date:	4/26	/16	- 107	Time:	1005					Monitor Well Number	MW-3A
Apex Pers	onnel:	T. Fis	cher							Purpose of Sampling Even	
Location (S	Site/Facility	Name): A	Omnise	purce, 1	Allens	, Ga				Weather/Temp	
Circle	J	6	>								F, Cloudy NP
11		Top of casing	-	und	Low Flow p	-	100			Well Type: surface completion,	above grada
Depth to P	roduct (MP)	23711		-	Well C	over Bolted:	Yes	NO NA		Well Screen Length: 5, 10, 15,	
Depth to V	Vater (MP):	23.30	0	-		ap Condition:		Replaced		Pump Intake depth below water (M	
Total Dept	h of Well (M	P): 30.	the second se			ap Locked: (Yes, No, I	Replaced		Purging/Sampling Device: Bailer,	
11	umn thickne		2.7	-	Well Tag) Present:	Yes	No		OTHER:	Grundios,
		Stainless Stee			Well I	nfo. On Tag:		No		Noticeable Odor: Noticeable Odor:	20
Well pad c		ood) Cracked	, Replace	F	Well Diame	eter (inches)	2			Sample Color:	lar
Time	Depth to Water	Well volume	Low Flow Vol	Temp.	Spec.	pН	ORP	DO	Turbidity		Field Comments/Site Conditions, etc.
	(MP)	Bailed	Purged		Cond.	p		00	raibidity	Water Quality Comments	Spec. Condms/cm
min.	Feet	gallons	Liters	•C •	ms/cm	State State State	mV	mg/L	NTU		
Initial	23,40	~	0.5	21.28	0,135	5.26	181	3.44	8.8		
3 23	21.82	7 -	0.8	21.85	0,134	5.22	177	2.44	8.9		
6	23.40	\sim	1.1	22.26	0,133	5,19	178	1.71	8.3		-
9	23.40		1.4		0,135		179	1,71	7.6		-
12	23.40	~	1.7	23.08		5.11	185				_
	10			10100	0.155	2:11	100	1.53	77		-
<u> </u>											_
<u> </u>											
			1								
	1										
	1										-
											_
								-			_
Criteria	0.33'	0.2-0.5 L/min	Contract and	SAME NOT STREET.				A CONTRACT OF A CONTRACT			
		1" = 0.04, 1.5" =		, 3" = 0.38, 4" =	+/- 3%	+/- 0.1 8" = 2 6, 10" = 4	<u> +/- 10 mV</u>	+/- 0.3mg/L	+/- 10%		
		ers Collected				Hanna turbidi		r.			
	s Stabilized	<u> </u>		If no, wh							
	Samples c	C					D		5		
)	UNCLIEU		Analysis 826	D		Bottle Type	LIVDA	Preservativ	e <u>Lab</u>	Sample date Sample Time 4/26/16 /050
	/			020			2011	- 1000	ice	Shealy Shealy	4/26/16 /050
					5	ada S	Traw	methi	d to	r collection	

Date:	- 412	6/16	1	Time:	915	-				Monsiles Market	NAL diff
Apex Pers		K	Schu	arz		/				Monitor Well Number Purpose of Sampling Event	
Location (S	Site/Facility N		_om	ni soi	rre						SUNNY/750F
Circle]										
		top of casing	, top of grou	und		purge rate:	Worker of the American States of the second states of the	D_mL/min	<u>g</u>	Well Type: surface completion)	above grade
	roduct (MP)		-73			Cover Bolted	CON	No		Well Screen Length: 5, (10,)15, 1	
	/ater (MP):		- The			Cap Condition:		Replaced		Pump Intake depth below water (M	
1		P): 29.5	the second se			Cap Locked:	Yes, No, I	Replaced		Purging/Sampling Device: Bailer,	
1	umn thicknes	<u>1</u> <u>1</u>	.72			ig Present:	\ \	NO		OTHER:	Situation Situation
		Stainless Stee			Well	Info. On Tag:	Yes	No		Noticeable Odor: None	L
Well pad c	ondition: (Go	ood Cracked	, Replace		Well Diam	eter (inches) _	2			Sample Color:	
	Depth to	Well volume	Low Flow			T	l'	1	1		F. 4.0
Time	Water (MP)	Bailed	VOI	Temp.	Spec. Cond.	рН	ORP	DO	Turbidity	Water Overlite Comment	Field Comments/Site Conditions, etc.:
min.	Feet	gallons	Purged Liters	•C	ws/cm	Market Sala				Water Quality Comments	spec. Cond - mS/cm
Initial	21.95	gunono	0.5	20.96	1	11 21	mV CIC	mg/L	NTU		
3	22.03		0.6	di manana di seconda sa	340	4.36	217	2.12	1-1		
1	22.04			21.01	,339	4.33	220	1.9B	1.0		_
b			1.1	21.08	,339	4.34	222	1.86	0.9		
9	22.04	~	1.4	21.19	,339	4.32	332	1.79	1.0		
12	22.04		1.7	21.26	339	4.33	225	1.77	0.8		-
				23							-
			1								-
											-
								,			4
			1								
Criteria	0.33'	0.2-0.5 L/min		Helper (Stard	+/- 3%	+/- 0.1	+/- 10 mV	+/- 0.3mg/L	+/- 10%	Service and the service	1
						o, 8" = 2.6, 10" = 4	1.1			4	
Water qua	lity paramete	ers Collected	with: YSI 5	56, (Horit	a U-52,	Hanna turbidi	ty; Othe	r: Socla	stra	n method used	for voe
Parameter	s Stabilized	(circle). YES	s) no	If no, wh	λ;						
	Samples co	ollected		Analysis			Bottle Type	2	Preservativ	e <u>Lab</u>	Sample date Sample Time
	3			8260	2	4	omlv		HCI		41 . 11
	Ċ			V		í.		5. ST 18	114	Shealy.	4/26/16 940

.

Date:	421	0116		Time:	830					Monitor Well Number	MW-6
Apex Perso		' K.		UZ						Purpose of Sampling Event	
1	Site/Facility	Name):	Om	nù Soi	rce					Weather/Temp	
Circle											
		top of casing	, top of grou	ind	Low Flow p		100	/mL/min		Well Type: surface completion,	above grade
	roduct (MP)		0			over Bolted		No		Well Screen Length: 5, 10, 15, 1	
Depth to W	ater (MP):		-8			ap Condition:	0	Replaced		Pump Intake depth below water (M	
	n of Well (M		(0.1')				Yes, No, I	Replaced		Purging/Sampling Device: Bailer,	
	umn thickne		.72					No		OTHER:	Chandida,
Well Mater	ial PVC	Stainless Stee	I, Other:		Well I	nfo. On Tag:	Yes	No		Noticeable Odor: NOT	e
Well pad c	ondition: G	ood, Cracked	, Replace		Well Diame	eter (inches) _	ð			Sample Color:	
Timo	Depth to	Well volume	Low Flow	T	Spec.						Field Comments/Site Conditions, etc.
Time	Water (MP)	Bailed	Vol Purged	Temp.	Cond.	рН	ORP	DO	Turbidity	Water Quality Comments	spec. Cond - mS/cm
min.	Feet	gallons	Liters	•C	wS/cm	State State of State	mV	mg/L	NTU	1	
Initial	19.26		0.5	19.67	180	639	122	6.30	0.7		
3	1945	-	0.8	1992	066	4.64	172	6.04	0.6	/	
6	20-01	150	(.)	20.01		4.46	192	5.09	0.41		-
g	19.51				053	4.43	198	5.79			-
12	19.51	-	1.7						0.5		
					050	4.41	205	5.75	0.5		-
15	1952			20.11	,050	4.39	209	5.76	0.5		
18	19.52		2.3	20.12	149	4.39	208	5.70	0.4		
											-
											-
											-
											-
	1990										
Criteria	0.33'	0.2-0.5 L/min		3° = 0.38.4° =	+/- 3%	+/- 0.1		+/- 0.3mg/L	+/- 10%	And the second sec	
		ers Collected			- to many	Hanna turbidi		- onde	ich	w method vsec	for voc
	s Stabilized	0	2	If no, wh				·· 5004	~ 51 10	www.www.www.voec	MS/MSD 845
	Samples c			Analysis			Bottle Tur		Preservativ		
	3			9260		Ar	Bottle Type				Sample date Sample Time
	0			0000		-11	MILV	243	HCI	Shealy	4126/16 845
										h	

Date:	-412	5/16	~ 0	Time:	I.t.	15				Monitor Well Number:	Muu-7A
Apex Pers	onnel:	'K.	Schul	TISK	TRA	ner					
Location (S	Site/Facility	Name):		NV SON			-			Purpose of Sampling Event:	
Circle]									Weather/Temp	Sunny 70072
11		top of casing	g, top of grou	und	Low Flow J		10			Well Type: surface completion,	above grade
1	roduct (MP)			-)		Cover Bolted:		No Stic	kov,	Well Screen Length: 5(10, 15, 1	
11	Vater (MP):	and the second s		-		ap Condition		Replaced V	cared	Pump Intake depth below water (M	
Total Dept	h of Well (M	P): 19.5		_	Well (Cap Locked:	Yes, No,	Replaced		Purging/Sampling Device: Bailer,	
11	umn thickne	and the second	.98	-	Well Ta	g Present:	Yes (No) well	ID.	OTHER:	Sidinaids,
Well Mater	rial: (PVC)	Stainless Stee	el, Other:		Well I	nfo. On Tag:		No Vi	weil	Noticeable Odor: non	g
Well pad c	ondition: G	ood,)Cracked	I, Replace		Well Diam	eter (inches)	9	inv	1010-10	Sample Color:	
	Depth to	Well volume	Low Flow	T		1	1	T	T		
Time	Water (MP)	Bailed	Vol	Temp.	Spec. Cond.	рН	ORP	DO	Turbidity	Water Quality Comments	Field Comments/Site Conditions, etc.
min.	Feet	gallons	Purged	•C		A CONTRACTOR	ana			Water Quality Comments	Speci Cond - m5/cm
Initial	1	gailoris	1		S/cm	1 1 1 1	mV	mg/L	NTU	1 1	5
	12.61	1	0.5	28.35	,473	6.14	152	7.01	15-0		_
3	12.69		O.B	26.12		5.94	167	1.11	13.0		
6	12.70		1-1	24.14	436	5.70	192	1.04	1.5		
9	DF.D		1.4	23.45	431	5.5B	204	6.90	0.5		-
12	12.70		1.7		,429	5.55	207	0.82	0.2		-
15	12.70		2.0	22.78		5.54	201	0.80			-
10	10 10		12.0	20.10	5720	0.01	1001	0.00	0.1		
											-
	1										-
Criteria		0.2-0.5 L/min		3" = 0.38 A" =	+/- 3%	+/- 0.1	+/- 10 mV	+/- 0.3mg/L	+/- 10%	5 P 20	
		ers Collected		/	11			Cna	lach	all refund in	1 fm = v(r)r
	s Stabilized	\sim	5			Hanna turbid	ity; Othe	- 200	un sji	aw method used	A MA ANC
alameter			S) NO	If no, wh	y (
	Samples c			Analysis			Bottle Type	2	Preservativ	e Lab	Sample date Sample Time
	2	3		Babi)	2	lome	VIDA	HCC	01 0	
				v				V	IUI	Shealy 2	125/16 1745

Date:	4/20	and the second se		Time:	প্রত	>				Monitor Molt N	has a ca
Apex Pers	onnel:	T. Fis	her							Monitor Well Number: Purpose of Sampling Event:	
Location (S	Site/Facility I	Name):	Omni	source	, At	hens, G	sa.			Weather/Temp	
Circle]										
		top of casing	g, top of grou	ind	Low Flow p		100	mL/min	i	Well Type: surface completion,	above grade
	roduct (MP)					Cover Bolted:		No		Well Screen Length: 5, 10, 15, 1	
Depth to W	/ater (MP):		and the second sec			ap Condition:	Good	Replaced		Pump Intake depth below water (M	
	h of Well (M	()					(es/No, F			Purging/Sampling Device: Bailer,	Contract rest and the second secon
	umn thickne	and the second sec	. 11			g Present:	\ \	No		OTHER:	
Well Mater	ial: (PVC,)	Stainless Stee	el, Other:		Well I	nfo. On Tag:		No well	ID	Noticeable Odor: Non	e
Well pad c	ondition: G	ood) Cracked	i, Replace		Well Diame	eter (inches)	2	h	Ŭ(Noticeable Odor: Non Sample Color: Cleric	ad
Time	Depth to Water	Well volume	Low Flow Vol	Temp.	Spec.		0.55				Field Comments/Site Conditions, etc.
- mile	(MP)	Bailed	Purged	remp.	Cond.	pН	ORP	DO	Turbidity	Water Quality Comments	Spec. Cond mS/cm
min.	Feet	gallons	Liters	°C	j⊯S/cm	$\sum_{i=1}^{N_{i}} \sum_{j=1}^{N_{i}} \sum_{j=1}^{N_{$	mV	mg/L	NTU		
Initial	11.58	~	0.5	18.82	0.743	6.45	103	2.82	618		
3	11,58	~	0.8		0,746	6.58	69	1.47	310		
6	11.59	-	1.1		0.741	6.57	70	1.09	179		-
9	11,58		1.4		0,739		70	1			-
	11.58		1.7	19 22	0, 101	1.00		0.98	59		
12	11.59			11,12	0,738	6.56	71	0.90	58		
_15	11.51		2.0	19,00	6,737	6.57	72	0,80	57		
											-
											-
0.11		000011	The state of the	and the second second		A NO. OF LAS					
Criteria		0.2-0.5 L/mir		3" = () 38 d" =	+/- 3%	+/- 0.1	<u>+/- 10 mV</u>	+/- 0.3mg/L	+/- 10%	and the second sec	
		ers Collected				Hanna turbidi					
	s Stabilized	1	S NO	If no, why		rianna turdiù	ity; Other	F.			
		\cup									
	Samples co)		Analysis Corre	5		Bottle Type		Preservativ		Sample date Sample Time
				8261			40ml		HU	Shearly	#/zie/16 910
				SE	da st	raw m	ethod	for	collect	tion	

100

	110.1	177			000						mail Ca
Date: _	4/26/	16		Time:	930				8	Monitor Well Number	
Apex Persor		T. Fis			Mil					Purpose of Sampling Event	
Location (Si	te/Facility N	lame):	Omniso	urcli	Athens	, Ga				Weather/Temp	Sunny 75°F
Depth to Pro Depth to Wa Total Depth Water Colu Well Materi	oduct (MP): ater (MP): of Well (M mn thicknes al: PVC, S	13.19 P): 20.1	8 <u>(0.1')</u> .82 I, Other:		Well Ca Well Ca Well Tag	over Bolted: p Condition: ap Locked: Present: fo. On Tag:	tes No, F	No NA Replaced	il Liten	Well Type: surface completion, Well Screen Length: 5, 10, 15, Pump Intake depth below water (M Purging/Sampling Device: Bailer, OTHER: Noticeable Odor: Vample Color: Content	P): 15 Peristaltic, Monsoon, Grundfos;
Time	Depth to Water (MP)	Well volume Bailed	Low Flow Vol Purged	Temp.	Spec. Cond.	рН	ORP	DO	Turbidity	Water Quality Comments	Field Comments/Site Conditions, etc. Spcc, Cond - m5/cm
min.	Feet	gallons	Liters		mis/cm	1 Circi	mν	mg/L	NTU		
Initial	13.21		0.5	20,44	0.559	6.88	110	1.55	106		
3	13.23		0.8	20.42	0.564	6.74	99	6.86	56		
6	13.24		1.1	20.41	0.565	6.73	63	0.78	53		
9	13.26	-	1.4	20,42	0.567	6.73	50	0,70	39		
12	13.27	-	1.7		0,568	6.73	42	0.66	37		
15	13.28		2.0		0.569		40	0.65	36		
Criteria	0.33	0.2-0.5 L/mi	n		+/- 3%	+/- 0.1	+/- 10 m\	/ +/- 0.3mg/L			
Water qua	ality parame	ters Collected (circle):	with: YSI	6	ba U-52,	Hanna turbi			Preservat	ive <u>Lab</u>	Sample date Sample Time
	(826			40m	26	# HC	1 Shealy	4/26/16 950
						eda i	· · · ·	-	la ral	lection	1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

API	EX 4/25/1	6						PEX COMP			
Date: Apex Pers	-bf	TITISH	ol V	Time:		00	5			Monitor Well Numbe	- MW-10
	Site/Facility		10	1.	Sarz		-			Purpose of Sampling Even	
Circle]			ture >	unic	d	•		245 P.	Weather/Temp	Sunny 80F
Depth to P Depth to V Total Dept Water Coli Well Mater	roduct (MP) Vater (MP): h of Well (M umn thickne ial: PVC	19.7 P): 35	(0.1') 26	-	Well (Well C Well Mell Well Ta Well	purge rate: Cover Bolted Cap Condition: Cap Locked: g Present: Info. On Tag: eter (inches)	Yes No, Yes	mL/mir No Replaced Replaced No No	1		20 feet; <u>25-35</u> 1P): 27
Time	Depth to Water (MP)	Well volume Bailed gallons	Low Flow Vol Purged	Temp.	Spec. Cond.	рН	ORP	DO	Turbidity	Water Quality Comments	Field Comments/Site Conditions, etc. Spec: Cond mS/Cm
Initial	19.95	galions	D.5	23.48	DRR	5-83	mV	mg/L	NTU 19		
3	19.92		0.8		100	1	223	3.61	17:0		
0	19.80			23.02	-200	4-68	520	2.40	3.6		
9	19.86		1.1	22.68	220	7.67	538	2.33	2.5		
			1.4	23 D	,225	4.65	539	2.33	2.3		
12	19.88	-	1.7	22.18	221	4.66	541	2.25	1.9		
15	19.88		2.0	2197	,223	4.67	547	2:30	2.)		
											-
											-
			/								-
				1							_
 											
									-		
Cettoria	0.001	000514	Lingardan	1. 21 - 11 - 11 - 11 - 11 - 11 - 11 - 11							
Purge Volum		0.2-0.5 L/min		. 3" = 0.38.4" =	+/- 3%	+/- 0.1	<u> +/- 10 mV</u>	+/- 0.3mg/L	+/- 10%		
Water qua	ity paramet	ers Collected	with: YSI 5	56, Horit	a.U-52,	Hanna turbidi		<u>r: 5</u>	joda S	Straw method .	used for voc
Parameter	s Stabilized	(circle): XES	SNO	If no, wh	y?						
	<u>Samples co</u> [ollected		Analysis 8260			HOM	VOA	Preservativ HCl	shearly	Sample date Sample Time 4/25/16 1515

Date:	4 26	15	_	Time:	1115					NA	0411-11
Apex Pers	sonnel:	T. Fi	sher	2012/07/04/2019						Monitor Well Number	
Location (Site/Facility I	Name):	_Om	DISOURC	e					Purpose of Sampling Event Weather/Temp	
Circle							-			weather/Temp	Sunny 70°F
		top of casing	, top of grou	und	Low Flow p)0	0 mL/min		Well Type: surface completion,	Cabove grade
10 C	Product (MP)				Well C	Cover Bolted:	Yes	NO NA		Well Screen Length: 5, 10 15,	
Depth to V	Vater (MP):	23.06			Well C	ap Condition	Good	Replaced		Pump Intake depth below water (M	
Total Dept	th of Well (M	P): 35.0	(0.1')		Well (Cap Locked:	Nes No.	Replaced		Purging/Sampling Device: Bailer,	A
Water Col	umn thickne	ss (ft): 11.	94		Well Ta	g Present:	Yes	(No)		OTHER:	Peristallic, Monsoon, Grundtos,
Well Mate	rial: (PVC)	Stainless Stee	el, Other:		Well I	nfo. On Tag:	Yes	No			- P
Well pad o	condition: Go	bod, Cracked	, Replace		Well Diam	eter (inches)	2	~			ne leav
Time	Depth to Water (MP)	Well volume Bailed	Low Flow Vol Purged	Temp.	Spec. Cond.	рН	ORP	DO	Turbidity	Water Quality Comments	Field Comments/Site Conditions, etc
min.	Feet	gallons	Liters	°C	MS/cm	Second Second Second	mV	mg/L	NTU		spec. cond - ms/cm
Initial	23,09		0.5	24.25	0.060	4.98	202	0,80	5.5		1
3	23.12	~	0.8	24.63	0.060	1.10	235	0,80			-
6	23,15	~	1.1		0.0 60				3.5		-
q							238	0.77	3.7		
	23.18		1.4	24.38	0,06D	4.74	239	0.76	3,6		
12	23.19		1,7		0.060	4.74	240	0.75	3.5		
15	23.21	-	2.0	24.28	0,060	4,75	240	0.74	3.8		-
							1				
					1						-
											1
Criteria		0.2-0.5 L/min		40 AN 10 10 10 10 10 10 10 10 10 10 10 10 10	+/- 3%	+/- 0.1	+/- 10 mV	+/- 0.3mg/L	+/- 10%	Marine Contractor and the second	1
		1" - 0.04, 1 5" - (5		8" - 2.6, 10" = 4	4.1				JL
water qua	lity paramete	ers Collected v	with: YSI 5	56, Hồnh	a U-52	Hanna turbid	ity; Othe	r:			
Parameter	s Stabilized	(circle): YES	S) NO	If no, wh	y?						
	Samples co			Analysis			Bottle Tu		Deser		
]	nerenany, olda daaliy ayiik		826			Bottle Type	- VOA	Preservativ		Sample date Sample Time
							10 mil	- 1017	HU	Shealy	4/26/15 1145
						<,	sha c	straw	Samp	le solleitin.	

Date:	426	116	_	Time:	10	45				NA	Num 10
Apex Pers	onnel:	KS	chuar	2			-			Monitor Well Numbe Purpose of Sampling Even	
Location (Site/Facility		Omr	ni Soun	re						
Circle]									weather/reing	SUNNUL 750P
Measuring	Point (MP):	top of casing	, top of groi	und	Low Flow	purge rate:	100	mL/mir	ı	Well Type: surface completion.	phouse and a
Depth to F	roduct (MP)			_	Well (Cover Bolte	Yes	No		Well Screen Length: 5, (10,) 15,	and grade
Depth to V	Vater (MP):	16.06)		Well C	ap Condition:	Good	Replaced		Pump Intake depth below water (N	0.0
Total Dept	h of Well (M	P): 35	(0.1')		Well	Cap Locked:	Yes, No.	Replaced		24 C-10 C-30	
Water Col	umn thickne	ss (ft): 18	14	-	Well Ta	g Present:	Yes (No		Purging/Sampling Device: Bailer, OTHER:	Peristalitid, Monsoon, Grundtos;
Well Mate	ial: (PVC,)	Stainless Stee	I, Other:	-	Well	Info. On Tag:		No		· ·	
11		ood,)Cracked			Well Diam	eter (inches)	7				todor
		2								Sample Color:	<u> </u>
Time	Depth to Water	Well volume	Low Flow Vol	Tomo	Spec.		0.5.5				Field Comments/Site Conditions, etc.:
	(MP)	Bailed	Purged	Temp.	Cond.	рН	ORP	DO	Turbidity	Water Quality Comments	Spec Courd - mS/cm
min.	Feet	gallons	Liters	C. C. C.	ys/cm	Margary Park	mV	mg/L	NTU 125		Spec. Cond mS/cm
Initial	17.00	-	05	23.77	.050	5.17	116	3.58	0.6		_
3	17.02		0.8	2367	100	1					-
C C			0.0		1001	5.14	121	3.53	05		_
6	17.02		1	23.34	120.	5.13	126	3.49	0.7		
9	17.02		1.4	23.4B	,051	5.08	134	3.41	0.4		-
D	17.02	No. of Concession	1.7	23.48	.051	5.16	132	342	0.4		-
15	17.02	-	20	23.00	5	5.14	134	3.42			-
	1,0-		60	61.00		0.11	137	1.92	0.4		-
											-
											-
											-
0			Contraction of the second	and the second second second							
Criteria		0.2-0.5 L/min		3" = 0.38 A" -	+/- 3%	+/- 0.1	+/- 10 mV	+/- 0.3mg/L	+/- 10%		
		ers Collected						Sida	Struw	withod used for	VUC.
		\bigcap		Jo, Horib	a U-52,	Hanna turbidi	ty; Other	r:	-1.0		DUP-7
Parameter	s Stabilized	(circle): YES	S) NO	If no, why	/?						DVI Z INIC
	Samples co	ollected		Analysis			Bottle Type	3	Preservative	e lob	4B-1 1045
	. 3			8200		11					Sample date Sample Time
	\bigcirc			1000		4	OMLVI	14	HC	Shealy	4/26/16 /110
										J	

Date:	-412	5/16		Time:	179	50					N1110 10
Apex Pers		K.S	dura	NZTI	Fishe	5	-			Monitor Well Number	
Location (Site/Facility I		omi	i Soi	re		-			Purpose of Sampling Event	MnWal
Circle	J									weather/Temp	SMMY/7072
11		top of casing	, top of grou	und	Low Flow J	in the second seco	-10	mL/mir	n	Well Type surface completion	above grade
	Product (MP)			-	Well	Cover Bolted	Yes	No		Well Screen Length: 5, (10,)15,	
Depth to V	Vater (MP):	15.2	-5	-1	Well C	ap Condition	Good	Replaced		Pump Intake depth below water (M	
11	h of Well (M		(0.1')	-0	Well (Cap Locked	Yes, No,	Replaced		Purging/Sampling Device: Bailer,	
Water Col	umn thickne	ss (ft): 19.	75	2	Well Ta	g Present:	Yes (NO		OTHER:	(Peristaltic, Monsoon, Grundfos,
Well Mate	rial: (PVC,	stainless Stee	I, Other:		Well I	nfo. On Tag:	Yes	No			
Well pad c	condition G	ood, Cracked	, Replace		Well Diam	eter (inches)	2			Noticeable Odor: None Sample Color: Clear	
	Depth to	Well volume	Low Flow	I	6	T	[I	1		
Time	Water (MP)	Bailed	Vol Purged	Temp.	Spec. Cond.	рН	ORP	DO	Turbidity	Water Quality Comments	Field Comments/Site Conditions, etc.
min.	Feet	gallons	Liters	°C	MS/cm	New March Park	mV	mall	NITH	water Quality Comments	Spec. Cond - m S/cm
Initial	15.39		0.5		\$4	5.48	1	mg/L 3.78	NTU		
3	15.50	<u> </u>	0.8	25.55		5.91	213	268	1.3		
6	15.50		1 1	25.57		1		1	2 4		-
9			1.1			5.84	217	256	1.1		
1	15-50		1.4	25-61		5.83	223	2.63	0.8		
12	15.50		1.7	25.62	.078	5.62	225	2.60	0.9		
											1
											-
											-
Criteria		0.2-0.5 L/min			+/- 3%	+/- 0.1	+/- 10 mV	+/- 0.3mg/L	+/- 10%		
		1" - 0 04, 1.5" - (0.66.6" = 1.5	, 8" - 2.6, 10" = 4	.1		•		
Water qua	lity paramete	ers Collected v	with: YSI 5	56, (Horib	a U-52,	Hanna turbidi	ty; Othe	r: Sodo	LStra	w method used	for voc
Parameter	s Stabilized	(circle): YES	NO	If no, why	1?						DUP-1
	Samples co	ollected		Analysis			Bottle Type	2	Preservativ	e Lab	Sample date Sample Time
	3		X	3260		1	Mp. 1	m	10 - CT2	\cap	11
	\bigcirc		(Jacob		7	Oml	WH	HCI	Shealy 2	125/16 1815
										0	

Age Personal K_SUMUCE 2_TFISCUL- Purpos 01 Symplify Feed US Construction (Sing Seed US) Alex Personal UMM 1_SUUTE UMM 1_SUUTE Weather/Temp US 147 Alex Personal UMM 1_SUUTE UMM 1_SUUTE Weather/Temp US 147 Alex Personal UMM 1_SUUTE UMM 1_SUUTE Weather/Temp US 147 Alex Personal UMM 1_SUUTE UMM 1_SUUTE Weather/Temp US 147 Alex Personal UMM 1_SUUTE UM 1_SUUTE Weather/Temp US 157-35 Alex Poly Parts State Column Immores (Ith 12-12 UM 1_SUP resonance VIII 25-35 Weat Column Immores (Ith 12-12 UM 1_SUP resonance VIII SUP resonance VIII SUP resonance VIIII SUP resonance VIIIII SUP resonance VIIIII SUP resonance VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Date:	425	16.		Time:	164	5					
Location (Stell-Sachty Name): UMM SQUTCL Weather Temp: Under Temp: Application Version (MP) top of ground Low Flow parge rate: 100 miLhrin Weit Science Length: above pract Depth to Product (MP) 10.2.2 Use Flow parge rate: 100 miLhrin Weit Cover Boled: Weit Science Length: above pract 25-35 Depth to Mark (MP) 10.2.2 Use Cover Boled: No No Shick Vos Weit Science Length: above pract 25-35 Purp instance depth boled: Mel Cap Locake: Temp Kashtele depth boled: Weit Science Length: above pract Bale Purp installe depth boled: Weit Science Length: above pract Weit Maren: Purp installe: Weit Cap Locake: Tem Kashtele depth boled: Weit Science Length: above pract Bale Purp installe depth boled: Weit Science Science Length: above pract Bale Purp installe: Weit Science Length: above pract Bale Purp installe: Weit Science Length: above pract Bale Purp installe: Monsouri Can above pract Bale Bale Bale Bale Bale Bale </td <td>11</td> <td>11 /</td> <td>K·So</td> <td>hwar</td> <td>Z,TI</td> <td>Fisd</td> <td>Leg-</td> <td></td> <td></td> <td></td> <td>Monitor Well Number</td> <td>_MW-14</td>	11	11 /	K·So	hwar	Z,TI	Fisd	Leg-				Monitor Well Number	_MW-14
Citch Interminent Interminent <th< td=""><td>Location (S</td><td>Site/Facility N</td><td>Name):</td><td>Omn</td><td>180110</td><td>10</td><td></td><td><u>.</u></td><td></td><td></td><td>Purpose of Sampling Event</td><td>Imual</td></th<>	Location (S	Site/Facility N	Name):	Omn	180110	10		<u>.</u>			Purpose of Sampling Event	Imual
Depth to Product (MP) $1 0 \cdot 23$ $10 \cdot 25$ $10 \cdot 25$ $10 \cdot 25$ $35 \cdot 25$ 3	Circle]									Weather/Temp	sunny Boat
Depth to Product (MP) 0.23 Well Cover Bollet: Yes No. Shick VS Well Soven Length: S (10) 15, 20 kult 25-35 Depth to Water (MP) 35 (0.17) Well Cap Condition Good Replaced Well Soven Length: S (10) 15, 20 kult 25-35 Well Cap Condition Good Replaced Well Cap Condition Good Replaced Purging/Simpling Device: Baller (MP) 27-35 Well Tag Present: Yes (10) NGCL OTHER: Well Tag Present: Yes (10) NGCL Well Tag Present: Yes (10) NGCL Notes Simple Color: Clader Time Merry Network Vol Temp. Simple Color: Clader Simple Color: Simple	Measuring	Point (MP):	top of casing	, top of gro	und				2mL/mir	1	Well Type: surface completion	above grade
Depth to Water (MP):	Depth to P	roduct (MP)	1		- 22	Well (Cover Bolted:	Yes	No Stick	evo	A	
Total Depth of Well (MP) 45 (0.1) Well Cap Locked: Ter KN, Replaced Parging/Sampling Device: Bater, Pensiting: Monsoon, Guindon: Water Column Dischers (IV): U2-17 Well Cap Locked: Ter KN, Replaced Other K Well Material Five Standess Steel, Other: Well Tag Present: Yes Well View Mell (Molessite) Other K Well Material Five Standess Steel, Other: Well Diameter (Inches) Other K Other K Well Diameter (Inches) Other K Well Diameter (Inches) Sample Color: LLCar Time Well volume Termp Spec. PH ORP DO Turbidity Water Quality Comments Spec. Cond. Fred Loamments/Site Candidons. etc. Time Well volume Termp Spec. PH ORP DO Turbidity Water Quality Comments Spec. Cond. Fred Loamments/Site Candidons. etc. Time Well volume Termp Spec. PH ORP DO Turbidity Water Quality Comments Spec. Cond. Fred Loamments/Site Candidons. etc. Spec. Cond. Fred Loamments/Site Candidons. Spec. Cond. Fred Loamments/Site Candidons. Spec. Cond.	Depth to V	Vater (MP):	16.23	3	_	Well C	ap Condition	Good)	Replaced	ned		
Water Column thickness fit: 18. + 7 + 19. + 7 + 19. + 7 + 19.	Total Dept	h of Well (M	P): 35	(0.1')		Well	Cap Locked:	Yes, No.	Replaced			
Well Material Ever Standers Steel, Other: Well Info. On Tag: Yes ID	Water Coli	umn thickne	ss (ft): 19 .	77	-	Well Ta	g Present:	Yes	(No) wei	l.		Penstalic, Monsoon, Grundfos;
Well pad condition (Good, Cracked, Replace) Well Diameter (inches) Sample Color: Cill ar Time Depth to Well volume Well volume Temp Spec. pH ORP 00 Turbidity Water Quality Comments Field Comments/Site Candidations. etc. Initial 16.40 0.55 0.55 0.50 0.18 141 3.25 35.9 Sumple Color: Calculations. etc. Sumple 1 10 0.7 0.75 0.55 0.723 0.97 3.35.9 Calculations Sumple Calculations etc. Sumple Calculations of a single well 9 16.50 - 1.4 26.57 7.92 5.93 10.2 0.57 31.6 Dvrg.volume i Dvrg.volume i B.7723 5.94 10.3 0.55 29.9 i i B.772 3.94 10.3 0.55 29.9 i i B.772 3.94 0.172 i B.772 3.94 0.95 29.9 i i B.772 3.94 0.95 29.9 i i B.772 3.16<	Well Mater	ia: PVC,	Stainless Stee	I, Other:		Well	Info. On Tag:	Yes (
Time Depth to Water Well volume Bailed Low Flow Purge Vol Temp. Spec. Cond. pH ORP DO Turbidity Water Quality Comments Field Comments/Site Candinous, etc. SPEC. Cond. = ms/cm Intai 16.40 0.5 30.55 630 5.18 141 3.25 35.9 Sumple Calculation Sumple 3 16.50 - 0.6 28.45 70.3 6.01 9.7 33.3 0.9 Calculation of a single well 9 16.50 - 1.4 28.59 720 5.93 1.02 0.57 31.6 0.4 0.4 0.5 0.5 20.17 1.6 0.5 29.2 1.8 0.7 2.8 1.9 0.17 1.8 1.7 0.17 1.8 1.7 3.16 0.5 2.9 1.8 1.8 7.7 0.17 3.16 1.8 1.8 7.7 0.17 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 <	Well pad c	ondition Go	ood, Cracked	, Replace		Well Diam	eter (inches)	2 `			The second chairs	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				T			· · · · · ·	r				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Time			and a second state of the	Temp	Spec.	nH	OPP	00	Turkian		Field Comments/Site Conditions, etc.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Bailed	-Crowdartow	i onip.	Cond.		ORF		Turbiality	Water Quality Comments	Spec. Cond ms/cm
$\frac{11}{3} \frac{16}{10} \frac{10}{10} \frac{10}$	min.	Feet	gallons	Liters	°C	MAS/cm		mV	mg/L	NTU		Sample
$\frac{3}{6} + 50 - 0.8 + 28.45, 703 + 6.01 + 99 + 0.97 + 33.3 - 0.01 + 33.1 - 0.01 + 0.0$	Initial	16.40	-	0.5	30.55	630	5.18	141	3.35	359		sumpe
$\frac{15}{15} \frac{16}{16} \frac{49}{49} \frac{20}{20} \frac{26}{26} \frac{40}{2724} \frac{3.41}{5.94} \frac{103}{10.3} \frac{0.57}{0.57} \frac{28.9}{28.9} = 18.77 \times 0.17 = 3.19 \text{ gal}$ $\frac{18.77 \times 0.17}{3.19 \text{ gal}} = \frac{18.77 \times 0.17}{3.19 \text{ gal}} = 18.77$.3	16.50	~									Calculation
$\frac{15}{15} \frac{16}{16} \frac{49}{49} \frac{20}{20} \frac{26}{26} \frac{40}{2724} \frac{3.41}{5.94} \frac{103}{10.3} \frac{0.57}{0.57} \frac{28.9}{28.9} = 18.77 \times 0.17 = 3.19 \text{ gal}$ $\frac{18.77 \times 0.17}{3.19 \text{ gal}} = \frac{18.77 \times 0.17}{3.19 \text{ gal}} = 18.77$	6	1'	~	1.1								- of a single well
$\frac{15}{15} \frac{16}{16} \frac{49}{49} \frac{20}{20} \frac{26}{26} \frac{40}{2724} \frac{3.41}{5.94} \frac{103}{10.3} \frac{0.57}{0.57} \frac{28.9}{28.9} = 18.77 \times 0.17 = 3.19 \text{ gal}$ $\frac{18.77 \times 0.17}{3.19 \text{ gal}} = \frac{18.77 \times 0.17}{3.19 \text{ gal}} = 18.77$	a	And and the party of the local division of t		1 /1								
$\frac{15}{15} \frac{16}{16} \frac{49}{49} \frac{20}{20} \frac{26}{26} \frac{40}{2724} \frac{3.41}{5.94} \frac{103}{10.3} \frac{0.57}{0.57} \frac{28.9}{28.9} = 18.77 \times 0.17 = 3.19 \text{ gal}$ $\frac{18.77 \times 0.17}{3.19 \text{ gal}} = \frac{18.77 \times 0.17}{3.19 \text{ gal}} = 18.77$	1									Concession and an and and an and a		purge volume .
3 19 Criteria 0.33° 0.20.5 L/min	1	1		1.7				103	0.56			1277-017-
Samples collected Analysis Bottle Type Preservative Lab Sample date Sample Time	15	16.49		2.0	26.40	724	5.96	103	0.57	28.9		16.77 0.17-
Criteria 0.33' 0.2-0.5 L/min +/-3% +/-0.1 +/-10 mV +/-0.3mg/L +/-10% Proge Volume Conversions 1" - 0.04, 15" - 0.04 (2" - 0.1) 3" - 0.38, 4" - 0.01 +/-10 mV +/-0.3mg/L +/-10%												2 19 cal
Purge Volume Conversions 1" = 0.04, 1.5" = 0.09, 2" = 0.17, 3" = 0.38, 4" = 0.66, 6" = 1.5, 8" = 2.6, 10" = 4.1 Water quality parameters Collected with: YSI 556, Horiba U-52, Parameters Stabilized (circle): YES NO If no, why? Samples collected Analysis Bottle Type Preservative Lab Sample date Sample date Bottle Type Preservative Lab Sample date Sample Time							1					
Purge Volume Conversions 1" = 0.04, 1.5" = 0.09, 2" = 0.17, 3" = 0.38, 4" = 0.66, 6" = 1.5, 8" = 2.6, 10" = 4.1 Water quality parameters Collected with: YSI 556, Horiba U-52, Parameters Stabilized (circle): YES NO If no, why? Samples collected Analysis Bottle Type Preservative Lab Sample date Sample date Bottle Type Preservative Lab Sample date Sample Time												_
Purge Volume Conversions 1" = 0.04, 1.5" = 0.09, 2" = 0.17, 3" = 0.38, 4" = 0.66, 6" = 1.5, 8" = 2.6, 10" = 4.1 Water quality parameters Collected with: YSI 556, Horiba U-52, Parameters Stabilized (circle): YES NO If no, why? Samples collected Analysis Bottle Type Preservative Lab Sample date Sample date Bottle Type Preservative Lab Sample date Sample Time									<u> </u>			
Purge Volume Conversions 1" = 0.04, 1.5" = 0.09 (2" = 0.1) (3" = 0.38, 4" = 0.66, 6" = 1.5, 8" = 2.6, 10" = 4.1 Water quality parameters Collected with: YSI 556, Horiba U-52, Hanna turbidity; Other: Sodius Straw Method Used for VUC Parameters Stabilized (circle): YES NO If no, why? Bottle Type Preservative Lab Sample date Sample date Sample Time 3 BbD ADML VON HCL Should used for Use of the time												
Purge Volume Conversions 1" = 0.04, 1.5" = 0.09, 2" = 0.17, 3" = 0.38, 4" = 0.66, 6" = 1.5, 8" = 2.6, 10" = 4.1 Water quality parameters Collected with: YSI 556, Horiba U-52, Parameters Stabilized (circle): YES NO If no, why? Samples collected Analysis Bottle Type Preservative Lab Sample date Sample date Bottle Type Preservative Lab Sample date Sample Time												
Purge Volume Conversions 1" = 0.04, 1.5" = 0.09, 2" = 0.17, 3" = 0.38, 4" = 0.66, 6" = 1.5, 8" = 2.6, 10" = 4.1 Water quality parameters Collected with: YSI 556, Horiba U-52, Parameters Stabilized (circle): YES NO If no, why? Samples collected Analysis Bottle Type Preservative Lab Sample date Sample date Bottle Type Preservative Lab Sample date Sample Time												-
Purge Volume Conversions 1" = 0.04, 1.5" = 0.09, 2" = 0.17, 3" = 0.38, 4" = 0.66, 6" = 1.5, 8" = 2.6, 10" = 4.1 Water quality parameters Collected with: YSI 556, Horiba U-52, Parameters Stabilized (circle): YES NO If no, why? Samples collected Analysis Bottle Type Preservative Lab Sample date Sample date Bottle Type Preservative Lab Sample date Sample Time												-
Purge Volume Conversions 1" = 0.04, 1.5" = 0.09, 2" = 0.17, 3" = 0.38, 4" = 0.66, 6" = 1.5, 8" = 2.6, 10" = 4.1 Water quality parameters Collected with: YSI 556, Horiba U-52, Parameters Stabilized (circle): YES NO If no, why? Samples collected Analysis Bottle Type Preservative Lab Sample date Sample date Bottle Type Preservative Lab Sample date Sample Time	Criteria	0.33'	0 2-0 5 1 /min	19.00 Land	ARE MARY	+/_ 3%	L 1 0 1	4/ 10 m)/	1/ 0.2	1 4000		
Parameters Stabilized (circle): YES NO If no, why? <u>Samples collected</u> Analysis Bottle Type Preservative Lab Sample date Sample Time 3 RDD ADML VOP HCL Shord y Alor The) 3" = 0.38, 4" =	U.66, 6" = 1 5	0, 8" = 2 6, 10" = 4	1	1 +/- 0.3mg/L	+/- 10%	A DATA PARA PARA PARA PARA PARA	
Parameters Stabilized (circle): YES NO If no, why? <u>Samples collected</u> Analysis Bottle Type Preservative Lab Sample date Sample Time 3 RDD ADML VOP HCL Shord y Alor The									r: SDC	da stra	aw method use	ed for VUC
3 Rabo Almerica Hel Sharden dia Sample date	Parameter	s Stabilized	(circle):	S) NO	If no, wh	<u></u>						
3 RhD 40mLvon Hci Shordy dia-		Samples co	ollected		Analysis			Bottle Type	e	Preservativ	e lab	Soundle data
000 10 10 10 10 0 4/25/16 1710		.2			0)	Ai			100000 - 100000000000000000000000000000		Sample Time
		\bigcirc			WUL	/	10	m v		illi	Sheard	4/25/16 1710

APPENDIX B

LABORATORY ANALYTICAL REPORT AND CHAIN OF CUSTODY

Report of Analysis

Apex Companies, LLC

10610 Metromont Parkway Suite 206 Charlotte, NC 28269 Attention: Grant Watkins

Project Name: OmniSource

Project Number:510393-002

Lot Number: RD27083 Date Completed:05/04/2016

Lucas Odom

Project Manager

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

The following non-paginated documents are considered part of this report: Chain of Custody Record and Sample Receipt Checklist.

SHEALY ENVIRONMENTAL SERVICES, INC.

SC DHEC No: 32010

NELAC No: E87653

NC DENR No: 329

NC Field Parameters No: 5639

Case Narrative

Apex Companies, LLC

Lot Number: RD27083

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

VOCs by GC/MS

The Method Blank associated with batch 12245 yielded a "J" value detection for 1,2,3-Trichlorobenzene. No corrective action is required as this is an estimated value recovered below the PQL.

SHEALY ENVIRONMENTAL SERVICES, INC.

Sample Summary Apex Companies, LLC Lot Number: RD27083

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	MW-1	Aqueous	04/26/2016 1020	04/27/2016
002	MW-1D	Aqueous	04/26/2016 1200	04/27/2016
003	MW-3A	Aqueous	04/26/2016 1050	04/27/2016
004	MW-4A	Aqueous	04/26/2016 0940	04/27/2016
005	MW-6	Aqueous	04/26/2016 0845	04/27/2016
006	MW-7A	Aqueous	04/25/2016 1745	04/27/2016
007	MW-8A	Aqueous	04/26/2016 0910	04/27/2016
008	MW-9A	Aqueous	04/26/2016 0950	04/27/2016
009	MW-10	Aqueous	04/25/2016 1515	04/27/2016
010	MW-11	Aqueous	04/26/2016 1145	04/27/2016
011	MW-12	Aqueous	04/26/2016 1110	04/27/2016
012	MW-13	Aqueous	04/26/2016 1815	04/27/2016
013	MW-14	Aqueous	04/25/2016 1710	04/27/2016
014	DUP-1	Aqueous	04/25/2016	04/27/2016
015	DUP-2	Aqueous	04/26/2016	04/27/2016
016	FB-1	Aqueous	04/26/2016 1045	04/27/2016
017	TRIP BLANK	Aqueous	04/26/2016	04/27/2016

(17 samples)

SHEALY ENVIRONMENTAL SERVICES, INC.

Executive Summary Apex Companies, LLC Lot Number: RD27083

	Matrix	Parameter	Method	Result	Q	Units	Page
MW-1	Aqueous	Acetone	8260B	1.6	J	ug/L	6
MW-1	Aqueous	Benzene	8260B	1.8		ug/L	6
MW-1	Aqueous	Chloroform	8260B	13		ug/L	6
MW-1	Aqueous	Chloromethane (Methyl	8260B	0.33	J	ug/L	6
MW-1	Aqueous	Cyclohexane	8260B	1.3		ug/L	6
MW-1	Aqueous	1,1-Dichloroethane	8260B	1.1		ug/L	6
MW-1	Aqueous	cis-1,2-Dichloroethene	8260B	3.5		ug/L	6
MW-1	Aqueous	1,1-Dichloroethene	8260B	1.9		ug/L	6
MW-1	Aqueous	Isopropylbenzene	8260B	0.49	J	ug/L	6
MW-1	Aqueous	Methylcyclohexane	8260B	0.89	J	ug/L	6
MW-1	Aqueous	Methylene chloride	8260B	4.3		ug/L	6
MW-1	Aqueous	Tetrachloroethene	8260B	4.2		ug/L	6
MW-1	Aqueous	Trichloroethene	8260B	3.1		ug/L	7
MW-1	Aqueous	Vinyl chloride	8260B	0.59	J	ug/L	7
MW-1	Aqueous	Xylenes (total)	8260B	0.49	J	ug/L	7
MW-1D	Aqueous	Tetrachloroethene	8260B	2.2		ug/L	8
MW-1D	Aqueous	1,1,2-Trichloro-1,2,2-	8260B	7.2		ug/L	9
MW-1D	Aqueous	Trichloroethene	8260B	22		ug/L	9
MW-3A	Aqueous	Benzene	8260B	8.2		ug/L	10
MW-3A	Aqueous	Chloromethane (Methyl	8260B	0.19	J	ug/L	10
MW-3A	Aqueous	Cyclohexane	8260B	0.90	J	ug/L	10
MW-3A	Aqueous	cis-1,2-Dichloroethene	8260B	0.97	J	ug/L	10
MW-3A	Aqueous	Methylcyclohexane	8260B	0.45	J	ug/L	10
MW-3A	Aqueous	Trichloroethene	8260B	3.9		ug/L	11
MW-4A	Aqueous	Trichloroethene	8260B	0.35	J	ug/L	13
MW-7A	Aqueous	1,1-Dichloroethene	8260B	0.63	J	ug/L	16
MW-8A	Aqueous	Acetone	8260B	5.3	J	ug/L	18
MW-8A	Aqueous	Chloromethane (Methyl	8260B	0.41	J	ug/L	18
MW-8A	Aqueous	1,1-Dichloroethene	8260B	0.42	J	ug/L	18
MW-8A	Aqueous	Vinyl chloride	8260B	0.97	J	ug/L	19
MW-10	Aqueous	Trichlorofluoromethane	8260B	1.2		ug/L	23
MW-11	Aqueous	Benzene	8260B	9.2		ug/L	24
MW-11	Aqueous	Chloroform	8260B	1.7	J	•	24
MW-11	Aqueous	cis-1,2-Dichloroethene	8260B	7.5		-	24
MW-11	•		8260B	9.0		-	24
	•					•	24
	•			760		0	25
					J	•	26
	•				-	•	26
	•				J	•	20
	•					•	27
						•	28
						•	28
	•					•	30
MW-14	Aqueous		8260B	0.64	J	ug/L	30
	MW-1 MW-10 MW-1D MW-3A MW-4A MW-8A MW-8A MW-8A MW-10 MW-11 MW-11 MW-11	MW-11AqueousMW-11AqueousMW-11AqueousMW-11AqueousMW-11AqueousMW-11AqueousMW-11AqueousMW-11AqueousMW-11AqueousMW-11AqueousMW-11AqueousMW-11AqueousMW-11AqueousMW-11AqueousMW-11AqueousMW-11AqueousMW-12AqueousMW-3AAqueousMW-11AqueousMW-12AqueousMW-11AqueousMW-11AqueousMW-12AqueousMW-12AqueousMW-13AqueousMW-13Aqueous	MW-1AqueousBenzeneMW-1AqueousChloroformMW-1AqueousChloromethane (MethylMW-1AqueousSyclohexaneMW-1Aqueous1,1-DichloroethaneMW-1AqueoussopropylbenzeneMW-1AqueoussopropylbenzeneMW-1AqueoussopropylbenzeneMW-1AqueousMethylcyclohexaneMW-1AqueousMethylcyclohexaneMW-1AqueousTichloroetheneMW-1AqueousTichloroetheneMW-1AqueousTichloroetheneMW-1AqueousTichloroetheneMW-1AqueousTichloroetheneMW-1AqueousTichloroetheneMW-1AqueousTichloroetheneMW-1AqueousTichloroetheneMW-1AqueousTichloroetheneMW-1AqueousTichloroetheneMW-1AqueousStrichloroetheneMW-1AqueousStrichloroetheneMW-1AqueousChloromethane (MethylMW-3AAqueousCichloroetheneMW-3AAqueousTichloroetheneMW-3AAqueousTichloroetheneMW-3AAqueousStrichloroetheneMW-3AAqueousChloromethaneMW-3AAqueousTichloroetheneMW-3AAqueousTichloroetheneMW-3AAqueousStrichloroetheneMW-3AAqueousStrichloroetheneMW-3AAqueousTichloroethene <td>MW-1AqueousBenzene8260BMW-1AqueousChloroform8260BMW-1AqueousChloromethane (Methyl8260BMW-1AqueousCyclohexane8260BMW-1AqueousCyclohexane8260BMW-1Aqueous1.1-Dichloroethane8260BMW-1Aqueous1.1-Dichloroethane8260BMW-1Aqueous1.1-Dichloroethane8260BMW-1AqueousMethylcyclohexane8260BMW-1AqueousMethylcyclohexane8260BMW-1AqueousMethylene chloride8260BMW-1AqueousTichloroethene8260BMW-1AqueousTichloroethene8260BMW-1AqueousTichloroethene8260BMW-1AqueousTichloroethene8260BMW-1AqueousTichloroethene8260BMW-1AqueousTichloroethene8260BMW-1DAqueousTichloroethene8260BMW-1DAqueousTichloroethene8260BMW-3AAqueousChloromethane (Methyl8260BMW-3AAqueousTichloroethene8260BMW-3AAqueousTichloroethene8260BMW-3AAqueousTichloroethene8260BMW-3AAqueousTichloroethene8260BMW-3AAqueousTichloroethene8260BMW-3AAqueousTichloroethene8260BMW-3AAqueousTichloroethene<td< td=""><td>NW-11AqueousBenzene8260B1.8NW-11AqueousChloroform8260B13NW-11AqueousCyclohexane8260B1.3NW-11Aqueous1.1-Dichloroethane8260B1.3NW-11Aqueous1.1-Dichloroethane8260B3.5NW-11Aqueous1.1-Dichloroethane8260B0.89NW-11Aqueous1.1-Dichloroethane8260B0.49NW-11Aqueous1.1-Dichloroethane8260B0.49NW-11AqueousMethylcyclohexane8260B0.49NW-11AqueousTetrachloroethane8260B0.43NW-11AqueousTetrachloroethane8260B0.49NW-11AqueousTetrachloroethane8260B0.59NW-11AqueousTetrachloroethane8260B0.59NW-11AqueousTetrachloroethane8260B0.22NW-10AqueousTetrachloroethane8260B0.22NW-10AqueousTetrachloroethane8260B0.19NW-3AAqueousTetrachloroethane8260B0.19NW-3AAqueousCyclohexane8260B0.19NW-3AAqueousCyclohexane8260B0.31NW-3AAqueousStalloheroethane8260B0.35NW-3AAqueousCyclohexane8260B0.35NW-3AAqueousStalloheroethane8260B0.35NW-3AAqueousTethloroethane<</td><td>NW-1AqueousBenzene\$260B1.8NW-1AqueousChlorofrm\$260B1.3NW-1AqueousChloroterhane (Methyl\$260B1.3NW-1AqueousChloroterhane\$260B1.1NW-1Aqueous1.1-Dichloroethane\$260B3.5NW-1Aqueousis1-2-Dichloroethane\$260B0.49JNW-1Aqueousis1-2-Dichloroethane\$260B0.49JNW-1AqueousNethylcyclohexane\$260B0.49JNW-1AqueousMethylcyclohexane\$260B0.49JNW-1AqueousTetrachloroethane\$260B4.3NW-1AqueousTetrachloroethane\$260B3.1NW-1AqueousTetrachloroethane\$260B3.1NW-1AqueousTetrachloroethane\$260B3.1NW-1AqueousTetrachloroethane\$260B3.1NW-1AqueousTetrachloroethane\$260B3.1NW-1AqueousTetrachloroethane\$260B3.1NW-1AqueousTetrachloroethane\$260B3.2NW-1AqueousTetrachloroethane\$260B3.2NW-1AqueousTetrachloroethane\$260B3.9JNW-1AqueousStolhoroethane\$260B3.9JNW-3AAqueousTetrachloroethane\$260B3.9J<t< td=""><td>MW-11 Aqueous Benzene 8260B 1.8 ug/L MW-1 Aqueous Chloroform 8260B 1.3 ug/L MW-1 Aqueous Chloroform 8260B 0.3 J ug/L MW-1 Aqueous Cyclohexane 8260B 1.3 ug/L MW-1 Aqueous Cyclohexane 8260B 1.3 ug/L MW-1 Aqueous Cyclohexane 8260B 1.9 ug/L MW-1 Aqueous Stoporybanzene 8260B 0.49 J ug/L MW-1 Aqueous Methylexane 8260B 0.49 J ug/L MW-1 Aqueous Methylexane 8260B 0.49 J ug/L MW-1 Aqueous Trichoroethene 8260B 0.49 J ug/L MW-1 Aqueous Trichoroethene 8260B 0.49 J ug/L MW-1 Aqueous Trichoroethene 8260B 0.49 ug/L<</td></t<></td></td<></td>	MW-1AqueousBenzene8260BMW-1AqueousChloroform8260BMW-1AqueousChloromethane (Methyl8260BMW-1AqueousCyclohexane8260BMW-1AqueousCyclohexane8260BMW-1Aqueous1.1-Dichloroethane8260BMW-1Aqueous1.1-Dichloroethane8260BMW-1Aqueous1.1-Dichloroethane8260BMW-1AqueousMethylcyclohexane8260BMW-1AqueousMethylcyclohexane8260BMW-1AqueousMethylene chloride8260BMW-1AqueousTichloroethene8260BMW-1AqueousTichloroethene8260BMW-1AqueousTichloroethene8260BMW-1AqueousTichloroethene8260BMW-1AqueousTichloroethene8260BMW-1AqueousTichloroethene8260BMW-1DAqueousTichloroethene8260BMW-1DAqueousTichloroethene8260BMW-3AAqueousChloromethane (Methyl8260BMW-3AAqueousTichloroethene8260BMW-3AAqueousTichloroethene8260BMW-3AAqueousTichloroethene8260BMW-3AAqueousTichloroethene8260BMW-3AAqueousTichloroethene8260BMW-3AAqueousTichloroethene8260BMW-3AAqueousTichloroethene <td< td=""><td>NW-11AqueousBenzene8260B1.8NW-11AqueousChloroform8260B13NW-11AqueousCyclohexane8260B1.3NW-11Aqueous1.1-Dichloroethane8260B1.3NW-11Aqueous1.1-Dichloroethane8260B3.5NW-11Aqueous1.1-Dichloroethane8260B0.89NW-11Aqueous1.1-Dichloroethane8260B0.49NW-11Aqueous1.1-Dichloroethane8260B0.49NW-11AqueousMethylcyclohexane8260B0.49NW-11AqueousTetrachloroethane8260B0.43NW-11AqueousTetrachloroethane8260B0.49NW-11AqueousTetrachloroethane8260B0.59NW-11AqueousTetrachloroethane8260B0.59NW-11AqueousTetrachloroethane8260B0.22NW-10AqueousTetrachloroethane8260B0.22NW-10AqueousTetrachloroethane8260B0.19NW-3AAqueousTetrachloroethane8260B0.19NW-3AAqueousCyclohexane8260B0.19NW-3AAqueousCyclohexane8260B0.31NW-3AAqueousStalloheroethane8260B0.35NW-3AAqueousCyclohexane8260B0.35NW-3AAqueousStalloheroethane8260B0.35NW-3AAqueousTethloroethane<</td><td>NW-1AqueousBenzene\$260B1.8NW-1AqueousChlorofrm\$260B1.3NW-1AqueousChloroterhane (Methyl\$260B1.3NW-1AqueousChloroterhane\$260B1.1NW-1Aqueous1.1-Dichloroethane\$260B3.5NW-1Aqueousis1-2-Dichloroethane\$260B0.49JNW-1Aqueousis1-2-Dichloroethane\$260B0.49JNW-1AqueousNethylcyclohexane\$260B0.49JNW-1AqueousMethylcyclohexane\$260B0.49JNW-1AqueousTetrachloroethane\$260B4.3NW-1AqueousTetrachloroethane\$260B3.1NW-1AqueousTetrachloroethane\$260B3.1NW-1AqueousTetrachloroethane\$260B3.1NW-1AqueousTetrachloroethane\$260B3.1NW-1AqueousTetrachloroethane\$260B3.1NW-1AqueousTetrachloroethane\$260B3.1NW-1AqueousTetrachloroethane\$260B3.2NW-1AqueousTetrachloroethane\$260B3.2NW-1AqueousTetrachloroethane\$260B3.9JNW-1AqueousStolhoroethane\$260B3.9JNW-3AAqueousTetrachloroethane\$260B3.9J<t< td=""><td>MW-11 Aqueous Benzene 8260B 1.8 ug/L MW-1 Aqueous Chloroform 8260B 1.3 ug/L MW-1 Aqueous Chloroform 8260B 0.3 J ug/L MW-1 Aqueous Cyclohexane 8260B 1.3 ug/L MW-1 Aqueous Cyclohexane 8260B 1.3 ug/L MW-1 Aqueous Cyclohexane 8260B 1.9 ug/L MW-1 Aqueous Stoporybanzene 8260B 0.49 J ug/L MW-1 Aqueous Methylexane 8260B 0.49 J ug/L MW-1 Aqueous Methylexane 8260B 0.49 J ug/L MW-1 Aqueous Trichoroethene 8260B 0.49 J ug/L MW-1 Aqueous Trichoroethene 8260B 0.49 J ug/L MW-1 Aqueous Trichoroethene 8260B 0.49 ug/L<</td></t<></td></td<>	NW-11AqueousBenzene8260B1.8NW-11AqueousChloroform8260B13NW-11AqueousCyclohexane8260B1.3NW-11Aqueous1.1-Dichloroethane8260B1.3NW-11Aqueous1.1-Dichloroethane8260B3.5NW-11Aqueous1.1-Dichloroethane8260B0.89NW-11Aqueous1.1-Dichloroethane8260B0.49NW-11Aqueous1.1-Dichloroethane8260B0.49NW-11AqueousMethylcyclohexane8260B0.49NW-11AqueousTetrachloroethane8260B0.43NW-11AqueousTetrachloroethane8260B0.49NW-11AqueousTetrachloroethane8260B0.59NW-11AqueousTetrachloroethane8260B0.59NW-11AqueousTetrachloroethane8260B0.22NW-10AqueousTetrachloroethane8260B0.22NW-10AqueousTetrachloroethane8260B0.19NW-3AAqueousTetrachloroethane8260B0.19NW-3AAqueousCyclohexane8260B0.19NW-3AAqueousCyclohexane8260B0.31NW-3AAqueousStalloheroethane8260B0.35NW-3AAqueousCyclohexane8260B0.35NW-3AAqueousStalloheroethane8260B0.35NW-3AAqueousTethloroethane<	NW-1AqueousBenzene\$260B1.8NW-1AqueousChlorofrm\$260B1.3NW-1AqueousChloroterhane (Methyl\$260B1.3NW-1AqueousChloroterhane\$260B1.1NW-1Aqueous1.1-Dichloroethane\$260B3.5NW-1Aqueousis1-2-Dichloroethane\$260B0.49JNW-1Aqueousis1-2-Dichloroethane\$260B0.49JNW-1AqueousNethylcyclohexane\$260B0.49JNW-1AqueousMethylcyclohexane\$260B0.49JNW-1AqueousTetrachloroethane\$260B4.3NW-1AqueousTetrachloroethane\$260B3.1NW-1AqueousTetrachloroethane\$260B3.1NW-1AqueousTetrachloroethane\$260B3.1NW-1AqueousTetrachloroethane\$260B3.1NW-1AqueousTetrachloroethane\$260B3.1NW-1AqueousTetrachloroethane\$260B3.1NW-1AqueousTetrachloroethane\$260B3.2NW-1AqueousTetrachloroethane\$260B3.2NW-1AqueousTetrachloroethane\$260B3.9JNW-1AqueousStolhoroethane\$260B3.9JNW-3AAqueousTetrachloroethane\$260B3.9J <t< td=""><td>MW-11 Aqueous Benzene 8260B 1.8 ug/L MW-1 Aqueous Chloroform 8260B 1.3 ug/L MW-1 Aqueous Chloroform 8260B 0.3 J ug/L MW-1 Aqueous Cyclohexane 8260B 1.3 ug/L MW-1 Aqueous Cyclohexane 8260B 1.3 ug/L MW-1 Aqueous Cyclohexane 8260B 1.9 ug/L MW-1 Aqueous Stoporybanzene 8260B 0.49 J ug/L MW-1 Aqueous Methylexane 8260B 0.49 J ug/L MW-1 Aqueous Methylexane 8260B 0.49 J ug/L MW-1 Aqueous Trichoroethene 8260B 0.49 J ug/L MW-1 Aqueous Trichoroethene 8260B 0.49 J ug/L MW-1 Aqueous Trichoroethene 8260B 0.49 ug/L<</td></t<>	MW-11 Aqueous Benzene 8260B 1.8 ug/L MW-1 Aqueous Chloroform 8260B 1.3 ug/L MW-1 Aqueous Chloroform 8260B 0.3 J ug/L MW-1 Aqueous Cyclohexane 8260B 1.3 ug/L MW-1 Aqueous Cyclohexane 8260B 1.3 ug/L MW-1 Aqueous Cyclohexane 8260B 1.9 ug/L MW-1 Aqueous Stoporybanzene 8260B 0.49 J ug/L MW-1 Aqueous Methylexane 8260B 0.49 J ug/L MW-1 Aqueous Methylexane 8260B 0.49 J ug/L MW-1 Aqueous Trichoroethene 8260B 0.49 J ug/L MW-1 Aqueous Trichoroethene 8260B 0.49 J ug/L MW-1 Aqueous Trichoroethene 8260B 0.49 ug/L<

Executive Summary (Continued) Lot Number: RD27083

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
013	MW-14	Aqueous	1,1-Dichloroethene	8260B	0.44	J	ug/L	30
013	MW-14	Aqueous	Methyl tertiary butyl ether	8260B	1.0		ug/L	30
013	MW-14	Aqueous	4-Methyl-2-pentanone	8260B	0.58	J	ug/L	30
013	MW-14	Aqueous	Vinyl chloride	8260B	2.1		ug/L	31
014	DUP-1	Aqueous	1,1-Dichloroethane	8260B	0.25	J	ug/L	32
014	DUP-1	Aqueous	1,1-Dichloroethene	8260B	0.44	J	ug/L	32
015	DUP-2	Aqueous	1,1-Dichloroethene	8260B	14		ug/L	34
015	DUP-2	Aqueous	Trichloroethene	8260B	0.43	J	ug/L	35

(53 detections)

Description: MW-1

Date Sampled:04/26/2016 1020

Date Received: 04/27/2016

Laboratory ID: RD27083-001

Laboratory ID. RD27003-00	, ,
Matrix: Aqueous	
Matrix: Aqueous	

	Prep Method	Analytical Method				Prep	Date	Batch			
1	5030B	8260B	1	04/29/2	2016 1055 RAG			12119			
D				CAS	Analytical	Dessil	•	DOL	MD	11-11-	
	meter			nber	Method	Result		PQL	MDL	Units	Run
Aceto				64-1	8260B 8260B	1.6 1.8	J	20	1.6	ug/L	1
Benz				43-2 27-4	8260B	ND		1.0	0.21	ug/L	1
	odichloromethane			27-4 25-2	8260B	ND		1.0	0.23	ug/L	1
	oform			25-2 83-9	8260B	ND		1.0	0.35	ug/L	1
	iomethane (Methyl bromide)							2.0	0.19	ug/L	1
	tanone (MEK)			93-3	8260B	ND		10	1.8	ug/L	1
	on disulfide			15-0	8260B	ND		1.0	0.45	ug/L	1
	on tetrachloride			23-5	8260B	ND		1.0	0.31	ug/L	1
	robenzene		108-		8260B	ND		1.0	0.20	ug/L	1
	oethane			00-3	8260B	ND		2.0	0.28	ug/L	1
	roform			66-3	8260B	13		1.0	0.21	ug/L	1
	romethane (Methyl chlorid	e)		87-3	8260B	0.33	J	1.0	0.19	ug/L	1
-	ohexane		110-		8260B	1.3		1.0	0.30	ug/L	1
	Dibromo-3-chloropropane (DE	BCP)		12-8	8260B	ND		1.0	0.57	ug/L	1
	mochloromethane		124-		8260B	ND		1.0	0.23	ug/L	1
	ibromoethane (EDB)		106-	93-4	8260B	ND		1.0	0.17	ug/L	1
1,4-D	Dichlorobenzene		106-	46-7	8260B	ND		1.0	0.19	ug/L	1
1,3-D	Dichlorobenzene		541-	73-1	8260B	ND		1.0	0.19	ug/L	1
1,2-D	Dichlorobenzene		95-	50-1	8260B	ND		1.0	0.46	ug/L	1
Dichlo	orodifluoromethane		75-	71-8	8260B	ND		2.0	0.85	ug/L	1
1,2-D	Dichloroethane		107-	06-2	8260B	ND		1.0	0.23	ug/L	1
1,1-D	Dichloroethane		75-	34-3	8260B	1.1		1.0	0.19	ug/L	1
trans-	-1,2-Dichloroethene		156-	60-5	8260B	ND		1.0	0.33	ug/L	1
cis-1,	,2-Dichloroethene		156-	59-2	8260B	3.5		1.0	0.20	ug/L	1
1,1-D	Dichloroethene		75-	35-4	8260B	1.9		1.0	0.31	ug/L	1
1,2-D	Dichloropropane		78-	87-5	8260B	ND		1.0	0.29	ug/L	1
trans-	-1,3-Dichloropropene		10061-	02-6	8260B	ND		1.0	0.22	ug/L	1
cis-1,	3-Dichloropropene		10061-	01-5	8260B	ND		1.0	0.30	ug/L	1
Ethyl	benzene		100-	41-4	8260B	ND		1.0	0.21	ug/L	1
2-He>	xanone		591-	78-6	8260B	ND		10	0.26	ug/L	1
Isopr	ropylbenzene		98-	82-8	8260B	0.49	J	1.0	0.14	ug/L	1
Methy	yl acetate		79-	20-9	8260B	ND		1.0	0.24	ug/L	1
Methy	yl tertiary butyl ether (MTBE)	1	1634-	04-4	8260B	ND		1.0	0.23	ug/L	1
4-Met	thyl-2-pentanone		108-		8260B	ND		10	0.29	ug/L	1
Meth	ylcyclohexane		108-		8260B	0.89	J	5.0	0.16	ug/L	1
	ylene chloride			09-2	8260B	4.3		1.0	0.42	ug/L	1
	tyrene		100-42-5		8260B	ND		1.0	0.13	ug/L	1
•	,2-Tetrachloroethane			34-5	8260B	ND		1.0	0.13	ug/L	1
	chloroethene		127-		8260B	4.2		1.0	0.22	ug/L	1
Tolue			108-		8260B	ND		1.0	0.24	ug/L	1

PQL = Practical quantitation limit B = Detected in the method blank E = Quantitation of compound exceeded the calibration range H = Out of holding time P = The RPD between two GC columns exceeds 40% N = Recovery is out of criteria

ND = Not detected at or above the MDL J = Estimated result < PQL and \geq MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Description: MW-1

Date Sampled:04/26/2016 1020

Date Received: 04/27/2016

Toluene-d8

Argonia Compoundo hy CC/MS

Volatile Organic Compounds by GC/MS													
RunPrep Method15030B	Analytical Method 8260B	Dilution 1		sis Date Analyst 2016 1055 RAG	Prep	Date	Batch 12119						
Parameter			CAS nber	Analytical Method	Result	Q	PQL	MDL	Units	Run			
1,1,2-Trichloro-1,2,2-Trifluoroethane)	76-	13-1	8260B	ND		1.0	0.30	ug/L	1			
1,2,4-Trichlorobenzene		120-	82-1	8260B	ND		1.0	0.13	ug/L	1			
1,1,2-Trichloroethane		79-	00-5	8260B	ND		1.0	0.22	ug/L	1			
1,1,1-Trichloroethane		71-	55-6	8260B	ND		1.0	0.24	ug/L	1			
Trichloroethene		79-	01-6	8260B	3.1		1.0	0.16	ug/L	1			
Trichlorofluoromethane		75-	69-4	8260B	ND		1.0	0.74	ug/L	1			
Vinyl chloride		75-	01-4	8260B	0.59	J	1.0	0.50	ug/L	1			
Xylenes (total)		1330-	20-7	8260B	0.49	J	1.0	0.32	ug/L	1			
Surrogate	Q %	Run 1 Recovery	Accepta Lim										
1,2-Dichloroethane-d4		96	70-1	30									
Bromofluorobenzene		95	70-1	30									

70-130

100

 PQL = Practical quantitation limit
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range
 H = Out of holding time

 ND = Not detected at or above the MDL
 J = Estimated result < PQL and ≥ MDL</td>
 P = The RPD between two GC columns exceeds 40%
 N = Recovery is out of criteria

 Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged
 with a "W"
 H = Out of holding time

Description: MW-1D

Date Sampled:04/26/2016 1200

Date Received: 04/27/2016

Laboratory ID: RD27083-002 Matrix: Aqueous

Run Prep Method	Analytical Method	Dilution	Anal	sis Date Analyst	Prep Date	Batch			
1 5030B	8260B	1	-	2016 1118 RAG		12119			
			CAS	Analytical					
Parameter			nber	Method	Result Q	PQL	MDL	Units	Run
Acetone			64-1	8260B	ND	20	1.6	ug/L	1
Benzene			43-2	8260B	ND	1.0	0.21	ug/L	1
Bromodichloromethane			27-4	8260B	ND	1.0	0.23	ug/L	1
Bromoform		75-3	25-2	8260B	ND	1.0	0.35	ug/L	1
Bromomethane (Methyl bromide)		74-8	83-9	8260B	ND	2.0	0.19	ug/L	1
2-Butanone (MEK)		78-	93-3	8260B	ND	10	1.8	ug/L	1
Carbon disulfide		75-	15-0	8260B	ND	1.0	0.45	ug/L	1
Carbon tetrachloride		56-2	23-5	8260B	ND	1.0	0.31	ug/L	1
Chlorobenzene		108-9	90-7	8260B	ND	1.0	0.20	ug/L	1
Chloroethane		75-	00-3	8260B	ND	2.0	0.28	ug/L	1
Chloroform		67-	66-3	8260B	ND	1.0	0.21	ug/L	1
Chloromethane (Methyl chloride)		74-8	87-3	8260B	ND	1.0	0.19	ug/L	1
Cyclohexane		110-8	32-7	8260B	ND	1.0	0.30	ug/L	1
1,2-Dibromo-3-chloropropane (DBCl	P)		12-8	8260B	ND	1.0	0.57	ug/L	1
Dibromochloromethane	,	124-4	48-1	8260B	ND	1.0	0.23	ug/L	1
1,2-Dibromoethane (EDB)		106-9	93-4	8260B	ND	1.0	0.17	ug/L	1
1,4-Dichlorobenzene		106-4	46-7	8260B	ND	1.0	0.19	ug/L	1
1,3-Dichlorobenzene		541-	73-1	8260B	ND	1.0	0.19	ug/L	1
1.2-Dichlorobenzene		95-		8260B	ND	1.0	0.46	ug/L	1
Dichlorodifluoromethane			71-8	8260B	ND	2.0	0.85	ug/L	1
1,2-Dichloroethane		107-0		8260B	ND	1.0	0.23	ug/L	1
1,1-Dichloroethane			34-3	8260B	ND	1.0	0.19	ug/L	1
trans-1,2-Dichloroethene		156-0		8260B	ND	1.0	0.33	ug/L	1
cis-1,2-Dichloroethene		156-		8260B	ND	1.0	0.20	ug/L	1
1,1-Dichloroethene			35-4	8260B	ND	1.0	0.31	ug/L	1
1,2-Dichloropropane			87-5	8260B	ND	1.0	0.29	ug/L	1
trans-1,3-Dichloropropene		10061-0		8260B	ND	1.0	0.29	ug/L	1
		10061-0		8260B	ND	1.0	0.22		1
cis-1,3-Dichloropropene								ug/L	1
Ethylbenzene		100-4		8260B	ND	1.0	0.21	ug/L	-
2-Hexanone Isopropylbenzene		591-	82-8	8260B 8260B	ND ND	10 1.0	0.26 0.14	ug/L	1 1
								ug/L	
Methyl acetate			20-9	8260B	ND	1.0	0.24	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-		8260B	ND	1.0	0.23	ug/L	1
4-Methyl-2-pentanone		108-		8260B	ND	10	0.29	ug/L	1
Methylcyclohexane		108-8		8260B	ND	5.0	0.16	ug/L	1
Methylene chloride			09-2	8260B	ND	1.0	0.42	ug/L	1
Styrene		100-4		8260B	ND	1.0	0.13	ug/L	1
1,1,2,2-Tetrachloroethane			34-5	8260B	ND	1.0	0.13	ug/L	1
Tetrachloroethene		127-		8260B	2.2	1.0	0.22	ug/L	1
Toluene		108-8	38-3	8260B	ND	1.0	0.24	ug/L	1

Volatile Organic Compounds by GC/MS

PQL = Practical quantitation limit B = Detected in the method blank E = Quantitation of compound exceeded the calibration range H = Out of holding time P = The RPD between two GC columns exceeds 40% N = Recovery is out of criteria

ND = Not detected at or above the MDL J = Estimated result < PQL and \ge MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Page: 8 of 56

Description: MW-1D

Date Sampled:04/26/2016 1200

Date Received: 04/27/2016

Laboratory ID: RD27083-002 Matrix: Aqueous

	Volatile Organic Compounds by GC/MS													
RunPrep Method15030B	Analytical Method 8260B	Dilution 1		sis Date Analyst 2016 1118 RAG	Prep Date	Batch 12119								
Parameter		CAS Number		Analytical Method	Result Q	PQL	MDL	Units	Run					
1,1,2-Trichloro-1,2,2-Trifluor	oethane	76-	13-1	8260B	7.2	1.0	0.30	ug/L	1					
1,2,4-Trichlorobenzene		120-8	82-1	8260B	ND	1.0	0.13	ug/L	1					
1,1,2-Trichloroethane		79-	00-5	8260B	ND	1.0	0.22	ug/L	1					
1,1,1-Trichloroethane		71-	55-6	8260B	ND	1.0	0.24	ug/L	1					
Trichloroethene		79-	01-6	8260B	22	1.0	0.16	ug/L	1					
Trichlorofluoromethane		75-	69-4	8260B	ND	1.0	0.74	ug/L	1					
Vinyl chloride		75-	01-4	8260B	ND	1.0	0.50	ug/L	1					
Xylenes (total)		1330-	20-7	8260B	ND	1.0	0.32	ug/L	1					
Surrogate		Run 1 Recovery	Accepta Lim											
1,2-Dichloroethane-d4		95	70-1	30										
Promofluorobonzono		05	70.1	20										

1,2-Dichloroethane-04	95	70-130
Bromofluorobenzene	95	70-130
Toluene-d8	101	70-130

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and ≥ MDL</td>P = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"with a "W"N = Recovery is out of criteria

Description: MW-3A

Date Sampled:04/26/2016 1050

Date Received: 04/27/2016

Laboratory ID: RD27083-003 Matrix: Aqueous

Volat	ile Orga	anic (Compounds	by G	C/MS	5			
RunPrep MethodAnalytical Method15030B8260E			sis Date Analyst 2016 1141 RAG	Prep	Date	Batch 12119			
						.2			
Parameter		CAS	Analytical	Result	0	PQL	MDL	Units	Run
Parameter Acetone		nber 64-1	Method 8260B	ND	Q	20	1.6		
								ug/L	1
Benzene		43-2	8260B	8.2 ND		1.0	0.21	ug/L	1
Bromodichloromethane Bromoform		27-4	8260B	ND		1.0	0.23	ug/L	1
Bromomethane (Methyl bromide)		25-2	8260B	ND		1.0	0.35	ug/L	1
		83-9 02-2	8260B	ND		2.0	0.19	ug/L	1
2-Butanone (MEK)		93-3 15-0	8260B	ND		10 1.0	1.8	ug/L	1
Carbon disulfide			8260B	ND			0.45	ug/L	1
Carbon tetrachloride		23-5	8260B			1.0	0.31	ug/L	1
Chlorobenzene	108-		8260B	ND		1.0	0.20	ug/L	1
Chloroethane		00-3	8260B	ND		2.0	0.28	ug/L	1
Chloroform		66-3	8260B	ND		1.0	0.21	ug/L	1
Chloromethane (Methyl chloride)		87-3	8260B	0.19	J	1.0	0.19	ug/L	1
	110-		8260B	0.90	J	1.0	0.30	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP) Dibromochloromethane		12-8	8260B	ND ND		1.0	0.57	ug/L	1
	124-		8260B	ND		1.0	0.23	ug/L	1
1,2-Dibromoethane (EDB)	106-		8260B	ND		1.0	0.17	ug/L	1
1,4-Dichlorobenzene	106-		8260B	ND		1.0	0.19	ug/L	1
1,3-Dichlorobenzene	541-		8260B			1.0	0.19	ug/L	1
1,2-Dichlorobenzene		50-1	8260B	ND		1.0	0.46	ug/L	1
Dichlorodifluoromethane		71-8	8260B	ND		2.0	0.85	ug/L	1
1,2-Dichloroethane	107-		8260B	ND		1.0	0.23	ug/L	1
1,1-Dichloroethane		34-3	8260B	ND		1.0	0.19	ug/L	1
trans-1,2-Dichloroethene	156-		8260B	ND		1.0	0.33	ug/L	1
cis-1,2-Dichloroethene	156-		8260B	0.97	J	1.0	0.20	ug/L	1
1,1-Dichloroethene		35-4	8260B	ND		1.0	0.31	ug/L	1
1,2-Dichloropropane		87-5	8260B	ND		1.0	0.29	ug/L	1
trans-1,3-Dichloropropene	10061-		8260B	ND		1.0	0.22	ug/L	1
cis-1,3-Dichloropropene	10061-		8260B	ND		1.0	0.30	ug/L	1
Ethylbenzene	100-		8260B	ND		1.0	0.21	ug/L	1
	591-	78-6 82-8	8260B	ND ND		10 1.0	0.26	ug/L	1 1
Isopropylbenzene		02-0 20-9	8260B				0.14	ug/L	1
Methyl acetate			8260B			1.0	0.24	ug/L	
Methyl tertiary butyl ether (MTBE)	1634-		8260B			1.0	0.23	ug/L	1
4-Methyl-2-pentanone	108-		8260B	ND		10 5 0	0.29	ug/L	1
Methylcyclohexane	108-		8260B	0.45	J	5.0	0.16	ug/L	1
Methylene chloride	75- 100-	09-2 42 5	8260B			1.0	0.42	ug/L	1
Styrene			8260B			1.0	0.13	ug/L	1
1,1,2,2-Tetrachloroethane		34-5 19 4	8260B			1.0	0.13	ug/L	1
Tetrachloroethene	127-		8260B			1.0	0.22	ug/L	1
Toluene	108-	ంర-చ	8260B	ND		1.0	0.24	ug/L	1

PQL = Practical quantitation limit B = Detected in the method blank E = Quantitation of compound exceeded the calibration range H = Out of holding time P = The RPD between two GC columns exceeds 40% N = Recovery is out of criteria

ND = Not detected at or above the MDL J = Estimated result < PQL and \geq MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Page: 10 of 56

Description: MW-3A

Date Sampled:04/26/2016 1050

Date Received: 04/27/2016

Toluene-d8

Laboratory ID: RD27083-003 Matrix: Aqueous

	Volatile Organic Compounds by GC/MS												
RunPrep Method15030B	Analytical Method 8260B	Dilution 1		vsis Date Analyst 2016 1141 RAG	Prep Date	e Batch 12119							
Parameter			CAS nber	Analytical Method	Result Q	PQL	MDL	Units	Run				
1,1,2-Trichloro-1,2,2-Trifluoroethan	e	76-	13-1	8260B	ND	1.0	0.30	ug/L	1				
1,2,4-Trichlorobenzene		120-	82-1	8260B	ND	1.0	0.13	ug/L	1				
1,1,2-Trichloroethane		79-	00-5	8260B	ND	1.0	0.22	ug/L	1				
1,1,1-Trichloroethane		71-	55-6	8260B	ND	1.0	0.24	ug/L	1				
Trichloroethene		79-	01-6	8260B	3.9	1.0	0.16	ug/L	1				
Trichlorofluoromethane		75-	69-4	8260B	ND	1.0	0.74	ug/L	1				
Vinyl chloride		75-	01-4	8260B	ND	1.0	0.50	ug/L	1				
Xylenes (total)		1330-	20-7	8260B	ND	1.0	0.32	ug/L	1				
Surrogate		Run 1 Recovery	Accept Lin	ance nits									
1,2-Dichloroethane-d4		99	70-1	30									
Bromofluorobenzene		95	70-1	30									

70-130

101

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W""W"N = Recovery is out of criteria

Description: MW-4A

Date Sampled:04/26/2016 0940

Date Received: 04/27/2016

Laboratory ID: RD27083-004 Matrix: Aqueous

Run Prep Method Analytical Method Dilution Analysis Date Analysis Prep Date Batch 1 5030B 8260B 1 04/29/2016 1204 RAG 12119 Parameter CAS Analytical Result Q PQL MDL Acetone 67-64-1 8260B ND 20 1.6 Benzene 71-43-2 8260B ND 1.0 0.21 Bromodichloromethane 75-27-4 8260B ND 1.0 0.23 Bromodethane (Methyl bromide) 74-83-9 8260B ND 1.0 0.35 Bromodethane (Methyl bromide) 74-83-9 8260B ND 1.0 0.35 Bromodethane (Methyl bromide) 74-83-9 8260B ND 1.0 0.45 Carbon disulfide 75-15-0 8260B ND 1.0 0.45 Carbon tetrachloride 56-23-5 8260B ND 1.0 0.31 Chlorobenzene 108-90-7	Units Rt ug/L - ug/L -
Parameter Number Method Result Q PQL MDL Acetone 67-64-1 8260B ND 20 1.6 Benzene 71-43-2 8260B ND 1.0 0.21 Bromodichloromethane 75-27-4 8260B ND 1.0 0.23 Bromoform 75-25-2 8260B ND 1.0 0.35 Bromomethane (Methyl bromide) 74-83-9 8260B ND 2.0 0.19 2-Butanone (MEK) 78-93-3 8260B ND 1.0 0.45 Carbon disulfide 75-15-0 8260B ND 1.0 0.45 Carbon tetrachloride 56-23-5 8260B ND 1.0 0.31 Chlorobenzene 108-90-7 8260B ND 1.0 0.20	ug/L
Parameter Number Method Result Q PQL MDL Acetone 67-64-1 8260B ND 20 1.6 Benzene 71-43-2 8260B ND 1.0 0.21 Bromodichloromethane 75-27-4 8260B ND 1.0 0.23 Bromoform 75-25-2 8260B ND 1.0 0.35 Bromomethane (Methyl bromide) 74-83-9 8260B ND 2.0 0.19 2-Butanone (MEK) 78-93-3 8260B ND 1.0 0.45 Carbon disulfide 75-15-0 8260B ND 1.0 0.45 Carbon tetrachloride 56-23-5 8260B ND 1.0 0.31 Chlorobenzene 108-90-7 8260B ND 1.0 0.20	ug/L
Acetone 67-64-1 8260B ND 20 1.6 Benzene 71-43-2 8260B ND 1.0 0.21 Bromodichloromethane 75-27-4 8260B ND 1.0 0.23 Bromoform 75-25-2 8260B ND 1.0 0.35 Bromomethane (Methyl bromide) 74-83-9 8260B ND 2.0 0.19 2-Butanone (MEK) 78-93-3 8260B ND 1.0 1.8 Carbon disulfide 75-15-0 8260B ND 1.0 0.45 Carbon tetrachloride 56-23-5 8260B ND 1.0 0.31 Chlorobenzene 108-90-7 8260B ND 1.0 0.20	ug/L
Bromodichloromethane 75-27-4 8260B ND 1.0 0.23 Bromoform 75-25-2 8260B ND 1.0 0.35 Bromomethane (Methyl bromide) 74-83-9 8260B ND 2.0 0.19 2-Butanone (MEK) 78-93-3 8260B ND 10 1.8 Carbon disulfide 75-15-0 8260B ND 1.0 0.45 Carbon tetrachloride 56-23-5 8260B ND 1.0 0.31 Chlorobenzene 108-90-7 8260B ND 1.0 0.20	ug/L
Bromoform75-25-28260BND1.00.35Bromomethane (Methyl bromide)74-83-98260BND2.00.192-Butanone (MEK)78-93-38260BND101.8Carbon disulfide75-15-08260BND1.00.45Carbon tetrachloride56-23-58260BND1.00.31Chlorobenzene108-90-78260BND1.00.20	ug/L - ug/L - ug/L - ug/L - ug/L - ug/L - ug/L -
Bromomethane (Methyl bromide)74-83-98260BND2.00.192-Butanone (MEK)78-93-38260BND101.8Carbon disulfide75-15-08260BND1.00.45Carbon tetrachloride56-23-58260BND1.00.31Chlorobenzene108-90-78260BND1.00.20	ug/L
2-Butanone (MEK) 78-93-3 8260B ND 10 1.8 Carbon disulfide 75-15-0 8260B ND 1.0 0.45 Carbon tetrachloride 56-23-5 8260B ND 1.0 0.31 Chlorobenzene 108-90-7 8260B ND 1.0 0.20	ug/L - ug/L - ug/L - ug/L - ug/L - ug/L -
Carbon disulfide 75-15-0 8260B ND 1.0 0.45 Carbon tetrachloride 56-23-5 8260B ND 1.0 0.31 Chlorobenzene 108-90-7 8260B ND 1.0 0.20	ug/L - ug/L - ug/L - ug/L - ug/L - ug/L -
Carbon disulfide 75-15-0 8260B ND 1.0 0.45 Carbon tetrachloride 56-23-5 8260B ND 1.0 0.31 Chlorobenzene 108-90-7 8260B ND 1.0 0.20	ug/L - ug/L - ug/L - ug/L - ug/L -
Carbon tetrachloride 56-23-5 8260B ND 1.0 0.31 Chlorobenzene 108-90-7 8260B ND 1.0 0.20	ug/L ug/L ug/L ug/L ug/L
Chlorobenzene 108-90-7 8260B ND 1.0 0.20	ug/L ug/L ug/L ug/L
	ug/L · ug/L · ug/L ·
	ug/L ug/L
Chloroform 67-66-3 8260B ND 1.0 0.21	ug/L ŕ
Chloromethane (Methyl chloride) 74-87-3 8260B ND 1.0 0.19	-
Cyclohexane 110-82-7 8260B ND 1.0 0.30	
1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.57	ug/L ´
Dibromochloromethane 124-48-1 8260B ND 1.0 0.23	ug/L ´
1,2-Dibromoethane (EDB) 106-93-4 8260B ND 1.0 0.17	ug/L ´
1,4-Dichlorobenzene 106-46-7 8260B ND 1.0 0.19	ug/L ´
1,3-Dichlorobenzene 541-73-1 8260B ND 1.0 0.19	ug/L ´
1,2-Dichlorobenzene 95-50-1 8260B ND 1.0 0.46	ug/L ´
Dichlorodifluoromethane 75-71-8 8260B ND 2.0 0.85	ug/L ´
1,2-Dichloroethane 107-06-2 8260B ND 1.0 0.23	ug/L ´
1,1-Dichloroethane 75-34-3 8260B ND 1.0 0.19	ug/L ´
trans-1,2-Dichloroethene 156-60-5 8260B ND 1.0 0.33	ug/L ´
cis-1,2-Dichloroethene 156-59-2 8260B ND 1.0 0.20	ug/L ´
1,1-Dichloroethene 75-35-4 8260B ND 1.0 0.31	ug/L ´
1,2-Dichloropropane 78-87-5 8260B ND 1.0 0.29	ug/L ´
trans-1,3-Dichloropropene 10061-02-6 8260B ND 1.0 0.22	ug/L ´
cis-1,3-Dichloropropene 10061-02-0 8260B ND 1.0 0.22 cis-1,3-Dichloropropene 10061-01-5 8260B ND 1.0 0.30	ug/L ´
	-
	ug/L ^
2-Hexanone 591-78-6 8260B ND 10 0.26 Isopropylbenzene 98-82-8 8260B ND 1.0 0.14	ug/L ² ug/L 2
	-
	ug/L
	ug/L ^
4-Methyl-2-pentanone 108-10-1 8260B ND 10 0.29 Methylcyclohexane 108-87-2 8260B ND 5.0 0.16	ug/L ^
	ug/L ^
Methylene chloride 75-09-2 8260B ND 1.0 0.42 Strange 100.42.5 8260B ND 1.0 0.42	ug/L ^
Styrene 100-42-5 8260B ND 1.0 0.13 4.4.2.2 Tetraphlanethere 70.24.5 8260D ND 0.42	ug/L ´
1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 Tatachloroethane 107,42,4 0000D ND 0.000D	ug/L ´
Tetrachloroethene 127-18-4 8260B ND 1.0 0.22	ug/L ´
Toluene 108-88-3 8260B ND 1.0 0.24	ug/L ´

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Page: 12 of 56

Description: MW-4A

Date Sampled:04/26/2016 0940

Date Received: 04/27/2016

Laboratory ID: RD27083-004 Matrix: Aqueous

	Volatile Organic Compounds by GC/MS													
RunPrep Method15030B	Analytical Method 8260B	Dilution 1		is Date Analyst 016 1204 RAG	Prep	Date	Batch 12119							
Parameter			CAS nber	Analytical Method	Result	Q	PQL	MDL	Units	Run				
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260B	ND		1.0	0.30	ug/L	1				
1,2,4-Trichlorobenzene		120-	82-1	8260B	ND		1.0	0.13	ug/L	1				
1,1,2-Trichloroethane		79-	00-5	8260B	ND		1.0	0.22	ug/L	1				
1,1,1-Trichloroethane		71-	55-6	8260B	ND		1.0	0.24	ug/L	1				
Trichloroethene		79-	01-6	8260B	0.35	J	1.0	0.16	ug/L	1				
Trichlorofluoromethane		75-	69-4	8260B	ND		1.0	0.74	ug/L	1				
Vinyl chloride		75-	01-4	8260B	ND		1.0	0.50	ug/L	1				
Xylenes (total)		1330-	20-7	8260B	ND		1.0	0.32	ug/L	1				
Surrogate	Q %	Run 1 Recovery	Acceptar Limit											
1,2-Dichloroethane-d4		98	70-130)										
Bromofluorobenzene		95	70-130)										
Toluene-d8		101	70-130)										

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"with a "W"N = Recovery is out of criteria

Description: MW-6

Date Sampled:04/26/2016 0845

Date Received: 04/27/2016

Laboratory ID: RD27083-005 Matrix: Aqueous

Matrix: Aqueou

		Analytical Method				Prep D	Date	Batch			
1	5030B	8260B	1	04/29/2	2016 1228 RAG			12119			
_				CAS	Analytical		_				
	meter			nber	Method	Result	Q	PQL	MDL	Units	Run
Aceto				64-1	8260B	ND		20	1.6	ug/L	1
Benz				43-2	8260B	ND		1.0	0.21	ug/L	1
	odichloromethane			27-4	8260B	ND		1.0	0.23	ug/L	1
	oform			25-2	8260B	ND		1.0	0.35	ug/L	1
	omethane (Methyl bromide)			83-9	8260B	ND		2.0	0.19	ug/L	1
	anone (MEK)			93-3	8260B	ND		10	1.8	ug/L	1
Carbo	on disulfide			15-0	8260B	ND		1.0	0.45	ug/L	1
Carbo	on tetrachloride			23-5	8260B	ND		1.0	0.31	ug/L	1
Chlor	obenzene		108-		8260B	ND		1.0	0.20	ug/L	1
Chlor	oethane			00-3	8260B	ND		2.0	0.28	ug/L	1
Chlor	oform		67-	66-3	8260B	ND		1.0	0.21	ug/L	1
Chlor	omethane (Methyl chloride)		74-	87-3	8260B	ND		1.0	0.19	ug/L	1
Cyclo	bhexane		110-	82-7	8260B	ND		1.0	0.30	ug/L	1
1,2-D	ibromo-3-chloropropane (DBC	P)	96-	12-8	8260B	ND		1.0	0.57	ug/L	1
Dibro	mochloromethane		124-	48-1	8260B	ND		1.0	0.23	ug/L	1
1,2-D	bibromoethane (EDB)		106-	93-4	8260B	ND		1.0	0.17	ug/L	1
1,4-D	lichlorobenzene		106-	46-7	8260B	ND		1.0	0.19	ug/L	1
1,3-D	lichlorobenzene		541-	73-1	8260B	ND		1.0	0.19	ug/L	1
1,2-D	lichlorobenzene		95-	50-1	8260B	ND		1.0	0.46	ug/L	1
Dichle	orodifluoromethane		75-	71-8	8260B	ND		2.0	0.85	ug/L	1
1,2-D	lichloroethane		107-	06-2	8260B	ND		1.0	0.23	ug/L	1
1,1-D	Vichloroethane		75-	34-3	8260B	ND		1.0	0.19	ug/L	1
trans-	-1,2-Dichloroethene		156-	60-5	8260B	ND		1.0	0.33	ug/L	1
cis-1,	2-Dichloroethene		156-	59-2	8260B	ND		1.0	0.20	ug/L	1
1,1-D	Vichloroethene		75-	35-4	8260B	ND		1.0	0.31	ug/L	1
1,2-D	lichloropropane		78-	87-5	8260B	ND		1.0	0.29	ug/L	1
trans-	-1,3-Dichloropropene		10061-	02-6	8260B	ND		1.0	0.22	ug/L	1
cis-1,	3-Dichloropropene		10061-	01-5	8260B	ND		1.0	0.30	ug/L	1
	benzene		100-4	41-4	8260B	ND		1.0	0.21	ug/L	1
-	xanone		591-	78-6	8260B	ND		10	0.26	ug/L	1
Isopro	opylbenzene			82-8	8260B	ND		1.0	0.14	ug/L	1
	yl acetate		79-	20-9	8260B	ND		1.0	0.24	ug/L	1
	yl tertiary butyl ether (MTBE)		1634-		8260B	ND		1.0	0.23	ug/L	1
	thyl-2-pentanone		108-		8260B	ND		10	0.29	ug/L	1
	ylcyclohexane		108-		8260B	ND		5.0	0.16	ug/L	1
	ylene chloride			09-2	8260B	ND		1.0	0.42	ug/L	1
Styre	•		100-4		8260B	ND		1.0	0.13	ug/L	1
•	2-Tetrachloroethane			34-5	8260B	ND		1.0	0.13	ug/L	1
	chloroethene		127-		8260B	ND		1.0	0.22	ug/L	1
Tolue			108-		8260B	ND		1.0	0.24	ug/L	1

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Page: 14 of 56

Description: MW-6

Date Sampled:04/26/2016 0845

Date Received: 04/27/2016

Toluene-d8

Laboratory ID: RD27083-005 Matrix: Aqueous

Volatile Organic Compounds by GC/MS													
RunPrep Method15030B	Analytical Method 8260B	Dilution 1	-	sis Date Analyst 2016 1228 RAG	Prep Date	Batch 12119							
Parameter		(Num	CAS nber	Analytical Method	Result Q	PQL	MDL	Units	Run				
1,1,2-Trichloro-1,2,2-Trifluoroethane	•	76-′	13-1	8260B	ND	1.0	0.30	ug/L	1				
1,2,4-Trichlorobenzene		120-8	32-1	8260B	ND	1.0	0.13	ug/L	1				
1,1,2-Trichloroethane		79-0	00-5	8260B	ND	1.0	0.22	ug/L	1				
1,1,1-Trichloroethane		71-5	55-6	8260B	ND	1.0	0.24	ug/L	1				
Trichloroethene		79-0	01-6	8260B	ND	1.0	0.16	ug/L	1				
Trichlorofluoromethane		75-6	59-4	8260B	ND	1.0	0.74	ug/L	1				
Vinyl chloride		75-0	01-4	8260B	ND	1.0	0.50	ug/L	1				
Xylenes (total)		1330-2	20-7	8260B	ND	1.0	0.32	ug/L	1				
Surrogate		Run 1 /	Accepta Lim										
1,2-Dichloroethane-d4		97	70-1	30									
Bromofluorobenzene		97	70-13	30									

70-130

103

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"with a "W"N = Recovery is out of criteria

Description: MW-7A

Date Sampled:04/25/2016 1745

Date Received: 04/27/2016

Laboratory ID: RD27083-006

L .	
	Matrix: Aqueous

Run Prep Method Analytical Method Dilution Analysis Date Analysis Prep Date Batch 1 5030B 8260B 1 04/29/2016 1251 RAG 12119 Parameter CAS Analytical PQL MDL Acetone 67-64-1 8260B ND 20 1.6 Benzene 71-43-2 8260B ND 1.0 0.21 Bromodichloromethane 75-27-4 8260B ND 1.0 0.23 Bromoform 75-25-2 8260B ND 1.0 0.35 Bromomethane (Methyl bromide) 74-83-9 8260B ND 1.0 0.35 2-Butanone (MEK) 78-93-3 8260B ND 1.0 0.45 Carbon disulfide 75-15-0 8260B ND 1.0 0.45 Carbon tetrachloride 56-23-5 8260B ND 1.0 0.20 Chlorobenzene 108-90-7 8260B ND 1.0 0.21 Chloroform	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Run 1 1 1 1 1 1 1 1 1
ParameterNumberMethodResult QPQLMDLAcetone67-64-18260BND201.6Benzene71-43-28260BND1.00.21Bromodichloromethane75-27-48260BND1.00.23Bromoform75-25-28260BND1.00.35Bromomethane (Methyl bromide)74-83-98260BND2.00.192-Butanone (MEK)78-93-38260BND1.00.45Carbon disulfide75-15-08260BND1.00.45Carbon tetrachloride56-23-58260BND1.00.31Chlorobenzene108-90-78260BND1.00.20Chlorotethane75-00-38260BND1.00.21Chlorotethane75-638260BND1.00.21Chloroterm67-66-38260BND1.00.21Chlorotermane74-87-38260BND1.00.21Chlorotorm67-66-38260BND1.00.21Chlorotorm74-87-38260BND1.00.301,2-Dibromo-3-chloropropane (DBCP)96-12-88260BND1.00.57Dibromochloromethane124-48-18260BND1.00.23	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1
ParameterNumberMethodResult QPQLMDLAcetone67-64-18260BND201.6Benzene71-43-28260BND1.00.21Bromodichloromethane75-27-48260BND1.00.23Bromoform75-25-28260BND1.00.35Bromomethane (Methyl bromide)74-83-98260BND2.00.192-Butanone (MEK)78-93-38260BND1.00.45Carbon disulfide75-15-08260BND1.00.45Carbon tetrachloride56-23-58260BND1.00.31Chlorobenzene108-90-78260BND1.00.20Chlorotethane75-00-38260BND1.00.21Chlorotethane75-638260BND1.00.21Chloroterm67-66-38260BND1.00.21Chlorotermane74-87-38260BND1.00.21Chlorotorm67-66-38260BND1.00.21Chlorotorm74-87-38260BND1.00.301,2-Dibromo-3-chloropropane (DBCP)96-12-88260BND1.00.57Dibromochloromethane124-48-18260BND1.00.23	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1
Acetone67-64-18260BND201.6Benzene71-43-28260BND1.00.21Bromodichloromethane75-27-48260BND1.00.23Bromoform75-25-28260BND1.00.35Bromomethane (Methyl bromide)74-83-98260BND2.00.192-Butanone (MEK)78-93-38260BND1.00.45Carbon disulfide75-15-08260BND1.00.45Carbon tetrachloride56-23-58260BND1.00.31Chlorobenzene108-90-78260BND1.00.20Chloroform67-66-38260BND1.00.21Chloromethane (Methyl chloride)74-87-38260BND1.00.21Chloromethane (Methyl chloride)74-87-38260BND1.00.21Chloromethane (Methyl chloride)74-87-38260BND1.00.19Cyclohexane110-82-78260BND1.00.301,2-Dibromo-3-chloropropane (DBCP)96-12-88260BND1.00.57Dibromochloromethane124-48-18260BND1.00.23	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1
Bromodichloromethane75-27-48260BND1.00.23Bromoform75-25-28260BND1.00.35Bromomethane (Methyl bromide)74-83-98260BND2.00.192-Butanone (MEK)78-93-38260BND101.8Carbon disulfide75-15-08260BND1.00.45Carbon tetrachloride56-23-58260BND1.00.31Chlorobenzene108-90-78260BND1.00.20Chloroform67-66-38260BND1.00.21Chloroform67-66-38260BND1.00.21Chloromethane (Methyl chloride)74-87-38260BND1.00.21Cyclohexane110-82-78260BND1.00.301,2-Dibromo-3-chloropropane (DBCP)96-12-88260BND1.00.57Dibromochloromethane124-48-18260BND1.00.23	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1
Bromoform75-25-28260BND1.00.35Bromomethane (Methyl bromide)74-83-98260BND2.00.192-Butanone (MEK)78-93-38260BND101.8Carbon disulfide75-15-08260BND1.00.45Carbon tetrachloride56-23-58260BND1.00.31Chlorobenzene108-90-78260BND1.00.20Chloroform67-66-38260BND1.00.21Chloroform67-66-38260BND1.00.21Chloromethane (Methyl chloride)74-87-38260BND1.00.19Cyclohexane110-82-78260BND1.00.301,2-Dibromo-3-chloropropane (DBCP)96-12-88260BND1.00.57Dibromochloromethane124-48-18260BND1.00.23	ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1
Bromomethane (Methyl bromide)74-83-98260BND2.00.192-Butanone (MEK)78-93-38260BND101.8Carbon disulfide75-15-08260BND1.00.45Carbon tetrachloride56-23-58260BND1.00.31Chlorobenzene108-90-78260BND1.00.20Chloroethane75-00-38260BND2.00.28Chloroform67-66-38260BND1.00.21Chloromethane (Methyl chloride)74-87-38260BND1.00.19Cyclohexane110-82-78260BND1.00.301,2-Dibromo-3-chloropropane (DBCP)96-12-88260BND1.00.57Dibromochloromethane124-48-18260BND1.00.23	ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1
2-Butanone (MEK)78-93-38260BND101.8Carbon disulfide75-15-08260BND1.00.45Carbon tetrachloride56-23-58260BND1.00.31Chlorobenzene108-90-78260BND1.00.20Chloroethane75-00-38260BND2.00.28Chloroform67-66-38260BND1.00.21Chloromethane (Methyl chloride)74-87-38260BND1.00.19Cyclohexane110-82-78260BND1.00.301,2-Dibromo-3-chloropropane (DBCP)96-12-88260BND1.00.57Dibromochloromethane124-48-18260BND1.00.23	ug/L ug/L ug/L ug/L ug/L	1 1 1 1
Carbon disulfide75-15-08260BND1.00.45Carbon tetrachloride56-23-58260BND1.00.31Chlorobenzene108-90-78260BND1.00.20Chloroethane75-00-38260BND2.00.28Chloroform67-66-38260BND1.00.21Chloromethane (Methyl chloride)74-87-38260BND1.00.19Cyclohexane110-82-78260BND1.00.301,2-Dibromo-3-chloropropane (DBCP)96-12-88260BND1.00.57Dibromochloromethane124-48-18260BND1.00.23	ug/L ug/L ug/L ug/L	1 1 1
Carbon tetrachloride56-23-58260BND1.00.31Chlorobenzene108-90-78260BND1.00.20Chloroethane75-00-38260BND2.00.28Chloroform67-66-38260BND1.00.21Chloromethane (Methyl chloride)74-87-38260BND1.00.19Cyclohexane110-82-78260BND1.00.301,2-Dibromo-3-chloropropane (DBCP)96-12-88260BND1.00.57Dibromochloromethane124-48-18260BND1.00.23	ug/L ug/L ug/L ug/L	1 1
Chlorobenzene108-90-78260BND1.00.20Chloroethane75-00-38260BND2.00.28Chloroform67-66-38260BND1.00.21Chloromethane (Methyl chloride)74-87-38260BND1.00.19Cyclohexane110-82-78260BND1.00.301,2-Dibromo-3-chloropropane (DBCP)96-12-88260BND1.00.57Dibromochloromethane124-48-18260BND1.00.23	ug/L ug/L ug/L	1
Chloroethane75-00-38260BND2.00.28Chloroform67-66-38260BND1.00.21Chloromethane (Methyl chloride)74-87-38260BND1.00.19Cyclohexane110-82-78260BND1.00.301,2-Dibromo-3-chloropropane (DBCP)96-12-88260BND1.00.57Dibromochloromethane124-48-18260BND1.00.23	ug/L ug/L	
Chloroform67-66-38260BND1.00.21Chloromethane (Methyl chloride)74-87-38260BND1.00.19Cyclohexane110-82-78260BND1.00.301,2-Dibromo-3-chloropropane (DBCP)96-12-88260BND1.00.57Dibromochloromethane124-48-18260BND1.00.23	ug/L	
Chloromethane (Methyl chloride)74-87-38260BND1.00.19Cyclohexane110-82-78260BND1.00.301,2-Dibromo-3-chloropropane (DBCP)96-12-88260BND1.00.57Dibromochloromethane124-48-18260BND1.00.23		1
Cyclohexane110-82-78260BND1.00.301,2-Dibromo-3-chloropropane (DBCP)96-12-88260BND1.00.57Dibromochloromethane124-48-18260BND1.00.23	-	1
Cyclohexane110-82-78260BND1.00.301,2-Dibromo-3-chloropropane (DBCP)96-12-88260BND1.00.57Dibromochloromethane124-48-18260BND1.00.23	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)96-12-88260BND1.00.57Dibromochloromethane124-48-18260BND1.00.23	ug/L	1
Dibromochloromethane 124-48-1 8260B ND 1.0 0.23	ug/L	1
1.2-Dibromoethane (EDB) 106-93-4 8260B ND 1.0 0.17	ug/L	1
	ug/L	1
1,4-Dichlorobenzene 106-46-7 8260B ND 1.0 0.19	ug/L	1
1,3-Dichlorobenzene 541-73-1 8260B ND 1.0 0.19	ug/L	1
1,2-Dichlorobenzene 95-50-1 8260B ND 1.0 0.46	ug/L	1
Dichlorodifluoromethane 75-71-8 8260B ND 2.0 0.85	ug/L	1
1,2-Dichloroethane 107-06-2 8260B ND 1.0 0.23	ug/L	1
1,1-Dichloroethane 75-34-3 8260B ND 1.0 0.19	ug/L	1
trans-1,2-Dichloroethene 156-60-5 8260B ND 1.0 0.33	ug/L	1
cis-1,2-Dichloroethene 156-59-2 8260B ND 1.0 0.20	ug/L	1
1,1-Dichloroethene 75-35-4 8260B 0.63 J 1.0 0.31	ug/L	1
1,2-Dichloropropane 78-87-5 8260B ND 1.0 0.29	ug/L	1
trans-1,3-Dichloropropene 10061-02-6 8260B ND 1.0 0.22	ug/L	1
cis-1,3-Dichloropropene 10061-01-5 8260B ND 1.0 0.30	ug/L	1
Ethylbenzene 100-41-4 8260B ND 1.0 0.21	ug/L	1
2-Hexanone 591-78-6 8260B ND 10 0.26	ug/L	1
Isopropylbenzene 98-82-8 8260B ND 1.0 0.14	ug/L	1
Methyl acetate 79-20-9 8260B ND 1.0 0.24	ug/L	1
Methyl tertiary butyl ether (MTBE) 1634-04-4 8260B ND 1.0 0.23	ug/L	1
4-Methyl-2-pentanone 108-10-1 8260B ND 10 0.29	ug/L	1
Methylcyclohexane 108-87-2 8260B ND 5.0 0.16	ug/L	1
Methylene chloride 75-09-2 8260B ND 1.0 0.42	ug/L	1
Styrene 100-42-5 8260B ND 1.0 0.13	ug/L	1
1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13	ug/L	1
Tetrachloroethene 127-18-4 8260B ND 1.0 0.22	ug/L	1
Toluene 108-88-3 8260B ND 1.0 0.24	ug/L	1

PQL = Practical quantitation limit B = Detected in the method blank E = Quantitation of compound exceeded the calibration range H = Out of holding time ND = Not detected at or above the MDL J = Estimated result < PQL and \geq MDL P = The RPD between two GC columns exceeds 40% N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Page: 16 of 56

Description: MW-7A

Date Sampled:04/25/2016 1745

Date Received: 04/27/2016

Toluene-d8

Laboratory ID: RD27083-006 Matrix: Aqueous

	Volatil	e Orga	anic C	Compounds	by GC/	MS			
RunPrepMethod15030B	Analytical Method 8260B	Dilution 1	-	sis Date Analyst 2016 1251 RAG	Prep Da	te Batch 12119			
Parameter			CAS nber	Analytical Method	Result Q	PQL	MDL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	e	76-	13-1	8260B	ND	1.0	0.30	ug/L	1
1,2,4-Trichlorobenzene		120-8	82-1	8260B	ND	1.0	0.13	ug/L	1
1,1,2-Trichloroethane		79-0	00-5	8260B	ND	1.0	0.22	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260B	ND	1.0	0.24	ug/L	1
Trichloroethene		79-0	01-6	8260B	ND	1.0	0.16	ug/L	1
Trichlorofluoromethane		75-0	69-4	8260B	ND	1.0	0.74	ug/L	1
Vinyl chloride		75-0	01-4	8260B	ND	1.0	0.50	ug/L	1
Xylenes (total)		1330-2	20-7	8260B	ND	1.0	0.32	ug/L	1
Surrogate		Run 1 ecovery	Accepta Lim						
1,2-Dichloroethane-d4		97	70-13	30					
Bromofluorobenzene		93	70-13	30					

70-130

99

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"with a "W"N = Recovery is out of criteria

Description: MW-8A

Date Sampled:04/26/2016 0910

Date Received: 04/27/2016

Laboratory ID: RD27083-007 Matrix: Aqueous

Volati	le Orga	anic (Compounds	by G	C/MS	5			
RunPrep MethodAnalytical Method15030B8260B	Dilution 1	-	sis Date Analyst 2016 1314 RAG	Prep	Date	Batch 12119			
		CAS	Analytical						
Parameter		nber	Method	Result	Q	PQL	MDL	Units	Run
Acetone		64-1	8260B	5.3	J	20	1.6	ug/L	1
Benzene	71-	43-2	8260B	ND		1.0	0.21	ug/L	1
Bromodichloromethane	75-	27-4	8260B	ND		1.0	0.23	ug/L	1
Bromoform	75-	25-2	8260B	ND		1.0	0.35	ug/L	1
Bromomethane (Methyl bromide)	74-	83-9	8260B	ND		2.0	0.19	ug/L	1
2-Butanone (MEK)	78-	93-3	8260B	ND		10	1.8	ug/L	1
Carbon disulfide	75-	15-0	8260B	ND		1.0	0.45	ug/L	1
Carbon tetrachloride	56-	23-5	8260B	ND		1.0	0.31	ug/L	1
Chlorobenzene	108-	90-7	8260B	ND		1.0	0.20	ug/L	1
Chloroethane	75-	00-3	8260B	ND		2.0	0.28	ug/L	1
Chloroform	67-	66-3	8260B	ND		1.0	0.21	ug/L	1
Chloromethane (Methyl chloride)	74-	87-3	8260B	0.41	J	1.0	0.19	ug/L	1
Cyclohexane	110-	82-7	8260B	ND		1.0	0.30	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-	12-8	8260B	ND		1.0	0.57	ug/L	1
Dibromochloromethane	124-	48-1	8260B	ND		1.0	0.23	ug/L	1
1,2-Dibromoethane (EDB)	106-	93-4	8260B	ND		1.0	0.17	ug/L	1
1,4-Dichlorobenzene	106-	46-7	8260B	ND		1.0	0.19	ug/L	1
1,3-Dichlorobenzene	541-	73-1	8260B	ND		1.0	0.19	ug/L	1
1,2-Dichlorobenzene	95-	50-1	8260B	ND		1.0	0.46	ug/L	1
Dichlorodifluoromethane	75-	71-8	8260B	ND		2.0	0.85	ug/L	1
1,2-Dichloroethane	107-	06-2	8260B	ND		1.0	0.23	ug/L	1
1,1-Dichloroethane	75-	34-3	8260B	ND		1.0	0.19	ug/L	1
trans-1,2-Dichloroethene	156-	60-5	8260B	ND		1.0	0.33	ug/L	1
cis-1,2-Dichloroethene	156-	59-2	8260B	ND		1.0	0.20	ug/L	1
1,1-Dichloroethene	75-	35-4	8260B	0.42	J	1.0	0.31	ug/L	1
1,2-Dichloropropane	78-	87-5	8260B	ND		1.0	0.29	ug/L	1
trans-1,3-Dichloropropene	10061-	02-6	8260B	ND		1.0	0.22	ug/L	1
cis-1,3-Dichloropropene	10061-	01-5	8260B	ND		1.0	0.30	ug/L	1
Ethylbenzene	100-	41-4	8260B	ND		1.0	0.21	ug/L	1
2-Hexanone	591-	78-6	8260B	ND		10	0.26	ug/L	1
Isopropylbenzene	98-	82-8	8260B	ND		1.0	0.14	ug/L	1
Methyl acetate	79-	20-9	8260B	ND		1.0	0.24	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-	04-4	8260B	ND		1.0	0.23	ug/L	1
4-Methyl-2-pentanone	108-	10-1	8260B	ND		10	0.29	ug/L	1
Methylcyclohexane	108-	87-2	8260B	ND		5.0	0.16	ug/L	1
Methylene chloride	75-	09-2	8260B	ND		1.0	0.42	ug/L	1
Styrene	100-	42-5	8260B	ND		1.0	0.13	ug/L	1
1,1,2,2-Tetrachloroethane	79-	34-5	8260B	ND		1.0	0.13	ug/L	1
Tetrachloroethene	127-	18-4	8260B	ND		1.0	0.22	ug/L	1
Toluene	108-	88-3	8260B	ND		1.0	0.24	ug/L	1

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Page: 18 of 56

Description: MW-8A

Date Sampled:04/26/2016 0910

Date Received: 04/27/2016

Laboratory ID: RD27083-007 Matrix: Aqueous

	Volati	le Orga	anic C	ompounds	by G	C/MS	5			
RunPrep Method15030B	Analytical Method 8260B	Dilution 1	-	is Date Analyst D16 1314 RAG	Prep	Date	Batch 12119			
Parameter			CAS nber	Analytical Method	Result	Q	PQL	MDL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	e	76-	13-1	8260B	ND		1.0	0.30	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260B	ND		1.0	0.13	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260B	ND		1.0	0.22	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260B	ND		1.0	0.24	ug/L	1
Trichloroethene		79-	01-6	8260B	ND		1.0	0.16	ug/L	1
Trichlorofluoromethane		75-	69-4	8260B	ND		1.0	0.74	ug/L	1
Vinyl chloride		75-	01-4	8260B	0.97	J	1.0	0.50	ug/L	1
Xylenes (total)		1330-	20-7	8260B	ND		1.0	0.32	ug/L	1
Surrogate	Q %	Run 1 Recovery	Accepta Limi							
1,2-Dichloroethane-d4		100	70-13	0						
Bromofluorobenzene		95	70-13	0						
Toluene-d8		101	70-13	0						

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and ≥ MDL</td>P = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W""W"

Description: MW-9A

Date Sampled:04/26/2016 0950

Date Received: 04/27/2016

Laboratory ID: RD27083-008 Matrix: Aqueous

Method Method		Volatile Orga	anic Co	mpounds	by GC/N	IS			
Parameter Number Method Result Q POL MDL Units RA Acetone 67-64-1 62608 ND 20 1.6 ug/L 1 Bromodichloromethane 71-43-2 82608 ND 1.0 0.23 ug/L 1 Bromodichloromethane 75-27-4 82608 ND 1.0 0.33 ug/L 1 Bromodichloromethane (Methyl bromide) 78-93-3 82608 ND 1.0 0.45 ug/L 1 2-Butanone (MEK) 75-15-0 82608 ND 1.0 0.45 ug/L 1 Carbon disulfde 75-15-0 82608 ND 1.0 0.20 ug/L 1 Chloroberzane 108-90-7 82608 ND 1.0 0.21 ug/L 1 Chlorobertane 75-00-3 82608 ND 1.0 0.21 ug/L 1 Chlorobertane 76-66-3 82608 ND 1.0 0.17 ug/L 1<					Prep Date				
Parameter Number Network Result Q POL MDL Units RA Acatone 67-64-1 82608 ND 20 1.6 ugl. 1 Berzene 71-43-2 82608 ND 1.0 0.23 ugl. 1 Bromodichloromethane 75-27-4 82608 ND 1.0 0.33 ugl. 1 Bromodichloromethane 75-27-4 82608 ND 1.0 0.33 ugl. 1 Carbon disulfide 75-15-0 82608 ND 1.0 0.34 ugl. 1 Chardon disulfide 75-15-0 82608 ND 1.0 0.20 ugl. 1 Chiorobenzene 108-90-7 82608 ND 1.0 0.21 ugl. 1 Chiorobenzene 108-92-7 82608 ND 1.0 0.21 ugl. 1 Cyclorexane 108-82-8 82608 ND 1.0 0.17 ugl. 1			CAS	Analytical					
Acetone 67-64-1 8260B ND 20 1.6 ug/L 1 Benzene 71-43-2 8260B ND 1.0 0.21 ug/L 1 Bromodichloromethane 75-27-4 8260B ND 1.0 0.23 ug/L 1 Bromodichloromethane (Methyl bromide) 74-83-9 8260B ND 1.0 0.35 ug/L 1 Carbon tetracholide 65-23-5 8260B ND 1.0 0.45 ug/L 1 Chlorobenzene 108-90-7 8260B ND 1.0 0.20 ug/L 1 Chlorobenzene 108-90-7 8260B ND 1.0 0.21 ug/L 1 Chlorobenzene 108-90-7 8260B ND 1.0 0.21 ug/L 1 Chlorobenzene 106-82-7 8260B ND 1.0 0.21 ug/L 1 Cydohexane 10-82-7 8260B ND 1.0 0.37 ug/L 1	Parameter			-	Result Q	PQL	MDL	Units	Run
Banzene 71.43-2 82.60B ND 1.0 0.21 ug/L 1 Bromodichloromethane 75.27-4 82.60B ND 1.0 0.23 ug/L 1 Bromomethane (Methyl bromide) 74.83-9 82.60B ND 0.0 1.0 0.45 ug/L 1 Carbon disulfide 75.15-0 82.60B ND 1.0 0.45 ug/L 1 Carbon disulfide 75.15-0 82.60B ND 1.0 0.45 ug/L 1 Charbon tetrachloride 66.23-5 82.60B ND 1.0 0.20 ug/L 1 Chloromethane (Methyl chloride) 74.87-3 82.60B ND 1.0 0.21 ug/L 1 Cyclonexane 110.82-7 82.60B ND 1.0 0.30 ug/L 1 Cyclonexane 12-2.bromo-3-chloropropane (DBCP) 96-12-8 82.60B ND 1.0 0.30 ug/L 1 1.2-Dibromoethane (DBD) 106-43-7 82.60B	Acetone				ND	20	1.6	ug/L	1
Bromodichloromethane 75-27-4 82608 ND 1.0 0.23 ug/L 1 Bromodinom 75-25-2 82608 ND 1.0 0.35 ug/L 1 Bromodiname (Methyl bromide) 74-83-9 82608 ND 10 1.8 ug/L 1 Carbon disulfide 75-15-0 82608 ND 1.0 0.45 ug/L 1 Charbon disulfide 76-15-0 82608 ND 1.0 0.20 ug/L 1 Chlorobenzene 108-90-7 82608 ND 1.0 0.21 ug/L 1 Chlorobenzene 76-76-3 82608 ND 1.0 0.30 ug/L 1 Chlorobenzene 76-87-3 82608 ND 1.0 0.19 ug/L 1 Cyclohexane 106-82-4 82608 ND 1.0 0.57 ug/L 1 1.2-Dbromo-3-chloropropane (DBCP) 96-12-8 82608 ND 1.0 0.19 ug/L <	Benzene	71-4	43-2	8260B	ND		0.21	-	1
Bromotorm 75-25-2 8260B ND 1.0 0.35 ug/L 1 Bromomethane (MetKy) 74-83-9 8260B ND 1.0 0.19 ug/L 1 Carbon disulfide 75-15-0 8260B ND 1.0 0.45 ug/L 1 Carbon tetrachloride 66-23-5 8260B ND 1.0 0.20 ug/L 1 Chlorobenzene 108-90-7 8260B ND 1.0 0.21 ug/L 1 Chlorobertane 75-00-3 8260B ND 1.0 0.21 ug/L 1 Chloromethane (Methyl chloride) 74-87-3 8260B ND 1.0 0.30 ug/L 1 Cyclonexane 110-82-7 8260B ND 1.0 0.33 ug/L 1 12-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.57 ug/L 1 1.2-Dichorobethane 106-46-7 8260B ND 1.0 0.31 ug/L </td <td>Bromodichloromethane</td> <td>75-2</td> <td>27-4</td> <td>8260B</td> <td>ND</td> <td>1.0</td> <td>0.23</td> <td>-</td> <td>1</td>	Bromodichloromethane	75-2	27-4	8260B	ND	1.0	0.23	-	1
Bromomethane (Methyl bromide) 74-83-9 82608 ND 2.0 0.19 ug/L 1 2-Butanone (MEK) 78-93-3 82608 ND 1.0 0.45 ug/L 1 Carbon disulfide 56-23-5 82608 ND 1.0 0.45 ug/L 1 Chorobenzene 108-90-7 82608 ND 1.0 0.20 ug/L 1 Chlorobenzene 108-90-7 82608 ND 1.0 0.21 ug/L 1 Chlorobtanzene 67-66-3 82608 ND 1.0 0.21 ug/L 1 Chlorobtanzene 67-66-3 82608 ND 1.0 0.30 ug/L 1 Cyclohxane 101-82-7 82608 ND 1.0 0.17 ug/L 1 1.2-Dibromochancethane (EDB) 106-63-4 82608 ND 1.0 0.17 ug/L 1 1.2-Dichlorobenzene 106-64-7 82608 ND 1.0 0.19 ug/L	Bromoform	75-2	25-2	8260B	ND	1.0	0.35	-	1
2-Butanone (MEK) 78-93-3 82608 ND 10 1.8 ug/L 11 Carbon tertachloride 75-15-0 82608 ND 1.0 0.45 ug/L 11 Chlorobenzene 108-90-7 82608 ND 1.0 0.20 ug/L 11 Chlorobenzene 108-90-7 82608 ND 1.0 0.21 ug/L 11 Chlorobenzene 75-00-3 82608 ND 1.0 0.21 ug/L 11 Chloroform 67-66-3 82608 ND 1.0 0.30 ug/L 11 Cyclohexane 110-82-7 82608 ND 1.0 0.37 ug/L 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 82608 ND 1.0 0.17 ug/L 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 82608 ND 1.0 0.19 ug/L 1 1,2-Dichorobenzene 106-46-7 82608 ND 1.0 0.19 ug/	Bromomethane (Methyl bromide)	74-8	83-9	8260B	ND	2.0	0.19	-	1
Carbon disulfide 75-15-0 8260B ND 1.0 0.45 uy/L 1 Carbon tetrachloride 56-23-5 8260B ND 1.0 0.31 uy/L 1 Chlorobenzene 108-90-7 8260B ND 1.0 0.22 uy/L 1 Chloroberhane 75-00-3 8260B ND 1.0 0.21 uy/L 1 Chloroberhane 74-87-3 8260B ND 1.0 0.30 uy/L 1 Cyclohexane 110-82-7 8260B ND 1.0 0.33 uy/L 1 1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.19 uy/L 1 1.2-Dibromoethane (EDB) 106-93-4 8260B ND 1.0 0.19 uy/L 1 1.2-Dichlorobenzene 106-46-7 8260B ND 1.0 0.19 uy/L 1 1.2-Dichlorobenzene 75-71-8 8260B ND 1.0 0.33 uy/L <td>2-Butanone (MEK)</td> <td>78-9</td> <td>93-3</td> <td>8260B</td> <td>ND</td> <td>10</td> <td>1.8</td> <td>-</td> <td>1</td>	2-Butanone (MEK)	78-9	93-3	8260B	ND	10	1.8	-	1
Carbon tetrachloride 56-23-5 8260B ND 1.0 0.31 uy/L 1 Chlorobenzene 108-90-7 8260B ND 2.0 0.28 uy/L 1 Chlorobenzene 75-00-3 8260B ND 1.0 0.21 uy/L 1 Chloroform 67-66-3 8260B ND 1.0 0.19 uy/L 1 Cyclohexane 110-82-7 8260B ND 1.0 0.30 uy/L 1 1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.17 uy/L 1 1.2-Dibromochlane (EDB) 106-46-7 8260B ND 1.0 0.17 uy/L 1 1.3-Dichlorobenzene 95-50-1 8260B ND 1.0 0.48 uy/L 1 1.2-Dichlorobenzene 75-71-8 8260B ND 1.0 0.48 uy/L 1 1.2-Dichlorobenzene 75-34-3 8260B ND 1.0 0.33 uy/L	Carbon disulfide	75-	15-0	8260B	ND	1.0	0.45	-	1
Chlorobenzene 108-90-7 8260B ND 1.0 0.20 ug/L 1 Chloroterthane 75-00-3 8260B ND 2.0 0.28 ug/L 1 Chloroterthane 67-66-3 8260B ND 1.0 0.21 ug/L 1 Chloromethane (Methyl chloride) 74-87-3 8260B ND 1.0 0.30 ug/L 1 Cyclobexane 110-82-7 8260B ND 1.0 0.33 ug/L 1 1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.33 ug/L 1 1.2-Dibromo-schloromethane 124-48-1 8260B ND 1.0 0.17 ug/L 1 1.3-Dichlorobenzene 106-46-7 8260B ND 1.0 0.19 ug/L 1 1.2-Dichlorobenzene 95-50-1 8260B ND 1.0 0.46 ug/L 1 1.2-Dichlorotethane 175-71-8 8260B ND 1.0 0.31u	Carbon tetrachloride	56-2	23-5	8260B	ND	1.0	0.31	-	1
Chloroethane 75-00-3 8260B ND 2.0 0.28 ug/L 1 Chloroform 67-66-3 8260B ND 1.0 0.21 ug/L 1 Chloromethane (Methyl chloride) 74-87-3 8260B ND 1.0 0.30 ug/L 1 12-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.57 ug/L 1 12-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.17 ug/L 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.17 ug/L 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.19 ug/L 1 1,2-Dichlorobenzene 106-46-7 8260B ND 1.0 0.19 ug/L 1 1,2-Dichloroethane 75-71-8 8260B ND 1.0 0.23 ug/L 1 1,1-Dichloroethane 75-37+3 8260B ND	Chlorobenzene	108-9	90-7	8260B	ND	1.0	0.20	-	1
Chloroform 67-66-3 82608 ND 1.0 0.21 ug/L 1 Chloromethane (Methyl chloride) 74-87-3 82608 ND 1.0 0.19 ug/L 1 Cyclohexane 110-82-7 82608 ND 1.0 0.30 ug/L 1 12-Dibromo-s-chloropropane (DBCP) 96-12-8 82608 ND 1.0 0.23 ug/L 1 12-Dibromo-chloromethane 124-48-1 82608 ND 1.0 0.23 ug/L 1 1,4-Dichlorobenzene 106-93-4 82608 ND 1.0 0.17 ug/L 1 1,4-Dichlorobenzene 106-46-7 82608 ND 1.0 0.19 ug/L 1 1,2-Dichlorobenzene 95-50-1 82608 ND 1.0 0.46 ug/L 1 1,2-Dichloroethane 75-34-3 82608 ND 1.0 0.23 ug/L 1 1,1-Dichloroethane 75-35-4 82608 ND 1.0 0.33	Chloroethane				ND	2.0		-	1
Chloromethane (Methyl chloride) 74-87-3 82608 ND 1.0 0.19 ug/L 1 Cyclobexane 110-82-7 82608 ND 1.0 0.30 ug/L 1 1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 82608 ND 1.0 0.57 ug/L 1 1.2-Dibromo-schloromethane 124-48-1 82608 ND 1.0 0.17 ug/L 1 1.4-Dichlorobenzene 106-66-7 82608 ND 1.0 0.19 ug/L 1 1.2-Dichlorobenzene 541-73-1 82608 ND 1.0 0.46 ug/L 1 1.2-Dichlorobenzene 75-71-8 82608 ND 1.0 0.46 ug/L 1 1.2-Dichloroethane 75-74-8 82608 ND 1.0 0.33 ug/L 1 1.2-Dichloroethane 75-34-3 82608 ND 1.0 0.33 ug/L 1 1.2-Dichloroethane 75-35-4 82608 ND 1.0 <t< td=""><td>Chloroform</td><td>67-0</td><td>66-3</td><td></td><td>ND</td><td>1.0</td><td></td><td>-</td><td>1</td></t<>	Chloroform	67-0	66-3		ND	1.0		-	1
Cyclohexane 110-82-7 82608 ND 1.0 0.30 ug/L 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 82608 ND 1.0 0.57 ug/L 1 Dibromochloromethane 124-48-1 82608 ND 1.0 0.23 ug/L 1 1,2-Dibromochlane (EDB) 106-46-7 82608 ND 1.0 0.19 ug/L 1 1,3-Dichlorobenzene 541-73-1 82608 ND 1.0 0.49 ug/L 1 1,2-Dichlorobenzene 545-71-8 82608 ND 1.0 0.46 ug/L 1 1,2-Dichlorobenzene 75-71-8 82608 ND 1.0 0.23 ug/L 1 1,2-Dichloroethane 75-71-8 82608 ND 1.0 0.23 ug/L 1 1,2-Dichloroethene 107-06-2 82608 ND 1.0 0.33 ug/L 1 1,1-Dichloroethene 75-35-4 82608 ND 1.0 0.20	Chloromethane (Methyl chloride)				ND	1.0		-	1
1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.57 ug/L 1 Dibromochloromethane 124-48-1 8260B ND 1.0 0.23 ug/L 1 1,2-Dibromochloromethane 106-93-4 8260B ND 1.0 0.17 ug/L 1 1,4-Dichlorobenzene 106-46-7 8260B ND 1.0 0.19 ug/L 1 1,3-Dichlorobenzene 541-73-1 8260B ND 1.0 0.46 ug/L 1 1,2-Dichlorobenzene 95-50-1 8260B ND 1.0 0.46 ug/L 1 1,2-Dichloroethane 175-71-8 8260B ND 1.0 0.23 ug/L 1 1,1-Dichloroethane 75-34-3 8260B ND 1.0 0.33 ug/L 1 1,1-Dichloroethane 75-34-3 8260B ND 1.0 0.33 ug/L 1 1,1-Dichloroethane 75-35-4 8260B ND 1.0 0.31 ug/L 1 1,1-Dichloroethane 76-35-4 8260B	Cyclohexane				ND	1.0	0.30	-	1
Dibromochloromethane 124-48-1 8260B ND 1.0 0.23 ug/L 1 1,2-Dibromoethane (EDB) 106-93-4 8260B ND 1.0 0.17 ug/L 1 1,4-Dichlorobenzene 106-46-7 8260B ND 1.0 0.19 ug/L 1 1,3-Dichlorobenzene 95-50-1 8260B ND 1.0 0.46 ug/L 1 1,2-Dichlorobenzene 95-50-1 8260B ND 1.0 0.46 ug/L 1 1,2-Dichloroethane 75-71-8 8260B ND 1.0 0.23 ug/L 1 1,1-Dichloroethane 75-34-3 8260B ND 1.0 0.33 ug/L 1 1,1-Dichloroethane 75-35-4 8260B ND 1.0 0.31 ug/L 1 1,2-Dichloropthene 78-87-5 8260B ND 1.0 0.31 ug/L 1 1,2-Dichloroptopane 78-87-5 8260B ND 1.0 0.30 <td< td=""><td>-</td><td>96-1</td><td>12-8</td><td></td><td>ND</td><td>1.0</td><td></td><td>-</td><td>1</td></td<>	-	96-1	12-8		ND	1.0		-	1
1,4-Dichlorobenzene106-46-78260BND1.00.19ug/L11,3-Dichlorobenzene541-73-18260BND1.00.19ug/L11,2-Dichlorobenzene95-50-18260BND1.00.46ug/L1Dichlorodifluoromethane75-71-88260BND1.00.46ug/L11,2-Dichloroethane107-06-28260BND1.00.23ug/L11,1-Dichloroethane75-34-38260BND1.00.33ug/L1trans-1,2-Dichloroethene156-60-58260BND1.00.33ug/L1cis-1,2-Dichloroethene75-35-48260BND1.00.20ug/L11,1-Dichloroethene75-35-48260BND1.00.20ug/L11,2-Dichloroptopane78-87-58260BND1.00.22ug/L11,2-Dichloroptopane10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropane10061-01-58260BND1.00.21ug/L1Leynpopubenzene98-82-88260BND1.00.24ug/L1Leynpopubenzene98-82-88260BND1.00.24ug/L1Leynpopubenzene98-82-88260BND1.00.23ug/L1Hylbenzene163-04-48260BND1.00.23ug/L1Hylbenzene<		124-4	48-1		ND			-	1
1,4-Dichlorobenzene 106-46-7 8260B ND 1.0 0.19 ug/L 1 1,3-Dichlorobenzene 541-73-1 8260B ND 1.0 0.19 ug/L 1 1,2-Dichlorobenzene 95-50-1 8260B ND 1.0 0.46 ug/L 1 Dichlorobenzene 75-71-8 8260B ND 2.0 0.85 ug/L 1 1,2-Dichloroethane 107-06-2 8260B ND 1.0 0.23 ug/L 1 1,1-Dichloroethane 75-34-3 8260B ND 1.0 0.33 ug/L 1 1,1-Dichloroethene 156-60-5 8260B ND 1.0 0.33 ug/L 1 1,1-Dichloroptene 75-35-4 8260B ND 1.0 0.29 ug/L 1 1,2-Dichloroptopane 78-87-5 8260B ND 1.0 0.31 ug/L 1 1,2-Dichloropropane 10061-02-6 8260B ND 1.0 0.22 ug/L 1 1,2-Dichloropropane 100-41-4 8260B ND <td< td=""><td>1,2-Dibromoethane (EDB)</td><td>106-9</td><td>93-4</td><td>8260B</td><td>ND</td><td>1.0</td><td>0.17</td><td>-</td><td>1</td></td<>	1,2-Dibromoethane (EDB)	106-9	93-4	8260B	ND	1.0	0.17	-	1
1,3-Dichlorobenzene541-73-18260BND1.00.19ug/L11,2-Dichlorobenzene95-50-18260BND1.00.46ug/L1Dichlorodifluoromethane75-71-88260BND2.00.85ug/L11,2-Dichloroethane107-06-28260BND1.00.23ug/L11,1-Dichloroethane75-34-38260BND1.00.19ug/L11,1-Dichloroethane75-34-38260BND1.00.33ug/L1cis-1,2-Dichloroethene156-69-28260BND1.00.20ug/L11,1-Dichloroethene75-35-48260BND1.00.29ug/L11,2-Dichloroptopane78-87-58260BND1.00.29ug/L11,2-Dichloroptopane10061-02-68260BND1.00.22ug/L11,3-Dichloropropene10061-01-58260BND1.00.21ug/L11,3-Dichloropropene10061-01-68260BND1.00.21ug/L11,2-Hexanone1991-78-68260BND1.00.24ug/L11,1 1,2-Tentane1994-78-68260BND1.00.24ug/L11,1 1,2,2-Tentanone1984-82-88260BND1.00.24ug/L1Methyl exclate79-20-98260BND1.00.23ug/L1M	1,4-Dichlorobenzene	106-4	46-7	8260B	ND	1.0	0.19	-	1
1,2-Dichlorobenzene 95-50-1 8260B ND 1.0 0.46 ug/L 1 Dichlorodifluoromethane 75-71-8 8260B ND 2.0 0.85 ug/L 1 1,2-Dichloroethane 107-06-2 8260B ND 1.0 0.23 ug/L 1 1,1-Dichloroethane 75-34-3 8260B ND 1.0 0.33 ug/L 1 trans-1,2-Dichloroethene 156-60-5 8260B ND 1.0 0.33 ug/L 1 1,1-Dichloroethene 156-69-2 8260B ND 1.0 0.31 ug/L 1 1,1-Dichloroethene 75-35-4 8260B ND 1.0 0.31 ug/L 1 1,2-Dichloroptopane 78-87-5 8260B ND 1.0 0.22 ug/L 1 1,2-Dichloroptopene 10061-02-6 8260B ND 1.0 0.22 ug/L 1 1,2-Dichloroptopene 10061-01-5 8260B ND 1.0 0.24 ug/L 1 1 100-41-4 8260B ND 1	1,3-Dichlorobenzene	541-7	73-1	8260B	ND	1.0	0.19	-	1
Dichlorodifluoromethane 75-71-8 8260B ND 2.0 0.85 ug/L 1 1,2-Dichloroethane 107-06-2 8260B ND 1.0 0.23 ug/L 1 1,1-Dichloroethane 75-34-3 8260B ND 1.0 0.19 ug/L 1 trans-1,2-Dichloroethene 156-60-5 8260B ND 1.0 0.33 ug/L 1 1,1-Dichloroethene 156-59-2 8260B ND 1.0 0.20 ug/L 1 1,1-Dichloroethene 75-35-4 8260B ND 1.0 0.31 ug/L 1 1,2-Dichloropropane 78-87-5 8260B ND 1.0 0.22 ug/L 1 trans-1,3-Dichloropropene 10061-02-6 8260B ND 1.0 0.22 ug/L 1 trans-1,3-Dichloropropene 10061-02-6 8260B ND 1.0 0.21 ug/L 1 Ethylbenzene 100-01-14 8260B ND 1.0 0.24	1,2-Dichlorobenzene	95-	50-1	8260B	ND	1.0	0.46	-	1
1,2-Dichloroethane107-06-28260BND1.00.23ug/L11,1-Dichloroethane75-34-38260BND1.00.19ug/L1trans-1,2-Dichloroethene156-60-58260BND1.00.33ug/L1cis-1,2-Dichloroethene156-59-28260BND1.00.20ug/L11,1-Dichloroethene75-35-48260BND1.00.31ug/L11,2-Dichloroptopane78-87-58260BND1.00.22ug/L1trans-1,3-Dichloroptopene10061-02-68260BND1.00.22ug/L1trans-1,3-Dichloroptopene10061-01-58260BND1.00.21ug/L1Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND1.00.24ug/L1Isopropylbenzene98-82-88260BND1.00.24ug/L1Methyl acetate79-20-98260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND1.00.23ug/L1Methylene chloride75-09-28260BND1.00.23ug/L11,1,2,2-Tetrachloroethane100-42-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1 <td>Dichlorodifluoromethane</td> <td>75-</td> <td>71-8</td> <td>8260B</td> <td>ND</td> <td>2.0</td> <td>0.85</td> <td>-</td> <td>1</td>	Dichlorodifluoromethane	75-	71-8	8260B	ND	2.0	0.85	-	1
1,1-Dichloroethane75-34-38260BND1.00.19ug/L1trans-1,2-Dichloroethene156-60-58260BND1.00.33ug/L1cis-1,2-Dichloroethene156-59-28260BND1.00.20ug/L11,1-Dichloroethene75-35-48260BND1.00.20ug/L11,2-Dichloroptopane78-87-58260BND1.00.29ug/L1trans-1,3-Dichloroptopene10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloroptopene10061-01-58260BND1.00.21ug/L1cis-1,3-Dichloroptopene10061-01-68260BND1.00.21ug/L1Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND1.00.24ug/L1Isopropylbenzene98-82-88260BND1.00.24ug/L1Methyl acetate79-20-98260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND1.00.23ug/L1Methylene chloride75-09-28260BND1.00.22ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Methylene chloride75-09-28260BND1.00.13ug/L1Methyl	1,2-Dichloroethane	107-0	06-2	8260B	ND	1.0	0.23	-	1
trans-1,2-Dichloroethene156-60-58260BND1.00.33ug/L1cis-1,2-Dichloroethene156-59-28260BND1.00.20ug/L11,1-Dichloroethene75-35-48260BND1.00.31ug/L11,2-Dichloropropane78-87-58260BND1.00.29ug/L1trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropene10061-01-58260BND1.00.21ug/L1Ethylbenzene100-41-48260BND1.00.24ug/L12-Hexanone591-78-68260BND1.00.24ug/L1Isopropylbenzene98-82-88260BND1.00.24ug/L1Methyl acetate79-20-98260BND1.00.23ug/L1Methyl-2-pentanone108-10-18260BND1.00.29ug/L1Methyl-2-pentanone108-87-28260BND1.00.23ug/L1Methyl-2-pentanone108-87-28260BND1.00.42ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Methylene chloride75-09-28260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1 <td>1,1-Dichloroethane</td> <td>75-3</td> <td>34-3</td> <td>8260B</td> <td>ND</td> <td>1.0</td> <td>0.19</td> <td>-</td> <td>1</td>	1,1-Dichloroethane	75-3	34-3	8260B	ND	1.0	0.19	-	1
cis-1,2-Dichloroethene156-59-28260BND1.00.20ug/L11,1-Dichloroethene75-35-48260BND1.00.31ug/L11,2-Dichloropropane78-87-58260BND1.00.29ug/L1trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropene10061-01-58260BND1.00.20ug/L1Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND1.00.26ug/L1Isopropylbenzene98-82-88260BND1.00.24ug/L1Methyl acetate79-20-98260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND1.00.23ug/L1Methylecholoethane108-87-28260BND1.00.24ug/L1Methylene chloride75-09-28260BND1.00.23ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Methylene chloride75-09-28260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1	trans-1,2-Dichloroethene	156-6	60-5	8260B	ND	1.0	0.33		1
1,1-Dichloroethene75-35-48260BND1.00.31ug/L11,2-Dichloropropane78-87-58260BND1.00.29ug/L1trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropene10061-01-58260BND1.00.21ug/L1Ethylbenzene100-41-48260BND1.00.24ug/L12-Hexanone591-78-68260BND1.00.24ug/L1Isopropylbenzene98-82-88260BND1.00.24ug/L1Methyl acetate79-20-98260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND1.00.29ug/L1Methylcyclohexane108-87-28260BND1.00.42ug/L1Methylene chloride75-09-28260BND1.00.42ug/L11,1,2,2-Tetrachloroethane100-42-58260BND1.00.13ug/L1	cis-1,2-Dichloroethene	156-	59-2	8260B	ND	1.0	0.20		1
1,2-Dichloropropane78-87-58260BND1.00.29ug/L1trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropene10061-01-58260BND1.00.30ug/L1Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND1.00.26ug/L1Isopropylbenzene98-82-88260BND1.00.24ug/L1Methyl acetate79-20-98260BND1.00.23ug/L1Methyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L14-Methyl-2-pentanone108-87-28260BND1.00.29ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Styrene100-42-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1	1,1-Dichloroethene	75-3	35-4	8260B	ND	1.0	0.31	ug/L	1
trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropene10061-01-58260BND1.00.30ug/L1Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND100.26ug/L1Isopropylbenzene98-82-88260BND1.00.14ug/L1Methyl acetate79-20-98260BND1.00.23ug/L1Methyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L1Methyl-2-pentanone108-10-18260BND1.00.29ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Styrene100-42-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1	1,2-Dichloropropane	78-8	87-5	8260B	ND	1.0	0.29	ug/L	1
cis-1,3-Dichloropropene10061-01-58260BND1.00.30ug/L1Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND100.26ug/L1Isopropylbenzene98-82-88260BND1.00.14ug/L1Methyl acetate79-20-98260BND1.00.24ug/L1Methyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND100.29ug/L1Methylgene chloride75-09-28260BND1.00.42ug/L1Styrene100-42-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1	trans-1,3-Dichloropropene	10061-0	02-6	8260B	ND	1.0	0.22	-	1
Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND100.26ug/L1Isopropylbenzene98-82-88260BND1.00.14ug/L1Methyl acetate79-20-98260BND1.00.24ug/L1Methyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND100.29ug/L1Methylcyclohexane108-87-28260BND5.00.16ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Styrene100-42-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1		10061-0	01-5	8260B	ND	1.0	0.30	-	1
2-Hexanone 591-78-6 8260B ND 10 0.26 ug/L 1 Isopropylbenzene 98-82-8 8260B ND 1.0 0.14 ug/L 1 Methyl acetate 79-20-9 8260B ND 1.0 0.24 ug/L 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260B ND 1.0 0.23 ug/L 1 4-Methyl-2-pentanone 108-10-1 8260B ND 10 0.29 ug/L 1 Methylcyclohexane 108-87-2 8260B ND 10 0.29 ug/L 1 Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L 1 Styrene 100-42-5 8260B ND 1.0 0.42 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1	Ethylbenzene	100-4	41-4	8260B	ND	1.0	0.21	-	1
Isopropylbenzene 98-82-8 8260B ND 1.0 0.14 ug/L 1 Methyl acetate 79-20-9 8260B ND 1.0 0.24 ug/L 1 Methyl acetate 79-20-9 8260B ND 1.0 0.23 ug/L 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260B ND 10 0.23 ug/L 1 4-Methyl-2-pentanone 108-10-1 8260B ND 10 0.29 ug/L 1 Methylcyclohexane 108-87-2 8260B ND 5.0 0.16 ug/L 1 Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L 1 Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1		591-7	78-6	8260B	ND	10		-	1
Methyl tertiary butyl ether (MTBE) 1634-04-4 8260B ND 1.0 0.23 ug/L 1 4-Methyl-2-pentanone 108-10-1 8260B ND 10 0.29 ug/L 1 Methylcyclohexane 108-87-2 8260B ND 5.0 0.16 ug/L 1 Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L 1 Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1	Isopropylbenzene	98-8	82-8			1.0			1
Methyl tertiary butyl ether (MTBE) 1634-04-4 8260B ND 1.0 0.23 ug/L 1 4-Methyl-2-pentanone 108-10-1 8260B ND 10 0.29 ug/L 1 Methylcyclohexane 108-87-2 8260B ND 5.0 0.16 ug/L 1 Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L 1 Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1	Methyl acetate	79-2	20-9	8260B	ND	1.0	0.24	ug/L	1
4-Methyl-2-pentanone 108-10-1 8260B ND 10 0.29 ug/L 1 Methylcyclohexane 108-87-2 8260B ND 5.0 0.16 ug/L 1 Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L 1 Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1	Methyl tertiary butyl ether (MTBE)	1634-0	04-4	8260B	ND	1.0	0.23		1
Methylcyclohexane 108-87-2 8260B ND 5.0 0.16 ug/L 1 Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L 1 Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1	4-Methyl-2-pentanone	108-1	10-1	8260B	ND	10	0.29		1
Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L 1 Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1		108-8	87-2	8260B	ND	5.0			1
Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1		75-0	09-2						1
1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1	-					1.0	0.13		1
						1.0	0.13		1
									1
Toluene 108-88-3 8260B ND 1.0 0.24 ug/L 1									1

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Page: 20 of 56

Description: MW-9A

Date Sampled:04/26/2016 0950

Date Received: 04/27/2016

Laboratory ID: RD27083-008 Matrix: Aqueous

	Volati	le Orga	anic C	ompounds	by GC/MS	5			
RunPrep Method15030B	Analytical Method 8260B	Dilution 1	•	s is Date Analyst 016 1338 RAG	Prep Date	Batch 12119			
Parameter			CAS nber	Analytical Method	Result Q	PQL	MDL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	e	76-	13-1	8260B	ND	1.0	0.30	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260B	ND	1.0	0.13	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260B	ND	1.0	0.22	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260B	ND	1.0	0.24	ug/L	1
Trichloroethene		79-	01-6	8260B	ND	1.0	0.16	ug/L	1
Trichlorofluoromethane		75-	69-4	8260B	ND	1.0	0.74	ug/L	1
Vinyl chloride		75-	01-4	8260B	ND	1.0	0.50	ug/L	1
Xylenes (total)		1330-	20-7	8260B	ND	1.0	0.32	ug/L	1
Surrogate	Q %	Run 1 Recovery	Accepta Limi						
1,2-Dichloroethane-d4		97	70-13	0					
Bromofluorobenzene		96	70-13	0					
Toluene-d8		101	70-13	0					

 PQL = Practical quantitation limit
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range
 H = Out of holding time

 ND = Not detected at or above the MDL
 J = Estimated result < PQL and ≥ MDL</td>
 P = The RPD between two GC columns exceeds 40%
 N = Recovery is out of criteria

 Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"
 H = Out of holding time

Description: MW-10

Date Sampled:04/25/2016 1515

Date Received: 04/27/2016

Laboratory ID: RD27083-009

Laboratory ID: RD2/083-009)
Matrix: Aqueous	

Acetone 67-64-1 Ba200B ND 20 1.6 ugl. Berzene 71-43-2 8260B ND 1.0 0.21 ugl. Boromdichloromethane 75-27-4 8260B ND 1.0 0.23 ugl. Bromodichloromethane (Metry) 78-83-3 8260B ND 1.0 0.35 ugl. Carbon tertachloride 75-25-2 8260B ND 1.0 0.45 ugl. Carbon tertachloride 75-15-0 8260B ND 1.0 0.45 ugl. Charbon tertachloride 56-23-5 8260B ND 1.0 0.31 ugl. Chloroferhane 75-00-3 8260B ND 1.0 0.21 ugl. Chloroferhane 75-00-3 8260B ND 1.0 0.21 ugl. Chloroferhane 76-86-3 8260B ND 1.0 0.30 ugl. 12-Dbromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.37 </th <th></th> <th>Volati</th> <th>le Orga</th> <th>anic (</th> <th>Compounds</th> <th>by GC/M</th> <th>S</th> <th></th> <th></th> <th></th>		Volati	le Orga	anic (Compounds	by GC/M	S			
Parameter Number Nettoch Resturt Q PQL MDL Units Rt Axetrone 67.441 82608 ND 1.0 0.21 ugl. Bromodichloromethane 75.27.4 82608 ND 1.0 0.23 ugl. Bromodorm 75.27.4 82608 ND 1.0 0.35 ugl. Bromomethane (Methy bromide) 74.83.9 82608 ND 1.0 0.45 ugl. Carbon disulfide 75.15-0 82608 ND 1.0 0.41 ugl. Chorobenzene 108.0-7 82608 ND 1.0 0.21 ugl. Chlorobenzene 106.0-7 82608 ND 1.0 0.19 ugl. Cycloresane 106.0-7 82608 ND 1.0 0.19 ugl. Cycloresane 106.6-7 82608 ND 1.0 0.17 ugl. <	-					Prep Date				
Parameter Number Nettode Result Q PQL MQL Units Rt Acatone 67.441 28008 ND 1.0 0.21 ugl. Bromodorn 75.27.4 82608 ND 1.0 0.23 ugl. Bromodorn 75.27.4 82608 ND 1.0 0.35 ugl. Bromodorn 76.27.4 82608 ND 1.0 0.35 ugl. Caton disulfide 76.93.3 82608 ND 1.0 0.45 ugl. Caton disulfide 75.15-0 82608 ND 1.0 0.21 ugl. Chiorobarae 169.07 82608 ND 1.0 0.21 ugl. Chiorobarae 75.00-3 82608 ND 1.0 0.21 ugl. Chiorobarae 75.00-3 82608 ND 1.0 0.19 ugl. 12-Dibromodarae <				CAS	Analytical					
Acetone 67-64-1 8260B ND 20 1.6 ugft Benzene 71-43-2 8260B ND 1.0 0.21 ugft Bromodichloromethane 75-27-4 8260B ND 1.0 0.23 ugft Bromodichloromethane (Methyl bromide) 74-83-9 8260B ND 1.0 0.35 ugft 2-Butanone (MEK) 78-93-3 8260B ND 1.0 0.45 ugft 2-Butanone (MEK) 78-93-3 8260B ND 1.0 0.45 ugft Carbon tetrachinide 55-23-5 8260B ND 1.0 0.31 ugft Chiorobenzene 108-90-7 8260B ND 1.0 0.21 ugft Chiorobrane 78-67-3 8260B ND 1.0 0.21 ugft Chiorobrane 108-82-7 8260B ND 1.0 0.30 ugft 1.2-Dibromo-3-chioropropane (DBCP) 96-12-8 8260B ND 1.0 0.23 ugf	Parameter				-	Result Q	PQL	MDL	Units	Run
Bromodichloromethane 75-27-4 8260B ND 1.0 0.23 ug/L Bromodichmane (Methyl bromide) 75-25-2 8260B ND 1.0 0.35 ug/L 2-Butanone (MEK) 76-83-3 8260B ND 1.0 0.45 ug/L 2-Butanone (MEK) 75-16-0 8260B ND 1.0 0.45 ug/L Carbon tetrachloride 656-23-5 8260B ND 1.0 0.20 ug/L 0.10 Chlorobenzene 108-90-7 8260B ND 1.0 0.21 ug/L 0.10 Chlorotorm 67-66-3 8260B ND 1.0 0.20 ug/L 0.10 Cyclohexane 10-82-7 8260B ND 1.0 0.17 ug/L 0.12 Ug/L 0.12 Ug/L 0.10 0.17 ug/L 0.12 Ug/L 0.12 Ug/L 0.10 0.17 Ug/L 0.12 Ug/L 0.12 Ug/L 0.12 Ug/L 0.12 Ug/L	Acetone					ND	20	1.6	ug/L	1
Bromotorm 75-25-2 8260B ND 1.0 0.35 ug/L Bromomethane (MEK) 778-93-3 8260B ND 1.0 1.4 ug/L Carbon disulfide 75-15-0 8260B ND 1.0 0.45 ug/L Carbon tetrachloride 66-23-5 8260B ND 1.0 0.31 ug/L Chlorobarzene 108-90-7 8260B ND 1.0 0.21 ug/L Chlorobarzene 108-90-7 8260B ND 1.0 0.21 ug/L Chloroterhane 75-00-3 8260B ND 1.0 0.21 ug/L Cyclorexane 108-82-7 8260B ND 1.0 0.19 ug/L Cyclorexane 104-82-7 8260B ND 1.0 0.19 ug/L Cyclorexane 106-93-4 8260B ND 1.0 0.17 ug/L 1.2-Dibromochhane (DBCP) 96-55-1 8260B ND 1.0 0.46 ug/L 1.2-Dich	Benzene		71-	43-2	8260B	ND	1.0	0.21	ug/L	1
Bromomethane (Methy) bromide) 74-83-9 8260B ND 2.0 0.19 ug/L 2-Butanone (MEK) 78-93-3 8260B ND 1.0 0.45 ug/L Carbon disulfide 56-23-5 8260B ND 1.0 0.31 ug/L Chiorobtanzene 108-90-7 8260B ND 1.0 0.20 ug/L Chiorobtanzene 175-00-3 8260B ND 1.0 0.21 ug/L Chiorobtanzene 67-66-3 8260B ND 1.0 0.19 ug/L Chiorobtanzene 74-87-3 8260B ND 1.0 0.07 ug/L Cyclohexane 101-08-7 8260B ND 1.0 0.57 ug/L 1,2-Dibromo-3-chioropropane (DBCP) 96-12-8 8260B ND 1.0 0.19 ug/L 1,2-Dichorobenzene 106-48-7 8260B ND 1.0 0.19 ug/L 1,2-Dichorobenzene 55-50-1 8260B ND 1.0 0.19	Bromodichloromethane		75-	27-4	8260B	ND	1.0	0.23	ug/L	1
2-Butanone (MEK) 78-93-3 8260B ND 10 1.8 ug/L Carbon tetrachloride 75-15-0 8260B ND 1.0 0.45 ug/L Carbon tetrachloride 66-23-5 8260B ND 1.0 0.20 ug/L Chlorobenzene 108-90-7 8260B ND 1.0 0.20 ug/L Chlorobertane 75-06-3 8260B ND 1.0 0.21 ug/L Chlorobertane 67-66-3 8260B ND 1.0 0.21 ug/L Chloromethane (Methyl chloride) 74-87-3 8260B ND 1.0 0.21 ug/L 12-Dibromoshoropane (DBCP) 96-12-8 8260B ND 1.0 0.57 ug/L 1.4-Dichlorobenzene 106-46-7 8260B ND 1.0 0.19 ug/L 1.3-Dichlorobenzene 1.0 0.19 ug/L 1.2-Dichlorobenzene 55-11 8260B ND 1.0 0.19 ug/L 1.2-Dichlorobenzene 75-714 8260B ND <td>Bromoform</td> <td></td> <td>75-</td> <td>25-2</td> <td>8260B</td> <td>ND</td> <td>1.0</td> <td>0.35</td> <td>ug/L</td> <td>1</td>	Bromoform		75-	25-2	8260B	ND	1.0	0.35	ug/L	1
Carbon disulfide 75-15-0 8260B ND 1.0 0.45 ug/L Carbon tetrachloride 66-23-5 8260B ND 1.0 0.31 ug/L 0 Chlorobenzene 168-90-7 8260B ND 1.0 0.20 ug/L 0 Chloroethane 75-00-3 8260B ND 1.0 0.21 ug/L 0 Chloroethane (Methyl chloride) 74-87-3 8260B ND 1.0 0.30 ug/L 0 Cyclohexane 110-82-7 8260B ND 1.0 0.30 ug/L 0 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.17 ug/L 0 1,2-Dichlorobenzene 106-46-7 8260B ND 1.0 0.19 ug/L 0 1,3-Dichlorobenzene 106-46-7 8260B ND 1.0 0.19 ug/L 0 1,2-Dichlorobenzene 75-71-8 8260B ND 1.0 0.33 ug/L	Bromomethane (Methyl bromide)		74-	83-9	8260B	ND	2.0	0.19	ug/L	1
Carbon tetrachloride 56-23-5 82608 ND 1.0 0.31 ug/L Chlorobenzene 108-90-7 82608 ND 1.0 0.20 ug/L 0 Chlorobenzene 75-00-3 82608 ND 1.0 0.21 ug/L 0 Chloroform 67-66-3 82608 ND 1.0 0.19 ug/L 0 Cyclohexane 110-82-7 82608 ND 1.0 0.30 ug/L 0 1,2-Dibromochloromethane 124-48-1 82608 ND 1.0 0.23 ug/L 0 1,2-Dibromochloromethane 106-43-4 82608 ND 1.0 0.17 ug/L 0 1,4-Dichlorobenzene 106-44-7 82608 ND 1.0 0.19 ug/L 0 1,4-Dichlorobenzene 55-0-1 82608 ND 1.0 0.46 ug/L 0 1,2-Dichlorobenzene 75-71-8 82608 ND 1.0 0.31 ug/L 0 <td>2-Butanone (MEK)</td> <td></td> <td>78-</td> <td>93-3</td> <td>8260B</td> <td>ND</td> <td>10</td> <td>1.8</td> <td>ug/L</td> <td>1</td>	2-Butanone (MEK)		78-	93-3	8260B	ND	10	1.8	ug/L	1
Chlorobenzene 108-90-7 82608 ND 1.0 0.20 ug/L Chlorotertane 75-00-3 82608 ND 2.0 0.28 ug/L Chlorotorm 67-66-3 82608 ND 1.0 0.21 ug/L Chlorotertane (Methyl chloride) 74-87-3 82608 ND 1.0 0.30 ug/L Cyclohexane 110-82-7 82608 ND 1.0 0.57 ug/L 1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 82608 ND 1.0 0.17 ug/L 1.2 1.2-Dibromo-bane (EDB) 106-93-4 82608 ND 1.0 0.17 ug/L 1.3 1.4-Dichlorobenzene 164-46-7 82608 ND 1.0 0.19 ug/L 1.2 1.4-Dichlorodthane 75-71-8 82608 ND 1.0 0.46 ug/L 1.2 1.2-Dichloroethane 75-34-3 82608 ND 1.0 0.33 ug/L 1.2 1.2-Dichloroethene	Carbon disulfide		75-	15-0	8260B	ND	1.0	0.45	ug/L	1
Chloroethane 75-00-3 8260B ND 2.0 0.28 ug/L Chloroform 67-66-3 8260B ND 1.0 0.21 ug/L Chloromethane (Methyl chloride) 74-87-3 8260B ND 1.0 0.30 ug/L Cyclohexane 110-82-7 8260B ND 1.0 0.57 ug/L Dibromochloromethane 124-48-1 8260B ND 1.0 0.77 ug/L 1,2-Dibromoethane (EDB) 106-43-4 8260B ND 1.0 0.17 ug/L 1,2-Dichorobenzene 106-46-7 8260B ND 1.0 0.19 ug/L 1,2-Dichlorobenzene 106-45-7 8260B ND 1.0 0.46 ug/L 1 1,2-Dichlorobenzene 95-50-1 8260B ND 1.0 0.46 ug/L 1 1,2-Dichloroethane 107-06-2 8260B ND 1.0 0.33 ug/L 1 1,2-Dichloroethane 156-60-5 8260B	Carbon tetrachloride		56-	23-5	8260B	ND	1.0	0.31	ug/L	1
Chloroform 67-66-3 82608 ND 1.0 0.21 ug/L Chloromethane (Methyl chloride) 74-87-3 82608 ND 1.0 0.19 ug/L Cyclohexane 110-82-7 82608 ND 1.0 0.30 ug/L L2:Dibromo-3-chloropropane (DBCP) 96-12-8 82608 ND 1.0 0.57 ug/L 1.2-Dibromochloromethane 124-48-1 82608 ND 1.0 0.23 ug/L 1 1.4-Dichlorobenzene 164-67 82608 ND 1.0 0.19 ug/L 1 1.2-Dichlorobenzene 95-50-1 82608 ND 1.0 0.46 ug/L 1 1.2-Dichlorobenzene 95-50-1 82608 ND 1.0 0.23 ug/L 1 1.2-Dichlorotehane 75-71-8 82608 ND 1.0 0.33 ug/L 1 1.2-Dichloroethane 75-34-3 82608 ND 1.0 0.33 ug/L 1 1.2-Di	Chlorobenzene		108-	90-7	8260B	ND	1.0	0.20	ug/L	1
Chloromethane (Methyl chloride) 74-87-3 8260B ND 1.0 0.19 ug/L Cyclobexane 110-82-7 8260B ND 1.0 0.30 ug/L 1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.57 ug/L 1.2-Dibromo-3-chloropropane (EDB) 106-93-4 8260B ND 1.0 0.17 ug/L 1.4-Dichlorobenzene 106-46-7 8260B ND 1.0 0.19 ug/L 1.2 1.2-Dichlorobenzene 541-73-1 8260B ND 1.0 0.46 ug/L 1.2 Dichlorodifluoromethane 75-71-8 8260B ND 1.0 0.46 ug/L 1.2 1.2-Dichloroethane 1.0 0.23 ug/L 1.2 1.2-Dichloroethane 75-34-3 8260B ND 1.0 0.33 ug/L 1.2 1.2-Dichloroethane 1.0 0.23 ug/L 1.1 1.2-Dichloroethane 1.0 0.24 ug/L 1.2 1.2-Dichloroethane 1.0 0.	Chloroethane		75-	00-3	8260B	ND	2.0	0.28	ug/L	1
Cyclohexane 110-82-7 82608 ND 1.0 0.30 ug/L 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 82608 ND 1.0 0.57 ug/L Dibromochloromethane 124-48-1 82608 ND 1.0 0.23 ug/L 1,2-Dibromoethane (EDB) 106-93-4 82608 ND 1.0 0.17 ug/L 1,4-Dichlorobenzene 106-46-7 82608 ND 1.0 0.19 ug/L 1.1 1,2-Dibromothane 95-50-1 82608 ND 1.0 0.46 ug/L 1.2 1,2-Dichlorobenzene 95-50-1 82608 ND 1.0 0.46 ug/L 1.2 1,2-Dichloroethane 75-71-8 82608 ND 1.0 0.23 ug/L 1.2 1,2-Dichloroethane 75-34-3 82608 ND 1.0 0.33 ug/L 1.1 1,2-Dichloroethene 156-59-2 82608 ND 1.0 0.22 ug/L 1.2	Chloroform		67-	66-3	8260B	ND	1.0	0.21	ug/L	1
1.2-Dibromo-3-chloroprpane (DBCP) 96-12-8 8260B ND 1.0 0.57 ug/L Dibromochloromethane 124-48-1 8260B ND 1.0 0.23 ug/L 1.2-Dibromochloromethane 106-93-4 8260B ND 1.0 0.17 ug/L 1.4-Dichlorobenzene 106-64-7 8260B ND 1.0 0.19 ug/L 1 1.3-Dichlorobenzene 541-73-1 8260B ND 1.0 0.46 ug/L 1 1.2-Dichlorobenzene 95-50-1 8260B ND 1.0 0.46 ug/L 1 1.2-Dichlorobenzene 95-50-1 8260B ND 1.0 0.46 ug/L 1 1.2-Dichlorobenzene 75-71-8 8260B ND 1.0 0.23 ug/L 1 1.1-Dichloroethane 75-34-3 8260B ND 1.0 0.33 ug/L 1 1.2-Dichloroethene 75-35-4 8260B ND 1.0 0.20 ug/L 1 1.2-Dichloroptopene 10061-02-6 8260B ND 1.0 0.22<	Chloromethane (Methyl chloride)		74-	87-3	8260B	ND	1.0	0.19	-	1
Dibromochloromethane 124-48-1 8260B ND 1.0 0.23 ug/L 1,2-Dibromoethane (EDB) 106-93-4 8260B ND 1.0 0.17 ug/L 1,4-Dichlorobenzene 106-46-7 8260B ND 1.0 0.19 ug/L 1,3-Dichlorobenzene 541-73-1 8260B ND 1.0 0.49 ug/L 1,2-Dichlorobenzene 95-50-1 8260B ND 1.0 0.46 ug/L 1,2-Dichlorobethane 75-71-8 8260B ND 1.0 0.23 ug/L 1,1-Dichloroethane 75-71-8 8260B ND 1.0 0.23 ug/L 1,1-Dichloroethane 156-60-5 8260B ND 1.0 0.33 ug/L 1.1 1,1-Dichloroethene 156-60-5 8260B ND 1.0 0.20 ug/L 1.1 1,2-Dichloropropane 78-87-5 8260B ND 1.0 0.20 ug/L 1.2 1,2-Dichloropropane 10061-02-6 <	Cyclohexane		110-	82-7	8260B	ND	1.0	0.30	ug/L	1
1,2-Dibromoethane (EDB) 106-93-4 8260B ND 1.0 0.17 ug/L 1,4-Dichlorobenzene 106-46-7 8260B ND 1.0 0.19 ug/L 1,3-Dichlorobenzene 541-73-1 8260B ND 1.0 0.19 ug/L 1,2-Dichlorobenzene 95-50-1 8260B ND 1.0 0.46 ug/L 1,2-Dichlorobenzene 75-71-8 8260B ND 1.0 0.23 ug/L 1.1 1,2-Dichloroethane 107-06-2 8260B ND 1.0 0.33 ug/L 1.1 1,1-Dichloroethane 75-34-3 8260B ND 1.0 0.33 ug/L 1.1 1,1-Dichloroethane 75-35-4 8260B ND 1.0 0.31 ug/L 1.1 1,2-Dichloroptpane 78-87-5 8260B ND 1.0 0.31 ug/L 1.1 1,2-Dichloroptpene 10061-02-6 8260B ND 1.0 0.22 ug/L 1.2 1,3-Dichloroptpene 1006-101-5 8260B ND 1.0 0.24 ug/L <td>1,2-Dibromo-3-chloropropane (DB</td> <td>CP)</td> <td>96-</td> <td>12-8</td> <td>8260B</td> <td>ND</td> <td>1.0</td> <td>0.57</td> <td>ug/L</td> <td>1</td>	1,2-Dibromo-3-chloropropane (DB	CP)	96-	12-8	8260B	ND	1.0	0.57	ug/L	1
1.4-Dichlorobenzene106-46-78260BND1.00.19ug/L1.3-Dichlorobenzene541-73-18260BND1.00.19ug/L1.1.21.2-Dichlorobenzene95-50-18260BND1.00.46ug/L1.1.2Dichlorodifluoromethane75-71-88260BND2.00.85ug/L1.1.21.2-Dichloroethane107-06-28260BND1.00.19ug/L1.1.21.1-Dichloroethane75-34-38260BND1.00.19ug/L1.1.2trans-1.2-Dichloroethane156-60-58260BND1.00.33ug/L1.1.2trans-1.2-Dichloroethene156-60-58260BND1.00.31ug/L1.1.21.1-Dichloroethene156-60-58260BND1.00.31ug/L1.2.21.1-Dichloroethene156-60-58260BND1.00.22ug/L1.2.21.1-Dichloroethene156-60-58260BND1.00.20ug/L1.2.21.1-Dichloroethene156-60-58260BND1.00.20ug/L1.2.21.1-Dichloroptopane75-35-48260BND1.00.22ug/L1.2.21.2-Dichloroptopene10061-01-58260BND1.00.22ug/L1.2.21.2-Dichloroptopene10061-01-58260BND1.00.24ug/L1.2.21.2-Dichloroptopene10061-01-68260BND <td< td=""><td>Dibromochloromethane</td><td></td><td>124-</td><td>48-1</td><td>8260B</td><td>ND</td><td>1.0</td><td>0.23</td><td>ug/L</td><td>1</td></td<>	Dibromochloromethane		124-	48-1	8260B	ND	1.0	0.23	ug/L	1
1.3-Dichlorobenzene 541-73-1 8260B ND 1.0 0.19 ug/L 1.2-Dichlorobenzene 95-50-1 8260B ND 1.0 0.46 ug/L 10 1.2-Dichlorobenzene 95-50-1 8260B ND 2.0 0.85 ug/L 10 1.2-Dichloroethane 107-06-2 8260B ND 1.0 0.19 ug/L 10 1.1-Dichloroethane 75-34-3 8260B ND 1.0 0.13 ug/L 10 1.1-Dichloroethane 75-34-3 8260B ND 1.0 0.33 ug/L 10 cis-1,2-Dichloroethene 156-60-5 8260B ND 1.0 0.31 ug/L 11 1,2-Dichloroethene 75-35-4 8260B ND 1.0 0.20 ug/L 11 1.2-Dichloroptopane 78-87-5 8260B ND 1.0 0.21 ug/L 11 1.2-Dichloroptopane 10061-01-5 8260B ND 1.0 0.21 ug/L 12 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.0	1,2-Dibromoethane (EDB)		106-	93-4	8260B	ND	1.0	0.17	ug/L	1
1,2-Dichlorobenzene 95-50-1 8260B ND 1.0 0.46 ug/L Dichlorodifluoromethane 75-71-8 8260B ND 2.0 0.85 ug/L 1,2-Dichloroethane 107-06-2 8260B ND 1.0 0.23 ug/L 1 1,1-Dichloroethane 75-34-3 8260B ND 1.0 0.33 ug/L 1 trans-1,2-Dichloroethene 156-60-5 8260B ND 1.0 0.33 ug/L 1 1,1-Dichloroethene 156-53-2 8260B ND 1.0 0.31 ug/L 1 1,1-Dichloroethene 75-35-4 8260B ND 1.0 0.22 ug/L 1 1,1-Dichloroethene 75-35-4 8260B ND 1.0 0.21 ug/L 1 1,2-Dichloropropane 78-87-5 8260B ND 1.0 0.22 ug/L 1 trans-1,3-Dichloropropene 10061-01-5 8260B ND 1.0 0.24 ug/L 1 Ethylbenzene 100-41-4 8260B ND 1.0 0.2	1,4-Dichlorobenzene		106-	46-7	8260B	ND	1.0	0.19	ug/L	1
Dicklorodifluoromethane 75-71-8 8260B ND 2.0 0.85 ug/L 1,2-Dichloroethane 107-06-2 8260B ND 1.0 0.23 ug/L 1 1,1-Dichloroethane 75-34-3 8260B ND 1.0 0.19 ug/L 1 trans-1,2-Dichloroethene 156-60-5 8260B ND 1.0 0.33 ug/L 1 icis-1,2-Dichloroethene 156-69-2 8260B ND 1.0 0.20 ug/L 1 1,1-Dichloroethene 156-59-2 8260B ND 1.0 0.33 ug/L 1 1,2-Dichloropthene 156-59-2 8260B ND 1.0 0.20 ug/L 1 1,2-Dichloroptopane 75-35-4 8260B ND 1.0 0.22 ug/L 1 1,2-Dichloropropene 10061-01-5 8260B ND 1.0 0.22 ug/L 1 Ethylbenzene 10061-01-5 8260B ND 1.0 0.21 ug/L	1,3-Dichlorobenzene		541-	73-1	8260B	ND	1.0	0.19	ug/L	1
1,2-Dichloroethane 107-06-2 8260B ND 1.0 0.23 ug/L 1,1-Dichloroethane 75-34-3 8260B ND 1.0 0.19 ug/L trans-1,2-Dichloroethene 156-60-5 8260B ND 1.0 0.33 ug/L cis-1,2-Dichloroethene 156-59-2 8260B ND 1.0 0.31 ug/L 1,1-Dichloroethene 75-35-4 8260B ND 1.0 0.31 ug/L 1,2-Dichloroptopane 78-87-5 8260B ND 1.0 0.29 ug/L 1 1,2-Dichloroptopane 10061-02-6 8260B ND 1.0 0.22 ug/L 1 cis-1,3-Dichloropropene 10061-01-5 8260B ND 1.0 0.22 ug/L 1 cis-1,3-Dichloropropene 10061-02-6 8260B ND 1.0 0.21 ug/L 1 Ethylbenzene 100-41-4 8260B ND 1.0 0.21 ug/L 1 Sopropylbenzene 98-82-8 8260B ND 1.0 0.24 ug/L 1	1,2-Dichlorobenzene		95-	50-1	8260B	ND	1.0	0.46	ug/L	1
1,1-Dichloroethane75-34-38260BND1.00.19ug/Ltrans-1,2-Dichloroethene156-60-58260BND1.00.33ug/L10cis-1,2-Dichloroethene156-59-28260BND1.00.20ug/L101,1-Dichloroethene75-35-48260BND1.00.31ug/L101,2-Dichloroptopane78-87-58260BND1.00.29ug/L101,2-Dichloroptopane10061-02-68260BND1.00.22ug/L10cis-1,3-Dichloroptopene10061-01-58260BND1.00.21ug/L10cis-1,3-Dichloroptopene10061-01-58260BND1.00.21ug/L10cis-1,3-Dichloroptopene100-41-48260BND1.00.21ug/L102-Hexanone591-78-68260BND1.00.24ug/L101sopropylbenzene98-82-88260BND1.00.24ug/L10Methyl acetate79-20-98260BND1.00.23ug/L10Methyl triary butyl ether (MTBE)1634-04-48260BND1.00.29ug/L10Methyl-2-pentanone108-70-28260BND1.00.29ug/L10Methylene chloride75-09-28260BND1.00.13ug/L10Methylene chloride75-09-28260BND1.00.13ug/L<	Dichlorodifluoromethane		75-	71-8	8260B	ND	2.0	0.85	ug/L	1
trans-1,2-Dichloroethene156-60-58260BND1.00.33ug/Lcis-1,2-Dichloroethene156-59-28260BND1.00.20ug/L1,1-Dichloroethene75-35-48260BND1.00.31ug/L1,2-Dichloropropane78-87-58260BND1.00.22ug/Ltrans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/Lcis-1,3-Dichloropropene10061-01-58260BND1.00.30ug/LEthylbenzene100-41-48260BND1.00.21ug/L2-Hexanone591-78-68260BND1.00.24ug/LIsopropylbenzene98-82-88260BND1.00.24ug/LMethyl acetate79-20-98260BND1.00.23ug/LMethyl-2-pentanone108-10-18260BND1.00.23ug/LMethyl-2-pentanone108-87-28260BND1.00.24ug/LMethyl-2-pentanone108-87-28260BND1.00.42ug/LMethyl-2-pentanone108-87-28260BND1.00.42ug/LMethyl-2-pentanone108-87-28260BND1.00.42ug/LMethylene chloride75-09-28260BND1.00.13ug/LMethylene chloride79-34-58260BND1.00.13ug/L1,1,2,2-Tetrachloroethane79-34-58260B </td <td>1,2-Dichloroethane</td> <td></td> <td>107-</td> <td>06-2</td> <td>8260B</td> <td>ND</td> <td>1.0</td> <td>0.23</td> <td>ug/L</td> <td>1</td>	1,2-Dichloroethane		107-	06-2	8260B	ND	1.0	0.23	ug/L	1
cis-1,2-Dichloroethene 156-59-2 8260B ND 1.0 0.20 ug/L 1,1-Dichloroethene 75-35-4 8260B ND 1.0 0.31 ug/L 1 1,2-Dichloropropane 78-87-5 8260B ND 1.0 0.29 ug/L 1 trans-1,3-Dichloropropene 10061-02-6 8260B ND 1.0 0.22 ug/L 1 cis-1,3-Dichloropropene 10061-01-5 8260B ND 1.0 0.30 ug/L 1 Ethylbenzene 100-41-4 8260B ND 1.0 0.21 ug/L 1 2-Hexanone 591-78-6 8260B ND 1.0 0.24 ug/L 1 lsopropylbenzene 98-82-8 8260B ND 1.0 0.24 ug/L 1 Methyl acetate 79-20-9 8260B ND 1.0 0.23 ug/L 1 Methyl-2-pentanone 108-10-1 8260B ND 1.0 0.29 ug/L 1 </td <td>1,1-Dichloroethane</td> <td></td> <td>75-</td> <td>34-3</td> <td>8260B</td> <td>ND</td> <td>1.0</td> <td>0.19</td> <td>ug/L</td> <td>1</td>	1,1-Dichloroethane		75-	34-3	8260B	ND	1.0	0.19	ug/L	1
cis-1,2-Dichloroethene 156-59-2 8260B ND 1.0 0.20 ug/L 1,1-Dichloroethene 75-35-4 8260B ND 1.0 0.31 ug/L 1 1,2-Dichloropropane 78-87-5 8260B ND 1.0 0.29 ug/L 1 trans-1,3-Dichloropropene 10061-02-6 8260B ND 1.0 0.22 ug/L 1 cis-1,3-Dichloropropene 10061-01-5 8260B ND 1.0 0.30 ug/L 1 Ethylbenzene 100-41-4 8260B ND 1.0 0.21 ug/L 1 2-Hexanone 591-78-6 8260B ND 1.0 0.24 ug/L 1 lsopropylbenzene 98-82-8 8260B ND 1.0 0.24 ug/L 1 Methyl acetate 79-20-9 8260B ND 1.0 0.23 ug/L 1 Methyl-2-pentanone 108-10-1 8260B ND 1.0 0.29 ug/L 1 </td <td>trans-1,2-Dichloroethene</td> <td></td> <td>156-</td> <td>60-5</td> <td>8260B</td> <td>ND</td> <td>1.0</td> <td>0.33</td> <td>ug/L</td> <td>1</td>	trans-1,2-Dichloroethene		156-	60-5	8260B	ND	1.0	0.33	ug/L	1
1,2-Dichloropropane78-87-58260BND1.00.29ug/Ltrans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L100cis-1,3-Dichloropropene10061-01-58260BND1.00.30ug/L100Ethylbenzene100-41-48260BND1.00.21ug/L1002-Hexanone591-78-68260BND1.00.26ug/L100Isopropylbenzene98-82-88260BND1.00.14ug/L100Methyl acetate79-20-98260BND1.00.23ug/L100Methyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.29ug/L100Methyl-2-pentanone108-87-28260BND1.00.42ug/L100Methylene chloride75-09-28260BND1.00.42ug/L100Methylene chloride75-09-28260BND1.00.42ug/L100Methylene chloride75-09-28260BND1.00.13ug/L11,1,2,2-Tetrachloroethane0.13ug/L11,1,2,2-Tetrachloroethane100-42-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane127-18-48260BND1.00.22ug/L11,1,2,2-11,1,2,2-1,1,2,2-1,1,2,2-1,1,2,2-1,1,00,22ug/L11,1,2,2-1,1,2,2-1,1,00,22ug/L11,1,21,1,1,2- <td>cis-1,2-Dichloroethene</td> <td></td> <td>156-</td> <td>59-2</td> <td>8260B</td> <td>ND</td> <td>1.0</td> <td>0.20</td> <td>ug/L</td> <td>1</td>	cis-1,2-Dichloroethene		156-	59-2	8260B	ND	1.0	0.20	ug/L	1
trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/Lcis-1,3-Dichloropropene10061-01-58260BND1.00.30ug/L10Ethylbenzene100-41-48260BND1.00.21ug/L102-Hexanone591-78-68260BND100.26ug/L10Isopropylbenzene98-82-88260BND1.00.14ug/L10Methyl acetate79-20-98260BND1.00.23ug/L10Methyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L104-Methyl-2-pentanone108-10-18260BND100.29ug/L10Methylene chloride75-09-28260BND1.00.42ug/L10Methylene chloride75-09-28260BND1.00.13ug/L11,1,2,2-Tetrachloroethane0.13ug/L11,1,2,2-Tetrachloroethane127-18-48260BND1.00.13ug/L11,1,2,21.00.13ug/L11,1,2127-18-48260BND1.00.22ug/L11,1,2,2127-18-48260BND1.00.22ug/L11,1,2127-18-48260BND1.00.22ug/L11,1,2127-18-4127-18-41260BND1.00.22ug/L11,1,2127-18-4127-18-41260BND1.00.22ug/L11,1,2127-18-4127-18-4	1,1-Dichloroethene		75-	35-4	8260B	ND	1.0	0.31	ug/L	1
cis-1,3-Dichloropropene10061-01-58260BND1.00.30ug/LEthylbenzene100-41-48260BND1.00.21ug/L2-Hexanone591-78-68260BND100.26ug/LIsopropylbenzene98-82-88260BND1.00.14ug/LMethyl acetate79-20-98260BND1.00.24ug/LMethyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L4-Methyl-2-pentanone108-10-18260BND100.29ug/LMethylgene chloride75-09-28260BND1.00.42ug/LStyrene100-42-58260BND1.00.42ug/L1,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/LTetrachloroethene127-18-48260BND1.00.22ug/L	1,2-Dichloropropane		78-	87-5	8260B	ND	1.0	0.29	ug/L	1
Ethylbenzene100-41-48260BND1.00.21ug/L2-Hexanone591-78-68260BND100.26ug/LIsopropylbenzene98-82-88260BND1.00.14ug/LMethyl acetate79-20-98260BND1.00.24ug/LMethyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L4-Methyl-2-pentanone108-10-18260BND100.29ug/LMethylgreichexane108-87-28260BND1.00.42ug/LMethylene chloride75-09-28260BND1.00.42ug/LStyrene100-42-58260BND1.00.13ug/L1,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/LTetrachloroethene127-18-48260BND1.00.22ug/L	trans-1,3-Dichloropropene		10061-	02-6	8260B	ND	1.0	0.22	ug/L	1
2-Hexanone 591-78-6 8260B ND 10 0.26 ug/L 1 Isopropylbenzene 98-82-8 8260B ND 1.0 0.14 ug/L 1 Methyl acetate 79-20-9 8260B ND 1.0 0.24 ug/L 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260B ND 1.0 0.23 ug/L 1 4-Methyl-2-pentanone 108-10-1 8260B ND 10 0.29 ug/L 1 Methylcyclohexane 108-87-2 8260B ND 5.0 0.16 ug/L 1 Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L 1 Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1 Tetrachloroethene 127-18-4 8260B ND 1.0 0.22 ug/L 1	cis-1,3-Dichloropropene		10061-	01-5	8260B	ND	1.0	0.30	ug/L	1
Isopropylbenzene 98-82-8 8260B ND 1.0 0.14 ug/L Methyl acetate 79-20-9 8260B ND 1.0 0.24 ug/L 10 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260B ND 1.0 0.23 ug/L 10 4-Methyl-2-pentanone 108-10-1 8260B ND 10 0.29 ug/L 10 Methylcyclohexane 108-87-2 8260B ND 5.0 0.16 ug/L 10 Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L 11,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 11,1,2,2-Tetrachloroethane 127-18-4 8260B ND 1.0 0.12 ug/L 11,12 11	Ethylbenzene		100-	41-4	8260B	ND	1.0	0.21	ug/L	1
Isopropylbenzene 98-82-8 8260B ND 1.0 0.14 ug/L Methyl acetate 79-20-9 8260B ND 1.0 0.24 ug/L 10 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260B ND 1.0 0.23 ug/L 10 4-Methyl-2-pentanone 108-10-1 8260B ND 10 0.29 ug/L 10 Methylcyclohexane 108-87-2 8260B ND 5.0 0.16 ug/L 10 Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L 11,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 11,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 11,1,2,2-Tetrachloroethane 127-18-4 8260B ND 1.0 0.22 ug/L 11,1	2-Hexanone		591-	78-6	8260B	ND	10	0.26	ug/L	1
Methyl acetate 79-20-9 8260B ND 1.0 0.24 ug/L 4 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260B ND 1.0 0.23 ug/L 4 4-Methyl-2-pentanone 108-10-1 8260B ND 10 0.29 ug/L 4 Methylcyclohexane 108-87-2 8260B ND 5.0 0.16 ug/L 4 Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L 4 Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 4 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 4 Tetrachloroethene 127-18-4 8260B ND 1.0 0.22 ug/L 4	Isopropylbenzene		98-	82-8	8260B	ND	1.0	0.14		1
Methyl tertiary butyl ether (MTBE) 1634-04-4 8260B ND 1.0 0.23 ug/L 4 4-Methyl-2-pentanone 108-10-1 8260B ND 10 0.29 ug/L 4 Methylcyclohexane 108-87-2 8260B ND 5.0 0.16 ug/L 4 Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L 4 Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 4 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 4 Tetrachloroethene 127-18-4 8260B ND 1.0 0.22 ug/L 4			79-	20-9	8260B	ND	1.0	0.24		1
4-Methyl-2-pentanone 108-10-1 8260B ND 10 0.29 ug/L 10 Methylcyclohexane 108-87-2 8260B ND 5.0 0.16 ug/L 10 Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L 10 Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 11,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 11 Tetrachloroethene 127-18-4 8260B ND 1.0 0.22 ug/L 11	Methyl tertiary butyl ether (MTBE)		1634-	04-4	8260B	ND	1.0	0.23		1
Methylcyclohexane 108-87-2 8260B ND 5.0 0.16 ug/L Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L 10 Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 11,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 11 Tetrachloroethene 127-18-4 8260B ND 1.0 0.22 ug/L 11	4-Methyl-2-pentanone		108-	10-1	8260B	ND	10	0.29		1
Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1 Tetrachloroethene 127-18-4 8260B ND 1.0 0.22 ug/L 1			108-	87-2		ND	5.0			1
Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 1.1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1.1,2,2-Tetrachloroethane 127-18-4 8260B ND 1.0 0.13 ug/L 1.1,2,2-Tetrachloroethane 127-18-4 8260B ND 1.0 0.22 ug/L 1.1,2,2-Tetrachloroethane			75-	09-2		ND	1.0			1
1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L Tetrachloroethene 127-18-4 8260B ND 1.0 0.22 ug/L	•					ND	1.0			1
Tetrachloroethene 127-18-4 8260B ND 1.0 0.22 ug/L										1
-										1
Toluene 108-88-3 8260B ND 1.0 0.24 ug/L	Toluene				8260B	ND	1.0	0.24		1

PQL = Practical quantitation limit B = Detected in the method blank E = Quantitation of compound exceeded the calibration range H = Out of holding time ND = Not detected at or above the MDL J = Estimated result < PQL and \geq MDL P = The RPD between two GC columns exceeds 40% N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Page: 22 of 56

Description: MW-10

Date Sampled:04/25/2016 1515

Date Received: 04/27/2016

Laboratory ID: RD27083-009 Matrix: Aqueous

	Volati	le Orga	anic (Compounds	by GC/N	IS			
RunPrep Method15030B	Analytical Method 8260B	Dilution 1		vsis Date Analyst 2016 1401 RAG	Prep Date	e Batch 12119			
Parameter			CAS nber	Analytical Method	Result Q	PQL	MDL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	e	76-	13-1	8260B	ND	1.0	0.30	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260B	ND	1.0	0.13	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260B	ND	1.0	0.22	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260B	ND	1.0	0.24	ug/L	1
Trichloroethene		79-	01-6	8260B	ND	1.0	0.16	ug/L	1
Trichlorofluoromethane		75-	69-4	8260B	1.2	1.0	0.74	ug/L	1
Vinyl chloride		75-	01-4	8260B	ND	1.0	0.50	ug/L	1
Xylenes (total)		1330-	20-7	8260B	ND	1.0	0.32	ug/L	1
Surrogate	Q %	Run 1 Recovery	Accept Lin	ance nits					
1,2-Dichloroethane-d4		99	70-1	30					
Bromofluorobenzene		95	70-1	30					

1,2-Dichloroethane-d4	99	70-130
Bromofluorobenzene	95	70-130
Toluene-d8	102	70-130

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W""

Description: MW-11

Date Sampled:04/26/2016 1145

5030B

Date Received: 04/27/2016

Run Prep Method

2

Laboratory ID: RD27083-010 Matrix: Aqueous

						•		
Volati	le Orqa	anic	Compounds	by GC/M	S			
Analytical Method 8260B		Analy	/sis Date Analyst /2016 1801 RAG		Batch 12245			
		CAS nber	Analytical Method	Result Q	PQL	MDL	Units	Run
	67-	64-1	8260B	ND	100	8.1	ug/L	2
	71-	43-2	8260B	9.2	5.0	1.1	ua/L	2

	CAS	Analytical						
Parameter	Number	Method	Result	Q	PQL	MDL	Units	Run
Acetone	67-64-1	8260B	ND		100	8.1	ug/L	2
Benzene	71-43-2	8260B	9.2		5.0	1.1	ug/L	2
Bromodichloromethane	75-27-4	8260B	ND		5.0	1.2	ug/L	2
Bromoform	75-25-2	8260B	ND		5.0	1.8	ug/L	2
Bromomethane (Methyl bromide)	74-83-9	8260B	ND		10	0.95	ug/L	2
2-Butanone (MEK)	78-93-3	8260B	ND		50	9.1	ug/L	2
Carbon disulfide	75-15-0	8260B	ND		5.0	2.3	ug/L	2
Carbon tetrachloride	56-23-5	8260B	ND		5.0	1.6	ug/L	2
Chlorobenzene	108-90-7	8260B	ND		5.0	1.0	ug/L	2
Chloroethane	75-00-3	8260B	ND		10	1.4	ug/L	2
Chloroform	67-66-3	8260B	1.7	J	5.0	1.1	ug/L	2
Chloromethane (Methyl chloride)	74-87-3	8260B	ND		5.0	0.95	ug/L	2
Cyclohexane	110-82-7	8260B	ND		5.0	1.5	ug/L	2
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND		5.0	2.8	ug/L	2
Dibromochloromethane	124-48-1	8260B	ND		5.0	1.2	ug/L	2
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND		5.0	0.85	ug/L	2
1,4-Dichlorobenzene	106-46-7	8260B	ND		5.0	0.95	ug/L	2
1,3-Dichlorobenzene	541-73-1	8260B	ND		5.0	0.95	ug/L	2
1,2-Dichlorobenzene	95-50-1	8260B	ND		5.0	2.3	ug/L	2
Dichlorodifluoromethane	75-71-8	8260B	ND		10	4.3	ug/L	2
1,2-Dichloroethane	107-06-2	8260B	ND		5.0	1.2	ug/L	2
1,1-Dichloroethane	75-34-3	8260B	ND		5.0	0.95	ug/L	2
trans-1,2-Dichloroethene	156-60-5	8260B	ND		5.0	1.7	ug/L	2
cis-1,2-Dichloroethene	156-59-2	8260B	7.5		5.0	1.0	ug/L	2
1,1-Dichloroethene	75-35-4	8260B	9.0		5.0	1.6	ug/L	2
1,2-Dichloropropane	78-87-5	8260B	ND		5.0	1.5	ug/L	2
trans-1,3-Dichloropropene	10061-02-6	8260B	ND		5.0	1.1	ug/L	2
cis-1,3-Dichloropropene	10061-01-5	8260B	ND		5.0	1.5	ug/L	2
Ethylbenzene	100-41-4	8260B	ND		5.0	1.1	ug/L	2
2-Hexanone	591-78-6	8260B	ND		50	1.3	ug/L	2
Isopropylbenzene	98-82-8	8260B	ND		5.0	0.70	ug/L	2
Methyl acetate	79-20-9	8260B	ND		5.0	1.2	ug/L	2
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND		5.0	1.2	ug/L	2
4-Methyl-2-pentanone	108-10-1	8260B	ND		50	1.5	ug/L	2
Methylcyclohexane	108-87-2	8260B	ND		25	0.80	ug/L	2
Methylene chloride	75-09-2	8260B	ND		5.0	2.1	ug/L	2
Styrene	100-42-5	8260B	ND		5.0	0.65	ug/L	2
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND		5.0	0.65	ug/L	2
Tetrachloroethene	127-18-4	8260B	5.8		5.0	1.1	ug/L	2
							-	

PQL = Practical quantitation limit B = Detected in the method blank E = Quantitation of compound exceeded the calibration range H = Out of holding time P = The RPD between two GC columns exceeds 40%

ND = Not detected at or above the MDL J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Page: 24 of 56

Description: MW-11

Date Sampled:04/26/2016 1145

Date Received: 04/27/2016

Laboratory ID: RD27083-010 Matrix: Aqueous

Valatila Organia Compounds by GC/MS

	Volatile Organic Compounds by GC/MS											
RunPrep Method25030B	Analytical Metho 8260E		-	s Date Analyst 16 1801 RAG	Prep Date	Batch 12245						
Parameter		C Num	AS ber	Analytical Method	Result Q	PQL	MDL	Units	Run			
1,1,2-Trichloro-1,2,2-Trifluoroethane	Э	76-1	3-1	8260B	ND	5.0	1.5	ug/L	2			
1,2,4-Trichlorobenzene		120-8	2-1	8260B	ND	5.0	0.65	ug/L	2			
1,1,2-Trichloroethane		79-0	0-5	8260B	ND	5.0	1.1	ug/L	2			
1,1,1-Trichloroethane		71-5	5-6	8260B	ND	5.0	1.2	ug/L	2			
Trichloroethene		79-0	1-6	8260B	760	5.0	0.80	ug/L	2			
Trichlorofluoromethane		75-6	9-4	8260B	ND	5.0	3.7	ug/L	2			
Vinyl chloride		75-0	1-4	8260B	ND	5.0	2.5	ug/L	2			
Xylenes (total)		1330-2	0-7	8260B	ND	5.0	1.6	ug/L	2			
Surrogate	Q %	Run 2 A Recovery	cceptan Limit									
1,2-Dichloroethane-d4		106	70-130									
Bromofluorobenzene		102	70-130)								
Toluene-d8		105	70-130)								

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and ≥ MDL</td>P = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W""W"

Description: MW-12

Date Sampled:04/26/2016 1110

Date Received: 04/27/2016

Laboratory ID: RD27083-011 Matrix: Aqueous

Run Pı 1	rep Method 5030B	Analytical Method 8260B	Dilution 1	•	vsis Date Analyst 2016 1424 RAG	Prep	Date	Batch 12119			
Damana				CAS	Analytical	Desult	0	DOI	MDI	Unite	
Parame				nber	Method	Result	Q	PQL	MDL	Units	Run
Acetone				64-1	8260B	ND		20	1.6	ug/L	1
Benzene				43-2	8260B	ND		1.0	0.21	ug/L	1
	lichloromethane			27-4	8260B	ND		1.0	0.23	ug/L	1
Bromofo				25-2	8260B	ND		1.0	0.35	ug/L	1
	nethane (Methyl bromide)			83-9	8260B	ND		2.0	0.19	ug/L	1
	one (MEK)			93-3	8260B	ND		10	1.8	ug/L	1
	disulfide			15-0	8260B	ND		1.0	0.45	ug/L	1
	tetrachloride			23-5	8260B	ND		1.0	0.31	ug/L	1
Chlorob			108-		8260B	ND		1.0	0.20	ug/L	1
Chloroe				00-3	8260B	ND		2.0	0.28	ug/L	1
Chlorofo				66-3	8260B	ND		1.0	0.21	ug/L	1
Chlorom	nethane (Methyl chloride)			87-3	8260B	ND		1.0	0.19	ug/L	1
Cyclohe			110-		8260B	ND		1.0	0.30	ug/L	1
	omo-3-chloropropane (DBC	CP)		12-8	8260B	ND		1.0	0.57	ug/L	1
	ochloromethane		124-		8260B	ND		1.0	0.23	ug/L	1
1,2-Dibr	omoethane (EDB)		106-	93-4	8260B	ND		1.0	0.17	ug/L	1
1,4-Dich	nlorobenzene		106-		8260B	ND		1.0	0.19	ug/L	1
1,3-Dich	nlorobenzene		541-	73-1	8260B	ND		1.0	0.19	ug/L	1
1,2-Dich	nlorobenzene		95-	50-1	8260B	ND		1.0	0.46	ug/L	1
Dichloro	odifluoromethane		75-	71-8	8260B	ND		2.0	0.85	ug/L	1
1,2-Dich	hloroethane		107-	06-2	8260B	0.28	J	1.0	0.23	ug/L	1
1,1-Dich	nloroethane		75-	34-3	8260B	ND		1.0	0.19	ug/L	1
trans-1,2	2-Dichloroethene		156-	60-5	8260B	ND		1.0	0.33	ug/L	1
cis-1,2-[Dichloroethene		156-	59-2	8260B	ND		1.0	0.20	ug/L	1
1,1-Dicł	hloroethene		75-	35-4	8260B	13		1.0	0.31	ug/L	1
1,2-Dich	nloropropane		78-	87-5	8260B	ND		1.0	0.29	ug/L	1
trans-1,3	3-Dichloropropene		10061-	02-6	8260B	ND		1.0	0.22	ug/L	1
cis-1,3-[Dichloropropene		10061-	01-5	8260B	ND		1.0	0.30	ug/L	1
Ethylber	nzene		100-	41-4	8260B	ND		1.0	0.21	ug/L	1
2-Hexar	none		591-	78-6	8260B	ND		10	0.26	ug/L	1
Isopropy	ylbenzene		98-	82-8	8260B	ND		1.0	0.14	ug/L	1
Methyl a	acetate		79-	20-9	8260B	ND		1.0	0.24	ug/L	1
-	ertiary butyl ether (MTBE)		1634-		8260B	ND		1.0	0.23	ug/L	1
4-Methy	/l-2-pentanone		108-	10-1	8260B	ND		10	0.29	ug/L	1
	yclohexane		108-		8260B	ND		5.0	0.16	ug/L	1
	ne chloride			09-2	8260B	ND		1.0	0.42	ug/L	1
Styrene			100-		8260B	ND		1.0	0.13	ug/L	1
-	Tetrachloroethane			34-5	8260B	ND		1.0	0.13	ug/L	1
	loroethene		127-		8260B	ND		1.0	0.22	ug/L	1
Toluene			108-		8260B	ND		1.0	0.24	ug/L	1

PQL = Practical quantitation limit B = Detected in the method blank E = Quantitation of compound exceeded the calibration range H = Out of holding time P = The RPD between two GC columns exceeds 40% N = Recovery is out of criteria

ND = Not detected at or above the MDL J = Estimated result < PQL and \geq MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Page: 26 of 56

Description: MW-12

Date Sampled:04/26/2016 1110

Date Received: 04/27/2016

Laboratory ID: RD27083-011 Matrix: Aqueous

	Volat	ile Orga	anic C	ompounds	by G	C/MS	5			
RunPrep Method15030B	Analytical Method 8260B	Dilution 1		is Date Analyst D16 1424 RAG	Prep	Date	Batch 12119			
Parameter			CAS nber	Analytical Method	Result	Q	PQL	MDL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	e	76-	13-1	8260B	ND		1.0	0.30	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260B	ND		1.0	0.13	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260B	0.29	J	1.0	0.22	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260B	ND		1.0	0.24	ug/L	1
Trichloroethene		79-	01-6	8260B	0.49	J	1.0	0.16	ug/L	1
Trichlorofluoromethane		75-	69-4	8260B	ND		1.0	0.74	ug/L	1
Vinyl chloride		75-	01-4	8260B	ND		1.0	0.50	ug/L	1
Xylenes (total)		1330-	20-7	8260B	ND		1.0	0.32	ug/L	1
Surrogate	Q %	Run 1 Recovery	Acceptar Limit							
1,2-Dichloroethane-d4		100	70-13	0						
Bromofluorobenzene		96	70-13	0						
Toluene-d8		103	70-13	0						

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and ≥ MDL</td>P = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"with a "W"N = Recovery is out of criteria

Description: MW-13

Date Sampled:04/26/2016 1815

Date Received: 04/27/2016

Laboratory ID: RD27083-012

,	
Matrix: A	queous

Run	Prep Method	Analytical Method	Dilution	Analy	sis Date Analyst	Prep	Date	Batch			
1	5030B	8260B	1	04/29/2	2016 1448 RAG			12119			
_				CAS	Analytical						
	meter			nber	Method	Result	Q	PQL	MDL	Units	Run
Aceto				64-1	8260B	ND		20	1.6	ug/L	1
Benz				43-2	8260B	ND		1.0	0.21	ug/L	1
	odichloromethane			27-4	8260B	ND		1.0	0.23	ug/L	1
	noform			25-2	8260B	ND		1.0	0.35	ug/L	1
	omethane (Methyl bromide)			83-9	8260B	ND		2.0	0.19	ug/L	1
	tanone (MEK)			93-3	8260B	ND		10	1.8	ug/L	1
Carb	on disulfide		75-	15-0	8260B	ND		1.0	0.45	ug/L	1
Carb	on tetrachloride		56-	23-5	8260B	ND		1.0	0.31	ug/L	1
Chlor	robenzene		108-	90-7	8260B	ND		1.0	0.20	ug/L	1
Chlor	roethane		75-	00-3	8260B	ND		2.0	0.28	ug/L	1
Chlor	roform		67-	66-3	8260B	ND		1.0	0.21	ug/L	1
Chlor	romethane (Methyl chloride)		74-	87-3	8260B	ND		1.0	0.19	ug/L	1
Cyclo	bhexane		110-	82-7	8260B	ND		1.0	0.30	ug/L	1
1,2-D)ibromo-3-chloropropane (DBC	P)	96-	12-8	8260B	ND		1.0	0.57	ug/L	1
Dibro	omochloromethane		124-	48-1	8260B	ND		1.0	0.23	ug/L	1
1,2-D	Dibromoethane (EDB)		106-	93-4	8260B	ND		1.0	0.17	ug/L	1
1,4-D	Dichlorobenzene		106-	46-7	8260B	ND		1.0	0.19	ug/L	1
1,3-D	Dichlorobenzene		541-	73-1	8260B	ND		1.0	0.19	ug/L	1
1,2-D	Dichlorobenzene		95-	50-1	8260B	ND		1.0	0.46	ug/L	1
Dichl	orodifluoromethane		75-	71-8	8260B	ND		2.0	0.85	ug/L	1
1,2-D	Dichloroethane		107-	06-2	8260B	ND		1.0	0.23	ug/L	1
1,1-D	Dichloroethane		75-	34-3	8260B	0.25	J	1.0	0.19	ug/L	1
trans	-1,2-Dichloroethene		156-	60-5	8260B	ND		1.0	0.33	ug/L	1
cis-1,	,2-Dichloroethene		156-	59-2	8260B	ND		1.0	0.20	ug/L	1
1,1-D	Dichloroethene		75-	35-4	8260B	0.40	J	1.0	0.31	ug/L	1
1,2-D	Dichloropropane		78-	87-5	8260B	ND		1.0	0.29	ug/L	1
trans	-1,3-Dichloropropene		10061-	02-6	8260B	ND		1.0	0.22	ug/L	1
	3-Dichloropropene		10061-	01-5	8260B	ND		1.0	0.30	ug/L	1
	benzene		100-	41-4	8260B	ND		1.0	0.21	ug/L	1
	xanone		591-	78-6	8260B	ND		10	0.26	ug/L	1
	opylbenzene			82-8	8260B	ND		1.0	0.14	ug/L	1
•	yl acetate		79-	20-9	8260B	ND		1.0	0.24	ug/L	1
	yl tertiary butyl ether (MTBE)		1634-		8260B	ND		1.0	0.23	ug/L	1
	thyl-2-pentanone		108-		8260B	ND		10	0.29	ug/L	1
	ylcyclohexane		108-		8260B	ND		5.0	0.16	ug/L	1
	ylene chloride			09-2	8260B	ND		1.0	0.42	ug/L	1
Styre	•		100-		8260B	ND		1.0	0.12	ug/L	1
•	,2-Tetrachloroethane			34-5	8260B	ND		1.0	0.13	ug/L	1
	ichloroethene		127-		8260B	ND		1.0	0.13	ug/L	1
	ene		127-		8260B	ND		1.0	0.22	ug/L	1

PQL = Practical quantitation limit B = Detected in the method blank E = Quantitation of compound exceeded the calibration range H = Out of holding time ND = Not detected at or above the MDL J = Estimated result < PQL and \geq MDL P = The RPD between two GC columns exceeds 40% N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Page: 28 of 56

Description: MW-13

Date Sampled:04/26/2016 1815

Date Received: 04/27/2016

Toluene-d8

	Volati	le Orga		Sompounds		13			
RunPrep Method15030B	Analytical Method 8260B	Dilution 1		vsis Date Analyst 2016 1448 RAG	Prep Date	Batch 12119			
Parameter			CAS nber	Analytical Method	Result Q	PQL	MDL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	е	76-	13-1	8260B	ND	1.0	0.30	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260B	ND	1.0	0.13	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260B	ND	1.0	0.22	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260B	ND	1.0	0.24	ug/L	1
Trichloroethene		79-	01-6	8260B	ND	1.0	0.16	ug/L	1
Trichlorofluoromethane		75-	69-4	8260B	ND	1.0	0.74	ug/L	1
Vinyl chloride		75-	01-4	8260B	ND	1.0	0.50	ug/L	1
Xylenes (total)		1330-	20-7	8260B	ND	1.0	0.32	ug/L	1
Surrogate	Q %	Run 1 Recovery	Accept Lin	ance nits					
1,2-Dichloroethane-d4		101	70-1	30					
Bromofluorobenzene		94	70-1	30					

70-130

102

PQL = Practical quantitation limit B = Detected in the method blank E = Quantitation of compound exceeded the calibration range H = Out of holding time ND = Not detected at or above the MDL J = Estimated result < PQL and \geq MDL P = The RPD between two GC columns exceeds 40% N = Recovery is out of criteria Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Laboratory ID: RD27083-012 Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Description: MW-14

Date Sampled:04/25/2016 1710

Date Received: 04/27/2016

Laboratory ID: RD27083-013

Matrix: Aqueous

Run 1	Prep Method 5030B	Analytical Method 8260B	Dilution 1		sis Date Analyst 2016 1511 RAG	Prep	Date	Batch 12119			
Para	meter			CAS nber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Aceto	one		67-	64-1	8260B	1.7	J	20	1.6	ug/L	1
Benz	ene		71-	43-2	8260B	0.64	J	1.0	0.21	ug/L	1
Brom	odichloromethane		75-	27-4	8260B	ND		1.0	0.23	ug/L	1
Brom	oform		75-	25-2	8260B	ND		1.0	0.35	ug/L	1
Brom	omethane (Methyl bromide)		74-	83-9	8260B	ND		2.0	0.19	ug/L	1
2-But	anone (MEK)		78-	93-3	8260B	ND		10	1.8	ug/L	1
Carbo	on disulfide		75-	15-0	8260B	ND		1.0	0.45	ug/L	1
Carbo	on tetrachloride		56-	23-5	8260B	ND		1.0	0.31	ug/L	1
Chlor	obenzene		108-	90-7	8260B	ND		1.0	0.20	ug/L	1
Chlor	oethane		75-	00-3	8260B	ND		2.0	0.28	ug/L	1
Chlor	oform		67-	66-3	8260B	ND		1.0	0.21	ug/L	1
Chlor	omethane (Methyl chloride)		74-	87-3	8260B	ND		1.0	0.19	ug/L	1
Cyclo	hexane		110-	82-7	8260B	ND		1.0	0.30	ug/L	1
1,2-D	ibromo-3-chloropropane (DBC	CP)	96-	12-8	8260B	ND		1.0	0.57	ug/L	1
Dibro	mochloromethane		124-	48-1	8260B	ND		1.0	0.23	ug/L	1
1,2-D	ibromoethane (EDB)		106-	93-4	8260B	ND		1.0	0.17	ug/L	1
1,4-D	ichlorobenzene		106-	46-7	8260B	ND		1.0	0.19	ug/L	1
1,3-D	ichlorobenzene		541-	73-1	8260B	ND		1.0	0.19	ug/L	1
1,2-D	ichlorobenzene		95-	50-1	8260B	ND		1.0	0.46	ug/L	1
Dichlo	orodifluoromethane		75-	71-8	8260B	ND		2.0	0.85	ug/L	1
1,2-D	lichloroethane		107-	06-2	8260B	ND		1.0	0.23	ug/L	1
1,1-D	lichloroethane		75-	34-3	8260B	ND		1.0	0.19	ug/L	1
trans-	-1,2-Dichloroethene		156-	60-5	8260B	ND		1.0	0.33	ug/L	1
cis-1,	2-Dichloroethene		156-	59-2	8260B	ND		1.0	0.20	ug/L	1
1,1-D	ichloroethene		75-	35-4	8260B	0.44	J	1.0	0.31	ug/L	1
1,2-D	lichloropropane		78-	87-5	8260B	ND		1.0	0.29	ug/L	1
trans-	-1,3-Dichloropropene		10061-	02-6	8260B	ND		1.0	0.22	ug/L	1
cis-1,	3-Dichloropropene		10061-	01-5	8260B	ND		1.0	0.30	ug/L	1
Ethyl	benzene		100-	41-4	8260B	ND		1.0	0.21	ug/L	1
2-He>	kanone		591-	78-6	8260B	ND		10	0.26	ug/L	1
Isopro	opylbenzene		98-	82-8	8260B	ND		1.0	0.14	ug/L	1
Methy	yl acetate		79-	20-9	8260B	ND		1.0	0.24	ug/L	1
Meth	yl tertiary butyl ether (MTBE	E)	1634-	04-4	8260B	1.0		1.0	0.23	ug/L	1
4-Met	thyl-2-pentanone		108-	10-1	8260B	0.58	J	10	0.29	ug/L	1
Methy	ylcyclohexane		108-	87-2	8260B	ND		5.0	0.16	ug/L	1
	ylene chloride		75-	09-2	8260B	ND		1.0	0.42	ug/L	1
Styre	ne		100-	42-5	8260B	ND		1.0	0.13	ug/L	1
•	2-Tetrachloroethane			34-5	8260B	ND		1.0	0.13	ug/L	1
	chloroethene		127-		8260B	ND		1.0	0.22	ug/L	1
Tolue			108-		8260B	ND		1.0	0.24	ug/L	1

PQL = Practical quantitation limit B = Detected in the method blank E = Quantitation of compound exceeded the calibration range H = Out of holding time

ND = Not detected at or above the MDL J = Estimated result < PQL and \geq MDL

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Page: 30 of 56

Description: MW-14

Date Sampled:04/25/2016 1710

Date Received: 04/27/2016

Laboratory ID: RD27083-013 Matrix: Aqueous

	Volati	le Orga	anic C	ompounds	by GC/MS	6			
RunPrepMethod15030B	Analytical Method 8260B	Dilution 1		i s Date Analyst 016 1511 RAG	Prep Date	Batch 12119			
Parameter			CAS nber	Analytical Method	Result Q	PQL	MDL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	e	76-	13-1	8260B	ND	1.0	0.30	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260B	ND	1.0	0.13	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260B	ND	1.0	0.22	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260B	ND	1.0	0.24	ug/L	1
Trichloroethene		79-	01-6	8260B	ND	1.0	0.16	ug/L	1
Trichlorofluoromethane		75-	69-4	8260B	ND	1.0	0.74	ug/L	1
Vinyl chloride		75-	01-4	8260B	2.1	1.0	0.50	ug/L	1
Xylenes (total)		1330-	20-7	8260B	ND	1.0	0.32	ug/L	1
Surrogate	Q %	Run 1 Recovery	Accepta Limi						
1,2-Dichloroethane-d4		100	70-13	0					
Bromofluorobenzene		92	70-13	0					
Toluene-d8		99	70-13	0					

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and ≥ MDL</td>P = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"with a "W"N = Recovery is out of criteria

Description: DUP-1

Date Sampled:04/25/2016

Date Received: 04/27/2016

Laboratory ID: RD27083-014 Matrix: Aqueous

	Volati	le Orga	anic (Compounds	by G	C/MS	5			
RunPrep Method15030B	Analytical Method 8260B	Dilution 1	-	vsis Date Analyst 2016 1535 RAG	Prep	Date	Batch 12119			
			CAS	Analytical						
Parameter			nber	Method	Result	Q	PQL	MDL	Units	Run
Acetone			64-1	8260B	ND		20	1.6	ug/L	1
Benzene		71-	43-2	8260B	ND		1.0	0.21	ug/L	1
Bromodichloromethane		75-	27-4	8260B	ND		1.0	0.23	ug/L	1
Bromoform		75-	25-2	8260B	ND		1.0	0.35	ug/L	1
Bromomethane (Methyl bromide)		74-	83-9	8260B	ND		2.0	0.19	ug/L	1
2-Butanone (MEK)		78-	93-3	8260B	ND		10	1.8	ug/L	1
Carbon disulfide			15-0	8260B	ND		1.0	0.45	ug/L	1
Carbon tetrachloride		56-	23-5	8260B	ND		1.0	0.31	ug/L	1
Chlorobenzene		108-		8260B	ND		1.0	0.20	ug/L	1
Chloroethane			00-3	8260B	ND		2.0	0.28	ug/L	1
Chloroform		67-	66-3	8260B	ND		1.0	0.21	ug/L	1
Chloromethane (Methyl chloride)			87-3	8260B	ND		1.0	0.19	ug/L	1
Cyclohexane		110-		8260B	ND		1.0	0.30	ug/L	1
1,2-Dibromo-3-chloropropane (DBC	CP)		12-8	8260B	ND		1.0	0.57	ug/L	1
Dibromochloromethane	,	124-		8260B	ND		1.0	0.23	ug/L	1
1,2-Dibromoethane (EDB)		106-		8260B	ND		1.0	0.17	ug/L	1
1,4-Dichlorobenzene		106-	46-7	8260B	ND		1.0	0.19	ug/L	1
1,3-Dichlorobenzene		541-		8260B	ND		1.0	0.19	ug/L	1
1,2-Dichlorobenzene		95-	50-1	8260B	ND		1.0	0.46	ug/L	1
Dichlorodifluoromethane		75-	71-8	8260B	ND		2.0	0.85	ug/L	1
1,2-Dichloroethane		107-		8260B	ND		1.0	0.23	ug/L	1
1,1-Dichloroethane			34-3	8260B	0.25	J	1.0	0.19	ug/L	1
trans-1,2-Dichloroethene		156-		8260B	ND	-	1.0	0.33	ug/L	1
cis-1,2-Dichloroethene		156-	59-2	8260B	ND		1.0	0.20	ug/L	1
1,1-Dichloroethene		75-	35-4	8260B	0.44	J	1.0	0.31	ug/L	1
1,2-Dichloropropane		78-	87-5	8260B	ND		1.0	0.29	ug/L	1
trans-1,3-Dichloropropene		10061-	02-6	8260B	ND		1.0	0.22	ug/L	1
cis-1,3-Dichloropropene		10061-		8260B	ND		1.0	0.30	ug/L	1
Ethylbenzene		100-		8260B	ND		1.0	0.21	ug/L	1
2-Hexanone		591-	78-6	8260B	ND		10	0.26	ug/L	1
Isopropylbenzene			82-8	8260B	ND		1.0	0.14	ug/L	1
Methyl acetate		79-	20-9	8260B	ND		1.0	0.24	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-		8260B	ND		1.0	0.23	ug/L	1
4-Methyl-2-pentanone		108-		8260B	ND		10	0.29	ug/L	1
Methylcyclohexane		108-		8260B	ND		5.0	0.16	ug/L	1
Methylene chloride			09-2	8260B	ND		1.0	0.42	ug/L	1
Styrene		100-		8260B	ND		1.0	0.13	ug/L	1
1,1,2,2-Tetrachloroethane			34-5	8260B	ND		1.0	0.13	ug/L	1
Tetrachloroethene		127-		8260B	ND		1.0	0.22	ug/L	1
Toluene		108-		8260B	ND		1.0	0.24	ug/L	1
		100		SECOD				0.27	ч <u>9</u> , с	•

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Page: 32 of 56

Description: DUP-1

Date Sampled:04/25/2016

Toluene-d8

Date Received: 04/27/2016

Laboratory ID: RD27083-014 Matrix: Aqueous

	Volatile Organic Compounds by GC/MS											
Run Prep Method 1 5030B	Analytical Method 8260B	Dilution 1		sis Date Analyst 2016 1535 RAG	Prep Date	Batch 12119						
Parameter			CAS nber	Analytical Method	Result Q	PQL	MDL	Units	Run			
1,1,2-Trichloro-1,2,2-Trifluoroethan	e	76-	13-1	8260B	ND	1.0	0.30	ug/L	1			
1,2,4-Trichlorobenzene		120-8	82-1	8260B	ND	1.0	0.13	ug/L	1			
1,1,2-Trichloroethane		79-0	00-5	8260B	ND	1.0	0.22	ug/L	1			
1,1,1-Trichloroethane		71-	55-6	8260B	ND	1.0	0.24	ug/L	1			
Trichloroethene		79-0	01-6	8260B	ND	1.0	0.16	ug/L	1			
Trichlorofluoromethane		75-0	69-4	8260B	ND	1.0	0.74	ug/L	1			
Vinyl chloride		75-0	01-4	8260B	ND	1.0	0.50	ug/L	1			
Xylenes (total)		1330-2	20-7	8260B	ND	1.0	0.32	ug/L	1			
Surrogate		Run 1 Recovery	Accepta Lim									
1,2-Dichloroethane-d4		100	70-13	30								
Bromofluorobenzene		98	70-13	30								

70-130

100

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and ≥ MDL</td>P = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaWhere applicable, all soil sample analysis are reported on a dry weight basis unless flageet with a "W"with a "W"N = Recovery is out of criteria

Description: DUP-2

Date Sampled:04/26/2016

Date Received: 04/27/2016

Laboratory ID: RD27083-015 Matrix: Aqueous

Run Prep Method Analysical Method Dilution Analysical bate Analystic Prep Date Batch 121119 Parameter Kumber Method Result Q PQL MOL Units Run Acatione 67-64-1 82608 ND 1.0 0.21 ug/L 1 Benzene 71-43-2 82608 ND 1.0 0.23 ug/L 1 Bromodichioromethane 75-27-4 82608 ND 1.0 0.23 ug/L 1 Bromodichioromethane 75-27-4 82608 ND 1.0 0.45 ug/L 1 Bromodina 75-25-2 82608 ND 1.0 0.44 ug/L 1 Carbon tetrachoride 55-25 82608 ND 1.0 0.31 ug/L 1 Chiorobenzane 108-90-7 82608 ND 1.0 0.21 ug/L 1 Chiorobenzane 108-90-7 82608 ND 1.0 0.31 ug/L 1 <th></th> <th colspan="12">Volatile Organic Compounds by GC/MS</th>		Volatile Organic Compounds by GC/MS											
Parameter Number Neatore PGL PGL UPL UPL N Avatore 674641 82608 ND 1.0 0.21 uyl. 1 Bromadichloromethane 75-27-4 82608 ND 1.0 0.23 uyl. 1 Bromodichloromethane 75-27-4 82608 ND 1.0 0.33 uyl. 1 Bromodichloromethane 76-32-3 82608 ND 1.0 0.45 uyl. 1 Carbon disulfide 76-33-3 82608 ND 1.0 0.45 uyl. 1 Carbon disulfide 75-15-0 82608 ND 1.0 0.23 uyl. 1 Chorobenzane 108-90-7 82608 ND 1.0 0.24 uyl. 1 Chlorobenzane 75-07-3 82608 ND 1.0 0.21 uyl. 1 Chlorobenzane 76-06-3 82608 ND 1.0 0.17 uyl. 1	-						Prep Date						
Parameter Number Neatore PGL PGL UPL UPL N Avatore 674641 82608 ND 1.0 0.21 uyl. 1 Bromadichloromethane 75-27-4 82608 ND 1.0 0.23 uyl. 1 Bromodichloromethane 75-27-4 82608 ND 1.0 0.33 uyl. 1 Bromodichloromethane 76-32-3 82608 ND 1.0 0.45 uyl. 1 Carbon disulfide 76-33-3 82608 ND 1.0 0.45 uyl. 1 Carbon disulfide 75-15-0 82608 ND 1.0 0.23 uyl. 1 Chorobenzane 108-90-7 82608 ND 1.0 0.24 uyl. 1 Chlorobenzane 75-07-3 82608 ND 1.0 0.21 uyl. 1 Chlorobenzane 76-06-3 82608 ND 1.0 0.17 uyl. 1					CAS	Analytical							
Acetone 67-64-1 82608 ND 20 1.6 ug/L 1 Benzene 7143-2 82608 ND 1.0 0.23 ug/L 1 Bromodichloromethane 75-27-4 82608 ND 1.0 0.23 ug/L 1 Bromodethane (Methyl bromide) 74-83-9 82608 ND 2.0 0.19 ug/L 1 2-Butanone (MEK) 78-93-3 82608 ND 1.0 0.45 ug/L 1 Carbon tetrachloride 56-23-5 82608 ND 1.0 0.31 ug/L 1 Chlorothana 75-00-3 82608 ND 1.0 0.21 ug/L 1 Chlorothana 67-66-3 82608 ND 1.0 0.13 ug/L 1 Chlorothana 67-66-3 82608 ND 1.0 0.30 ug/L 1 Chlorothana 67-66-3 82608 ND 1.0 0.30 ug/L 1	Parameter					-	Result Q	PQL	MDL	Units	Run		
Bromodichloromethane 75-27-4 8260B ND 1.0 0.23 ug/L 1 Bromodirom 75-25-2 8260B ND 1.0 0.35 ug/L 1 Bromodirom 75-25-2 8260B ND 1.0 0.35 ug/L 1 2-Butanone (MEK) 76-33-3 8260B ND 1.0 0.45 ug/L 1 Carbon disulide 75-67-3 8260B ND 1.0 0.45 ug/L 1 Chiorobenzene 108-80-7 8260B ND 1.0 0.21 ug/L 1 Chiorobenzene 108-80-7 8260B ND 1.0 0.21 ug/L 1 Chiorobenzene 108-82-7 8260B ND 1.0 0.11 ug/L 1 Chiorobenzene 108-82-7 8260B ND 1.0 0.12 ug/L 1 1.2-Dibromo-3-chioropropane (DBCP) 96-12-8 8260B ND 1.0 0.31 ug/L 1	Acetone			67-	64-1		ND	20	1.6	ug/L	1		
Bromotorm 75-25-2 8260B ND 1.0 0.35 ug/L 1 Bromotormethane (Methy bromide) 74-83-9 8260B ND 1.0 0.19 ugL 1 Carbon disulfide 75-15-0 8260B ND 1.0 0.45 ug/L 1 Carbon disulfide 75-15-0 8260B ND 1.0 0.20 ug/L 1 Chlorobenzene 108-80-7 8260B ND 1.0 0.20 ug/L 1 Chlorobenzene 108-80-7 8260B ND 1.0 0.21 ug/L 1 Chloroform 67-66-3 8260B ND 1.0 0.37 ug/L 1 Cyclorexane 106-82-7 8260B ND 1.0 0.32 ug/L 1 Lyclorborethane (BCP) 96-12-8 8260B ND 1.0 0.23 ug/L 1 Lyclorborbenzene 124-481 8260B ND 1.0 0.12 ug/L 1 </td <td>Benzene</td> <td></td> <td></td> <td>71-</td> <td>43-2</td> <td>8260B</td> <td>ND</td> <td>1.0</td> <td>0.21</td> <td>ug/L</td> <td>1</td>	Benzene			71-	43-2	8260B	ND	1.0	0.21	ug/L	1		
Bromomethane (Methyl bromide) 74-83-9 8260B ND 2.0 0.19 ug/L 1 2-Butanone (MEK) 76-93-3 8260B ND 10 0.45 ug/L 1 Carbon disulfide 56-23-5 8260B ND 1.0 0.31 ug/L 1 Chiorobenzene 108-90-7 8260B ND 1.0 0.20 ug/L 1 Chiorobrane 75-00-3 8260B ND 1.0 0.21 ug/L 1 Chioroform 67-66-3 8260B ND 1.0 0.21 ug/L 1 Chioroform 67-66-3 8260B ND 1.0 0.19 ug/L 1 Chioroform 67-66-3 8260B ND 1.0 0.19 ug/L 1 12-Dibromo-3-chioropropane (DBCP) 96-12-8 8260B ND 1.0 0.19 ug/L 1 12-Dibromo-shane (EDB) 106-46-7 8260B ND 1.0 0.19 ug/L	Bromodichle	oromethane		75-	27-4	8260B	ND	1.0	0.23	ug/L	1		
2-Butanone (MEK) 78-93-3 8260B ND 10 1.8 ug/L 1 Carbon tisuifide 75-15-0 8260B ND 1.0 0.45 ug/L 1 Carbon tetrachloride 56-23-5 8260B ND 1.0 0.20 ug/L 1 Chiorobenzene 108-00-7 8260B ND 1.0 0.20 ug/L 1 Chiorobenzene 108-00-7 8260B ND 1.0 0.21 ug/L 1 Chioromethane (Methyl chloride) 74-87-3 8260B ND 1.0 0.19 ug/L 1 Cyclohexane 110-82-7 8260B ND 1.0 0.30 ug/L 1 12-Dibromochannethane (BCP) 98-12-8 8260B ND 1.0 0.17 ug/L 1 12-Dibromochannethane (BCP) 98-12-8 8260B ND 1.0 0.19 ug/L 1 12-Dichlorobenzene 166-46-7 8260B ND 1.0 0.19 <td< td=""><td>Bromoform</td><td></td><td></td><td>75-</td><td>25-2</td><td>8260B</td><td>ND</td><td>1.0</td><td>0.35</td><td>ug/L</td><td>1</td></td<>	Bromoform			75-	25-2	8260B	ND	1.0	0.35	ug/L	1		
Carbon disulfide 75-15-0 82608 ND 1.0 0.45 ug/L 1 Carbon tetrachioride 56-23-5 82608 ND 1.0 0.31 ug/L 1 Chlorobenzene 106-90-7 82608 ND 1.0 0.20 ug/L 1 Chloroberhane 75-00-3 82608 ND 1.0 0.21 ug/L 1 Chloroberhane (Methyl chloride) 74-87-3 82608 ND 1.0 0.30 ug/L 1 Cyclohexane 110-82-7 82608 ND 1.0 0.57 ug/L 1 Lyclohoros-3-chloropropane (DBCP) 96-12-8 82608 ND 1.0 0.17 ug/L 1 1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 82608 ND 1.0 0.17 ug/L 1 1.3-Dichlorobenznen 106-46-7 82608 ND 1.0 0.17 ug/L 1 1.4-Dichlorobenznen 75-71-8 82608 ND 1.0 0.3	Bromometh	ane (Methyl bromide)		74-	83-9	8260B	ND	2.0	0.19	ug/L	1		
Carbon tetrachloride56-23-582608ND1.00.31ug/L1Chlorobenzene109-90-782608ND1.00.20ug/L1Chloroethane75-00-382608ND2.00.28ug/L1Chloromethane (Methyl chloride)74-87-382608ND1.00.21ug/L1Cyclohexane110-82-782608ND1.00.30ug/L1L2-Dibromo-3-chloropropane (DBCP)96-12-882608ND1.00.33ug/L11,2-Dibromochloromethane124-48-182608ND1.00.23ug/L11,2-Dibromochloromethane106-63-782608ND1.00.17ug/L11,2-Dibromochloromethane106-63-782608ND1.00.19ug/L11,2-Dichlorobenzene541-73-182608ND1.00.19ug/L11,2-Dichloroethane75-71-882608ND1.00.46ug/L11,2-Dichloroethane156-60-282608ND1.00.33ug/L11,2-Dichloroethane75-74-882608ND1.00.33ug/L11,2-Dichloroethane156-60-282608ND1.00.33ug/L11,2-Dichloroethane75-74-882608ND1.00.33ug/L11,2-Dichloroethane156-60-282608ND1.00.33ug/L1 <td>2-Butanone</td> <td>(MEK)</td> <td></td> <td>78-</td> <td>93-3</td> <td>8260B</td> <td>ND</td> <td>10</td> <td>1.8</td> <td>ug/L</td> <td>1</td>	2-Butanone	(MEK)		78-	93-3	8260B	ND	10	1.8	ug/L	1		
Chlorobenzene 108-90-7 82608 ND 1.0 0.20 ug/L 1 Chloroberhane 75-00-3 82608 ND 1.0 0.21 ug/L 1 Chloroberhane 67-66-3 82608 ND 1.0 0.21 ug/L 1 Chloroberhane 74-87-3 82608 ND 1.0 0.30 ug/L 1 Cyclohexane 110-82-7 82608 ND 1.0 0.57 ug/L 1 12-Dibromo-3-chloropropane (BCP) 96-12-8 82608 ND 1.0 0.17 ug/L 1 1.2-Dibromobethane (EDB) 106-93-4 82608 ND 1.0 0.19 ug/L 1 1.4-Dichlorobenzene 5541-73-1 82608 ND 1.0 0.19 ug/L 1 1.2-Dichlorobenzene 95-50-1 82608 ND 1.0 0.46 ug/L 1 1.2-Dichlorobethane 107-06-2 82608 ND 1.0 0.33 ug/L	Carbon disu	ulfide		75-	15-0	8260B	ND	1.0	0.45	ug/L	1		
Chloroethane 75-00-3 8260B ND 2.0 0.28 ug/L 1 Chloroofrm 67-66-3 8260B ND 1.0 0.21 ug/L 1 Chloromethane (Methyl chloride) 74-87-3 8260B ND 1.0 0.30 ug/L 1 1,2-Dibrome-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.67 ug/L 1 1,2-Dibrome-thane 124-48-1 8260B ND 1.0 0.77 ug/L 1 1,2-Dibrome-thane (EDB) 106-46-7 8260B ND 1.0 0.19 ug/L 1 1,2-Dichlorobenzene 106-46-7 8260B ND 1.0 0.49 ug/L 1 1,2-Dichlorobenzene 55-50-1 8260B ND 1.0 0.48 ug/L 1 1,2-Dichloroethane 75-71-8 8260B ND 1.0 0.33 ug/L 1 1,2-Dichloroethane 156-60-5 8260B ND 1.0 0.33	Carbon tetra	achloride		56-	23-5	8260B	ND	1.0	0.31	ug/L	1		
Chloroform 67-66-3 82608 ND 1.0 0.21 ug/L 1 Chloromethane (Methyl chloride) 74-87-3 82608 ND 1.0 0.19 ug/L 1 Cyclohexane 110-82-7 82608 ND 1.0 0.57 ug/L 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 82608 ND 1.0 0.57 ug/L 1 1,2-Dibromochhane (EDB) 106-93-4 82608 ND 1.0 0.19 ug/L 1 1,4-Dichlorobenzene 106-48-7 82608 ND 1.0 0.19 ug/L 1 1,2-Dichlorobenzene 95-50-1 82608 ND 1.0 0.46 ug/L 1 1,2-Dichlorobenzene 75-71-8 82608 ND 1.0 0.23 ug/L 1 1,2-Dichloroethane 175-73-8 82608 ND 1.0 0.33 ug/L 1 1,2-Dichloroethane 156-60-2 82608 ND 1.0 0.33 <td>Chlorobenz</td> <td>ene</td> <td></td> <td>108-</td> <td>90-7</td> <td>8260B</td> <td>ND</td> <td>1.0</td> <td>0.20</td> <td>ug/L</td> <td>1</td>	Chlorobenz	ene		108-	90-7	8260B	ND	1.0	0.20	ug/L	1		
Chloromethane (Methyl chloride) 74-87-3 82608 ND 1.0 0.19 ug/L 1 Cyclobexane 110-82-7 82608 ND 1.0 0.30 ug/L 1 1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 82608 ND 1.0 0.23 ug/L 1 1.2-Dibromo-schloromethane 124-48-1 82608 ND 1.0 0.17 ug/L 1 1.4-Dichlorobenzene 106-93-4 82608 ND 1.0 0.19 ug/L 1 1.3-Dichlorobenzene 55-50-1 82608 ND 1.0 0.46 ug/L 1 1.2-Dichlorobenzene 75-71-8 82608 ND 1.0 0.23 ug/L 1 1.2-Dichloroethane 175-74-8 82608 ND 1.0 0.23 ug/L 1 1.2-Dichloroethane 156-60-2 82608 ND 1.0 0.33 ug/L 1 1.1-Dichloroethene 75-35-4 82608 ND 1.0 <	Chloroethar	ne		75-	00-3	8260B	ND	2.0	0.28	ug/L	1		
Chloromethane (Methyl chloride) 74-87-3 82608 ND 1.0 0.19 ug/L 1 Cyclobexane 110-82-7 82608 ND 1.0 0.30 ug/L 1 12-Dibromos-chloropropane (DBCP) 96-12-8 82608 ND 1.0 0.23 ug/L 1 1.2-Dibromoethane (EDB) 106-93-4 82608 ND 1.0 0.17 ug/L 1 1.4-Dichlorobenzene 166-46-7 82608 ND 1.0 0.19 ug/L 1 1.2-Dichlorobenzene 551-71 82608 ND 1.0 0.46 ug/L 1 1.2-Dichlorobenzene 75-71-8 82608 ND 1.0 0.23 ug/L 1 1.2-Dichloroethane 75-73-8 82608 ND 1.0 0.33 ug/L 1 1.2-Dichloroethane 156-69-2 82608 ND 1.0 0.33 ug/L 1 1.1-Dichloroethane 75-84 82608 ND 1.0 0.29 </td <td>Chloroform</td> <td></td> <td></td> <td>67-</td> <td>66-3</td> <td>8260B</td> <td>ND</td> <td>1.0</td> <td>0.21</td> <td>ug/L</td> <td>1</td>	Chloroform			67-	66-3	8260B	ND	1.0	0.21	ug/L	1		
Cyclohexane110-82-78260BND1.00.30ug/L11.2-Dibromo-3-chloropropane (DBCP)96-12-88260BND1.00.57ug/L1Dibromochloromethane124-48-18260BND1.00.72ug/L11.2-Dibromochlare (EDB)106-93-48260BND1.00.17ug/L11.4-Dichlorobenzene106-46-78260BND1.00.19ug/L11.2-Dichlorobenzene55-018260BND1.00.46ug/L11.2-Dichlorobenzene75-71-88260BND1.00.46ug/L11.2-Dichlorobenzene75-71-88260BND1.00.23ug/L11.2-Dichloroethane75-71-88260BND1.00.23ug/L11.2-Dichloroethane75-71-88260BND1.00.23ug/L11.2-Dichloroethane75-73-38260BND1.00.23ug/L11.1-Dichloroethane75-34-38260BND1.00.20ug/L11.2-Dichloroethane75-35-48260BND1.00.20ug/L11.2-Dichloroethane78-87-58260BND1.00.22ug/L11.2-Dichloroethane10061-01-58260BND1.00.24ug/L11.2-Dichloroethane91-76-68260BND1.00.24ug/L11.2-D	Chlorometh	ane (Methyl chloride)		74-	87-3	8260B	ND	1.0	0.19	-	1		
1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.57 ug/L 1 Dibromochloromethane 124-48-1 8260B ND 1.0 0.23 ug/L 1 1,2-Dibromochloromethane 106-93-4 8260B ND 1.0 0.17 ug/L 1 1,4-Dichlorobenzene 106-46-7 8260B ND 1.0 0.19 ug/L 1 1,3-Dichlorobenzene 95-50-1 8260B ND 1.0 0.46 ug/L 1 1,2-Dichloroethane 75-71-8 8260B ND 1.0 0.46 ug/L 1 1,2-Dichloroethane 75-73-3 8260B ND 1.0 0.23 ug/L 1 1,2-Dichloroethane 75-34-3 8260B ND 1.0 0.33 ug/L 1 1,2-Dichloroethene 75-34-3 8260B ND 1.0 0.33 ug/L 1 1,2-Dichloroethene 75-34-3 8260B ND 1.0 0.22 ug/L 1 1,1-Dichoroethene 76-35-4 8260B <td< td=""><td>Cyclohexan</td><td>ie</td><td></td><td>110-</td><td>82-7</td><td>8260B</td><td>ND</td><td>1.0</td><td>0.30</td><td>-</td><td>1</td></td<>	Cyclohexan	ie		110-	82-7	8260B	ND	1.0	0.30	-	1		
Dibromochloromethane 124-48-1 8260B ND 1.0 0.23 ug/L 1 1,2-Dibromoethane (EDB) 106-93-4 8260B ND 1.0 0.17 ug/L 1 1,4-Dichlorobenzene 106-46-7 8260B ND 1.0 0.19 ug/L 1 1,3-Dichlorobenzene 5417-31 8260B ND 1.0 0.46 ug/L 1 1,2-Dichlorobenzene 95-50-1 8260B ND 1.0 0.46 ug/L 1 1,2-Dichloroethane 75-71-8 8260B ND 1.0 0.23 ug/L 1 1,1-Dichloroethane 75-34-3 8260B ND 1.0 0.33 ug/L 1 trans-1,2-Dichloroethene 156-60-5 8260B ND 1.0 0.33 ug/L 1 1,2-Dichloropthene 75-35-4 8260B ND 1.0 0.29 ug/L 1 1,2-Dichloroptopene 10061-01-5 8260B ND 1.0 0.21	1,2-Dibrom	o-3-chloropropane (DB0	CP)	96-	12-8	8260B	ND	1.0	0.57	-	1		
1,4-Dichlorobenzene106-46-78260BND1.00.19ug/L11,3-Dichlorobenzene541-73-18260BND1.00.19ug/L11,2-Dichlorobenzene95-50-18260BND1.00.46ug/L1Dichlorodifluoromethane75-71-88260BND2.00.85ug/L11,2-Dichloroethane107-06-28260BND1.00.23ug/L11,1-Dichloroethane75-34-38260BND1.00.33ug/L1trans-1,2-Dichloroethene156-60-58260BND1.00.20ug/L11,2-Dichloroethene75-34-38260BND1.00.20ug/L11,2-Dichloroethene75-35-48260BND1.00.20ug/L11,2-Dichloroptene10661-02-68260BND1.00.20ug/L11,2-Dichloroptopane78-87-58260BND1.00.22ug/L11,2-Dichloroptopene10061-01-58260BND1.00.21ug/L11,2-Hyaanone591-78-68260BND1.00.24ug/L11sopropylbenzene98-82-88260BND1.00.24ug/L11sopropylberzene108-40-48260BND1.00.24ug/L11sopropylberzene108-87-28260BND1.00.24ug/L1Methyl-cztate<	Dibromochl	oromethane		124-	48-1	8260B	ND	1.0	0.23	-	1		
1,3-Dichlorobenzene541-73-18260BND1.00.19ug/L11,2-Dichlorobenzene95-50-18260BND1.00.46ug/L1Dichlorodifluoromethane75-71-88260BND2.00.85ug/L11,2-Dichloroethane107-06-28260BND1.00.23ug/L11,1-Dichloroethane75-34-38260BND1.00.33ug/L11,1-Dichloroethane156-60-58260BND1.00.20ug/L1cis-1,2-Dichloroethene156-69-28260BND1.00.20ug/L11,2-Dichloroethene156-59-28260BND1.00.20ug/L11,2-Dichloroptopane75-35-48260BND1.00.29ug/L11,2-Dichloroptopane10061-02-68260BND1.00.22ug/L11,2-Dichloroptopane10061-01-58260BND1.00.22ug/L11,2-Dichloroptopene10061-01-58260BND1.00.21ug/L11,2-Dichloroptopene10061-01-68260BND1.00.24ug/L11,2-Dichloroptopene10061-01-68260BND1.00.24ug/L11,2-Dichloroptopene10061-01-68260BND1.00.24ug/L11,3-Dichloroptopene10061-01-68260BND1.00.24ug/L1 <td>1,2-Dibrom</td> <td>oethane (EDB)</td> <td></td> <td>106-</td> <td>93-4</td> <td>8260B</td> <td>ND</td> <td>1.0</td> <td>0.17</td> <td>ug/L</td> <td>1</td>	1,2-Dibrom	oethane (EDB)		106-	93-4	8260B	ND	1.0	0.17	ug/L	1		
1,2-Dichlorobenzene95-50-18260BND1.00.46ug/L1Dichlorodifluoromethane75-71-88260BND2.00.85ug/L11,2-Dichloroethane107-06-28260BND1.00.23ug/L11,1-Dichloroethane75-34-38260BND1.00.33ug/L1trans-1,2-Dichloroethene156-60-58260BND1.00.33ug/L1trans-1,2-Dichloroethene156-69-28260BND1.00.20ug/L11,1-Dichloroethene75-35-48260BND1.00.20ug/L11,2-Dichloroethene75-35-48260BND1.00.20ug/L11,2-Dichloroethene75-35-48260BND1.00.22ug/L11,2-Dichloropropane78-87-58260BND1.00.22ug/L1trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L1Ethylbenzene10041-158260BND1.00.21ug/L112-Hexanone591-78-68260BND1.00.24ug/L111<0042	1,4-Dichloro	obenzene		106-	46-7	8260B	ND	1.0	0.19	ug/L	1		
Dichlorodifluoromethane75-71-88260BND2.00.85ug/L11,2-Dichloroethane107-06-28260BND1.00.23ug/L11,1-Dichloroethane75-34-38260BND1.00.19ug/L1trans-1,2-Dichloroethene156-60-58260BND1.00.33ug/L1cis-1,2-Dichloroethene156-59-28260BND1.00.20ug/L11,1-Dichloroethene75-35-48260BND1.00.29ug/L11,2-Dichloroethene78-87-58260BND1.00.22ug/L11,2-Dichloropropane10061-02-68260BND1.00.22ug/L1trans-1,3-Dichloropropane10061-01-58260BND1.00.22ug/L1cis-1,3-Dichloropropane10061-01-58260BND1.00.21ug/L1Ethylbenzene10061-01-58260BND1.00.24ug/L11soproylbenzene98-82-88260BND1.00.24ug/L1Methyl acetate79-20-98260BND1.00.23ug/L1Methyl-2-pentanone108-87-28260BND1.00.23ug/L1Methyl-2-pentanone108-87-28260BND1.00.22ug/L1Methyl-2-pentanone108-87-28260BND1.00.22ug/L1<	1,3-Dichloro	obenzene		541-	73-1	8260B	ND	1.0	0.19	ug/L	1		
1,2-Dichloroethane107-06-28260BND1.00.23ug/L11,1-Dichloroethane75-34-38260BND1.00.19ug/L1trans-1,2-Dichloroethene156-60-58260BND1.00.33ug/L1cis-1,2-Dichloroethene156-69-28260BND1.00.20ug/L11,1-Dichloroethene75-35-48260BND1.00.20ug/L11,2-Dichloropthene75-35-48260BND1.00.22ug/L11,2-Dichloroptopane78-87-58260BND1.00.22ug/L1trans-1,3-Dichloroptopene10061-02-68260BND1.00.22ug/L1Ethylbenzene10061-01-58260BND1.00.21ug/L12-Hexanone591-78-68260BND1.00.24ug/L1Isopropylbenzene98-82-88260BND1.00.24ug/L1Methyl acetate79-20-98260BND1.00.23ug/L1Methyl-2-pentanone108-10-18260BND1.00.23ug/L1Methylene chloride75-09-28260BND1.00.23ug/L1Methylene chloride75-09-28260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L11,1,2,2-Tetrac	1,2-Dichloro	obenzene		95-	50-1	8260B	ND	1.0	0.46	ug/L	1		
1,1-Dichloroethane75-34-38260BND1.00.19ug/L1trans-1,2-Dichloroethene156-60-58260BND1.00.33ug/L1cis-1,2-Dichloroethene156-59-28260BND1.00.20ug/L11,1-Dichloroethene75-35-48260BND1.00.20ug/L11,2-Dichloropthene75-35-48260BND1.00.29ug/L11,2-Dichloroptopane78-87-58260BND1.00.22ug/L1trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L1Ethylbenzene10061-01-58260BND1.00.21ug/L12-Hexanone591-78-68260BND1.00.26ug/L1Isopropylbenzene98-82-88260BND1.00.24ug/L1Methyl acetate79-20-98260BND1.00.23ug/L1Methyl ether (MTBE)1634-04-48260BND1.00.23ug/L1Methylene chloride75-928260BND1.00.42ug/L1Methylene chloride75-928260BND1.00.42ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.42ug/L11,1,2,2-Tetrachloroethane127-18-48260BND1.00.13ug/L11,1,2,2-T	Dichlorodiflu	uoromethane		75-	71-8	8260B	ND	2.0	0.85	ug/L	1		
trans-1,2-Dichloroethene156-60-58260BND1.00.33ug/L1cis-1,2-Dichloroethene156-59-28260BND1.00.20ug/L11,1-Dichloroethene75-35-48260B141.00.31ug/L11,2-Dichloroptopane78-87-58260BND1.00.22ug/L1trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropene10061-01-58260BND1.00.30ug/L1Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND1.00.26ug/L1Isopropylbenzene98-82-88260BND1.00.24ug/L1Methyl acetate79-20-98260BND1.00.24ug/L14-Methyl-2-pentanone108-10-18260BND1.00.23ug/L1Methylecclohexane108-87-28260BND1.00.22ug/L1Methylene chloride75-09-28260BND1.00.42ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane127-18-48260BND1.00.13ug/L1	1,2-Dichloro	pethane		107-	06-2	8260B	ND	1.0	0.23	ug/L	1		
cis-1,2-Dichloroethene156-59-28260BND1.00.20ug/L11,1-Dichloroethene75-35-48260B141.00.31ug/L11,2-Dichloropropane78-87-58260BND1.00.29ug/L1trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropene10061-01-58260BND1.00.30ug/L1Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND1.00.24ug/L1Isopropylbenzene98-82-88260BND1.00.24ug/L1Methyl acetate79-20-98260BND1.00.23ug/L1Methyl-2-pentanone108-10-18260BND1.00.29ug/L1Methyl-2-pentanone108-87-28260BND1.00.23ug/L1Methyl-2-pentanone108-87-28260BND1.00.24ug/L1Methyl-2-pentanone108-87-28260BND1.00.42ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Methylene chloride79-34-58260BND1.00.13ug/L1Methylene chloride79-34-58260BND1.00.13ug/L1Methylene chloride </td <td>1,1-Dichloro</td> <td>pethane</td> <td></td> <td>75-</td> <td>34-3</td> <td>8260B</td> <td>ND</td> <td>1.0</td> <td>0.19</td> <td>ug/L</td> <td>1</td>	1,1-Dichloro	pethane		75-	34-3	8260B	ND	1.0	0.19	ug/L	1		
1,1-Dichloroethene75-35-48260B141.00.31ug'l11,2-Dichloropropane78-87-58260BND1.00.29ug/L1trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropene10061-01-58260BND1.00.21ug/L1Ethylbenzene100-41-48260BND1.00.26ug/L12-Hexanone591-78-68260BND1.00.24ug/L1Isopropylbenzene98-82-88260BND1.00.24ug/L1Methyl acetate79-20-98260BND1.00.23ug/L1Methyl-2-pentanone108-10-18260BND1.00.29ug/L1Methyl-2-pentanone108-87-28260BND1.00.23ug/L1Methyl-2-pentanone108-87-28260BND1.00.42ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Styrene100-42-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L11,27-18-48260BND1.00.22ug/L1	trans-1,2-Di	ichloroethene		156-	60-5	8260B	ND	1.0	0.33	ug/L	1		
1,2-Dichloropropane78-87-58260BND1.00.29ug/L1trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropene10061-01-58260BND1.00.30ug/L1Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND1.00.26ug/L1Isopropylbenzene98-82-88260BND1.00.24ug/L1Methyl acetate79-20-98260BND1.00.23ug/L1Methyl acetate108-10-18260BND1.00.23ug/L1Methyl cyclohexane108-87-28260BND1.00.29ug/L1Methylene chloride75-09-28260BND1.00.42ug/L11,1,2,2-Tetrachloroethane100-42-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane127-18-48260BND1.00.22ug/L1	cis-1,2-Dich	loroethene		156-	59-2	8260B	ND	1.0	0.20	ug/L	1		
trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropene10061-01-58260BND1.00.30ug/L1Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND100.26ug/L1Isopropylbenzene98-82-88260BND1.00.14ug/L1Methyl acetate79-20-98260BND1.00.24ug/L1Methyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND100.29ug/L1Methylgene chloride75-09-28260BND1.00.42ug/L1Styrene100-42-58260BND1.00.42ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1Tetrachloroethene127-18-48260BND1.00.22ug/L1	1,1-Dichlor	oethene		75-	35-4	8260B	14	1.0	0.31	ug/L	1		
trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropene10061-01-58260BND1.00.30ug/L1Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND100.26ug/L1Isopropylbenzene98-82-88260BND1.00.14ug/L1Methyl acetate79-20-98260BND1.00.24ug/L1Methyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND100.29ug/L1Methylgene chloride75-09-28260BND1.00.42ug/L1Styrene100-42-58260BND1.00.42ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1Tetrachloroethene127-18-48260BND1.00.22ug/L1	1,2-Dichloro	propane		78-	87-5	8260B	ND	1.0	0.29	ug/L	1		
cis-1,3-Dichloropropene10061-01-58260BND1.00.30ug/L1Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND100.26ug/L1Isopropylbenzene98-82-88260BND1.00.14ug/L1Methyl acetate79-20-98260BND1.00.24ug/L1Methyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND100.29ug/L1Methylgclohexane108-87-28260BND5.00.16ug/L1Styrene100-42-58260BND1.00.42ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1Tetrachloroethene127-18-48260BND1.00.22ug/L1				10061-	02-6	8260B	ND	1.0	0.22	ug/L	1		
Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND100.26ug/L1Isopropylbenzene98-82-88260BND1.00.14ug/L1Methyl acetate79-20-98260BND1.00.23ug/L1Methyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND100.29ug/L1Methylcyclohexane108-87-28260BND5.00.16ug/L1Styrene100-42-58260BND1.00.42ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1Tetrachloroethene127-18-48260BND1.00.22ug/L1				10061-	01-5	8260B	ND	1.0	0.30	-	1		
2-Hexanone591-78-68260BND100.26ug/L1Isopropylbenzene98-82-88260BND1.00.14ug/L1Methyl acetate79-20-98260BND1.00.24ug/L1Methyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND100.29ug/L1Methylcyclohexane108-87-28260BND5.00.16ug/L1Styrene100-42-58260BND1.00.42ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1Tetrachloroethene127-18-48260BND1.00.22ug/L1	Ethylbenzei	ne		100-	41-4	8260B	ND	1.0	0.21	-	1		
Isopropylbenzene98-82-88260BND1.00.14ug/L1Methyl acetate79-20-98260BND1.00.24ug/L1Methyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND100.29ug/L1Methylcyclohexane108-87-28260BND5.00.16ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Styrene100-42-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1Tetrachloroethene127-18-48260BND1.00.22ug/L1	2-Hexanone	e		591-	78-6	8260B	ND	10	0.26		1		
Methyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND100.29ug/L1Methylcyclohexane108-87-28260BND5.00.16ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Styrene100-42-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1Tetrachloroethene127-18-48260BND1.00.22ug/L1	Isopropylbe	nzene		98-	82-8	8260B	ND	1.0	0.14		1		
4-Methyl-2-pentanone108-10-18260BND100.29ug/L1Methylcyclohexane108-87-28260BND5.00.16ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Styrene100-42-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1Tetrachloroethene127-18-48260BND1.00.22ug/L1	Methyl acet	ate		79-	20-9	8260B	ND	1.0	0.24	ug/L	1		
4-Methyl-2-pentanone108-10-18260BND100.29ug/L1Methylcyclohexane108-87-28260BND5.00.16ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Styrene100-42-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1Tetrachloroethene127-18-48260BND1.00.22ug/L1	Methyl tertia	ary butyl ether (MTBE)		1634-	04-4	8260B	ND	1.0	0.23	ug/L	1		
Methylene chloride75-09-28260BND1.00.42ug/L1Styrene100-42-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1Tetrachloroethane127-18-48260BND1.00.22ug/L1				108-	10-1	8260B	ND	10	0.29	ug/L	1		
Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L 1 Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1 Tetrachloroethene 127-18-4 8260B ND 1.0 0.22 ug/L 1	Methylcyclo	hexane		108-	87-2	8260B	ND	5.0	0.16		1		
Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1 Tetrachloroethene 127-18-4 8260B ND 1.0 0.22 ug/L 1	Methylene of	chloride		75-	09-2	8260B	ND		0.42		1		
1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1 Tetrachloroethene 127-18-4 8260B ND 1.0 0.22 ug/L 1	Styrene			100-	42-5	8260B	ND	1.0	0.13		1		
Tetrachloroethene 127-18-4 8260B ND 1.0 0.22 ug/L 1		achloroethane		79-	34-5	8260B	ND		0.13		1		
•				127-	18-4		ND	1.0	0.22		1		
	Toluene			108-	88-3	8260B	ND	1.0	0.24		1		

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Page: 34 of 56

Description: DUP-2

Date Sampled:04/26/2016

Toluene-d8

Date Received: 04/27/2016

Laboratory ID: RD27083-015 Matrix: Aqueous

	Volati	le Orga	anic C	ompounds	by G	C/MS	5			
RunPrepMethod15030B	Analytical Method 8260B	Dilution 1		s is Date Analyst 016 1558 RAG	Prep	Date	Batch 12119			
Parameter			CAS nber	Analytical Method	Result	Q	PQL	MDL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	e	76-	13-1	8260B	ND		1.0	0.30	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260B	ND		1.0	0.13	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260B	ND		1.0	0.22	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260B	ND		1.0	0.24	ug/L	1
Trichloroethene		79-	01-6	8260B	0.43	J	1.0	0.16	ug/L	1
Trichlorofluoromethane		75-	69-4	8260B	ND		1.0	0.74	ug/L	1
Vinyl chloride		75-	01-4	8260B	ND		1.0	0.50	ug/L	1
Xylenes (total)		1330-	20-7	8260B	ND		1.0	0.32	ug/L	1
Surrogate	Q %	Run 1 Recovery	Accepta Limi							
1,2-Dichloroethane-d4		99	70-13	0						
Bromofluorobenzene		93	70-13	0						

70-130

100

Description: FB-1

Date Sampled:04/26/2016 1045

Date Received: 04/27/2016

Laboratory ID: RD27083-016 Matrix: Aqueous

Matrix: Aqueous

Run 1	Prep Method 5030B	Analytical Method 8260B	Dilution 1		sis Date Analyst 2016 1222 RAG	Prep	Date	Batch 12025			
Parar	meter			CAS nber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Aceto				64-1	8260B	ND	-	20	1.6	ug/L	1
Benze				43-2	8260B	ND		1.0	0.21	ug/L	1
Bromo	odichloromethane		75-3	27-4	8260B	ND		1.0	0.23	ug/L	1
Bromo	oform		75-2	25-2	8260B	ND		1.0	0.35	ug/L	1
Brom	omethane (Methyl bromide)		74-	83-9	8260B	ND		2.0	0.19	ug/L	1
	anone (MEK)		78-	93-3	8260B	ND		10	1.8	ug/L	1
	on disulfide		75-	15-0	8260B	ND		1.0	0.45	ug/L	1
Carbo	on tetrachloride		56-2	23-5	8260B	ND		1.0	0.31	ug/L	1
Chlore	obenzene		108-9	90-7	8260B	ND		1.0	0.20	ug/L	1
	oethane		75-	00-3	8260B	ND		2.0	0.28	ug/L	1
Chlore	oform		67-	66-3	8260B	ND		1.0	0.21	ug/L	1
Chlore	omethane (Methyl chloride)		74-8	87-3	8260B	ND		1.0	0.19	ug/L	1
	hexane		110-8	82-7	8260B	ND		1.0	0.30	ug/L	1
-	ibromo-3-chloropropane (DBC	P)	96-	12-8	8260B	ND		1.0	0.57	ug/L	1
	mochloromethane		124-4	48-1	8260B	ND		1.0	0.23	ug/L	1
1,2-Di	ibromoethane (EDB)		106-9	93-4	8260B	ND		1.0	0.17	ug/L	1
1,4-Di	ichlorobenzene		106-4	46-7	8260B	ND		1.0	0.19	ug/L	1
1,3-Di	ichlorobenzene		541-	73-1	8260B	ND		1.0	0.19	ug/L	1
1,2-Di	ichlorobenzene		95-	50-1	8260B	ND		1.0	0.46	ug/L	1
Dichlo	prodifluoromethane		75-	71-8	8260B	ND		2.0	0.85	ug/L	1
1,2-Di	ichloroethane		107-0	06-2	8260B	ND		1.0	0.23	ug/L	1
1,1-Di	ichloroethane		75-	34-3	8260B	ND		1.0	0.19	ug/L	1
trans-	1,2-Dichloroethene		156-0	60-5	8260B	ND		1.0	0.33	ug/L	1
cis-1,2	2-Dichloroethene		156-	59-2	8260B	ND		1.0	0.20	ug/L	1
1,1-Di	ichloroethene		75-3	35-4	8260B	ND		1.0	0.31	ug/L	1
1,2-Di	ichloropropane		78-	87-5	8260B	ND		1.0	0.29	ug/L	1
trans-	1,3-Dichloropropene		10061-0	02-6	8260B	ND		1.0	0.22	ug/L	1
cis-1,3	3-Dichloropropene		10061-0	01-5	8260B	ND		1.0	0.30	ug/L	1
Ethylk	penzene		100-4	41-4	8260B	ND		1.0	0.21	ug/L	1
2-Hex	anone		591-	78-6	8260B	ND		10	0.26	ug/L	1
Isopro	pylbenzene		98-	82-8	8260B	ND		1.0	0.14	ug/L	1
Methy	/l acetate		79-3	20-9	8260B	ND		1.0	0.24	ug/L	1
Methy	<pre>/I tertiary butyl ether (MTBE)</pre>		1634-	04-4	8260B	ND		1.0	0.23	ug/L	1
4-Met	hyl-2-pentanone		108-	10-1	8260B	ND		10	0.29	ug/L	1
Methy	lcyclohexane		108-8	87-2	8260B	ND		5.0	0.16	ug/L	1
Methy	/lene chloride		75-	09-2	8260B	ND		1.0	0.42	ug/L	1
Styrer	ne		100-4	42-5	8260B	ND		1.0	0.13	ug/L	1
1,1,2,	2-Tetrachloroethane		79-3	34-5	8260B	ND		1.0	0.13	ug/L	1
Tetrac	chloroethene		127-	18-4	8260B	ND		1.0	0.22	ug/L	1
Tolue	ne		108-8	88-3	8260B	ND		1.0	0.24	ug/L	1

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Page: 36 of 56

Description: FB-1

Date Sampled:04/26/2016 1045

Date Received: 04/27/2016

Run Prep Method

Laboratory ID: RD27083-016 Matrix: Aqueous

Volatil	e Orga	nic Compound	ds by GC/MS	5	
Analytical Method	Dilution	Analysis Date Anal	yst Prep Date	Batch	

1 5030B	8260B 1	04/28/	2016 1222 RAG		12025			
Parameter	N	CAS umber	Analytical Method	Result Q	PQL	MDL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethane	7	6-13-1	8260B	ND	1.0	0.30	ug/L	1
1,2,4-Trichlorobenzene	12	0-82-1	8260B	ND	1.0	0.13	ug/L	1
1,1,2-Trichloroethane	7	9-00-5	8260B	ND	1.0	0.22	ug/L	1
1,1,1-Trichloroethane	7	1-55-6	8260B	ND	1.0	0.24	ug/L	1
Trichloroethene	7	9-01-6	8260B	ND	1.0	0.16	ug/L	1
Trichlorofluoromethane	7	5-69-4	8260B	ND	1.0	0.74	ug/L	1
Vinyl chloride	7	5-01-4	8260B	ND	1.0	0.50	ug/L	1
Xylenes (total)	133	0-20-7	8260B	ND	1.0	0.32	ug/L	1
Surrogate	Run 1 Q % Recover	Accepta y Lim	ance nits					
1,2-Dichloroethane-d4	97	70-1	30					
Bromofluorobenzene	94	70-1	30					
Toluene-d8	102	70-1	30					

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W""W"N = Recovery is out of criteria

Description: TRIP BLANK

Date Sampled:04/26/2016

Date Received: 04/27/2016

Laboratory ID: RD27083-017 Matrix: Aqueous

Fun Prop Method 1 Analytical Method 82608 Dilution 04/28/2016 Analytical 245 RAG Prop Date 1205 Batch 1205 Parameter CAS Analytical Method Result Q POL MDL Units Rundbar Acotone 67-641 622608 ND 20 1.6 ugl. 1 Branne 71-43-2 62508 ND 1.0 0.21 ugl. 1 Bromodinihormethane 75-27-4 62508 ND 1.0 0.23 ugl. 1 Bromodinihormethane 75-27-4 62608 ND 1.0 0.43 ugl. 1 Bromodinihormethane 75-52-8 62608 ND 1.0 0.45 ugl. 1 Carbon disulifide 76-15-0 82608 ND 1.0 0.43 ugl. 1 Chiorobarzene 106-90-7 82608 ND 1.0 0.21 ugl. 1 Chiorobarzene 106-83-8 82608 ND 1.0 0.21 ugl.		Volati	le Orga	anic (Compounds	by GC	/MS			
Parameter Number Mentod Result Q POL MDL Units Run Acetone 67-64-1 82608 ND 20 1.6 ug/L 1 Bromodichloromethane 71-43-2 82608 ND 1.0 0.23 ug/L 1 Bromodichloromethane 75-27-4 82608 ND 1.0 0.33 ug/L 1 Bromodichloromethane 75-27-4 82608 ND 1.0 0.33 ug/L 1 Carbon disulide 75-15-0 82608 ND 1.0 0.45 ug/L 1 Chioroberzene 108-90-7 82608 ND 1.0 0.20 ug/L 1 Chioroberzene 108-90-7 82608 ND 1.0 0.21 ug/L 1 Chiorobertane 67-66-3 82608 ND 1.0 0.21 ug/L 1 Chiorobertane 76-66-3 82608 ND 1.0 0.30 ug/L 1		•		-	•	Prep Da				
Parameter Number Method Result Q POL MDL Units Run Acetone 67-64-1 82508 ND 20 1.6 ug/L 1 Berzene 71-43-2 82608 ND 1.0 0.23 ug/L 1 Bromodichloromethane 75-27-4 82608 ND 1.0 0.33 ug/L 1 Bromodichloromethane 75-27-4 82608 ND 2.0 0.19 ug/L 1 Carbon disulide 75-15-0 82608 ND 1.0 0.45 ug/L 1 Chardon disulide 75-15-0 82608 ND 1.0 0.20 ug/L 1 Chioroethane 75-00-3 82608 ND 1.0 0.21 ug/L 1 Chioroethane (Methyl chioride) 74-87-3 82608 ND 1.0 0.10 0.30 ug/L 1 12-Dbromochane (Methyl chioride) 74-87-3 82608 ND 1.0 0.37 <				CAS	Analytical					
Acetone 67-64-1 8260B ND 20 1.6 ug/L 1 Benzene 71-43-2 8260B ND 1.0 0.21 ug/L 1 Bromodichloromethane 75-27-4 8260B ND 1.0 0.23 ug/L 1 Bromodichloromethane 75-25-2 8260B ND 2.0 0.19 ug/L 1 Bromodichloromethane 78-93-3 8260B ND 1.0 0.35 ug/L 1 Carbon tetrachloride 66-23-5 8260B ND 1.0 0.45 ug/L 1 Chiorobenzene 108-90-7 8260B ND 1.0 0.20 ug/L 1 Chiorobenzene 108-90-7 8260B ND 1.0 0.21 ug/L 1 Chiorobenzene 106-82-7 8260B ND 1.0 0.27 ug/L 1 Cyclokexane 106-83-4 8260B ND 1.0 0.30 ug/L 1	Parameter				-	Result C	PQL	MDL	Units	Run
Banzene 71-43-2 8260B ND 1.0 0.21 ug/L 1 Bromodichloromethane 75-27-4 8260B ND 1.0 0.23 ug/L 1 Bromomethane (Methyl bromide) 74-83-9 8260B ND 0.0 0.19 ug/L 1 Carbon disulfide 75-15-0 8260B ND 1.0 0.45 ug/L 1 Carbon disulfide 75-15-0 8260B ND 1.0 0.45 ug/L 1 Charbon tetrachloride 56-23-5 8260B ND 1.0 0.20 ug/L 1 Chloromethane 75-05-3 8260B ND 1.0 0.21 ug/L 1 Chloromethane (Methyl chloride) 74-87-3 8260B ND 1.0 0.23 ug/L 1 12-Dibromochane (DBCP) 96-12-8 8260B ND 1.0 0.30 ug/L 1 12-Dibromochane (DBCP) 96-12-8 8260B ND 1.0 0.17	Acetone					ND	20	1.6	ug/L	1
Bromodichloromethane 75-274 8260B ND 1.0 0.23 ug/L 1 Bromothame (Methyl bromide) 75-25-2 8260B ND 1.0 0.35 ug/L 1 2-Butanone (MEK) 78-93-3 8260B ND 1.0 0.45 ug/L 1 Carbon disulfide 56-23-5 8260B ND 1.0 0.41 ug/L 1 Chlorobenzene 108-90-7 8260B ND 1.0 0.20 ug/L 1 Chlorobenzene 75-67-3 8260B ND 1.0 0.21 ug/L 1 Chlorobenzene 76-76-3 8260B ND 1.0 0.21 ug/L 1 Chlorobenzene 74-87-3 8260B ND 1.0 0.57 ug/L 1 12-Dbromo-3-chloropapane (DECP) 96-12-8 8260B ND 1.0 0.17 ug/L 1 1.2-Dbromo-3-chloropapane (DECP) 96-12-8 8260B ND 1.0 0.19 <td< td=""><td>Benzene</td><td></td><td>71-</td><td>43-2</td><td>8260B</td><td>ND</td><td>1.0</td><td>0.21</td><td>ug/L</td><td>1</td></td<>	Benzene		71-	43-2	8260B	ND	1.0	0.21	ug/L	1
Bromotorm 75-25-2 8260B ND 1.0 0.35 ug/L 1 Bromonethane (MEK) 74-83-9 8260B ND 1.0 0.19 ug/L 1 Carbon disulfide 75-15-0 8260B ND 1.0 0.45 ug/L 1 Carbon disulfide 75-15-0 8260B ND 1.0 0.31 ug/L 1 Chiorobenzene 108-90-7 8260B ND 1.0 0.28 ug/L 1 Chiorobenzene 75-05-3 8260B ND 1.0 0.21 ug/L 1 Cyclohexane 74-87-3 8260B ND 1.0 0.30 ug/L 1 Cyclohexane 106-82-7 8260B ND 1.0 0.30 ug/L 1 1.2-Dibromo-3-chioropropane (DBCP) 96-12-8 8260B ND 1.0 0.31 ug/L 1 1.2-Dichorobenzene 106-83-4 8260B ND 1.0 0.17 ug/L 1	Bromodichloromethane		75-	27-4	8260B	ND	1.0	0.23		1
2-Butanone (MEK) 78-93-3 8260B ND 10 1.8 ug/L 1 Carbon tisuliide 75-15-0 8260B ND 1.0 0.45 ug/L 1 Carbon tistachhoride 56-23-5 8260B ND 1.0 0.20 ug/L 1 Chlorobenzene 108-90-7 8260B ND 1.0 0.21 ug/L 1 Chlorobenzene 76-06-3 8260B ND 1.0 0.21 ug/L 1 Chloromethane (Methyl chloride) 74-87-3 8260B ND 1.0 0.30 ug/L 1 12-Dibromothane (BDEP) 96-12-8 8260B ND 1.0 0.37 ug/L 1 12-Dibromothane (EDB) 106-46-7 8260B ND 1.0 0.17 ug/L 1 1.4-Dichlorobenzene 95-50-1 8260B ND 1.0 0.19 ug/L 1 1.2-Dichlorobenzene 95-57-3 8260B ND 1.0 0.33 ug/	Bromoform		75-	25-2	8260B	ND	1.0	0.35	ug/L	1
Carbon disulfide 75-15-0 8260B ND 1.0 0.45 ug/L 1 Carbon tetrachloride 56-23-5 8260B ND 1.0 0.31 ug/L 1 Chlorobenzene 108-90-7 8260B ND 1.0 0.22 ug/L 1 Chloroethane 75-00-3 8260B ND 1.0 0.21 ug/L 1 Chloroethane 74-87-3 8260B ND 1.0 0.51 ug/L 1 Cyclohexane 110-82-7 8260B ND 1.0 0.57 ug/L 1 1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.17 ug/L 1 1.2-Dichoroethane 106-93-4 8260B ND 1.0 0.19 ug/L 1 1.4-Dichlorobenzene 106-46-7 8260B ND 1.0 0.19 ug/L 1 1.2-Dichloroethane 75-71-8 8260B ND 1.0 0.23 ug/L	Bromomethane (Methyl bromide)		74-	83-9	8260B	ND	2.0	0.19	ug/L	1
Carbon tetrachloride 56-23-5 8260B ND 1.0 0.31 ug/L 1 Chlorobenzene 108-90-7 8260B ND 2.0 0.22 ug/L 1 Chlorobenzene 67-66-3 8260B ND 2.0 0.22 ug/L 1 Chlorobenzene 67-66-3 8260B ND 1.0 0.21 ug/L 1 Chlorobenzene 110-82-7 8260B ND 1.0 0.33 ug/L 1 1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.57 ug/L 1 1.2-Dibromochlane (EDB) 106-63-4 8260B ND 1.0 0.19 ug/L 1 1.2-Dichlorobenzene 106-46-7 8260B ND 1.0 0.19 ug/L 1 1.2-Dichlorobenzene 75-71-8 8260B ND 1.0 0.46 ug/L 1 1.2-Dichlorobenzene 75-34-3 8260B ND 1.0 0.33 ug/	2-Butanone (MEK)		78-	93-3	8260B	ND	10	1.8		1
Carbon tetrachloride 56-23-5 8260B ND 1.0 0.31 ug/L 1 Chlorobenzene 108-90-7 8260B ND 2.0 0.22 ug/L 1 Chlorobenzene 67-66-3 8260B ND 2.0 0.22 ug/L 1 Chlorobenzene 67-66-3 8260B ND 1.0 0.21 ug/L 1 Chlorobenzene 110-82-7 8260B ND 1.0 0.33 ug/L 1 1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.57 ug/L 1 1.2-Dibromochlane (EDB) 106-63-4 8260B ND 1.0 0.19 ug/L 1 1.2-Dichlorobenzene 106-46-7 8260B ND 1.0 0.19 ug/L 1 1.2-Dichlorobenzene 75-71-8 8260B ND 1.0 0.46 ug/L 1 1.2-Dichlorobenzene 75-34-3 8260B ND 1.0 0.33 ug/	Carbon disulfide		75-	15-0	8260B	ND	1.0	0.45		1
Chlorobenzene 108-90-7 8260B ND 1.0 0.20 ug/L 1 Chlorotethane 75-00-3 8260B ND 2.0 0.28 ug/L 1 Chlorotethane 67-66-3 8260B ND 1.0 0.21 ug/L 1 Chloromethane (Methyl chloride) 74-87-3 8260B ND 1.0 0.30 ug/L 1 Cyclobexane 110-82-7 8260B ND 1.0 0.33 ug/L 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.23 ug/L 1 1,2-Diblorobenzene 106-46-7 8260B ND 1.0 0.19 ug/L 1 1,3-Dichlorobenzene 95-50-1 8260B ND 1.0 0.46 ug/L 1 1,2-Dichlorobenzene 95-50-1 8260B ND 1.0 0.33 ug/L 1 1,2-Dichlorobenzene 75-71-8 8260B ND 1.0 0.33	Carbon tetrachloride		56-	23-5	8260B	ND	1.0	0.31		1
Chloroethane 75-00-3 8260B ND 2.0 0.28 ug/L 1 Chloroform 67-66-3 8260B ND 1.0 0.21 ug/L 1 Chloromethane (Methyl chloride) 74-87-3 8260B ND 1.0 0.19 ug/L 1 1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.57 ug/L 1 1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.17 ug/L 1 1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.17 ug/L 1 1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.19 ug/L 1 1.2-Dibromo-3-chloropropane (DBCP) 95-50-1 8260B ND 1.0 0.19 ug/L 1 1.2-Dichloroethane 75-71-8 8260B ND 1.0 0.23 ug/L 1 1.2-Dichloroethane 75-53-4 8260B <	Chlorobenzene		108-	90-7	8260B	ND	1.0	0.20		1
Chloroform 67-66-3 8260B ND 1.0 0.21 ug/L 1 Chloromethane (Methyl chloride) 74-87-3 8260B ND 1.0 0.19 ug/L 1 Cyclohexane 110-82-7 8260B ND 1.0 0.30 ug/L 1 12-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 1.0 0.23 ug/L 1 12-Dibromo-chloromethane 124-48-1 8260B ND 1.0 0.23 ug/L 1 1,4-Dichlorobenzene 106-93-4 8260B ND 1.0 0.19 ug/L 1 1,4-Dichlorobenzene 106-93-4 8260B ND 1.0 0.19 ug/L 1 1,4-Dichlorobenzene 106-93-4 8260B ND 1.0 0.46 ug/L 1 1,2-Dichlorobenzene 75-71-8 8260B ND 1.0 0.23 ug/L 1 1,2-Dichloroethane 75-34-3 8260B ND 1.0 0.20 <td>Chloroethane</td> <td></td> <td>75-</td> <td>00-3</td> <td>8260B</td> <td>ND</td> <td>2.0</td> <td>0.28</td> <td></td> <td>1</td>	Chloroethane		75-	00-3	8260B	ND	2.0	0.28		1
Chloromethane (Methyl chloride) 74-87-3 82608 ND 1.0 0.19 ug/L 1 Cyclobexane 110-82-7 82608 ND 1.0 0.30 ug/L 1 1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 82608 ND 1.0 0.57 ug/L 1 1.2-Dibromo-schloromethane 124-48-1 82608 ND 1.0 0.17 ug/L 1 1.2-Diblromoethane (EDB) 106-63-4 82608 ND 1.0 0.19 ug/L 1 1.3-Dichlorobenzene 541-73-1 82608 ND 1.0 0.46 ug/L 1 1.2-Dichlorobenzene 95-50-1 82608 ND 1.0 0.46 ug/L 1 1.2-Dichloroethane 75-71-8 82608 ND 1.0 0.46 ug/L 1 1.1-Dichloroethane 75-73-8 82608 ND 1.0 0.33 ug/L 1 1.2-Dichloroethane 75-35-4 82608 ND 1.0	Chloroform		67-	66-3	8260B	ND	1.0	0.21		1
Cyclohexane 110-82-7 82608 ND 1.0 0.30 ug/L 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 82608 ND 1.0 0.57 ug/L 1 Dibromochloromethane 124-48-1 82608 ND 1.0 0.23 ug/L 1 1,2-Dibromoethane (EDB) 106-83-4 82608 ND 1.0 0.17 ug/L 1 1,4-Dichlorobenzene 106-46-7 82608 ND 1.0 0.19 ug/L 1 1,2-Dichorobenzene 541-73-1 82608 ND 1.0 0.46 ug/L 1 1,2-Dichlorobenzene 55-51-1 82608 ND 1.0 0.46 ug/L 1 1,2-Dichloroethane 75-71-8 82608 ND 1.0 0.23 ug/L 1 1,1-Dichloroethane 75-34-3 82608 ND 1.0 0.33 ug/L 1 1,1-Dichloroethene 75-35-4 82608 ND 1.0 0.33	Chloromethane (Methyl chloride)		74-	87-3	8260B	ND	1.0	0.19	-	1
1.2-Dibromo-3-chloropropane (DBCP) 96-12-8 82608 ND 1.0 0.57 ug/L 1 Dibromochloromethane 124-48-1 82608 ND 1.0 0.17 ug/L 1 1.2-Dibromochloromethane 106-93-4 82608 ND 1.0 0.17 ug/L 1 1.4-Dichlorobenzene 106-46-7 82608 ND 1.0 0.19 ug/L 1 1.2-Dichlorobenzene 541-73-1 82608 ND 1.0 0.46 ug/L 1 1.2-Dichlorobenzene 95-50-1 82608 ND 1.0 0.23 ug/L 1 1.2-Dichloroethane 175-71-8 82608 ND 1.0 0.23 ug/L 1 1.2-Dichloroethane 75-34-3 82608 ND 1.0 0.33 ug/L 1 1.1-Dichloroethene 75-35-4 82608 ND 1.0 0.33 ug/L 1 1.1-Dichloroethene 75-35-4 82608 ND 1.0 0.31 ug/L 1 1.2-Dichloroptopene 10061-02-6 82608			110-	82-7	8260B	ND	1.0	0.30		1
Dibromochloromethane 124-48-1 82608 ND 1.0 0.23 ug/L 1 1,2-Dibromoethane (EDB) 106-93-4 82608 ND 1.0 0.17 ug/L 1 1,4-Dichlorobenzene 106-46-7 82608 ND 1.0 0.19 ug/L 1 1,3-Dichlorobenzene 541-73-1 82608 ND 1.0 0.46 ug/L 1 1,2-Dichlorobenzene 95-50-1 82608 ND 1.0 0.46 ug/L 1 1,2-Dichloroethane 75-71-8 82608 ND 1.0 0.23 ug/L 1 1,1-Dichloroethane 75-34-3 82608 ND 1.0 0.33 ug/L 1 1,1-Dichloroethane 75-35-4 82608 ND 1.0 0.31 ug/L 1 1,2-Dichloropthene 76-87-5 82608 ND 1.0 0.31 ug/L 1 1,2-Dichloroptopane 78-87-5 82608 ND 1.0 0.30 <t< td=""><td>1,2-Dibromo-3-chloropropane (DBCP</td><td>')</td><td>96-</td><td>12-8</td><td></td><td>ND</td><td>1.0</td><td>0.57</td><td></td><td>1</td></t<>	1,2-Dibromo-3-chloropropane (DBCP	')	96-	12-8		ND	1.0	0.57		1
1,4-Dichlorobenzene106-46-78260BND1.00.19ug/L11,3-Dichlorobenzene541-73-18260BND1.00.19ug/L11,2-Dichlorobenzene95-50-18260BND1.00.46ug/L1Dichlorodifluoromethane75-71-88260BND2.00.85ug/L11,2-Dichloroethane107-06-28260BND1.00.23ug/L11,1-Dichloroethane75-34-38260BND1.00.33ug/L1trans-1,2-Dichloroethene156-60-58260BND1.00.33ug/L1cis-1,2-Dichloroethene75-35-48260BND1.00.29ug/L11,1-Dichloroptpane75-35-48260BND1.00.31ug/L11,2-Dichloroptpane76-87-58260BND1.00.22ug/L11,2-Dichloroptpane10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropene10061-01-58260BND1.00.22ug/L1Ethylbenzene99-78-68260BND1.00.24ug/L1Leynylbenzene99-82-88260BND1.00.24ug/L1Hylbenzene99-20-98260BND1.00.24ug/L1Methyl-2-pentanone163-04-48260BND1.00.23ug/L1Methyl-2-pentan	Dibromochloromethane	,	124-	48-1		ND	1.0	0.23		1
1,4-Dichlorobenzene106-46-78260BND1.00.19ug/L11,3-Dichlorobenzene541-73-18260BND1.00.19ug/L11,2-Dichlorobenzene95-50-18260BND1.00.46ug/L1Dichlorodifluoromethane75-71-88260BND2.00.85ug/L11,2-Dichloroethane107-06-28260BND1.00.23ug/L11,1-Dichloroethane75-34-38260BND1.00.33ug/L1trans-1,2-Dichloroethene156-60-58260BND1.00.33ug/L1cis-1,2-Dichloroethene75-35-48260BND1.00.29ug/L11,1-Dichloroptpane75-35-48260BND1.00.31ug/L11,2-Dichloroptpane76-87-58260BND1.00.22ug/L11,2-Dichloroptpane10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropene10061-01-58260BND1.00.22ug/L1Ethylbenzene99-78-68260BND1.00.24ug/L1Leynylbenzene99-82-88260BND1.00.24ug/L1Hylbenzene99-20-98260BND1.00.24ug/L1Methyl-2-pentanone163-04-48260BND1.00.23ug/L1Methyl-2-pentan	1,2-Dibromoethane (EDB)		106-	93-4	8260B	ND	1.0	0.17	ug/L	1
1,2-Dichlorobenzene95-50-18260BND1.00.46ug/L1Dichlorodifluoromethane75-71-88260BND2.00.85ug/L11,2-Dichloroethane107-06-28260BND1.00.23ug/L11,1-Dichloroethane75-34-38260BND1.00.19ug/L1trans-1,2-Dichloroethane156-60-58260BND1.00.33ug/L1trans-1,2-Dichloroethene156-60-58260BND1.00.20ug/L11,1-Dichloroethene75-35-48260BND1.00.22ug/L11,2-Dichloroptpane78-87-58260BND1.00.22ug/L11,2-Dichloroptpene10061-02-68260BND1.00.22ug/L1trans-1,3-Dichloropropene10061-01-58260BND1.00.22ug/L1trans-1,3-Dichloropropene10061-01-68260BND1.00.22ug/L1Ethylbenzene98-82-88260BND1.00.21ug/L1Isopropylbenzene98-82-88260BND1.00.24ug/L1Methyl acetate79-20-98260BND1.00.24ug/L1Methyl-2-pentanone108-10-18260BND1.00.23ug/L1Methyl-2-pentanone108-87-28260BND1.00.24ug/L1	1,4-Dichlorobenzene		106-	46-7	8260B	ND	1.0	0.19		1
Dichlorodifluoromethane75-71-88260BND2.00.85ug/L11,2-Dichloroethane107-06-28260BND1.00.23ug/L11,1-Dichloroethane75-34-38260BND1.00.19ug/L1trans-1,2-Dichloroethene156-60-58260BND1.00.33ug/L1cis-1,2-Dichloroethene156-59-28260BND1.00.20ug/L11,1-Dichloroethene75-35-48260BND1.00.31ug/L11,2-Dichloroptopane78-87-58260BND1.00.22ug/L1trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropene10061-01-58260BND1.00.22ug/L1trans-1,3-Dichloropropene10061-01-68260BND1.00.21ug/L1thylbenzene98-82-88260BND1.00.24ug/L1lsopropylbenzene98-82-88260BND1.00.23ug/L1Methyl acetate79-20-98260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND1.00.24ug/L1Methyloclohexane108-87-28260BND1.00.42ug/L1 <td>1,3-Dichlorobenzene</td> <td></td> <td>541-</td> <td>73-1</td> <td>8260B</td> <td>ND</td> <td>1.0</td> <td>0.19</td> <td>ug/L</td> <td>1</td>	1,3-Dichlorobenzene		541-	73-1	8260B	ND	1.0	0.19	ug/L	1
1,2-Dichloroethane107-06-28260BND1.00.23ug/L11,1-Dichloroethane75-34-38260BND1.00.19ug/L1trans-1,2-Dichloroethene156-60-58260BND1.00.33ug/L1cis-1,2-Dichloroethene156-59-28260BND1.00.20ug/L11,1-Dichloroethene75-35-48260BND1.00.31ug/L11,2-Dichloroptopane78-87-58260BND1.00.22ug/L1trans-1,3-Dichloroptopene10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloroptopene10061-01-58260BND1.00.21ug/L1cis-1,3-Dichloroptopene10061-01-58260BND1.00.21ug/L1thylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND1.00.24ug/L1Isopropylbenzene98-82-88260BND1.00.24ug/L1Methyl acetate79-20-98260BND1.00.23ug/L14-Methyl-2-pentanone108-87-28260BND1.00.23ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Methylene chloride75-09-28260BND1.00.13ug/L11,1,2,	1,2-Dichlorobenzene		95-	50-1	8260B	ND	1.0	0.46	ug/L	1
1,1-Dichloroethane75-34-38260BND1.00.19ug/L1trans-1,2-Dichloroethene156-60-58260BND1.00.33ug/L1cis-1,2-Dichloroethene156-59-28260BND1.00.20ug/L11,1-Dichloroethene75-35-48260BND1.00.31ug/L11,2-Dichloroptopane78-87-58260BND1.00.29ug/L1trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropene10061-01-58260BND1.00.21ug/L1Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND1.00.24ug/L1Isopropylbenzene98-82-88260BND1.00.24ug/L1Methyl acetate79-20-98260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND1.00.23ug/L1Methylecyclohexane108-87-28260BND1.00.29ug/L1Methylene chloride75-09-28260BND1.00.42ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1	Dichlorodifluoromethane		75-	71-8	8260B	ND	2.0	0.85	ug/L	1
trans-1,2-Dichloroethene156-60-58260BND1.00.33ug/L1cis-1,2-Dichloroethene156-59-28260BND1.00.20ug/L11,1-Dichloroethene75-35-48260BND1.00.31ug/L11,2-Dichloropropane78-87-58260BND1.00.29ug/L1trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropene10061-01-58260BND1.00.21ug/L1Ethylbenzene100-41-48260BND1.00.26ug/L12-Hexanone591-78-68260BND1.00.24ug/L1Isopropylbenzene98-82-88260BND1.00.24ug/L1Methyl acetate79-20-98260BND1.00.23ug/L1Methyl-2-pentanone108-10-18260BND1.00.29ug/L1Methyl-2-pentanone108-87-28260BND1.00.29ug/L1Methyl-2-pentanone108-87-28260BND1.00.42ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Methylene chloride75-09-28260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1 <td>1,2-Dichloroethane</td> <td></td> <td>107-</td> <td>06-2</td> <td>8260B</td> <td>ND</td> <td>1.0</td> <td>0.23</td> <td>ug/L</td> <td>1</td>	1,2-Dichloroethane		107-	06-2	8260B	ND	1.0	0.23	ug/L	1
cis-1,2-Dichloroethene156-59-28260BND1.00.20ug/L11,1-Dichloroethene75-35-48260BND1.00.31ug/L11,2-Dichloropropane78-87-58260BND1.00.29ug/L1trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropene10061-01-58260BND1.00.20ug/L1Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND1.00.26ug/L1Isopropylbenzene98-82-88260BND1.00.14ug/L1Methyl acetate79-20-98260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND1.00.29ug/L1Methylecholoride75-09-28260BND1.00.29ug/L1Methylene chloride75-09-28260BND1.00.42ug/L11,1,2,2-Tetrachloroethane100-42-58260BND1.00.13ug/L1	1,1-Dichloroethane		75-	34-3	8260B	ND	1.0	0.19	ug/L	1
1,1-Dichloroethene75-35-48260BND1.00.31ug/L11,2-Dichloropropane78-87-58260BND1.00.29ug/L1trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropene10061-01-58260BND1.00.30ug/L1Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND100.26ug/L1Isopropylbenzene98-82-88260BND1.00.24ug/L1Methyl acetate79-20-98260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND1.00.29ug/L1Methylcyclohexane108-87-28260BND1.00.42ug/L1Methylene chloride75-09-28260BND1.00.42ug/L11,1,2,2-Tetrachloroethane100-42-58260BND1.00.13ug/L1	trans-1,2-Dichloroethene		156-	60-5	8260B	ND	1.0	0.33	-	1
1,2-Dichloropropane78-87-58260BND1.00.29ug/L1trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropene10061-01-58260BND1.00.30ug/L1Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND100.26ug/L1Isopropylbenzene98-82-88260BND1.00.14ug/L1Methyl acetate79-20-98260BND1.00.23ug/L1Methyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L14-Methyl-2-pentanone108-87-28260BND1.00.29ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Methylene chloride75-09-28260BND1.00.42ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1	cis-1,2-Dichloroethene		156-	59-2	8260B	ND	1.0	0.20	ug/L	1
trans-1,3-Dichloropropene10061-02-68260BND1.00.22ug/L1cis-1,3-Dichloropropene10061-01-58260BND1.00.30ug/L1Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND100.26ug/L1Isopropylbenzene98-82-88260BND1.00.14ug/L1Methyl acetate79-20-98260BND1.00.23ug/L1Methyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L1Methylcyclohexane108-10-18260BND1.00.29ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Styrene100-42-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1	1,1-Dichloroethene		75-	35-4	8260B	ND	1.0	0.31	ug/L	1
cis-1,3-Dichloropropene10061-01-58260BND1.00.30ug/L1Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND100.26ug/L1Isopropylbenzene98-82-88260BND1.00.14ug/L1Methyl acetate79-20-98260BND1.00.23ug/L1Methyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND100.29ug/L1Methylcyclohexane108-87-28260BND5.00.16ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Styrene100-42-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1	1,2-Dichloropropane		78-	87-5	8260B	ND	1.0	0.29	ug/L	1
Ethylbenzene100-41-48260BND1.00.21ug/L12-Hexanone591-78-68260BND100.26ug/L1Isopropylbenzene98-82-88260BND1.00.14ug/L1Methyl acetate79-20-98260BND1.00.24ug/L1Methyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND100.29ug/L1Methylcyclohexane108-87-28260BND5.00.16ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Styrene100-42-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1	trans-1,3-Dichloropropene		10061-	02-6	8260B	ND	1.0	0.22	ug/L	1
2-Hexanone591-78-68260BND100.26ug/L1Isopropylbenzene98-82-88260BND1.00.14ug/L1Methyl acetate79-20-98260BND1.00.24ug/L1Methyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND100.29ug/L1Methylcyclohexane108-87-28260BND5.00.16ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Styrene100-42-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1	cis-1,3-Dichloropropene		10061-	01-5	8260B	ND	1.0	0.30	ug/L	1
2-Hexanone591-78-68260BND100.26ug/L1Isopropylbenzene98-82-88260BND1.00.14ug/L1Methyl acetate79-20-98260BND1.00.24ug/L1Methyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND100.29ug/L1Methylcyclohexane108-87-28260BND5.00.16ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Styrene100-42-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1	Ethylbenzene		100-	41-4	8260B	ND	1.0	0.21	ug/L	1
Isopropylbenzene 98-82-8 8260B ND 1.0 0.14 ug/L 1 Methyl acetate 79-20-9 8260B ND 1.0 0.24 ug/L 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260B ND 1.0 0.23 ug/L 1 4-Methyl-2-pentanone 108-10-1 8260B ND 10 0.29 ug/L 1 Methylcyclohexane 108-87-2 8260B ND 5.0 0.16 ug/L 1 Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L 1 Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1			591-	78-6	8260B	ND	10	0.26	ug/L	1
Methyl tertiary butyl ether (MTBE)1634-04-48260BND1.00.23ug/L14-Methyl-2-pentanone108-10-18260BND100.29ug/L1Methylcyclohexane108-87-28260BND5.00.16ug/L1Methylene chloride75-09-28260BND1.00.42ug/L1Styrene100-42-58260BND1.00.13ug/L11,1,2,2-Tetrachloroethane79-34-58260BND1.00.13ug/L1	lsopropylbenzene		98-	82-8	8260B	ND	1.0	0.14	-	1
Methyl tertiary butyl ether (MTBE) 1634-04-4 8260B ND 1.0 0.23 ug/L 1 4-Methyl-2-pentanone 108-10-1 8260B ND 10 0.29 ug/L 1 Methylcyclohexane 108-87-2 8260B ND 5.0 0.16 ug/L 1 Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L 1 Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1	Methyl acetate		79-	20-9	8260B	ND	1.0	0.24	ug/L	1
Methylcyclohexane 108-87-2 8260B ND 5.0 0.16 ug/L 1 Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L 1 Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1	Methyl tertiary butyl ether (MTBE)		1634-	04-4	8260B	ND	1.0	0.23	ug/L	1
Methylcyclohexane 108-87-2 8260B ND 5.0 0.16 ug/L 1 Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L 1 Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1	4-Methyl-2-pentanone		108-	10-1	8260B	ND	10	0.29	ug/L	1
Methylene chloride 75-09-2 8260B ND 1.0 0.42 ug/L 1 Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1	Methylcyclohexane		108-	87-2	8260B	ND	5.0	0.16		1
Styrene 100-42-5 8260B ND 1.0 0.13 ug/L 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1	Methylene chloride		75-	09-2	8260B	ND	1.0	0.42		1
1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 1.0 0.13 ug/L 1			100-	42-5	8260B	ND	1.0	0.13		1
-	1,1,2,2-Tetrachloroethane		79-	34-5		ND	1.0	0.13		1
•	Tetrachloroethene						1.0			1
Toluene 108-88-3 8260B ND 1.0 0.24 ug/L 1	Toluene						1.0			1

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Page: 38 of 56

Description: TRIP BLANK

Date Sampled:04/26/2016

Date Received: 04/27/2016

Laboratory ID: RD27083-017 Matrix: Aqueous

	Volati	le Orga	anic C	compounds	by GC/MS	6			
RunPrep Method15030B	Analytical Method 8260B	Dilution 1		sis Date Analyst 2016 1245 RAG	Prep Date	Batch 12025			
Parameter			CAS nber	Analytical Method	Result Q	PQL	MDL	Units	Run
1,1,2-Trichloro-1,2,2-Trifluoroethan	e	-	13-1	8260B	ND	1.0	0.30	ug/L	1
1,2,4-Trichlorobenzene		120-	82-1	8260B	ND	1.0	0.13	ug/L	1
1,1,2-Trichloroethane		79-	00-5	8260B	ND	1.0	0.22	ug/L	1
1,1,1-Trichloroethane		71-	55-6	8260B	ND	1.0	0.24	ug/L	1
Trichloroethene		79-	01-6	8260B	ND	1.0	0.16	ug/L	1
Trichlorofluoromethane		75-	69-4	8260B	ND	1.0	0.74	ug/L	1
Vinyl chloride		75-	01-4	8260B	ND	1.0	0.50	ug/L	1
Xylenes (total)		1330-	20-7	8260B	ND	1.0	0.32	ug/L	1
Surrogate	Q %	Run 1 Recovery	Accepta Lim						
1,2-Dichloroethane-d4		97	70-13	30					
Bromofluorobenzene		95	70-13	30					
Toluene-d8		102	70-13	30					

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"with a "W"N = Recovery is out of criteria

QC Summary

Volatile Organic Compounds by GC/MS - MB

Sample ID: RQ12025-001 Batch: 12025 Analytical Method: 8260B

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Acetone	ND		1	20	1.6	ug/L	04/28/2016 1026
Benzene	ND		1	1.0	0.21	ug/L	04/28/2016 1026
Bromodichloromethane	ND		1	1.0	0.23	ug/L	04/28/2016 1026
Bromoform	ND		1	1.0	0.35	ug/L	04/28/2016 1026
Bromomethane (Methyl bromide)	ND		1	2.0	0.19	ug/L	04/28/2016 1026
2-Butanone (MEK)	ND		1	10	1.8	ug/L	04/28/2016 1026
Carbon disulfide	ND		1	1.0	0.45	ug/L	04/28/2016 1026
Carbon tetrachloride	ND		1	1.0	0.31	ug/L	04/28/2016 1026
Chlorobenzene	ND		1	1.0	0.20	ug/L	04/28/2016 1026
Chloroethane	ND		1	2.0	0.28	ug/L	04/28/2016 1026
Chloroform	ND		1	1.0	0.21	ug/L	04/28/2016 1026
Chloromethane (Methyl chloride)	ND		1	1.0	0.19	ug/L	04/28/2016 1026
Cyclohexane	ND		1	1.0	0.30	ug/L	04/28/2016 1026
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	1.0	0.57	ug/L	04/28/2016 1026
Dibromochloromethane	ND		1	1.0	0.23	ug/L	04/28/2016 1026
1,2-Dibromoethane (EDB)	ND		1	1.0	0.17	ug/L	04/28/2016 1026
1,4-Dichlorobenzene	ND		1	1.0	0.19	ug/L	04/28/2016 1026
1,3-Dichlorobenzene	ND		1	1.0	0.19	ug/L	04/28/2016 1026
1,2-Dichlorobenzene	ND		1	1.0	0.46	ug/L	04/28/2016 1026
Dichlorodifluoromethane	ND		1	2.0	0.85	ug/L	04/28/2016 1026
1,2-Dichloroethane	ND		1	1.0	0.23	ug/L	04/28/2016 1026
1,1-Dichloroethane	ND		1	1.0	0.19	ug/L	04/28/2016 1026
trans-1,2-Dichloroethene	ND		1	1.0	0.33	ug/L	04/28/2016 1026
cis-1,2-Dichloroethene	ND		1	1.0	0.20	ug/L	04/28/2016 1026
1,1-Dichloroethene	ND		1	1.0	0.31	ug/L	04/28/2016 1026
1,2-Dichloropropane	ND		1	1.0	0.29	ug/L	04/28/2016 1026
trans-1,3-Dichloropropene	ND		1	1.0	0.22	ug/L	04/28/2016 1026
cis-1,3-Dichloropropene	ND		1	1.0	0.30	ug/L	04/28/2016 1026
Ethylbenzene	ND		1	1.0	0.21	ug/L	04/28/2016 1026
2-Hexanone	ND		1	10	0.26	ug/L	04/28/2016 1026
Isopropylbenzene	ND		1	1.0	0.14	ug/L	04/28/2016 1026
Methyl acetate	ND		1	1.0	0.24	ug/L	04/28/2016 1026
Methyl tertiary butyl ether (MTBE)	ND		1	1.0	0.23	ug/L	04/28/2016 1026
4-Methyl-2-pentanone	ND		1	10	0.29	ug/L	04/28/2016 1026
Methylcyclohexane	ND		1	5.0	0.16	ug/L	04/28/2016 1026
Methylene chloride	ND		1	1.0	0.42	ug/L	04/28/2016 1026
Styrene	ND		1	1.0	0.13	ug/L	04/28/2016 1026
1,1,2,2-Tetrachloroethane	ND		1	1.0	0.13	ug/L	04/28/2016 1026
Tetrachloroethene	ND		1	1.0	0.22	ug/L	04/28/2016 1026
Toluene	ND		1	1.0	0.24	ug/L	04/28/2016 1026
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	1.0	0.30	ug/L	04/28/2016 1026
1,2,4-Trichlorobenzene	ND		1	1.0	0.13	ug/L	04/28/2016 1026
1,1,2-Trichloroethane	ND		1	1.0	0.22	ug/L	04/28/2016 1026
						-	

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria + = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - MB

Sample ID: RQ12025-001 Batch:12025 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B								
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date		
Trichloroethene	ND		1	1.0	0.16	ug/L	04/28/2016 1026		
Trichlorofluoromethane	ND		1	1.0	0.74	ug/L	04/28/2016 1026		
Vinyl chloride	ND		1	1.0	0.50	ug/L	04/28/2016 1026		
Xylenes (total)	ND		1	1.0	0.32	ug/L	04/28/2016 1026		
Surrogate	Q % R	ec	Acceptance Limit						
Bromofluorobenzene	95		70-130						
1,2-Dichloroethane-d4	96		70-130						
Toluene-d8	104	1	70-130						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

ND = Not detected at or above the MDL

J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria + = RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: RQ12025-002 Batch:12025

Analytical Method: 8260B

Matrix: Aqueous

Prep Method: 5030B

	Spike					0/ D	
Parameter	Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
			<u>u</u>				
Acetone	100	76		1	76	60-140	04/28/2016 0919
Benzene	50	42		1	84	70-130	04/28/2016 0919
Bromodichloromethane	50	44		1	88	70-130	04/28/2016 0919
Bromoform	50	45		1	91	70-130	04/28/2016 0919
Bromomethane (Methyl bromide)	50	49		1	97	60-140	04/28/2016 0919
2-Butanone (MEK)	100	76		1	76	60-140	04/28/2016 0919
Carbon disulfide	50	34		1	68	60-140	04/28/2016 0919
Carbon tetrachloride	50	42		1	83	70-130	04/28/2016 0919
Chlorobenzene	50	46		1	92	70-130	04/28/2016 0919
Chloroethane	50	47		1	95	60-140	04/28/2016 0919
Chloroform	50	41		1	82	70-130	04/28/2016 0919
Chloromethane (Methyl chloride)	50	46		1	93	60-140	04/28/2016 0919
Cyclohexane	50	44		1	88	70-130	04/28/2016 0919
1,2-Dibromo-3-chloropropane (DBCP)	50	39		1	78	70-130	04/28/2016 0919
Dibromochloromethane	50	46		1	92	70-130	04/28/2016 0919
1,2-Dibromoethane (EDB)	50	46		1	92	70-130	04/28/2016 0919
1,4-Dichlorobenzene	50	44		1	89	70-130	04/28/2016 0919
1,3-Dichlorobenzene	50	46		1	92	70-130	04/28/2016 0919
1.2-Dichlorobenzene	50	47		1	93	70-130	04/28/2016 0919
Dichlorodifluoromethane	50	60		1	120	60-140	04/28/2016 0919
1,2-Dichloroethane	50	43		1	86	70-130	04/28/2016 0919
1,1-Dichloroethane	50	41		1	83	70-130	04/28/2016 0919
trans-1,2-Dichloroethene	50	42		1	85	70-130	04/28/2016 0919
cis-1,2-Dichloroethene	50	41		1	83	70-130	04/28/2016 0919
1,1-Dichloroethene	50	39		1	78	70-130	04/28/2016 0919
1,2-Dichloropropane	50	40		1	81	70-130	04/28/2016 0919
trans-1,3-Dichloropropene	50 50	43		1	86	70-130	04/28/2016 0919
	50 50	43		1	85	70-130	04/28/2016 0919
cis-1,3-Dichloropropene		43 48			85 95	70-130	
Ethylbenzene	50			1			04/28/2016 0919
2-Hexanone	100	110		1	108	60-140	04/28/2016 0919
Isopropylbenzene	50	44		1	88	70-130	04/28/2016 0919
Methyl acetate	50	42		1	84	15-128	04/28/2016 0919
Methyl tertiary butyl ether (MTBE)	50	37		1	74	70-130	04/28/2016 0919
4-Methyl-2-pentanone	100	100		1	101	60-140	04/28/2016 0919
Methylcyclohexane	50	42		1	84	70-130	04/28/2016 0919
Methylene chloride	50	35		1	71	70-130	04/28/2016 0919
Styrene	50	47		1	94	70-130	04/28/2016 0919
1,1,2,2-Tetrachloroethane	50	42		1	84	60-140	04/28/2016 0919
Tetrachloroethene	50	54		1	108	70-130	04/28/2016 0919
Toluene	50	46		1	93	70-130	04/28/2016 0919
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	41		1	82	70-130	04/28/2016 0919
1,2,4-Trichlorobenzene	50	41		1	82	70-130	04/28/2016 0919
1,1,2-Trichloroethane	50	44		1	89	70-130	04/28/2016 0919
1,1,1-Trichloroethane	50	46		1	92	70-130	04/28/2016 0919

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40% J = Estimated result < PQL and \geq MDL

eds 40% N = Recovery is out of criteria

+ = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: RQ12025-002 Batch:12025 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date			
Trichloroethene	50	47		1	95	70-130	04/28/2016 0919			
Trichlorofluoromethane	50	53		1	106	70-130	04/28/2016 0919			
Vinyl chloride	50	48		1	96	70-130	04/28/2016 0919			
Xylenes (total)	100	98		1	98	70-130	04/28/2016 0919			
Surrogate	Q% Rec	Acceptan Limit	се							
Bromofluorobenzene	97	70-130)							
1,2-Dichloroethane-d4	93	70-130)							
Toluene-d8	103	70-130)							

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria + = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - MB

Sample ID: RQ12119-001 Batch: 12119 Analytical Method: 8260B Matrix: Aqueous

Prep Method: 5030B

Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Acetone	ND		1	20	1.6	ug/L	04/29/2016 1017
Benzene	ND		1	1.0	0.21	ug/L	04/29/2016 1017
Bromodichloromethane	ND		1	1.0	0.23	ug/L	04/29/2016 1017
Bromoform	ND		1	1.0	0.35	ug/L	04/29/2016 1017
Bromomethane (Methyl bromide)	ND		1	2.0	0.19	ug/L	04/29/2016 1017
2-Butanone (MEK)	ND		1	10	1.8	ug/L	04/29/2016 1017
Carbon disulfide	ND		1	1.0	0.45	ug/L	04/29/2016 1017
Carbon tetrachloride	ND		1	1.0	0.31	ug/L	04/29/2016 1017
Chlorobenzene	ND		1	1.0	0.20	ug/L	04/29/2016 1017
Chloroethane	ND		1	2.0	0.28	ug/L	04/29/2016 1017
Chloroform	ND		1	1.0	0.21	ug/L	04/29/2016 1017
Chloromethane (Methyl chloride)	ND		1	1.0	0.19	ug/L	04/29/2016 1017
Cyclohexane	ND		1	1.0	0.30	ug/L	04/29/2016 1017
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	1.0	0.57	ug/L	04/29/2016 1017
Dibromochloromethane	ND		1	1.0	0.23	ug/L	04/29/2016 1017
1,2-Dibromoethane (EDB)	ND		1	1.0	0.17	ug/L	04/29/2016 1017
1,3-Dichlorobenzene	ND		1	1.0	0.19	ug/L	04/29/2016 1017
1,4-Dichlorobenzene	ND		1	1.0	0.19	ug/L	04/29/2016 1017
1,2-Dichlorobenzene	ND		1	1.0	0.46	ug/L	04/29/2016 1017
Dichlorodifluoromethane	ND		1	2.0	0.85	ug/L	04/29/2016 1017
1.1-Dichloroethane	ND		1	1.0	0.19	ug/L	04/29/2016 1017
I.2-Dichloroethane	ND		1	1.0	0.23	ug/L	04/29/2016 1017
rans-1,2-Dichloroethene	ND		1	1.0	0.33	ug/L	04/29/2016 1017
cis-1,2-Dichloroethene	ND		1	1.0	0.20	ug/L	04/29/2016 1017
1,1-Dichloroethene	ND		1	1.0	0.31	ug/L	04/29/2016 1017
1,2-Dichloropropane	ND		1	1.0	0.29	ug/L	04/29/2016 1017
cis-1,3-Dichloropropene	ND		1	1.0	0.30	ug/L	04/29/2016 1017
trans-1,3-Dichloropropene	ND		1	1.0	0.22	ug/L	04/29/2016 1017
Ethylbenzene	ND		1	1.0	0.21	ug/L	04/29/2016 1017
2-Hexanone	ND		1	10	0.26	ug/L	04/29/2016 1017
sopropylbenzene	ND		1	1.0	0.14	ug/L	04/29/2016 1017
Methyl acetate	ND		1	1.0	0.24	ug/L	04/29/2016 1017
Methyl tertiary butyl ether (MTBE)	ND		1	1.0	0.23	ug/L	04/29/2016 1017
4-Methyl-2-pentanone	ND		1	10	0.20	ug/L	04/29/2016 1017
Methylcyclohexane	ND		1	5.0	0.25	ug/L	04/29/2016 1017
Methylene chloride	ND		1	1.0	0.42	ug/L	04/29/2016 1017
Styrene	ND		1	1.0	0.12	ug/L	04/29/2016 1017
1,1,2,2-Tetrachloroethane	ND		1	1.0	0.13	ug/L	04/29/2016 1017
Tetrachloroethene	ND		1	1.0	0.13	ug/L	04/29/2016 1017
Toluene	ND		1	1.0	0.22	ug/L	04/29/2016 1017
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	1.0	0.30	ug/L	04/29/2016 1017
1,2,4-Trichlorobenzene	ND		1	1.0	0.30	ug/L	04/29/2016 1017
1,1,1-Trichloroethane	ND		1	1.0	0.13	ug/L	04/29/2016 1017
1,1,2-Trichloroethane	ND		1		0.24	-	04/29/2016 1017
r, r,z-rnuniuruethane			I	1.0	0.22	ug/L	04/29/2010 1017

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40% J = Estimated result < PQL and \ge MDL

ds 40% N = Recovery is out of criteria

+ = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - MB

Sample ID: RQ12119-001 Batch:12119 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Resu	lt	Q	Dil	PQL	MDL	Units	Analysis Date		
Trichloroethene	ND			1	1.0	0.16	ug/L	04/29/2016 1017		
Trichlorofluoromethane	ND			1	1.0	0.74	ug/L	04/29/2016 1017		
Vinyl chloride	ND			1	1.0	0.50	ug/L	04/29/2016 1017		
Xylenes (total)	ND			1	1.0	0.32	ug/L	04/29/2016 1017		
Surrogate	Q	% Rec		ceptance Limit						
Bromofluorobenzene		95		70-130						
1,2-Dichloroethane-d4		97		70-130						
Toluene-d8		103		70-130						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

ND = Not detected at or above the MDL

J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria + = RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: RQ12119-002 Batch: 12119 Analytical Method: 8260B

Matrix: Aqueous

Prep Method: 5030B

	Spike						
Parameter	Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Acetone	100	70		1	70	60-140	04/29/2016 0916
Benzene	50	47		1	95	70-130	04/29/2016 0916
Bromodichloromethane	50	51		1	101	70-130	04/29/2016 0916
Bromoform	50	51		1	102	70-130	04/29/2016 0916
Bromomethane (Methyl bromide)	50	46		1	93	60-140	04/29/2016 0916
2-Butanone (MEK)	100	84		1	84	60-140	04/29/2016 0916
Carbon disulfide	50	37		1	74	60-140	04/29/2016 0916
Carbon tetrachloride	50	50		1	99	70-130	04/29/2016 0916
Chlorobenzene	50	52		1	104	70-130	04/29/2016 0916
Chloroethane	50	43		1	86	60-140	04/29/2016 0916
Chloroform	50	46		1	92	70-130	04/29/2016 0916
Chloromethane (Methyl chloride)	50	44		1	87	60-140	04/29/2016 0916
Cyclohexane	50	51		1	102	70-130	04/29/2016 0916
1,2-Dibromo-3-chloropropane (DBCP)	50	46		1	92	70-130	04/29/2016 0916
Dibromochloromethane	50	51		1	103	70-130	04/29/2016 0916
1,2-Dibromoethane (EDB)	50	51		1	103	70-130	04/29/2016 0916
1,3-Dichlorobenzene	50	53		1	106	70-130	04/29/2016 0916
, 1,4-Dichlorobenzene	50	51		1	103	70-130	04/29/2016 0916
1,2-Dichlorobenzene	50	54		1	107	70-130	04/29/2016 0916
Dichlorodifluoromethane	50	57		1	113	60-140	04/29/2016 0916
1,1-Dichloroethane	50	47		1	94	70-130	04/29/2016 0916
I.2-Dichloroethane	50	50		1	100	70-130	04/29/2016 0916
rans-1,2-Dichloroethene	50	49		1	98	70-130	04/29/2016 0916
cis-1,2-Dichloroethene	50	48		1	95	70-130	04/29/2016 0916
1,1-Dichloroethene	50	47		1	93	70-130	04/29/2016 0916
1,2-Dichloropropane	50	46		1	92	70-130	04/29/2016 0916
cis-1,3-Dichloropropene	50	49		1	98	70-130	04/29/2016 0916
rans-1,3-Dichloropropene	50	49		1	97	70-130	04/29/2016 0916
Ethylbenzene	50	52		1	103	70-130	04/29/2016 0916
2-Hexanone	100	120		1	124	60-140	04/29/2016 0916
sopropylbenzene	50	50		1	99	70-130	04/29/2016 0916
Methyl acetate	50	50		1	99	15-128	04/29/2016 0916
Methyl tertiary butyl ether (MTBE)	50	43		1	85	70-130	04/29/2016 0916
4-Methyl-2-pentanone	100	120		1	122	60-140	04/29/2016 0916
Methylcyclohexane	50	49		1	98	70-130	04/29/2016 0916
Methylene chloride	50	40		1	80	70-130	04/29/2016 0916
Styrene	50 50	53		1	105	70-130	04/29/2016 0916
I,1,2,2-Tetrachloroethane	50 50	44		1	89	60-140	04/29/2016 0916
Fetrachloroethene	50 50	64		1	128	70-130	04/29/2016 0916
Foluene	50 50	52		1	128	70-130	04/29/2016 0916
I,1,2-Trichloro-1,2,2-Trifluoroethane	50 50	49		1	98	70-130	04/29/2016 0916
1,2,4-Trichlorobenzene	50 50	49 53		1	90 106	70-130	04/29/2016 0916
1,1,1-Trichloroethane	50 50	53 53				70-130	04/29/2016 0916
				1	105		
1,1,2-Trichloroethane	50	50		1	99	70-130	04/29/2016 0916

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

+ = RPD is out of criteria

ND = Not detected at or above the MDL

Volatile Organic Compounds by GC/MS - LCS

Sample ID: RQ12119-00 Batch:12119 Analytical Method: 8260B	2	Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date				
Trichloroethene	50	57		1	113	70-130	04/29/2016 0916				
Trichlorofluoromethane	50	52		1	103	70-130	04/29/2016 0916				
Vinyl chloride	50	46		1	93	70-130	04/29/2016 0916				
Xylenes (total)	100	110		1	110	70-130	04/29/2016 0916				
Surrogate	Q % Rec	Acceptar Limit									
Bromofluorobenzene	94	70-13	0								
1,2-Dichloroethane-d4	96	70-13	0								
Toluene-d8	101	70-13	0								

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

 $\mathsf{J} = \mathsf{Estimated}\ \mathsf{result} < \mathsf{PQL}\ \mathsf{and} \geq \mathsf{MDL}$

N = Recovery is out of criteria + = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - MS

Sample ID: RD27083-005MS Batch:12119 Matrix: Aqueous

Prep Method: 5030B

Analytical	Method:	8260B	

Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Acetone	ND	100	64		1	64	60-140	04/29/2016 1840
Benzene	ND	50	48		1	96	72-127	04/29/2016 1840
Bromodichloromethane	ND	50	48		1	97	71-143	04/29/2016 1840
Bromoform	ND	50	38		1	77	65-131	04/29/2016 1840
Bromomethane (Methyl bromide)	ND	50	45		1	89	36-168	04/29/2016 1840
2-Butanone (MEK)	ND	100	75		1	75	60-140	04/29/2016 1840
Carbon disulfide	ND	50	32		1	64	60-140	04/29/2016 1840
Carbon tetrachloride	ND	50	50		1	101	37-166	04/29/2016 1840
Chlorobenzene	ND	50	53		1	105	78-129	04/29/2016 1840
Chloroethane	ND	50	44		1	87	60-140	04/29/2016 1840
hloroform	ND	50	46		1	93	63-123	04/29/2016 1840
hloromethane (Methyl chloride)	ND	50	46		1	92	20-158	04/29/2016 1840
yclohexane	ND	50 50	40 53		1	32 107	70-130	04/29/2016 1840
,2-Dibromo-3-chloropropane (DBCP)	ND	50 50	55 41		1	83	70-130	04/29/2016 1840
)ibromochloromethane	ND	50 50	41		1	94	74-134	04/29/2016 1840
,2-Dibromoethane (EDB)	ND	50 50	47 50		1	94 101	74-134 70-130	04/29/2016 1840
,4-Dichlorobenzene	ND	50 50	50 51		1	101	70-130	04/29/2016 1840
,3-Dichlorobenzene	ND	50 50	50		1	101	70-130	04/29/2016 1840
,2-Dichlorobenzene	ND	50 50	50 52		1	100	70-130	04/29/2016 1840
ichlorodifluoromethane	ND				1			
	ND	50 50	58 51			115 103	10-158 59-143	04/29/2016 1840 04/29/2016 1840
2-Dichloroethane		50			1			
,1-Dichloroethane	ND	50	46		1	92	69-132	04/29/2016 1840
ans-1,2-Dichloroethene s-1,2-Dichloroethene	ND ND	50 50	49 46		1 1	98 92	67-141 70-130	04/29/2016 1840 04/29/2016 1840
•	ND							
,1-Dichloroethene		50	47		1	93	50-132	04/29/2016 1840
,2-Dichloropropane	ND	50	45		1	90	71-126	04/29/2016 1840
ans-1,3-Dichloropropene	ND	50	42		1	85	73-131	04/29/2016 1840
s-1,3-Dichloropropene	ND	50	42		1	85	69-130	04/29/2016 1840
thylbenzene	ND	50	53		1	106	79-132	04/29/2016 1840
-Hexanone	ND	100	120		1	125	60-140	04/29/2016 1840
opropylbenzene	ND	50	50		1	101	70-130	04/29/2016 1840
lethyl acetate	ND	50	34		1	68	15-128	04/29/2016 1840
lethyl tertiary butyl ether (MTBE)	ND	50	40		1	80	60-140	04/29/2016 1840
-Methyl-2-pentanone	ND	100	120		1	121	60-140	04/29/2016 1840
lethylcyclohexane	ND	50	49		1	98	70-130	04/29/2016 1840
lethylene chloride	ND	50	39		1	78	69-129	04/29/2016 1840
tyrene	ND	50	51		1	103	70-130	04/29/2016 1840
1,2,2-Tetrachloroethane	ND	50	43		1	86	60-155	04/29/2016 1840
etrachloroethene	ND	50	65		1	129	70-130	04/29/2016 1840
oluene	ND	50	53		1	105	75-125	04/29/2016 1840
1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	50		1	100	70-130	04/29/2016 1840
,2,4-Trichlorobenzene	ND	50	53		1	105	70-130	04/29/2016 1840
,1,2-Trichloroethane	ND	50	48		1	95	77-132	04/29/2016 1840
,1,1-Trichloroethane	ND	50	56		1	111	77-132	04/29/2016 1840

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40% J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria

+ = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - MS

Sample ID: RD27083-00 Batch:12119 Analytical Method: 8260B	05MS	S Matrix: Aqueous Prep Method: 5030B									
Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date			
Trichloroethene	ND	50	58		1	116	73-124	04/29/2016 1840			
Trichlorofluoromethane	ND	50	54		1	108	41-173	04/29/2016 1840			
Vinyl chloride	ND	50	47		1	94	29-159	04/29/2016 1840			
Xylenes (total)	ND	100	110		1	111	70-130	04/29/2016 1840			
Surrogate	Q % Re		eptance imit								
1,2-Dichloroethane-d4	96	7(0-130								
Bromofluorobenzene	96	70	0-130								
Toluene-d8	101	70	0-130								

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

 $\mathsf{J} = \mathsf{Estimated}\ \mathsf{result} < \mathsf{PQL}\ \mathsf{and} \geq \mathsf{MDL}$

ND = Not detected at or above the MDL

N = Recovery is out of criteria

+ = RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - MSD

Sample ID: RD27083-005MD Batch: 12119

Matrix: Aqueous

Prep Method: 5030B

Analytical Method: 8260B

	Sample	Spike								
Demonster	Amount	Amount	Result	~		0/ D	**	% Rec	% RPD	
Parameter	(ug/L)	(ug/L)	(ug/L)	Q	Dil	% Rec	% RPD	Limit	Limit	Analysis Date
Acetone	ND	100	63		1	63	1.7	60-140	20	04/29/2016 1902
Benzene	ND	50	48		1	97	0.94	72-127	20	04/29/2016 1902
Bromodichloromethane	ND	50	50		1	100	3.5	71-143	20	04/29/2016 1902
Bromoform	ND	50	38		1	75	2.2	65-131	20	04/29/2016 1902
Bromomethane (Methyl bromide)	ND	50	48		1	96	7.6	36-168	20	04/29/2016 1902
2-Butanone (MEK)	ND	100	73		1	73	1.8	60-140	20	04/29/2016 1902
Carbon disulfide	ND	50	35		1	70	8.8	60-140	20	04/29/2016 1902
Carbon tetrachloride	ND	50	51		1	101	0.72	37-166	20	04/29/2016 1902
Chlorobenzene	ND	50	50		1	101	4.2	78-129	20	04/29/2016 1902
Chloroethane	ND	50	45		1	90	2.9	60-140	20	04/29/2016 1902
Chloroform	ND	50	47		1	93	0.56	63-123	20	04/29/2016 1902
Chloromethane (Methyl chloride)	ND	50	47		1	94	2.1	20-158	20	04/29/2016 1902
Cyclohexane	ND	50	54		1	109	1.7	70-130	20	04/29/2016 1902
1,2-Dibromo-3-chloropropane (DBCP)	ND	50	40		1	81	2.6	70-130	20	04/29/2016 1902
Dibromochloromethane	ND	50	46		1	92	2.8	74-134	20	04/29/2016 1902
1,2-Dibromoethane (EDB)	ND	50	50		1	101	0.038	70-130	20	04/29/2016 1902
1,4-Dichlorobenzene	ND	50	49		1	98	2.7	70-130	20	04/29/2016 1902
1,3-Dichlorobenzene	ND	50	51		1	101	1.3	70-130	20	04/29/2016 1902
1,2-Dichlorobenzene	ND	50	51		1	103	1.2	70-130	20	04/29/2016 1902
Dichlorodifluoromethane	ND	50	58		1	116	0.53	10-158	20	04/29/2016 1902
1,2-Dichloroethane	ND	50	51		1	103	0.033	59-143	20	04/29/2016 1902
1,1-Dichloroethane	ND	50	47		1	93	1.6	69-132	20	04/29/2016 1902
trans-1,2-Dichloroethene	ND	50	49		1	98	0.092	67-141	20	04/29/2016 1902
cis-1,2-Dichloroethene	ND	50	46		1	93	1.1	70-130	20	04/29/2016 1902
1,1-Dichloroethene	ND	50	47		1	93	0.051	50-132	20	04/29/2016 1902
1,2-Dichloropropane	ND	50	45		1	89	0.81	71-126	20	04/29/2016 1902
trans-1,3-Dichloropropene	ND	50	43		1	85	0.60	73-131	20	04/29/2016 1902
cis-1,3-Dichloropropene	ND	50	44		1	88	3.4	69-130	20	04/29/2016 1902
Ethylbenzene	ND	50	53		1	106	0.23	79-132	20	04/29/2016 1902
2-Hexanone	ND	100	120		1	122	2.3	60-140	20	04/29/2016 1902
Isopropylbenzene	ND	50	51		1	101	0.28	70-130	20	04/29/2016 1902
Methyl acetate	ND	50	43	+	1	87	24	15-128	20	04/29/2016 1902
Methyl tertiary butyl ether (MTBE)	ND	50	41		1	82	2.9	60-140	20	04/29/2016 1902
4-Methyl-2-pentanone	ND	100	120		1	119	1.8	60-140	20	04/29/2016 1902
Methylcyclohexane	ND	50	50		1	100	1.6	70-130	20	04/29/2016 1902
Methylene chloride	ND	50	40		1	79	1.6	69-129	20	04/29/2016 1902
Styrene	ND	50 50	40 52		1	104	0.64	70-130	20	04/29/2016 1902
1,1,2,2-Tetrachloroethane	ND	50 50	42		1	83	0.04 3.4	60-155	20	04/29/2016 1902
Tetrachloroethene	ND	50 50	42 65		1	129	0.040	70-130	20 20	04/29/2016 1902
Toluene	ND	50 50	52		1	129	1.1	75-125	20 20	04/29/2016 1902
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50 50	49		1	99	0.86	70-130	20	04/29/2016 1902
1,2,4-Trichlorobenzene	ND	50 50	49 54		1	99 107	0.86 1.7	70-130	20	04/29/2016 1902
1,1,2-Trichloroethane	ND	50 50	54 47		1	95	0.67	70-130		04/29/2016 1902
								77-132	20 20	
1,1,1-Trichloroethane	ND	50	55		1	109	2.0	11-132	20	04/29/2016 1902

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

ND = Not detected at or above the MDL

 $\mathsf{J} = \mathsf{Estimated}\ \mathsf{result} < \mathsf{PQL}\ \mathsf{and} \geq \mathsf{MDL}$

+ = RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - MSD

Sample ID: RD27083-005MD Batch:12119 Analytical Method: 8260B				F	rep I		ix: Aqueo d: 5030B				
Parameter	Sam Amo (ug/	unt	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Trichloroethene	ND		50	58		1	115	0.61	73-124	20	04/29/2016 1902
Trichlorofluoromethane	ND		50	53		1	107	0.73	41-173	20	04/29/2016 1902
Vinyl chloride	ND		50	49		1	97	3.8	29-159	20	04/29/2016 1902
Xylenes (total)	ND		100	110		1	111	0.26	70-130	20	04/29/2016 1902
Surrogate	Q	% Rec		eptance Limit							
1,2-Dichloroethane-d4		99	1	70-130							
Bromofluorobenzene		97	7	70-130							
Toluene-d8		102	7	0-130							

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

 $\mathsf{J} = \mathsf{Estimated}\ \mathsf{result} < \mathsf{PQL}\ \mathsf{and} \geq \mathsf{MDL}$

N = Recovery is out of criteria

+ = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - MB

Sample ID: RQ12245-001 Batch: 12245 Analytical Method: 8260B Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Acetone	ND		1	20	1.6	ug/L	05/02/2016 1032
Benzene	ND		1	1.0	0.21	ug/L	05/02/2016 1032
Bromodichloromethane	ND		1	1.0	0.23	ug/L	05/02/2016 1032
Bromoform	ND		1	1.0	0.35	ug/L	05/02/2016 1032
Bromomethane (Methyl bromide)	ND		1	2.0	0.19	ug/L	05/02/2016 1032
2-Butanone (MEK)	ND		1	10	1.8	ug/L	05/02/2016 1032
Carbon disulfide	ND		1	1.0	0.45	ug/L	05/02/2016 1032
Carbon tetrachloride	ND		1	1.0	0.31	ug/L	05/02/2016 1032
Chlorobenzene	ND		1	1.0	0.20	ug/L	05/02/2016 1032
Chloroethane	ND		1	2.0	0.28	ug/L	05/02/2016 1032
Chloroform	ND		1	1.0	0.21	ug/L	05/02/2016 1032
Chloromethane (Methyl chloride)	ND		1	1.0	0.19	ug/L	05/02/2016 1032
Cyclohexane	ND		1	1.0	0.30	ug/L	05/02/2016 1032
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	1.0	0.57	ug/L	05/02/2016 1032
Dibromochloromethane	ND		1	1.0	0.23	ug/L	05/02/2016 1032
1,2-Dibromoethane (EDB)	ND		1	1.0	0.17	ug/L	05/02/2016 1032
1,4-Dichlorobenzene	ND		1	1.0	0.19	ug/L	05/02/2016 1032
1,3-Dichlorobenzene	ND		1	1.0	0.19	ug/L	05/02/2016 1032
1,2-Dichlorobenzene	ND		1	1.0	0.46	ug/L	05/02/2016 1032
Dichlorodifluoromethane	ND		1	2.0	0.85	ug/L	05/02/2016 1032
1,1-Dichloroethane	ND		1	1.0	0.19	ug/L	05/02/2016 1032
1,2-Dichloroethane	ND		1	1.0	0.23	ug/L	05/02/2016 1032
trans-1,2-Dichloroethene	ND		1	1.0	0.33	ug/L	05/02/2016 1032
cis-1,2-Dichloroethene	ND		1	1.0	0.20	ug/L	05/02/2016 1032
1,1-Dichloroethene	ND		1	1.0	0.31	ug/L	05/02/2016 1032
1,2-Dichloropropane	ND		1	1.0	0.29	ug/L	05/02/2016 1032
trans-1,3-Dichloropropene	ND		1	1.0	0.22	ug/L	05/02/2016 1032
cis-1,3-Dichloropropene	ND		1	1.0	0.30	ug/L	05/02/2016 1032
Ethylbenzene	ND		1	1.0	0.21	ug/L	05/02/2016 1032
2-Hexanone	ND		1	10	0.26	ug/L	05/02/2016 1032
Isopropylbenzene	ND		1	1.0	0.14	ug/L	05/02/2016 1032
Methyl acetate	ND		1	1.0	0.24	ug/L	05/02/2016 1032
Methyl tertiary butyl ether (MTBE)	ND		1	1.0	0.23	ug/L	05/02/2016 1032
4-Methyl-2-pentanone	ND		1	10	0.29	ug/L	05/02/2016 1032
Methylcyclohexane	ND		1	5.0	0.16	ug/L	05/02/2016 1032
Methylene chloride	ND		1	1.0	0.42	ug/L	05/02/2016 1032
Styrene	ND		1	1.0	0.13	ug/L	05/02/2016 1032
1,1,2,2-Tetrachloroethane	ND		1	1.0	0.13	ug/L	05/02/2016 1032
Tetrachloroethene	ND		1	1.0	0.22	ug/L	05/02/2016 1032
Toluene	ND		1	1.0	0.24	ug/L	05/02/2016 1032
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	1.0	0.30	ug/L	05/02/2016 1032
1,2,4-Trichlorobenzene	0.48	J	1	1.0	0.13	ug/L	05/02/2016 1032
1,1,1-Trichloroethane	ND		1	1.0	0.24	ug/L	05/02/2016 1032
				-			

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40% J = Estimated result < PQL and \geq MDL

ceeds 40% N = Recovery is out of criteria

+ = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - MB

Sample ID: RQ12245-001 Batch:12245 Analytical Method: 8260B				Prej	Matrix: Aque o Method: 5030			
Parameter	Resul	t	Q	Dil	PQL	MDL	Units	Analysis Date
Trichloroethene	ND			1	1.0	0.16	ug/L	05/02/2016 1032
Trichlorofluoromethane	ND			1	1.0	0.74	ug/L	05/02/2016 1032
Vinyl chloride	ND			1	1.0	0.50	ug/L	05/02/2016 1032
Xylenes (total)	ND			1	1.0	0.32	ug/L	05/02/2016 1032
Surrogate	Q	% Rec		eptance ₋imit				
Bromofluorobenzene		102	7	0-130				
1,2-Dichloroethane-d4		104	7	0-130				
Toluene-d8		104	7	0-130				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria + = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: RQ12245-002 Batch:12245 Analytical Method: 8260B Matrix: Aqueous

Prep Method: 5030B

	Spike						
Parameter	Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Acetone	100	63	-	1	63	60-140	05/02/2016 0940
Benzene	50	51		1	101	70-130	05/02/2016 0940
Bromodichloromethane	50	53		1	107	70-130	05/02/2016 0940
Bromoform	50	49		1	99	70-130	05/02/2016 0940
Bromomethane (Methyl bromide)	50	51		1	103	60-140	05/02/2016 0940
2-Butanone (MEK)	100	84		1	84	60-140	05/02/2016 0940
Carbon disulfide	50	59		1	117	60-140	05/02/2016 0940
Carbon tetrachloride	50 50	60		1	120	70-130	05/02/2016 0940
Chlorobenzene	50	49		1	98	70-130	05/02/2016 0940
Chloroethane	50	53		1	106	60-140	05/02/2016 0940
Chloroform	50 50	53		1	105	70-130	05/02/2016 0940
		45			89	60-140	
Chloromethane (Methyl chloride)	50 50			1			05/02/2016 0940
Cyclohexane	50 50	57		1	114	70-130	05/02/2016 0940
1,2-Dibromo-3-chloropropane (DBCP)	50	42		1	85	70-130	05/02/2016 0940
Dibromochloromethane	50	51		1	103	70-130	05/02/2016 0940
1,2-Dibromoethane (EDB)	50	47		1	94	70-130	05/02/2016 0940
1,4-Dichlorobenzene	50	46		1	92	70-130	05/02/2016 0940
1,3-Dichlorobenzene	50	47		1	94	70-130	05/02/2016 0940
1,2-Dichlorobenzene	50	49		1	97	70-130	05/02/2016 0940
Dichlorodifluoromethane	50	46		1	92	60-140	05/02/2016 0940
1,1-Dichloroethane	50	55		1	111	70-130	05/02/2016 0940
1,2-Dichloroethane	50	49		1	99	70-130	05/02/2016 0940
trans-1,2-Dichloroethene	50	53		1	107	70-130	05/02/2016 0940
cis-1,2-Dichloroethene	50	52		1	103	70-130	05/02/2016 0940
1,1-Dichloroethene	50	55		1	111	70-130	05/02/2016 0940
1,2-Dichloropropane	50	50		1	101	70-130	05/02/2016 0940
trans-1,3-Dichloropropene	50	51		1	102	70-130	05/02/2016 0940
cis-1,3-Dichloropropene	50	54		1	108	70-130	05/02/2016 0940
Ethylbenzene	50	50		1	100	70-130	05/02/2016 0940
2-Hexanone	100	110		1	108	60-140	05/02/2016 0940
Isopropylbenzene	50	51		1	102	70-130	05/02/2016 0940
Methyl acetate	50	52		1	104	15-128	05/02/2016 0940
Methyl tertiary butyl ether (MTBE)	50	46		1	93	70-130	05/02/2016 0940
4-Methyl-2-pentanone	100	100		1	105	60-140	05/02/2016 0940
Methylcyclohexane	50	54		1	109	70-130	05/02/2016 0940
Methylene chloride	50 50	54		1	107	70-130	05/02/2016 0940
Styrene	50 50	50		1	107	70-130	05/02/2016 0940
•							
1,1,2,2-Tetrachloroethane	50	45 52		1	90 105	60-140	05/02/2016 0940
Tetrachloroethene	50	53 51		1	105 101	70-130	05/02/2016 0940
Toluene	50 50	51		1	101	70-130	05/02/2016 0940
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	57		1	114	70-130	05/02/2016 0940
1,2,4-Trichlorobenzene	50	47		1	93	70-130	05/02/2016 0940
1,1,1-Trichloroethane	50	56		1	112	70-130	05/02/2016 0940
1,1,2-Trichloroethane	50	46		1	93	70-130	05/02/2016 0940

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40% J = Estimated result < PQL and \geq MDL

40% N = Recovery is out of criteria

+ = RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

ND = Not detected at or above the MDL

Volatile Organic Compounds by GC/MS - LCS

Sample ID: RQ12245-00 Batch:12245 Analytical Method: 8260B	2		Pr	Matrix ep Method:	: Aqueous 5030B		
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Trichloroethene	50	51		1	102	70-130	05/02/2016 0940
Trichlorofluoromethane	50	58		1	117	70-130	05/02/2016 0940
Vinyl chloride	50	56		1	112	70-130	05/02/2016 0940
Xylenes (total)	100	100		1	104	70-130	05/02/2016 0940
Surrogate	Q% Rec	Acceptar Limit					
Bromofluorobenzene	99	70-13	0				
1,2-Dichloroethane-d4	100	70-13	0				
Toluene-d8	104	70-13	0				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

 $\mathsf{J} = \mathsf{Estimated}\ \mathsf{result} < \mathsf{PQL}\ \mathsf{and} \geq \mathsf{MDL}$

N = Recovery is out of criteria

+ = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Chain of Custody and Miscellaneous Documents

SHEALY Chain of Custody Record	y Record	SHEALY ENVIRONMENT/ 105 Vantage Point Drive • Wes Telephone No. 803-791-9700 www.shealyla	VIRONME oint Drive . 803-791-9 . www.she	SHEALY ENVIRONMENTAL SERVICES, INC. 106 Vantage Point Drive • West Columbia, SC 29172 Telephone No. 803-791-9700 Fax No. 803-791-9111 www.shealylab.com	ES, INC. C 29172 791-9111	ž	umber	
ADEX CONDANCES, LLC.		PRONTIN CONTACT V	WATZINUS	22	Frieghtone No. / E-mail	unseapex	COS. CON	aunter Ma. 18831
IONON PLY	-	40	0		Analysis (Attach list if more space is needed)	a space (s needed)		Pace 1 of D
CHARIDITE NC	State 4 Conte	Printed Name	Kumon	(t) m				
		Kabie Schwarz	2J7OM14	. 1				RD27083
Freder No. 510393-002	P.O. No.		Matrix	No al Cantahous by Prasorvative Type	29			
Sample ID / Description (Containes for each sample may be combined on one line.)	Date	ereantry ereantry	sardun Heritiku 470 Filos	404 9509 HOPN K0H 60404 405204	8			Remarks / Cooler I.D.
1-mm	426/16	1020 as		5 0-	×			
QI - MM	4/26/16	1200			×			
HW-3A	4]97[47	OSOI			×			
MW-4A		940			×			- L
MIN-6	4 26 16	845 F			×			and sm/sm
Ht -MM	4 25/16 1	174S			X			
MW-8A	41/97/14	910			X		_	
HM-94		950			X			
N1-10	4 25 16	ISIS			×			
MW-11	4/26/16	1145 4		>	X			
Turn Around Time Required (Play isb syword required for aspectified PAL) Samula Disposal Cell Standard D Rush (Specify)	ed for expedited TAT.)	Sermole Disposal Astron to Olient OC	and the source of the second	Sermpto Disprovent Possible Hazard Identification	tions bieSkin ImitannPoi <u>son</u>	C Unknown	OC Requirements (Specify)	tts (Specify)
I. MANAGERA AND IN ICL	1	allecta	These /	1. Received py Cha		4	Y.U.K	Time
2. Reinquistred by Michael		11.16		2. Received by	an Carl	92	Date 4-27-16	Time 16:20
3. Revinquished by		Date	Time	3. Received by		4	Date	Time
4. Rounquished by Ruf On	0	1 27-72-1	17:2 ¢	4. Laboratory received by	want Date	1. P	U/CE/H	De L1
les are ss other	hed for four wee			LAB USE ONLY Received on kee (Choie) (3	Es No tee Pack	Receipt Temp.	2.0 °C	
DISTRIBUTION: INHITE & YELLOW-Flatum to laboratory with Sample(s); PINK-Filed/Chent Copy	ratory with Sample(s)	C PINK-Field/Chent Cop	~			Document Mumb	Xer. F-AD-133	Document Number: F-AD-133 Effective Date: 08-01-2014

SHEALY ENVIRONMENTAL SERVICES, INC.

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

DISTRIBUTION: WHATE & YELLOW-Raturn to laboratory with Sample(s); PINK-File/9008

RVICES, INC. Dia, SC 29172 803-791-9111 803-791-9111	Grante, Watking Capexco. and 1883)	Analysis (Attach list If more space is needed)			097	Fiamarks / Cooler I.D.	×	×	X	X	X	X	X		d /dentification	100 Date 100 100 100 100 100 100 100 100 100 10	1 Carl Delle Time (2:20	Date Time	2001 Marler 000 1720	
SHEALY ENVIRONMENTAL SERVICES, INC. 106 Vantage Point Drive • West Columbia, SC 29172 Telephone No. 803-791-9700 Fax No. 803-791-9111 www.shealylab.com	GEDANT WINTELING	Sampler's Signature	PHARLOTTE NUCZB269 ARUNUXXUUCY	Kabe Schwarz	All the transmerse of Containers	127 2205 MOLH 12H 20WY 20W	1110 GN4 3	815 11 11 218	910 J			1042	4 A		Turn Around Time Required (Prior teb approval required for expedited INL) Sample Disposal Standard D Rush (Specify) C Return to Oken()SCDsposal by Lab (OK)ton-Hazard DF)	ZEDAND INTO I ARADING	1/6 Tune		Date Time 4. Laboratory received by	LAB USE ONLY Received on itse (C
Chain of Custody Record	Es uc	MIT PICY	NU 28269		P.O. No.	Date n one (ns.)	4/21/16	4/21/11 181	0161 91/2017	41/25/1b	4 26/16	4 21/16		•	proval required for expedited IAL) 5	1underg-			Carl .	Note: All samples are rejained for four weeks from receipt unless other arrangements are made.
SHEALY Chain of C	THEY CONDANIES LLC	INGIO METROMI	CHARLOTTE	MMMI, SOUVCE	Project No. C10393-002	Semple 1D / Description (Containers for each sample may be combined on one (hs.)	EI-WH	MW-13	MW-14	1-dng	e-dra	1-8-1	np Ficht Blank		Turn Around Time Required (Prior lab app X Standard 🛛 Fush (Specify)	1. Reinsteinstrugter Hart	2. Rolingulariter by Mil Chang	3. Refinenciation by	4. Hattinguished by	Note: All samples unless c

SHEALY ENVIRONMENTAL SERVICES, INC.

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

SHEALY ENVIRONMENTAL SERVICES, INC.

Shealy Environmental Services, Inc. Document Number: ME0018C-04

Page L of 1 Effective Date: 02/05/2016 Expiry Date: 02/05/2021

San	npl	le	Receipt	Chec	klist (SRC)	ļ
~					10 00	- and	

Client: APEX Cooler Inspected by/date: 107 /4/27/16 Lot #: RD27083	
Means of receipt: SESI Client UPS FedEx Other	
Yes No / 1. Were custody seals present on the cooler?	
Yes No NA 2. If custody seals were present, were they intact and unbroken?	
pH strip ID: NA Cl strip ID: NA	
Cooler ID/Original temperature upon receipt/Derived (corrected) temperature upon receipt:	
<u>/2.0/2.0°C / / °C / / °C / / °C</u>	
Method: Temperature Blank 🗌 Against Bottles IR Gun ID: 6 IR Gun Correction Factor: 6 C	1
Method of coolant: Wet Ice 🗌 Blue Ice 🗌 Dry Ice 🗌 None	
Yes No NA 3. If temperature of any cooler exceeded 6.0°C, was Project Manager notified?	
PM was notified by: phone / cmail / face-to-face (circle one).	
Yes Volume Value V	
Yes / No 5. Were proper custody procedures (relinquished/received) followed?	
Yes / No 6. Were sample IDs listed on the COC?	
Yes / No 7. Were sample IDs listed on all sample containers? Yes / No 8. Was collection date & time listed on the COC?	$ \rightarrow $
Yes // No 9. Was collection date & time listed on the COC?	
Yes V No 10. Did all container label information (ID, date, time) agree with the COC?	
Yes Z No 11. Were tests to be performed listed on the COC?	
12 Did all samples arrive in the proper containers for each test and/or in good condition	
Yes No (unbroken, lids on, etc.)?	
Yes Z No 2 13. Was adequate sample volume available?	
Yes 🗌 No 🗹 💦 14. Were all samples received within ½ the holding time or 48 hours, whichever comes firs	? `
Yes 🗌 No 🖉 15. Were any samples containers missing/excess (circle one) samples not listed on COC?	
Yes 🗌 No 🖉 NA 🗌 16. Were bubbles present >"pea-size" (¼"or 6mm in diameter) in any VOA vials?	
Yes No NA 17. Were all metals/O&G/HEM/nutrient samples received at a pH of <2?	
Yes \square No \square NA \square 18. Were all cyanide and/or sulfide samples received at a pH >12?	
Yes No NA 19. Were all applicable NH3/TKN/cyanide/phenol (<0.2mg/L) samples free of residual chlorine?	
Yes 🗌 No 🗌 NA 🗹 20. Were collection temperatures documented on the COC for NC samples?	
Yes No NA 21. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc)	
Yes No 22. Was the quote number used taken from the container label?	-
Sample Preservation (Must be completed for any sample(s) incorrectly preserved or with headspace.)	
Sample(s) were received incorrectly preserved and were adjusted according	y in
sample receiving with (H2SO4, HNO3, HCl, NaOH) using SR #	
Sample(s) were received with bubbles >6 mm in diameter.	
Samples(s) were received with TRC >0.2 mg/L (If #21 is No) and were	
adjusted accordingly in sample receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID:	
SC Drinking Water Project Sample(s) pH verified to be > 2 by Date:	
Sample(s) were not received at a pH of <2 and were adjusted accordingly using SR#	
Sample labels applied by: Date: 4/27/16	

Comments:

.....

APPENDIX C

IDW WASTE MANIFESTS (2015 SITE WORK)

A&D Environmental Services (GA) LLC 4943 Austin Park Avenue Buford, GA 30518 Phone: (678)714-8420

www.adenviro.com

Bill To:

Apex Companies, LLC Attn: Accounts Payable 7744 Garland Circle Roanoke, VA 24019

Customer # 1015

Invoice Number 027853 Invoice Date July 31, 2015 Due Date 09/29/2015 Terms 60 PO No Ship To:

Tommy Fisher Omni Source 590 Hull Rd Athens, GA 30601

A&D Job # 150497

.

1 of 1

Description	QTY	Unit	Rate	Amount
Manifest#16084				
Transportation - LTL Stop Fee Disposal of Non-Regulated Soil Disposal of Non-Regulated Water Fuel & Energy Recovery Fee	1.00 12.00 4.00 1.00	LS DM DM EA	265.00 92.00 92.00 69.48	265.00 1,104.00 368.00 69.48
Remit Payment to: P.O. Box 484 High Point, NC 27261		Electronic Payn The Private Bar 120 S. LaSalle (312) 564-2000 Routing # 0710	nk St., Chicago,	IL 60602
Past due amounts are subject to finance charges of 1.5% per mon costs of collection. Mastercard and Visa accepted, subject additional charge of 3%.		То	tal	\$1,806.48

Page

INVOICE

ł	. v	NON-HAZAROOUS	L Census D Marten		3 Emergency Rosponse		4 Wasto Tra	•			
	ĩĜ	erarator a stame and Alado	A CESQC	,	Gre RAT	392a -	N Maring Soldes	308 12	4		· · · · · · · · · · · · · · ·
			Omnisource 590 Hull Road Athens, GA34		•						с. 1
		entor's Prome		Jour	. >- 10		US EPADN				
							1		• •		
	7 7/	associal Yobrober has	ironmentai Service:	+ (SC), LLC			<u>ี บรรคพิชพ</u> ิ 		\$75	983	31
	9. G	espirated Factor Name an	is Sia Adeass				US EPAIDN	Larber			
				menial Services (C Search Drive 31204	ALC		3				
	Fac	Hys Phone					L G	ARO	000	074	84
		9 Weste Shoping Name	s and Descripton		10. Contai No	rigna Type	1º Total Oustay	12 Unit 14 Vol		-	
RATCH -			gulated Material, S al # 1/0911	old (Soli)	012	DM		P	: 	· · · ·	
E NG	ļ	·····		·····							
5			gulated Material, U al # 1/0911)	quia (water)	604	DM	220	G		· ;•	
	ب		<u><u></u></u>		-005						
		1									19. S.
	L.	Special Hancing Instauction	rs and Additabal (Normation	······································		ł	L			00	
	1						Ę,	~ [C	02	-28	
		Job #15-0	497								
- 10 C N N - 1								AÐ	1504	174	
1999 No. 1 1 1 1	1	GENERATOR SOFFERG	IT'S CERTIFICATION: - Perety declare ha des. and see in all respects in proper comp	t the contents of the controlment son los tructor i according to and	are hilly and accurately dat coulde internation at and regi	cabra above angi governa	by the proper size				
	1	GENERATOR SIGHTERA mutud erd abserbiscan mutud erd abserbiscan mutug sOfters a Zutert	PTS CERTIFICATION: Protety declare ha dec. and are in adirespects in proper condi- typed Name	t the contents of this contropresent size for encount according to and		cabro above dagi governa	by the proper sta entri regulations			1-74-1 1558/1623, parcha 2017 Day 7 1 1	4941 Yest 1 1 5
1. (G R	GENERATOR SOFFERG	PTS CERTIFICATION: Protety declare ha dec. and are in adirespects in proper condi- typed Name	t the contents of the contryment too for memory according to any State for memory according to any State Content for the second for the		angi gaverar	by the proper sha entri regulations				
	13 22 12	GEAERATOR SCHERIN mutud ed absectiona esta scher Scherit Hanatonal Stamers scorer Scholer for sta	PTS CERTIFICATION: - Perety doctore ha dec. and are it all respects in proper consi yord Name Z O and an part to U S add an br	and of gobrocch scoredog to and S		6021 governa 	by the proper sta exist (egalations				
TER MITT -		GENERATOR SOPPERIO mutual and absorptional social softwars Points BETCY POZ International Supremus secondor Sociales for suc Transpoor Achnowledge	PTS CERTIFICATION: - Perety dockets ha dec. and are is adiaspoort: a phyper-consi yped Name Z O appart to U S acts only: and Records of Materials	ion ha marpan according to dep K		6021 governa 	by the proper sh exist regulations		Ø	5mt) 97ay Z 1 1	
		GENERATOR SIGNERIA mutual and absorptions mutual and absorptions social software Social Manufactual Staments social Staments Transporter Social Staments Transporter Social Staments mattering Product Typed H	PTS CERTIFICATION: - Perety declare the dec. Ard. see. It all respects in proper comp yped Name Co Damport to U.S note only. and of Receipt of Materials tame.	ion ha marpan according to dep K		6021 governa 	by the proper site relati (egulations	A9 sping carri	Ø	5787) 5794 Z 1 1	115
		GENERATOR SOPPERIO mutual and absorptional social softwars Points BETCY POZ International Supremus secondor Sociales for suc Transpoor Achnowledge	PTS CERTIFICATION: - Perety declare the dec. Ard. see. It all respects in proper comp yped Name Co Damport to U.S note only. and of Receipt of Materials tame.	ion ha marpan according to dep Espont incr		6021 governa 	by the proper sha exist (cyalations		Ø.	5mt) 97ay Z 1 1	115
		GEAERATOR SOPPERS marind and absorptional marind and absorptional marind and absorptional marind and sopration marind and sopration mar	PTS CERTIFICATION: - Perety declare the dec. Ard. see. It all respects in proper comp yped Name Co Damport to U.S note only. and of Receipt of Materials tame.	ion ha marpan according to dep Espont incr		6021 governa 	by the proper sha exist regulations		Ø.	21.1 21.1 2007 Uay 21.2	115
		GENERATOR SIGNERIA mutual and absorptions mutual and absorptions social software Social Manufactual Staments social Staments Transporter Social Staments Transporter Social Staments mattering Product Typed H	IT'S CERTIFICATION: - revery declare the degree and are a sel response on proper come yoed Name ZO Dampari to U S note of Receive of Materials land The Second of Materials land The Second of Materials	ion hu marpan according to dep		6021 governa 	by the proper sta exist (cyclositions		Ø.	21.1 21.1 2007 Uay 21.2	
		GENERATOR SIGPREMA marked and absemptional marked and absemptional marked and absemptional marked and absemption marked and absemption and absem	PTS CERTIFICATION: - Perety declare ha dec. and are it all respects a physicians yped Name Z O Dampart to US ans arby: and diffectual of Mellonals land, Theory RC	ion ha marpan according to dep Espont incr	Apartine	sang govenir. Kyp Etci rnj U S			Ø.	21.1 21.7	
		GENERATOR SIGPREMA marked and absemptional marked and absemptional marked and absemptional marked and absemption marked and absemption and absem	PTS CERTIFICATION: - Protety declare ha dect and see it all respects in proper consi yped Name Co Dama and man of Process of Materials lame The company and Country	in hu marpan according to dep		sang govenir. Kyp Etci rnj U S			Ø.	21.1 21.7	
		GENERATOR SIGPREMA mature and absemptional mature and absemptional mature softwars parent better Parent takenational Stepheness associes Signature for any mature for any mature for any parent for any p	PTS CERTIFICATION: - Protety declare ha dect and see it all respects in proper consi yped Name Co Dama and man of Process of Materials lame The company and Country	in hu marpan according to dep	Apartine	sang govenir. Kyp Etci rnj U S	Parase Re		Ø.	21.1 21.7	
		GENERATOR SIGPERTA marked and abserdpaces marked and abserdpaces marked and abserdpaces marked and abserdpaces between a second abserd transporter Signature for soo Transporter Signature for soo Transporter Signature marked abserd to a soo Transporter Signature Transporter Signature marked abserd to a soo Transporter Signature Transporter Signa	PTS CERTIFICATION: - Protety declare ha dec. And see it ad respects a proper consi yped Mana Z O	in hu marpan according to dep	Apartine	sang govenir. Kyp Etci rnj U S	Parase Re		65 14	21.1 21.7	
		GENERATOR SIGPERIA marked and abserdipation marked and abserdipation better Poster Transporter Signature for so Transporter Signature for so Transporter Poster Typed II Discognery a Discognery Indicator Signature Discognery a Discognery Indicator Signature Discognery Indicator Signature Discognery Indicator Signature Discognery Indicator Signature Discognery Indicator Signature Discognery Indicator Signature Discognery Indicator Signature	PTS CERTIFICATION: - Protety declare ha dec. And see it ad respects a proper consi yped Mana Z O	in hu marpan according to dep	Apartine	sang govenir. Kyp Etci rnj U S	Parase Re		65 14	5111 Diay Z] . 1 2011 Ulay C [2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 2 1 2 2 1 2	
		GENERATOR SIGPERIA marked and abserdipation marked and abserdipation better Poster Transporter Signature for so Transporter Signature for so Transporter Poster Typed II Discognery a Discognery Indicator Signature Discognery a Discognery Indicator Signature Discognery Indicator Signature Discognery Indicator Signature Discognery Indicator Signature Discognery Indicator Signature Discognery Indicator Signature Discognery Indicator Signature	PTS CERTIFICATION: - Protety declare ha dec. And see it ad respects a proper consi yped Mana Z O	in hu marpan according to dep	Apartine	sang govenir. Kyp Etci rnj U S	Parase Re		65 14	5111 Diay Z] . 1 2011 Ulay C [2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 2 1 2 2 1 2	
		GENERATOR SIGPERIA marked and abuver/becan marked and abuver/becan marked and abuver/becan marked and abuver/becan marked and abuver/becan marked and abuver/becan marked abuver for any marked abuver for any marked abuver for any marked abuver for any marked abuver for abuver marked abuver for abuver a Baseparary Markater S a Amarked Facility for Gen cally - Frome a Septature of America Fa	PTS CERTIFICATEDIA: - hereity declare ha declared and an administration of hyper-core yyped Mana Z O 2 O 2 D 2 D	Espon hu ristipa il according to deci	And the responsible at and rays grant of a pro- Repair of an And the response is and An and the response is an An an an an an an An an an an an an an an An an	sang govenir. Kyp Etci rnj U S	Parase Re		65 14	5111 Diay Z] . 1 2011 Ulay C [2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 2 1 2 2 1 2	
		GENERATOR SIGPERIA marked and abserdiplease marked and abserdiplease marked and abserdiplease marked and abserdiplease marked and supervise marked and supervise marked and supervise marked and supervise marked and supervise marked and supervise a Decempercy Indicators S o Araename Facility for Gen cally (Prome c Septature of Aromate Fa cally (Prome c Septature of Aromate Fa	PTS CERTIFICATION: - Provety decision has decisive and are in admissioners in proper come yored stand 2 0 2 1 Insport to U S mass and/ and Alexandric of Materialis tarro, 7 0 0 Provide of Materialis 1 0 0 0 Provide of Materialis 1 0 0 Provi	Espan les enseign it according to according	And the responsible at and rays grant of a pro- Repair of an And the response is and An and the response is an An an an an an an An an an an an an an an An an	sang govenir. Kyp Etci rnj U S	Parase Re			STATE Diay Z .1. STATE Ukay 21.2. STATE Ukay 21.2. STATE Ukay Diay STATE Diay STATE Diay	
		GENERATOR SIGPERIA marked and abserdiplease marked and abserdiplease marked and abserdiplease marked and abserdiplease marked and supervise marked and supervise marked and supervise marked and supervise marked and supervise marked and supervise a Decempercy Indicators S o Araename Facility for Gen cally (Prome c Septature of Aromate Fa cally (Prome c Septature of Aromate Fa	PTS CERTIFICATEDIA: - hereity declare ha declared and an administration of hyper-core yyped Mana Z O 2 O 2 D 2 D	Espan les enseign it according to according	And the international of and rays grant of an Andrew State And And And And And And And And And And And And And And And And	sang govenir. Kyp Etci rnj U S	Parase Re			5005 004 5005 004 5005 004	

169-8LC-0 6 10498 (Rev. 9/09)

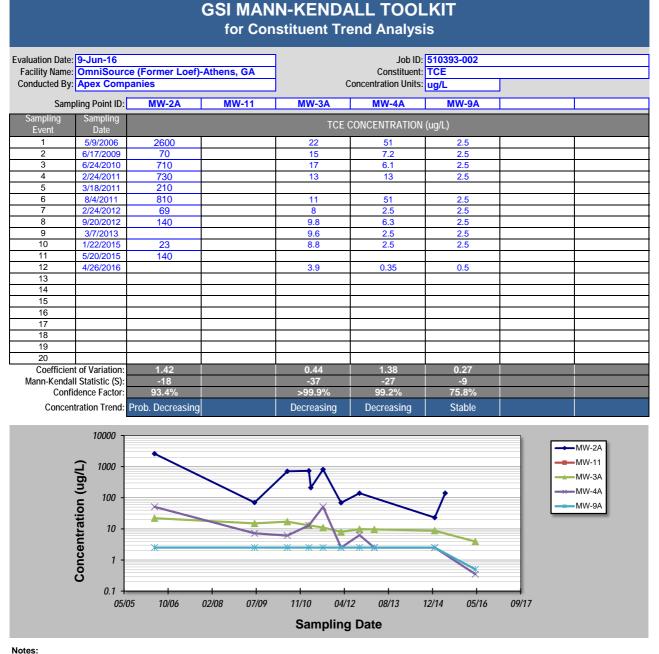
.

•

~

.

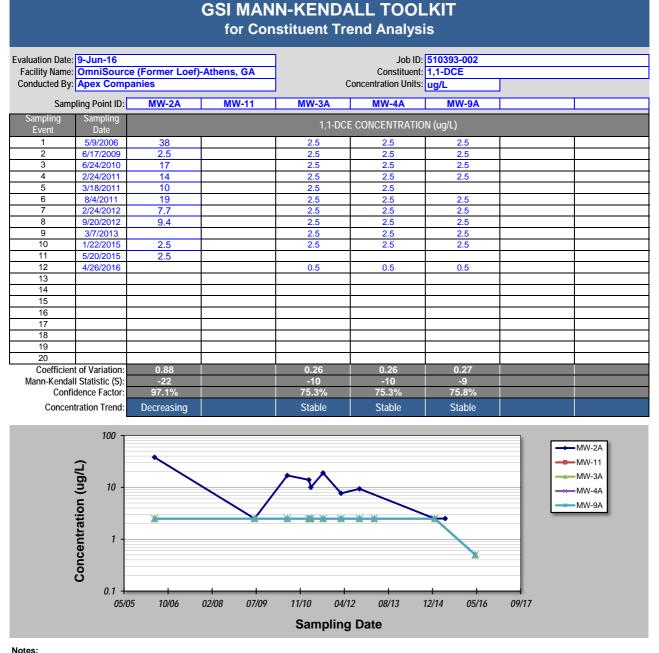
acility to generator GRAI


Agua - Teppa Recycling and Treatment 710 Moore Street • P.O. Box 98 Oxford, Georgia 30054 Phone: (678) 625-4025 Fax: (678) 625-4944 Section 1 GENERATOR		Nº 8864
GENERATOR	(Generato	r completes all of Section 1)
a. Generator Name: Omni Source. b. Address: <u>590 013 Hull Rd.</u> <u>Attens</u> , GA 30601	- - -	Generating Location: Monitoring hells Address: Sec B
 c. Phone No.: <u>706-613-520</u> If owner generating facility differs from the generator, provide d. Owner's Name: <u>2000</u> 	i. j. (Phone No.: <u>706 - 613 - 5201</u> Owner's Phone No.:
e. Description of Waste: <u>Purge</u> When here I hereby certify that the above named material is not a hazardous w	[Quantity Gallons Type DM - METAL DRUM DP - PLASTIC DRUM T - TRUCK
applicable state law, has been properly described, classified and pertransportation according to applicable regulations. Nicole Caskoski Generator Authorized Agent Name Signation	M	
Section II TRANSPORTER (General	or complete	s a-d: Transporter I completes e-g: Transporter II completes h-n)
a. Name: Aqua-Terra b. Address: 710 Moore Street Oxford, Georgia 30054	h. N i. A j. D k. P m. Vi	ame:ddress: ddress: rive Name/Title: hone No.: I: Truck No.: ehicle License No/State:
g	n	cknowledgment of Receipt of Materials.
Driver Signature Shipping Date	Dr	iver Signature Shipping Date
Section III DEST	NATION	
a. Site Name: Aqua-Terra b. Physical Address: 710 Moore Street		hone No.: (678) 625-4025
Oxford, Georgia 30054		ailing Address: <u>P.O. Box 98</u> Oxford, Georgia 30054
e. Discrepancy Indication Space:		
I hereby certify that the above material has been accepted and		of my knowledge the foregoing is true and accurate.

Shipping Date

APPENDIX D

MANN KENDALL STATISTICAL ANALYSES WORKSHEETS

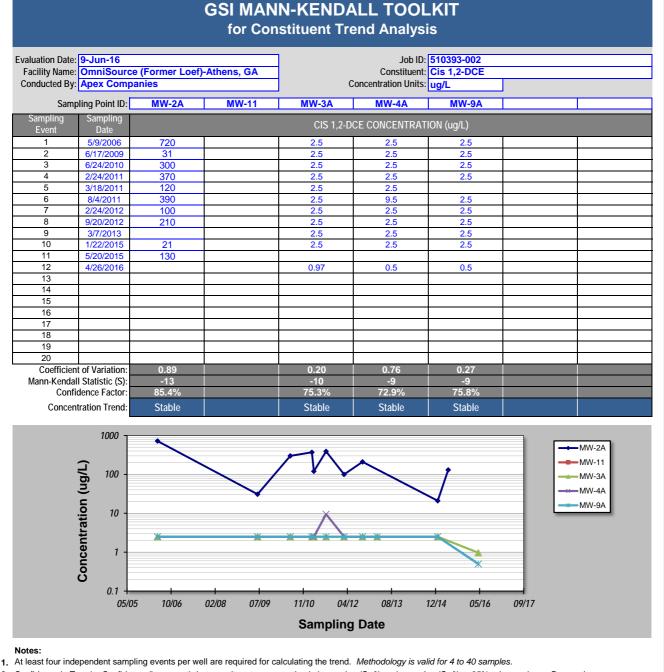


1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

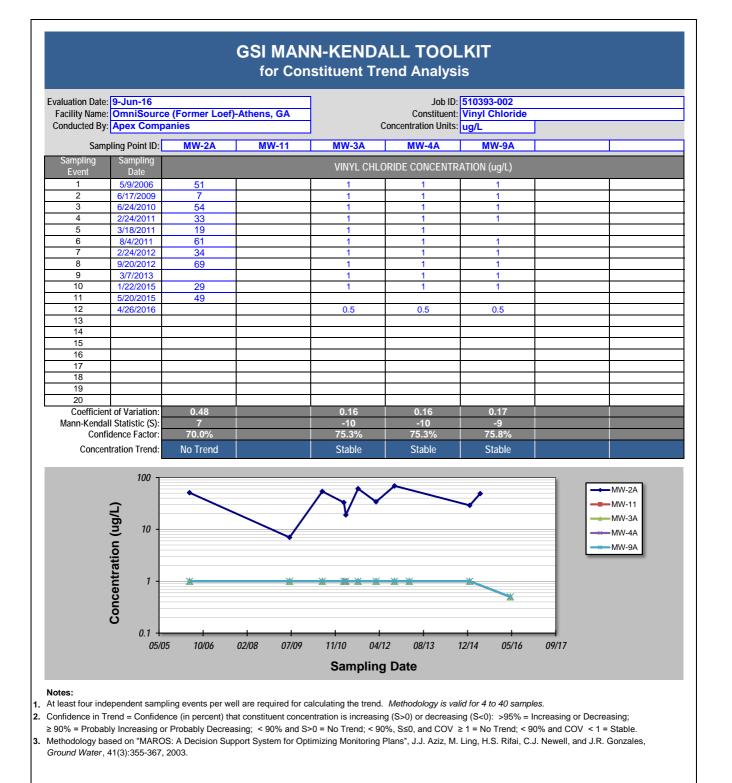
DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

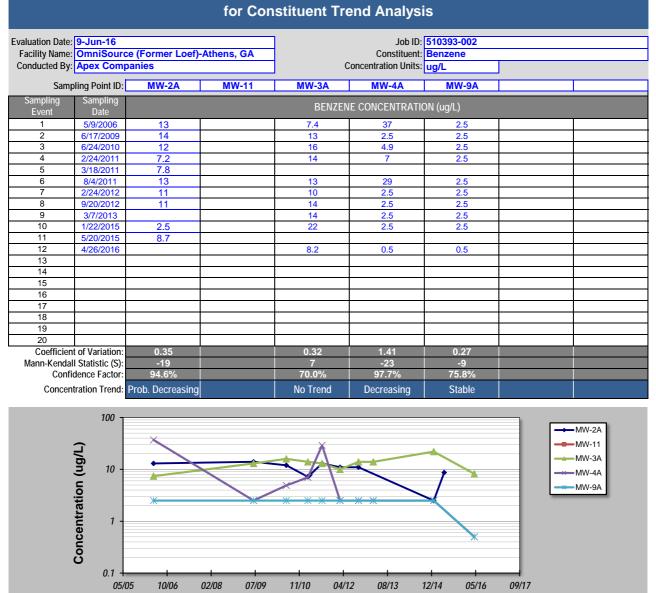


1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.


DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com


2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., usww.gsi-net.com

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis

Notes:

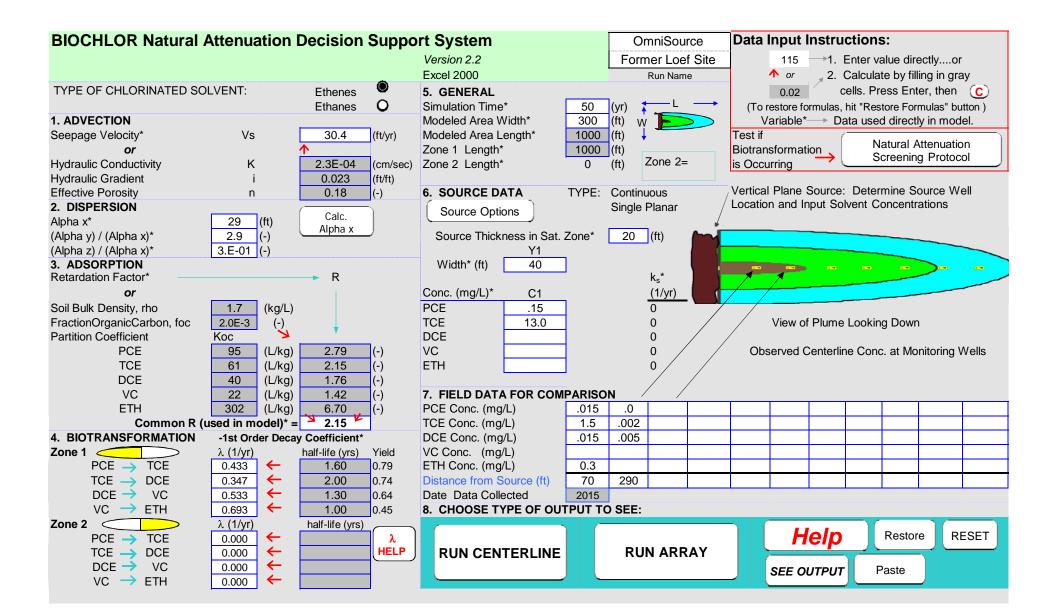
1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

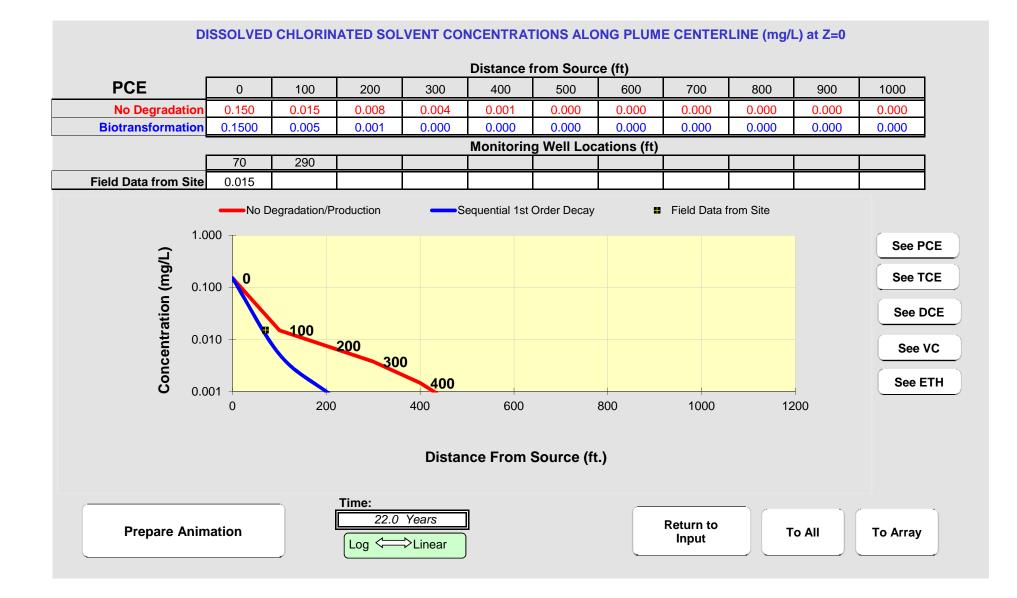
2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

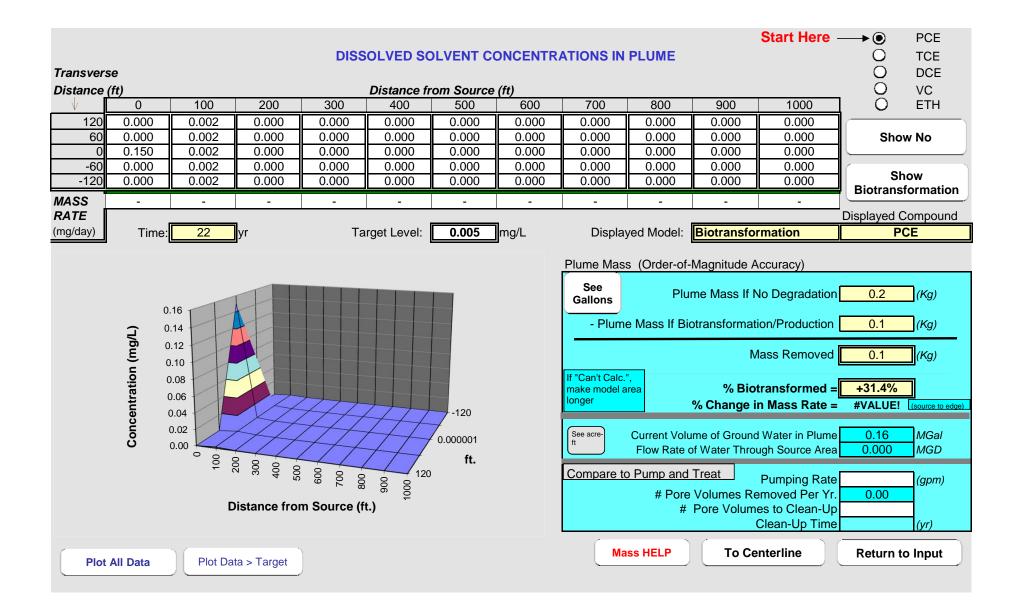
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

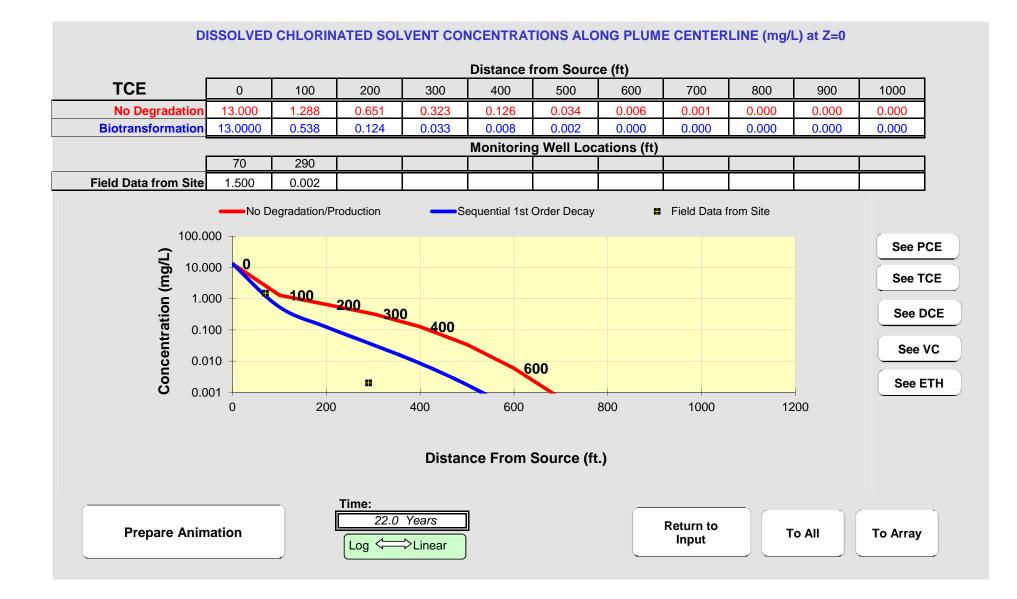
DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., usww.gsi-net.com

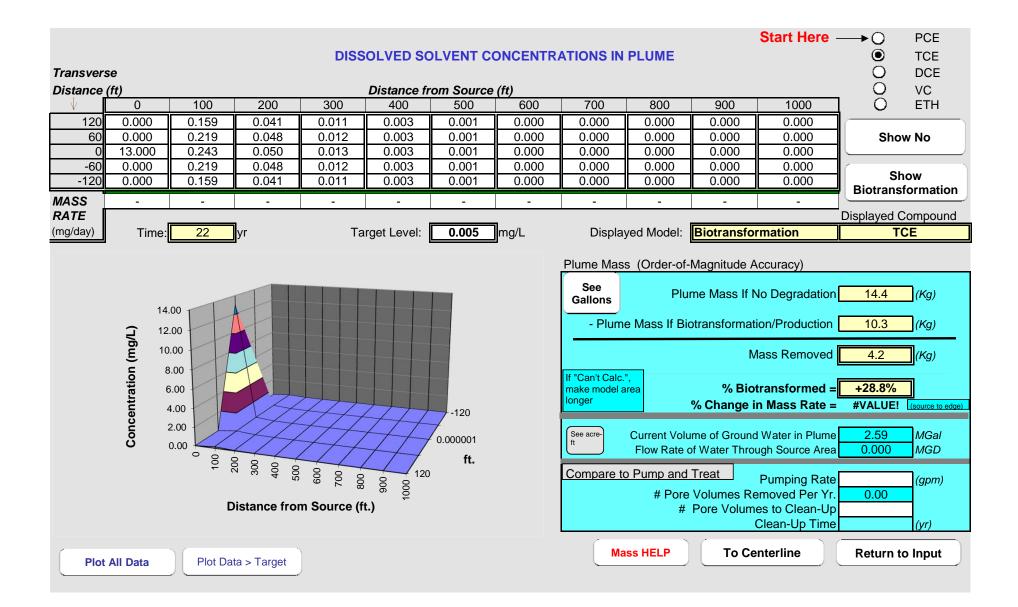
Sampling Date

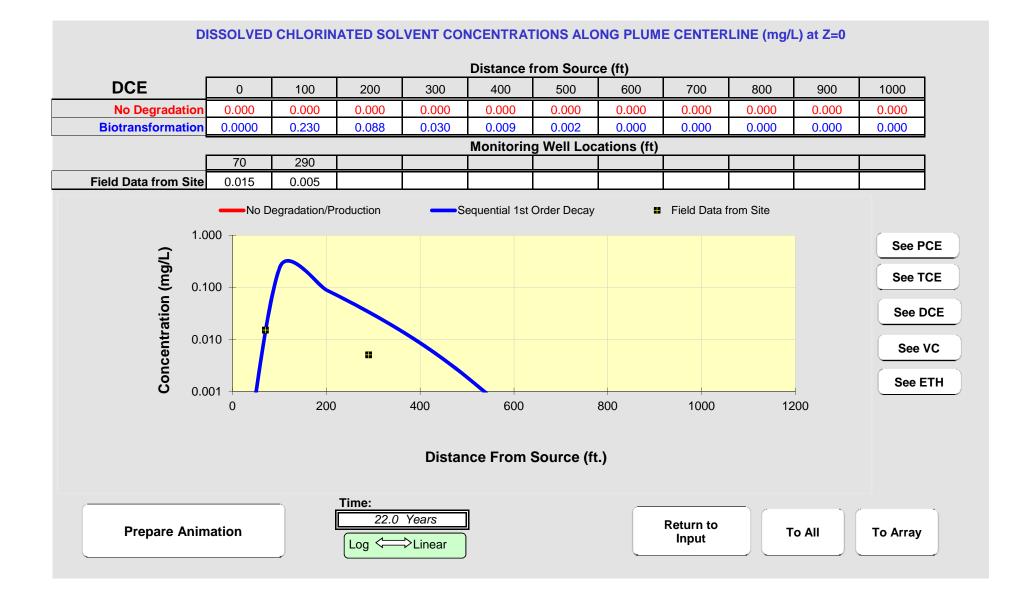

APPENDIX E

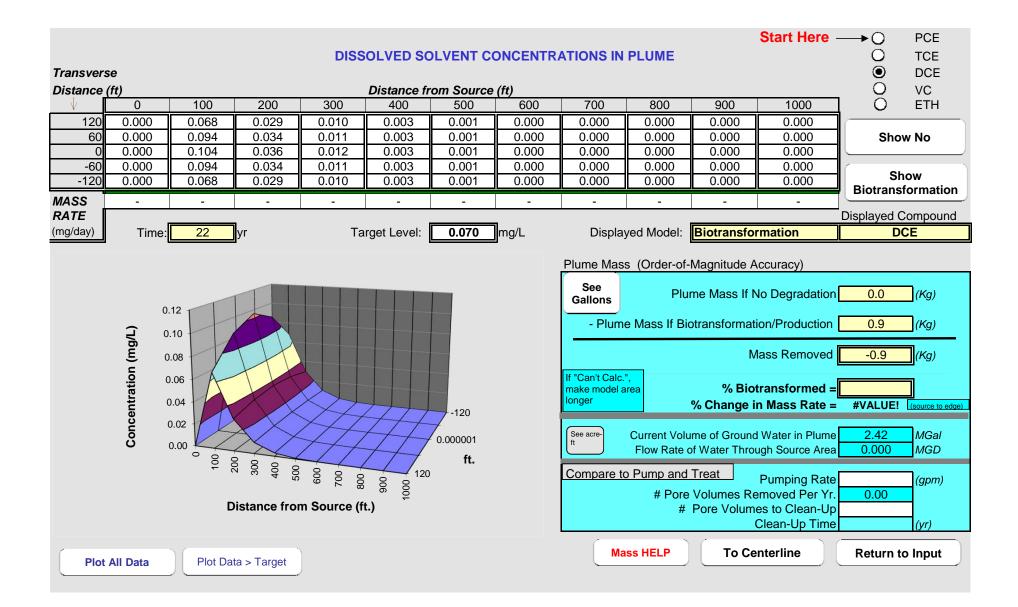

BIOCHLOR OUTPUT SHEETS

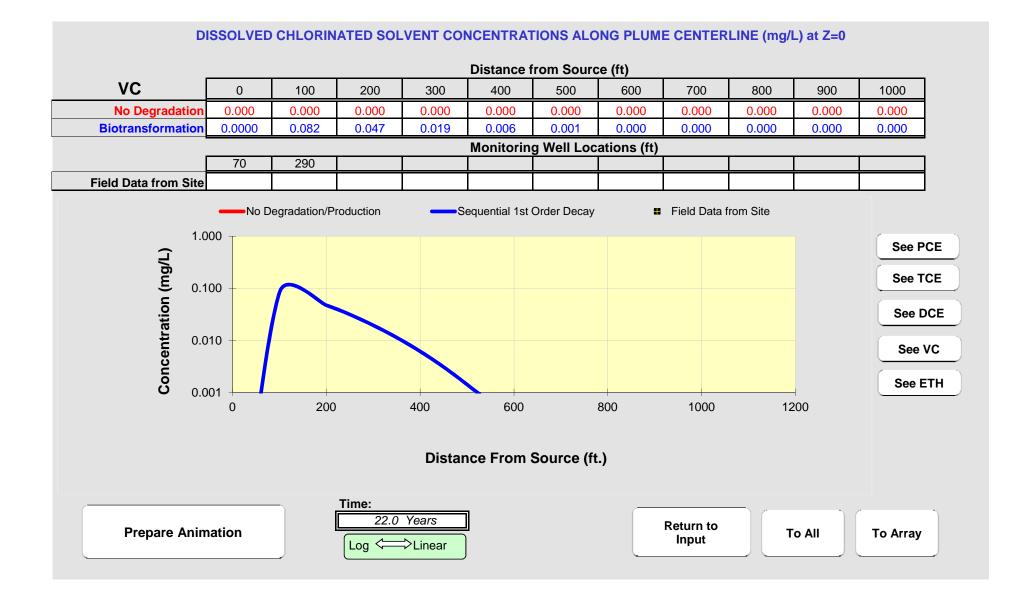


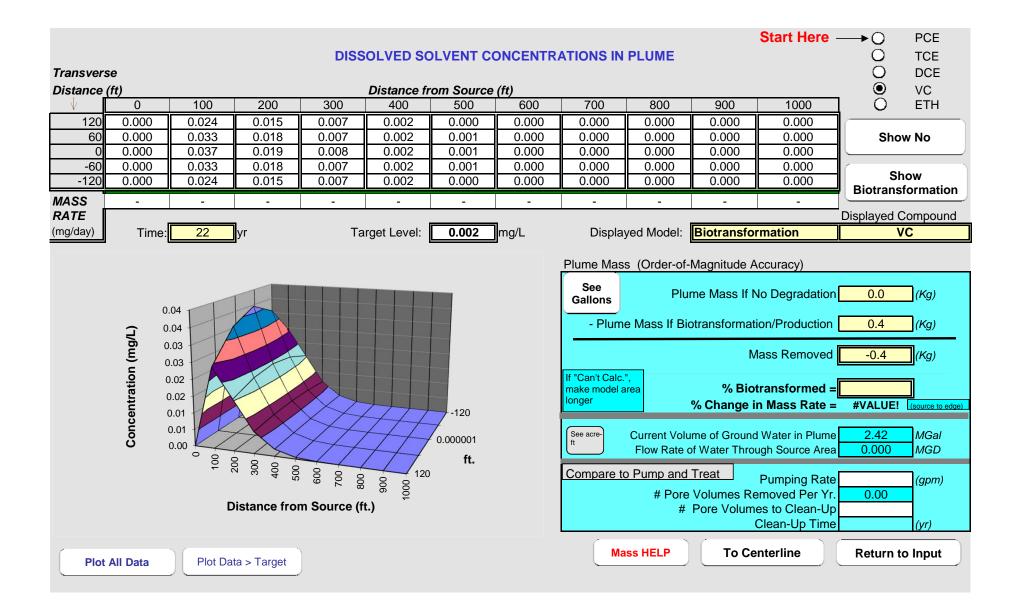

SECTION 1

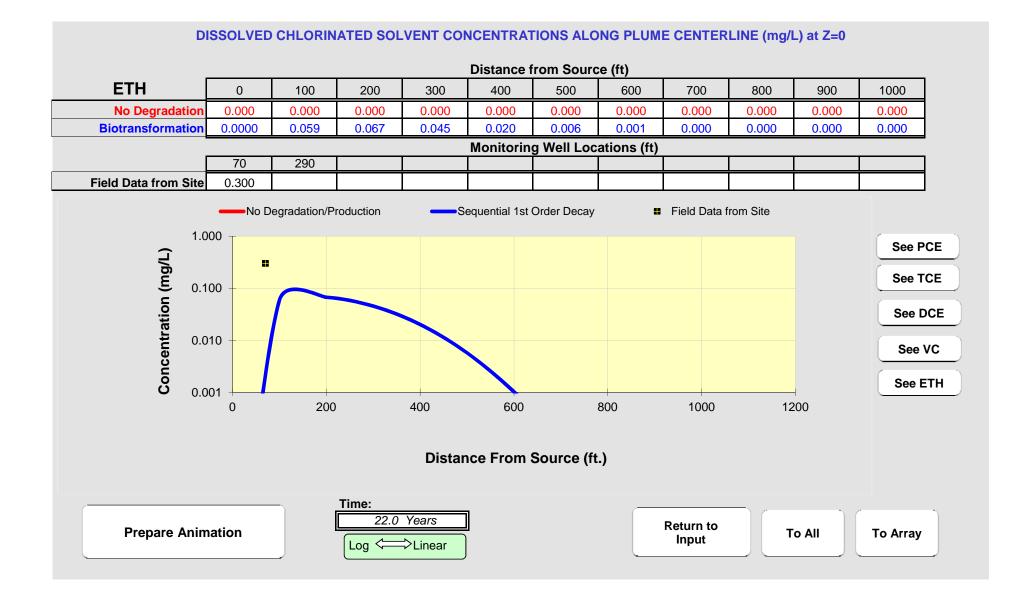

MODEL CALIBRATION

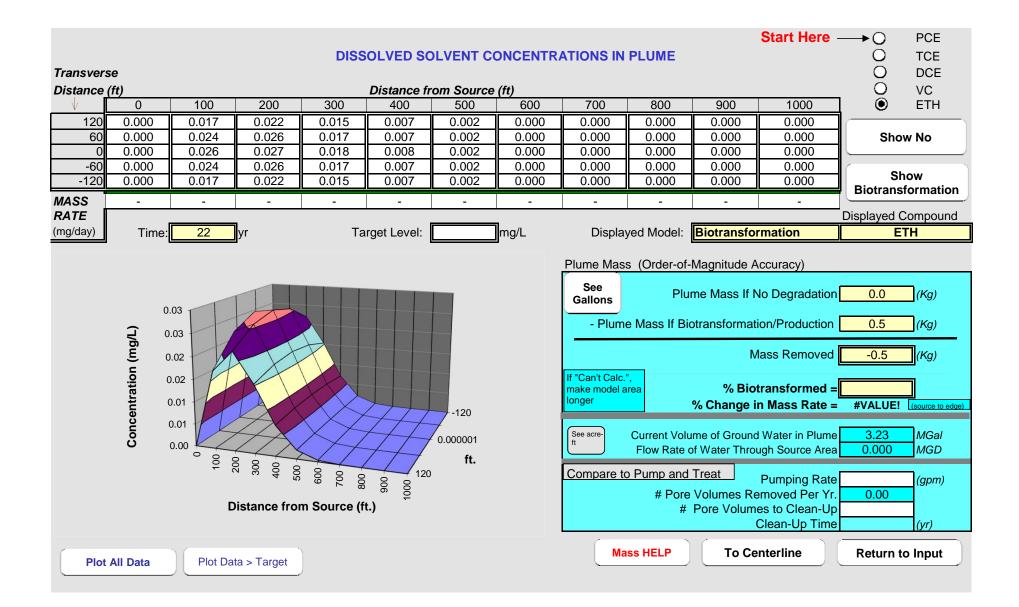


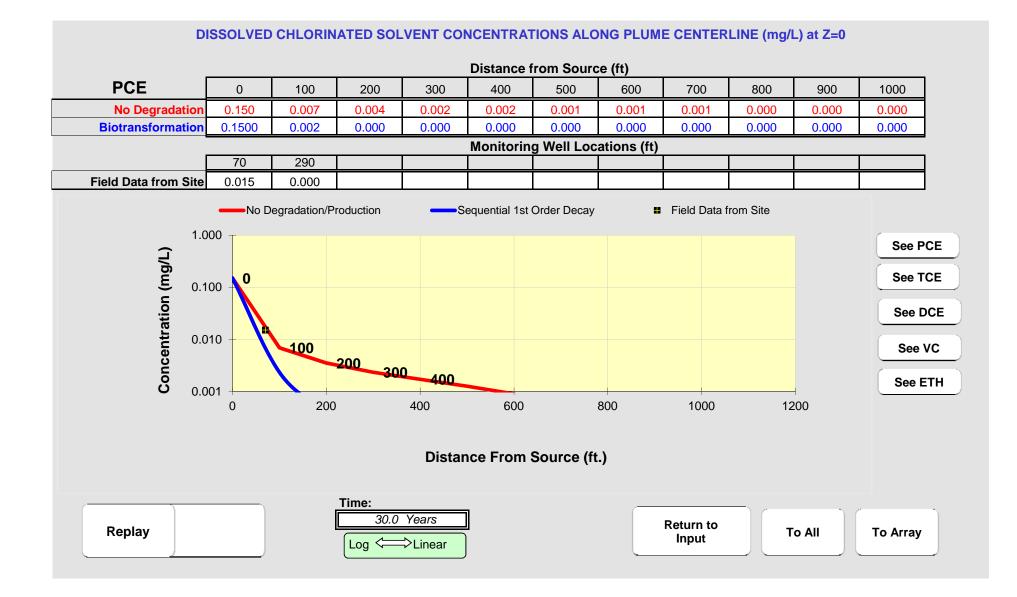


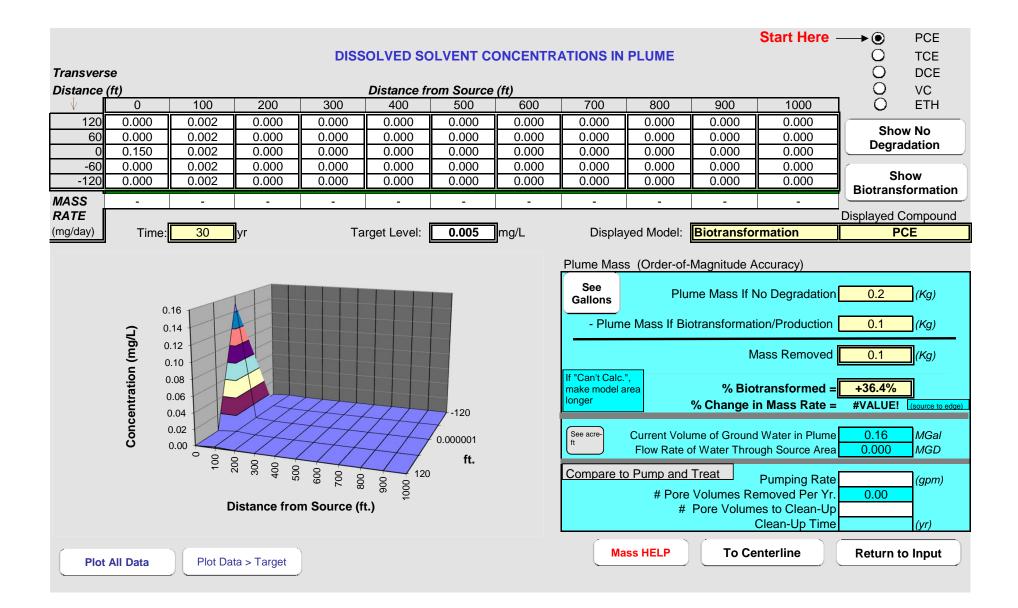


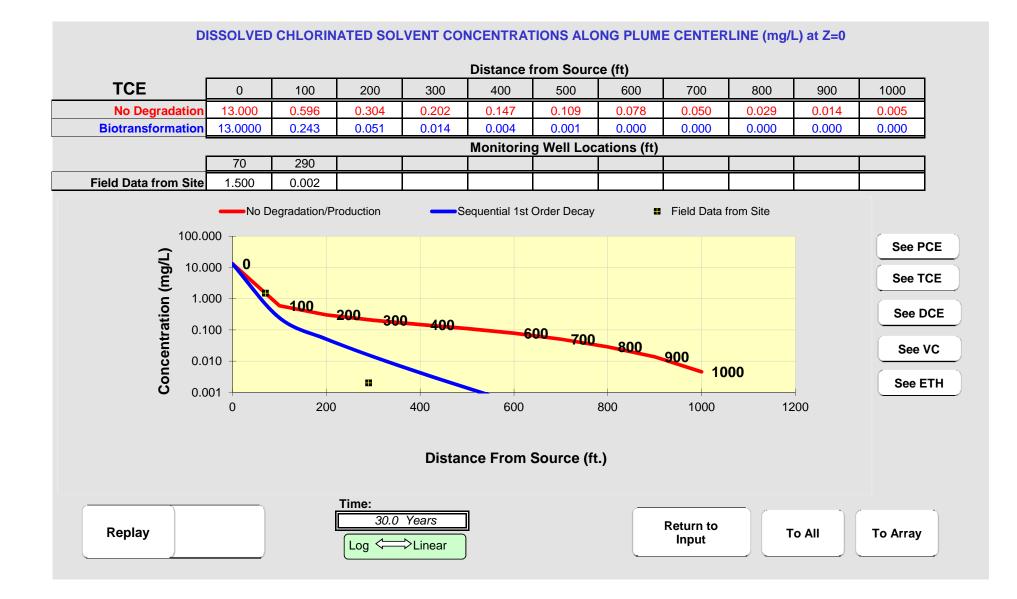


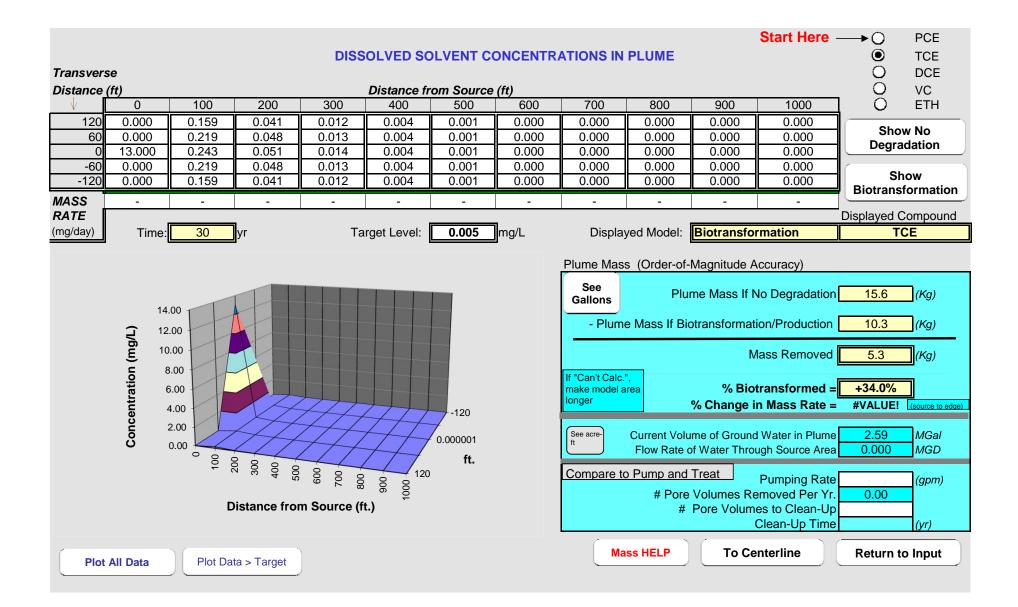


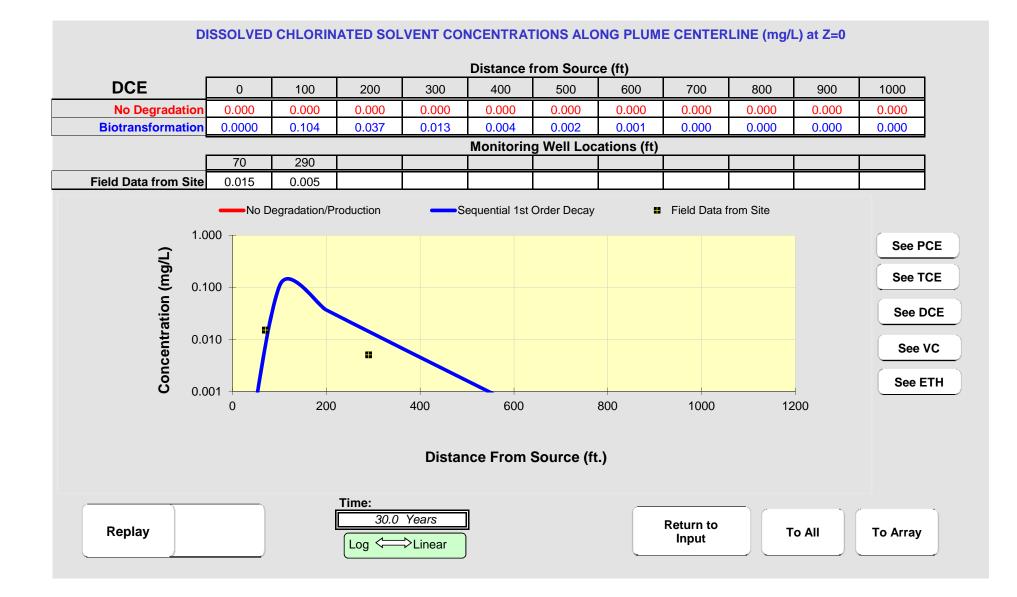


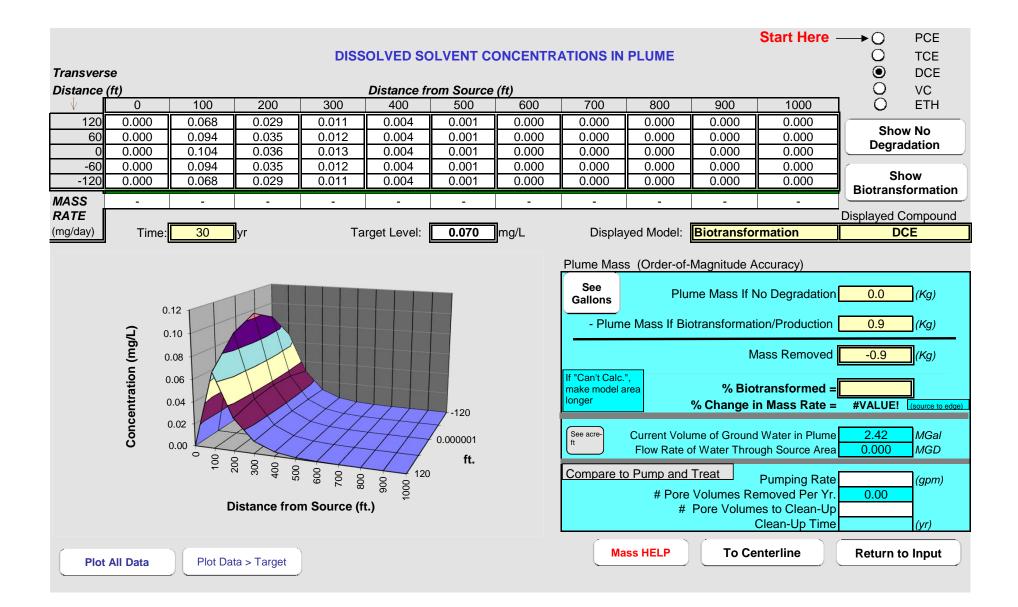


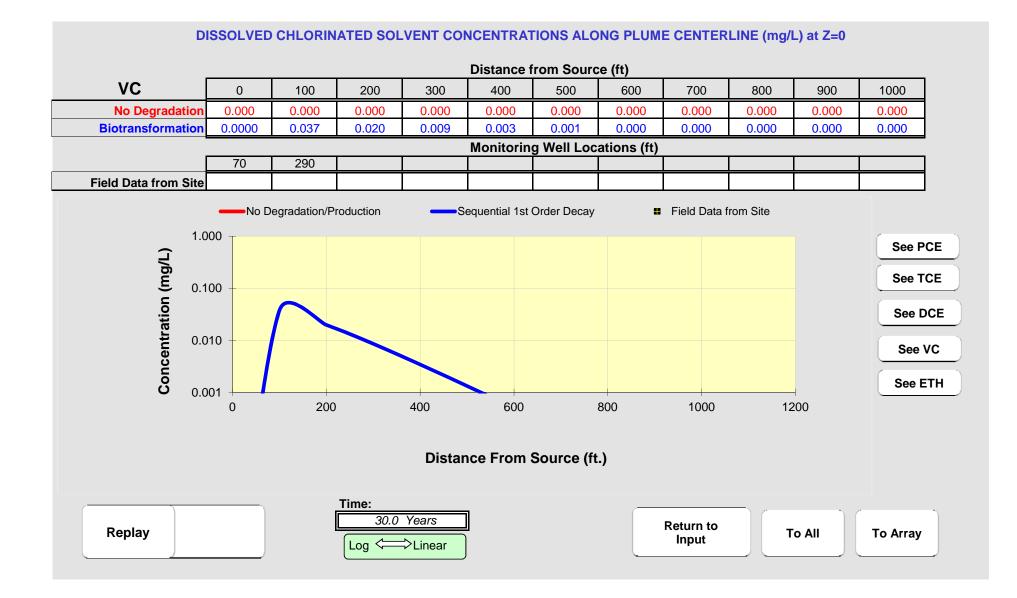


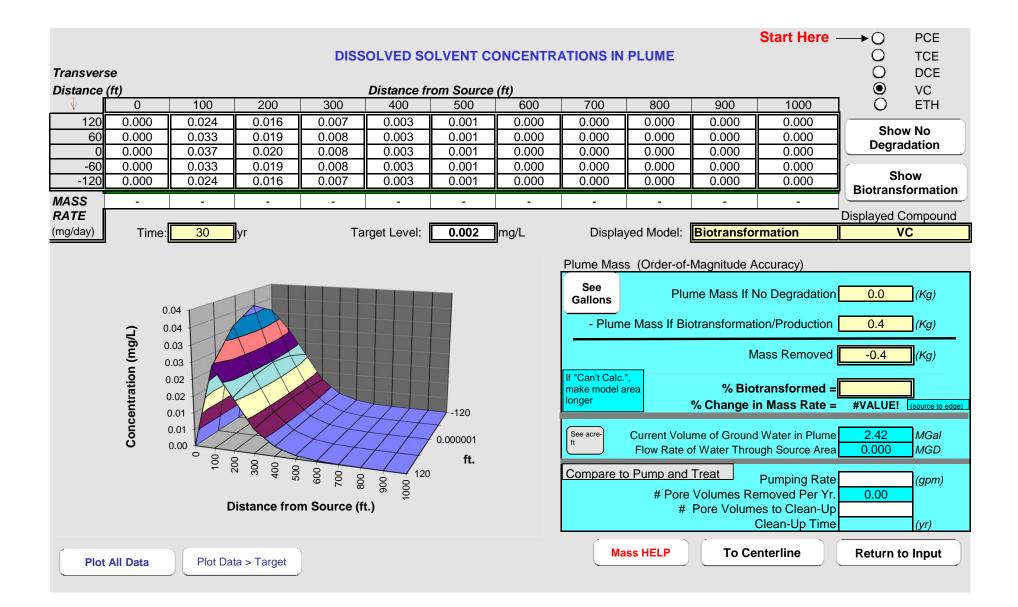


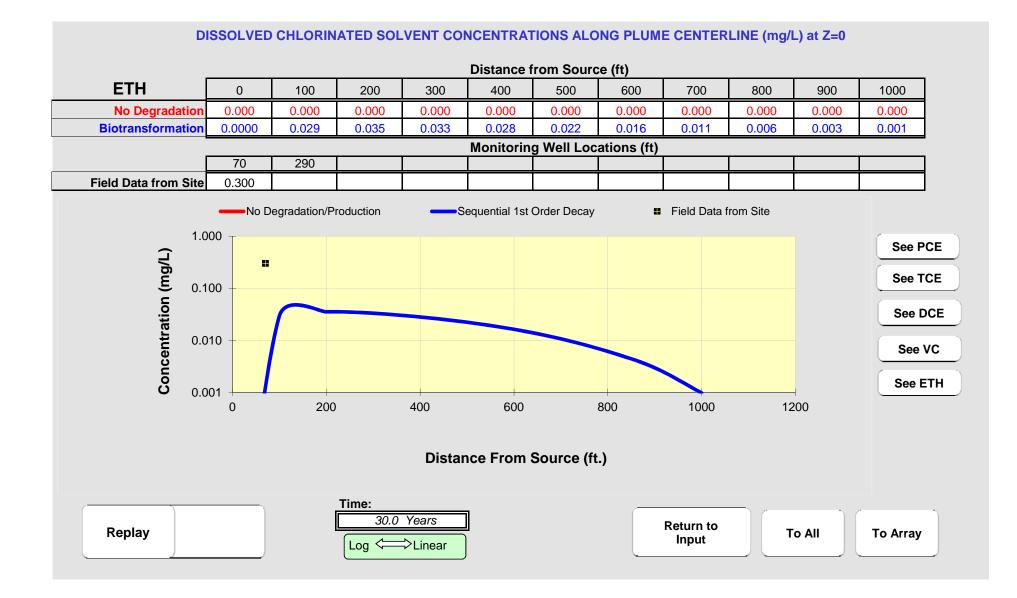

SECTION 2

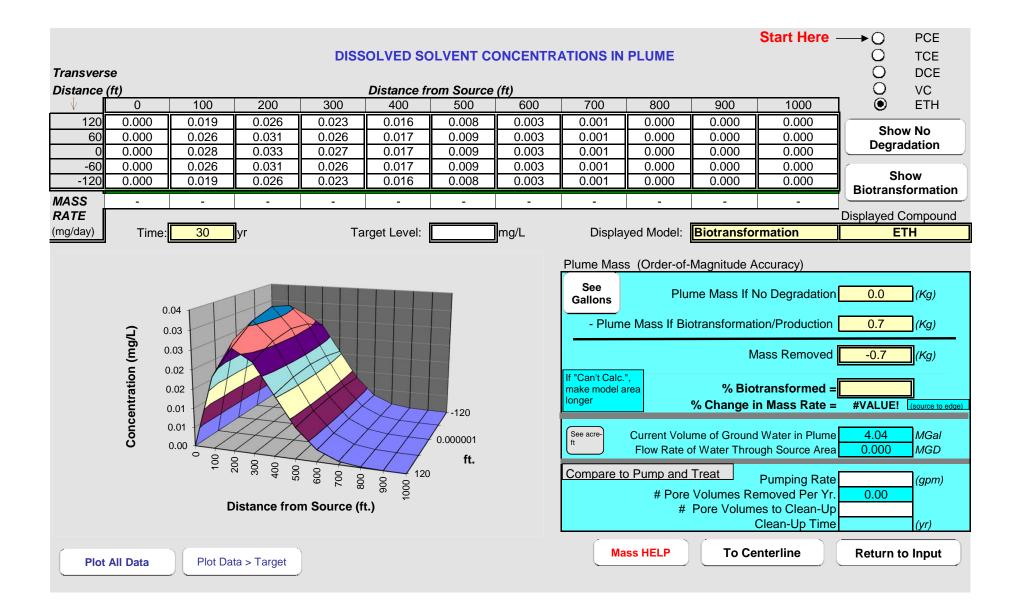

30 yrs - 2022

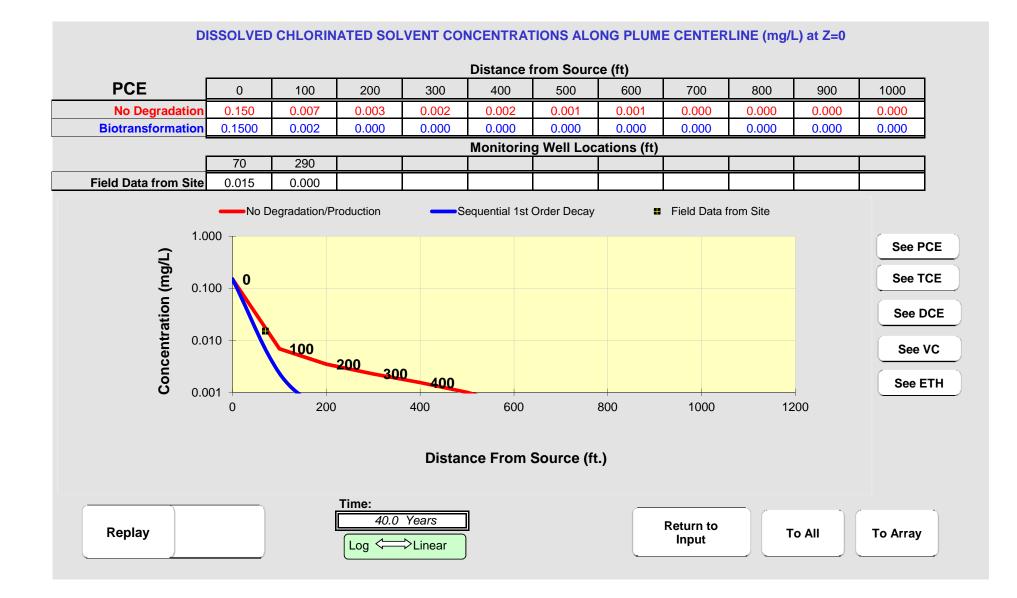


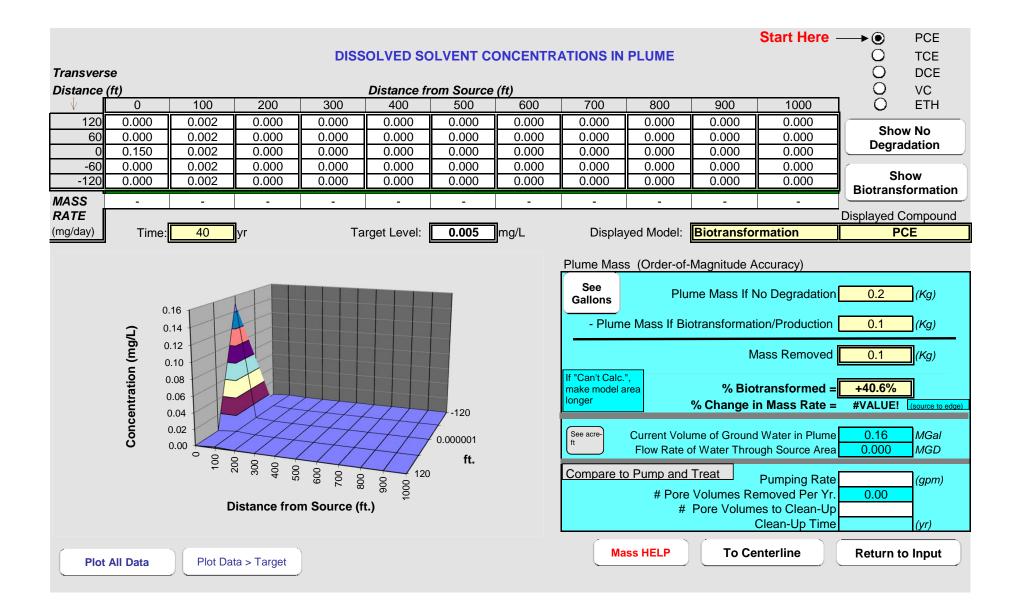


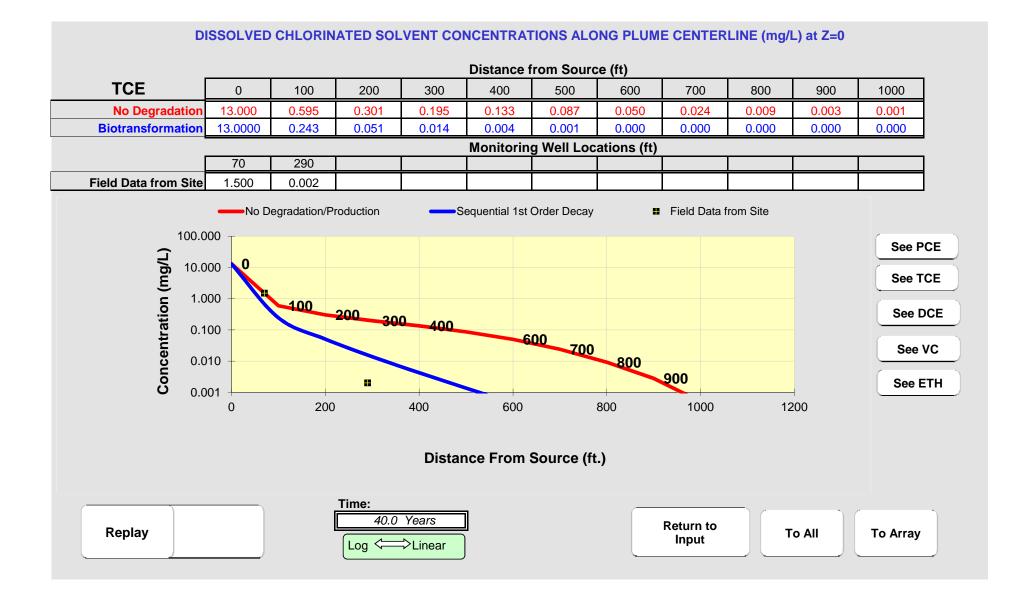


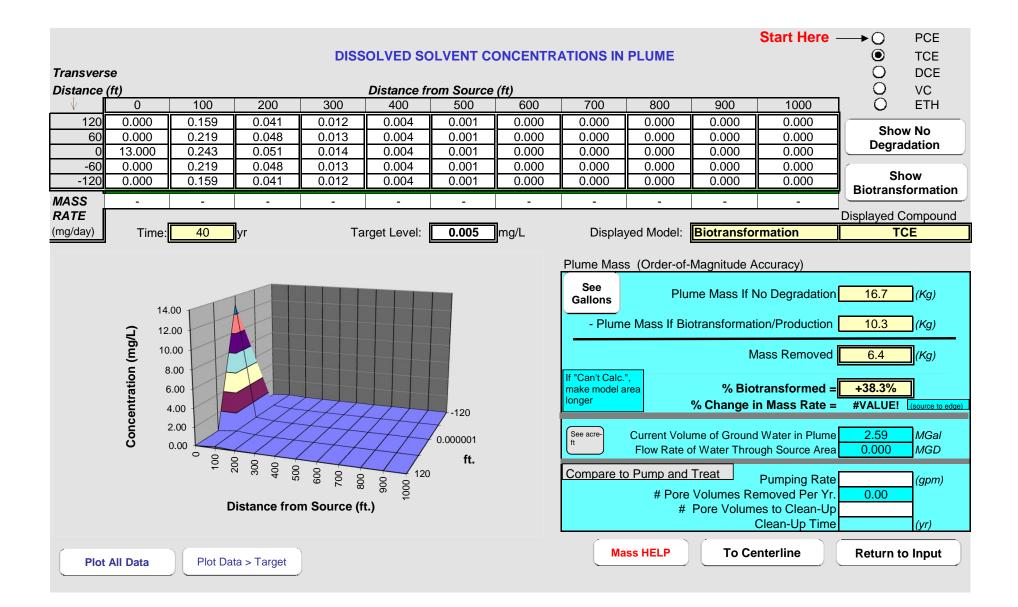


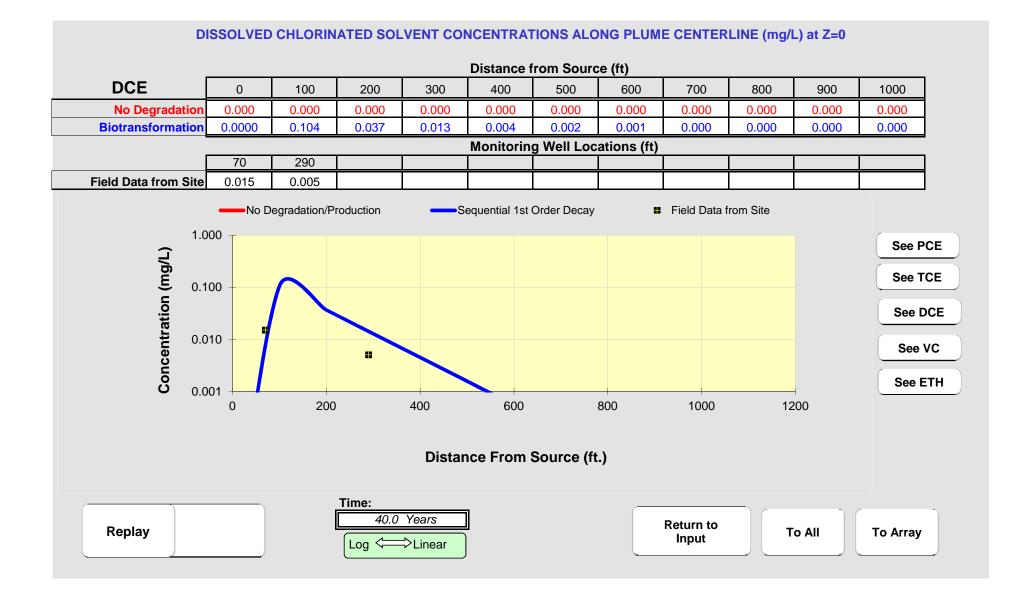


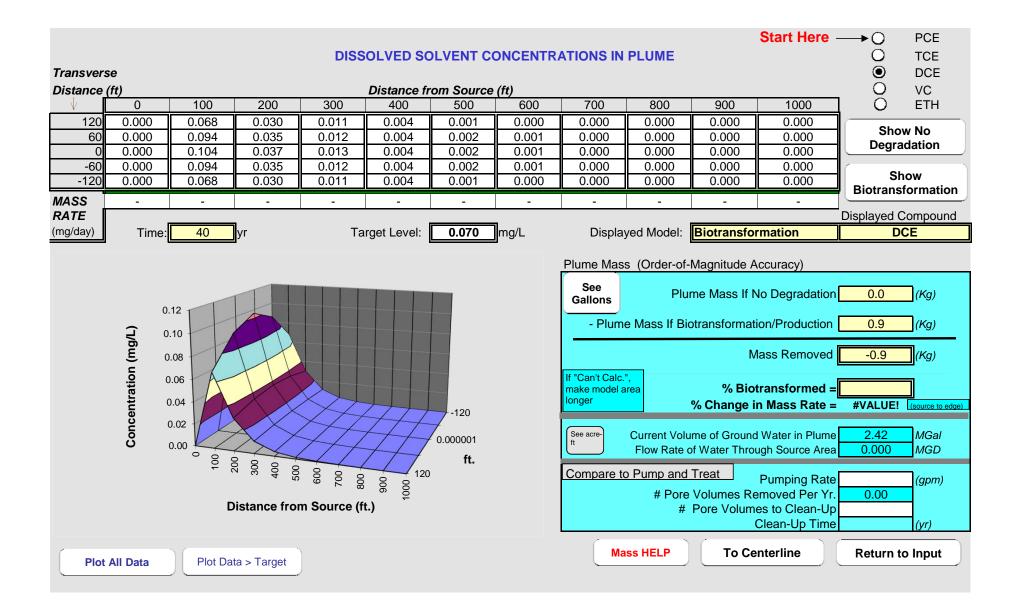


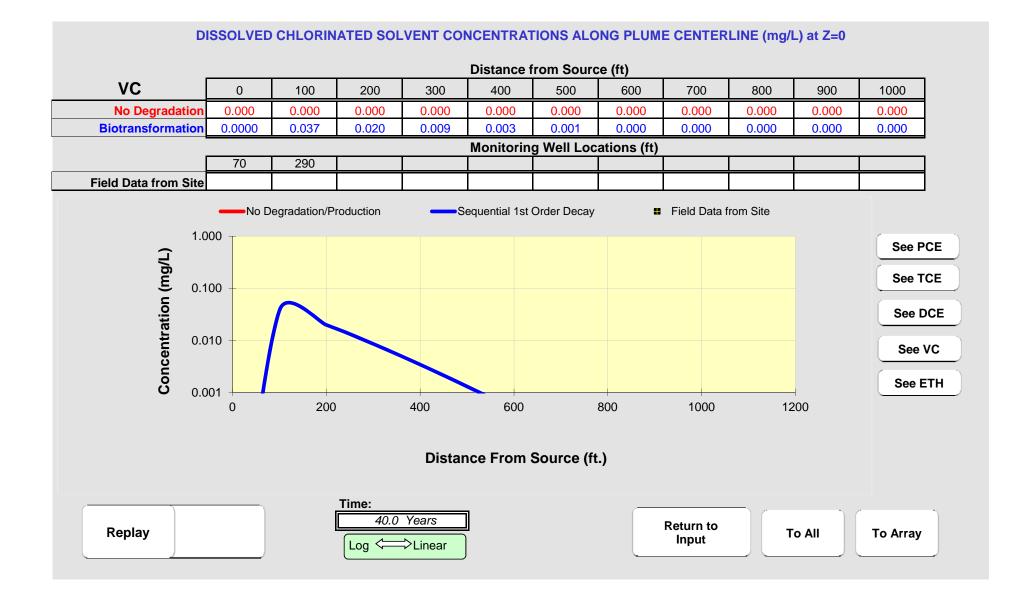


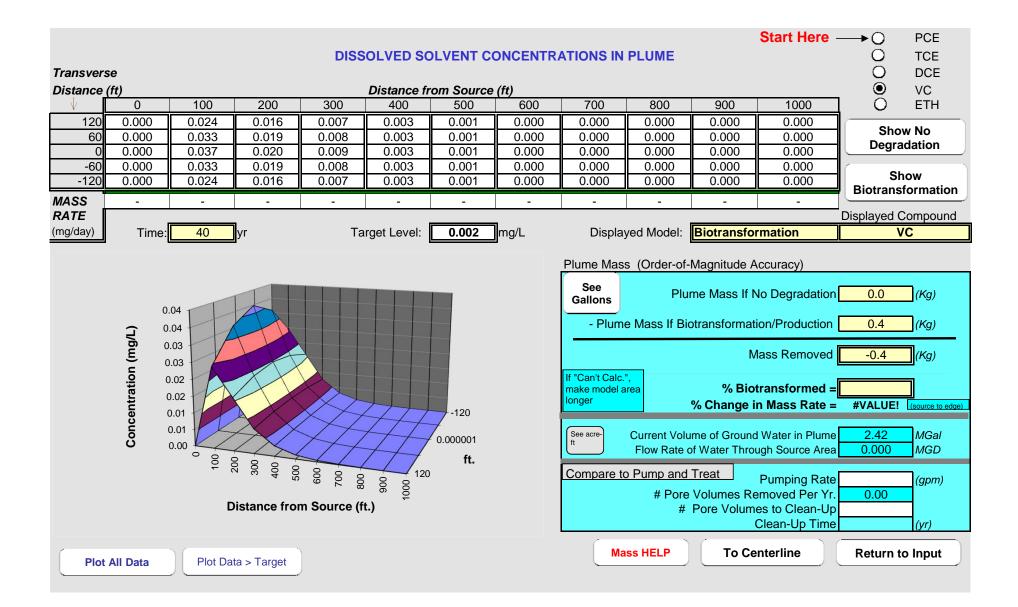


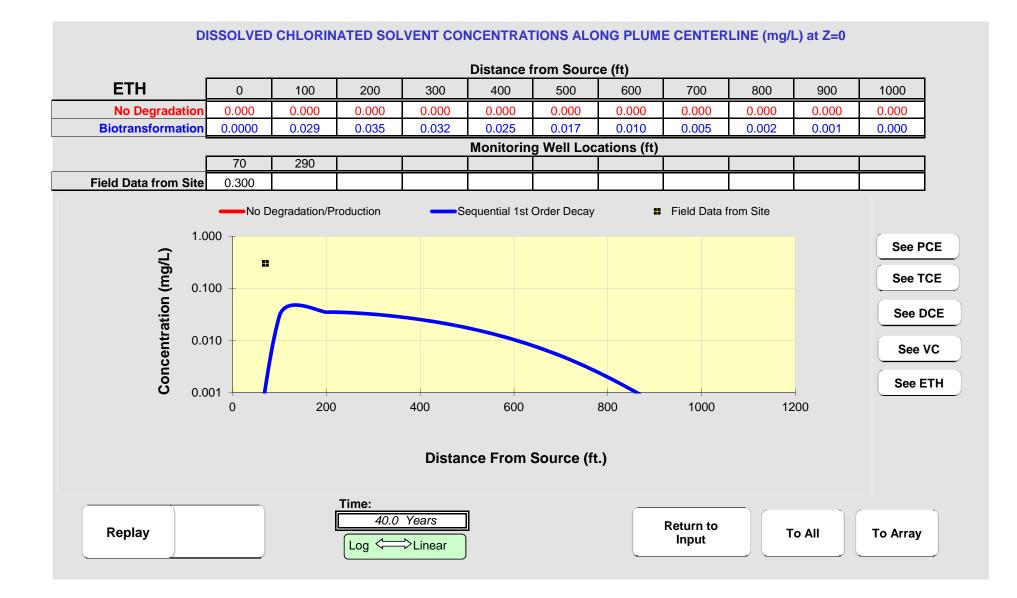

SECTION 3

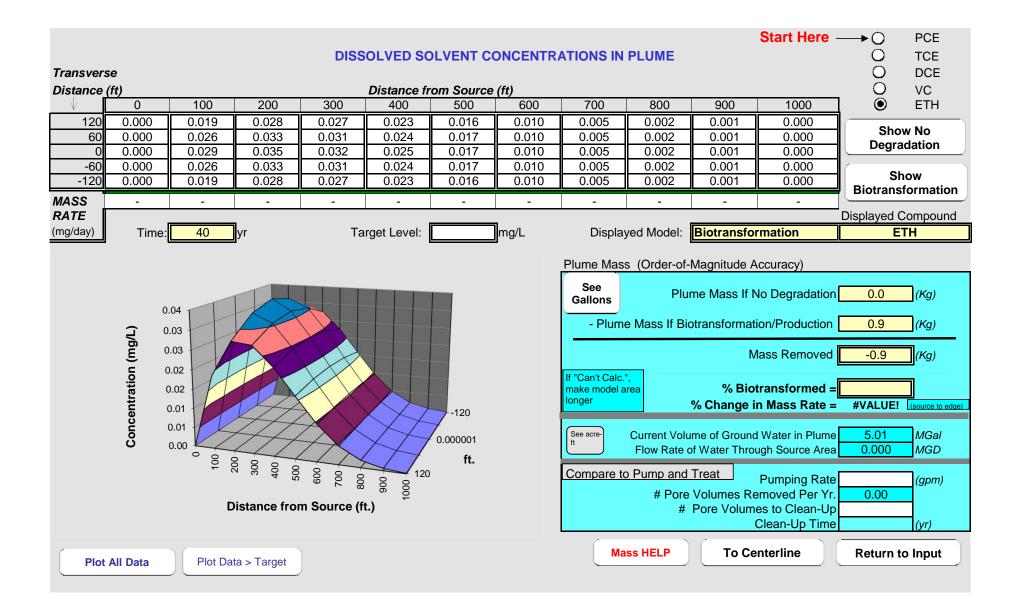

40 yrs - 2032

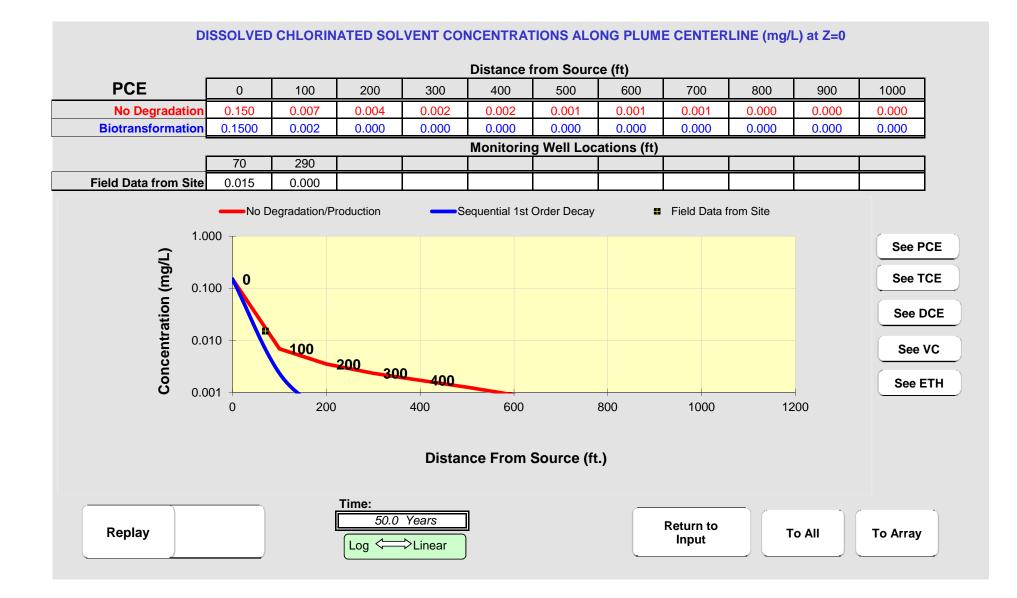


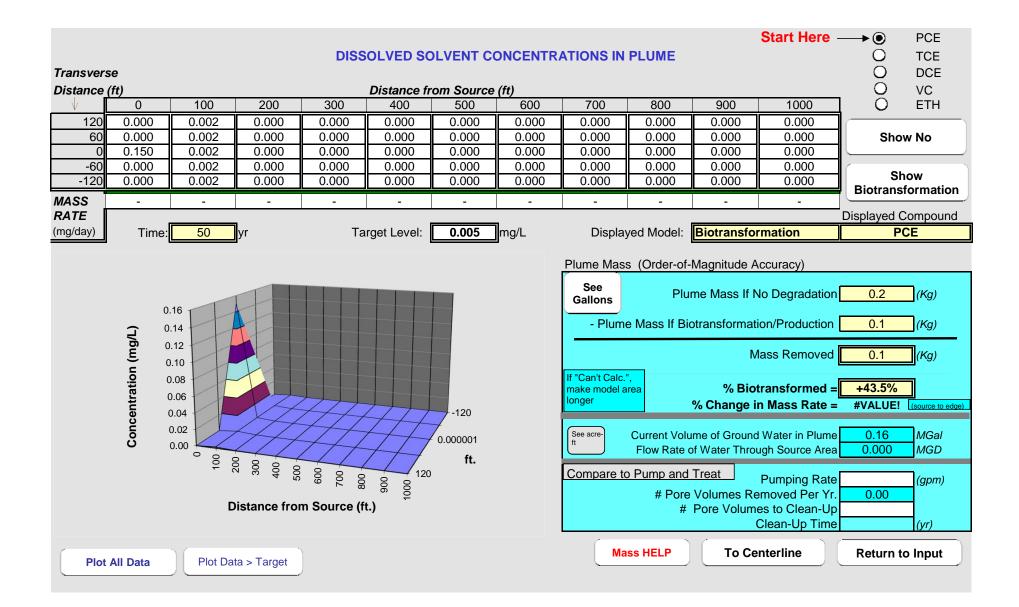


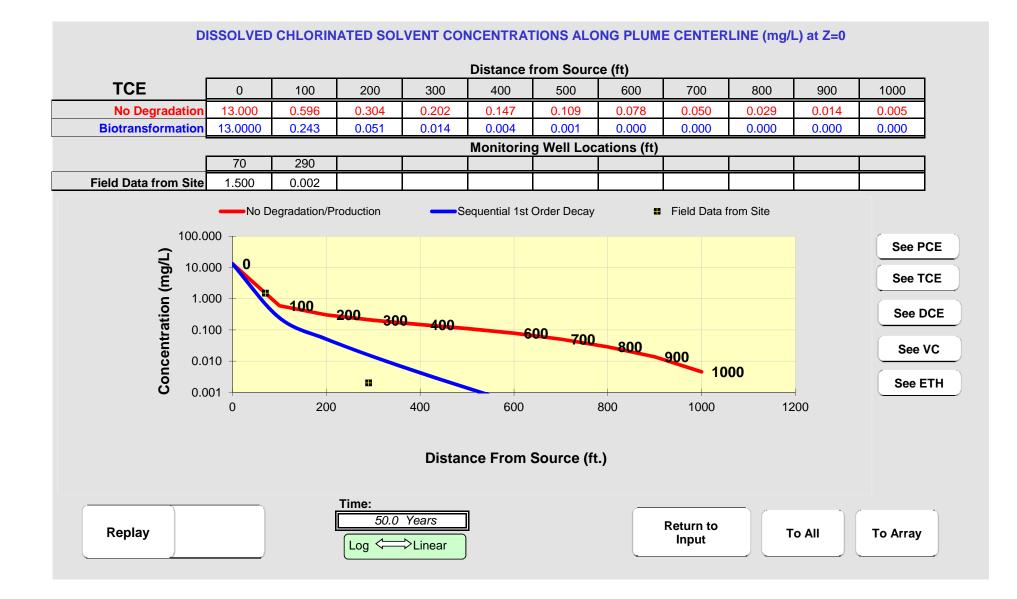


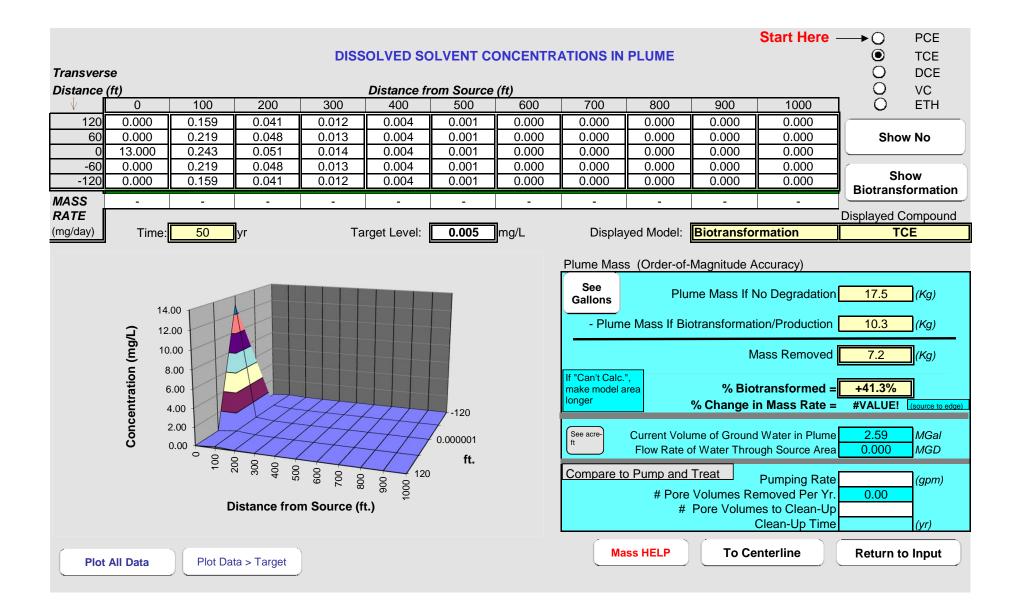


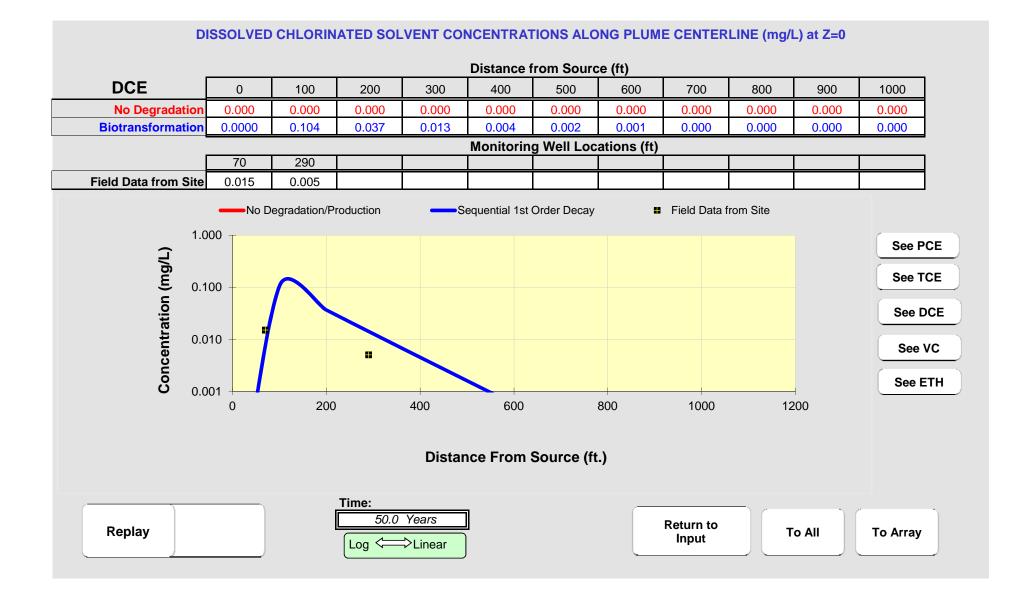


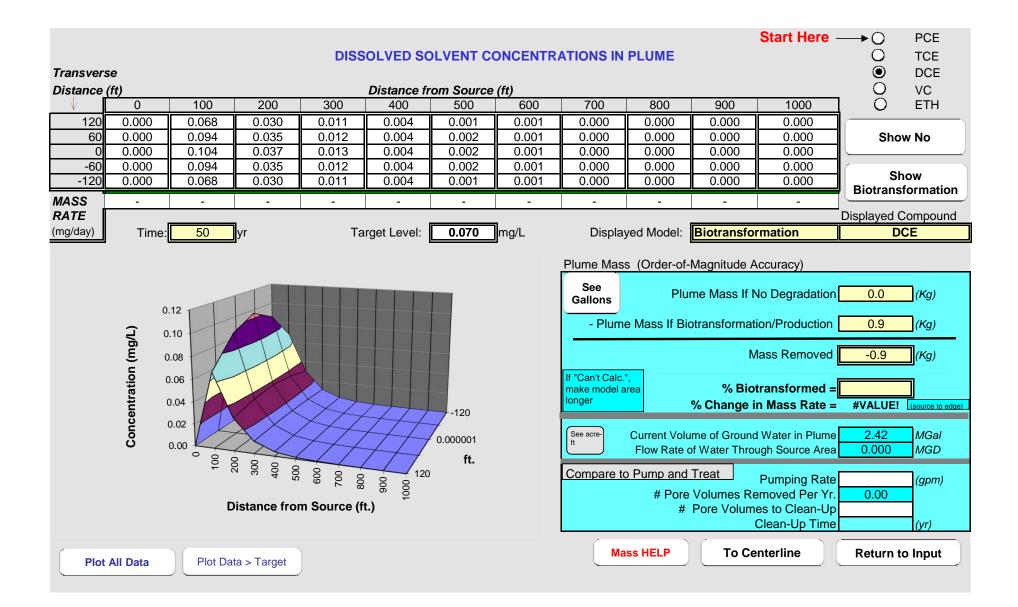


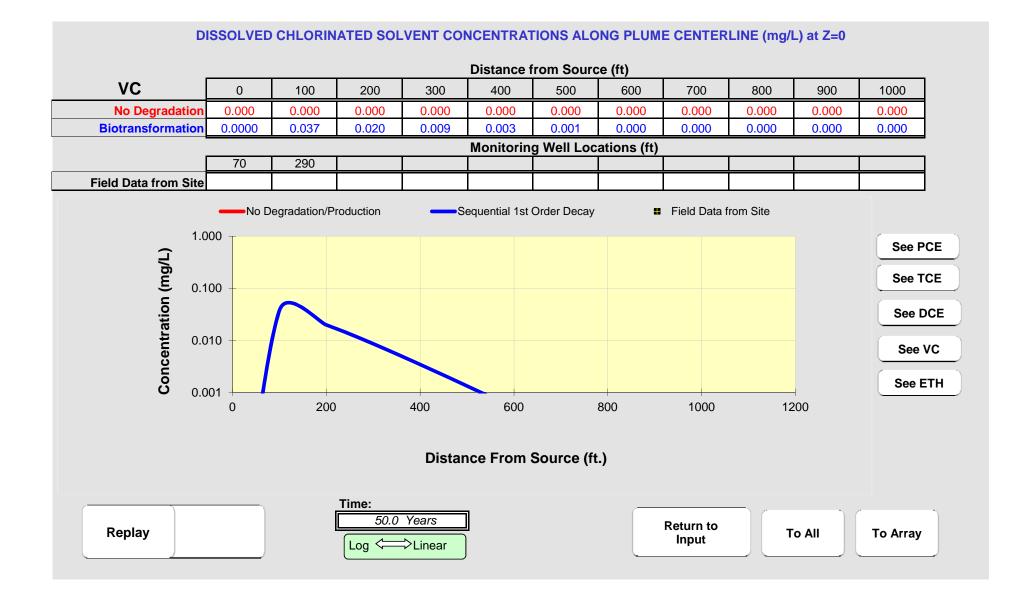


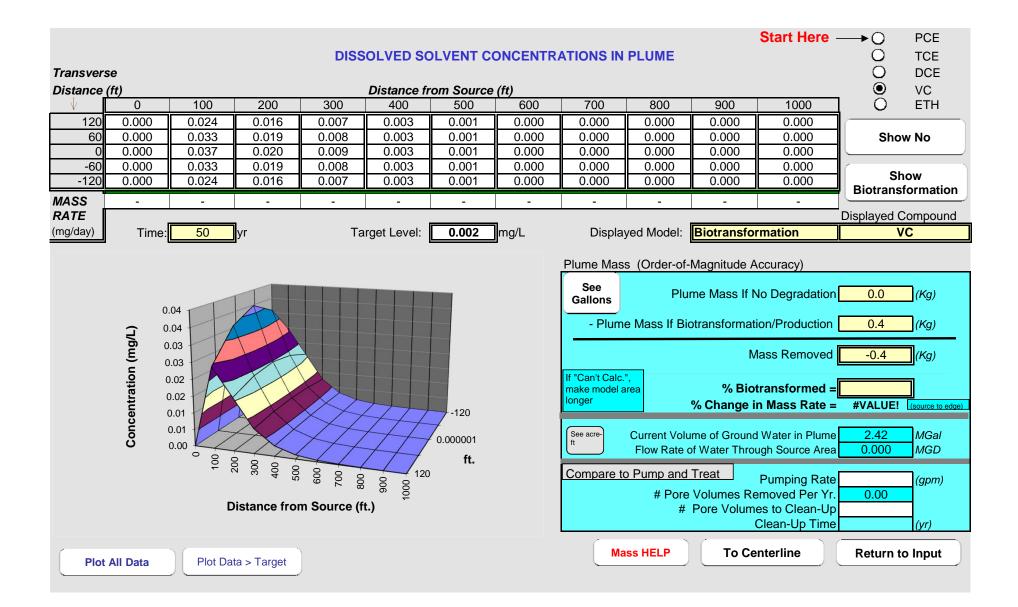


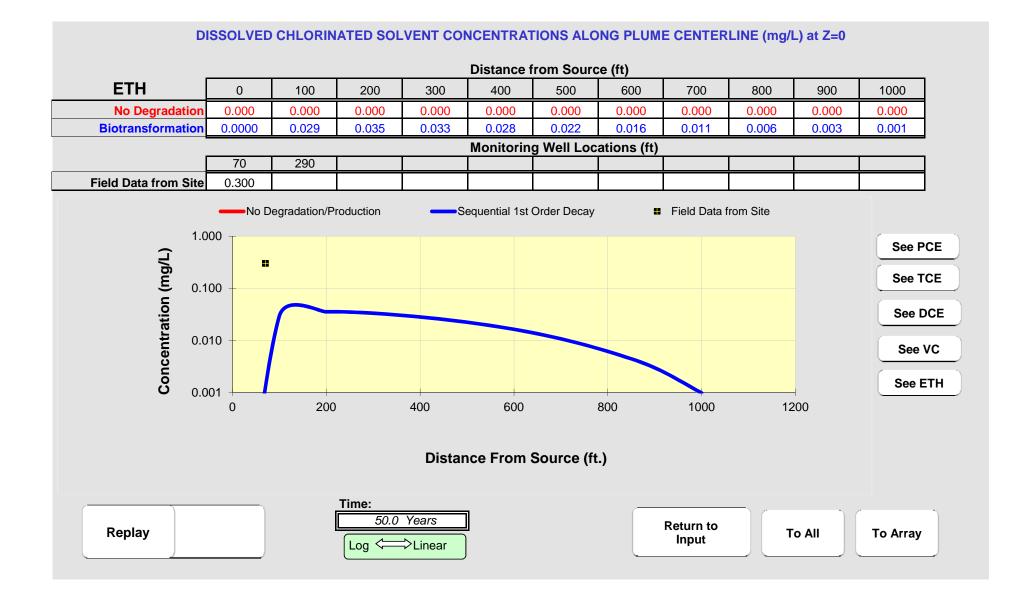

SECTION 4

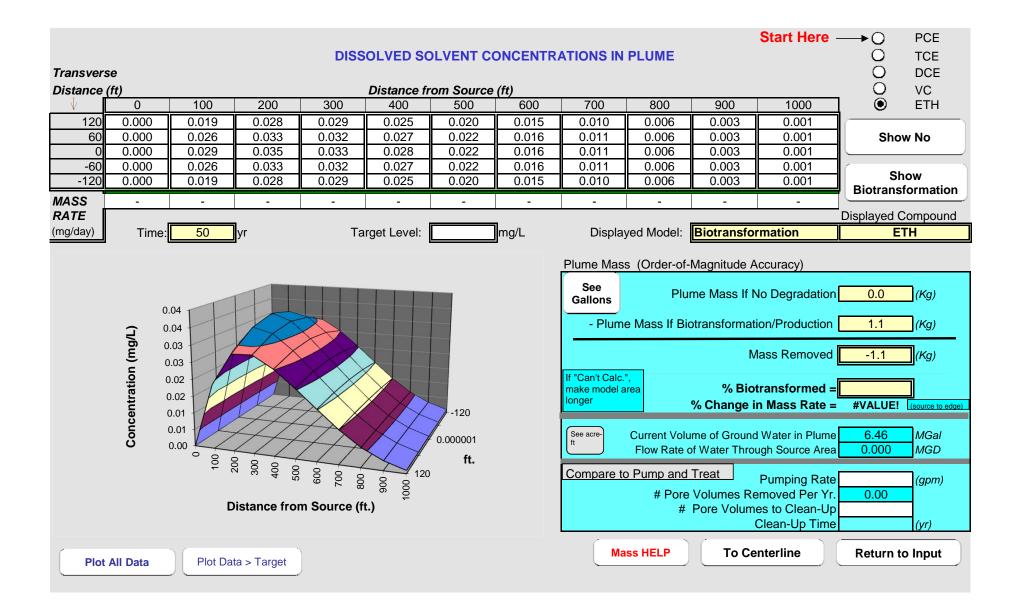

50 yrs - 2042





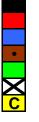






APPENDIX F

UPDATED VRP PROJECT SCHEDULE



Project Schedule and Milestones (Updated July 29, 2016) VRP Remediation Program OmniSource (Former Loef) Facility, Athens, GA

	2016							2017												2018 +					
ACTIVITY/TASK		м	J	J	Α	s	• O	Ν	D	J	F	м	Α	м	J	J	Α	s	0	Ν	D	Q1	Q2	Q3	Q4
Management, Meetings, UEC Development																									
Project Management/Administration																									
Prepare UEC																									
Submit UEC						Х																			
Regulatory Review/Negotiate UEC																									
Execute and Implement UEC											X														
Groundwater Monitoring & Reporting Programs																									
4th Semi-Annual Groundwater Monitoring Event																									
Data evaluations and report preparation		С	С	C																					
4th Progress Report submittal (semi-annual)				X																					
EPD Review/Comments														1											
5th Semi-Annual Groundwater Monitoring Event							•																		
Data evaluations and report preparation														1											
5th Progress Report submittal (semi-annual)										X				1											
EPD Review/Comments																									
IDW Sampling/Characterization/Disposal							•																		
Project Close-Out and Maintenance Activities																									
Completion Certification and Work Plan for Closeout														1					X						
EPD Review/Comments/Approval		Ī							1		I	1		1	Ī								1		
Well Abandonment		Ī							1		I	1		1	Ī						•		1		
*Annual Report with UEC Compliance Certification					1			1	1			1			1					1		X			

Notes:

Overall schedule is based on assumption that no additional site investigation will be required, and only one additional semi-annual monitoring event will occur. *Annual UEC Certification will be required indefinitely while use restriction is applied to the property. Annual submittal dates will be established in final UEC document.

Primary Tasks (Rollup)

- Project Management/Administration
- Desktop Tasks/Data Evaluation/Reports/Deliverables

Field Programs

- Regulatory Reviews/Approvals
- Report Submittal/Other Deliverable
- Completed Task

APPENDIX G

SUMMARY OF HOURS INVOICED

APPENDIX G

Monthly Summary and Description of Georgia Professional Geologist Hours January 2016 through July 2016 Former Loef Facility Athens, Georgia

Kathleen Roush, P.G.									
Monthly Period	Total Hours	Description of Work							
January 2016	0.5	Project Management; Follow-up with GAEPD on report review status							
March 2016	1.5	Review GAEPD response letter; develop next steps; client communication							
April 2016	2.5	Develop/review response letter to GAEPD; review BIOCHLOR inputs; Project Management							
July 2016	10.5	4th Progress Report development and review; BIOCHLOR output reruns and review							