Voluntary Remediation Program Semiannual Progress Report Prepared for Former MacGregor Golf Company Site HSI Site No. 10398 Albany, Georgia January 28, 2016 ## Voluntary Remediation Program Semiannual Progress Report Prepared for Former MacGregor Golf Company Site HSI Site No. 10398 Albany, Georgia January 28, 2016 Submitted to the Georgia Environmental Protection Division on behalf of Albany Partners, LLC Albany Sport Co. Brunswick Corporation # **Table of Contents** | LIS | oi rigi | ires | | \ | | | | | |------|-------------------------------|----------------------------|---|-----|--|--|--|--| | List | of Tab | les | | \ | | | | | | Pro | fessior | nal Engir | neer Certification | V | | | | | | 1. | Introd | luction | | 1-1 | | | | | | | 1.1 | Backgr | ound | 1-1 | | | | | | | 1.2 | Report | Organization | 1-1 | | | | | | 2. | Work | Work Performed this Period | | | | | | | | | 2.1 | Tempo | 2-1 | | | | | | | | 2.2 | Ground | 2-2 | | | | | | | | 2.3 | Ground | Groundwater Sampling | | | | | | | | | 2.3.1 | Sample Collection | 2-2 | | | | | | | | 2.3.2 | Sample Analysis | | | | | | | | 2.4 | • | rary Well Abandonment | | | | | | | | 2.5 | | nd Transport Model Update | | | | | | | 3. | Results of Work this Period | | | | | | | | | | 3.1 | | | | | | | | | | 3.2 | | dwater Sampling Results | | | | | | | | | 3.2.1 | VOCs in Groundwater | | | | | | | | | 3.2.2 | Chromium in Groundwater | | | | | | | | | 3.2.3 | Quality Assurance/Quality Control Samples | | | | | | | | | 3.2.4 | Summary | | | | | | | | 3.3 | | ed Fate and Transport Model | | | | | | | 4. | Updated Conceptual Site Model | | | | | | | | | 4. | 4.1 | | Tts of the Conceptual Site Model
Ground Surface Features | | | | | | | | | 4.1.1
4.1.2 | Subsurface Features | | | | | | | | | 4.1.2 | Contaminant Source | | | | | | | | | 4.1.3 | Contaminant Fate and Transport | | | | | | | | 4.2 | | tors and Exposure Pathways | | | | | | | 5 | Site Status Update | | | | | | | | | 5. | 5.1 | · | | | | | | | | | 0.1 | 5.1.1 | Soil Delineation | | | | | | | | 5.2 | | dwater Delineation | | | | | | | | | 5.2.1 | On-Site Horizontal Groundwater Delineation | | | | | | | | | 5.2.2 | Off-Site Horizontal Groundwater Delineation | | | | | | | | | 5.2.3 | Vertical Groundwater Delineation | | | | | | | | | | | | | | | | | | 5.3 | Status | 5-1 | | | | | | | |-----|-----------------------------------|-------------------------------|---|-----|--|--|--|--|--| | | | 5.3.1 | Soil | 5-1 | | | | | | | | | 5.3.2 | Groundwater | 5-2 | | | | | | | 6. | | | | | | | | | | | | 6.1 | 6.1 Planned Near-Term Actions | | | | | | | | | | 6.2 | 6-1 | | | | | | | | | 7. | Engineer's Services this Period7- | | | | | | | | | | 8. | | | | | | | | | | | 9. | Refe | rences | | 9-1 | | | | | | | App | endix | A: Well (| Construction Diagrams | A-1 | | | | | | | App | endix | B: Field | Data Sheets | B-1 | | | | | | | App | endix | C: Labo | ratory Analytical Reports | C-1 | | | | | | | App | endix | D: Labo | ratory Stipulation Letter | D-1 | | | | | | | App | endix | E: Upda | ted Fate and Transport Model Technical Memorandum | E-1 | | | | | | ## List of Figures - Figure 1. Site Location Map - Figure 2. Site Map Monitoring Well Locations - Figure 3. Potentiometric Surface Map Upper Water Bearing Zone July 29, 2015 - Figure 4. Potentiometric Surface Map Upper Water Bearing Zone November 4, 2015 - Figure 5. Potentiometric Surface Map Lower Water Bearing Zone July 29, 2015 - Figure 6. Potentiometric Surface Map Lower Water Bearing Zone November 4, 2015 - Figure 7. Groundwater Concentration Map July 2015 - Figure 8. Groundwater Concentration Map November 2015 - Figure 9. Updated Conceptual Site Model Plan View - Figure 10. Updated Conceptual Site Model Profile View ## List of Tables - Table 1. Well Construction Data and Most Recent Groundwater Elevations - Table 2. Recent Field-Measured Groundwater Sampling Parameters - Table 3. Recent Groundwater Detections of Site COCs - Table 4. Historical Groundwater Detections of Site COCs - Table 5. Summary of Site Status Relative to Delineation and Cleanup Levels - Table 6. Updated Project Milestone Schedule - Table 7. Summary of Hours Invoiced by Professional Engineer this Period # **Professional Engineer Certification** I certify that I am a qualified environmental professional who has received a baccalaureate or post-graduate degree in a natural science or engineering, and have sufficient training and experience in groundwater hydrology, engineering, and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound professional judgments regarding groundwater monitoring and contaminant fate and transport. I further certify that this report was prepared by myself or by a subordinate working under my direction. | Vaturie C. Ringerbeyso | 1/28/16 | | |--------------------------------|---------|--| | Patricia C. Reifenberger, N.E. | (date) | | Georgia Registration Number: 20676 Seal: ## Introduction This Semiannual Progress Report for the Former MacGregor Golf Company Site (Site) was prepared by Brown and Caldwell (BC) on behalf of Albany Partners, LLC, Albany Sport, Co., and Brunswick Corporation (the Group) for submittal to the Response and Remediation Program of the Land Protection Branch of the Georgia Environmental Protection Division (EPD). The Site is located at 1601 South Slappey Boulevard in Albany, Dougherty County, Georgia (Figure 1). The Site is a participant in EPD's Voluntary Remediation Program (VRP) and is listed on EPD's Hazardous Site Inventory (HSI) as Site No. 10398. This report describes the work performed related to the Site from the last semiannual progress report dated July 27, 2015 through January 30, 2016. ## 1.1 Background The Site was accepted into the VRP on July 30, 2012. The Site history, description, regulatory history, and previous environmental work are described in detail in the Compliance Status Report (CSR [BC 2006]), Revised CSR and Corrective Action Plan (CAP [BC 2008]), and Revised CSR and CAP Addendum (BC 2009) submitted in compliance with Hazardous Site Response Act (HSRA) requirements. Additionally, soil and groundwater data were submitted to the EPD in the April 2011 VRP Application, February 2012 Revised VRP Application, and Semiannual Progress Reports since January 2013. In summary, since 2002, the Group has conducted groundwater monitoring, zero valent iron (ZVI) pilot testing in the source area, soil and groundwater delineation, fate and transport modeling, and a limited risk assessment. Refer to Figure 2 for groundwater monitoring locations. ## 1.2 Report Organization This report is organized into nine sections. The present section summarizes the project background and provides an outline of the report. The work performed during this period is described in Section 2, and Section 3 presents the results of the work conducted this period. Section 4 presents the updated Conceptual Site Model (CSM). The current Site status relative to delineation and cleanup standards is presented in Section 5. Future work presently anticipated to complete the VRP objectives is presented in Section 6. The project Professional Engineer's services this period are summarized in Section 7. Limitations associated with the use of this report are noted in Section 8, and cited references are provided in Section 9. ## **Work Performed this Period** Work completed at the Site since the submittal of the July 2015 Semiannual Progress Report (BC 2015b) included groundwater assessment and consisted of the following tasks: - Installation and sampling of two temporary monitoring wells, TW-43 and TW-44, in July 2015 on the neighboring property to the south of the Site, located at 1108 Industry Avenue in Albany, Georgia (Taylor property). - Installation and sampling of two permanent monitoring wells, MW-27 and MW-28, in November 2015 on the neighboring Taylor Property. - Groundwater level measurements on July 29 and November 4, 2015. - Groundwater sampling of MW-4, MW-11, MW-19, and MW-24 in July 2015. The work conducted this period achieved horizontal delineation of chromium in groundwater south of monitoring well MW-19. In addition, the first of three annual groundwater monitoring events was completed. These activities are discussed in the following sections. Monitoring well locations are provided on Figure 2. ## 2.1 Temporary and Permanent Monitoring Well Installation Two temporary monitoring wells (TW-43 and TW-44) were installed in July 2015 on the neighboring Taylor Property to support the fate and transport model provided in the January 2015 Semiannual Progress Report and Final Remediation Plan (BC 2015a), and to achieve delineation of chromium (hexavalent and trivalent) in groundwater south of MW-19. These wells were located in the grassy area between the loading dock and Industry Avenue (Figure 2). To further delineate chromium (hexavalent and trivalent) in groundwater, two permanent monitoring wells (MW-27 and MW-28) were installed on the neighboring Taylor Property in November 2015. Monitoring well MW-27 is located on the north side of the building within the loading dock area, and monitoring well MW-28 is located on the south side of the building (Figure 2). These temporary and permanent monitoring wells were installed using a CME-55® hollow stem auger drilling rig. The wells were constructed of 2-inch diameter Schedule 40 polyvinyl chloride (PVC) with 10-foot long 0.01 slot screens using procedures presented in United States Environmental Protection Agency (USEPA) Region 4 Science and Ecosystem Support Division (SESD) Design and Installation of Monitoring Wells Guidance (USEPA 2013). Following installation, wells TW-43, TW-44, MW-27, and MW-28 were developed using a GeoSub® submersible pump until the turbidity of the purged groundwater had been reduced and the
water was visually free of suspended sediment. Well construction details are shown in Table 1, and well construction diagrams are included in Appendix A. The horizontal locations of the temporary and permanent wells were measured following installation using a Trimble Global Positioning System (GPS) unit with sub-foot accuracy. In addition, the wells were surveyed using laser level surveying equipment to establish vertical elevations, so that groundwater elevations could be calculated and used for potentiometric maps. Following installation, the wells were purged and sampled as described in Section 2.3. The temporary wells were properly abandoned following sample collection as described in Section 2.4. ### 2.2 Groundwater Level Measurements Groundwater levels were measured in all accessible monitoring wells at the Site and in off-site Spartan wells MW-1 and MW-2 on July 29 and November 4, 2015. The depth to groundwater was measured in 15 upper water bearing zone wells (MW-1 through MW-4, MW-10 through MW-14, MW-18, MW-19, MW-22, MW-23, MW-24, and MW-25) and 10 lower water bearing zone wells (MW-5 through MW-7, MW-9, MW-15 through MW-17, MW-26, Spartan MW-1 and Spartan MW-2) at the Site. Groundwater levels were also measured in two upper water bearing zone temporary wells (TW-43 and TW-44) in July 2015, and the two new permanent monitoring wells (MW-27 and MW-28) in November 2015. The temporary wells and permanent wells were allowed to equilibrate for at least 24 hours following purging and other monitoring activities prior to gauging. All measurements were completed using a Heron 100-foot water level meter, and the measured depths to water were recorded (Table 1). The downhole portion of the water level meter was decontaminated with Alconox® and rinsed with distilled water between wells. The measured depths to water and the surveyed elevations of the existing and temporary monitoring wells were used to calculate the groundwater elevations and prepare potentiometric surface maps for the upper and lower water bearing zones (Figures 3 through 6). ## 2.3 Groundwater Sampling Groundwater samples were collected from six wells in July 2015 (TW-43, TW-44, MW-4, MW-11, MW-19, and MW-24) and two wells in November 2015 (MW-27 and MW-28). The samples were collected and analyzed as described below. #### 2.3.1 Sample Collection The monitoring wells were purged using low flow/low volume (micro-purging) techniques (i.e., bladder pump with disposable polyethylene tubing). During purging, groundwater parameters (turbidity, dissolved oxygen [DO], pH, conductivity, oxidation-reduction potential [ORP], and temperature) were continuously monitored and recorded on the Field Data Sheets included in Appendix B. The field measurements are summarized in Table 2. Water level measurements were also recorded during purging to limit drawdown and effort was made to ensure that the rate of groundwater withdrawal did not exceed the rate of recharge in the wells. The groundwater samples were collected once stabilization was achieved, which was indicated by no increasing or decreasing trends in groundwater parameters for three successive readings and a turbidity of less than 10 NPU was achieved prior to collection of all the groundwater samples with the exception of the sample collected from monitoring well MW-24 in July 2015. Since at least five well volumes of groundwater had been removed and the remaining water quality parameters had stabilized, the groundwater sample was collected even though turbidity was measured at 81.5 NTU. The samples were collected directly from the pump discharge into the laboratory-prepared sample bottles, sealed, placed on ice, and delivered to a certified laboratory for analysis. Quality assurance/quality control (QA/QC) samples were also collected as follows: - Duplicate samples were collected from TW-43 during the July 2015 sampling event and from MW-27 during the November 2015 sampling event. - Three equipment blanks were collected during the July 2015 sampling event and one equipment blank was collected during the November 2015 sampling event. #### 2.3.2 Sample Analysis After collection, the samples were immediately placed on ice and delivered to Analytical Environmental Services, Inc. (AES) in Atlanta, Georgia for analysis. Copies of the completed chain-of-custody forms are included in Appendix C with the laboratory reports. The groundwater samples collected from MW-11, MW-19, MW-24, MW-27, MW-28, TW-43, and TW-44 as well as associated duplicates and equipment blanks were analyzed for total chromium using United States Environmental Protection Agency (USEPA) Method 6010B, and total hexavalent chromium using USEPA Method SW7196. The groundwater sample collected from MW-4 and its associated equipment blank were analyzed for volatile organic compounds (VOCs) using USEPA Method 8260b. The stipulation letter documenting AES's certification to perform these analyses is provided in Appendix D. ## 2.4 Temporary Well Abandonment The two temporary wells, TW-43 and TW-44, were abandoned following groundwater sample collection. The well casing and screen were removed, and the boreholes were filled from the bottom up with a grout/bentonite mixture. ## 2.5 Fate and Transport Model Update A fate and transport model was developed for the Site and submitted to the EPD on January 19, 2015 as a component of the January 2015 Semiannual Progress Report and Final Remediation Plan (BC 2015a). The model was used to evaluate whether the observed constituents of concern (COCs) would migrate to or beyond the current property lines and to project future COC concentrations in groundwater. The model suggested that COC concentrations associated with the MW-19 area would migrate beyond the property line to the south and ultimately attenuate to below the Site VRP cleanup levels in 25 to 30 years. Therefore, the off-site temporary monitoring wells TW-43 and TW-44 were installed to further evaluate the extent of COCs downgradient of MW-19, and the permanent monitoring wells MW-27 and MW-28 were installed for long-term monitoring and as points of compliance. The transport model was updated during this reporting period to incorporate data from these additional temporary and permanent monitoring wells and to evaluate the predicted extent and potential cleanup times of COCs associated with the MW-19 area. Appendix E contains the Updated Fate and Transport Model and Evaluation Technical Memorandum (TM), which documents the selection and use of the updated fate and transport model for this Site and summarizes the updated modeling results. ## **Results of Work this Period** This section presents the results of the work completed this period outlined in Section 2. ### 3.1 Groundwater Elevation Data The well construction data, top of casing elevations, and groundwater level measurements for the permanent monitoring wells and the temporary wells that were surveyed are presented in Table 1. The measured depths to water and the surveyed elevations of the monitoring wells were used to calculate the groundwater elevations in the upper and lower water bearing zones. Potentiometric maps of the groundwater surface in the upper and lower water bearing zones in July and November 2015 are presented on Figures 3 through 6. The groundwater elevations measured during this reporting period were lower than those measured earlier in 2015 and over the past two years. The difference in groundwater elevations between the January and June 2013 gauging events ranged from 0 feet and 5.44 feet. The mounding of the upper water bearing zone in the area of wells MW-4, MW-22, MW-23, and MW-25 that was observed from January 2012 to July 2013 was not present during the July and November 2015 gauging events. The groundwater flow in the upper water bearing zone appears to be predominantly to the southwest; however, given the flat groundwater gradient at this Site, small water level fluctuations between gauging events result in the appearance of localized changes in groundwater flow direction. The flat groundwater gradient is easily influenced by rainfall as large portions of the Site are impervious, resulting in uneven recharge of the upper water bearing zone during rain events. In the July 2015 sampling event, the groundwater gradient is primarily to the south-southwest in the western portion of the Site, with some northwesterly flow in the eastern portion of the Site in the area of wells MW-1, MW-12, and MW-13 (Figure 3). In the November 2015 event, the groundwater in the upper water bearing zone appears to flow to the southwest in the central portion of the Site, to the north in the northern part of the Site, and to the west in the eastern side of the Site (Figure 4). The groundwater in the lower water bearing zone appears to flow predominantly toward the northeast. As with the upper water bearing zone, the groundwater gradient is fairly flat and subject to fluctuations in response to localized events (e.g., rainfall). In the July 2015 event, water level elevations indicate east to northeasterly groundwater flow across the Site (Figure 5). In November 2015, the groundwater flow shows a flatter gradient to the northeast across the Site (Figure 6). Outside of localized water level fluctuations, the groundwater gradients observed in this reporting period were similar to those observed in previous reporting period, and the predominant groundwater flow directions appear consistent. ## 3.2 Groundwater Sampling Results Groundwater samples were collected from monitoring wells MW-4, MW-11, MW-19, MW-24, TW-43, and TW-44 in July 2015, and from monitoring wells MW-27 and MW-28 in November 2015. The groundwater parameters measured in the field during purging are summarized in Table 2, and VOCs detected in groundwater samples are summarized in Table 3. Detections from historical groundwater sampling events are presented in Table 4. Figures 7 and 8 present the groundwater chromium and VOC
concentrations in the temporary wells sampled in July and November 2015, respectively. The groundwater sampling field forms and the laboratory analytical reports are included as Appendices B and C, respectively. The results of the laboratory analyses are discussed below. #### 3.2.1 VOCs in Groundwater VOCs were detected in groundwater above Site VRP cleanup levels in monitoring well MW-4 in July 2015. This well is located near the former source area (Figure 2) and is screened in the upper water bearing zone. Trichloroethene (TCE) and its daughter products cis-1,2-dichloroethene (cis-1,2-DCE) and vinyl chloride (VC) were detected at concentrations of 0.110 mg/L, 0.410 mg/L, and 0.0093 mg/L, respectively. In general, groundwater concentrations of these VOCs at MW-4 have declined by 76 percent, 89 percent, and 86 percent since before ZVI injections via pneumatic fracturing were conducted in May 2003 and February 2004. However, current concentrations still exceed Site VRP cleanup levels of 0.038 mg/L, 0.204 mg/L, and 0.0033 mg/L, respectively. Historical groundwater detections are provided in Table 4. #### 3.2.2 Chromium in Groundwater Chromium has been detected above Site VRP cleanup levels in the vicinity of three monitoring wells at the Site (MW-19, MW-11, and MW-24). Based on sampling results, chromium in groundwater at the Site predominantly exists in the hexavalent form. The Site VRP delineation and cleanup levels for hexavalent chromium are both 0.01 mg/L, which is equivalent to the laboratory practical quantitation limit (PQL). Less prevalent in these wells is trivalent chromium, which tends to complex with sulfur as chromium sulfide (Cr_2S_3) and precipitate, and is essentially immobile in groundwater at pH levels between 5 and 12. The Site VRP delineation and cleanup levels for trivalent chromium are 0.01 mg/L and 153 mg/L, respectively, and the Site delineation and cleanup levels for total chromium are both 0.10 mg/L. Monitoring well MW-19, located near the southern property boundary (Figure 2), is screened in the upper water bearing zone where groundwater is flowing predominantly to the south-southwest towards the adjacent property (Figures 3 and 4). In July 2015, total and hexavalent chromium in groundwater in MW-19 were detected concentrations of 0.0236 mg/L and 0.0301 mg/L, respectively (Table 3 and Figure 7). Temporary wells TW-43 and TW-44 were installed and sampled in July 2015 to delineate chromium in groundwater to the south of MW-19. These temporary wells were located south of the Site on the neighboring Taylor Property (Figure 2) and were screened in the upper water bearing zone. Total and hexavalent chromium were detected in TW-43 at concentrations of 0.0197 mg/L and 0.0129, respectively (Figure 7). Total and hexavalent chromium were also detected in TW-44 at concentrations of 0.0163 mg/L and 0.0166, respectively. The hexavalent chromium level exceeded the site delineation and cleanup levels. In order to complete horizontal off-Site delineation to the south, two permanent monitoring wells, MW-27 and MW-28, were installed and sampled in November 2015. These wells were located south of temporary wells TW-43 and TW-44 on the Taylor Property (Figure 2) and were screened in the upper water bearing zone. Total and hexavalent chromium were not detected in the samples collected from MW-27 and MW-28 (Table 3 and Figure 8). These results indicate that delineation of chromium in groundwater to the south of MW-19 has been achieved. Monitoring well MW-11 is also screened in the upper water bearing zone, but is located near the northern property boundary (Figure 2). Based on recent groundwater elevation measurements (Table 1), groundwater in the upper water bearing zone in this area is flowing predominantly to the south. In July 2015, total and hexavalent chromium in groundwater in MW-11 were detected concentrations of 0.0864 mg/L and 0.0895 mg/L, respectively (Table 3 and Figure 7). While the detected concentration of total chromium is less than the Site VRP cleanup goal of 0.1 mg/L, hexavalent chromium still exceeds the Site VRP cleanup level in groundwater at MW-11; however, chromium around MW-11 has been vertically and horizontally delineated, as discussed in previous semiannual progress reports for the Site. Monitoring well MW-24 is located near the northern property boundary (Figure 2) and screened at the base of the upper water bearing zone. Chromium concentrations have declined since this well was installed in April 2008, and the most recent total chromium concentration is less than the cleanup standard (0.0715 mg/L in July 2015; Table 3 and Figure 6). The concentration of hexavalent chromium remains above the cleanup standard (0.0772 mg/L in July 2015); however, chromium in this area has been vertically and horizontally delineated, as discussed in previous semiannual progress reports for the Site. #### 3.2.3 Quality Assurance/Quality Control Samples No chemicals were detected in the equipment blank samples and the results from analysis of the duplicate samples were similar to those from the parent samples. Thus, the QA/QC samples did not indicate impact to the Site results from field or laboratory methods. #### 3.2.4 Summary Based on analysis of samples collected in the temporary and permanent monitoring wells, delineation has been achieved for chromium in groundwater all directions. ## 3.3 Updated Fate and Transport Model The primary objective of the updated fate and transport modeling effort was to evaluate localized hexavalent chromium migration using recent data and data from new monitoring locations and provide sufficient predictions to assess compliance with Site VRP cleanup objectives. The results of the updated modeling evaluation (Appendix E) are as follows: - Dissolved phase hexavalent chromium concentrations around MW-11 are predicted to remain on-site and fall below the Site VRP groundwater cleanup level in 5 to 10 years. - Hexavalent chromium concentrations around MW-19 are predicted to migrate approximately 375 feet downgradient onto the adjoining Taylor Property, but not to migrate beyond the Taylor Property. Dissolved phase hexavalent chromium concentrations around MW-19 are predicted to fall below the Site VRP groundwater cleanup level after 25 to 30 years. - Dissolved phase hexavalent chromium concentrations around MW-24 are predicted to remain on-site and fall below the Site VRP groundwater cleanup level in 40 to 45 years. As noted in the TM in Appendix E, a conservative approach to the model was taken that may result in an overestimate of downgradient migration distances and times to cleanup. The actual extent of migration, time to cleanup, and/or hexavalent chromium concentration may be lower. ## **Updated Conceptual Site Model** This section presents the updated CSM that reflects recent data. ## 4.1 Elements of the Conceptual Site Model A three-dimensional CSM was originally developed for the Site's VRP Application (BC 2012) to illustrate the approximate extent of VOCs and inorganics in the subsurface, and the potential exposure pathways and receptors at the Site. The CSM has been updated since then to reflect current conditions at the Site. Figures 9 and 10 illustrate plan and profile views of the updated CSM, respectively. #### 4.1.1 Ground Surface Features The Site topography is relatively flat with elevations ranging from 191 to 204 feet above mean sea level (amsl). Stormwater run-off flows primarily towards the intermittent drainage ditch that runs in a westerly direction from north of the former disposal area along the tree line, to the western property boundary. The ditch ends in an on-site intermittent detention basin. The intermittent drainage ditch and detention basin are typically dry, except following significant rain events. Both features also receive stormwater run-off from off-site sources, including a railroad right-of-way to the west. Soil samples collected from the intermittent ditch and detention basin in 1998, 1999, 2000, 2008, and 2009 indicated elevated concentrations of nickel and chromium. Based on the flow direction of stormwater at the Site, the metals appear to have migrated from the former waste disposal area to the drainage ditch. #### 4.1.2 Subsurface Features #### 4.1.2.1 Vadose Zone and Upper Water Bearing Zone The upper water bearing zone consists predominantly of silty sands, sandy silts, clays and chert of the weathered limestone residuum as illustrated on Figure 10. The thickness of the unconsolidated soil at the Site is approximately 40 to 50 feet with the thin layers of chert occurring at depths of 18 to 45 feet below ground surface (bgs). Beneath the chert, sediments increase in clay content with clay layers ranging from 1 to 6 feet thick. The lower boundary to this zone is the chalky limestone that occurs in the uppermost Ocala Limestone at 50 to 55 feet bgs. In the most recent Site-wide gauging event (November 2015), groundwater was encountered in the upper water bearing zone between 30 and 50 feet bgs (Table 1). The potentiometric surface measured in this event is illustrated on Figure 4. According to previous reports, waste was poured or spread on the ground surface in the former waste disposal area. The VOCs and inorganics released at the ground surface would be expected to migrate vertically under the influence of gravity, with some horizontal spreading with depth through the unsaturated zone and into the saturated zone. Figures 9 and 10 illustrate the approximate areas where VOCs (MW-4 area) and inorganics (MW-11, MW-19, and MW-24 areas) are present in the upper water bearing zone above the groundwater delineation and/or cleanup standards. #### 4.1.2.2 Semi-Confining Unit Between the depths of approximately 50 and 55 feet bgs, a chalky limestone occurs that grades with depth to increasing cementation and induration and decreasing permeability. This layer is laterally continuous across the Site and is interpreted to be a
hydraulic boundary to the lower water bearing zone encountered at about 60 feet bgs. However, based on the hydraulic properties (i.e., vertical groundwater velocity, vertical gradient and vertical hydraulic conductivity) of the semi-confining unit and concentrations of VOCs and inorganics in the lower water bearing zone, vertical leakage occurs through the chalky limestone from the upper water bearing zone to the lower water bearing zone. #### 4.1.2.3 Lower Water Bearing Zone At approximately 60 feet bgs, the chalky limestone increases in competency and becomes a porous and permeable fossiliferous limestone of the Ocala Limestone that extends to a depth of approximately 170 feet bgs. This unit, the Upper Floridan aquifer, is a principal water supply aquifer and previously served to supply irrigation and fire water to the Site. The Upper Floridan aquifer is confined above and below. The upper confining zone is the chalky limestone described above, and the lower confining zone is the calcareous clayey Lisbon formation. In the November 2015 gauging event, potentiometric levels in the wells screened in the lower water bearing zone were between about 41 and 55 feet bgs (Table 1). The potentiometric surface during this event is illustrated on Figure 6. VOCs are not present above Site VRP cleanup levels in the lower water bearing zone; specifically, the upper portion of the permeable fossiliferous limestone. This layer was observed during the installation of monitoring well MW-15 at a depth of approximately 70 feet bgs. #### 4.1.3 Contaminant Source Reportedly, manufacturing wastes were likely disposed from approximately 1962 to 1973 in an area located just west of the main building that is part of the former test driving range. This "source area" is approximately 60 by 100 feet and is located next to the equipment shed (Figure 3). According to previous reports, no disposal pit or lagoon was created; the waste was poured or spread directly on the ground. Wastes included spent solvents and plating process sludge that contained xylenes, methyl and ethyl alcohol, toluene, chromium, nickel, lead, and cyanide. The chromium applied during the plating process was likely in the hexavalent form as chromic acid. Construction of the test driving range involved grading of the former disposal area, and the soils were dispersed over a wider area. #### 4.1.4 Contaminant Fate and Transport Following the release to the ground surface, spent solvents and plating process sludge appear to have migrated downward through the subsurface. In the vadose zone, soil concentrations of these constituents were likely altered by precipitation flushing and diffusion. Precipitation typically leaches constituents to the shallow water table during wet weather events. Volatile constituents can also evaporate from shallow soils resulting in a decrease of concentrations. Once in groundwater, spent solvents (chlorinated VOCs) migrate with the flow of groundwater and naturally attenuate through biodegradation and other mechanisms. Chlorinated VOCs degrade to daughter products via reductive dechlorination under certain conditions. More conservative constituents associated with the plating process (inorganics) migrate with the flow of groundwater and may naturally attenuate depending on chemical characteristics and groundwater chemistry and flow. A limited interim remedial action consisting of injection of ZVI to address VOCs within the upper water bearing zone was conducted in 2003. The interim action created a barrier zone of accelerated attenuation downgradient of monitoring well MW-4. The barrier has most likely resulted in the decrease in VOC concentrations observed in the downgradient monitoring wells. ## 4.2 Receptors and Exposure Pathways The potential exposure pathways and receptors are identified on Figures 9 and 10, and are detailed in the February 2012 Revised VRP Application (BC 2012), the January 2013 Semiannual Progress Report (BC 2013a), the January 2015 Semiannual Progress Report and Final Remediation Plan (BC 2015a) and the July 2015 Semiannual Progress Report (BC 2015b). ## **Site Status Update** Historical and recent soil and groundwater analytical results are presented in Table 4. Soil and groundwater sampling locations are shown on Figures 2. The current status of soil and groundwater at the Site relative to the VRP delineation and cleanup levels is discussed below and summarized in Table 5. #### 5.1 Delineation Status #### 5.1.1 Soil Delineation As discussed in previous reports, horizontal and vertical delineation of Site COCs in soil has been achieved. ### 5.2 Groundwater Delineation #### 5.2.1 On-Site Horizontal Groundwater Delineation As discussed in previous semiannual progress reports, horizontal delineation of VOCs has been achieved. With the sampling conducted in March and June 2014 and discussed in the July 2014 Semiannual Progress Report (BC 2014b), on-site horizontal delineation of chromium (total, hexavalent, and trivalent) in groundwater at the northern end of the property was achieved. At the southern end of the property, chromium (total, hexavalent, and trivalent) has been delineated. Total chromium has been horizontally delineated on-site, and although hexavalent and trivalent chromium are delineated, concentrations above the delineation level extend onto the adjoining Taylor Property to the south. #### 5.2.2 Off-Site Horizontal Groundwater Delineation Off-Site horizontal delineation of hexavalent and trivalent chromium in groundwater was achieved to the south with the installation and sampling of monitoring wells MW-27 and MW-28 on the neighboring Taylor Property in November 2015. #### 5.2.3 Vertical Groundwater Delineation As discussed in previous semiannual progress reports, vertical delineation of Site COCs in groundwater has been achieved. ## 5.3 Status Relative to Cleanup Goals #### 5.3.1 Soil The Site soil is in compliance with the Site VRP cleanup levels except in the vicinity of borings B-4 and GP-1, located in the former source area. Concentrations of cis-1,2-DCE and VC in the subsurface soil in boring B-4 and the concentration of cis-1,2-DCE in the subsurface soil in boring GP-1 exceeded the soil cleanup levels. Focused risk assessment and groundwater concentration trend analysis were used to demonstrate compliance with cleanup standards in the Final Remediation Plan (BC 2015a), which was approved by EPD in their April 14, 2015 letter. #### 5.3.2 Groundwater VRP groundwater cleanup levels are met in all monitoring wells except in the following areas (sampling locations shown on Figure 2): **MW-4 Vicinity.** The July 2015 groundwater concentrations of TCE, cis-1,2-DCE, and VC at monitoring well MW-4 were 0.110 mg/L, 0.410 mg/L, and 0.0093 mg/L, respectively (Table 3). These concentrations slightly exceed the Site VRP cleanup levels of 0.038 mg/L, 0.204 mg/L, and 0.0033 mg/L, respectively. Empirical evidence and groundwater concentration trend analysis has been used demonstrate compliance with cleanup standards in the MW-4 area. **MW-11 Vicinity.** The hexavalent chromium concentration in groundwater from monitoring well MW-11 was 0.0895 mg/L in July 2015, which exceeds the cleanup standard of 0.01 mg/L (Table 3). **MW-19 Vicinity.** The hexavalent chromium concentration in groundwater from monitoring well MW-19 was 0.0301 mg/L in July 2015, which exceeds the cleanup standard of 0.01 mg/L. Further downgradient on the Taylor Property, hexavalent chromium concentrations in TW-43 and TW-44 slightly exceeded the cleanup standard in July 2015, with concentrations of 0.0129 and 0.0166 mg/L, respectively (Table 3). Concentrations further downgradient at MW-27 and MW-28 meet the cleanup levels. **MW-24 Vicinity.** The hexavalent chromium concentration in groundwater from monitoring well MW-24 was 0.0772 mg/L in July 2015, which exceeds the cleanup standard of 0.01 mg/L (Table 3). Modeling to demonstrate compliance with cleanup standards at the designated point of exposure and point of demonstration well in the MW-11, MW-19, and MW-24 areas was provided in the Final Remediation Plan (BC 2015a). The model was approved for the MW-11 and MW-24 areas by EPD in their April 14, 2015 letter. The model has since been updated with additional data collected in the MW-19 area, as presented in Appendix E. ## **Project Schedule** Planned near-term actions and the project schedule are discussed below. The project schedule is also illustrated in Table 6. ### 6.1 Planned Near-Term Actions Tasks to comply with the VRP delineation and cleanup requirements are summarized below: - Draft environmental covenants for the Site and the Taylor Property. - Conduct the second annual groundwater monitoring event in April 2016. - Submit the Final Compliance Status Report with Certifications in July 2016. ## 6.2 Project Schedule An updated project milestone schedule is provided in Table 6. This schedule is based on the assumption that compliance with the Site VRP cleanup levels for hexavalent chromium in groundwater can be demonstrated with fate and transport modeling. # **Engineer's Services this Period** Table 7 summarizes BC's professional engineer's work on this project since the last VRP semiannual report for this project. ## **Limitations** This document was prepared solely for Albany Partners, LLC, Albany Sport, Co., and Brunswick Corporation (the Group) in accordance with professional standards at the time the services were performed and in accordance with the contract between the Group and Brown and Caldwell dated January 7, 2015 and amended on May 18, 2015 and September 11, 2015. This document is governed by the specific scope of work authorized by the Group; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by the Group and other parties and, unless otherwise expressly indicated, have made no independent
investigation as to the validity, completeness, or accuracy of such information. This document sets forth the results of certain services performed by Brown and Caldwell with respect to the property or facilities described therein (the Property). The Group recognizes and acknowledges that these services were designed and performed within various limitations, including budget and time constraints. These services were not designed or intended to determine the existence and nature of all possible environmental risks (which term shall include the presence or suspected or potential presence of any hazardous waste or hazardous substance, as defined under any applicable law or regulation, or any other actual or potential environmental problems or liabilities) affecting the Property. The nature of environmental risks is such that no amount of additional inspection and testing could determine as a matter of certainty that all environmental risks affecting the Property had been identified. Accordingly, THIS DOCUMENT DOES NOT PURPORT TO DESCRIBE ALL ENVIRONMENTAL RISKS AFFECTING THE PROPERTY, NOR WILL ANY ADDITIONAL TESTING OR INSPECTION RECOMMENDED OR OTHERWISE REFERRED TO IN THIS DOCUMENT NECESSARILY IDENTIFY ALL ENVIRONMENTAL RISKS AFFECTING THE PROPERTY. Further, Brown and Caldwell makes no warranties, express or implied, with respect to this document, except for those, if any, contained in the agreement pursuant to which the document was prepared. All data, drawings, documents, or information contained this report have been prepared exclusively for the person or entity to whom it was addressed and may not be relied upon by any other person or entity without the prior written consent of Brown and Caldwell unless otherwise provided by the Agreement pursuant to which these services were provided. ## References - Brown and Caldwell. 2006. *Compliance Status Report*. Former MacGregor Golf Company Site, Albany, Georgia. August 2006. - Brown and Caldwell. 2008. Revised Compliance Status Report and Corrective Action Plan. Former MacGregor Golf Company Site, Albany, Georgia. April 2008. - Brown and Caldwell. 2009. Revised Compliance Status Report and Corrective Action Plan Addendum. Former MacGregor Golf Company Site, Albany, Georgia. December 2009. - Brown and Caldwell. 2011. *Voluntary Remediation Program Application*. Former MacGregor Golf Company Site, Albany, Georgia. April 2011. - Brown and Caldwell. 2012. Revised Remediation Program Application. Former MacGregor Golf Company Site, Albany, Georgia. February 2012. - Brown and Caldwell. 2013a. Voluntary Remediation Program Semiannual Progress Report. Former MacGregor Golf Company Site, Albany, Georgia. January 2013. - Brown and Caldwell. 2013b. Voluntary Remediation Program Semiannual Progress Report. Former MacGregor Golf Company Site, Albany, Georgia. July 2013. - Brown and Caldwell. 2014a. Voluntary Remediation Program Semiannual Progress Report. Former MacGregor Golf Company Site, Albany, Georgia. January 2014. - Brown and Caldwell. 2014b. Voluntary Remediation Program Semiannual Progress Report. Former MacGregor Golf Company Site, Albany, Georgia. July 2014. - Brown and Caldwell. 2015a. Voluntary Remediation Program Semiannual Progress Report and Final Remediation Plan. Former MacGregor Golf Company Site, Albany, Georgia. January 2015. - Brown and Caldwell. 2015b. Voluntary Remediation Program Semiannual Progress Report. Former MacGregor Golf Company Site, Albany, Georgia. July 2015. - United States Environmental Protection Agency. 2013. Design and Installation of Monitoring Wells. Region 4 Science and Ecosystem Support Division, Athens, Georgia, January 29, 2013. | Table 1. Well Construction Data and Most Recent Groundwater Elevations | | | | | | | | | | | | | |--|--------------------------|---------|-------------------------------------|-------------------------------------|--------------------------|-----------------|-----------------------|------------------------|------------------------------|----------------------------------|------------------------------|----------------------------------| | Former MacGregor Golf Company | | | | | | | | | | | | | | Albany, Georgia | | | | | | | | | | | | | | Water | | | Northing Easting | | | Screened | Open Hole | Top of Casing | July 29, 2015 | | November 4, 2015 | | | Well ID | Well Completion
Date | Bearing | (Feet - Georgia
West State Plane | (Feet - Georgia
West State Plane | Total Depth ^a | Intervala | Interval ^a | Elevation ^b | Static Depth to | | Static Depth to | | | | Date | Unit | NAD83) | NAD83) | (feet) | (feet) | (feet) | (feet) | Water ^a
(feet) | Elevation ^b
(feet) | Water ^a
(feet) | Elevation ^b
(feet) | | | Upper Water Bearing Zone | | | | | | | | | | | | | MW-1 | | | | | | | | | | | | | | MW-2 | 6/28/1995 | Upper | 566220.01 | 2292765.44 | 40.19 | 25-40 | NA | 196.61 | 37.56 | 159.05 | 39.65 | 156.96 | | MW-3 | 6/29/1995 | Upper | 566348.21 | 2293042.11 | 46.33 | 32.50-47.50 | NA NA | 198.41 | 39.75 | 158.66 | 41.39 | 157.02 | | MW-4 | 6/29/1995 | Upper | 566470.82 | 2292611.54 | 46.96 | 28-41.50 | NA NA | 198.43 | 37.27 | 161.16 | 39.42 | 159.01 | | MW-6 ^c | 7/25/1998 | Upper | 566911.71 | 2292317.29 | 60.13 | NA | 60-73 | 200.14 | 47.52 | 152.62 | 48.22 | 151.92 | | MW-10 | 7/15/1998 | Upper | 566080.73 | 2292221.58 | 48.37 | 33.30-48.30 | NA NA | 193.75 | 38.40 | 155.35 | 41.08 | 152.67 | | MW-11 | 7/15/1998 | Upper | 566921.91 | 2292317.31 | 48.30 | 33-48 | NA | 200.25 | 39.73 | 160.52 | 42.95 | 157.30 | | MW-12 | 7/16/1998 | Upper | 566218.48 | 2293315.55 | 45.28 | 35-50 | NA | 194.70 | 34.77 | 159.93 | 37.58 | 157.12 | | MW-13 | 10/22/1998 | Upper | 566566.74 | 2293392.86 | 50.38 | 35-50 | NA | 196.48 | 37.50 | 158.98 | 38.96 | 157.52 | | MW-14 | 10/20/1998 | Upper | 566899.03 | 2292756.18 | 49.71 | 34.80-49.80 | NA | 196.99 | 38.35 | 158.64 | 42.22 | 154.77 | | MW-18 | 6/17/1999 | Upper | 566533.98 | 2292176.82 | 43.70 | 28.8-43.8 | NA | 196.49 | 34.58 | 161.91 | 40.02 | 156.47 | | MW-19 | 6/17/1999 | Upper | 566035.83 | 2292750.34 | 44.12 | 29-44 | NA NA | 193.40 | 34.77 | 158.63 | 34.85 | 158.55 | | MW-21 ^{d,e} | 3/11/2003 | Upper | NM | NM | 38.61 | 28.61-38.61 | NA NA | 196.80 | NM | NM | NM | NM | | MW-22 | 3/11/2003 | Upper | 566540.86 | 2292649.02 | 45.69 | 35.4-45.4 | NA | 196.89 | 35.52 | 161.37 | 35.32 | 161.57 | | MW-23 | 3/11/2003 | Upper | 566423.91 | 2292556.49 | 48.10 | 37.95-47.95 | NA NA | 199.73 | 38.43 | 161.30 | 40.99 | 158.74 | | MW-24 ^c | 2/8/2008 | Upper | 566975.84 | 2292293.48 | 58.75 | 50-60 | NA NA | 200.39 | 47.21 | 153.18 | 48.57 | 151.82 | | MW-25 ^e | 10/21/2009 | Upper | 566402.83 | 2292666.80 | 39.16 | 29-39 | NA
NA | 195.82 | 36.13 | 159.69 | 37.44 | 158.38 | | MW-26° | 11/26/2012 | Upper | 567002.52 | 2292301.47 | 62.20 | 52.20-62.20 | NA NA | 200.90 | 47.78 | 153.12 | 48.50 | 152.40 | | MW-27 | 11/3/2015 | Upper | 565728.36 | 2292531.80 | 43.00 | 33-43 | NA
NA | 188.56 | NM | NM | 31.02 | 157.54 | | MW-28 | 11/3/2015 | Upper | 565418.49 | 2292485.20 | 43.00 | 33-43 | NA
NA | 188.04 | NM | NM | 30.62 | 157.42 | | TW-2 ^f | 3/17/2014 | Upper | 566015.94 | 2292736.14 | 35.51 | 25.51-35.51 | NA
NA | 193.36 | NM | NM | NM | NM | | TW-9 ^f | 3/19/2014 | Upper | 566898.95 | 2292305.58 | 44.79 | 34.79-44.79 | NA
NA | 200.18 | NM | NM | NM | NM | | TW-10 ^f | 3/19/2014 | Upper | 566921.71 | 2292291.27 | 44.78 | 34.78-44.78 | NA
NA | 200.19 | NM | NM | NM | NM | | TW-10 | 3/20/2014 | Upper | 566992.21 | 2292277.10 | 59.74 | 49.74-59.74 | NA
NA | 200.19 | NM | NM | NM | NM | | TW-15 ^f | 3/20/2014 | Upper | 565998.92 | 2292779.18 | 42.95 | 32.94-42.95 | NA
NA | 193.99 | NM | NM | NM | NM | | TW-23 ^{c,f} | 3/24/2014 | Upper | 567002.88 | 2292252.96 | 59.78 | 49.78-59.78 | NA NA | 200.26 | NM | NM | NM | NM | | TW-24 ^{c,f} | 3/24/2014 | Upper | 566940.64 | 2292250.83 | 59.68 | 49.68-59.68 | NA NA | 200.15 | NM | NM | NM | NM | | TW-31 ^f | 6/4/2014 | Upper | 566879.07 | 2292400.98 | 45.25 | 35.25-45.25 | NA NA | 201.28 | NM | NM | NM | NM | | TW-35 ^f | 6/4/2014 | Upper | 566848.17 | 2292320.97 | 45.07 | 35.07-45.07 | NA NA | 200.02 | NM | NM | NM | NM | | TW-41 ^f | 6/4/2014 | Upper | 566002.49 | 2292870.78 | 45.11 | 35.11-45.11 | NA | 196.35 | NM | NM | NM | NM | | TW-41 | 6/4/2014 | Upper | 566010.23 | 2292603.03 | 45.00 | 35.00-45.00 | NA
NA | 193.33 | NM | NM | NM | NM | | TW-42 | 7/28/2015 | Upper | 565894.76 | 2292636.51 | 44.00 | 34.00-44.00 | NA
NA | 191.20 | 33.11 | 158.09 | NM | NM | | TW-44 ^f | 7/28/2015 | Upper | 565844.66 | 2292619.29 | 44.00 | 34.00-44.00 | NA | 189.53 | 31.97 | 157.56 | NM | NM | | | ., =0, 2010 | | | | | er Bearing Zone | | 200.00 | 02.01 | 207.00 | .,,,,, | | | MW-5 | 7/23/1998 | Lower | 566495.97 | 2292539.09 | 60.50 | NA | 60-73 | 199.89 | 46.96 | 152.93 | 47.57 | 152.32 | | MW-7 | 7/22/1998 | Lower | 566080.91 | 2292207.62 | 69.35 | 60-70 | NA NA | 194.22 | 41.03 | 153.19 | 41.84 | 152.38 | | MW-8/8D ^d | 8/17/1999 | Lower | NM | NM | 207.50 | 197.3-207.3 | NA NA | 198.00 | NM | NM | NM | NM | | MW-9 | 7/20/1998 | Lower | 566227.03 | 2293312.05 | 69.28 | NA | 58.5-73.5 | 194.68 | 42.16 | 152.52 | 42.69 | 151.99 | | MW-15 | 10/23/1998 | Lower | 566153.85 | 2292894.90 | 75.38 | 65.70-75.70 | NA | 199.23 | 46.52 | 152.71 | 47.04 | 152.19 | | MW-16 | 10/21/1998 | Lower | 566065.57 | 2293320.44 | 75.47 | 64.70-74.70 | NA | 193.61 | 40.97 | 152.64 | 41.37 | 152.24 | | MW-17 | 6/17/1999 | Lower | 566871.51 | 2293186.97 | 73.81 | 66-76 | NA NA | 198.73 | 47.70 | 151.03 | 47.70 | 151.03 | | MW-20° | 8/14/1999 | Lower | NM | NM | 70.00 | 60-70 | NA NA | 193.31 | NM | NM | NM | NM | | Spartan MW-1 | 11/10/2008 | Lower | 567032.71 | 2292578.90 | 68.5 | 52-67 | NA | 206.37 | 53.82 | 152.55 | 54.34 | 152.03 | | Spartan MW-2 | 11/10/2008 | Lower | 567048.65 | 2292428.10 | 65.0 | 49.5-64.5 | NA NA | 205.78 | 52.95 |
152.83 | 53.57 | 152.21 | | Supply Well | 1958 | Lower | NM | NM | 168.0 | NA | NA NA | NM | NM | NM | NM | NM | | Depth below top of casing. | | | | | | | | | | | | | $^{^{\}rm a}\,{\rm Depth}$ below top of casing. NA - Not Applicable NM - Not Measured ${\it NAD83-North\ American\ Datum\ of\ 1983}$ ^b Elevation is feet above mean sea level. $^{^{\}mathrm{c}}$ Wells are screened at the base of the upper water bearing zone and are therefore not used for contouring. $^{^{\}rm d}$ Wells are not gauged or sampled as part of the monitoring program. $^{^{\}rm e}$ Well MW-25 was replaced MW-21 in 2009. $^{^{\}rm f}$ Temporary wells were abandoned following survey and water level measurements. #### **Table 2. Recent Field-Measured Groundwater Sampling Parameters** Former MacGregor Golf Company Albany, Georgia Dissolved Conductivity ORP Turbidity **Total Gallons** Temperature Well Sample Date Oxygen pН (NTU)^d Removed (°C) (mV)^b (mS/cm)^a (mg/L)^c MW-4 7/27/15 5.00 6.80 21.88 0.580 174.6 0.32 9.70 MW-11 4.40 6.88 30.12 0.561 170.1 6.60 6.62 7/27/15 MW-19 7/27/15 3.75 7.55 23.09 0.216 167.4 11.90 7.05 MW-24 7/30/15^a 15.50 6.94 28.02 0.471 135.1 6.29 81.5 TW-43 7/28/15 14.60 7.26 28.88 0.392 30.6 9.52 9.80 TW-44 7/28/15 2.00 7.37 29.67 0.422 95.6 10.01 9.04 MW-27 7.50 6.82 24.43 0.523 -31.7 4.97 8.90 11/5/15 MW-28 9.25 7.26 23.01 0.278 -18.6 5.73 8.70 11/5/15 a mS/cm = Millisiemens per centimeter. b ORP = Oxidation Reduction Potential in millivolts (mV). c mg/L = Milligrams per liter. ^d NTU = Nephelometric Turbidity Unit. #### **Table 3. Recent Groundwater Detections of Site COCs Former MacGregor Golf Company** Albany, Georgia Inorganics: Concentration (mg/L) Organics: Concentration (mg/L) Well ID **Sampling Date Total** Hexavalent **Trivalent** cis-1,2-Chromium Chromium Trichloroethene Vinyl Chloride Chromium Dichloroethene **GW Delineation Standard** 0.002 0.10 0.01 0.01 0.07 0.005 **GW Cleanup Standard** 0.10 0.01 153 0.204 0.038 0.0033 MW-4 7/27/15 NA NA NA 0.410 0.110 0.0093 MW-11 7/27/15 0.0864 0.0895 < 0.010 NA NA NA MW-19 7/27/15 0.0236 0.0301 < 0.010 NA NA NA MW-24 $7/30/15^{a}$ 0.0715 < 0.010 NA 0.0772 NA NA 7/28/15 0.0197 0.0129 < 0.010 NA NA NA TW-43 7/28/15 Dup 0.0190 0.0148 < 0.010 NA NA NA TW-44 7/28/15 NA 0.0163 0.0166 < 0.010 NA NA 11/5/15 < 0.010 NA NA NA < 0.010 < 0.010 MW-27 11/5/15 Dup NA NA < 0.010 < 0.010 < 0.010 NA MW-28 11/5/15 < 0.010 < 0.010 < 0.010 NA NA NA NA -Sample not analyzed for this parameter. **Dup - Duplicate sample** mg/L - milligrams per liter Purple Highlight - Indicates concentration is greater than delineation standard. Orange Highlight - Indicates concentration is greater than delineation and cleanup standard. ^a Sample was collected at a turbidity of 81.5 NTU. Therefore, samples were also collected for dissolved total chromium (0.0653 mg/L), dissolved hexavalent chromium (0.0772 mg/L), and dissolved trivalent chromium (< 0.010). #### Table 4. Historical Groundwater Detections of Site COCs Former MacGregor Golf Company Albany, Georgia Inorganics: Concentration (mg/L) Organics: Concentration (mg/L) Dichloroethene Hexavalent Chromiun -Dichloroethene rrivalent Chromium Well ID Sampling Date Fotal Chromium (ylenes (Total) /inyl Chloride Cyanide 4 icke cis-1 **GW Delineation Standard** 0.10 0.01 0.01 0.20 0.10 0.007 0.07 0.005 0.002 0.005 0.7 10 **GW Cleanup Standard** 0.10 0.01 153 2.04 2.04 0.58 0.204 0.038 0.0033 0.0088 0.70 10 6/30/95 0.05 NA NA NA NA <0.005 <0.005 <0.005 <0.002 <0.002 <0.002 <0.005 6/10/98 <0.005 <0.002 NA NA NA NA NA < 0.005 < 0.005 < 0.002 <0.002 < 0.005 < 0.010 <0.002 <0.002 <0.002 7/31/98 NA NA < 0.02 < 0.02 < 0.002 <0.002 < 0.002 < 0.005 MW-1 6/30/99 NA NA NA NA NA 0.0017 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 8/6/99 NA NA NA NA NA <0.001 <0.001 <0.001 NA NA NA NA 3/12/03 NA NA NA NA NA <0.0002 <0.0004 <0.0002 <0.0001 <0.0002 <0.0003 <0.0015 6/30/95 0.04 NA NA NA NA <0.005 <0.005 <0.005 <0.002 <0.002 <0.002 <0.005 MW-2 6/10/98 NA <0.005 0.0059 <0.005 <0.002 <0.002 <0.002 <0.005 NA NA NA NA 7/31/98 < 0.010 NΑ NΑ < 0.02 < 0.02 < 0.002 0.004 <0.002 < 0.002 < 0.002 < 0.002 <0.005 6/30/95 0.05 NΑ NΑ NΑ NΑ < 0.005 < 0.005 < 0.005 < 0.002 < 0.002 < 0.002 < 0.005 6/10/98 NA NA NA NA NA 0.0094 <0.005 0.005 <0.002 <0.002 < 0.002 < 0.005 MW-3 7/31/98 < 0.010 NA NA < 0.02 0.03 < 0.002 <0.002 < 0.002 < 0.002 < 0.002 <0.005 0.007 NA NA NA NA NA 0.0058 0.0019 < 0.001 < 0.001 < 0.001 < 0.001 < 0.002 6/30/99 NA NΑ NΑ NA NA < 0.0002 < 0.0004 <0.0002 <0.0001 <0.0002 <0.0003 < 0.0015 2/26/03 < 0.010 NA NA 6/30/95 NΑ NΑ < 0.005 1.560 0.376 0.065 < 0.002 < 0.002 < 0.005 NA NA NA NA NA 0.310 <0.002 6/10/98 < 0.005 2.900 < 0.002 < 0.002 < 0.005 0.33 NA NA < 0.02 0.39 0.350 7/29/98 <0.002 2.800 0.013 <0.002 <0.002 < 0.005 6/30/99 NA NA NA NA NA <0.025 3.700 0.460 <0.001 <0.025 <0.025 <0.050 2/26/03 NA NA NA NA NA <0.0002 2.200 0.290 0.017 <0.0002 <0.0003 <0.0015 NA NA NA NA NA <0.0002 1.300 0.200 0.0034 <0.0002 <0.0003 <0.0015 5/21/03 6/13/03 NA NA NA NA NA <0.0002 2.200 0.190 0.0022 <0.0002 <0.0003 <0.0015 <10.000 NA NA NA NA NA < 0.007 0.200 0.0068 <0.009 7/18/03 1.500 <2.300 NA NA NA NA NA <0.00022 0.200 0.0020 <0.00019 <0.00032 <0.0015 8/14/03 1.600 <0.007 0.013 <0.009 2/19/04 NA NA NA NA NA 1.800 0.370 <2.300 <10.000 0.130 3/29/04 NA NA NA NA NA <0.005 1.700 0.021 <0.005 <0.005 <0.015 MW-4 5/19/04 NA NA NA NA NA < 0.005 0.890 0.110 0.0087 <0.005 <0.005 <0.015 8/23/04 NA NA NA NA NA <0.005 1.400 0.180 0.0074 < 0.005 < 0.005 <0.015 < 0.010 5/30/06 NA NA NA 2.83 <0.005 1.100 0.170 0.0088 < 0.005 < 0.005 <0.015 NA 0.00025 J 0.079 <0.00028 <0.00025 <0.00068 10/22/09 NA NA NA NA 0.400 0.015 <0.005 0.690 0.200 0.025 <0.005 <0.005 <0.015 7/28/10 NA NA NA NA NA 3/31/11 0.0048 <0.005 <0.015 NA NA NA NA NA < 0.005 0.410 0.110 < 0.005 1/11/12 NA NA NA NA 0.0725 NA 11/28/12 < 0.010 < 0.010 < 0.010 10/22/13 NA 0.203 < 0.005 0.380 0.120 0.015 < 0.005 < 0.005 < 0.005 NA < 0.005 < 0.005 1/7/14 NA NΑ NA NA < 0.005 0.290 0.097 0.011 < 0.005 7/27/15 NA NA NA NA NA < 0.005 0.110 < 0.005 < 0.005 < 0.005 0.410 0.0093 7/30/98 0.01 < 0.02 < 0.02 <0.002 <0.002 <0.002 <0.002 <0.002 <0.005 NA NA < 0.002 6/28/99 NA NA NA NA NA < 0.001 < 0.001 <0.001 < 0.001 < 0.001 < 0.001 < 0.002 8/9/99 NA NA NA NA NA <0.001 < 0.001 <0.001 NA NA NA NA MW-5 9/3/99 NA NA NA NA NA <0.001 < 0.001 <0.001 NA NA NA NA 3/13/03 NA NA NA NA NA <0.0002 0.030 <0.0002 <0.0001 <0.0002 <0.0003 <0.0015 5/30/06 NA NA NA NA < 0.02 <0.005 <0.005 <0.005 <0.002 <0.005 <0.005 <0.015 0.01 NA NA < 0.02 < 0.02 <0.002 <0.002 <0.002 <0.002 <0.005 7/30/98 < 0.002 < 0.002 MW-6 6/28/99 NA NA NA NA NA <0.001 < 0.001 <0.001 <0.001 < 0.001 < 0.001 <0.002 2/25/03 NA NA NA NA NA <0.0002 < 0.0004 <0.0002 <0.0001 <0.0002 <0.0003 <0.0015 < 0.010 < 0.002 <0.002 7/30/98 NA NA < 0.02 < 0.02 < 0.002 < 0.002 < 0.002 < 0.002 < 0.005 MW-7 6/29/99 NA NA NA NA NA < 0.001 < 0.001 <0.001 < 0.001 < 0.001 <0.001 < 0.002 3/13/03 NA NA NA NA NA <0.0002 < 0.0004 <0.0002 <0.0001 <0.0002 <0.0003 <0.0015 7/15/98 NA NA NA NA NA 0.007 < 0.002 0.003 < 0.002 < 0.002 < 0.002 < 0.005 < 0.010 7/31/98 NA NA 0.03 < 0.02 0.008 < 0.002 <0.002 <0.002 <0.002 <0.002 <0.005 MW-8 0.014 <0.002 <0.002 <0.002 <0.002 <0.002 <0.005 6/8/99 NA NA NA NA NA 0.016 <0.001 <0.0002 <0.001 <0.001 <0.001 <0.002 6/28/99 NA NA NA NA NA MW-8D 6/17/99 NA NA NA NA NA <0.001 <0.001 <0.001 NA NA NA NA ### Table 4. Historical Groundwater Detections of Site COCs Former MacGregor Golf Company Albany, Georgia Inorganics: Concentration (mg/L) Organics: Concentration (mg/L) Dichloroethene Hexavalent Chromiun -Dichloroethene rrivalent Chromium Well ID Sampling Date Fotal Chromium (ylenes (Total) /inyl Chloride Cyanide 1,2 lickel cis-1 **GW Delineation Standard** 0.10 0.01 0.01 0.20 0.10 0.007 0.07 0.005 0.002 0.005 0.7 10 **GW Cleanup Standard** 0.10 0.01 153 2.04 2.04 0.58 0.204 0.038 0.0033 0.0088 0.70 10 7/29/98 < 0.010 NA NA < 0.02 < 0.02 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.005 <0.001 <0.002 6/28/99 NA NA NA NA NA <0.001 <0.001 <0.001 <0.001 < 0.001 MW-9 <0.001 8/6/99 NA NA NA NA NA <0.001 <0.001 NA NA NA NA <0.0001 2/25/03 NA NA NA NA NA <0.0002 <0.0004 <0.0002 <0.0002 <0.0003 <0.0015 2/21/08 NA NA NA NA NA <0.007 NA NA NA NA NA NA 7/29/98 0.01 NA NA < 0.02 < 0.02 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.005 MW-10 6/29/99 NA NA NA NA NA <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 NA <0.0002 <0.0004 <0.0002 <0.0001 <0.0002 <0.0003 <0.0015 3/13/03 NA NA NA NA 7/30/98 0.04 NΑ NΑ < 0.02 <0.04 <0.002 < 0.002 <0.002 < 0.002 < 0.002 <0.002 <0.005 6/28/99 NΑ NΑ NΑ NΑ NΑ < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.002 9/13/99 0.37⁸ NA 2/25/03 NA NA <0.0002 <0.0001 NA NA NA <0.0002 < 0.0004 <0.0002 <0.0003 <0.0015 2/21/08 0.0404 NA MW-11 10/21/09 0.0250 0.0300 NA NA NA NA NΑ NA NA NA NΑ NA 7/29/10 NA NA NA 0.1930 0.0322 NA NΑ NA NA NA NA NA 3/29/11 0.0285 0.0243 NA 10/23/13 0.0459 0.0402 < 0.010 NA NA NA NA NA NA NA NA NA 0.0319 0.0351 < 0.010 1/7/14 NA NA NA NA NA NA NA NA NA 7/27/15 0.0864 0.0895 < 0.010 NA NA NA NA NA NA NA NA NA 7/30/98 < 0.010 NA NA < 0.02 < 0.02 <0.002 < 0.002 <0.002 <0.002 <0.002 <0.002 <0.005 6/28/99 NA NA NA NA NA <0.001 < 0.001 <0.001 <0.001 <0.001 <0.001 <0.002 MW-12 NA NA NA <0.0002 <0.0004 <0.0002 <0.0001 <0.0002 <0.0003 <0.0015 2/25/03 NA NA NA NA NA NA NA <0.005 <0.005 <0.005 < 0.002 <0.005 <0.005 <0.015 7/28/10 <0.005 <0.005 <0.005 <0.002 <0.005 <0.005 <0.015 3/28/11 NA NA NA NA NA NA <0.002 <0.002 <0.002 4.5 10/26/98 NA NA NA NA <0.002 0.014 0.770 6/28/99 NA NA NA NA NA <0.001 <0.001 <0.001 < 0.001 <0.001 <0.001 <0.002 2/25/03 NA NA NA NA NA <0.0002 < 0.0004 <0.0002 <0.0001 <0.0002 <0.0003 <0.0015 MW-13 < 0.010 < 0.010 3/20/10 NA NA NA <0.005 < 0.005 <0.005 < 0.002 < 0.005 < 0.005 <0.015 < 0.010 < 0.010 7/28/10 NA NA <0.005 < 0.005 <0.005 < 0.002 <0.005 < 0.005 <0.015 NA < 0.010 < 0.010 <0.005 < 0.005 <0.005 < 0.002 <0.005 < 0.005 <0.015 3/29/11 NA NA NA <0.002 <0.002 <0.002 <0.002 <0.002 <0.005 10/27/98 NA NA NA NA NA < 0.002 MW-14 <0.001 <0.001 <0.001
<0.001 <0.001 <0.001 <0.002 6/28/99 NA NA NA NA NA NA NA NA NA < 0.0002 < 0.0004 <0.0002 < 0.0001 < 0.0002 < 0.0003 <0.0015 2/25/03 NA 0.057 <0.002 0.004 NA NA NA NA NA < 0.002 < 0.002 < 0.002 <0.005 10/26/98 MW-15 0.032 NA 0.340 <0.002 <0.002 <0.002 <0.002 < 0.004 6/30/99 NA NA NA NA 0.008 NA NA NA NA NA 0.066 < 0.0002 < 0.0015 2/26/03 < 0.0004 < 0.0001 < 0.0003 NA NA NA < 0.002 < 0.002 < 0.002 < 0.005 10/26/98 NA NA < 0.002 < 0.002 < 0.002 6/29/99 NA NA NA NA NA < 0.001 < 0.001 0.0017 < 0.001 < 0.001 < 0.001 < 0.0002 8/6/99 NA NA NA NA NA < 0.001 0.0018 0.004 NA NA NA NA MW-16 9/3/99 NA NA NA NA NA < 0.001 0.0012 < 0.001 NA NA NA NA 9/13/00 NA NA NA < 0.01 NA < 0.001 0.0015 0.0029 < 0.001 < 0.001 < 0.001 < 0.002 2/25/03 NA NA NA NA NA < 0.0002 < 0.0004 < 0.0002 <0.0001 < 0.0002 < 0.0003 < 0.0015 NA NA NA NA NA < 0.001 < 0.001 < 0.001 < 0.002 6/28/99 < 0.001 < 0.001 < 0.001 MW-17 8/9/99 NA NA NA NA NA < 0.001 < 0.001 < 0.001 NA NA NA NA 2/25/03 NA NA NA NA NA < 0.0002 < 0.0004 < 0.0002 <0.0001 < 0.0002 < 0.0003 < 0.0015 < 0.001 < 0.001 < 0.001 < 0.002 6/26/99 NA NA NA NA NA < 0.001 < 0.001 < 0.001 MW-18 8/9/99 NA NA NA NA NA < 0.001 < 0.001 < 0.001 NA NA NA NA 9/13/99 < 0.010 NA NA NA < 0.04 NA NA NA NA NA NA NA 6/28/99 NA NA NA NA NA < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.002 8/9/99 NA NA NA NA < 0.001 < 0.001 <0.001 NA NA NA NA NA 2/26/03 < 0.0002 < 0.0004 < 0.0002 < 0.0001 <0.0002 <0.0003 NA NA NA NA NA < 0.0015 0.0117 < 0.005 < 0.005 < 0.002 < 0.005 < 0.015 7/28/10 0.0139 NA NA NA < 0.005 < 0.005 MW-19 3/29/11 < 0.010 < 0.010 NA NA NA < 0.005 < 0.005 < 0.005 < 0.002 < 0.005 < 0.005 < 0.015 ### Table 4. Historical Groundwater Detections of Site COCs Former MacGregor Golf Company Albany, Georgia Organics: Concentration (mg/L) Inorganics: Concentration (mg/L) Dichloroethene Hexavalent Chromiun -Dichloroethene rrivalent Chromium Well ID Sampling Date Fotal Chromium (ylenes (Total) /inyl Chloride Cyanide cis-1,2icke GW Delineation Standard 0.10 0.01 0.01 0.20 0.10 0.007 0.07 0.005 0.002 0.005 0.7 10 **GW Cleanup Standard** 0.10 0.01 153 2.04 2.04 0.58 0.204 0.038 0.0033 0.0088 0.70 10 0.284 J 10/23/13 0.296 0.0113 J NA NA NA NA NA NA NA NA NA 0.196 0.199 < 0.010 1/8/14 NA NA NA NA NA NA NA NA NA 0.204 0.198 < 0.010 1/8/14 Dup NA NA NA NA NA NA NA NA NA 0.0236 7/27/15 0.0301 < 0.010 NA NA NA NA NA NA NA NA NA 8/17/99 NA NA NA NA 0.0047 < 0.001 0.0016 NA NA NA NA NA 9/3/99 NA NA NA NA NA 0.0073 < 0.001 < 0.001 NA NA NA NA MW-20 9/13/00 NA NA NA < 0.01 NA 0.0085 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.002 2/25/03 NA NA < 0.0002 <0.0004 < 0.0002 < 0.0001 < 0.0002 < 0.0003 < 0.0015 NA NA NA MW-21 3/13/03 NΑ NΑ NΑ NΑ NΑ < 0.0002 0.030 < 0.0002 < 0.0001 < 0.0002 < 0.0003 < 0.0015 3/13/03 0.007 < 0.0001 NΑ NΑ NΑ NΑ NΑ < 0.0002 < 0.0004 < 0.0002 < 0.0003 < 0.0015 NA NA NA NA < 0.02 0.0084 0.0090 < 0.002 < 0.005 5/30/06 < 0.005 < 0.005 < 0.015 NA NA NA NA NA 10/22/09 < 0.00024 0.0062 0.0053 < 0.00029 < 0.00028 < 0.00025 < 0.00068 MW-22 7/28/10 NA NA NA NA NA < 0.005 0.0095 0.0089 < 0.002 < 0.005 < 0.005 < 0.015 NA NΑ NΑ NA NA < 0.005 < 0.005 < 0.005 < 0.002 < 0.005 < 0.005 < 0.015 3/31/11 NA NA NΑ NA NA 11/28/12 NA < 0.0002 0.030 < 0.0002 < 0.0001 < 0.0002 < 0.0003 < 0.0015 3/13/03 NA NA NA NA < 0.02 < 0.005 < 0.002 < 0.005 5/30/06 < 0.005 < 0.002 < 0.005 < 0.015 2/8/08 0.33 NA NA NA < 0.02 NA NA NA NA NA NA NA < 0.00029 10/22/09 NA NA NA NA NA <0.00024 0.0012 0.00059J < 0.00028 < 0.00025 < 0.00068 MW-23 7/28/10 NA NA NA NA NA < 0.005 0.0089 < 0.005 <0.002 < 0.005 < 0.005 < 0.015 3/29/11 NA NA NA NA NA < 0.005 < 0.005 < 0.005 <0.002 < 0.005 < 0.005 < 0.005 < 0.010 < 0.010 NA NA NA NA NA 10/2/12 NA NA NA NA NA < 0.010 < 0.010 < 0.010 NA NA NA NA NA NA NA NA NA 10/22/13 0.386 < 0.02 4/9/08 NA 10/21/09 NA NA 0.11 0.11 NA NA NA NA NA NA NA NA 7/29/10 0.108 0.107 NA 7/29/10 Dup 0.109 0.110 NA 0.120 0.0945 3/30/11 NA MW-24 1/11/12 0.153^b 0.125^b NA 10/2/12 0.138^c 0.105 NA 10/2/12 Dup 0.139 0.116 NA 10/23/13 0.0829 0.0513 0.0316 NA NA NA NA NA NA NA NA NA 7/30/15 0.0715 0.0772 < 0.010 NA NA NA NA NA NA NA NA NA < 0.00024 0.004 < 0.00029 10/22/09 NA NA NA NA 0.0018 < 0.00028 <0.00025 < 0.00068 NA MW-25 NA NA NA < 0.005 0.011 0.0055 7/28/10 NA NA < 0.002 < 0.005 < 0.005 < 0.015 NA NA NA NA NA < 0.005 0.0083 < 0.005 < 0.002 < 0.005 < 0.005 < 0.015 3/29/11 < 0.010 0.175 0.184 NA NA NA 11/29/12 NA NA NA NA NA NA NA 11/29/12 Dup 0.175 0.180 NA NA NA NA NA NA NA NA NA < 0.010 0.0959 2/20/2013 0.0959 NA NA NA NA NA NA NA NA NA 2/20/2013 Dup 0.0979 < 0.010 0.0979 NA NA NA NA NA NA NA NA NA MW-26 0.0337 0.031 5/9/2013 < 0.010 NA NA NA NA NA NA NA NA NA 10/24/2013 < 0.010 < 0.010 < 0.010 NA NA NA NA NA NA NA NA NA 10/24/2013 Dup < 0.010 < 0.010 < 0.010 NA NA NA NA NA NA NA NA NA < 0.010 < 0.010 1/8/2014 < 0.010 NA NA NA NA NA NA NA NA NA 11/5/2015 < 0.010 < 0.010 < 0.010 NA NA NA NA NA NA NA NA NA MW-27 11/5/2015 Dup < 0.010 < 0.010 < 0.010 NA NA NA NA NA NA NA NA NA MW-28 11/5/2015 < 0.010 < 0.010 < 0.010 NA NA NA NA NA NA NA NA NA 2/21/2013 0.0101 < 0.050 0.0101 NA NA NA NA NA NA NA NA NA Spartan MW-2 5/8/2013 < 0.010 < 0.010 < 0.010 NA NA NA NA NA NA NA NA NA 5/8/2013 Dup < 0.010 < 0.010 < 0.010 NA NA NA NA NA NA NA NA NA 9/22/98 NA 0.003 < 0.002 0.003 < 0.002 < 0.002 < 0.002 < 0.005 NA NA NA NA Supply Well 6/15/99 NA NA 0.0011 < 0.001 0.0026 < 0.001 < 0.001 < 0.001 < 0.002 NA NA NA 3/12/03 NA NA NA NA NA 0.006 < 0.0004 < 0.0002 < 0.0001 < 0.0002 < 0.0003 < 0.0015 ### Table 4. Historical Groundwater Detections of Site COCs Former MacGregor Golf Company Albany, Georgia Inorganics: Concentration (mg/L) Organics: Concentration (mg/L) Dichloroethene Hexavalent Chromiun rrivalent Chromium 1-Dichloroethene Well ID Sampling Date Fotal Chromium **Frichloroethene** (ylenes (Total) /inyl Chloride Cyanide cis-1,2-I **GW Delineation Standard** 0.10 0.01 0.01 0.20 0.10 0.007 0.07 0.005 0.002 0.005 0.7 10 0.70 **GW Cleanup Standard** 0.10 0.01 153 2.04 2.04 0.58 0.204 0.038 0.0033 0.0088 10 DR-SW-1 10/20/09 0.0027J NA NΑ < 0.0022 NA NA NA NΑ NA NΑ NA (Surface Water) 0.160 0.017 3/18/2014 0.143 NA NA NA NA NA NA NA NA NA TW-1 3/18/2014 0.034 0.020 J 0.014 NA NA NA NA NA NA NA NA NA TW-2 0.034 0.026 J NA NA NA NA NA NA NA 3/18/2014 Dup < 0.01 NA NA TW-3 3/18/2014 0.076 0.068 < 0.01 NA NA NA NA NA NA NA NA NA TW-4 3/18/2014 0.125 0.110 0.015 NA NA NA NA NA NA NA NA NA 3/19/2014 TW-5 0.075 0.070 J < 0.01 UJ NA NA NA NΑ NA NA NA NΑ NΑ TW-6 3/19/2014 0.020 < 0.01 0.019 NA 3/19/2014 < 0.01 < 0.01 NA NA NΑ NΑ NΑ NA NA NA TW-7 < 0.01 TW-8 3/19/2014 0.020 0.013 < 0.01 NA 0.015 J 0.015 J NA NA NA TW-9 3/20/2014 < 0.01 UJ TW-10 3/20/2014 0.011 < 0.01 0.011 NA 3/20/2014 1.740 1.490 0.250 NA NA NA NA NA NA TW-11 3/20/2014 Dup 1.730 1.460 0.274 NA NA NA NA NA NA NA NA NA TW-12 3/20/2014 0.011 < 0.01 0.011 NA NA NA NA NA NA NA NA NA TW-13 3/21/2014 0.060 0.056 < 0.01 NA NA NA NA NA NA NA NA NA TW-14 3/21/2014 0.587 0.580 < 0.01 NA NA NA NA NA NA NA NA NA TW-15 3/22/2014 < 0.01 < 0.01 < 0.01 NA TW-16 6/2/2014 0.018 < 0.01 0.018 NA NA NA NA NA NA NA NA NA 0.102 NA NA TW-17 3/22/2014 0.116 0.014 NA NA NΑ NA NΑ NΑ 0.107 < 0.01 NA NA NA NA NA NA NA NA NA TW-18 3/23/2014 0.098 3/23/2014 0.185 0.013 NA NA NA 0.199 NA NA NA NA NA NA TW-20 TW-22 0.019 0.017 NA NA NA NA NA NA NA NA NA 3/21/2014 < 0.01 TW-23 3/24/2014 < 0.01 < 0.01 < 0.01 NA NA NA NA NA NA NA NA NA TW-24 3/24/2014 0.021 0.013 < 0.01 NA NA NA NA NA NA NA NA NA TW-25 0.086 0.075 0.011 NA NA NA NA NA NA NA NA NA 3/23/2014 TW-26 3/25/2014 0.083 0.068 J 0.015 J NA NA NA NA NA NA NA NA NA TW-27 3/25/2014 0.168 0.147 J 0.022 J NA NA NA NA NA NA NA NA NA TW-28 3/25/2014 0.039 0.024 0.015 NA NA NA NA NA NA NA NA NA < 0.01 TW-29 3/26/2014 < 0.01 < 0.01 NA NA NA NA NA NA NA NA NA 0.064 0.047 0.017 NA NA NA NA NA NA NA NA NA TW-30 3/25/2014 0.024 NA NA NA NA NA NA NA NA NA TW-31 6/4/2013 0.013 0.011 NA NA TW-32 6/4/2013 < 0.01 < 0.01 < 0.01 NA NA NA NA NA NA NA 6/5/2014 < 0.01 < 0.01 UJ < 0.01 UJ NA NA NA NA NA NA NA NA NA TW-33 < 0.01 < 0.01 UJ < 0.01 UJ NA NA NA NA NA NA NA NA NA 6/5/2014 Dun 6/5/2014 TW-34 < 0.01 < 0.01 < 0.01 NA NA NA NA NA NA NA NA NA TW-35 6/5/2014 < 0.01 < 0.01 < 0.01 NA NA NA NA NA NA NA NA NA TW-36 6/3/2014 0.041 0.028 J 0.012 J NA NA NA NA NA NA NA NA NA TW-37 6/3/2014 0.015 < 0.01 < 0.01 NA NA NA NA NA NA NA NA NA TW-38 6/4/2014 < 0.01 < 0.01 < 0.01 NA NA NA NA NΑ NA NΑ NΑ NΑ TW-39 6/4/2014 0.040 0.034 J < 0.01 UJ NA TW-40 6/3/2014 < 0.01 < 0.01 < 0.01 NA NA NA NA NA NA NA NA 6/3/2014 0.049 0.037 0.012 NA NA NA NA NA NA NA NA NA TW-41 6/3/2014 Dup 0.050 0.038 NA NA NA 0.012 NA NA NA NA NA NA TW-42 6/2/2014 < 0.01 < 0.01 < 0.01 NA NA NA NA NA NA NA NA NA 0.0129 NA NA NA NA NA NA NA NA 7/28/2015 0.0197 < 0.010 NA TW-43 7/28/2015 Dup 0.0190 0.0148 < 0.010 NA NA NA NA NA NA NA NA NA 0.0163 TW-44 7/28/2015 0.0166 < 0.010 NA NA NA NA NA NA NA NA NA **Dup - Duplicate sample** mg/L - milligrams per liter Purple Highlight - Indicates concentration is greater than delineation standard. Orange Highlight - Indicates concentration is greater than delineation and cleanup standard. NA -Sample not analyzed for this parameter. J - Result qualified as estimated by the laboratory or as the result of data verification. $^{^{\}mathrm{a}}$ MW-11 sample from 9/13/99 was highly turbid at time of sample collection; data not representative of groundwater conditions. b MW-24 samples from 1/11/12 were highly turbid at time of sample collection. Concentrations of dissolved total chromium and dissolved hexavalent chromium were 0.122 mg/L and 0.115 mg/L, respectively. ⁶ MW-24 samples from 10/2/12 were highly turbid at time of sample collection. Concentration of total dissolved chromium in the parent and duplicate samples was 0.134 mg/L. The samples were not analyzed for | Table 5. Su | | tive to Delineation and Cleager
Gor Golf Company | anup Levels | |---|--
--|--| | | | Georgia | | | Delin | eation | Reme | diation | | Areas Requiring Additional Delineation | Proposed Plans to Complete Delineation | Areas Requiring Cleanup | Plans to Complete
Remediation | | | S | Soil | | | • None | • None | • Former Waste Disposal Area:
cis-1,2-DCE and VC exceed
cleanup standards in B4 (5-10
ft bgs) and GP-1 (4-6 ft bgs). | Focused risk assessment and
groundwater concentration
trend analysis will be used to
demonstrate compliance with
cleanup standards. | | | Grour | ndwater | | | • None | • None | MW-4 (upper water bearing zone, in former waste disposal area): TCE, cis-1,2-DCE, and VC exceed cleanup standards. Vicinities of MW-11 and MW-24 (upper water bearing zone, near northern property boundary): Total and/or hexavalent chromium exceed cleanup standards. Vicinity of MW-19 (upper water bearing zone, near southern property boundary): Total and/or hexavalent chromium exceed cleanup standards. | Empirical evidence and groundwater concentration trend analysis will be used to demonstrate compliance with cleanup standards in the MW-4 area. Modeling to demonstrate compliance with cleanup standards at the designated point of exposure and point of demonstration well will be used in MW-11, MW-19, and MW-24 areas. | | | | | | | | | Ţ | | mer MacGı | oject Mile
regor Golf
1y, Georgia | Company | | | | | | | | | | | | | | |--|--|-------------------|----------|---------------|----------------|---------------------|----------|----------------|----------------|---|----------------------|----------------|---------------|-------------------------------|-----------------|---------------|----------------|----|-----------|----------------|--------------|------------------|--------------------------------|----------------------| | | Projected | | Y | ear 1: July 2 | 2012 - July 20 | 13 | , | Year 2: July 2 | 2013 - July 20 | | | /ear 3: July 2 | 014 - July 20 | 15 | Yea | ar 4: July 20 |)15 - July 201 | 16 | Y | ear 5: July 20 |)16 - July 2 | 2017 | | y 2017 - July
018 | | Task Name Completion Date | | Completion Date | Q3 | 012 | Q1 | 20
Q2 | 13
Q3 | | | 2014 | | Q4 | Q1 Q2 | | 2015
2 Q3 Q4 | | Q1 | Q2 | 016
03 | | | 2017
Q1 Q2 Q3 | | Q4 | | Enrollment in VRP | | July 30, 2012 | | | | | | | | | | | | | | - | - | - | - | - | - | | | | | Preliminary Cost Estimate for Implementation of
Remediation & Continuing Actions, and Financial
Assurance Demonstration | Within 60 days of
Enrollment ^a | March 13, 2013 | X | X | X | Monthly Groundwater Level Measurements | Within 3 Months
of Enrollment | November 6, 2012 | \times | \times | Horizontal Delineation of Site COCs (on accessible property) | Within 6 Months
of Enrollment | November 29, 2012 | \times | Semiannual Progress Report with Updated CSM | Within 6 Months
of Enrollment | January 30, 2013 | | X | Semiannual Progress Report with Updated CSM | Within 12 Months of Enrollment | July 30, 2013 | | | | \times | Vertical Delineation of Site COCs | Within 12 Months
of Enrollment | May 31, 2013 | | | \times | Semiannual Progress Report with Updated CSM | Within 18 Months of Enrollment | January 30, 2014 | | | | | | \times | | | | | | | | | | | | | | | | | | Horizontal Delineation of Site COCs
(on property previously inaccessible) | Within 24 Months
of Enrollment | November 5, 2015 | | | \times | X | | | X | X | | | | | | \times | | | | | | | | | | Semiannual Progress Report with Updated CSM | Within 24 Months
of Enrollment | July 30, 2014 | | | | | | | | \Rightarrow | | | | | | | | | | | | | | | | Semiannual Progress Report with Final Remediation
Plan, Updated CSM, and Final Cost Estimate for
Remediation and/or Continuing Actions | Within 30 Months
of Enrollment | January 30, 2015 | | | | | | | | | | X | | | | | | | | | | | | | | Active remediation, if necessary | Within 36 Months
of Enrollment | NA | Semiannual Progress Report with Updated CSM | Within 36 Months
of Enrollment | July 27, 2015 | | | | | | | | | | | | \times | | | | | | | | | | | | Semiannual Progress Report with Updated CSM | Within 42 Months
of Enrollment | January 28, 2016 | | | | | | | | | | | | | | \times | | | | | | | | | | Compliance Status Report under the VRP with Certifications | Within 48 Months
of Enrollment | Model Validation Monitoring | Within 90 Months
of Enrollment | | | | | | | | | | | | | | \times | | | | | | | | | | | Due date indicated on VRP Application. | • | | | • | • | On-site H
Deline | | • | • | | Horizontal
eation | • | Vertical Des | lineation,
diation Plan, a | and Final | | | | | | | | mittal to VRP
ertifications | | Cost Estimate $^{\rm a}\,$ Due date for this task was extended per EPD's approval. "X" Indicates task accomplished. | Tat | Table 7. Summary of Hours Invoiced by Professional Engineer This Period Former MacGregor Golf Company | | | | | | | | | | | |--|---|----------------|---|--|--|--|--|--|--|--|--| | | Albany, Georgia | | | | | | | | | | | | Registered PE | Month | Hours Invoiced | Description of Services | | | | | | | | | | | August 2015 | 1.25 | * Reviewed monthly status update * Reviewed delineation data from July 2015 | | | | | | | | | | | September 2015 | 1.00 | * Reviewed monthly status update * Participated in monthly project status call | | | | | | | | | | | October 2015 | 0.75 | * Reviewed monthly status update * Participated in monthly project status call | | | | | | | | | | Trish Reifenberger, P.E.
Georgia PE No. 20676 | November 2015 | 1.50 | Reviewed monthly status update Participated in monthly project status call Reviewed delineation data from November 2015 | | | | | | | | | | | December 2015 | 2.00 | * Reviewed monthly status update * Reviewed UEC for Taylor Property | | | | | | | | | | | January 2016
(through 1/28/16) | 4.00 | * Reviewed monthly status update * Participated in monthly project status call * Reviewed Semiannual Progress Report and UEC for Site | | | | | | | | | | Total Hours Invoiced this Pe | eriod | 10.50 | | | | | | | | | | ## **Appendix A: Well Construction Diagrams** P:\Amail Golden Gregory/147437 - MacGregor Golf VRP 2015/300 - Reporting\Jan 2016 Progress ReportiCAD\Figure A1 - TW-43 Well Construction Diagram.dwg REPARED FOR: Brunswick Corp., Albany Sport Co., & Albany Partners, LLC DATE: 01/08/2016 GALE: NA DRAWN BY: BAS HECKED BY: SEJ 14/4/37 Figure A1 TW-43 Well Construction Diagram P:\Arnall Golden Gregory/147437 - MacGregor Golf VRP 2015/300 - Reporting\Jan 2016 Progress Report\CAD\Figure A2 - TW-44 Well Construction Diagram.dwg PREPARED FOR: Brunswick Corp., Albany Sport Co., & Albany Partners, LLC DATE: 01/08/2016 SCALE: NA DRAWN BY: BAS CHECKED BY: SEJ JAM 124/27 Figure A2 TW-44 Well Construction Diagram REPARED FOR: Brunswick Corp., Albany Sport Co., & Albany Partners, LLC IATE: 01/08/2016 CALE: NA IRAWN BY: BAS HECKED BY: SEJ Figure A3 MW-27 Well Construction Diagram REPARED FOR: Brunswick Corp., Albany Sport Co., & Albany Partners, LLC ATE: 01/08/2016 CALE: NA RAWN BY: BAS HECKED BY: SEJ Figure A4 MW-28 Well Construction Diagram # **Appendix B: Field Data Sheets** FORM GW-2 (Rev 11.March.10 - sej) ## **GROUNDWATER SAMPLING FIELD DATA SHEET** WELL ID: MW-4 | 1. PRO | JECT INF | ORMA | TION | | | | | | **** | | |---------------|------------------|-----------------------------|-------------------------|------------------------------|---------------------|---------------------------------------|-----------------|------------------|------------------|---| | | Number: | | | nber: | | Area of Cond | ern: | | | | | | Nachsen | | | | | Porconnol: | | | | | | Project | Location: A | Hony | GA | | | Weather: | Sunry | | | | | 2. WEL | Ļ <u>D</u> ATA | _ | Date Me | easured: 🗾 | 1.27.15 | Time: 🔼 | м | Temp | orary Well: C | lYes ⊠Í No | | Casing | Diameter: | 7 | | | | s 🛚 Galv. Stee | | | | | | Screen | Diameter: | inc | ches | Type: 5/6V | C 🗆 Stainles | s 🛘 Galv. Stee | I □ Teflon® | ☐ Other: | | | | Total De | epth of Well: | 16.90 | _feet | From: 🙇 To | p of Well Casin | ng (TOC) 🗖 T | op of Protectiv | e Casing 🚨 | Other: | | | Depth to | Static Water: | 21.13 | _feet | From: A To | p of Well Casin | ıg (TOC)* 🗖 T | op of Protectiv | e Casing 🛚 | Other: | | | Dèpth to | Product: | | feet | | | ng (TOC) 🔲 T | | | | | | ·Length | of Water Colur | ոո։
<u>Վ.դ.</u> | reet | Well Volume | <u>、 てむ. / :</u> : | gal • | Screened Ir | nterval (from | GS): | | | 0 51154 | `
>= | • | | | | 2-in well = 0.16 | | ell = 0.667 gal/ | | | | | GE DATA | ailer Size | Date Pu | rged: 🕌 " | じせいり
ログSub ロ | _Time: <u>\(\) {\</u>
impF14" Sub | Pump | . ., | Equipmer
PUMD | nt Model(s) | | Purge M | lethod: 🗀 Cen | | 4 | | | | | 1. <u>U</u> | N E | <u>, , , , , , , , , , , , , , , , , , , </u> | | Material | s: Pump/Baile | r 🖸 Polyeth | nylene ⊠Sta
ted □ Pa | inless DPVC repared Off-Site | Tellon® □ Tellon® □ | □ Other:
aned □ Dispo | sable | ·2 | 150 cc | | | Material | s: Rope/Tubin | | | | • | • | | · | 151656 | | | | to Purge (mini | | | | | | pie | 4. <u>L</u> | amoth · | 2010 | | | ll purged dry? | Yes | | | te: | - | | | Calibrated? | DrYes □ No | | was we | Cum. Gallons | 1 | Temp | Spec. Cond. | 1 | ga///iii/ | Turbidity | | | | | Time | Removed
(gal) | ±0.1 su | ±2°C | > of ±3% or
±10 µS/cm | i | > of ±10% or
±0.2 mg/L | | Water Level | Cor | nments | | 0850 | 0.10 | 4.11 | 21.26 | 0.306 | 317.8 | 1.20 | 154 | 37.30 | | | | 0900 | 0.50 | 5.25 | 20.98 | 0.320 | 252.4 | 0.83 | 125 | 37.50 | | ***** | | 0910 | 1.00 | 6.17 | 20.89 | 0.418 | 205.6 | 0.59 | 83.3 | 3760 | | | | 0920 | 1.75 | 6.48 | 20.93 | 0.476 | 192.7 | 0.51 | 64.8 | 37.70 | | | | 0936 | 2.00 | 6.58 | 20.95 | 0.513 | 189.9 | 0.45 | 47.2 | 37.70 | | *************************************** | | | | | | | | | | Purge dat | a continued or | next sheet? | | 4. SAMF | PLING DA | ATA | | _ | | | | <u> Ceoc</u> | hemical Anal | <u>vses</u> | | Method(| | iler, Size:
rifugal Pump | | | | ımp □ 4" Sub.
□ Other: | | Fenço | us Iron: | mg/L | | Materials | s: Pump/Bailer | . □ Polyethy | /lene AStai | nless PVC | ☐ Teflon® ☐ | Other: | able | DO: | \ _ | mg/L | | Materials | s: Tubing/Rope | Polyethy | lene 🗆 Poly | propylene 🗆 | -
Teflon® □ Ny | lon 🚨 Other: | | Nitrat | e: \ | mg/L | | Denth to | Water at Time | e of Sampli | • | irea Oii-Site I | | d ∡Z Disposat
d? □ Yes ⋌ | | Sulfat | ie: \landsquare | mg/L | | Sample I | D: 52081M | Sample D | _ ~ | -\Sample | | # of Contai | _ | Alkali | | mg/L | | | Sample Colle | | | ID: | | # of Contai | | | ·J· | | | | nt Blank Colle | | | | 08-EB-2 | # of Contain | ners: 2 | | | | | | | | | | - Z - J | | | • | | | | 5. COM | C I VI⊒IV | 1010 | iki o | 1 40 | 7.70 | <u>47</u> | • | | | | | | | ···· | | | | | | | | | | Vote: Include | comments such a | as well cond | ition, odor, pr | esence of NAP | L, or other items | s not on the field | data sheet. | | | | | | | | | | | | | · | |) | 1 Signature WELL ID: MW.4 | 3. PUR | GE DATA | (contin | ued fron | n page <u>l</u> |) | | | | | |--------|------------------|---------|----------|--------------------------|------------------------|---------------------------|-----------|---------------|-------------| | | Cum. Gallons | рH | Temp | Spec. Cond. | ORP | DO | Turbidity | | ****** | | Time | Removed
(gal) | ±0.1 su | ±2°C | > of ±3% or
±10 µS/cm | > of ±10% or
±20 mV | > of ±10% or
±0.2 mg/L | ≤ 10 ŅTU | Water Level (| Comments | | 0940 | 225 | 6.64 | 21.00 | 0,538 | 188:1 | 0.40. | 37.9 | 37.70 | | | 0950 | 2.75 | 6.69 | 20.97 | 0.555 | 1861 | 0.38 | 29.1 | 3770 | | | 1000 | 3.50. | 6.73 | 21.04 | 0.563 | 185.5 | 0.33 | 23.5 | 37:70 | | | 1010 | 3.75 | 6.75 | 21.08 | 0.569 | 183.6 | 0.33 | 17.7 | 37.70 | MILLION . | | 1020 | 4.00 | 6.77 | | 0.572 | 182-1 | 0.30 | 6.0 | 37.70 | ********* | | 1030 | 4.25 | 6.78 | | 0.579 | 179.9 | 0.38 | 14.9 | 37.70 | ANII C | | 1040 | 4.50 | 6.79 | | | 178.8 | 0.34 | 13.1 | 37.70 | | | 1050 | | | | 0.581 | 176.9 | 0.33 | 11.4 | 37.70 | | | 100 | 5.00 | | 21.88 | 0.580 | 174.6 | 0.32 | 9.7 | 37:70 | | | 1105 | 60/14 | 4 | sampl | 1. | | | | 1. | • | | | | | • | ******* | | | | | | | | • | | | www.mamu.c. | | | | | 5 | | • , | · • | , | • | • . | | | ******* | | - | | • • | | • | | | • | • | | | | | • | • . | | • • | | • | | WWW. | | | • | | • | | y * * | | • ' | - | • | | | | • | | | | | | | | • | • | <i>,</i> | | | | | | THE | | | | • | | ₹ | | | | | 1 | | • . | | , | - | | | | | | | | | | | | | | | Purge data continued on next sheet? FORM GW-2 (Rev 11.March.10 - sej) WELL ID: Mw-Il | 1. PRO | JECT INF | ORMA | TION | | | | | | | | | | |--|---|-------------------------|----------------------------|---------------------------------|---|-----------------------------|-----------------|--------------------|--|--|--|--| | Project | Number: | | Task Num | ber: | | Area of Cond | ern: | | | | | | | | Mac Gream | | | | | Personnel: 33 | | | | | | | | | Location: | | | | | Weather: CUANY 13-F | | | | | | | | | DATA | | | | | Time: A | | | orary Well: 🗆 Yes 💋 No | | | | | | _ | in | | _ | | Galv. Stee | | | | | | | | _ | Screen Diameter: 2 inches Type: 4 PVC 🗆 Stainless 🗅 Galv. Steel 🗅 Teflon® 🗆 Other | | | | | | | | | | | | | • | pth of Well: 4 | | feet | | | | | | Other: | | | | | | Static Water: | 7 A A | -
_feet | | | , | | | Other: | | | | | Depth to | Product: | <u>.</u> | feet | | | | | | Other: | | | | | Length o | of Water Colum | nn: 8.6 0 | reet | Well Volume | <u>: 1.45 </u> | _ gal | Screened I | nțerval (from | GS): | | | | | | | , * | | Note:`1-in well | = 0.041 gal/ft | 2-in well = 0.16 | 7 gal/ft 4-in w | vell = 0.667,gal/ | ft 6-in well = 1.469 gal/ft | | | | | | E DATA | | | | | Time: <u>/3</u> | | | Equipment Model(s) | | | | | Purge Method: ☐ Bailer, Size: Ø Bladder Pump ☐ 2" Sub. Pump ☐ 4" Sub. Pump 1. M - 50 | | | | | | | | | | | | | | Materials | s: Pump/Bailer | . □ Polyeth
□ Dedica | nylene ⊿Sta
ted ☐ Pr | inless D PVC epared Off-Site | ☐ Teflon® ☐ | Other: | sable | 2. <u>Q</u> | ED BLANN | | | | | | s: Rope/Tubing | | , | | | • | _ | 3 | 451.556 | | | | | - | to Purge (minir | | | | | | ble | . 4. <u>Lo</u> | inoth toro | | | | | • | l purged dry? | • | weii∨
□ No | Pumping Rat | | _ | | , | Calibrated? ✓Yes ☐ No | | | | | | Cum. Gallons | | Temp | Spec. Cond. | ORP | DO . | Turbidity | r , | ······································ | | | | | Time | Removed
(gal) | ±0.1 su | ±2°C | > of ±3% or 1
±10 µS/cm | ! | > of ·±10% or | ≤ 10 NTU | Water Level | Comments | | | | | 1408 | 0.10 | 6.56 | 31.38 | 0.589 | ±20 mV | ±0.2 mg/L | 27 | 395 | | | | | | 1418 | | 6.82 | 27.07 | 0.581 | 156.4 | 8.64 | 157 | 40.23 | | | | | | 1478 | 1.75 | 6.81 | 2635 | 0.578 | 151.6 | 052 | 128 | 40.60 | · | | | | | 1428 | 125 | 6.82 | 26.59 | 0.577 | 1490 | 8.31 | 88.3 | 40.78 | | | | | | 1448 | 1.5 | (OU | 2-1 42 | 0.584 | 1112 0 | QU-1 | 26 7 | 4/ | | | | | | 1710 | 1.2 | 6.07 | 27.13 | 0.001 | 773.8 | 47.4 | 26.7 | Purge dat | a continued on next cheet? | | | | | 4. SAME | LING DA | TA | | | | | | | hemical Analyses | | | | | Method(s | 、 🗆 Bail | ler. Size: | | Bladder Pump | □ 2" Sub. Pu | mp 🗆 4" Sub. | Pump | | | | | | | , | Centr | | | | | Other: | | 1 | us Iron: mg/L | | | | | | : Pump/Bailer | □ Dedicat | ed 🗆 Pre | nless D PVC
pared Off-Site | Field-Clear | ned Dispos | | DO: \ | mg/L | | | | | Materials | : Tubing/Rope | Polyethy Dedicat | ylene 🛭 Poly
ed 🔲 Prepa | propylene 🔲 🏾
red Off-Site 💆 | Γeflon® □ Nyl
I Field-Cleaned | on ☐ Other:
i ☐ Øisposab | le | Nitrate | e:\ mg/L | | | | | Depth to | Water at Time | of Sampli | ing: | | Field Filtered | ۔
اکر Yes ہا | | Sulfat | e:mg/L | | | | | | Sample ID: 5208-71 Sample Date: 1.77.15 Sample Time: 1650 # of Containers: Alkalinity: mg/L | | | | | | | | | | | | | | Sample Colle | | , , | ID; | | # of Contai | <u> </u> | —— [| | | | | | Equipme | nt Blank Colled | cted? 🗆 ` | Yes po No | ID: | | # of Contai | ners: | <u></u> | | | | | | 5. COM | JENTS | 11. | tak | at 4 | 7.5 | 14 | | | | | | | | | | | | - | | | | | | | | | | | | | *** | | | | | | | | | | | vote: Include d | comments such a | s well cond | tion, odor, pre | esence of NAPL | , or other items | not on the field | data sheet. | | | | | | WELL ID: Mw. (1 | 3. PUR | GE DATA | (contir | nued fron | n page/ |) | | | | | |-------------|------------------|-------------|-----------|--------------------------|---|---------------------------|-----------|-------------|-------------| | | Cum. Gallons | | Temp | Spec. Cond. | | DO | Turbidity | | | | Time | Removed
(gal) | ±Q.1 \$u | ±2°C | > of ±3% or
±10 µS/cm | > of ±10% or
±20 mV | > of ±10% or
±0.2 mg/L | ≤ 10 NTU | Water Level | Comments | | 1458 | 2.75 | 6.83 | 27.23 | 0.584 | 1441 | 8.76 | 24.8 | 41.35 | 1 | | 1508 | | 6.84 | 27.85 | 0.587 | 142.0 | 8.56 | 51.0 | 41.89 | | | 1518 | 3.75 | 6.84 | 27.04 | 0.584 | 138.0 | 8.55 | 71.9 | 4240 | slower rote | | 1528 | 3.35 | 6.88 | 31.40 | 0.590 | 136.7 | 7.19 | 67.8 | 42.50 | | | 1538 | 3.45 | 6.8.9 | 33.75 | 0.587 | 137.6 | 6.28 | 43.6 | 42.60 | | | 1548 | 3.55 | 6.89 | 36.03 | 0.592 | 135.9 | 5.61 | 36.8 | 42.68 | | | 1958 | 3.65 | 6.86 | 32.72 | 0.592 | 156.6 | 6.61 | 28.0 | 42.78 | | | 168 | 3.75 | 6.85 | 31.28 | 0.586 | 145.5 | 6.85 | 36.2 | 42.85 | | | 1618 | 4.00 | 6.86 | 30.38 | 0.580 | 155.8 | 6.80 | 26.7 | 42.98 | | | 1628 | 4.20 | 6.87 | 30.32 | 0.564 | 161.6 | 6.55 | 13.2 | 42.95 | | | 1638 | 4.30 | 6.87 | 30.07 | 0.562 | 166.5 | 6.64 | 10.19 | 42.99 | | | 1648 | 4.40 | 4.88 | 30.12 | 0.561 | 170.1 | 6.60 | 6.62 | 43.00 | 5 | | 1650 | (0) | <u></u> | sample | | | | | | | | | | | | • • | * | • | . • | | | | • | , | • | • , | | , , | • | • | | | | | ٠ | • | | | • | • | • | | | | | | •. | | • | , | • • • | • • | | , | | •
| • | • | | | | | | | | | • | | , | _ | | | | | | | | | | | | | | | | | | | | | | | • | <u>:</u> ., | • - | | | | | | | | | • | | , , | | | | | | | | | | | | | | | 1 | | | | | | | ſ | • | | | | | | Purge data continued on next sheet? WELL ID: MW-19 | 1 PPO | JECT INF | | TION | | | | | | - 111 | |-------------------------|--------------------------|---|---|-----------------------------------|------------------------------------|---------------------------------------|-------------|---------------|-----------------------------| | | | | | .h.a.v. | | A C | | | | | _ | Number:
Mac(erce | | lask Num | | | Area of Cond
Personnel: | 1 | | | | _ | ocation: | | y 64 | | | Weather: | | .90 | ·F | | 2. WELI | DATA. | | | easured: | | | | <u> </u> | | | | DATA | | Date Me | | | Time:
□ Galv. Stee | | • | orary Well: UYes 📶No | | , * | Diameter:
Diameter: | <u>7 . </u> | ches | | | Galv. Stee | | | | | ` | pth of Well: | 46117 | feet | | | | | | Other: | | | Static Water: | 71111 | | _ | | | | | Other: | | | Product: | • | feet | | | | | | Other: | | 1 | f Water Colum | - A 12 - | eet | Well Volume | 160 | _ gal | | | GS): | | | | | | Note: 1-in well | = 0.041 gal/ft | | | | ft 6-in well = 1.469 gal/ft | | 3. PURC | SE DATA | | | rged: 🔼 . 2 | | | | *** | Equipment Model(s) | | Purge M | ethod: 🔲 Ba | iler, Size: _
trifugal Pum | p ☐ Perista | 🕯 Bladder Pump
Itic Pump 🗀 Ind | o 🔲 2" Sub. Pu
ertial Lift Pump | ımp □ 4" Sub
□ Other: | . Pump | 1. <u>M</u> | 1-50 | | Materials | s: (Pump/Bailer | | | inless DPVC
repared Off-Site | | | | 2. <u>Q</u> | ED Bledde | | | s: Rope/Tubing | Polveth | iea • □ Pi
ivlene □ Po | vpropviene D | Teflon® □ Nv | nea ⊔ Dispo
Ion □ Other: | sable | з. <u>У</u> | 51 - 556 | | | (/ | / 🛶 Dedica | ted G Fieb | aled Oil-Oile | - Field-Cleane | u Jobispusai | ble | 4 <i>L</i> | ionalle 2020 | | | o Purge (minir | | | | | | | | Calibrated? □Yes □ No | | Was wel | purged dry? Cum. Gallons | D Yes | Temp | Pumping Ra
Spec. Cond. | te: | gal/min
DO | Turbidity | | 9 100 2 110 | | Time | Removed | ±0.1 su | ±2°C | · | > of ±10% or | | ≤ 10 NTU | Water Level | Comments | | (0.0 | (gal) | | 100 | ±10 μS/cm | ±20 mV | ±0.2 mg/L | 3 10 N10 | 12.0 | | | 120 | 0.10 | 738 | 22.95 | 0.229 | 184.2 | 12.(2 | 5/ | 35.01 | | | 1230 | 0.80 | 7.47 | 23.83 | 0.231 | 174.9 | 11.75 | 81.5 | <i>35.</i> 34 | • | | 1240 | -50 | 7.46 | 22.78 | 0.234 | 176.8 | 12.18 | 28.7 | 35.6 | | | 1750 | 2.25 | 7.49 | 23.18 | 0.233 | 1745 | 1191 | 1178 | 35 9 | | | 1300 | 17726 | 7.56 | 23.01 | 0.226 | 172.5 | 11.76 | 146 | 36.2 | | | 1000 | PLITI | 4.00 | 67 | 0,220 | 176.5 | 11.85 | 4.43 | <u> </u> | a continued on next sheet? | | 4 SAME | LING DA | TA | | | | | | | nemical Analyses | | Method(s | □ Bail | er, Size: | 9 | Bladder Pump | □ 2" Sub. Pui | mp 🚨 4" Sub. | Pump | 1 | | | , | C Centr | | _ | ic Pump 🛭 Ine
nless 🖺 PVC | • | · · · · · · · · · · · · · · · · · · · | | \ | us Iron: mg/L | | | :(Pump/Bailer | ☐ Dedicat | ed '🗆 Pre | pared Off-Site | Field-Clear | ied 🗀 Dispos | able | DO: | mg/L | | Materials | Tubing/Rope | Dedicate | ylene □ Poly
ed □ Prepa | rpropylene 🗀 🤇
red Off-Site 🔾 | Teflon® □ Nyl
□ Field-Cleaned | on ☐ Other:
Disposab | le | Nitrate | e: mg/L | | | Water at Time | of Sampli | ing: | | Field Filtered | ? 🗆 Yes 🛭 | | Sulfat | e: mg/L | | Sample I | d:19208-M | Sample D | _{ate:} <mark>} </mark> | راح)۔
Sample T | _{ime} /325 | # of Contain | ners: | Alkalir | nity: mg/L | | | Sample Colle | | | ID: | | # of Contain | ners: | | | | Equipme | nt Blank Colled | cted? 🗆 ` | Yes ☐ No | 1D: | | # of Contain | ners: | | | | 5. COMMENTS Intox at 42 | | | | | | | | | | | / | Iceh | result | ٠, ٠ | C 0.0 | mg/L | | | | | | | | | 4 | | | | | | | | Note: Include d | omments such a | s well cond | tion, odor, pr | esence of NAPL | ., or other items | not on the field | data sheet. | | | WELL ID: . MW -19 | 3 PUR | GE DATA | (contin | ued from | n nage | ١ ، | | | | | |---------|------------------|---------|----------|-------------|------------------------|----------|-----------|----------------|---------------------------------------| | 0.1 011 | Cum. Gallons | | Temp | Spec. Cond. | ORP | DO | Turbidity | | | | Time | Removed
(gal) | ±0.1 su | ±2°C | | > of ±10% or
±20 mV | | '≤ 10 NTU | Water Level | Comments | | 1310 | 3.25 | 753 | 22.88 | 0.219 | 168.9 | 12.00 | 6.94 | 36.6
36.9 | | | 1320 | 3.75 | 7.55 | 23.09 | | 167.4 | 11.90 | 7.05 | 369 | | | 1325 | Coll | cet | 5. | syde | | | | | | | | | | | , | • | | , | , | ` | | | | | | | | | | | | | | | | 4. | | | | | | | - | | | | | | | | | | | | | | | | | | • | | | | | | | | | | , | • | | | | | | * | • | | • | | 7 | | | , | · · · · · · · · · · · · · · · · · · · | | | | | | • | . • | , . | • | | | | | | • • | • | <u>-</u> | , ; | | | | | | | • | | . , | + | | •. | | | | | | | | | | | - | • | т | | | | | | | | | | | | * : | | | <u> </u> | 7. | | | | | | | | | | | | | | | | Duran data and | atimued on next sheet? | Purge data continued on next sheet? # Brown AND Caldwell FORM GW-2 (Rev 11.March.10 - sej) ### **GROUNDWATER SAMPLING FIELD DATA SHEET** WELL ID: MW -24 | 1 PRO | JECT INF | ORMA | TION | | | | | | | |------------------|---------------------|--------------------------------------|---------------------------|---------------------------------|---------------------------------|-----------------------------------|-------------|------------------|--------------------------------------| | | Number: | | | bor | | Aron of Car | orn. | | | | | Machregar | | Task Null | ibei | | Area of Cond
Personnel: | | | _ | | | ocation:A | | 6. <u>%</u> | | | Weather: | | Clordy | · 80°F | | | | | | | 74 | | <u> </u> | | - | | 2. WELI | , | ~ ' | Date Me | easured: 7 | 281.15 | _Time: <u></u> _ | M . | Temp | orary Well: ☐Yes ZINo | | Casing [| Diameter: | <u>ind</u> | ches | Type: PV | C 🖸 Stainless | Galv. Steel | ☐ Teflon® | Other: | | | | Diameter: | | ches . | | | Galv. Steel | | | | | | pth of Well. | | feet | | | | | | Other: | | | Static Water: | MARIE . | feet | | - | • • | · _ | | Other: | | · · | Product: | 1164 | feet
7 | | | | | • | Other: | | Length c | of Water Colum | nn: <u> [[.27</u> | feet 4 | Well Volume | | gal- | Screened li | nterval (from | GS):
/ft 6-in well = 1.469 gal/ft | | | NE DATA | | D-t- D- | | | ****************************** | | ven = 0.007 yai/ | | | | SE DATA | iler. Siže: | C | Aladder Pumr | 0 2" Sub Pr | Time: <u>0</u> §
ump , □ 4 Sub | • 1 | · · · | Equipment Model(s) DFD RJAWW | | Purge M | ethod: Gen | trifugal Pum | p * 🗆 Perista | ltic Pump 🚨 Ine | ertial Lift Pump | Other: | | 1. 🖸 | DED Bladde | | Materials | s: Cump/Bailer | , [•] □ Polyéth
□ Dedica | ıylene D∕Sta
ted □ Pı | inless 🗅 PVC
epared Off-Site | ☐ Teflon® ☐ | Other:
ned Dispo: | sable | 2. | M-50 | | Materials | Rope/Tubin | Polyeth | | | - | /lon ☐ Other:_
ed ☐ Disposal | | 3 | 131 - 574 | | Volume | ر
to Purge (mini | | | | | | x = 9. | 6 4 - | anoffe 2020 | | | l purged dry? | • . | | Pumping Rat | • | • | | • | Calibrated? ☐ Yes ☐ No | | 10 | Cum. Gallons | pH pH | Temp | Spec. Cond. | ÓRP | DO | Turbidity | | | | Time | Removed
(gal) | ±0.1 su | ±2°C | > of ±3% or
±10 µS/cm | > of ±10% or
±20 mV | > of ±10% or
±0.2 mg/L | .≤10 NTU | Water Level | Comments | | 0820 | 0.20 | 6.90 | 25.41 | 0.461 | 158.9 | 7.83 | 74 | 48.48 | | | 0830 | 0.75 | 6.25 | 23.50 | 0.464 | 150.8 | 7.33 | 54. | 48.80 | | | 0840 | 1.00 | 6.58 | 23.43 | 0.466 | 144.6 | 733 | 117 | 48.80 | | | 0855 | 1.5 | 6.91 | 23.00 | 0.466 | 143.9 | 7.08 | .96.6 | 48.80 | | | 0915 | 2.0 | 6.92 | 24.15 | 0.467 | 145.0 | 6.93 | 109.4 | 48.80 | | | • | - | | | | * | | | Purge dat | a continued on next sheet? | | 4. SAMF | LING DA | TA · | | • . | • | - 74 | | Geoc | hemical Analyses | | Method(s | | ler, Size:
rifugal Pumr | D Peristali | Bladder Pump
ic•Pump □ Ine | ☐ 2" Sub. Pu
rtial Lift Pump | mp □ 4" Sub.
□ Other: | Pump | Ferro | us Iron: mg/L | | Materials | : Pump/Bailer | ☐ Polyeth | ylene 🖊 Stali
ed 🔲 Pro | nless D PVC | ☐ Teflon® ☐ | Other: | able | *po: | mg/L | | Materials | : Tubing/Rope | Polveth | vlene 🖵 Pol | oropviene 🗆 1 | -
Γeflon® □ Nvl | | ••• | Nitrat | e: mg/L | | Depth to | Water at Time | of Sampli | ing: | • • | Field Filtered | i? □ Yes [| | Sulfat | te: :,mg/L | | Sample I | d: <u>15211-M</u> | ພ-24
Sample D | ate. 1.30. (| Sample T | ime:1605 | _ # of Contain | ¥ | Alkali | nity:mg/L | | Duplicate | Sample Colle | ected? 🗆 🖰 | Yes 🗷 No | ID: | 1 11 - | # of Contain | ners: | | | | Equipme | nt Blank Colle | cted? | Yes □ No | ID: <u>[つい</u> | 1-69-7 | # of Contain | ners: | | <u> </u> | | 5. COM | MENTS | 11-00 | i at | .54. | f } | (puldnt | gur | 6. drich | ty 610 | | NT | u. stab | h of | -80 | stu com | gr. 501 | proged | Yes | g home | s & sampled | | Alatai Inalizza | ammanda accal | 30 Well 5 1 | Itlan ada | | U arather 2: | · 0 | | ~~~~~~~~~~~~ | · | | rvote: Includé (| comments such a | as well cond | won, oaor, pr | esence of NAPL | ., or otner items | s not on the field | aata sheet. | | | # Brown AND Caldwell ### **GROUNDWATER SAMPLING FIELD DATA SHEET** WELL ID: MW-24 | J. I OIK | <u>SE DATA</u> | 1 | ued fron | | / | | | 1 | |----------|-------------------------|---------|----------|-------------|--------|-----------------|--------------|----------------------| | Time | Cum. Gallons
Removed | pН
| Temp | Spec. Cond. | ORP | DO > of ±10% or | Turbidity | Water Level Comments | | | (gai) | ±0.1 su | ±2°C | ±10 μS/cm | ±20 mV | ±0.2 mg/L | ≤ 10 NTU | | | 6930 | 2.5 | 6.93 | 24.30 | 0.466 | 148.1 | 6.78 | 95.5 | 48.80 | | 0945 | 3. | 6.93 | 24.31 | 0.466 | 1525 | 6.75 | F.101 | 48.80 | | 1000 | 3.5 | 6.94 | 24.46 | 0.465 | 156.5 | 6.75 | 84.8 | 48.80 | | १०१५ | 4.0 | 6.95 | 25:57 | 0.466 | 156.8 | 6.65 | 89.3 | 48.00 | | 1030 | | 6.96 | 26.17 | 0.467 | 157.1 | 6.69 | 83.1 | 48.80 | | 1045 | 6 | 6.96 | 25.90 | 0.468 | 153.6 | 6.85 | 81.5 | 48.80 | | 1100 | 5.5 | 6.95 | 25.67 | 0.464 | 154.2 | 6.15 | 88:7 | 48180 | | 1115 | 6.0 | 6.95 | 26.05 | 0.467 | 160.3 | 6.57 | 81.5 | 48.80 | | 1130 | 6.5 | 6.95 | 25.82 | 0.468 | 164.3 | 6.72 | 78.5 | 48 50 | | 1145 | 6, F | 6.96 | 26.04 | 0.469 | 166.4 | 6.72 | 79.6 | 48.80 | | 1200 | 7.5 | 6.96 | 26.30 | 0.469 | 165.2 | 6.65 | 79.4 | 48.86 | | 1215 | 8 | 6.97 | 26.88 | 0.470 | 162.2 | 7.08 | 81.5 | 48.80 | | 1230 | 8.5 | 6.97 | 27.98 | 0.471 | 156.0 | 6.80 | 78.4 | 48.80 | | 1245 | 9 | 6.97 | 28.18 | 0.471 | 150.9 | 6.68 | 84.9 | 48.80 . | | 1300 | 9.5 | 697 | 28.60 | 0.471 | 146.8. | 6.32 | 81.5 | 48.80. | | 1315 | (0 | 6.97 | 28.97 | 0.473 | 142.1 | 6.20 | 82.7 | 48.80. | | 1330 | 10.5 | 697 | 29.59 | 0.472 | 138.1 | 5.98 | 87:2 | 48.80. | | 1345 | 11 | 6.97 | 19.44 | 0.475 | /35. J | 6.07 | 75.1 | 48.80 | | 1400 | 11.5 | 6.97 | 29.02 | 0.474 | 130.7 | 6.20 | 74.3 | 48.80 | | 1480 | 12 | 6.97 | 29.49 | 0.472 | 136.1 | 5.95 | 81.3 | 18:80 | | 1500 | 12.5 | 6.97 | 29.46 | | 133.5 | 6.02 | 63. 5 | 48.80 | | 1445 | 13 | 6.97 | 29.32 | 0.473 | 134.1 | 6.18 | 84.3 | 48.80 | | 1500 | 13.5 | 6.98 | 30.76 | 0.475 | 129.9 | 5.87 | 80.3 | 48:80 | | 1515 | | | | 0.475 | | | 79.4 | 48.80 | | 1570 | | | | 1 | 128.0 | 5.92 | 84.9 | 48.88 | | 1549 | | | | 0.472 | 129.3 | 6.11 | 79.9 | 48.80 | | [600 | | | | 0.471 | | 6.29 | 81.5 | 48.80 | | 1605 | | | mph | | . , | | | | 1415 Purge data continued on next sheet? # Brown AND Caldwell ## **GROUNDWATER SAMPLING FIELD DATA SHEET** WELL ID: Tw-43 | <u> </u> | | | | | | | | | | |-----------------|------------------------------|-----------------------------|---------------------------|----------------------------------|----------------------------------|----------------------------------|--|---------------------------------------|----------------------------------| | 1. PRO | JECT INF | ORMA [*] | TION | | | | | | | | Project N | Number: | | Task Num | ber: | | Area of Con- | cern: | | | | Client: | Macura | <u> </u> | | | · | Personnel:_ | <u> </u> | | | | Project L | .ocation: | XIbany, | CA | | | Weather: | SURMY | ~ 95. | F | | 2. WELL | DATA | * ` , . | Date Me | asured: 🖪 | .28.15 | Time: 📣 | 1 . | Tem | porary Well: ☐Yes ☐No | | • | Diameter: | <u>inc</u> | | | | s ☐ Galv. Stee | | | polary well. Lattes allyo | | | • • | , · · | hes | Type: Pvi | C 🔾 Stainles: | s 🛚 Galv. Stee | I □ Teflon® | Other: | | | | pth of Well: | 4.30 | feet | _ | · · | • | | • | Other: | | | Static Water: | ~ | | | | | | | Other: | | | Product: | | feet | From: 🗆 To | p of Well Casin | ıg (TOC) □ 1 | op of Protecti | ve Casing · □ | ! Other: | | Length o | f Water Colum | n: 13.6 | feet ', | Well Volume | 2.27 | gal- | Screened (| nterval (from | GS): | | | , . | 1 | | Note: 1-in well | = 0.041 gal/ft | 2-in well = 0.16 | 7 gal/ft 4-in v | vell ≈ 0.667 ga | l/ft 6-in well = 1.469 gal/ft | | 3: PURG | SE DATA | • | Date Pù | rged: 🔁 · 2 | 8.15 | Time: <u>://</u> @ | 24 | | Equipment Model(s) | | Purge M | ethod: , 🗀 Ba | iler, Size:
trifugal Pum | ⊃ `Peristal | I Bladder Pump
tic Pump 🖵 tne | 2" Sub. Pertial Lift Pump | ump D 4" Sub | . Pump | 1. <u>(6</u> | eo Sulp | | | s: Pump/Bailer | | | | | Other: | | 2. <u>Y</u> | 51-556 | | | | | | | | | | | anoth zoro | | | : Rope/Tubing | | | | | rlon □ Other:_
d □ Disposal | ole (1.3 | 5 4 h | ter diane | | Volume t | o Purge (minir | mum):, | > well v | olumes or <u>V</u> | 8) | gallons 5 | S 1(.3 | np-6 | A RED | | Was well | purged dry? | ☐ Yes | | Pumping Rat | 1 | gal/min | | · · · · · · · · · · · · · · · · · · · | Calibrated? ✓ Yes ☐ No | | · Time | Cum. Gallons
Removed | pН | Temp | Spec. Cond. | | DO | Turbidity | Water Level | Comments | | , ,,,,,, | (gal) | , ±0.1 su | ±2°C | > or ±3% or
±10 µS/cm | > of ±10% or
±20 mV | > of ±10% or
±0.2 mg/L | ≤ 10 NTU | Water Level | Continents | | 1030 | 1.5 | 6.9.1 | 27.10 | 0.318 | 141.6 | 12.04 | >1000 | 36.50 | | | 1035 | 3.5 | 7.14 | 27.02 | 0.336 | 139.4 | 11.34 | 71000 | 37.50 | | | 1045 | 5.0 | 7.25 | 26.93 | 0.344 | 1/1.0 | 12.06 | 71000 | 38.30 | | | 1055 | 6.5 | 7.29 | 27.12 | 0.345 | 121.2 | 10.85 | 71000 | 39.0 | | | 1105 | 7.76 | 7.27 | 26.94 | 0.337 | 118.7 | 11.27 | 7(000 | 39.80 | 1 | | 1000 |)· 1 O | 4,0. | | 0. | 110.3 | 17.6 | 7 (000) | | :
ta continued on next sheet? | | 4. SAME | LING DA | TA | | <u> </u> | | | | | hemical Analyses | | Method(s | .,. 🗅 Bail | er, Size: | | | | mp □ 4" Sub. | Pump | 1 | • | | · | · La Gentr | | _ | ic Pump 🔲 Iner
nless 🗆 PVC | • | | | | us Iron: mg/L | | | : Pump/Bailer | ☐ Dedicate | ed 🔾 Pre | pared Off-Site | Field-Clear | ned 🚨 Dispos | able | DO: ` | mg/L | | Materials | : Tubing/Rope | Polyethy Dedicate | lene 🗆 Poly
ed 🚨 Prena | propylene 🗀 T | Feflon® □ Nyl
I Field-Cleaner | on ☐ Other:
d ☐ Disposab | le | Nitrat | re: mg/L | | Depth to | Water at Time | of Sampli | ng: | | Field Filtered | i? □ Yes -t | √ No | Sulfa | te: mg/L | | Sample I | D15709-T | ル-43
Sample Da | ate: 7 · 28 | Sample T | ime: 134 | # of Contai | ners: 2 | Alkali | nity: mg/L | | | Sample Colle | | | ID:1520 | 9- Dup- | # of Contai | ners: | | | | Equipme | nt Blank Colle | cted? | ∕es □ No | 1D: <u>1520</u> | 9-EB. | -/ (6 100
of Contai | 5 2
ners: | | | | 5 COM | /ENITO | . \ | 9 | | 7 - | | | | | | 5. COMN | VILIVI O | اسكودا | desel | o peor | <u> </u> | geo. | | | | | Jerg | ماريد - بردر - بر | 6 500 | 144 | 0.0 | clear | | | | | | Note: Include d | comments such a | s well condi | tion, odor, pre | | <u> </u> | s not on the field | data sheet. | | · | | | · | | | | | | / | | | WELL ID: Tw-43 | 3. PUR | GE DATA | (contin | ued fror | n page | [) | | ···· | | | |--------------|------------------|---------|----------|--------------------------|------------------------|---------------------------|-----------|--------------------------|------------------------| | | Cum, Gallons | 1 | Temp | Spec. Cond. | ORP | DO | Turbidity | | | | Time | Removed
(gal) | ±0.1,su | ±2°C | > of ±3% or
±10 µS/cm | > of ±10% or
±20 mV | > of ±10% or
±0.2 mg/L | ≤ 10 NTU | Water _, Level | Comments | | 1115 | 9.0 | 7.27 | 26.83 | 0.337 | 106.9 | 10.90 | 955 | 40.70 | | | 1125 | 10.0 | 7.28 | 26.61 | 0.338 | 95.8 | 10.25 | >1000 | 41.80 | | | 1135 | 11.5 | we | ll pur | and de | ر الم | itch. | to 7 | Slackle | PUMP | | 1145 | 11.6 | 7.15 | 28.08 | 0.355 | 87.8 | 10.50 | >1000 | 41,00 | 5 | | 1165 | 11.8 | 7.23 | 24.87 | 0.365 | 63.9 | 9.76 | 71000 | 41.80 | | | 1205 | 12.5 | 7.28 | 24.11 | 0.388 | 55.3 | 9.83 | 90.7 | 41.9 | | | 1215 | 13.0 | 7.28 | 27.33 | 0.390 | 50.7 | 9.93 | 90.2 | 41,9 | | | 1225 | 13.5 | 7.78 | 27.48 | 0.392 | 447 | 9.78 | 37.9 | 41.9 | • | | 1235 | 13.75 | 7.28 | 27-62 | 0.393 | 41.7 | 9.97 | 25.4 | 41.95 | | | 1245 | 14.00 | 7:27 | 27.42 | 0.393 | 38.7 | 9.91 | 16.6 | 42.0 | | | 1305 | 14.20 | 7.26 | T3.34 | 0.393 | 35.8 | 9.86 | 12.0 | F | 420 | | 1315 | 14.30 | 7.24 | 27,35 | 0.392 | 33.7 | 9.88 | 11.9 | 47.00 | | | 1325 | 14.50 | 7.26 | 28.16 | 0.391 | 32.5 | 9.61 | (1.0) | 42.00 | , | | 13 35 | 14.60 | 7.14 | 28.88 | 0.392. | 30.6 | 9.52 | 9.80 | 4210 | | | 1340 | colle | cł | sand | | . • . | ٠, ١ | | | | | | | ٠, | , | • | | - | • | • | | | ٠. | • | | | - | | | · | . • | | | · | | | | • | | | , | , • , | - | | | | | | | | | | | | • | | | | | | | | | | | | | - | - | | | | | | | | | ` | ٠ | , | • | | | | | | | | | | | | | | | . | | | : | | | | | 1 | | | | | | | | | | | D | ntinued on next sheet? | Purge data continued on next sheet? Signature FORM GW-2 (Rev 11,March,10 - se)) Page 2 of 2 WELL ID: TW-44 | 1. PRO | JECT INF | ORMA | TION | | | | | | | |-----------------|--|----------------------------|-----------------|---------------------------------|-----------------------------|-------------------------------|-----------------|---------------|---------------------------------------| | Project I | Number: | | Task Num | ber: | | Area of Conc | ern: | | | | Client:_ | Macbroger | • | | | | Personnel: | <u> BC</u> | | · · · · · · · · · · · · · · · · · · · | | Project l | Location: 🔼 | 16ay | (JA | · | | Weather: | Sunny | 95% | <u> </u> | | 2. WELI | L DATA | | Date Me | asured: 3. | 28.15 | Time: <u> </u> | na 💮 | Temp | orary Well: ⊿Yes □No | | Casing I | Diameter: | 2. · inc | | | | Galv. Steel | | | | | , Screen I | Diameter: | A | ches | Type: דייף אינין | C 🛛 Stainless | Galv. Steel | ☐ Teflon® (| Other: | | | Total De | pth of Well:_ | 6.15 | feet, | From: 🖵 To | p of Well Casin | g (TOC) 🗀 Te | op of Protectiv | e Casing 🛚 | Other: | | Depth to | Static Water: | 41.85 | _feet | From: 🛭 To | p of Well Casin | g (TOC) 🗖 T | op of Protectiv | e Casing 🚨 | Other: | | Depth to | Product: | | Teet | From: 🔾 To | p of Well Casin | g (TOC) 🗆 T | op of Protectiv | re Casing 🛚 | Other: | | Length o | of Water Colun | nn: | feet | | :
= 0.041 gal/ft | 0 | | • | GS):
'ft 6-in well = 1.469 gal/ft | | 3. PURO | SE DATA | | Date Pu | rged: 7-2 | 8.15 | Time:(<u>40</u> 1 | 5 | | Equipment Model(s) | | | ethod: ☐ Ba | | | | | | | 1. /// | P.60 OED Black | | (| s. Pump /Bailer | _ □ Polyeth | ylene 🗹 Sta | inless 🗆 PVC | ☐ Teffon® ☐ | Other: | | | 80 Kub | | | | U
Deulca | | epared Off-Site
ypropylene □ | _ | ned Dispos | sable | 3. | (51-554 | | Materials | s: Rope/Tubing | Dedica | ted 🚨 Prep | ared Off-Site | ☐ Field-Cleane | d □_Disposat | ole | 4 1. | omoth 2010 | | Volume : | to Purge (mini | mum): | well v | olumes or | | gallons | | | | | Was wel | I purged dry? | ☐ Yes | □ No | | te: | | | 1 | Catibrated? ☐ Yes ☐ No | | Time | Cum. Gallons
Removed | pН | Temp | Spec. Cond. | ORP | DO | Turbidity | Water Level | Comments | | rinic | (gal) | ±0.1 su | ±2°C | > or ±3% or
±10 µS/cm | > of ±10% or
±20 mV | > of ±10% or
±0.2 mg/L | ≤ 10 NTU | Water Level | Continents | | 1415 | O.10 ' | 1.25 | 30.57 | 0.436 | 1/7.6 | 9.81 | 787 | 40.9 | | | 1425 | 0.25 | 7.28 | 28.90 | 0.434 | 1045 | 10.27 | 172 | 40.9 | | | 1435 | 0.50 | 7.31 | 29./2 | 0.433 | 108.6 | 9.66 | 104.9 | 40.9 | | | 1445 | 0.75 | 7.35 | 29.30 | 0.435 | 107.8 | 9.91 | 48.5 | 40.9 | | | 1455 | 1.00 | 7.36 | 29.51 | 0.432 | 97.9 | 9.90 | 27.6 | 40.9 | | | | | | 1 | | | | | Purge dat | a continued on next sheet? | | 4. SAMF | LING DA | ΛTA | | _ | | | | Geocl | nemical Analyses | | Method(s | | ler, Size:
rifugal Pump | | | | mp □ 4" Sub.
□ Other: | | Ferro | us Iron: mg/L | | Materials | : eump Bailer | ☐ Polyethy | | nless D PVC | | Other: | -1-1- | L OD | mg/L | | Materials | :: Tubing/Rope | | | • | | | able | Nitrate | mg/L | | | C -) | ☐ Dedicate | ed U Prepa | tred Off-Site L | ⊒ Field-Cleaned | Uisposabi | | Sulfat | | | | Water at Time
D: <u></u> 15209 - | | | . <i>14</i> - | Field Filtered
ime: 1940 | l? □ Yes □
// # of Contain | <i>F</i>) | | | | | Sample Colle | | | | mie. 1 / 10 | # of Contain
of Contain | | Alkalii | nity:mg/L | | - | nt Blank Colle | | <i>'</i> , | | | # of Contain | | I | j | | | | n . | | | _ 1 | | | | | | 5. COM | VIEIVIO | rump | rd | | 9 wi | th 600s | US 16 | clear | vare 1 | | ų | 1\1 | | 1 6 | | | | | · | | | Note: Include d | comments such a | as well cond | ition, odor, pr | esence of NAPL | ., or other items | not on the field | data sheet. | | | | | | - | | | | _ | | | | FORM GW-2 (Rev 11.March,10 - sej) Signature WELL ID: Tw-44/ | 3. PUR | GE DATA | (contin | ued fron | n page |) | | | | | |--------|-------------------------|---|----------|--|------------------------|---------------------------|-----------|-------------|-----------------| | | Cum. Gallons
Removed | | Temp | Spec. Cond. | ORP | DO | Turbidity | | | | Time | (gal) | ±0.1 su | ·±2°C | > of ±3% or
±10 µS/cm | > of ±10% or
±20 mV | > of ±10% or
±0.2 mg/L | ≤ 10·NTU | Water Level | Comments | | 1505 | 1.25 | 7.37 | | 0.432 | 96.2 | 9.91 | 17.6 | 40.9 | - Tildain WANNA | | 1515 | 1 | 7.37 | 19.93 | 0.431 | 97.6 | 10.06 | 14.9 | 40.9 | | | 1525 | (.75 | 737 | 29.50 | 0.429 | | 10.22 | 10.96 | 40.9 | | | 535 | į | 7.37 | 29.67 | 0.422 | 95.4 | 10.01 | 9.04 | 40.9 | | | 1540 | collu | + 5 | mple | • . | | la . | | | | | | | | | | | | • | - | | | | | | | | | | | , | | | | • | - 11 70000000000000000000000000000000000 | * | | | | • • | •, | | | | | | | * * | • . • | | • | • | | | | | | • | , | 1 5 4 | • | 1 | • | • | | | | • | | | | * | . 1 | | • | | | • | | | r · | | . , | * , | _ | - Manual Annual | Ī | | | | | | | | | 1 | | | | E . | | ,- , | | · ; .• * | • | | Purge data continued on next sheet? FORM GW-2 (Rev 11.March.10 - sej) # Brown AND Caldwell ## WELL DEVELOPMENT FIELD DATA SHEET WELL ID: MW-27 | | | | | the state of s | The second second second | | | | | | |-----------------------|----------------------------|---------------|-----------------|--|---|--------------------------------------|------------------|-------------------
--|-------------------| | 1. PRO | JECT INF | ORMA | ΓΙΟΝ | | | | | | | | | Project I | Number: 14: | 1437 | Task Numl | oer: | | Area of Conc | ern: | | | | | Client: | MACGR | egor | GOLF | | | Personnel: | GG | | | | | Project l | ocation: | LBANY, | GA | | | Weather: | , דינושט | 78°F | | | | 2. WELI | DATA | | Date Me | asured: 1 | 15/15 | Time: 0 | 805 | Tempo | orary Well: | ∕es MaNo | | Casing [| Diameter: | Z inc | hes | Type: PV | C □ Stainless | ☐ Galv. Steel | ☐ Teflon® [| Other: | | v | | Screen I | Diameter: | Zinc | hes | Type: PV | C 🗆 Stainless | ☐ Galv. Steel | ☐ Teflon® | Other: | | | | Total De | pth of Well: | 43 | feet | From: 🏋 Top | o of Well Casing | g (TOC) 🚨 To | op of Protective | e Casing 🚨 🤇 | Other: | | | Depth to | Static Water: | 31.02 | feet | From: 😾 Top | o of Well Casing | g (TOC) 🗖 To | op of Protective | e Casing 🚨 0 | Other: | | | Depth to | Product: | | feet | From: 🗆 To | p of Well Casin | g (TOC) 🗖 To | • | • | | | | Length o | of Water Colum | nn: [(. 78 | | | 2.00 | _ gal | Screened In | nterval (from | GS): 33 - (| 43' | | | | | | | | 2-in well = 0.167 | | ell = 0.667 gal/1 | t 6-in well = 1 | .469 gal/ft | | and the second of the | SE DATA | | | - | | Time: | | | Equipment | Model(s) | | Purge M | ethod: 🔲 Ba | - | □ Peristal | tic Pump 🚨 Ine | ertial Lift Pump | | Pump | | YSI | | | Materials | s: Pump/Bailer | Polyeth | ylene Stai | nless PVC | ☐ Teflon® ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ | Other: | sable | 2. H | ELON D | IPPER | | Materials | s: Rope/Tubing | | | | | lon ☐ Other:_
d ≨ Disposal | | 3 | MOPSOO | ~ | | | | | | | | | ole | 4 | | | | | to Purge (mini | mum): | | | | gallons
gal/min | | | Calibrated? | X Yes □ No | | was wei | I purged dry? Cum. Gallons | pH | Temp | Pumping Rat | ORP | gai/i11111
DO | Turbidity | | | | | Time | Removed | ±0.1 su | ±2°C | > of ±3% or | > of ±10% or | > of ±10% or | ≤ 10 NTU | Water Level | Com | ments | | | (gal) | | | ±10 µS/cm | ±20 mV | ±0.2 mg/L | | | | | | 0820 | 1.0 | 6.46 | 23.62 | 0.615 | 8.5 | 7.62 | >1000 | 37.73 | | | | 0837 | 2.0 | 6.37 | 25.78 | 0.344 | 2.8 | 6.35 | 7000 | 40.55 | and the second s | | | 3900 | 2.5 | 6.95 | 27.90 | 0.567 | 8.4 | 3.64 | 71000 | 42.51 | | | | 0915 | 3.0 | 6.48 | 27.88 | 0.542 | 9.5 | 3.82 | 498 | 42.55 | | | | 0930 | 3.5 | 6.99 | 28.01 | 0.621 | 10.2 | 2.82 | 97 | 42.6 | | | | 0955 | 3.9 | 6.42 | 28.12 | 0.614 | 8.5 | 3.14 | 78 | 42.9 | | | | | | WE | ll i | NENT DI | ey c | E7 RE | CHARGI | E | | - | | 1545 | 4.2 | 6.78 | 23.83 | 0.573 | -36.1 | 5.41 | 30.1 | 34.29 | | | | 1550 | 4.5 | 6.79 | 23.86 | 0.573 | -38.1 | 5.33 | 9.1 | 34.41 | | | | 1555 | 4.7 | 6.79 | 23.87 | 0.573 | -39.2 | 5.31 | 9.0 | 34.51 | | | | | | | | TCH T | | LADDER | Pur | | | | | 1610 | 4.8 | 6.81 | | 0.537 | | 5.24 | 32.6 | 35.40 | | | | 1620 | | - | | 0.531 | | 4.52 | 22.1 | 38.0 | | | | 100 | | | 2 11.0 | 001 | | | | | a continued on | next sheet? | | 4. COM | MENTO | | | | | | | 3- 3011 | | 3 | | 4. CUIVII | VIEIVI 2 | | | | | | | | | V | | | | | | | | | | | | | | Note: Include o | comments such a | as well condi | tion, odor, pre | esence of NAPL | ., or other items | not on the field | data sheet. | | | | ### WELL DEVELOPMENT FIELD DATA SHEET WELL ID: MW-27 | 3 PURG | E DATA | (contin | ued from | n nage |) | | | | | |---------------|------------------|---|----------|--------------------------|------------------------|---------------------------|-----------|-------------|----------| | | Cum. Gallons | рН | Temp | Spec. Cond. | ORP | DO | Turbidity | | | | Time | Removed
(gal) | ±0.1 su | ±2°C | > of ±3% or
±10 µS/cm | > of ±10% or
±20 mV | > of ±10% or
±0.2 mg/L | ≤ 10 NTU | Water Level | Comments | | 1630 | 6.75 | 6.83 | 24.61 | 0.530 | -46.7 | 4.47 | 14.2 | 37.92 | ; | | 140 | 7.00 | 6.82 | 24.48 | 0.526 | -41.4 | 4.65 | 9.8 | 38.34 | | | 1650 | 7.25 | 6.82 | 24.42 | 0.523 | -31.8 | 4.95 | 9.2 | 38.51 | | | 4 1700 | 7.50 | 6.67 | 24.43 | 0.523 | -31.7 | 4.97 | 8.9 | 38.72 | | | | | | SAM | PLED | CI | 710 | | | | | | | | , | | | | | | | | | * | , | 90 (10) III a a a a a a a a a a a a a a a a a | | | | | | | ě. | - | | | | | | 72 | i i | 4 | | | | | | - | | | | | | | | | | - | 7 | | | | | | | | | | | | | | | ue: | , | Purge data continued on next sheet? FORM GW-2 (Rev 11.March.10 - sej) Signature ## WELL DEVELOPMENT FIELD DATA SHEET WELL ID: MW-25 | pro-service priority in the Contract of the Action | | | | | AND DESCRIPTION OF THE PERSON OF | | In the second control of the second | percentage responsibility power considerations | to medical reference for the second of s | THE RESIDENCE OF THE WARREST OF | |--|-------------------------|--|-----------------------------|--------------------------|----------------------------------|--|-------------------------------------|--
--|---------------------------------------| | 1. PRO | JECT INFO | ORMA | ΓΙΟΝ | | | | | | | | | _ | Number: /471 | | | | | Area of Conce | | | | | | | MACG | | | | | | | | | | | Project l | Location: | 4LBAN | 17, GF | ð | | Weather: | CLOUDY, | 80°F | | | | 2. WELI | | | Date Me | asured: _ (| 1/5/15 | Time: 10 | 30 | Tempo | orary Well: DY | es ÞÑo | | Casing [| Didifictor. | | ches | Type: XPVC | C Stainless | Galv. Steel | ☐ Teflon® □ | Other: | | | | | Diameter: | | 21100 | Type: StPVC | C ☐ Stainless | Galv. Steel | ☐ Teflon® □ | Other: | | 60 Te | | Total De | epth of Well: | 43 | | | | g (TOC) 🗖 To | | | | , , , , , , , , , , , , , , , , , , , | | | Static Water:_ | | 1001 | , . | | g (TOC) To | | | | | | | Product: | The state of s | 1001 | | | g (TOC) 🚨 To | • | _ | | | | Length c | of Water Colum | in: 11.50 | | | = 0.041 gal/ft | _ gal
<i>2-in well = 0</i> .167 | | CONT. DOLL VOIL III | GS): <u> 3 3 </u> | | | 3 PURC | GE DATA | | | | | | | | Equipment | | | | lethod: ☐ Bai | | | | | | | 1. | | | | | | D Dolyothy | | | | Other: | | | ceom Di | PPRIL | | Materiais | s: Pump/Bailer | □ Dedicat | ted Dere | repared Off-Site | Field-Clear | ned Dispos | sable | | Konsoon | | | Materials | s: Rope/Tubing | Polyeth
Dedicat | ylene □ Poly
ted □ Prepa | /propylene 🔲 | Teflon® 🗆 Ny | vion ☐ Other:_
ed X Disposab | ole | *************************************** | 400,000 | | | Volume | to Purge (minir | mum): | well v | olumes or | | gallons | | N. A. C. | | < | | Was wel | Il purged dry? | ☐ Yes | | | te: | | | | Calibrated? ☐ | Yes U No | | Time | Cum. Gallons
Removed | pН | Temp | Spec. Cond. | ORP > of ±10% or | DO | Turbidity | Water Level | Comr | ments | | 11110 | (gal) | ±0.1 su | ±2°C | > of ±3% of
±10 µS/cm | > of ±10% of
±20 mV | > of ±10% or
±0.2 mg/L | ≤ 10 NTU | 110.0. | | | | 1045 | 2.0 | 8.66 | 25.36 | 0.292 | -21.7 | 7.69 | > (600 | 38.23 | | -0 | | 1050 | 3.0 | 8.33 | 25.94 | 0.317 | -33.6 | 7.51 | 32 | 40.02 | | | | 1055 | 3.25 | 8.19 | 26.05 | 0.327 | -29.7 | 5.64 | >160 | 40.55 | | | | | | DU | MP | | 1000 | ΣD | | | and the state of t | | | 1130 | 4.0 | 8./7 | 24.66 | 0.604 | -24.2 | | | | Transcript | | | | | | MP | | D AGA | | · | | of the state th | | | 1345 | 6.5 | 7.50 | • | 0.305 | | 11.48 | 1001 | 39.50 | BACTORIO E BACTORIO | | | | | 7.24 | | 0.307 | -27.2 | | 658 | 39.72 | a. | 14 | | 1355 | 7.0 | | | | | 6.83 | | | | | | 1405 | 7.25 | | | 0.305 | | 6.27 | 27 | 39.75 | | | | 1415 | 7.6 | 7.29 | | 0.292 | | 8.72 | 24.1 | 39.78 | | | | 1425 | 8.0 | 7.28 | 23.15 | 0.282 | -22.1 | 6.13 | 22.1 | 39.80 | | | | 1435 | 8.5 | 7.27 | 23.17 | 0.280 | -21.6 | 5.76 | 14.2 | 39.80 | | | | 1445 | 8.8 | 7.25 | 23.09 | 0.279 | -18.5 | 5.72 | 9.8 | 39.80 | 2 | | | | | | | | | | | Purge data | a continued on n | ext sheet? | | 4. COM | MENTS | Note: Include | comments such a | as well condi | ition, odor, pr | esence of NAPI | L, or other items | not on the field | data sheet. | | | | ### WELL DEVELOPMENT FIELD DATA SHEET WELL ID: MW- 28 | B. PUR | GE DATA | (contin | ued fron | n page |) | | Specific Street Company | | | |--------|------------------|--|----------|--------------------------|------------------------|---------------------------|-------------------------|-------------|---| | | Cum. Gallons | pН | Temp | Spec. Cond. | ORP | DO | Turbidity | | | | Time | Removed
(gal) | ±0.1 su | ±2°C | > of ±3% or
±10 µS/cm | > of ±10% or
±20 mV | > of ±10% or
±0.2 mg/L | ≤ 10 NTU | Water Level | Comments | | 1350 | 9.0 | 7.28 | 23.02 | 0.279 | -18.7 | 5.73 | 9.2 | 3.9.80 | | | 1455 | 9.25 | 7.26 | 23.01 | 0.278 | -18.6 | 5.73 | 8.7 | 39.80 | | | | | | | | | 19-0 | 40 | | | | | | -5 | AMP | LEP | (2) | 150 | 0 | | | | | | | | | | | | - | ~ | • | - | - | - | The same of sa | | | | * | | | | | | | 1 | D | | | | | | | | | | | *************************************** | | | | | | | | | | | | | | | | | - | | | | | | Purge data continued on next sheet? \Box # **Appendix C: Laboratory Analytical Reports** | 1. | PROJECT | INFO | DRM | ATION | | | | | | Today's Date: | | |----|------------|----------|-------|-----------|----------|---------|----------------|---------------------------|-------------------|--|---| | | Project Nu | mber: | | | | | | Project N | ame/Client: | | | | | Project Ma | | | | | | | | | | | | | Laboratory | /: | | | | | | Order No | : | | | | 2. | SAMPLE | INFO | RM | ATION | | | | | | | | | | _ | | | _ | | | | | | | | | | Total num | | | | | | | | | | _ | | | | | | | | | | □ Soil Ga |
S: | _ □ Trip Blank: | _ | _ | | | Method de | etection | n lin | nits (MDL | s) or re | eportii | ng limits (R | Ls) requested: | | | _ | | | Duplicates | | | | | | | | | | | | 3. | DATA VE | RIFIC | ATI | ON | | | | | | | | | | | | | | icable | Data V | erification | Guidelines to de | etermine approi | priate action. | | | | Yes | | | | | | stody inta | | recomme approp | | | | | | | | | | | • | | | | | | | Yes | No | NA | . Were cı | ıstody | seals | intact on s | amples bottles | and/or coolers | as necessary? | _ | | | | If | no: | Notes: _ | | | | | | | _ | | | Yes | No | NA | Were co | oler t | emper | atures wit | hin the accepta | ole range of 0-6 | s°c? | | | | | If | no: | Notes: _ | | | | | | | _ | | | Yes | No | NA | Were sa | mples | physi |
cally and c | hemically prese | rved properly (| i.e. no bubbles in VOC vials) | | | | Yes | | | _ | | | | | | ality issues, discrepancies, etc.? | _ | | | 165 | | | Notes: _ | | | | апатупсат герог | . If ee of any qu | anty issues, discrepancies, etc.: | | | | Yes | No | | | | | | lyzed, and repor | ted correctly? (| (no samples held, no wrong analyses, etc.) | | | | | If | no: | If within | holdi | ng tim | e, call lab ii | mmediately. No | :es: | | _ | | | Yes | | | | | | | hin holding time | | | | | | Yes | | | | | | nalytes rep | | | | - | | | 163 | | | Notes: | phiohi | iate a | ilalytes let | orteu: | | | | | | Yes | No " | | _ | oil and | /or se | diment cor | ncentrations rec | orted appropri | iately? (DW vs WW) | - | | | | | | | | | | Notes: | | | | | | Yes | No | | | | • | • | | | rue for all analytes? | _ | | | | | | Yes | No | NA | Total me | etals ≥ Dissolved | metals | | | | | | | | Yes | No | NA | TKN > O | rganic nitrogen | | | | | | | | | Yes | No | NA | TKN > A | mmonia (NH ₃) | | | | | | | | | Yes | No | NA | COD > T | ос | | | | | | | | | Yes | No | NA | COD > B | OD | | | | | | | If | no: | Report 1 | to proj | ect ma | anager and | contact lab's QA | /QC manager if | f needed. Notes: | _ | | | Yes | No | NA | Were m | ethod | detec | tion limits | (MDL), reportin | g limits (RLs), a | nd/or dilution factors appropriate? | | | | | If | no: | Report 1 | to proj | ect ma | anager and | contact lab if ne | eded. Notes: | | _ | | | Yes | No | NA | Were su | ırroga | te % re | ecoveries v | vithin the accep | table range of L | LCL ≤ x ≤ UCL? | | | | | If | no: | Notes: _ | | | | | | | _ | | | Yes | No | NA | Were ta | rget a | nalyte | s detected | in any field, eq | uipment, and/o | or laboratory blanks? | | | | | If · | yes: | Notes: | | | | | | | | (Rev 3/14/13 - SEJ) | Yes | | A Were any target analytes detected below practical quantitation limits (PQLs)? Notes: | |-----------|----------|---| | Yes | | Notes:A Were any sample duplicates collected? | | | | Notes: | | Yes | No NA | A Were any laboratory duplicates reported for project samples? | | | | Notes: | | Yes | No NA | A Were any matrix spikes reported for project samples? | | | | Notes: | | Yes | | A Were any laboratory control samples reported? | | | | Notes: | | Yes | | A Were calibration standards reported? | | | If yes: | Notes: | | 4. COMMEN | ITS & SU | JMMARY OF ACTIONS TAKEN (Attach additional pages if necessary) | Page __ of __ Initials _ Signature of Data Verifier ### ANALYTICAL ENVIRONMENTAL SERVICES, INC. August 04, 2015 Sarah Jones BROWN AND CALDWELL 990 Hammond Drive Atlanta GA 30328 TEL: (770) 394-2997 FAX: (770) 396-9495 RE: MacGregor Dear Sarah Jones: Order No: 1507M95 Analytical Environmental Services, Inc. received 5 samples on 7/28/2015 10:40:00 AM for the analyses presented in following report. No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative. AES' certifications are as follows: - -NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water Microbiology, effective 07/01/15-06/30/16. - -AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Organics, Inorganics), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) Direct Examination, effective until 09/01/15. These results relate only to the items tested. This report may only be reproduced in full. If you have any questions regarding these test results, please feel free to call. Ioana Pacurar Project Manager IDana) Pacurar CHAIN OF CUSTODY 3080 Presidential Drive, Atlanta GA 30340-3704 TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188 Work Order: <u>/50 7M95</u> Date: <u>7-27-15</u> Page _____ of ____ | Brown and Caldwell | | ADDRESS:
990 Hammen Dr Str 400
Attanta , Ga 30328 | | | | | | 96 | | AN | ALYSI | Visit our website | | | | | | |--------------------|---|---|---|----------|--|-----------------------|--------------|------------|---------------|--|----------|--|----------|--------|-------------|----------------------------|-----------------| | | | My ware , out Journ | | | | | | Honoster 7 | 8 | | | | | | | www.aesatlanta.com | | | PHON | 3: | FAX: | | | | | | 5 | ج | | | | | | | to check on the status of | S | | 2 4 3 <i>(</i> D) | | | | | | | | 37 | 29 | | | | | | | your results, place bottle | iner | | SAMPI | Brian Stule | SIGNATURE | | | | | | - 3 | | | | | | | | orders, etc. | # of Containers | | | 775 57000 | SAMPLED | | | | | ₽■ | 3 3 | Š | | | | | | | |),Jo # | | # | SAMPLE ID | SAN | - | is e | gg) | 1- 3 | 10 ta (| | | PRESERVATIO | | | | | | Ŷ | | | | | | | Grab | Composite | Matrix
(See codes) | | | | TRE | SERVA | IION | (366.00) | ies) | | REMARKS | | | | 152.5 | DATE | TIME | | ن
ا | | ┿ | | | | | | | | | | | | I | 15208-MW-4 | 7.27-15 | 1105 | X | | 6W | ــــــ | | X | <u> </u> | | | | | | | N | | 2 | 15208-EB-2 | 1 | 1115 | | <u> </u> | DW | | | X | | | | | | | | 2. | | 3 | Trip Blank
15208-MW-La | | | | | DW | | | × | | | | | | | | 2 | | 4 | 15208-MW-L9 | 7-17-15 | 1325 | | | CW | X | X | | | | | | | | | 2 | | 5 | 15208-MW-11 | 1 | 1650 | 1 | | لانك | X | | | | | | | | | | N | | 6 | | | | <u> </u> | | | 1~ | - | | _ | | | | | | |) | | 7 | | | | | | | ╁ | | | | | | | | | | | | 8 | | | | - | | | | | | | + | | _ | - | | | | | , | | | | <u> </u> | | | | | | | - | | | | | | | | <u> </u> | | | *** | | <u> </u> | | \vdash | | - | | | | | | | | | | 10 | | | | ļ | | | | | | - | | | | | | | | | 11 | | | | | ļ | | <u> </u> | | \bot | | igsquare | | | _ | | · | | | 12 | | | ****** | | | ····· | <u> </u> | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | | | | |]4 | | | | | | | | | | | | | | | | | | | RELIN | QUISHED BY DATE/TIME | RECEIVED BY DATE/TIME | | | | | | | | PRO | DJECT | RECEIPT | | | | | | | | 7.74.15 / 1330 | Katu Johan 712815 | | | | | | | NAME: | _ | | Total # of Containers | 10 | | | | | | 2: | (21(3)) | 2: (O:40 | | | | | | 140 | grego | | | 1 | | | | | | | | | | | | | | | | EESS: | | | Farnaround Time Request | | | | | | | 3: | , | 3: | | | | | | | кезэ:
И4 , | GL | | Standard 5 Business Days | | | | | | | | | | | | | | | O REP | ORT TO | · < 70 | n = 0 | 2 Business Day Rush Next Business Day Rush | | | | | | | SPECL | AL INSTRUCTIONS/COMMENTS: | SHIPMENT METHOD | | | | | | DICE 1 | | | - IL / N | Same Day Rush (auth req.) | | | | | | | 4 | Short hold time | OUT / / VIA: | | | | | | IFFER | ENT FR | OM AB | OVE) | Other | | | | | | | | yeler a Mac Alacasi | IN / VIA: | | | | | | | | | | STATE PROGRAM (if any): | | | | | | | | | CLIENT (FedEx) UPS MAIL COURIER GREYHOUND OTHER | | | | | | TE #: | | | | E-mail? YN; Fax? Y/K | | | | | | | SAMP | LES RECEIVED AFTER 3PM OR ON SATURDAY ARE C | ONSIDERED RI | DERED RECEIVED THE NEXT BUSINESS DAY IF THE | | | | | | n Time | . IS NO. | r INDI | DATA PACKAGE: I II) III | ΙV | | | | | | DINIVAL. | CES ARE DISTUSED 30 DATS AFTER REPORT COMPLI | LION UNLESS | OTHER ARRA | NGEME | NTS AR | E MADE, | | | | | | | | | | STANDARD TAT OF SAMPLES. | | | VAIR. | IX CODES: A = Air GW = Groundwater SE = Sedimer | t SO = Soil | SW = Surface Wa | ter W | / = Water | (Blanks) D' | W = D | inking | Water (| Blanks) | 0=C | ther (s | pecify) | WW = V | laste Water | Dog 2 of 10 | | Client: BROWN AND CALDWELL Project: MacGregor Case Narrative Date: 4-Aug-15 **Lab ID:** 1507M95 ### Hexavalent Chromium vs. Total Chromium: Please note the Hexavalent Chromium value is reported as greater than the Total Chromium value for samples 1507M95-004B & 1507M95-005B. The values are within the expected reproducibility limits for the test methods used and the results are suspected to be due to differences between the sample aliquots used for analysis. The data indicates that all Chromium present is in the Hexavalent oxidation state. Client: BROWN AND CALDWELL Client Sample ID: 15208-MW-4 Project Name:MacGregorCollection Date:7/27/2015 11:05:00 AM Date: 4-Aug-15 Lab ID: 1507M95-001 Matrix: Groundwater | Analyses | Result | Reporting
Limit | Qual | Units | BatchID | Dilution
Factor | Date Analyzed | Analyst | |-----------------------------|--------|--------------------|------|-------|---------|--------------------|------------------|---------| | TCL VOLATILE ORGANICS SW8 | 260B | | | (SV | V5030B) | | | | | 1,1,1-Trichloroethane | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | 1,1,2,2-Tetrachloroethane | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | 1,1,2-Trichloroethane | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | 1,1-Dichloroethane | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | 1,1-Dichloroethene | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | 1,2,4-Trichlorobenzene | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | 1,2-Dibromo-3-chloropropane | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | 1,2-Dibromoethane | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | 1,2-Dichlorobenzene | BRL | 5.0 | |
ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | 1,2-Dichloroethane | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | 1,2-Dichloropropane | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | 1,3-Dichlorobenzene | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | 1,4-Dichlorobenzene | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | 2-Butanone | BRL | 50 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | 2-Hexanone | BRL | 10 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | 4-Methyl-2-pentanone | BRL | 10 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Acetone | BRL | 50 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Benzene | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Bromodichloromethane | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Bromoform | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Bromomethane | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Carbon disulfide | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Carbon tetrachloride | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Chlorobenzene | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Chloroethane | BRL | 10 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Chloroform | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Chloromethane | BRL | 10 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | cis-1,2-Dichloroethene | 410 | 50 | | ug/L | 210865 | 10 | 08/04/2015 03:11 | TH | | cis-1,3-Dichloropropene | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Cyclohexane | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Dibromochloromethane | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Dichlorodifluoromethane | BRL | 10 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Ethylbenzene | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Freon-113 | BRL | 10 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Isopropylbenzene | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | m,p-Xylene | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Methyl acetate | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Methyl tert-butyl ether | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Methylcyclohexane | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Methylene chloride | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | o-Xylene | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | Qualifiers: Narr See case narrative ^{*} Value exceeds maximum contaminant level BRL Below reporting limit H Holding times for preparation or analysis exceeded N Analyte not NELAC certified B Analyte detected in the associated method blank > Greater than Result value E Estimated (value above quantitation range) S Spike Recovery outside limits due to matrix NC Not confirmed < Less than Result value Estimated value detected below Reporting Limit Client: BROWN AND CALDWELL Client Sample ID: 15208-MW-4 Project Name: MacGregor Collection Date: 7/27/2015 11:05:00 AM **Lab ID:** 1507M95-001 **Matrix:** Groundwater | Analyses | Result | Reporting
Limit | Qual | Units | BatchID | Dilution
Factor | Date Analyzed | Analyst | |-------------------------------|--------|--------------------|------|-------|---------|--------------------|------------------|---------| | TCL VOLATILE ORGANICS SW8260B | | | | (SW | /5030B) | | | | | Styrene | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Tetrachloroethene | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Toluene | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | trans-1,2-Dichloroethene | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | trans-1,3-Dichloropropene | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Trichloroethene | 110 | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Trichlorofluoromethane | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Vinyl chloride | 9.3 | 2.0 | | ug/L | 210865 | 1 | 08/04/2015 02:47 | TH | | Surr: 4-Bromofluorobenzene | 93.2 | 70.6-123 | | %REC | 210865 | 1 | 08/04/2015 02:47 | TH | | Surr: 4-Bromofluorobenzene | 95.9 | 70.6-123 | | %REC | 210865 | 10 | 08/04/2015 03:11 | TH | | Surr: Dibromofluoromethane | 118 | 78.7-124 | | %REC | 210865 | 1 | 08/04/2015 02:47 | TH | | Surr: Dibromofluoromethane | 121 | 78.7-124 | | %REC | 210865 | 10 | 08/04/2015 03:11 | TH | | Surr: Toluene-d8 | 99.5 | 81.3-120 | | %REC | 210865 | 1 | 08/04/2015 02:47 | TH | | Surr: Toluene-d8 | 101 | 81.3-120 | | %REC | 210865 | 10 | 08/04/2015 03:11 | TH | Qualifiers: * Value exceeds maximum contaminant level BRL Below reporting limit H Holding times for preparation or analysis exceeded N Analyte not NELAC certified B Analyte detected in the associated method blank > Greater than Result value E Estimated (value above quantitation range) Date: 4-Aug-15 S Spike Recovery outside limits due to matrix Narr See case narrative NC Not confirmed < Less than Result value Estimated value detected below Reporting Limit Client: BROWN AND CALDWELL Client Sample ID: 15208-EB-2 Project Name: MacGregor Collection Date: 7/27/2015 11:15:00 AM Lab ID: 1507M95-002 Matrix: Drinking Water Date: 4-Aug-15 Reporting Dilution Result Qual Units BatchID Analyses Date Analyzed Analyst Limit Factor TCL VOLATILE ORGANICS SW8260B (SW5030B) BRL ug/L TH 5.0 210865 08/04/2015 04:22 1,1,1-Trichloroethane BRL 5.0 ug/L 210865 08/04/2015 04:22 TH 1,1,2,2-Tetrachloroethane ug/L 1,1,2-Trichloroethane BRL 5.0 210865 08/04/2015 04:22 TH BRL 5.0 ug/L 210865 1 08/04/2015 04:22 TH 1,1-Dichloroethane 1,1-Dichloroethene **BRL** 5.0 ug/L 210865 1 08/04/2015 04:22 TH BRL 5.0 ug/L 210865 08/04/2015 04:22 TH 1,2,4-Trichlorobenzene 1 BRL ug/L 210865 08/04/2015 04:22 TH 1,2-Dibromo-3-chloropropane 5.0 ug/L 210865 08/04/2015 04:22 TH 1,2-Dibromoethane BRL 5.0 1,2-Dichlorobenzene **BRL** 5.0 ug/L 210865 08/04/2015 04:22 TH ug/L 210865 TH **BRL** 5.0 08/04/2015 04:22 1,2-Dichloroethane BRL 5.0 ug/L 210865 08/04/2015 04:22 TH 1,2-Dichloropropane ug/L 210865 TH 1,3-Dichlorobenzene BRL 5.0 1 08/04/2015 04:22 BRL 5.0 ug/L 210865 1 08/04/2015 04:22 TH 1,4-Dichlorobenzene 2-Butanone BRL 50 ug/L 210865 08/04/2015 04:22 TH BRL 10 ug/L 210865 08/04/2015 04:22 TH 2-Hexanone 4-Methyl-2-pentanone **BRL** 10 ug/L 210865 08/04/2015 04:22 TH BRL 50 ug/L 210865 08/04/2015 04:22 TH Acetone BRL ug/L 210865 08/04/2015 04:22 TH Benzene 5.0 ug/L BRL 5.0 210865 1 08/04/2015 04:22 TH Bromodichloromethane ug/L 210865 08/04/2015 04:22 TH Bromoform **BRL** 5.0 1 ug/L 210865 TH **BRL** 5.0 08/04/2015 04:22 Bromomethane ug/L Carbon disulfide BRL 5.0 210865 08/04/2015 04:22 TH ug/L 210865 08/04/2015 04:22 TH Carbon tetrachloride BRL 5.0 Chlorobenzene BRL 5.0 ug/L 210865 08/04/2015 04:22 TH ug/L Chloroethane BRL 10 210865 08/04/2015 04:22 TH BRL ug/L 210865 08/04/2015 04:22 TH Chloroform 5.0 1 Chloromethane **BRL** 10 ug/L 210865 1 08/04/2015 04:22 TH BRL 5.0 ug/L 210865 08/04/2015 04:22 TH cis-1,2-Dichloroethene 1 cis-1,3-Dichloropropene BRL 5.0 ug/L 210865 08/04/2015 04:22 TH ug/L 210865 08/04/2015 04:22 TH BRL 5.0 Cyclohexane ug/L 210865 08/04/2015 04:22 TH Dibromochloromethane **BRL** 5.0 ug/L 210865 TH **BRL** 10 08/04/2015 04:22 Dichlorodifluoromethane Ethylbenzene BRL 5.0 ug/L 210865 1 08/04/2015 04:22 TH ug/L Freon-113 BRL 10 210865 1 08/04/2015 04:22 TH BRL 5.0 ug/L 210865 1 08/04/2015 04:22 TH Isopropylbenzene ug/L TH m,p-Xvlene BRL 5.0 210865 08/04/2015 04:22 BRL ug/L 210865 08/04/2015 04:22 TH Methyl acetate 5.0 ug/L Methyl tert-butyl ether **BRL** 5.0 210865 08/04/2015 04:22 TH Methylcyclohexane BRL 5.0 ug/L 210865 08/04/2015 04:22 TH BRL ug/L 210865 08/04/2015 04:22 TH Methylene chloride 5.0 ug/L BRL 210865 08/04/2015 04:22 TH o-Xylene 5.0 Qualifiers: Narr See case narrative ^{*} Value exceeds maximum contaminant level BRL Below reporting limit H Holding times for preparation or analysis exceeded N Analyte not NELAC certified B Analyte detected in the associated method blank > Greater than Result value E Estimated (value above quantitation range) S Spike Recovery outside limits due to matrix NC Not confirmed < Less than Result value Estimated value detected below Reporting Limit Client: BROWN AND CALDWELL Project Name: MacGregor Collection Date: 7/27/2015 11:15:00 AM Lab ID: 1507M95-002 Matrix: Drinking Water | Analyses | | Result | Reporting
Limit | Qual | Units | BatchID | Dilution
Factor | Date Analyzed | Analyst | |----------------------------|---------|--------|--------------------|------|-------|---------|--------------------|------------------|---------| | TCL VOLATILE ORGANICS | SW8260B | | | | (SW | /5030B) | | | | | Styrene | | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 04:22 | TH | | Tetrachloroethene | | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 04:22 | TH | | Toluene | | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 04:22 | TH | | trans-1,2-Dichloroethene | | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 04:22 | TH | | trans-1,3-Dichloropropene | | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 04:22 | TH | | Trichloroethene | | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 04:22 | TH | | Trichlorofluoromethane | | BRL | 5.0 | | ug/L | 210865 | 1 | 08/04/2015 04:22 | TH | | Vinyl chloride | | BRL | 2.0 | | ug/L | 210865 | 1 | 08/04/2015 04:22 | TH | | Surr: 4-Bromofluorobenzene | | 94.4 | 70.6-123 | | %REC | 210865 | 1 | 08/04/2015 04:22 | TH | | Surr: Dibromofluoromethane | | 114 | 78.7-124 | | %REC | 210865 | 1 | 08/04/2015 04:22 | TH | | Surr: Toluene-d8 | | 101 | 81.3-120 | | %REC | 210865 | 1 | 08/04/2015 04:22 | TH | Qualifiers: * Value exceeds maximum contaminant level BRL Below reporting limit H Holding times for preparation or analysis exceeded N Analyte not NELAC certified B Analyte detected in the associated method blank > Greater than Result value E Estimated (value above quantitation range) Date: 15208-EB-2 **Client Sample ID:** 4-Aug-15 S
Spike Recovery outside limits due to matrix Narr See case narrative NC Not confirmed < Less than Result value Estimated value detected below Reporting Limit Client:BROWN AND CALDWELLClient Sample ID:TRIP BLANKProject Name:MacGregorCollection Date:7/27/2015 Project Name:MacGregorCollection Date:7/27/2015Lab ID:1507M95-003Matrix:Drinking Water | Analyses | Result | Reporting
Limit | Qual | Units | BatchID | Dilution
Factor | Date Analyzed | Analyst | |-------------------------------|--------|--------------------|------|-------|---------|--------------------|------------------|---------| | TCL VOLATILE ORGANICS SW82601 | В | | | (SV | V5030B) | | | | | 1,1,1-Trichloroethane | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | СН | | 1,1,2,2-Tetrachloroethane | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | 1,1,2-Trichloroethane | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | 1,1-Dichloroethane | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | 1,1-Dichloroethene | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | 1,2,4-Trichlorobenzene | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | 1,2-Dibromo-3-chloropropane | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | 1,2-Dibromoethane | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | 1,2-Dichlorobenzene | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | 1,2-Dichloroethane | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | 1,2-Dichloropropane | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | 1,3-Dichlorobenzene | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | 1,4-Dichlorobenzene | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | 2-Butanone | BRL | 50 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | 2-Hexanone | BRL | 10 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | 4-Methyl-2-pentanone | BRL | 10 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Acetone | BRL | 50 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Benzene | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Bromodichloromethane | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Bromoform | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Bromomethane | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Carbon disulfide | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Carbon tetrachloride | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Chlorobenzene | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Chloroethane | BRL | 10 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Chloroform | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Chloromethane | BRL | 10 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | cis-1,2-Dichloroethene | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | cis-1,3-Dichloropropene | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Cyclohexane | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Dibromochloromethane | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Dichlorodifluoromethane | BRL | 10 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Ethylbenzene | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Freon-113 | BRL | 10 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Isopropylbenzene | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | m,p-Xylene | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Methyl acetate | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Methyl tert-butyl ether | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | СН | | Methylcyclohexane | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Methylene chloride | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | o-Xylene | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | СН | Qualifiers: Date: 4-Aug-15 Narr See case narrative ^{*} Value exceeds maximum contaminant level BRL Below reporting limit H Holding times for preparation or analysis exceeded N Analyte not NELAC certified B Analyte detected in the associated method blank > Greater than Result value E Estimated (value above quantitation range) S Spike Recovery outside limits due to matrix NC Not confirmed < Less than Result value Client: BROWN AND CALDWELL Client Sample ID: TRIP BLANK Project Name: MacGreece Table 10: 7/27/2015 Project Name:MacGregorCollection Date:7/27/2015Lab ID:1507M95-003Matrix:Drinking Water | Analyses | | Result | Reporting
Limit | Qual | Units | BatchID | Dilution
Factor | Date Analyzed | Analyst | |----------------------------|---------|--------|--------------------|------|-------|---------|--------------------|------------------|---------| | TCL VOLATILE ORGANICS | SW8260B | | | | (SV | V5030B) | | | | | Styrene | | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | СН | | Tetrachloroethene | | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Toluene | | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | trans-1,2-Dichloroethene | | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | trans-1,3-Dichloropropene | | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Trichloroethene | | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Trichlorofluoromethane | | BRL | 5.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Vinyl chloride | | BRL | 2.0 | | ug/L | 210865 | 1 | 07/30/2015 23:24 | CH | | Surr: 4-Bromofluorobenzene | | 99.1 | 70.6-123 | | %REC | 210865 | 1 | 07/30/2015 23:24 | CH | | Surr: Dibromofluoromethane | | 85.1 | 78.7-124 | | %REC | 210865 | 1 | 07/30/2015 23:24 | CH | | Surr: Toluene-d8 | | 95.3 | 81.3-120 | | %REC | 210865 | 1 | 07/30/2015 23:24 | CH | Qualifiers: * Value exceeds maximum contaminant level BRL Below reporting limit H Holding times for preparation or analysis exceeded N Analyte not NELAC certified B Analyte detected in the associated method blank > Greater than Result value E Estimated (value above quantitation range) Date: 4-Aug-15 S Spike Recovery outside limits due to matrix Narr See case narrative NC Not confirmed < Less than Result value Estimated value detected below Reporting Limit Client: BROWN AND CALDWELL Client Sample ID: 15208-MW-19 Project Name: MacGregor Collection Date: 7/27/2015 1:25:00 PM Lab ID: 1507M95-004 Matrix: Groundwater | Analyses | Result Reportin
Limit | | Qual | Units | BatchID | Dilution
Factor | Date Analyzed | Analyst | |----------------------------------|--------------------------|--------|------|-------|---------|--------------------|------------------|---------| | Hexavalent Chromium in Water SW7 | 196A | | | | | | | | | Chromium as Cr+3 | BRL | 0.0100 | | mg/L | R296827 | 1 | 07/28/2015 12:30 | OM | | Chromium, Hexavalent | 0.0301 | 0.0100 | | mg/L | R296827 | 1 | 07/28/2015 12:30 | OM | | METALS, TOTAL SW6010C | | | | (SW | /3010A) | | | | | Chromium | 0.0236 | 0.0100 | | mg/L | 210676 | 1 | 07/30/2015 14:37 | TA | Date: 4-Aug-15 Qualifiers: * Value exceeds maximum contaminant level BRL Below reporting limit H Holding times for preparation or analysis exceeded N Analyte not NELAC certified B Analyte detected in the associated method blank > Greater than Result value E Estimated (value above quantitation range) S Spike Recovery outside limits due to matrix Narr See case narrative NC Not confirmed < Less than Result value Estimated value detected below Reporting Limit Page 10 of 19 Client: BROWN AND CALDWELL Client Sample ID: 15208-MW-11 **Project Name:** MacGregor Collection Date: 7/27/2015 4:50:00 PM Lab ID: 1507M95-005 Matrix: Groundwater | Analyses | Result | Reporting
Limit | Qual | Units | BatchID | Dilution
Factor | Date Analyzed | Analyst | |----------------------------------|--------|--------------------|------|-------|---------|--------------------|------------------|---------| | Hexavalent Chromium in Water SW7 | 196A | | | | | | | | | Chromium as Cr+3 | BRL | 0.0100 | | mg/L | R296827 | 1 | 07/28/2015 12:30 | OM | | Chromium, Hexavalent | 0.0895 | 0.0100 | | mg/L | R296827 | 1 | 07/28/2015 12:30 | OM | | METALS, TOTAL SW6010C | | | | (SW | /3010A) | | | | | Chromium | 0.0864 | 0.0100 | | mg/L | 210676 | 1 | 07/30/2015 14:40 | TA | Date: 4-Aug-15 Qualifiers: * Value exceeds maximum contaminant level BRL Below reporting limit H Holding times for preparation or analysis exceeded N Analyte not NELAC certified B Analyte detected in the associated method blank > Greater than Result value E Estimated (value above quantitation range) S Spike Recovery outside limits due to matrix Narr See case narrative NC Not confirmed < Less than Result value Estimated value detected below Reporting Limit Page 11 of 19 # Sample/Cooler Receipt Checklist | Client Brown & Caldwell | | Work Order Number | 1507M95 | |---|--------------|-------------------|-----------| | Checklist completed by | 7/28/15 | | | | Carrier name: FedEx UPS _ Courier _ Client _ U | S Mail Othe | T | | | Shipping container/cooler in good condition? | Yes _ | No Not Present | _ | | Custody seals intact on shipping container/cooler? | Yes _ | No Not Present | _ | | Custody seals intact on sample bottles? | Yes _ | No Not Present | _ | | Container/Temp Blank temperature in compliance? (0°≤6°C) | * Yes | No | | | Cooler #1 3-2 Cooler #2 Cooler #3 | Cooler #4 _ | Cooler#5 | Cooler #6 | | Chain of custody present? | Yes <u>/</u> | No | | | Chain of custody signed when relinquished and received? | Yes <u>(</u> | No | | | Chain of custody agrees with sample labels? | Yes 🖊 | No | | | Samples in proper container/bottle? | Yes _ | No | | | Sample containers intact? | Yes Z | No | | | Sufficient sample volume for indicated test? | Yes _ | No | | | All samples received within holding time? | Yes | No | | | Was TAT marked on the COC? | Yes _ | No | , | | Proceed with Standard TAT as per project history? | Yes | No Not Applic | able | |
Water - VOA vials have zero headspace? No VOA vials su | ıbmitted | Yes No | | | Water - pH acceptable upon receipt? | Yes 🖊 | No Not Applic | able | | / | Che | cked byJB | | | Sample Condition: Good / Other(Explain) | | | | | (For diffusive samples or AIHA lead) Is a known blank include | led? Yes | No / | | See Case Narrative for resolution of the Non-Conformance. \\Aes_server\l\Sample Receipt\My Documents\COCs and pH Adjustment Sheet\Sample_Cooler_Recipt_Checklist_Rev1.rtf Page 12 of 19 ^{*} Samples do not have to comply with the given range for certain parameters. Client: BROWN AND CALDWELL Project Name: MacGregor Lab Order: 1507M95 # **Dates Report** Date: 4-Aug-15 | Lab Sample ID | Client Sample ID | Collection Date | Matrix | Test Name | TCLP Date | Prep Date | Analysis Date | |---------------|------------------|----------------------|----------------|-------------------------|-----------|----------------------|---------------| | 1507M95-001A | 15208-MW-4 | 7/27/2015 11:05:00AM | Groundwater | TCL VOLATILE ORGANICS | | 7/30/2015 8:58:00 PM | 08/04/2015 | | 1507M95-002A | 15208-EB-2 | 7/27/2015 11:15:00AM | Drinking Water | erTCL VOLATILE ORGANICS | | 7/30/2015 8:58:00 PM | 08/04/2015 | | 1507M95-003A | TRIP BLANK | 7/27/2015 12:00:00AM | Drinking Water | erTCL VOLATILE ORGANICS | | 7/30/2015 8:58:00 PM | 07/30/2015 | | 1507M95-004A | 15208-MW-19 | 7/27/2015 1:25:00PM | Groundwater | TOTAL METALS BY ICP | | 7/29/2015 1:00:00 PM | 07/30/2015 | | 1507M95-004B | 15208-MW-19 | 7/27/2015 1:25:00PM | Groundwater | Hexavalent Chromium | | | 07/28/2015 | | 1507M95-005A | 15208-MW-11 | 7/27/2015 4:50:00PM | Groundwater | TOTAL METALS BY ICP | | 7/29/2015 1:00:00 PM | 07/30/2015 | | 1507M95-005B | 15208-MW-11 | 7/27/2015 4:50:00PM | Groundwater | Hexavalent Chromium | | | 07/28/2015 | **Client:** BROWN AND CALDWELL **Project Name:** MacGregor Workorder: 1507M95 ANALYTICAL QC SUMMARY REPORT Date: 4-Aug-15 BatchID: 210676 | Sample ID: MB-210676
SampleType: MBLK | Client ID:
TestCode: | METALS, TOTAL SW6010C | | Units: mg/L
BatchID: 210676 | Prep Date:
Analysis Date: | 07/29/2015 Run No: 297044 07/30/2015 Seq No: 6338530 | |---|-------------------------|-----------------------|------------------|--------------------------------|------------------------------|--| | Analyte | Result | RPT Limit SPK v | alue SPK Ref Val | %REC Low Limit | High Limit RPD Ref | f Val %RPD RPD Limit Qual | | Chromium | BRL | 0.0100 | | | | | | Sample ID: LCS-210676
SampleType: LCS | Client ID:
TestCode: | METALS, TOTAL SW6010C | | Units: mg/L
BatchID: 210676 | Prep Date:
Analysis Date: | 07/29/2015 Run No: 297044 07/30/2015 Seq No: 6338531 | | Analyte | Result | RPT Limit SPK va | alue SPK Ref Val | %REC Low Limit | High Limit RPD Ret | f Val %RPD RPD Limit Qual | | Chromium | 1.004 | 0.0100 1.00 | 0 | 100 80 | 120 | | | Sample ID: 1507N45-001BMS SampleType: MS | Client ID:
TestCode: | METALS, TOTAL SW6010C | | Units: mg/L
BatchID: 210676 | Prep Date:
Analysis Date: | 07/29/2015 Run No: 297044 07/30/2015 Seq No: 6338533 | | Analyte | Result | RPT Limit SPK v | alue SPK Ref Val | %REC Low Limit | High Limit RPD Ref | f Val %RPD RPD Limit Qual | | Chromium | 0.9628 | 0.0100 1.00 | 0 0.0004300 | 96.2 75 | 125 | | | Sample ID: 1507N45-001BMSD
SampleType: MSD | Client ID:
TestCode: | METALS, TOTAL SW6010C | | Units: mg/L
BatchID: 210676 | Prep Date:
Analysis Date: | 07/29/2015 Run No: 297044 07/30/2015 Seq No: 6338534 | | Analyte | Result | RPT Limit SPK v | alue SPK Ref Val | %REC Low Limit | High Limit RPD Ref | f Val %RPD RPD Limit Qual | | Chromium | 0.9777 | 0.0100 1.00 | 0 0.0004300 | 97.7 75 | 125 0.9628 | 8 1.54 20 | Qualifiers: Greater than Result value > BRL Below reporting limit Rpt Lim Reporting Limit Estimated value detected below Reporting Limit Less than Result value E Estimated (value above quantitation range) N Analyte not NELAC certified S Spike Recovery outside limits due to matrix B Analyte detected in the associated method blank H Holding times for preparation or analysis exceeded R RPD outside limits due to matrix Page 14 of 19 Client: BROWN AND CALDWELL Estimated value detected below Reporting Limit Rpt Lim Reporting Limit Project Name: MacGregor Workorder: 1507M95 # ANALYTICAL QC SUMMARY REPORT Date: 4-Aug-15 BatchID: 210865 R RPD outside limits due to matrix Page 15 of 19 | Sample ID: MB-210865 | Client ID: | | | Un | | | | | Run No: 29702 | | |-------------------------------------|--------------|------------------------|-------------------------------|---------------|---------------|------------|----------------------------|--------------------|----------------------|------| | SampleType: MBLK | TestCode: TC | L VOLATILE ORGANICS SW | 8260B | Bat | tchID: 210865 | Ana | lysis Date: 07/3 | 0/2015 | Seq No: 63376 | 669 | | Analyte | Result | RPT Limit SPK va | lue SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit | Qual | | 1,1,1-Trichloroethane | BRL | 5.0 | | | | | | | | | | 1,1,2,2-Tetrachloroethane | BRL | 5.0 | | | | | | | | | | 1,1,2-Trichloroethane | BRL | 5.0 | | | | | | | | | | 1,1-Dichloroethane | BRL | 5.0 | | | | | | | | | | 1,1-Dichloroethene | BRL | 5.0 | | | | | | | | | | 1,2,4-Trichlorobenzene | BRL | 5.0 | | | | | | | | | | 1,2-Dibromo-3-chloropropane | BRL | 5.0 | | | | | | | | | | 1,2-Dibromoethane | BRL | 5.0 | | | | | | | | | | 1,2-Dichlorobenzene | BRL | 5.0 | | | | | | | | | | 1,2-Dichloroethane | BRL | 5.0 | | | | | | | | | | 1,2-Dichloropropane | BRL | 5.0 | | | | | | | | | | 1,3-Dichlorobenzene | BRL | 5.0 | | | | | | | | | | 1,4-Dichlorobenzene | BRL | 5.0 | | | | | | | | | | 2-Butanone | BRL | 50 | | | | | | | | | | 2-Hexanone | BRL | 10 | | | | | | | | | | 4-Methyl-2-pentanone | BRL | 10 | | | | | | | | | | Acetone | BRL | 50 | | | | | | | | | | Benzene | BRL | 5.0 | | | | | | | | | | Bromodichloromethane | BRL | 5.0 | | | | | | | | | | Bromoform | BRL | 5.0 | | | | | | | | | | Bromomethane | BRL | 5.0 | | | | | | | | | | Carbon disulfide | BRL | 5.0 | | | | | | | | | | Carbon tetrachloride | BRL | 5.0 | | | | | | | | | | Chlorobenzene | BRL | 5.0 | | | | | | | | | | Chloroethane | BRL | 10 | | | | | | | | | | Chloroform | BRL | 5.0 | | | | | | | | | | Chloromethane | BRL | 10 | | | | | | | | | | Qualifiers: > Greater than Result v | /alue | < | Less than Result value | | | В | Analyte detected in the as | ssociated method b | olank | | | BRL Below reporting limit | t | Е | Estimated (value above quanti | tation range) | | | Holding times for prepara | | | | N Analyte not NELAC certified S Spike Recovery outside limits due to matrix **Client:** BROWN AND CALDWELL 1507M95 **Project Name:** MacGregor Workorder: # ANALYTICAL QC SUMMARY REPORT Date: 4-Aug-15 BatchID: 210865 | Sample ID: MB-210865
SampleType: MBLK | Client ID:
TestCode: TC | L VOLATILE ORGA | NICS SW82601 | 3 | Uni
Bat | its: ug/L
chID: 210865 | _ | Date: 07 /2. lysis Date: 07 /2. | 30/2015
30/2015 | Run No: 297022
Seq No: 6337669 | |--|----------------------------|-----------------|--------------|-------------|------------|---------------------------|------------|---|--------------------|---| | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | cis-1,2-Dichloroethene | BRL | 5.0 | | | | | | | | | | cis-1,3-Dichloropropene | BRL | 5.0 | | | | | | | | | | Cyclohexane | BRL | 5.0 | | | | | | | | | | Dibromochloromethane | BRL | 5.0 | | | | | | | | | | Dichlorodifluoromethane | BRL | 10 | | | | | | | | | | Ethylbenzene | BRL | 5.0 | | | | | | | | | | Freon-113 | BRL | 10 | | | | | | | | | | Isopropylbenzene | BRL | 5.0 | | | | | | | | | | m,p-Xylene | BRL | 5.0 | | | | | | | | | | Methyl acetate | BRL | 5.0 | | | | | | | | | | Methyl tert-butyl ether | BRL | 5.0 | | | | | | | | | | Methylcyclohexane | BRL | 5.0 | | | | | | | | | | Methylene chloride | BRL | 5.0 | | | | | | | | | | o-Xylene | BRL | 5.0 | | | | | | | | | | Styrene | BRL | 5.0 | | | | | | | | | | Tetrachloroethene | BRL | 5.0 | | | | | | | | | | Toluene | BRL | 5.0 | | | | | | | | | | trans-1,2-Dichloroethene | BRL | 5.0 | | | | | | | | | | trans-1,3-Dichloropropene | BRL | 5.0 | | | | | | | | | | Trichloroethene | BRL | 5.0 | | | | | | | | | | Trichlorofluoromethane | BRL | 5.0 | | | | | | | | | | Vinyl chloride | BRL | 2.0 | | | | | | | | | | Surr: 4-Bromofluorobenzene | 50.70 | 0 | 50.00 | | 101 | 70.6 | 123 | | | | | Surr: Dibromofluoromethane | 41.73 | 0 | 50.00 | | 83.5 | 78.7 | 124 | | | | | Surr: Toluene-d8 | 46.55 | 0 | 50.00 | | 93.1 | 81.3 | 120 | | | | Qualifiers: Greater than Result value BRL Rpt Lim Reporting Limit Below reporting limit Estimated value detected below Reporting Limit Less than Result value E Estimated (value above quantitation range) N Analyte not NELAC certified S Spike Recovery outside limits due to matrix B Analyte detected in the associated method blank H Holding times for preparation or analysis exceeded R RPD outside limits due to matrix Page 16 of 19 Rpt Lim Reporting Limit **Client:** BROWN AND CALDWELL **Project Name:** MacGregor Workorder: 1507M95 # ANALYTICAL QC SUMMARY REPORT Date: 4-Aug-15 BatchID: 210865 | Sample ID: LCS-210865 SampleType: LCS | Client ID: | TCL VOLATILE ORGA | NICS SW82601 | R | Un | its: ug/L
tchID: 210865 | | ep Date: 07/30 alysis Date: 07/30 |)/2015
)/2015 | Run No: 297022
Seq No: 6337668 | |--|---|---------------------------------|--------------|---
---------------|---------------------------------------|------------|---|------------------|---| | SampleType: LCS | resicode: | TCL VOLATILE ORGA | NICS 5W02001 | | Ва | ichid: 210865 | An | iarysis Date: 07/30 | J/2015 | Seq No: 633/668 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qua | | ,1-Dichloroethene | 43.65 | 5.0 | 50.00 | | 87.3 | 64.2 | 137 | | | | | Benzene | 47.86 | 5.0 | 50.00 | | 95.7 | 72.8 | 128 | | | | | hlorobenzene | 47.89 | 5.0 | 50.00 | | 95.8 | 72.3 | 126 | | | | | oluene | 48.14 | 5.0 | 50.00 | | 96.3 | 74.9 | 127 | | | | | richloroethene | 44.74 | 5.0 | 50.00 | | 89.5 | 70.5 | 134 | | | | | Surr: 4-Bromofluorobenzene | 48.52 | 0 | 50.00 | | 97.0 | 70.6 | 123 | | | | | Surr: Dibromofluoromethane | 40.46 | 0 | 50.00 | | 80.9 | 78.7 | 124 | | | | | Surr: Toluene-d8 | 45.71 | 0 | 50.00 | | 91.4 | 81.3 | 120 | | | | | Sample ID: 1507M95-001AMS SampleType: MS | | 15208-MW-4
TCL VOLATILE ORGA | NICS SW82601 | В | Un | its: ug/L tchID: 210865 | | ep Date: 07/30
alysis Date: 08/04 | 0/2015 | Run No: 297184
Seq No: 6340808 | | SampleType. 1415 | resicoue. | | | _ | Dai | EIID. 210003 | All | larysis Date. 00/0- | 72013 | 5cq 110. 0540000 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qua | | 1-Dichloroethene | 618.3 | 50 | 500.0 | | 124 | 60.5 | 156 | | | | | enzene | 491.4 | 50 | 500.0 | | 98.3 | 70 | 135 | | | | | Chlorobenzene | 545.5 | 50 | 500.0 | | 109 | 70.5 | 132 | | | | | oluene | 516.7 | 50 | 500.0 | | 103 | 70.5 | 137 | | | | | richloroethene | 642.0 | 50 | 500.0 | 108.0 | 107 | 71.8 | 139 | | | | | Surr: 4-Bromofluorobenzene | 501.6 | 0 | 500.0 | | 100 | 70.6 | 123 | | | | | Surr: Dibromofluoromethane | 571.1 | 0 | 500.0 | | 114 | 78.7 | 124 | | | | | Surr: Toluene-d8 | 490.9 | 0 | 500.0 | | 98.2 | 81.3 | 120 | | | | | Sample ID: 1507M95-001AMSD | | 15208-MW-4 | | | Un | its: ug/L | Pre | ep Date: 07/30 | 0/2015 | Run No: 297184 | | SampleType: MSD | TestCode: | TCL VOLATILE ORGA | NICS SW82601 | В | Bat | tchID: 210865 | An | alysis Date: 08/04 | 4/2015 | Seq No: 6340809 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qua | | ,1-Dichloroethene | 587.4 | 50 | 500.0 | | 117 | 60.5 | 156 | 618.3 | 5.13 | 20 | | Benzene | 475.8 | 50 | 500.0 | | 95.2 | 70 | 135 | 491.4 | 3.23 | 20 | | Qualifiers: > Greater than Result valu | :: > Greater than Result value < Less than Result value | | | | | | В | Analyte detected in the ass | sociated method | blank | | BRL Below reporting limit | BRL Below reporting limit E Estimated (value above quantitation | | | ation range) H Holding times for preparation or analysis exceeded | | | exceeded | | | | | J Estimated value detecte | d below Reporting | Limit | N Analy | yte not NELAC certified | | | R | RPD outside limits due to | matrix | Page 17 of 19 | | Rpt Lim Reporting Limit | | | S Snike | Recovery outside limits | due to matrix | | | | | . 5 | S Spike Recovery outside limits due to matrix **Client:** BROWN AND CALDWELL **Project Name:** MacGregor Workorder: 1507M95 # ANALYTICAL QC SUMMARY REPORT Date: 4-Aug-15 BatchID: 210865 | Sample ID: 1507M95-001AMSD SampleType: MSD | | 15208-MW-4
TCL VOLATILE ORGA | NICS SW82601 | 3 | | its: ug/L
chID: 210865 | | Date: 07/30
lysis Date: 08/04 | | Run No: 297184
Seq No: 6340809 | |--|--------|---------------------------------|--------------|-------------|------|---------------------------|------------|----------------------------------|-------|---| | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chlorobenzene | 547.9 | 50 | 500.0 | | 110 | 70.5 | 132 | 545.5 | 0.439 | 20 | | Toluene | 516.3 | 50 | 500.0 | | 103 | 70.5 | 137 | 516.7 | 0.077 | 20 | | Trichloroethene | 611.0 | 50 | 500.0 | 108.0 | 101 | 71.8 | 139 | 642.0 | 4.95 | 20 | | Surr: 4-Bromofluorobenzene | 470.7 | 0 | 500.0 | | 94.1 | 70.6 | 123 | 501.6 | 0 | 0 | | Surr: Dibromofluoromethane | 558.2 | 0 | 500.0 | | 112 | 78.7 | 124 | 571.1 | 0 | 0 | | Surr: Toluene-d8 | 493.6 | 0 | 500.0 | | 98.7 | 81.3 | 120 | 490.9 | 0 | 0 | Qualifiers: Greater than Result value > BRL Below reporting limit Rpt Lim Reporting Limit Estimated value detected below Reporting Limit S Spike Recovery outside limits due to matrix E Estimated (value above quantitation range) Less than Result value N Analyte not NELAC certified B Analyte detected in the associated method blank H Holding times for preparation or analysis exceeded R RPD outside limits due to matrix Page 18 of 19 Workorder: **Client:** BROWN AND CALDWELL 1507M95 **Project Name:** ### ANALYTICAL QC SUMMARY REPORT MacGregor BatchID: R296827 Date: 4-Aug-15 | Sample ID: MB-R296827 | Client ID: | | W | 264 | Uni | | | Date: | | Run No: 296827 | |----------------------------|------------|------------------------|-------------|-------------|------|---------------------|------------|--------------------|--------|------------------------| | SampleType: MBLK | TestCode: | Hexavalent Chromium in | water SW/IS | 96A | Bat | chID: R29682 | 7 Ana | llysis Date: 07/28 | 3/2015 | Seq No: 6332846 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium as Cr+3 | BRL | 0.0100 | | | | | | | | | | Chromium, Hexavalent | BRL | 0.0100 | | | | | | | | | | Sample ID: LCS-R296827 | Client ID: | | | | Uni | its: mg/L | Prep | Date: | | Run No: 296827 | | SampleType: LCS | TestCode: | Hexavalent Chromium in | Water SW719 | 96A | Bat | chID: R29682 | 7 Ana | llysis Date: 07/28 | 3/2015 | Seq No: 6332847 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qua | | Chromium, Hexavalent | 0.5369 | 0.0100 | 0.5000 | | 107 | 90 | 110 | | | | | Sample ID: 1507M95-004BMS | Client ID: | 15208-MW-19 | | | Uni | its: mg/L | Prep | Date: | | Run No: 296827 | | SampleType: MS | TestCode: | Hexavalent Chromium in | Water SW719 | 96A | Bat | chID: R29682 | 7 Ana | llysis Date: 07/28 | 3/2015 | Seq No: 6332854 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qua | | Chromium, Hexavalent | 0.5515 | 0.0100 | 0.5000 | 0.03010 | 104 | 85 | 115 | | | | | Sample ID: 1507M95-004BMSD | Client ID: | 15208-MW-19 | | | Uni | its: mg/L | Prep | Date: | | Run No: 296827 | | SampleType: MSD | TestCode: | Hexavalent Chromium in | Water SW719 | 96A | Bat | chID: R29682 | 7 Ana | llysis Date: 07/28 | 3/2015 | Seq No: 6332856 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium, Hexavalent | 0.5521 | 0.0100 | 0.5000 | 0.03010 | 104 | 85 | 115 | 0.5515 | 0.109 | 20 | Qualifiers: Greater than Result value > BRL Below reporting limit Rpt Lim Reporting Limit Estimated value detected below Reporting Limit Less than Result value E Estimated (value above quantitation range) N Analyte not NELAC certified S Spike Recovery outside limits due to matrix B Analyte detected in the associated method blank H Holding times for preparation or analysis exceeded R RPD outside limits due to matrix Page 19 of 19 | 1. | PROJECT | INFO | ORM | ATION | | | | | | Today's Date: | | |----|-------------|---------|---------|------------|--------|---------|---------------|---------------------------|-----------------|--|--| | | | | | | | | | Project Nar | ne/Client: | · | 2. | SAMPLE | INFC |)RM | ATION | | | | | | | | | | Purpose of | fsamp | oling: | | | | | | | | | | | Total numl | ber of | samı | oles: | | | | | | | | | | □ Grou | ındwa | iter: _ | | 🗆 : | Soil: _ | | Soil Gas: | | _ □ Trip Blank: | | | | □ Surfa | ace wa | ater: | | 🗆 | Sedim | ent: | 🗆 Other: _ | | _ □ Field Blank: | | | | □ Drinl | king w | ater: | | _ 🗆 | Air: | | 🗆 Other: _ | | _ □ Equip Blank: | | | | Analyses re | eques | ted: _ | | | | | | | | | | | Method de | etectio | on lin | nits (MDLs | | | ng limits (RI | s) requested: | | | | | | Duplicates | | | - | - | • | | | | | | | _ | | | | | | | | | | | | | 3. | DATA VE | | | | - - | D-+- \/ | :£: | C | | | | | | | | | | | | | Guidelines to det | ermine approj | priate action. | | | | Yes | | | | | | stody intac | | | | | | | Vos | | | | | | | amples bottles ar | | | | | | Yes | | _ | | | | | illiples bottles al | | as necessary: | | | | Yes | | | | | | | nin the acceptabl | | | | | | 163 | | | | | • | | • | - | | | | | Yes | | | | | | | | | (i.e. no bubbles in VOC vials) | | | | | | _ | | • | | • | , preserv | | • | | | | Yes | | | _ | | | | | | ality issues, discrepancies, etc.? | | | | | | | | | | | | | | | | | Yes | | | | • | | | • | • | (no samples held, no wrong analyses, etc.) | | | | Vos | | | | | - | | • | | | | | | Yes | | | | • | | • | nin holding time? | | | | | | Yes | | | | | | nalytes rep | | | | | | | 103 | | _ | Notes: | ріорі | iute u | ilalytes lep | orteu. | | | | | | Yes | No. | | _ | il and | or se | diment con | centrations repo | rted appropri | iately? (DW vs WW) | | | | | If | | | | | | lotes: | | · | | | | Yes | No | | | | | | | | rue for all analytes? | | | | | | | Yes | No | NA | | tals ≥ Dissolved n | | | | | | | | | Yes | No | NA | TKN > Or | ganic nitrogen | | | | | | | | | Yes | No | NA | TKN > Ar | nmonia (NH ₃) | | | | | | | | | Yes | No | NA | COD > TO | oc | | | | | | | | | Yes | No | NA | COD > BO | OD |
 | | | | | If | no: | Report to | o proj | ect ma | nager and | contact lab's QA/ | QC manager if | f needed. Notes: | | | | Yes | No | NA | Were me | ethod | detec | tion limits | (MDL), reporting | limits (RLs), a | and/or dilution factors appropriate? | | | | | If | no: | Report to | o proj | ect ma | nager and | contact lab if nee | ded. Notes: | | | | | Yes | No | NA | Were su | rrogat | te % re | ecoveries w | ithin the accepta | ble range of L | LCL ≤ x ≤ UCL? | | | | | If | | | | | | | | | | | | Yes | No | | | - | - | | | • | or laboratory blanks? | | | | | If | yes: | Notes: _ | | | | | | | | (Rev 3/14/13 - SEJ) | Yes | | A Were any target analytes detected below practical quantitation limits (PQLs)? Notes: | |-----------|----------|---| | Yes | | Notes:A Were any sample duplicates collected? | | | | Notes: | | Yes | No NA | A Were any laboratory duplicates reported for project samples? | | | | Notes: | | Yes | No NA | A Were any matrix spikes reported for project samples? | | | | Notes: | | Yes | | A Were any laboratory control samples reported? | | | | Notes: | | Yes | | A Were calibration standards reported? | | | If yes: | Notes: | | 4. COMMEN | ITS & SU | JMMARY OF ACTIONS TAKEN (Attach additional pages if necessary) | Page __ of __ Initials Signature of Data Verifier ### LABORATORY DATA VERIFICATION ### **Sample Duplicate Comparison** | PROJECT INFORMATION | | | | | | | | | | | |---------------------------------|-------------|------------------------|----------------|--------------------|-------------|--------------|-----------|-------------|-------------------|-----------------------------| | Project Number: | 147437 | | Project Name: | MacGregor Golf VRP | Services | Task/P | urpose of | Sampling | : Delineation and | Annual Monitoring | | Project Manager: | S. Jones | | Client: | MacGregor Golf | | | | | | <u> </u> | | Laboratory: | AES | | Data Report: | 1507N55 | | - | | | | | | | | | | | | | | | | | | DUPLICATE INFORMATION | | | | | | | | | | | | Parent Sample ID: | 15209-TW-43 | | Date/Time: | | | Matrix: | Ground | dwater | | _ | | Duplicate Sample ID: | 15209-DUP-1 | | Date/Time: | | | Matrix: | Ground | dwater | | - | | Analytical Results ^a | | l Results ^a | Relative Perce | Re | eporting Li | mit (RL) Co | omparison | (If Needed) | | | | Analytes (Units) | | | | Inorg: RPD > 20%? | 15209 | -TW-43 | 15209 | DUP-1 | Either Sample | Actions Required | | | 15209-TW-43 | 15209-DUP-1 | RPD | Org: RPD > 30%? | RL | 2x RL | RL | 2x RL | Conc. ≥ 2X RLs? | | | Chromium, total (mg/L) | 0.0197 | 0.019 | 4% | NO | | | | | | No further action required. | | Chromium hexavalent | 0.0129 | 0.0148 | 14% | NO | | | | | | No further action required | Relative Percent Difference (RPD) is a quantitative indicator of quality assurance and quality control (QA/QC) for repeated measurements (i.e. duplicates) where the outcome is expected to be the same. It is calculated using the following equation: $$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100$$ ^a Results in red text and italics were below reporting limits. Values are reporting limits for comparison purposes only. # ANALYTICAL ENVIRONMENTAL SERVICES, INC. January 19, 2016 Sarah Jones **BROWN AND CALDWELL** 990 Hammond Drive 30328 Atlanta TEL: (770) 394-2997 FAX: (770) 396-9495 RE: MacGregor Order No: 1507N55 Dear Sarah Jones: Analytical Environmental Services, Inc. received 4 samples on 7/29/2015 7:10:00 AM for the analyses presented in following report. No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative. AES' certifications are as follows: -NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water Microbiology, effective 07/01/15-06/30/16. -AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Organics, Inorganics), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) Direct Examination, effective until 09/01/17. These results relate only to the items tested. This report may only be reproduced in full. If you have any questions regarding these test results, please feel free to call. Ioana Pacurar Project Manager Ivana) Pacurar Revision 1/19/2016 ### ANALYTICAL ENVIRONMENTAL SERVICES, INC 3080 Presidential Drive, Atlanta GA 30340-3704 AES TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188 | COMPA | our and Caldwell | ADDRESS: | Hamme. | nd O | ۰ ۵: | te400 | | \$ | | Αì | NALYS | IS REC | UESTE | D | | Visit our website | | |-------------|---|-------------------------------|--|--|----------------|-----------------------|-----------------|---------------|----------|----------------|-------------|---------------------|-----------|---------------|---|---|--------------| | - | | Atla | rta, a | A : | 3037 | -5 | ŧ | 13 | <u> </u> | | | | | | | www.aesatlanta.com | | | MONE | | | | | | | ∐ ₹ | 2 € | ا, ق | | | | | | | to check on the status of | _ω | | PHONE | | FAX: | | | | | 3 | なき | 3 | - | | | - | | 1 1 | your results, place bottle | ainer | | SAMPL | ED BY: | SIGNATURE | | _ | | | 2 | ٤, | . { | | | 1 | | | | orders, etc. | of Container | | | Brion Steel | - | | | | | 18 | 혹거 | 3 | | | | | 1 1 | | | # of | | # | SAMPLE ID | SAN | MPLED | 4 | site | des) | 1 | F 1 | , ~ | DE | FSERV | ATION | (See code | .) | | | ž | | " | SAMPLE ID | | | Grab | Composite | Matrix
(See codes) | | | T | 一 <u>``</u> | T | T | (Bee code | <u>''</u> | | REMARKS | | | | 150 | DATE | TIME | | ŭ | | - | NA I | _ | + | + | + | | \vdash | + | | 1.72 | | 1 | 15209- TW-43 | 7.28.15 | 1340 | X | | GW_ | X | X | _ | + | | | | \vdash | \perp | | 42 | | 2 | 15209-EB-1 | | 1005 | | | 0V | | X | | \perp | _ | | | $\perp \perp$ | + | | 2 | | 3_ | 15209 - DUP-1 | | 1340 | ¥ | | CW | × | _ | × | \perp | \perp | \perp | | | | | 2 | | 4 | 15209 - Tiv-44 | <u> </u> | 1540 | X | | CW | X | X | \times | | | | | | | Donot cepart, speak | 2 | | 5 | | | | | | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | | | | | | 8 | | | | | | | | | | | | | | | | | | | 9 | | | | | | | | | | | 1 | | | \vdash | | | | | 10 | | | | | | _ | | | \top | | \top | 1 1 | \top | | | | | | \neg | | | | † | | | | | + | \top | \top | 1 1 | \dashv | 1 1 | | | | | 11 | | | | | - | | + | 1 | \dashv | \dashv | + | $\dagger = \dagger$ | + | ++ | 1 | | | | 12 | | | | + | <u> </u> | | | | \dashv | + | + | | - | | | | | | 13 | | | | + | - | | + | | \dashv | \dashv | | + - | | | 1 1 | | | | 14 | QUISHED BY DATE/TIM | E RECEIVED B | | | | DATE/TIME | | | | D) | POIEC | TINEO | RMATIO | N. | | RECEIPT | | | 1. | 0.0 | 1: | | | | | PRO | ECT N | AME: | | KOJEC | ТПУГО | RWATIO | | | | 16 | | M | 29 77815/1730 | atara | Reus | 7/2 | 9/15 | 7:100 | Mo | ي لي | 290 | | | | | | | Total # of Containers | 8 | | 2: | | 2: | | | • | _ | PRO. | ECT# | : | | | | | | | Turnaround Time Request | | | - | | | | | | | | ADDR | | 6. | | | | | | O Standard 5 Business Days | | | 3: | | 3: | | | | | | | | . (4) | | - 1 | | / 1 | | 2 Business Day Rush | | | | | | | | | | 1 | | | D: S.S. | or es | (g b | IMA L | rld co | <u>~</u> | Next Business Day Rush Same Day Rush (auth req. | | | SPECIA | al instructions/comments: | SHIPMENT METHOD OUT / / VIA: | | | | | DICE T
IFFER | | ROM A | BOVE) | | | | | Same Day Rush (auth req. | .) | | | | trans. | OUT / / VIA: IN / / VIA: | | | | | | | | | | | | | STATE PROGRAM (if any): | | | | " د. | ame doy rush; chart how times. Tara E at Login | CLIENT FEDEX UPS MAIL COURIER | | | | | | | | | | | | | E-mail? N; Fax? Y | | | | | | GREYHOUND OTHER | | | | QUOTE #: PO#: DATA P | | | | | | IV | | | | | | | SAMP | LES RECEIVED AFTER 3PM OR ON SATURDAY ARE | CONSIDERED F | RECEIVED THE | E NEXT E | BUSINES | S DAY. IF T | URNA | ROUN | D TIM | IE IS N | OT IND | ICATE | D, AES V | ILL PRO | CEED WITH | STANDARD TAT OF SAMPLES. | | GW = Groundwater SE = Sediment SO = Soil SW = Surface Water W = Water (Blanks) DW = Drinking Water (Blanks) O = Other (specify) WW = Waste Water MATRIX CODES: A = Air GW = Groundwater SE = Sediment SU - SUI SW - Suitace Water Value V - SUI SW - Suitace Water V - SUIT SUIT CODES: H+I = Hydrochloric acid + ice I = Ice only N = Nitric acid S+I = Sulfuric acid + ice S/M+I = Sodium Bisulfate/Methanol + ice O = Other (specify) NA = None White Copy - Original; Yellow Copy - Client Page 2 of 10 Client: BROWN AND CALDWELL Project: MacGregor Lab ID: 1507N55 Case Narrative Date: 19-Jan-16 Hexavalent Chromium vs Total Chromium: Please note the Hexavalent Chromium value is reported as greater than the Total Chromium value for sample 1507N55-004B. The values are within the expected reproducibility limits for the test methods used and the results are suspected to be due to differences between the sample aliquots used for analysis. The data indicates that all Chromium present is in the Hexavalent oxidation state. Client: BROWN AND CALDWELL Client Sample ID: 15209-TW-43 **Project Name:** MacGregor Collection Date: 7/28/2015 1:40:00 PM Lab
ID: 1507N55-001 Matrix: Groundwater | Analyses | Result | Reporting
Limit | Qual | Units | BatchID | Dilution
Factor | Date Analyzed | Analyst | |--------------------------------------|--------|--------------------|------|-------|---------|--------------------|------------------|---------| | Hexavalent Chromium in Water SW7196A | L | | | | | | | | | Chromium as Cr+3 | BRL | 0.0100 | | mg/L | R296827 | 1 | 07/29/2015 09:15 | OM | | Chromium, Hexavalent | 0.0129 | 0.0100 | | mg/L | R296827 | 1 | 07/29/2015 09:15 | OM | | METALS, TOTAL SW6010C | | | | (SW | /3010A) | | | | | Chromium | 0.0197 | 0.0100 | | mg/L | 210564 | 1 | 07/29/2015 13:27 | IO | Date: 19-Jan-16 Qualifiers: * Value exceeds maximum contaminant level BRL Below reporting limit H Holding times for preparation or analysis exceeded N Analyte not NELAC certified B Analyte detected in the associated method blank > Greater than Result value E Estimated (value above quantitation range) S Spike Recovery outside limits due to matrix Narr See case narrative NC Not confirmed < Less than Result value J Estimated value detected below Reporting Limit Page 4 of 10 Client: BROWN AND CALDWELL Client Sample ID: 15209-EB-1 Project Name: MacGregor Collection Date: 7/28/2015 10:05:00 AM Lab ID:1507N55-002Matrix:Drinking Water | Analyses | Result | Reporting
Limit | Qual | Units | BatchID | Dilution
Factor | Date Analyzed | Analyst | |----------------------------------|--------|--------------------|------|-------|---------|--------------------|------------------|---------| | Hexavalent Chromium in Water SW7 | 196A | | | | | | | | | Chromium as Cr+3 | BRL | 0.0100 | | mg/L | R296827 | 1 | 07/29/2015 09:15 | OM | | Chromium, Hexavalent | BRL | 0.0100 | | mg/L | R296827 | 1 | 07/29/2015 09:15 | OM | | METALS, TOTAL SW6010C | | | | (SW | /3010A) | | | | | Chromium | BRL | 0.0100 | | mg/L | 210564 | 1 | 07/29/2015 13:46 | Ю | Date: 19-Jan-16 Qualifiers: * Value exceeds maximum contaminant level BRL Below reporting limit H Holding times for preparation or analysis exceeded N Analyte not NELAC certified B Analyte detected in the associated method blank > Greater than Result value E Estimated (value above quantitation range) S Spike Recovery outside limits due to matrix Narr See case narrative NC Not confirmed < Less than Result value J Estimated value detected below Reporting Limit Page 5 of 10 Client: BROWN AND CALDWELL Client Sample ID: 15209-DUP-1 **Project Name:** MacGregor Collection Date: 7/28/2016 1:40:00 PM **Lab ID:** 1507N55-003 **Matrix:** Groundwater | Analyses | Result | Reporting
Limit | Qual | Units | BatchID | Dilution
Factor | Date Analyzed | Analyst | |-------------------------------------|--------|--------------------|------|-------|---------|--------------------|------------------|---------| | Hexavalent Chromium in Water SW7196 | A | | | | | | | | | Chromium as Cr+3 | BRL | 0.0100 | | mg/L | R296827 | 1 | 07/29/2015 09:15 | OM | | Chromium, Hexavalent | 0.0148 | 0.0100 | | mg/L | R296827 | 1 | 07/29/2015 09:15 | OM | | METALS, TOTAL SW6010C | | | | (SW | /3010A) | | | | | Chromium | 0.0190 | 0.0100 | | mg/L | 210564 | 1 | 07/29/2015 13:49 | Ю | Date: 19-Jan-16 Qualifiers: * Value exceeds maximum contaminant level BRL Below reporting limit H Holding times for preparation or analysis exceeded N Analyte not NELAC certified B Analyte detected in the associated method blank > Greater than Result value E Estimated (value above quantitation range) S Spike Recovery outside limits due to matrix Narr See case narrative NC Not confirmed < Less than Result value J Estimated value detected below Reporting Limit Client: BROWN AND CALDWELL Client Sample ID: 15209-TW-44 **Project Name:** MacGregor Collection Date: 7/28/2016 3:40:00 PM **Lab ID:** 1507N55-004 **Matrix:** Groundwater | Analyses | Result | Reporting
Limit | Qual | Units | BatchID | Dilution
Factor | Date Analyzed | Analyst | |-------------------------------------|--------|--------------------|------|-------|---------|--------------------|------------------|---------| | Hexavalent Chromium in Water SW7196 | 6A | | | | | | | | | Chromium as Cr+3 | BRL | 0.0100 | | mg/L | R296827 | 1 | 07/29/2015 09:15 | OM | | Chromium, Hexavalent | 0.0166 | 0.0100 | | mg/L | R296827 | 1 | 07/29/2015 09:15 | OM | | METALS, TOTAL SW6010C | | | | (SW | /3010A) | | | | | Chromium | 0.0163 | 0.0100 | | mg/L | 210564 | 1 | 07/29/2015 13:52 | IO | Date: 19-Jan-16 Qualifiers: * Value exceeds maximum contaminant level BRL Below reporting limit H Holding times for preparation or analysis exceeded N Analyte not NELAC certified B Analyte detected in the associated method blank > Greater than Result value E Estimated (value above quantitation range) S Spike Recovery outside limits due to matrix Narr See case narrative NC Not confirmed < Less than Result value J Estimated value detected below Reporting Limit # Sample/Cooler Receipt Checklist | Client BREWN & CALDWELL | / | Work Orde | r Number | 1507155 | |---|---------------|-----------|-------------|-----------| | Checklist completed by Signature Lack 22 Date | 7/29/ | 65 | | | | Carrier name: FedExUPS Courier Client US | S Mail Other | r | _ | | | Shipping container/cooler in good condition? | Yes / | | | | | Custody seals intact on shipping container/cooler? | Yes 🗸 | No | Not Present | _ | | Custody seals intact on sample bottles? | Yes | No | Not Present | _ | | Container/Temp Blank temperature in compliance? (0°≤6°C) | *Yes | No | | | | Cooler #1 3.7 Cooler #2 Cooler #3 | _ Cooler #4 _ | Co | oler#5 | Cooler #6 | | Chain of custody present? | Yes | No | | | | Chain of custody signed when relinquished and received? | Yes _ | No | | | | Chain of custody agrees with sample labels? | Yes | No _ | | | | Samples in proper container/bottle? | Yes _ | No | | | | Sample containers intact? | Yes | No | | | | Sufficient sample volume for indicated test? | Yes | No | | | | All samples received within holding time? | Yes _ | No | | | | Was TAT marked on the COC? | Yes _ | No | | | | Proceed with Standard TAT as per project history? | Yes | No | Not Applic | able _ | | Water - VOA vials have zero headspace? No VOA vials su | ubmitted | Yes | No | | | Water - pH acceptable upon receipt? | Yes | No | Not Applic | able | | Adjusted? | | cked by | <i>HA</i> | | | Sample Condition: Good Other(Explain) | | | | | | (For diffusive samples or AIHA lead) Is a known blank include | ded? Yes | 1 | No . | | See Case Narrative for resolution of the Non-Conformance. \\Aes_server\\\Sample Receipt\My Documents\COCs and pH Adjustment Sheet\Sample_Cooler_Recipt_Checklist_Rev1.rtf ^{*} Samples do not have to comply with the given range for certain parameters. Client: BROWN AND CALDWELL **Project Name:** MacGregor **Workorder:** 1507N55 # ANALYTICAL QC SUMMARY REPORT Date: 19-Jan-16 BatchID: 210564 | Sample ID: MB-210564 | Client ID: | | | Uni | ts: mg/L | Prej | Date: 07/29 | 9/2015 | Run No: 296873 | |-----------------------------|------------|-----------------------|---------------|------|--------------|------------|--------------------|--------|------------------------| | SampleType: MBLK | TestCode: | METALS, TOTAL SW6010C | | Bate | chID: 210564 | Ana | alysis Date: 07/29 | 9/2015 | Seq No: 6333789 | | Analyte | Result | RPT Limit SPK value | e SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium | BRL | 0.0100 | | | | | | | | | Sample ID: LCS-210564 | Client ID: | | | Uni | ts: mg/L | Prej | Date: 07/29 | 9/2015 | Run No: 296873 | | SampleType: LCS | TestCode: | METALS, TOTAL SW6010C | | Bate | chID: 210564 | Ana | alysis Date: 07/29 | 9/2015 | Seq No: 6333790 | | Analyte | Result | RPT Limit SPK value | e SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium | 1.042 | 0.0100 1.000 | | 104 | 80 | 120 | | | | | Sample ID: 1507N55-001AMS | Client ID: | 15209-TW-43 | | Uni | ts: mg/L | Pre | Date: 07/29 | 9/2015 | Run No: 296873 | | SampleType: MS | TestCode: | METALS, TOTAL SW6010C | | Bate | chID: 210564 | Ana | alysis Date: 07/29 | 9/2015 | Seq No: 6333792 | | Analyte | Result | RPT Limit SPK value | e SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium | 1.033 | 0.0100 1.000 | 0.01967 | 101 | 75 | 125 | | | | | Sample ID: 1507N55-001AMSD | Client ID: | 15209-TW-43 | | Uni | ts: mg/L | Pre | Date: 07/29 | 9/2015 | Run No: 296873 | | SampleType: MSD | TestCode: | METALS, TOTAL SW6010C | | Bate | chID: 210564 | Ana | alysis Date: 07/29 | 9/2015 | Seq No: 6333793 | | Analyte | Result | RPT Limit SPK value | e SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium | 1.026 | 0.0100 1.000 | 0.01967 | 101 | 75 | 125 | 1.033 | 0.634 | 20 | Qualifiers: > Greater than Result value BRL Below reporting limit Rpt Lim Reporting Limit J Estimated value detected below Reporting Limit < Less than Result value E Estimated (value above quantitation range) N Analyte not NELAC certified S Spike Recovery outside limits due to matrix B Analyte detected in the associated method blank H Holding times for preparation or analysis exceeded R RPD outside limits due to matrix Page 9 of 10 Client: BROWN AND CALDWELL **Project Name:** MacGregor Workorder: 1507N55 # ANALYTICAL QC SUMMARY REPORT Date: 19-Jan-16 BatchID: R296827 | Sample ID: MB-R296827 | Client ID: | Hexavalent Chromium ir | Woton SW710 | 064 | Uni | | | Date: | 2015 | Run No: 296827 | |----------------------------|------------|------------------------|---------------|-------------|------|---------------------|------------|--------------------|--------|------------------------| | SampleType: MBLK | lestCode: | Hexavalent Chromium ii | i water 5w/12 | OA | ват | chID: R29682 | ar Ana | alysis Date: 07/28 | 5/2015 | Seq No: 6332846 | | Analyte | Result | RPT Limit | SPK value
 SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium as Cr+3 | BRL | 0.0100 | | | | | | | | | | Chromium, Hexavalent | BRL | 0.0100 | | | | | | | | | | Sample ID: LCS-R296827 | Client ID: | | | | Uni | its: mg/L | Prej | p Date: | | Run No: 296827 | | SampleType: LCS | TestCode: | Hexavalent Chromium ir | 1 Water SW719 | 96A | Bat | chID: R29682 | 27 Ana | alysis Date: 07/28 | 3/2015 | Seq No: 6332847 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium, Hexavalent | 0.5369 | 0.0100 | 0.5000 | | 107 | 90 | 110 | | | | | Sample ID: 1507M95-004BMS | Client ID: | | | | Uni | its: mg/L | Prej | p Date: | | Run No: 296827 | | SampleType: MS | TestCode: | Hexavalent Chromium in | Water SW719 | 96A | Bat | chID: R29682 | 27 Ana | alysis Date: 07/28 | 3/2015 | Seq No: 6332854 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium, Hexavalent | 0.5515 | 0.0100 | 0.5000 | 0.03010 | 104 | 85 | 115 | | | | | Sample ID: 1507M95-004BMSD | Client ID: | | | | Uni | its: mg/L | Pre | p Date: | | Run No: 296827 | | SampleType: MSD | TestCode: | Hexavalent Chromium in | Water SW719 | 96A | Bat | chID: R29682 | Ana | alysis Date: 07/28 | 3/2015 | Seq No: 6332856 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium, Hexavalent | 0.5521 | 0.0100 | 0.5000 | 0.03010 | 104 | 85 | 115 | 0.5515 | 0.109 | 20 | Qualifiers: > Greater than Result value BRL Below reporting limit Rpt Lim Reporting Limit J Estimated value detected below Reporting Limit < Less than Result value E Estimated (value above quantitation range) N Analyte not NELAC certified S Spike Recovery outside limits due to matrix B Analyte detected in the associated method blank H Holding times for preparation or analysis exceeded R RPD outside limits due to matrix Page 10 of 10 | 1. | PROJECT | INFO | ORM | ATION | | | | | | Today's Date: | | |----|-------------|---------|---------|-------------|--------|---------|---------------|--------------------|-----------------|--|-------------| | | | | | | | | | Project Nar | ne/Client: | , | 2. | SAMPLE | INFC |)RM | ATION | | | | | | | | | | Purpose of | fsamp | oling: | | | | | | | | | | | Total numl | ber of | samı | oles: | | | | | | | | | | □ Grou | ındwa | iter: _ | | 🗆 : | Soil: _ | | Soil Gas: | | _ 🗆 Trip Blank: | | | | □ Surfa | ace wa | ater: | | 🗆 | Sedim | ent: | 🗆 Other: _ | | _ □ Field Blank: | | | | □ Drinl | king w | ater: | | _ 🗆 | Air: | | 🗆 Other: _ | | _ □ Equip Blank: | | | | Analyses re | eques | ted: _ | | | | | | | | | | | Method de | etectio | on lin | nits (MDLs | | | ng limits (RI | s) requested: | | | | | | Duplicates | | | - | - | • | | | | | | | _ | | | | | | | | | | | | | 3. | DATA VE | | | | - - | D-+- \/ | :£: ±: | C | | | | | | | | | | | | | Guidelines to det | ermine approp | priate action. | | | | Yes | | | | | | stody intac | | | | | | | Yes | | | | | | | amples bottles ar | | | | | | 163 | | _ | | | | | inples bottles al | | as necessary: | | | | Yes | | | | | | | nin the acceptabl | | | | | | 103 | | | | | • | | • | - | | | | | Yes | | | | | | | | | (i.e. no bubbles in VOC vials) | | | | | | _ | | • | | • | , , | | • | | | | Yes | No | NA | Was the | case | narrat | ive of the a | nalytical report f | ree of any qu | ality issues, discrepancies, etc.? | | | | Vaa | | | | | | | | | (no samples held, no wrong analyses, etc.) | | | | Yes | | | | • | | | • | • | (no samples neid, no wrong analyses, etc.) | | | | Yes | | | | | - | | nin holding time? | | | | | | 103 | | | | • | | • | | | | | | | Yes | | | | | | nalytes rep | | | | | | | | | _ | Notes: | | | , | | | | | | | Yes | No | NA | Were so | il and | or se | diment con | centrations repo | rted appropri | iately? (DW vs WW) | | | | | If | f no: | Call lab ii | mmed | diately | to verify. N | lotes: | | | | | | Yes | No | NA | If analyz | ed for | the fo | ollowing pa | rameters, was th | e following to | rue for all analytes? | | | | | | | Yes | No | NA | Total me | tals ≥ Dissolved n | netals | | | | | | | | Yes | No | NA | TKN > Or | ganic nitrogen | | | | | | | | | Yes | No | NA | TKN > Ar | nmonia (NH₃) | | | | | | | | | Yes | No | NA | COD > TO | OC . | | | | | | | | | Yes | No | NA | COD > BO | DD | | | | | | | If | no: | Report to | o proj | ect ma | nager and | contact lab's QA/ | QC manager if | f needed. Notes: | | | | Yes | No | NA | Were me | ethod | detec | tion limits | (MDL), reporting | limits (RLs), a | and/or dilution factors appropriate? | | | | | If | f no: | Report to | o proj | ect ma | nager and | contact lab if nee | ded. Notes: | | | | | Yes | No | NA | Were su | rrogat | te % re | coveries w | ithin the accepta | ble range of l | LCL ≤ x ≤ UCL? | | | | | If | | | | | | | | | | | | Yes | No | | | - | - | | | • | or laboratory blanks? | | | | | If | yes: | Notes: _ | | | | | | | | (Rev 3/14/13 - SEJ) | Yes | | Were any target analytes detected below practical quantitation limits (PQLs)? Notes: | |-----------|----------|---| | Yes | | Notes: | | | | Notes: | | Yes | No NA | Were any laboratory duplicates reported for project samples? | | | | Notes: | | Yes | No NA | Were any matrix spikes reported for project samples? | | | | Notes: | | Yes | | Were any laboratory control samples reported? | | | | Notes: | | Yes | | Were calibration standards reported? | | | If yes: | Notes: | | 4. COMMEN | ITS & SU | IMMARY OF ACTIONS TAKEN (Attach additional pages if necessary) | Page __ of __ Initials Signature of Data Verifier # ANALYTICAL ENVIRONMENTAL SERVICES, INC. August 11, 2015 Sarah Jones BROWN AND CALDWELL 990 Hammond Drive Atlanta GA 30328 TEL: (770) 394-2997 FAX: (770) 396-9495 RE: MacGregor Dear Sarah Jones: Order No: 1507P87 Analytical Environmental Services, Inc. received 2 samples on 7/31/2015 10:35:00 AM for the analyses presented in following report. No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative. AES' certifications are as follows: - -NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water Microbiology, effective 07/01/15-06/30/16. - -AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Organics, Inorganics), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) Direct Examination, effective until 09/01/15. These results relate only to the items tested. This report may only be reproduced in full. If you have any questions regarding these test results, please feel free to call. Ioana Pacurar Project Manager IDana) Pacurar # ANALYTICAL ENVIRONMENTAL SERVICES, INC 3080 Presidential Drive, Atlanta GA 30340-3704 TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188 Work Order: 107187 Date: 7.30 - 15 Page ______ of _______ CHAIN OF CUSTODY | Brown and | Cardwell | ADDRESS: Hammado, Ste 40-
1990 Hammado, 30328 | | | | | | ANALYSIS REQUESTED | | | | | | | | | | Visit our website | | |---------------------------|--
--|---|--|-----------|-----------------------|-----------------------------|---|-------------|------------|----------------|--------------|--------|---------|--|----------|--------------|---|--------------------| | HONE: | and the second s | At lant | | Chimiton Heraudiny Thivelet Ive d Trivelet Ive d Mind Trivelet Index | | | | | | | | | nets | | | | | | | | | | | | 3 | 3 5 | | 2 32 | 3 3 | 3 | | | | | | your results, place bottle
orders, etc. | ontai | | | | | AMPLED BY: Brian Stule | | SIGNATURE | 25 | T | T | | i | 1 2 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 | _ 35 | | . ગુ | 243 | | | | | | | No # of Containers | | | | SAN | /PLED | 4 | site | des | F | <u> </u> | <u>~ [0</u> | | سالت | RVAT | ION (S | ec code | :s) | <u> </u> | | | | | # | SAMPLE ID | DATE | TIME | Grab | Composite | Matrix
(See codes) | יינגנון! | ו גט | الد | VA N | 一 | | | | ĺ | | | REMARKS | | | 16.214 | 20 | 7.30.15 | 1605 | × | | ,w | | - | VA 1 | | | | | | | | | | | | 1 15211-MU-
2 15211-EB | 2 | 1 | 1615 | × | T | ,w | X | X | X | | | | | | | | | | | | i | | 1 | | | | | | | 7 | | | | | | | | | | | | 3 | | | | | | | | | \neg | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | 5 | _6 | | | <u> </u> | | | | | | | | T | T . | | | | | | | | | 7 | | | | 1 | | | | | | | | 1 | | | | | | | | | 8 | | | | | | 100 | | | | \Box | | | | | | | | | | | 9 | <u>,</u> | | <u> </u> | + | 1 | | | | | | | | | | | | | | | | 10 | | | | 1 | 1 | *** | \neg | | | | | | | | 12 | | | | | | | | | | | \neg | | | | | | | | | | 13 | | | | | - | | | | \Box | | $\neg \dagger$ | | | | \dashv | - | | | | | 14 | T) A TE ATIL | Æ RECEIVED | BV | | DA | TE/TIME | 3 | <u> </u> | | | PRO. | JECT) | INFOR | MATI | ON | | 1 | RECEIPT | | | RELINQUISHED BY | 7.30-18/1330 | 1: Min | inntan | val | 7/3/1 | 2015
GH | PRO. | ECT: | | | | | | | | | | Total # of Containers | | | 2 | 1.40-15/190 | 2: | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 100 | | | ÆCT | | / | | | | | | | | Tumaround Time Reques | | | | | | | | | | | ADD | | | | | | | | | | Standard 5 Business Days | 3 | | 3: | | 3: | | . – | | | SEN | D REI | PORT | €A
TO:< | .Jon | <u>es</u> (c | حط | w. c | old. | (OM | | 2 Business Day Rush Next Business Day Rush | | | SPECIAL INSTRUCTIONS | | | SHIPME | NT MET | | | INV | OICE | TO: | FRON | | | | | | | | Same Day Rush (auth re | :q.) | | Short hold | fimer | IN | / / ENT (FedF) | VIA
VIA | λ: | TE D | and the same of the same of | | | | | | | | | | | STATE PROGRAM (if any): E-mail? (Y\N; Fax? Y\N |
) | | | | ے ا | DEVHOUND. | OTHER | | | QUO | OTE# | · | | | _ | | PO#: | | | | DATA PACKAGE: I IN II | | | SAMPLES RECEIVED AT | TER 3PM OR ON SATURDAY ARE | CONSIDERED | RECEIVED TI | 1E NEXT | BUSINESS | DAY. IF T | URN/ | ROU | ND T | IME I | S NOT | INDI | CATE | D, AES | WILL | PROCI | EED WI | ITH STANDARD TAT OF SAMPLES. | | | SAMPLES ARE DISPOSE | D 30 DAYS AFTER REPORT COMI | LETION UNLE | SS OTHER AR | RANGEN | AENTS ARE | MADE. | | | | | | | | | ······································ | | . Yello kort | 22/18 7 8 1 | | Marie . Client: BROWN AND CALDWELL Project: MacGregor Lab ID: 1507P87 Case Narrative Date: 11-Aug-15 #### Sample Receiving Nonconformance: Per Brian Steele via phone 7/31/15 at 11:12am, all analyses requested on the Chain of Custody were ran by the laboratory on sample 15211-MW-24. #### Hexavalent Chromium vs Total Chromium: Please note the Hexavalent Chromium value is reported as greater than the Total Chromium value for sample 1507P87-001. The values are within the expected reproducibility limits for the test methods used and the results are suspected to be due to differences between the sample aliquots used for analysis. The data indicates that all Chromium present is in the Hexavalent oxidation state. Client: BROWN AND CALDWELL Client Sample ID: 15211-MW-24 **Project Name:** MacGregor Collection Date: 7/30/2015 4:05:00 PM Date: 11-Aug-15 Lab ID: 1507P87-001 Matrix: Groundwater | Analyses | Result | Reporting
Limit | Qual | Units | Units BatchID | | Date Analyzed | Analyst | |--------------------------------------|--------|--------------------|------|-------|---------------|---|------------------|---------| | METALS, DISSOLVED SW6010C | | | | | | | | | | Chromium | 0.0653 | 0.0100 | | mg/L | 211121 | 1 | 08/07/2015 15:10 | TA | | Hexavalent Chromium, Dissolved SW719 | 6A | | | | | | | | | Chromium as Cr+3 | BRL | 0.0100 | | mg/L | R297085 | 1 | 07/31/2015 15:00 | OM | | Chromium, Hexavalent | 0.0772 | 0.0100 | | mg/L | R297085 | 1 | 07/31/2015 15:00 | OM | | Hexavalent Chromium in Water SW7196 | A | | | | | | | | | Chromium as Cr+3 | BRL | 0.0100 | | mg/L | R297085 | 1 | 07/31/2015 15:00 | OM | | Chromium, Hexavalent | 0.0772 | 0.0100 | | mg/L | R297085 | 1 | 07/31/2015 15:00 | OM | | METALS, TOTAL SW6010C | | | | (SW | /3010A) | | | | | Chromium | 0.0715 | 0.0100 | | mg/L | 210935 | 1 | 08/04/2015 13:45 | TA | Qualifiers: * Value exceeds maximum contaminant level BRL Below reporting limit H Holding times for preparation or analysis exceeded N Analyte not NELAC certified B Analyte detected in the associated method blank > Greater than Result value E Estimated (value above quantitation range) S Spike Recovery outside limits due to matrix Narr See case narrative Less than Result value NC Not confirmed Estimated value detected below Reporting Limit Client: BROWN AND CALDWELL Client Sample ID: 15211-EB-3 Project Name:MacGregorCollection Date:7/30/2015 4:15:00 PMLab ID:1507P87-002Matrix:Drinking Water | Analyses | Result | Reporting
Limit | Qual | Units | BatchID | Dilution
Factor | Date Analyzed | Analyst | |--------------------------------------|----------|--------------------|------|-------|---------|--------------------|------------------|---------| | Hexavalent Chromium in Water SW7196A | \ | | | | | | | | | Chromium as Cr+3 | BRL | 0.0100 | | mg/L | R297085 | 1 | 07/31/2015 15:00 | OM | | Chromium, Hexavalent | BRL | 0.0100 | | mg/L | R297085 | 1 | 07/31/2015 15:00 | OM | | METALS, TOTAL SW6010C | | | | (SW | /3010A) | | | | | Chromium | BRL | 0.0100 | | mg/L | 210935 | 1 | 08/04/2015 13:47 | TA | Date: 11-Aug-15 Qualifiers: * Value exceeds maximum contaminant level BRL Below reporting limit H Holding times for preparation or analysis exceeded N Analyte not NELAC certified B Analyte detected in the associated method blank > Greater than Result value E Estimated (value above quantitation range) S Spike Recovery outside limits due to matrix Narr See case narrative NC Not confirmed < Less than Result value J Estimated value detected below Reporting Limit # Sample/Cooler Receipt Checklist | Client From & Caldrell | | Work Order | Number 1507P87 | |---|---------------|------------|------------------| | Checklist completed by Miliam Saurar 7 Signature Date | 7/31/30 l | | | | Carrier name: FedEx UPS Courier Client US | S Mail Other | | _ | | Shipping container/cooler in good condition? | Yes _ | No | Not Present | | Custody seals intact on shipping container/cooler? | Yes | No | Not Present | | Custody seals intact on sample bottles? | Yes _ | No | Not Present | | Container/Temp Blank temperature in compliance? (0°≤6°C) | *Yes _ | No | | | Cooler #1 2.4°C Cooler #2 Cooler #3 | _ Cooler #4 _ | Coo | oler#5 Cooler #6 | | Chain of custody present? | Yes _ | No | | | Chain of custody signed when relinquished and received? | Yes _ | No | | | Chain of custody agrees with sample labels? | Yes 🖊 | No | | | Samples in proper container/bottle? | Yes 🖊 | No | | | Sample containers intact? | Yes _ | No | | | Sufficient sample volume for indicated test? | Yes _ | No | | | All samples received within holding time? | Yes _ | No | | | Was TAT marked on the COC? | Yes _ | No | | | Proceed with Standard TAT as per project history? | Yes | No | Not Applicable | | Water - VOA vials have zero headspace? No VOA vials su | ubmitted | Yes | No | | Water - pH acceptable upon receipt? | Yes _ | No | Not Applicable | | Adjusted? | Chec | eked by | WRIAN | | Sample Condition: Good Other(Explain) | | | | | (For diffusive samples or AIHA lead) Is a known blank include | ded? Yes | N | lo | See Case Narrative for resolution of the Non-Conformance. \\Aes_server\\\Sample Receipt\\My'Documents\\COCs and pH Adjustment Sheet\\Sample_Cooler_Recipt_Checklist_Rev1.rtf ^{*} Samples do not have to comply with the given range for certain parameters. Client: BROWN AND CALDWELL Project Name: MacGregor Lab Order: 1507P87 # **Dates Report** **Date:** 11-Aug-15 | Lab Sample ID | Client Sample ID | Collection Date | Matrix | Test Name | TCLP Date | Prep Date | Analysis Date | |---------------|------------------|---------------------|---------------|--------------------------------|-----------|----------------------|---------------| | 1507P87-001A | 15211-MW-24 | 7/30/2015 4:05:00PM | Groundwater | TOTAL METALS BY ICP | | 8/3/2015 1:20:00 PM | 08/04/2015 | | 1507P87-001B | 15211-MW-24 | 7/30/2015 4:05:00PM | Groundwater | Hexavalent Chromium | | | 07/31/2015 | | 1507P87-001C | 15211-MW-24 | 7/30/2015 4:05:00PM | Groundwater | DISSOLVED METALS BY ICP | | 8/6/2015 10:30:00 AM | 08/07/2015 | | 1507P87-001D | 15211-MW-24 | 7/30/2015 4:05:00PM | Groundwater | Hexavalent Chromium, Dissolved | | | 07/31/2015 | | 1507P87-002A | 15211-EB-3 | 7/30/2015 4:15:00PM | Drinking Wate | erTOTAL METALS BY ICP | | 8/3/2015 1:20:00 PM | 08/04/2015 | | 1507P87-002B | 15211-EB-3 | 7/30/2015 4:15:00PM | Drinking Wate | erHexavalent Chromium | | | 07/31/2015 | Client: BROWN
AND CALDWELL Project Name: MacGregor Workorder: 1507P87 ## ANALYTICAL QC SUMMARY REPORT Date: 11-Aug-15 BatchID: 210935 | Sample ID: MB-210935 | Client ID: | | | | Uni | ts: mg/L | Prep | Date: 08/0 | 3/2015 | Run No: 297273 | |----------------------------|------------|-----------------|-----------|-------------|------|--------------|------------|-------------------|--------|------------------------| | SampleType: MBLK | TestCode: | METALS, TOTAL S | W6010C | | Bat | chID: 210935 | Ana | lysis Date: 08/0 | 4/2015 | Seq No: 6342833 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium | BRL | 0.0100 | | | | | | | | | | Sample ID: LCS-210935 | Client ID: | | | | Uni | ts: mg/L | Prep | Date: 08/0 | 3/2015 | Run No: 297273 | | SampleType: LCS | TestCode: | METALS, TOTAL S | W6010C | | Bat | chID: 210935 | Ana | lysis Date: 08/0 | 4/2015 | Seq No: 6342834 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium | 1.024 | 0.0100 | 1.000 | 0.0003900 | 102 | 80 | 120 | | | | | Sample ID: 1507O95-006CMS | Client ID: | | | | Uni | ts: mg/L | Prep | Date: 08/0 | 3/2015 | Run No: 297273 | | SampleType: MS | TestCode: | METALS, TOTAL S | W6010C | | Bat | chID: 210935 | Ana | lysis Date: 08/0 | 4/2015 | Seq No: 6342836 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium | 1.016 | 0.0100 | 1.000 | 0.001270 | 102 | 75 | 125 | | | | | Sample ID: 1507O95-006CMSD | Client ID: | | | | Uni | ts: mg/L | Prep | Date: 08/0 | 3/2015 | Run No: 297273 | | SampleType: MSD | TestCode: | METALS, TOTAL S | W6010C | | Bat | chID: 210935 | Ana | lysis Date: 08/0 | 4/2015 | Seq No: 6342837 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium | 1.024 | 0.0100 | 1.000 | 0.001270 | 102 | 75 | 125 | 1.016 | 0.774 | 20 | Qualifiers: > Greater than Result value BRL Below reporting limit Rpt Lim Reporting Limit J Estimated value detected below Reporting Limit < Less than Result value E Estimated (value above quantitation range) N Analyte not NELAC certified S Spike Recovery outside limits due to matrix B Analyte detected in the associated method blank H Holding times for preparation or analysis exceeded R RPD outside limits due to matrix Page 8 of 11 Client: BROWN AND CALDWELL Project Name: MacGregor Workorder: 1507P87 ## ANALYTICAL QC SUMMARY REPORT Date: 11-Aug-15 BatchID: 211121 | Sample ID: MB-211121
SampleType: MBLK | Client ID:
TestCode: | METALS, DISSOLVED | SW6010C | | Uni
Bat | ts: mg/L chID: 211121 | | p Date: 08/0 alysis Date: 08/0 | | Run No: 297532
Seq No: 6349718 | |---|-------------------------|-------------------|-----------|-------------|------------|-------------------------------------|------------|--------------------------------|------|---| | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium | BRL | 0.0100 | | | | | | | | | | Sample ID: LCS-211121
SampleType: LCS | Client ID:
TestCode: | METALS, DISSOLVED | SW6010C | | Uni
Bat | ts: mg/L chID: 211121 | | p Date: 08/0 alysis Date: 08/0 | | Run No: 297532
Seq No: 6349723 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium | 0.9986 | 0.0100 | 1.000 | | 99.9 | 80 | 120 | | | | | Sample ID: 1507Q17-004AMS SampleType: MS | Client ID:
TestCode: | METALS, DISSOLVED | SW6010C | | Uni
Bat | ts: mg/L chID: 211121 | | p Date: 08/0 alysis Date: 08/0 | | Run No: 297532
Seq No: 6349725 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium | 0.9710 | 0.0100 | 1.000 | | 97.1 | 75 | 125 | | | | | Sample ID: 1507Q17-004AMSD
SampleType: MSD | Client ID:
TestCode: | METALS, DISSOLVED | SW6010C | | Uni
Bat | ts: mg/L chID: 211121 | | p Date: 08/0 alysis Date: 08/0 | | Run No: 297532
Seq No: 6349726 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium | 0.9890 | 0.0100 | 1.000 | | 98.9 | 75 | 125 | 0.9710 | 1.84 | 20 | Qualifiers: > Greater than Result value BRL Below reporting limit Rpt Lim Reporting Limit J Estimated value detected below Reporting Limit < Less than Result value E Estimated (value above quantitation range) N Analyte not NELAC certified S Spike Recovery outside limits due to matrix B Analyte detected in the associated method blank H Holding times for preparation or analysis exceeded R RPD outside limits due to matrix Page 9 of 11 Client: BROWN AND CALDWELL Project Name: MacGregor Workorder: 1507P87 ## ANALYTICAL QC SUMMARY REPORT Date: 11-Aug-15 BatchID: R297085 | Sample ID: MB-R297085 | * | | | | | | | p Date: | Run No: | | | |---------------------------|------------|------------------------|---------------|-------------|------|----------------------|--------------|--------------|------------|---------|-----------| | SampleType: MBLK | TestCode: | Hexavalent Chromium in | n Water SW719 | 06A | Bat | tchID: R29708 | 5 Ana | alysis Date: | 07/31/2015 | Seq No: | 6338656 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref | `Val %RPI |) RPD | Limit Qua | | Chromium as Cr+3 | BRL | 0.0100 | | | | | | | | | | | Chromium, Hexavalent | BRL | 0.0100 | | | | | | | | | | | Sample ID: MB-R297085 | Client ID: | | | | Un | its: mg/L | Pre | p Date: | | Run No: | 297085 | | SampleType: MBLK | TestCode: | Hexavalent Chromium, | Dissolved SW7 | 196A | Bat | tchID: R29708 | 5 Ana | alysis Date: | 07/31/2015 | Seq No: | 6338665 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref | `Val %RPI |) RPD | Limit Qua | | Chromium as Cr+3 | BRL | 0.0100 | | | | | | | | | | | Chromium, Hexavalent | BRL | 0.0100 | | | | | | | | | | | Sample ID: LCS-R297085 | Client ID: | | | | Un | its: mg/L | Pre | p Date: | | Run No: | 297085 | | SampleType: LCS | TestCode: | Hexavalent Chromium in | n Water SW719 | 06A | Bat | tchID: R29708 | 5 Ana | alysis Date: | 07/31/2015 | Seq No: | 6338657 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref | `Val %RPI |) RPD | Limit Qua | | Chromium, Hexavalent | 0.5129 | 0.0100 | 0.5000 | | 103 | 90 | 110 | | | | | | Sample ID: LCS-R297085 | Client ID: | | | | Un | its: mg/L | Pre | p Date: | | Run No: | 297085 | | SampleType: LCS | TestCode: | Hexavalent Chromium, | Dissolved SW7 | 196A | Bat | tchID: R29708 | 5 Ana | alysis Date: | 07/31/2015 | Seq No: | 6338666 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref | `Val %RPI |) RPD | Limit Qua | | Chromium, Hexavalent | 0.5129 | 0.0100 | 0.5000 | | 103 | 90 | 110 | | | | | | Sample ID: 1507P87-001BMS | | 15211-MW-24 | | | Un | its: mg/L | Pre | p Date: | | Run No: | 297085 | | SampleType: MS | TestCode: | Hexavalent Chromium in | n Water SW719 | 06A | Bat | tchID: R29708 | 5 Ana | alysis Date: | 07/31/2015 | Seq No: | 6338660 | | SampleType. Wis | | | | | | | TT: 1 T : :: | DDD D. (| 37.1 0/DDF | | | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref | Val %RPI |) RPD | Limit Qua | Qualifiers: > Greater than Result value BRL Below reporting limit Rpt Lim Reporting Limit Estimated value detected below Reporting Limit < Less than Result value E Estimated (value above quantitation range) N Analyte not NELAC certified S Spike Recovery outside limits due to matrix B Analyte detected in the associated method blank H Holding times for preparation or analysis exceeded R RPD outside limits due to matrix Page 10 of 11 Client: BROWN AND CALDWELL **Project Name:** MacGregor **Workorder:** 1507P87 ## ANALYTICAL QC SUMMARY REPORT Date: 11-Aug-15 BatchID: R297085 | Sample ID: 1507P87-001DMS SampleType: MS | | 15211-MW-24
Hexavalent Chromium, D | Dissolved SW71 | 196A | Uni
Bat | ts: mg/L
chID: R29708 | Date:
lysis Date: 07/31 | Run No: 297085
31/2015 Seq No: 6338668 | | | | | | |--|------------|---------------------------------------|----------------|-------------|------------|--|----------------------------|--|----------------|------------------------|--|--|--| | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | | | | Chromium, Hexavalent | 0.5117 | 0.0100 | 0.5000 | 0.07720 | 86.9 | 85 | 115 | | | | | | | | Sample ID: 1507P87-001BMSD | Client ID: | 15211-MW-24 | | | Uni | ts: mg/L | Prep | Date: | Run No: 297085 | | | | | | SampleType: MSD | TestCode: | Hexavalent Chromium in | Water SW719 | 6A | Bat | chID: R29708 | 5 Ana | lysis Date: 07/31 | /2015 | Seq No: 6338661 | | | | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | | | | Chromium, Hexavalent | 0.5099 | 0.0100 | 0.5000 | 0.07720 | 86.5 | 85 | 115 | 0.5117 | 0.352 | 20 | | | | | Sample ID: 1507P87-001DMSD | Client ID: | 15211-MW-24 | | | Uni | ts: mg/L | Prep | Date: | | Run No: 297085 | | | | | SampleType: MSD | TestCode: | Hexavalent Chromium, D | Dissolved SW71 | 196A | Bat | chID: R29708 |
5 Ana | lysis Date: 07/31 | /2015 | Seq No: 6338669 | | | | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | | | | Chromium, Hexavalent | 0.5099 | 0.0100 | 0.5000 | 0.07720 | 86.5 | 85 | 115 | 0.5117 | 0.352 | 20 | | | | Qualifiers: > Greater than Result value BRL Below reporting limit Rpt Lim Reporting Limit J Estimated value detected below Reporting Limit < Less than Result value E Estimated (value above quantitation range) N Analyte not NELAC certified S Spike Recovery outside limits due to matrix B Analyte detected in the associated method blank H Holding times for preparation or analysis exceeded R RPD outside limits due to matrix Page 11 of 11 | 1. | PROJECT | INFO | ORM | ATION | | | | | | Today's Date: | | |----|-------------|---------|---------|------------|--------|---------|---------------|---------------------------|-----------------|--|--| | | | | | | | | | Project Nar | ne/Client: | · | 2. | SAMPLE | INFC |)RM | ATION | | | | | | | | | | Purpose of | fsamp | oling: | | | | | | | | | | | Total numl | ber of | samı | oles: | | | | | | | | | | □ Grou | ındwa | iter: _ | | 🗆 : | Soil: _ | | Soil Gas: | | _ □ Trip Blank: | | | | □ Surfa | ace wa | ater: | | 🗆 | Sedim | ent: | 🗆 Other: _ | | _ □ Field Blank: | | | | □ Drinl | king w | ater: | | _ 🗆 | Air: | | 🗆 Other: _ | | _ □ Equip Blank: | | | | Analyses re | eques | ted: _ | | | | | | | | | | | Method de | etectio | on lin | nits (MDLs | | | ng limits (RI | s) requested: | | | | | | Duplicates | | | - | - | • | | | | | | | _ | | | | | | | | | | | | | 3. | DATA VE | | | | - - | D-+- \/ | :£: | C | | | | | | | | | | | | | Guidelines to det | ermine approj | priate action. | | | | Yes | | | | | | stody intac | | | | | | | Vos | | | | | | | amples bottles ar | | | | | | Yes | | _ | | | | | illiples bottles al | | as necessary: | | | | Yes | | | | | | | nin the acceptabl | | | | | | 163 | | | | | • | | • | - | | | | | Yes | | | | | | | | | (i.e. no bubbles in VOC vials) | | | | | | _ | | • | | • | , preserv | | • | | | | Yes | | | _ | | | | | | ality issues, discrepancies, etc.? | | | | | | | | | | | | | | | | | Yes | | | | • | | | • | • | (no samples held, no wrong analyses, etc.) | | | | Vos | | | | | - | | • | | | | | | Yes | | | | • | | • | nin holding time? | | | | | | Yes | | | | | | nalytes rep | | | | | | | 103 | | _ | Notes: | ріорі | iute u | ilalytes lep | orteu. | | | | | | Yes | No. | | _ | il and | or se | diment con | centrations repo | rted appropri | iately? (DW vs WW) | | | | | If | | | | | | lotes: | | · | | | | Yes | No | | | | | | | | rue for all analytes? | | | | | | | Yes | No | NA | | tals ≥ Dissolved n | | | | | | | | | Yes | No | NA | TKN > Or | ganic nitrogen | | | | | | | | | Yes | No | NA | TKN > Ar | nmonia (NH ₃) | | | | | | | | | Yes | No | NA | COD > TO | oc | | | | | | | | | Yes | No | NA | COD > BO | OD | | | | | | | If | no: | Report to | o proj | ect ma | nager and | contact lab's QA/ | QC manager if | f needed. Notes: | | | | Yes | No | NA | Were me | ethod | detec | tion limits | (MDL), reporting | limits (RLs), a | and/or dilution factors appropriate? | | | | | If | no: | Report to | o proj | ect ma | nager and | contact lab if nee | ded. Notes: | | | | | Yes | No | NA | Were su | rrogat | te % re | coveries w | ithin the accepta | ble range of L | LCL ≤ x ≤ UCL? | | | | | If | | | | | | | | | | | | Yes | No | | | - | - | | | • | or laboratory blanks? | | | | | If | yes: | Notes: _ | | | | | | | | (Rev 3/14/13 - SEJ) | Yes | | A Were any target analytes detected below practical quantitation limits (PQLs)? Notes: | |-----------|----------|---| | Yes | | Notes:A Were any sample duplicates collected? | | | | Notes: | | Yes | No NA | A Were any laboratory duplicates reported for project samples? | | | | Notes: | | Yes | No NA | A Were any matrix spikes reported for project samples? | | | | Notes: | | Yes | | A Were any laboratory control samples reported? | | | | Notes: | | Yes | | A Were calibration standards reported? | | | If yes: | Notes: | | 4. COMMEN | ITS & SU | JMMARY OF ACTIONS TAKEN (Attach additional pages if necessary) | Page __ of __ Initials Signature of Data Verifier # ANALYTICAL ENVIRONMENTAL SERVICES, INC. November 13, 2015 Sarah Jones BROWN AND CALDWELL 990 Hammond Drive Atlanta GA 30328 TEL: (770) 394-2997 FAX: (770) 396-9495 RE: MacGregor Dear Sarah Jones: Order No: 1511281 Analytical Environmental Services, Inc. received 1 samples on 11/4/2015 10:45:00 AM for the analyses presented in following report. No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative. AES' certifications are as follows: -NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water Microbiology, effective 07/01/15-06/30/16. -AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Organics, Inorganics), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) Direct Examination, effective until 09/01/17. These results relate only to the items tested. This report may only be reproduced in full. If you have any questions regarding these test results, please feel free to call. Ioana Pacurar **Project Manager** IDana) Pacurar ## CHAIN OF CUSTODY Work Order: 1511281 AES 3080 Presidential Drive, Atlanta GA 30340-3704 AES TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188 | | | | | | | | | | | | | | | | Date. | 11/ | [3/7 Page 1 ol _ | 1 | |--|---|--|---------------------------|--|-----------------------|--------------|---|-------------------------------|--------------------------|---------------------|----------|---------|----------|---------------------------|---|-------------
--|--------------------| | COMPANY: | ADDRESS: | HAMMO | 1 64 | >16. | | | ·, · · · · · · · · · · · · · · · · · · | | ř | NALY | SIS RE | QUE | STED | | | CHI COLOR | T. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | | BIZOWN AND CALDWELL | STC. | 400 | | | | - | | | | | 1 | T | | 1 | TT | | Visit our website www.aesatlanta.com | | | puor | FAX | ANTA, G | 4 | District Control of the t | A COMPANY. | 200 | | | | | | | | | | | to check on the status of | | | 770~673-3678 | | | | | | 7 1 15 | Ē | | | | | | | | |
 | your results, place bottle | iners | | SAMPLED BY: GEOFF GAGAT | SIGNATURE: | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 4 | 54 | - | | d l | | | | | | | | | | orders, etc. | No # of Container: | | | SAN | MPLED | | | | 10 | Š | | | | | | | | | | | , # of (| | # SAMPLE ID | 0, 4 | 11 120 | 1 ' | posite | codes | - | | | PRESERVATION (See codes) | | | | | | | | | ž | | | DATE | TIME | Grab | Composite | Matrix
(See codes) | 7 | NΑ | | | | | Γ | | | T | | REMARKS | | | 1 15307- EB | 11/3/15 | 1410 | 🔀 | | W | X | X | cacomo-est <mark>ona</mark> n | | | <u> </u> | | | | 1 | | | Z | | 2 | 3 | | | | | | | | \Box | | | | | | | | | | | | 4 | 5 | Only CONTROL | | <u> </u> | | | | | | | | | | | | | | | | | 6 | | | <u> </u> | | | | | | | | | | | | | | | | | 7 | | | | | | | | \bot | | | | | | | | | | | | 8 | | | ' | | ···· | | | | | | | | | | | | | | | 9 | <u> </u> | | <u> </u> | | | | | | | | | | | | | | | | | 10 | | | ' | | | | | \perp | | | ļ | | | | | | | | | 11 | | | <u> </u> | | | | | | _ | | | | | | | | , CONTROL OF THE PARTY P | | | 12 | | | ļ! | | | | | _ | _ | | ļ | | | | | | | | | 13 | | | ļ! | 1 | | - | | | | | ļ | | | | | | | | | 14 PATE TO SE | | | | <u></u> | | ntermanenen. | | | | | | | | | | mananana | | | | - | RECEIVED B | | | | DATE/TIME | | JECT N | AME: | | ROJECT | =1//// | 07-107 | | | | 4 | RECEIPT | | | GEOFF GAGAT 11/3/15/1730 | Prali | Seun | <u>~]]</u> | 4/18 | 1045 | | | | 17 | ACG | REC | ر م
 | Z | | | | Total # of Containers | 2 | | 2: | 2; | | | | | PROJ | ECT#: | | | 437 | | | | | | | Turnaround Time Request | | | 3; | 3: | | | | | SITE | ADDRI | ESS: | AL | BANY | , < | 1 A | | | | | Standard 5 Business Days | | | | | | | | | | | | | | | | sewn. | CALD | COR | 7 | 2 Business Day Rush Next Business Day Rush | | | SPECIAL INSTRUCTIONS/COMMENTS: | | | | DICE TO | | | | <u> </u> | <u>~ .</u> | 3 to b - t ∘ | G-7' | , — - | \dashv | Same Day Rush (auth req.) | | | | | | | OUT / | | (IF DIFFERENT FROM ABOVE) | | | | | | | | | Other | | | | | | | | | IN / / VIA: CLIENT FedES UPS MAIL COURIER | | | | | | | | | | | | | ŀ | STATE PROGRAM (if any): E-mail? Y N; Fax? Y /N | | | | | | GREYHOUND OTHER | | | | | | QUOTE #: PO#: DATA PACKAGE: I (II) III IV | | | | | | | | , | | | | | SAMPLES RECEIVED AFTER 3PM OR ON SATURDAY ARE CO
SAMPLES ARE DISPOSED 30 DAYS AFTER REPORT COMPLE | NSIDERED RI | ECEIVED THE | NEXT BI | USINESS
NTS ARE | DAY, IF TU | JRNAF | ROUNE |) TIME | E IS N | OT IND | CATE | D, AE | S WILL I | PROCE | ED WIT | rii st | TANDARD TAT OF SAMPLES. | Page 2 of 7 | | Client: BROWN AND CALDWELL Client Sample ID: 15307-EB **Project Name:** MacGregor Collection Date: 11/3/2015 2:10:00 PM **Lab ID:** 1511281-001 **Matrix:** Aqueous | Analyses | Result | Reporting
Limit | Qual | Units | BatchID | Dilution
Factor | Date Analyzed | Analyst | |-------------------------------------|--------|--------------------|------|-------|---------|--------------------|------------------|---------| | Hexavalent Chromium in Water SW7196 | A | | | | | | | | | Chromium as Cr+3 | BRL | 0.0100 | | mg/L | R303717 | 1 | 11/04/2015 11:35 | JC | | Chromium, Hexavalent | BRL | 0.0100 | | mg/L | R303717 | 1 | 11/04/2015 11:35 | JC | | METALS, TOTAL SW6010C | | | | (SW | /3010A) | | | | | Chromium | BRL | 0.0100 | | mg/L | 215519 | 1 | 11/06/2015 14:40 | Ю | Date: 13-Nov-15 Qualifiers: * Value exceeds maximum contaminant level BRL Below reporting limit H Holding times for preparation or analysis exceeded N Analyte not NELAC certified B Analyte detected in the associated method blank > Greater than Result value E Estimated (value above quantitation range) S Spike Recovery outside limits due to matrix Narr See case narrative NC Not confirmed < Less than Result value J Estimated value detected below Reporting Limit # Sample/Cooler Receipt Checklist | Client Brown & Caldwell | | Work Order | Number | 1511281 | |--|---------------|--------------|-------------|--| | Checklist completed by Signature Pate | /15 | | | | | Carrier name: FedEx UPS Courier Client US | Mail _ Other | | | | | Shipping container/cooler in good condition? | Yes _ | No | Not Present | | | Custody seals intact on shipping container/cooler? | Yes | No | Not Present | | | Custody seals intact on sample bottles? | Yes | No | Not Present | | | Container/Temp Blank temperature in compliance? (0°≤6°C)* | Yes _ | No | | | | Cooler #1 3.1 Cooler #2 Cooler #3 | _ Cooler #4 _ | Coc | oler#5 | Cooler #6 | | Chain of custody present? | Yes _ | No | | | | Chain of custody signed when relinquished and received? | Yes | No | | | | Chain of custody agrees with sample labels? | Yes _ | No | | | | Samples in proper container/bottle? | Yes | No | | | | Sample containers intact? | Yes _ | No | | | | Sufficient sample volume for indicated test? | Yes | No | | | | All samples received within holding time? | Yes | No | | | | Was TAT marked on the COC? | Yes _ | No | | ······································ | | Proceed with Standard TAT as per project history? | Yes | No | Not Appli | cable | | Water - VOA vials have zero headspace? No VOA vials su | | Yes | _ | _ | | Water - pH acceptable upon receipt? | | No _ | | | | Adjusted? | | ecked by _ G | teran | <u>) </u> | | Sample Condition: Good Other(Explain) | | | | | | (For diffusive samples or AIHA lead) Is a known blank inclu- | ded? Yes | · | No | | See Case Narrative for resolution of the Non-Conformance. \\Aes_server\l\Sample Receipt\My Documents\COCs and pH Adjustment Sheet\Sample_Cooler_Recipt_Checklist_Regist of 7 ^{*} Samples do not have to comply with the given range for certain parameters. Client: BROWN AND CALDWELL Project Name: MacGregor Lab Order: 1511281 **Dates Report** **Date:** 13-Nov-15 Lab Sample ID Client Sample ID **Test Name TCLP Date Prep Date Analysis Date Collection Date** Matrix 1511281-001A 15307-EB 11/3/2015 2:10:00PM Aqueous TOTAL METALS BY ICP 11/6/2015 10:07:00 AM 11/06/2015 15307-EB Hexavalent Chromium 11/04/2015 1511281-001B 11/3/2015 2:10:00PM Aqueous Workorder: **Client:** BROWN AND CALDWELL **Project Name:** MacGregor 1511281 ANALYTICAL QC SUMMARY REPORT Date: 13-Nov-15 BatchID: 215519 | Sample ID: MB-215519 | Client ID: | METALS, TOTAL SW6010C | | Uni | | - | | 5/2015 | Run No: 303818 | |----------------------------|------------|-----------------------|----------------|------|--------------|------------|-------------------|--------|------------------------| | SampleType: MBLK | resicode: | METALS, TOTAL SW6010C | | Ваи | chID: 215519 | Апа | lysis Date: 11/06 | /2015 | Seq No: 6503433 | | Analyte | Result | RPT Limit SPK val | ue SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium | BRL | 0.0100 | | | | | | | | | Sample ID: LCS-215519 | Client ID: | | | Uni | ts: mg/L | Prep | Date: 11/06 | 5/2015 | Run No: 303818 | | SampleType: LCS | TestCode: | METALS, TOTAL SW6010C | | Bate | chID: 215519 | Ana | lysis Date: 11/06 | 5/2015 | Seq No: 6503434 | | Analyte | Result | RPT Limit SPK val | ue SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium | 1.059 | 0.0100 1.000 | | 106 | 80 | 120 | | | | |
Sample ID: 1511281-001AMS | Client ID: | 15307-EB | | Uni | ts: mg/L | Prep | Date: 11/06 | 5/2015 | Run No: 303818 | | SampleType: MS | TestCode: | METALS, TOTAL SW6010C | | Bate | chID: 215519 | Ana | lysis Date: 11/06 | 5/2015 | Seq No: 6503438 | | Analyte | Result | RPT Limit SPK val | ue SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium | 1.034 | 0.0100 1.000 | 0.0005420 | 103 | 75 | 125 | | | | | Sample ID: 1511281-001AMSD | Client ID: | 15307-EB | | Uni | ts: mg/L | Prep | Date: 11/06 | 5/2015 | Run No: 303818 | | SampleType: MSD | TestCode: | METALS, TOTAL SW6010C | | Bat | chID: 215519 | Ana | lysis Date: 11/06 | 5/2015 | Seq No: 6503441 | | Analyte | Result | RPT Limit SPK val | ue SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium | 1.021 | 0.0100 1.000 | 0.0005420 | 102 | 75 | 125 | 1.034 | 1.22 | 20 | Qualifiers: Greater than Result value > BRL Below reporting limit Rpt Lim Reporting Limit Estimated value detected below Reporting Limit Less than Result value E Estimated (value above quantitation range) N Analyte not NELAC certified S Spike Recovery outside limits due to matrix B Analyte detected in the associated method blank H Holding times for preparation or analysis exceeded R RPD outside limits due to matrix Page 6 of 7 **Client:** BROWN AND CALDWELL **Project Name:** MacGregor 1511281 Workorder: # ANALYTICAL QC SUMMARY REPORT Date: 13-Nov-15 BatchID: R303717 | Sample ID: MB-R303717 | Client ID: | Hexavalent Chromium ir | Water SW710 | 064 | Uni | its: mg/L
chID: R30371 | | Date: | /2015 | Run No: 303717 | |----------------------------|------------|------------------------|----------------|-------------|--------------------------|---------------------------|------------|--------------------|-------|------------------------| | SampleType: MBLK | resicode: | nexavalent Chromium n | i water 5 w/1. | 70A | BatchiD. R303 /1/ | | | llysis Date: 11/04 | /2015 | Seq No: 6500969 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium as Cr+3 | BRL | 0.0100 | | | | | | | | | | Chromium, Hexavalent | BRL | 0.0100 | | | | | | | | | | Sample ID: LCS-R303717 | Client ID: | | | | Uni | its: mg/L | Prep | Date: | | Run No: 303717 | | SampleType: LCS | TestCode: | Hexavalent Chromium in | Water SW719 | 96A | Bat | chID: R30371 | 7 Ana | llysis Date: 11/04 | /2015 | Seq No: 6500970 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium, Hexavalent | 0.4983 | 0.0100 | 0.5000 | | 99.7 | 90 | 110 | | | | | Sample ID: 1511281-001BMS | Client ID: | 15307-EB | | | Uni | its: mg/L | Prep | Date: | | Run No: 303717 | | SampleType: MS | TestCode: | Hexavalent Chromium in | Water SW719 | 96A | Bat | chID: R30371 | 7 Ana | llysis Date: 11/04 | /2015 | Seq No: 6500972 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium, Hexavalent | 0.4934 | 0.0100 | 0.5000 | 0.009200 | 96.8 | 85 | 115 | | | | | Sample ID: 1511281-001BMSD | Client ID: | 15307-EB | | | Uni | its: mg/L | Prep | Date: | | Run No: 303717 | | SampleType: MSD | TestCode: | Hexavalent Chromium in | Water SW719 | 96A | Bat | chID: R30371 | 7 Ana | llysis Date: 11/04 | /2015 | Seq No: 6500973 | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium, Hexavalent | 0.4884 | 0.0100 | 0.5000 | 0.009200 | 95.8 | 85 | 115 | 0.4934 | 1.02 | 20 | Qualifiers: Greater than Result value > BRL Below reporting limit Rpt Lim Reporting Limit Estimated value detected below Reporting Limit Less than Result value E Estimated (value above quantitation range) N Analyte not NELAC certified S Spike Recovery outside limits due to matrix B Analyte detected in the associated method blank H Holding times for preparation or analysis exceeded R RPD outside limits due to matrix Page 7 of 7 | 1. | PROJECT | INFO | ORM | ATION | | | | | | Today's Date: | | |----|-------------|---------|---------|------------|--------|---------|---------------|---------------------------|-----------------|--|--| | | | | | | | | | Project Nar | ne/Client: | · | 2. | SAMPLE | INFC |)RM | ATION | | | | | | | | | | Purpose of | fsamp | oling: | | | | | | | | | | | Total numl | ber of | samı | oles: | | | | | | | | | | □ Grou | ındwa | iter: _ | | 🗆 : | Soil: _ | | Soil Gas: | | _ □ Trip Blank: | | | | □ Surfa | ace wa | ater: | | 🗆 | Sedim | ent: | 🗆 Other: _ | | _ □ Field Blank: | | | | □ Drinl | king w | ater: | | _ 🗆 | Air: | | 🗆 Other: _ | | _ □ Equip Blank: | | | | Analyses re | eques | ted: _ | | | | | | | | | | | Method de | etectio | on lin | nits (MDLs | | | ng limits (RI | s) requested: | | | | | | Duplicates | | | - | - | • | | | | | | | _ | | | | | | | | | | | | | 3. | DATA VE | | | | - - | D-+- \/ | :£: | C | | | | | | | | | | | | | Guidelines to det | ermine approj | priate action. | | | | Yes | | | | | | stody intac | | | | | | | Vos | | | | | | | amples bottles ar | | | | | | Yes | | _ | | | | | illiples bottles al | | as necessary: | | | | Yes | | | | | | | nin the acceptabl | | | | | | 163 | | | | | • | | • | - | | | | | Yes | | | | | | | | | (i.e. no bubbles in VOC vials) | | | | | | _ | | • | | • | , preserv | | • | | | | Yes | | | _ | | | | | | ality issues, discrepancies, etc.? | | | | | | | | | | | | | | | | | Yes | | | | • | | | • | • | (no samples held, no wrong analyses, etc.) | | | | Vos | | | | | - | | • | | | | | | Yes | | | | • | | • | nin holding time? | | | | | | Yes | | | | | | nalytes rep | | | | | | | 103 | | _ | Notes: | ріорі | iute u | ilalytes lep | orteu. | | | | | | Yes | No. | | _ | il and | or se | diment con | centrations repo | rted appropri | iately? (DW vs WW) | | | | | If | | | | | | lotes: | | · | | | | Yes | No | | | | | | | | rue for all analytes? | | | | | | | Yes | No | NA | | tals ≥ Dissolved n | | | | | | | | | Yes | No | NA | TKN > Or | ganic nitrogen | | | | | | | | | Yes | No | NA | TKN > Ar | nmonia (NH ₃) | | | | | | | | | Yes | No | NA | COD > TO | oc | | | | | | | | | Yes | No | NA | COD > BO | OD | | | | | | | If | no: | Report to | o proj | ect ma | nager and | contact lab's QA/ | QC manager if | f needed. Notes: | | | | Yes | No | NA | Were me | ethod | detec | tion limits | (MDL), reporting | limits (RLs), a | and/or dilution factors appropriate? | | | | | If | no: | Report to | o proj | ect ma | nager and | contact lab if nee | ded. Notes: | | | | | Yes | No | NA | Were su | rrogat | te % re | coveries w | ithin the accepta | ble range of L | LCL ≤ x ≤ UCL? | | | | | If | | | | | | | | | | | | Yes | No | | | - | - | | | • | or laboratory blanks? | | | | | If | yes: | Notes: _ | | | | | | | | (Rev 3/14/13 - SEJ) | Yes | | A Were any target analytes detected below practical quantitation limits (PQLs)? Notes: | |-----------|----------|---| | Yes | | Notes:A Were any sample duplicates collected? | | | | Notes: | | Yes | No NA | A Were any laboratory duplicates reported for project samples? | | | | Notes: | | Yes | No NA | A Were any matrix spikes reported for project samples? | | | | Notes: | | Yes | | A Were any laboratory control samples reported? | | | | Notes: | | Yes | | A Were calibration standards reported? | | | If yes: | Notes: | | 4. COMMEN | ITS & SU | JMMARY OF ACTIONS TAKEN (Attach additional pages if necessary) | Page __ of __ Initials Signature of Data Verifier # ANALYTICAL ENVIRONMENTAL SERVICES, INC. November 13, 2015 Sarah Jones BROWN AND CALDWELL 990 Hammond Drive Atlanta GA 30328 TEL: (770) 394-2997 FAX: (770) 396-9495 RE: MacGregor Dear Sarah Jones: Order No: 1511590 Analytical Environmental Services, Inc. received 3 samples on 11/6/2015 8:35:00 AM for the analyses presented in following report. No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative. AES' certifications are as follows: - -NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water Microbiology, effective 07/01/15-06/30/16. - -AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Organics, Inorganics), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) Direct Examination, effective until 09/01/17. These results relate only to the items tested. This report may only be reproduced in full. If you have any questions regarding these test results, please feel free to call. Ioana Pacurar **Project Manager** IDana) Pacurar #### ANALYTICAL ENVIRONMENTAL SERVICES, INC **CHAIN OF CUSTODY** Work Order: 15/1590 Date: 11/6//5 Page 1 of 1 3080 Presidential Drive, Atlanta GA 30340-3704 AES TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188 | COMPANY: | ADDRESS: | HAMMO | 40 | DR | | | | | AN | ALYSI | S REQU | ESTED | | Visit our website | | |--|--------------
--|-----------------|--------------------|-----------------------|---------|--------------|---------------|--------|----------|----------|------------|-------------|--|-------------| | BROWN AND CALOWELL | ATLA | 400
57A, GA | | | | 45 | | NETHC | | | | | | www.aesatlanta.com to check on the status of | S | | PHONE: 770 -673 - 3678 | FAX: | | | | | METALS | 10 | 1 03 | | | | | | your results, place bottle | tainer | | SAMPLED BY: GEOFF GACAT | SIGNATURE: | 5 | 11: | Y | | TOTAL A | HEN CHEOM | Dissolved | | | | | | orders, etc. | # of Contai | | | SAN | IPLED | | site | des) | 12 | 1/2 | 0 | DD | ESERV | ATION (S | e codes) | | | S. | | # SAMPLE ID | | | Grab | Composite | Matrix
(See codes) | 2 | NA | NA | | EDDIK V. | THOTOG | | | REMARKS | H. | | 1 15309 - MW-27 | DATE 11/5/15 | TIME | X | O | GW | - | - | | 10 | | | | | Car Francisco | 3 | | 2 15309. MW-28 | 11/5/15 | 1500 | X | | GW | X | - | X | | 1 | | 7 40 5 | | | 3 | | 3 15309 - DUP | 11/5/15 | 1200 | X | 5.10 | GW | X | X | | | | | | 11 11 11 | TO THE PARTY | 2 | | 1 1000 | 11/3/12 | 1200 | | | O . V | | | | | Finity. | 100 | | | | | | 5 | | | 19 | | 16-74 | | | H | | 1 3 | | | | A PROPERTY OF | | | 6 | | Direct A | | | | | | 16.5 | | 10 | | | | | | | 7 | | | | | | | | | | | | | | | | | 8 | | in in- | | | | | | | | A TIME | | 2 10 | | | 100 | | 9 | | | | E. | | | 70 | | | | | | | | | | 10 | | L. T | | W-10 | | | | | -5 | | | | | 130 | | | 11 | | | | | | | | | | 4 | | | | | 1111 | | 12 | | | | | | 1.45 | | | 0 | 9 | | | 10.5 | | | | 13 | | | | 1119 | Cl., Service | | | | | 8 | 100 | | | | | | 14 | Tibes: | F.M., 30042 | | 1 | | 1 | | | 1 | 2 | | | | RECEIPT | | | RELINQUISHED BY DATE/TIME 1: 11/6/15/082 | RECEIVED E | The state of s | 1.101 | 1 | B-3 | PRC |)JECT | NAME
M | | 14. | N. Br. | MATION | 17-7 | Total # of Containers | 8 | | 2: | 2 | 1 | 1191 | | 0 72 | _ | DJECT | #: | | _ | | | | Turnaround Time Request | | | 3. | 3. | | No. of | 1 | 9 9 | SIT | E AD | DRESS: | A | BAN | 71 6 | A | | Standard 5 Business Days 2 Business Day Rush | | | | | | | | | SEN | ND RE | PORT 7 | ro: § | EJO | NES (| BRWNC | ALD. COM | O Next Business Day Rush | | | SPECIAL INSTRUCTIONS/COMMENTS: | OUT | SHIPME | NT METH
VIA: | | | | OICE
DIFF | ETO:
ERENT | FROM A | ABOVE |) | | | Same Day Rush (auth req Other | .) | | SHORT HOLD TIMES
(ZY HOURS) | IN | NT FedEx | VIA | | JRIER | | | | ١, | | | | | STATE PROGRAM (if any): E-mail? Y/N; Fax? Y/N | | | 3,135711411 1953 | | | OTHER_ | | | | OTE | | | | | PO#: | DROCKED WIT | DATA PACKAGE: I II III | IV | | SAMPLES RECEIVED AFTER 3PM OR ON SATURDAY ARE CO
SAMPLES ARE DISPOSED 30 DAYS AFTER REPORT COMPLE | ONSIDERED I | RECEIVED THE
S OTHER ARE | E NEXT | BUSINES
ENTS AI | SS DAY. IF 'RE MADE. | TURN | ARO | UND TI | ME IS | NOT IN | DICATE | , AES WILL | PROCEED WIT | Page 2 of 11 | | Client: BROWN AND CALDWELL Client Sample ID: 15309-MW-27 Project Name: MacGregor Collection Date: 11/5/2015 5:10:00 PM Date: 13-Nov-15 Lab ID: 1511590-001 Matrix: Groundwater | Analyses | Result | Reporting
Limit | Qual | Units | BatchID | Dilution
Factor | Date Analyzed | Analyst | |--------------------------------------|--------|--------------------|------|-------|---------|--------------------|------------------|---------| | METALS, DISSOLVED SW6010C | | | | (SW | /3005A) | | | | | Chromium | BRL | 0.0100 | | mg/L | 215523 | 1 | 11/10/2015 23:21 | IO | | Hexavalent Chromium, Dissolved SW719 | 06A | | | | | | | | | Chromium as Cr+3 | BRL | 0.0100 | | mg/L | R304139 | 1 | 11/06/2015 11:45 | JC | | Chromium, Hexavalent | BRL | 0.0100 | | mg/L | R304139 | 1 | 11/06/2015 11:45 | JC | | Hexavalent Chromium in Water SW7196 | A | | | | | | | | | Chromium as Cr+3 | BRL | 0.0100 | | mg/L | R303950 | 1 | 11/06/2015 11:45 | JC | | Chromium, Hexavalent | BRL | 0.0100 | | mg/L | R303950 | 1 | 11/06/2015 11:45 | JC | | METALS, TOTAL SW6010C | | | | (SW | /3010A) | | | | | Chromium | BRL | 0.0100 | | mg/L | 215519 | 1 | 11/06/2015 16:32 | IO | Qualifiers: * Value exceeds maximum contaminant level BRL Below reporting limit H Holding times for preparation or analysis exceeded N Analyte not NELAC certified B Analyte detected in the associated method blank > Greater than Result value E Estimated (value above quantitation range) S Spike Recovery outside limits due to matrix Narr See case narrative NC Not confirmed < Less than Result value J Estimated value detected below Reporting Limit Client: BROWN AND CALDWELL Client Sample ID: 15309-MW-28 **Project Name:** MacGregor Collection Date: 11/5/2015 3:00:00 PM Date: 13-Nov-15 Lab ID:1511590-002Matrix:Groundwater | Analyses | Result | Reporting
Limit | Qual | Units | BatchID | Dilution
Factor | Date Analyzed | Analyst | |-----------------------------------|--------|--------------------|------|-------|---------|--------------------|------------------|---------| | METALS, DISSOLVED SW6010C | | | | (SW | /3005A) | | | | | Chromium | BRL | 0.0100 | | mg/L | 215523 | 1 | 11/10/2015 23:24 | IO | | Hexavalent Chromium, Dissolved SW | 7196A | | | | | | | | | Chromium as Cr+3 | BRL | 0.0100 | | mg/L | R304139 | 1 | 11/06/2015 11:45 | JC | | Chromium, Hexavalent | BRL | 0.0100 | | mg/L | R304139 | 1 | 11/06/2015 11:45 | JC | | Hexavalent Chromium in Water SW7 | 196A | | | | | | | | | Chromium as Cr+3 | BRL | 0.0100 | | mg/L | R303950 | 1 | 11/06/2015 11:45 | JC | | Chromium, Hexavalent | BRL | 0.0100 | | mg/L | R303950 | 1 | 11/06/2015 11:45 | JC | | METALS, TOTAL SW6010C | | | | (SW | /3010A) | | | | | Chromium | BRL | 0.0100 | | mg/L | 215519 | 1 | 11/06/2015 16:35 | IO | Qualifiers: * Value exceeds maximum contaminant level BRL Below reporting limit H Holding times for preparation or analysis exceeded N Analyte not NELAC certified B Analyte detected in the associated method blank > Greater than Result value E Estimated (value above quantitation range) S Spike Recovery outside limits due to matrix Narr See case narrative NC Not confirmed < Less than Result value Estimated value detected below Reporting Limit Client: BROWN AND CALDWELL Client Sample ID: 15309-DUP Project Name: MacGregor Collection Date: 11/5/2015 12:00:00 PM Lab ID: 1511590-003 Matrix: Groundwater | Analyses | Result | Reporting
Limit | Qual | Units | BatchID | Dilution
Factor | Date Analyzed | Analyst | |----------------------------------|--------|--------------------|------|-------|---------|--------------------|------------------|---------| | Hexavalent Chromium, Dissolved S | W7196A | | | | | | | | | Chromium, Hexavalent | BRL | 0.0100 | | mg/L | R304139 | 1 | 11/06/2015 11:45 | JC | | Hexavalent Chromium in Water SW | 7196A | | | | | | | | | Chromium as Cr+3 | BRL | 0.0100 | | mg/L | R303950 | 1 | 11/06/2015 11:45 | JC | | Chromium, Hexavalent | BRL | 0.0100 | | mg/L | R303950 | 1 | 11/06/2015 11:45 | JC | | METALS, TOTAL SW6010C | | | | (SW | /3010A) | | | | | Chromium | BRL | 0.0100 | | mg/L | 215519 | 1 | 11/06/2015 16:39 | Ю | Date: 13-Nov-15 Qualifiers: * Value exceeds maximum contaminant level BRL Below reporting limit H Holding times for preparation or analysis exceeded N Analyte not NELAC certified B Analyte detected in the associated method blank > Greater than Result value E Estimated (value above quantitation range) S Spike Recovery outside limits due to matrix Narr See case narrative NC Not confirmed < Less than Result value Estimated value detected below Reporting Limit # Sample/Cooler Receipt Checklist | Bynny Calderell | | Work Orde | er Number 151/590 |) | |---|-------------|-----------|-------------------|---| | Checklist completed by Signature Dat | lest 5 | <u> </u> | | | | Carrier name: FedEx UPS Courier Client U | S Mail Othe | er | | | | Shipping container/cooler in good condition? | | | Not Present | | | Custody seals intact on shipping container/cooler? | Yes _ | No
_ | Not Present / | | | Custody seals intact on sample bottles? | Yes / | No _ | Not Present | | | Container/Temp Blank temperature in compliance? (0°≤6°C |)* Yes | No | | | | Cooler #1 Cooler #2 Cooler #3 | Cooler #4 | C | ooler#5 Cooler #6 | | | Chain of custody present? | Yes _ | No | | | | Chain of custody signed when relinquished and received? | Yes _ | No | | | | Chain of custody agrees with sample labels? | Yes J | No | | | | Samples in proper container/bottle? | Yes _ | No _ | | | | Sample containers intact? | Yes _ | No | | | | Sufficient sample volume for indicated test? | Yes _ | No _ | | | | All samples received within holding time? | Yes _ | No _ | | | | Was TAT marked on the COC? | Yes _ | | 3.3 | | | Proceed with Standard TAT as per project history? | | | Not Applicable | | | Water - VOA vials have zero headspace? No VOA vials | submitted | Yes | No | | | Water - pH acceptable upon receipt? | _ | | Not Applicable | | | Adjusted? | C | hecked by | (1) | | | Sample Condition: Good Other(Explain) | | 7 | No | | | (For diffusive samples or AIHA lead) Is a known blank inc | cluded? Y | es | INO y | | See Case Narrative for resolution of the Non-Conformance. \\Aes_server\l\Sample Receipt\My Documents\COCs and pH Adjustment Sheet\Sample_Cooler_Recipt_Checkligt_86717tf ^{*} Samples do not have to comply with the given range for certain parameters. Client: BROWN AND CALDWELL Project Name: MacGregor Lab Order: 1511590 # **Dates Report** **Date:** 13-Nov-15 | Lab Sample ID 1511590-001A | Client Sample ID
15309-MW-27 | Collection Date
11/5/2015 5:10:00PM | Matrix
Groundwater | Test Name TOTAL METALS BY ICP | TCLP Date | Prep Date
11/6/2015 12:40:00PM | Analysis Date
11/06/2015 | |-----------------------------------|---------------------------------|---|------------------------------|--------------------------------|-----------|-----------------------------------|-----------------------------| | 1511590-001B | 15309-MW-27 | 11/5/2015 5:10:00PM | Groundwater | DISSOLVED METALS BY ICP | | 11/10/2015 10:29:00AM | 11/10/2015 | | 1511590-001C | 15309-MW-27 | 11/5/2015 5:10:00PM | Groundwater | Hexavalent Chromium | | | 11/06/2015 | | 1511590-001C | 15309-MW-27 | 11/5/2015 5:10:00PM | Groundwater | Hexavalent Chromium, Dissolved | | | 11/06/2015 | | 1511590-002A | 15309-MW-28 | 11/5/2015 3:00:00PM | Groundwater | TOTAL METALS BY ICP | | 11/6/2015 12:40:00PM | 11/06/2015 | | 1511590-002B | 15309-MW-28 | 11/5/2015 3:00:00PM | Groundwater | DISSOLVED METALS BY ICP | | 11/10/2015 10:29:00AM | 11/10/2015 | | 1511590-002C | 15309-MW-28 | 11/5/2015 3:00:00PM | Groundwater | Hexavalent Chromium | | | 11/06/2015 | | 1511590-002C | 15309-MW-28 | 11/5/2015 3:00:00PM | Groundwater | Hexavalent Chromium, Dissolved | | | 11/06/2015 | | 1511590-003A | 15309-DUP | 11/5/2015 12:00:00PM | Groundwater | TOTAL METALS BY ICP | | 11/6/2015 12:40:00PM | 11/06/2015 | | 1511590-003B | 15309-DUP | 11/5/2015 12:00:00PM | Groundwater | Hexavalent Chromium | | | 11/06/2015 | | 1511590-003B | 15309-DUP | 11/5/2015 12:00:00PM | Groundwater | Hexavalent Chromium, Dissolved | | | 11/06/2015 | Workorder: **Client:** BROWN AND CALDWELL **Project Name:** MacGregor 1511590 ANALYTICAL QC SUMMARY REPORT Date: 13-Nov-15 BatchID: 215519 | Sample ID: MB-215519 | Client ID: | | | Uni | U | | | 6/2015 | Run No: 303818 | |----------------------------|------------|-----------------------|----------------|------|--------------|------------|--------------------|--------|------------------------| | SampleType: MBLK | TestCode: | METALS, TOTAL SW6010C | | Bate | chID: 215519 | An | alysis Date: 11/0 | 6/2015 | Seq No: 6503433 | | Analyte | Result | RPT Limit SPK val | ue SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium | BRL | 0.0100 | | | | | | | | | Sample ID: LCS-215519 | Client ID: | | | Uni | ts: mg/L | Pre | p Date: 11/0 | 6/2015 | Run No: 303818 | | SampleType: LCS | TestCode: | METALS, TOTAL SW6010C | | Bate | chID: 215519 | Ana | alysis Date: 11/0 | 6/2015 | Seq No: 6503434 | | Analyte | Result | RPT Limit SPK val | ue SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium | 1.059 | 0.0100 1.000 | | 106 | 80 | 120 | | | | | Sample ID: 1511281-001AMS | Client ID: | | | Uni | ts: mg/L | Pre | p Date: 11/0 | 6/2015 | Run No: 303818 | | SampleType: MS | TestCode: | METALS, TOTAL SW6010C | | Bate | chID: 215519 | Ana | alysis Date: 11/0 | 6/2015 | Seq No: 6503438 | | Analyte | Result | RPT Limit SPK val | ue SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium | 1.034 | 0.0100 1.000 | 0.0005420 | 103 | 75 | 125 | | | | | Sample ID: 1511281-001AMSD | Client ID: | | | Uni | ts: mg/L | Pre | p Date: 11/0 | 6/2015 | Run No: 303818 | | SampleType: MSD | TestCode: | METALS, TOTAL SW6010C | | Bate | chID: 215519 | Ana | alysis Date: 11/00 | 6/2015 | Seq No: 6503441 | | Analyte | Result | RPT Limit SPK val | ue SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | Chromium | 1.021 | 0.0100 1.000 | 0.0005420 | 102 | 75 | 125 | 1.034 | 1.22 | 20 | Qualifiers: Greater than Result value > BRL Below reporting limit Rpt Lim Reporting Limit Estimated value detected below Reporting Limit Less than Result value E Estimated (value above quantitation range) N Analyte not NELAC certified S Spike Recovery outside limits due to matrix B Analyte detected in the associated method blank H Holding times for preparation or analysis exceeded R RPD outside limits due to matrix Page 8 of 11 **Client:** BROWN AND CALDWELL **Project Name:** MacGregor Workorder: 1511590 # ANALYTICAL QC SUMMARY REPORT Date: 13-Nov-15 BatchID: 215523 | Sample ID: MB-215523
SampleType: MBLK | Client ID:
TestCode: | METALS, DISSOLVED | SW6010C | | Uni
Bate | ts: mg/L chID: 215523 | | Date: 11/10/
ysis Date: 11/10/ | | Run No:
Seq No: | | |---|-------------------------|-------------------|-----------|-------------|-------------|-------------------------------------|------------|------------------------------------|------|--------------------|------------| | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD | Limit Qual | | Chromium | BRL | 0.0100 | | | | | | | | | | | Sample ID: LCS-215523
SampleType: LCS | Client ID:
TestCode: | METALS, DISSOLVED | SW6010C | | Uni
Bate | ts: mg/L chID: 215523 | - | Date: 11/10/
ysis Date: 11/10/ | | Run No:
Seq No: | | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD | Limit Qual | | Chromium | 1.038 | 0.0100 | 1.000 | | 104 | 80 | 120 | | | | | | Sample ID: 1511371-001DMS SampleType: MS | Client ID:
TestCode: | METALS, DISSOLVED | SW6010C | | Uni
Bate | ts: mg/L chID: 215523 | • | Date: 11/10/
ysis Date: 11/10/ | | Run No:
Seq No: | | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD | Limit Qual | | Chromium | 0.9939 | 0.0100 | 1.000 | | 99.4 | 75 | 125 | | | | | | Sample ID: 1511371-001DMSD
SampleType: MSD | Client ID:
TestCode: | METALS, DISSOLVED | SW6010C | | Uni
Bate | ts: mg/L chID: 215523 | • | Date: 11/10/2019 parts: 11/10/2019 | | Run No:
Seq No: | | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD | Limit Qual | | Chromium | 1.032 | 0.0100 | 1.000 | | 103 | 75 | 125 | 0.9939 | 3.75 | 2 | 0 | Qualifiers: Greater than Result value > BRL Below reporting limit Rpt Lim Reporting Limit Estimated value detected below Reporting Limit N Analyte not NELAC certified S Spike Recovery outside limits due to matrix E Estimated (value above quantitation range) Less than Result value B Analyte detected in the associated method blank H Holding times for preparation or analysis exceeded R RPD outside limits due to matrix Page 9 of 11 **Client:** BROWN AND CALDWELL **Project Name:** MacGregor 1511590 Workorder: ANALYTICAL QC SUMMARY REPORT Date: 13-Nov-15 BatchID: R303950 | Sample ID: MB-R303950 | Client ID: | | | | Uni | | | Date: | | Run No: 303950 | | |----------------------------|------------|------------------------|-------------|-------------|------|---------------------|------------|--------------------|-------|------------------------|--| | SampleType: MBLK | TestCode: | Hexavalent Chromium in | Water SW719 | 96A | Bat | chID: R30395 | 0 Ana | llysis Date: 11/06 | /2015 | Seq No: 6506431 | | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | | Chromium as Cr+3 | BRL | 0.0100 | | | | | | | | | | | Chromium, Hexavalent | BRL | 0.0100 | | | | | | | | | | | Sample ID: LCS-R303950 | Client ID: | | | | Uni | its: mg/L | Prep | Date: | | Run No: 303950 | | | SampleType: LCS | TestCode: | Hexavalent Chromium in | Water SW719 | 96A | Bat | chID: R30395 | 0 Ana | llysis Date: 11/06 | /2015 | Seq No: 6506432 | | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | | Chromium, Hexavalent | 0.4586 | 0.0100 | 0.5000 | | 91.7 | 90 | 110 | | | | | | Sample ID: 1511590-001CMS | | 15309-MW-27 | | | Uni | its: mg/L | Prep | Date: | | Run No: 303950 | | | SampleType: MS | TestCode: | Hexavalent Chromium in | Water SW719 | 96A | Bat | chID: R30395 | 0 Ana | llysis Date: 11/06 | /2015 | Seq No: 6506448 | | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | | Chromium, Hexavalent | 0.4522 | 0.0100 | 0.5000 | | 90.4 | 85 | 115 | | | | | | Sample ID:
1511590-001CMSD | Client ID: | 15309-MW-27 | | | Uni | its: mg/L | Prep | Date: | | Run No: 303950 | | | SampleType: MSD | TestCode: | Hexavalent Chromium in | Water SW719 | 96A | Bat | chID: R30395 | 0 Ana | llysis Date: 11/06 | /2015 | Seq No: 6506450 | | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Qual | | | Chromium, Hexavalent | 0.4487 | 0.0100 | 0.5000 | | 89.7 | 85 | 115 | 0.4522 | 0.777 | 20 | | Qualifiers: Greater than Result value > BRL Below reporting limit Rpt Lim Reporting Limit Estimated value detected below Reporting Limit Less than Result value E Estimated (value above quantitation range) N Analyte not NELAC certified S Spike Recovery outside limits due to matrix B Analyte detected in the associated method blank H Holding times for preparation or analysis exceeded R RPD outside limits due to matrix Page 10 of 11 **Client:** BROWN AND CALDWELL **Project Name:** MacGregor 1511590 Workorder: # ANALYTICAL QC SUMMARY REPORT Date: 13-Nov-15 BatchID: R304139 | Sample ID: MB-R304139 SampleType: MBLK | Client ID:
TestCode: F | Iexavalent Chromium, I | Dissolved SW7 | 196A | Uni
Bat | ts: mg/L chID: R30413 | | p Date:
alysis Date: 11/ | 06/2015 | Run No: 304139
Seq No: 6510755 | | |--|---------------------------|------------------------|---------------|-------------|------------|-------------------------------------|------------|-----------------------------|---------|---|------| | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | | High Limit | RPD Ref Val | | | | | Chromium as Cr+3 | BRL | 0.0100 | Chromium, Hexavalent | BRL | 0.0100 | | | | | | | | | | | Sample ID: LCS-R304139 | Client ID: | | | | Uni | its: mg/L | Prej | p Date: | | Run No: 304139 | | | SampleType: LCS | TestCode: F | Iexavalent Chromium, I | Dissolved SW7 | 196A | Bat | chID: R30413 | 9 Ana | alysis Date: 11/ | 06/2015 | Seq No: 6510756 | | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Q | ual | | Chromium, Hexavalent | 0.4609 | 0.0100 | 0.5000 | | 92.2 | 90 | 110 | | | | | | Sample ID: 1511590-001CMS | Client ID: 1 | 5309-MW-27 | | | Uni | its: mg/L | Prej | p Date: | | Run No: 304139 | | | SampleType: MS | TestCode: F | Iexavalent Chromium, I | Dissolved SW7 | 196A | Bat | chID: R30413 | 9 Ana | alysis Date: 11/ | 06/2015 | Seq No: 6510760 | | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Q |)ual | | Chromium, Hexavalent | 0.4533 | 0.0100 | 0.5000 | | 90.7 | 85 | 115 | | | | | | Sample ID: 1511590-001CMSD | Client ID: 1 | 5309-MW-27 | | | Uni | its: mg/L | Pre | Date: | | Run No: 304139 | | | SampleType: MSD | TestCode: I | Iexavalent Chromium, I | Dissolved SW7 | 196A | Bat | chID: R30413 | 9 Ana | alysis Date: 11/ | 06/2015 | Seq No: 6510762 | | | Analyte | Result | RPT Limit | SPK value | SPK Ref Val | %REC | Low Limit | High Limit | RPD Ref Val | %RPD | RPD Limit Q |)ual | | Chromium, Hexavalent | 0.4486 | 0.0100 | 0.5000 | | 89.7 | 85 | 115 | 0.4533 | 1.04 | 20 | | Qualifiers: Greater than Result value > BRL Below reporting limit Rpt Lim Reporting Limit Estimated value detected below Reporting Limit Less than Result value E Estimated (value above quantitation range) N Analyte not NELAC certified S Spike Recovery outside limits due to matrix B Analyte detected in the associated method blank H Holding times for preparation or analysis exceeded R RPD outside limits due to matrix Page 11 of 11 # **Appendix D: Laboratory Stipulation Letter** ## **AES** Analytical Environmental Services, Inc., 3785 Presidential Parkway Atlanta, GA 30340 ## Stipulation of Approval for Commercial Laboratory According to Georgia State Law (O.C.G.A. 12-2-9) Commercial Rules for Commercial Laboratory Accreditation, any person submitting data to EPD prepared by a commercial laboratory shall stipulate that the laboratory is approved (Chapter 391-3-26-.05). The following information is provided as requested. | Laboratory | Analytical Environmental Services, Inc. (AES) | | |-------------------|---|--| | | 3785 Presidential Parkway, NE | | | | Atlanta, GA 30340 | | | | (770) 457-8177 | | | Accredited By: | State of Florida, Department of Health, Bureau of Laboratories; | | | | Accrediting NELAP Authority | | | Accreditation ID: | E87582 | | | Scope: | Clean Water Act – Extractable Organics, General Chemistry, | | | | Metals, Microbiology, Pesticides-Herbicides, PCBs, Volatile | | | | Organics | | | | | | | | RCRA/CERCLA – Extractable Organics, General Chemistry, | | | | Metals, Pesticides-Herbicides, PCBs, Volatile Organics | | | Effective: | July 1, 2012 | | | Expires: | June 30, 2013 | | I further certify that the sample(s) for which this data is being submitted has been handled pursuant to the appropriate chain of custody. Any question regarding this stipulation of approval may be directed to AES at 770 457-8177. Thank you for your business and please do not hesitate contacting us if we can be of further assistance. James Forres Director of Project Management September, 19 2012 # **Appendix E: Updated Fate and Transport Model Technical Memorandum** #### **Technical Memorandum** 220 Athens Way, Suite 500 Nashville, Tennessee 37228 T: 615.255.2288 F: 615.256.8832 Prepared for: MacGregor Golf Group Project Title: Former MacGregor Golf Company, Voluntary Remediation Program Services Project No: 145096 #### **Technical Memorandum** Subject: Updated Fate and Transport Model Evaluation Former MacGregor Golf Company Site HSI Site No. 10398 Date: January 28, 2016 To: Sarah Jones, PhD, CHMM, Principal Ecotoxicologist, Brown and Caldwell From: Gregory L. Christians, PG, Associate Hydrogeologist, Brown and Caldwell Copy to: File Prepared by: Gregory L Christians, PG, Associate Hydrogeologist Reviewed by: Jeff Weaver, PG, Managing Hydrogeologist #### Limitations: This document was prepared solely for the Brunswick Corporation, Albany Sport, Co., and Albany Partners, LLC (the Group) in accordance with professional standards at the time the services were performed and in accordance with the contract between the Group and Brown and Caldwell dated September 18, 2013 and amended on February 20, 2014 and April 24, 2014. This document is governed by the specific scope of work authorized by the Group; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by the Group and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information. ## Table of Contents | l ist d | of Figures | ii | |---------|--|-----| | | of Tables | | | | | | | | ion 1: Introduction | | | 1.1 | Objective | | | 1.2 | • | | | | 1.2.1 Site Hydrogeology | . 2 | | | 1.2.2 Distribution of Site Constituents of Concern | . 4 | | 1.3 | Fate and Transport Models | . 4 | | Sect | ion 2: Flow Model Development | . 4 | | 2.1 | Model Specifications | . 4 | | 2.2 | Model Grid | . 4 | | 2.3 | Model Layering | . 5 | | 2.4 | Boundary Conditions | . 5 | | 2.5 | Recharge | . 5 | | 2.6 | Aquifer Parameter | . 5 | | 2.7 | Stress Periods and Initial Conditions | . 6 | | 2.8 | Calibration | . 6 | | 2.9 | Sensitivity | . 7 | | Sect | ion 3: Updated Solute Transport Model Development | . 7 | | | Updated Solute Transport Model | | | 3.2 | Transport Model and Parameters | . 7 | | 3.3 | Transport Model Uncertainty | . 8 | | Sect | ion 4: Predictive Model Simulations | ٤ . | | | Scenario 1 | | | 4.2 | Scenario 2 | . 🤉 | | 4.3 | Scenario 3 | | | Sect | ion 5: Conclusions | . 9 | | Sect | ion 6: References | . 9 | ## List of Figures - Figure 1. Site Layout - Figure 2. Potentiometric Surface Map Upper Water Bearing Zone March 26, 2014 - Figure 3. Potentiometric Surface Map Lower Water Bearing Zone March 26, 2014 - Figure 4. Initial Hexavalent Chromium Concentrations Shallow Upper Water Bearing Zone - Figure 5. Initial Hexavalent Chromium Concentrations Deep Upper Water Bearing Zone - Figure 6. Model Grid - Figure 7. Model Layer 1 Hydraulic Conductivity Distribution - Figure 8. Modeled Heads Versus Upper Water Bearing Zone Potentiometric Surface Map March 2014 - Figure 9. Modeled Heads Versus Lower Water Bearing Zone Potentiometric Surface Map March 2014 - Figure 10. Modeled Versus Observed Heads - Figure 11. Modeled Hexavalent Chromium Concentrations in Shallow Upper Water Bearing Zone 5 Year Projection - Figure 12. Modeled Hexavalent Chromium Concentrations in Shallow Upper Water Bearing Zone 15 Year Projection - Figure 13. Modeled Hexavalent Chromium Concentrations in Shallow Upper Water Bearing Zone 25 Year Projection - Figure 14. Modeled Hexavalent Chromium Concentrations in Deep Upper Water Bearing Zone 40 Year Projection - Figure 15. Modeled Hexavalent Chromium Concentrations in Deep Fractured Bedrock 3 Year Projection #### List of Tables Table 1. Specifications of the Numerical Flow Model #### **Section 1: Introduction** In compliance with the Georgia Environmental Protection Division's (EPD's) Voluntary Remediation Program (VRP), a fate and transport model was developed for the Former MacGregor Golf Company Site (Site) in Albany, Georgia and submitted to the EPD on January 19, 2015. The model was used to evaluate whether the current observed site constituents of concern (COCs) would migrate to or beyond the current property lines and to project future COC concentrations in groundwater. The model suggested that COC
concentrations associated with the MW-19 area would migrate beyond the property lines and ultimately attenuate to below the Site VRP cleanup level between 25 to 30 years. Therefore, off-site shallow temporary monitoring wells (TW-43 and TW-44) were installed to further evaluate the extent of COCs down-gradient of MW-19. Following this, two permanent shallow monitoring wells (MW-27 and MW-28) were installed for long term monitoring and as points of compliance. The COC concentrations from these additional temporary and permanent monitoring wells were used to update the transport model and to evaluate the predicted extent and potential cleanup times of COCs associated with the MW-19 area. This technical memorandum (TM) documents the selection and use of the updated fate and transport models employed for this Site, and summarizes the updated modeling results. Because of the previous transport model predictions, down-gradient off-site shallow temporary monitoring wells TW-43 and TW-44 were installed and sampled in July 2015 (Figure 1). Two shallow permanent monitoring wells MW-27 and MW-28 were installed in October 2015 and sampled in November 2015. These wells were installed for long-term monitoring and down-gradient points of compliance (Figure 1). Groundwater samples were also collected from MW-11, MW-19, and MW-24 during the July 2015 sampling event. The updated fate and transport model incorporated the COC concentrations from the temporary monitoring wells collected in 2014 and 2015 and COC concentrations form the permanent existing and newly installed monitoring wells collected in July of 2015 and November or 2015. The updated fate and transport modeling effort documented in this TM focused on assessing hexavalent chromium migration around monitoring wells MW-11, MW-19, and MW-24. The specific objectives were to evaluate, whether concentrations at MW-11 and MW-24 will decline to below the Site VRP groundwater cleanup level up-gradient of the property boundary, and to evaluate hexavalent chromium migration downgradient of MW-19 to allow a point of compliance to be established and monitored. This TM summarizes key assumptions and the results of this modeling effort. #### 1.1 Objective The primary objective of this updated fate and transport modeling effort was to evaluate localized hexavalent chromium migration and provide sufficient predictive data to assess compliance with VRP remediation requirements. Specific objectives were as follows: - Access whether dissolved phase hexavalent chromium concentrations around MW-11 and MW-24 will fall below the Site VRP groundwater cleanup level of 0.010 milligram per liter (mg/L) before reaching an off-site boundary - Evaluate the predicted extent of hexavalent chromium migration down-gradient of MW-19 to allow a point of compliance to be established and monitored. - Evaluate the predicted migration extent and estimated time for dissolved phase hexavalent chromium concentrations around and down-gradient of MW-19 to fall below the Site VRP groundwater cleanup level of 0.010 milligram per liter (mg/L). #### 1.2 Conceptual Site Model The development of a Conceptual Site Model (CSM) is a critical part of a site investigation and remediation project and as it serves as the basis for understanding hydrogeologic conditions and how these conditions influence the fate and transport of released COCs. The following is a brief discussion of the CSM for this Site. #### 1.2.1 Site Hydrogeology Two separate water bearing units have been identified at this Site. The upper water bearing zone is an unconfined surficial aquifer that occurs within the undifferentiated overburden. Beneath this unit is the Upper Floridian Aquifer, or lower water bearing zone, which is a member of the Ocala Limestone. Site COCs observed within the upper water bearing zone will be the primary focus of this evaluation. The upper water bearing zone is primarily comprised of two units. The upper vadose zone layer is approximately 10 to 13 feet thick and is comprised of sandy clay. Below this unit is an approximately 20-foot thick vadose zone comprised of fine sand. At the base of this sand is a thin cemented unit that is generally observed at or near the water table. This unit may be associated with mineral cementation occurring at or just above the water table. The lower portion of the upper water bearing unit underlying the vadose zone ranges in thickness from approximately 20 to 30 feet and is comprised of unconsolidated heterogeneous and discontinuous lenses of sand, silty sand, silty clay, and weathered bedrock. The weathered bedrock is the most continuous unit observed; and is comprised of silt to very-fine clayey sand. The basal portion of this unit is generally characterized as a thin zone of lower permeable clays. The lower water bearing unit is the upper Floridan Aquifer, which ranges in depth from approximately 55 to 70 feet below ground surface (bgs) at the Site. The upper Floridan Aquifer, based on bedrock cores, has been characterized as a massive limestone with fractures being predominately bedding plane fractures. The Floridan Aquifer is known for its highly karstic nature; however, karst conduits in the upper 10 to 20 feet of the bedrock have not been observed at the Site. Given the known karst nature of the Floridan Aquifer, it is assumed that karst features increase in nature and frequency with depth and become the controlling regional water transport feature in the underlying aquifer system. Groundwater elevations within the upper water bearing zone generally range from approximately 161 to 165 feet above mean sea-level (ft amsl) across the Site. Slug tests suggest that sufficient permeability is present within the upper water bearing zone to allow it to behave as a local-scale aguifer with predominatelylateral flow. The underlying karst Floridan Aquifer with its potential hydraulic conductivities, which can be as great as two to three orders of magnitude greater than the overlying unit, impacts the flow behavior within the upper water-bearing units. This relative hydraulic conductivity difference between the upper water bearing zone and the underlying Floridan Aquifer makes the upper water bearing zone behave as an aguitard instead of as an aguifer where lateral flow predominates. This is illustrated by the vertical head difference observed between the coupled monitoring wells MW-11 and MW-6. Both monitoring wells are screened within the upper unconsolidated water bearing zone. MW-11 is screened near the water table with a groundwater elevation of 163.73 ft amsl (measured in March 2014). MW-6 is screened at the base of the upper water bearing zone with a groundwater elevation of 160.25 ft amsl (measured in March 2014). A comparison of these elevations indicates a vertical head difference of 3.48 ft. Although this value has varied through time, the vertical head relationship between these two monitoring wells has been relatively consistent. Observing a vertical head loss within a shallow water table aquifer is a common occurrence where the aguifer or system is underlain by the high permeable Floridan Aguifer system. As a result, the upper, unconsolidated, water bearing zone has both a lateral and vertical component of groundwater flow. An understanding of lateral flow in such a system is gained by measuring groundwater elevations in wells with similar screen lengths and elevations. Incorporating data from monitoring wells that are screened at different elevations will result in erroneous interpretations of lateral flow within the upper water bearing zone. Following the 2014 groundwater elevation monitoring events, the screen length and depth of each well within the upper water bearing zone was re-evaluated and the group of upper water bearing zone wells was confirmed based on the screen elevation. The March 2014 upper water bearing zone potentiometric surface based on the new well grouping is presented on Figure 2. As shown on the figure, lateral groundwater flow is complex on the site. Both in March and January of 2014, groundwater flow generally flowed to the southeast near MW-11, to the southeast near MW-17, to the northwest near MW-12 and ultimately south-southwest, and exits the Site along the southern border near MW-16 and MW-19. Under normal flow conditions, groundwater within the upper water bearing zone would be expected to flow to a localized or regional discharge area. Currently, the regional discharge point is the Flint River, which is located approximately 1.9 miles to the east of the Site. No localized discharge areas or influence on groundwater flow have been identified. In the absence of these influences, localized groundwater flow within the upper water bearing zone is most likely influenced by lateral variations in hydraulic conductivity. This is consistent with the heterogeneity observed within this unit and was be further supported during model calibration. Historically, groundwater elevations within MW-6, MW-24, and MW-26 have been included in the lower water bearing zone potentiometric surface maps due to their similarities to bedrock groundwater elevations in the vicinity of these monitoring wells. However, these wells are screened at the base of the upper water bearing zone, not the bedrock. Additionally, upon inspection, groundwater elevations within these wells are approximately 0.25 to 0.5 feet higher than one would predict based on the potentiometric surface elevation derived from the bedrock monitoring wells. As a result, MW-6, MW-24, and MW-26 are interpreted as monitoring groundwater that is part of the upper water bearing zone. As indicated, vertical head losses have been observed between the upper and lower portion of the upper water-bearing unit. Typically, in an aquifer such as this, lateral flow within the lower portion of the aquifer generally mimics lateral flow within the upper portion of the aquifer system. Though data is limited, groundwater elevations
collected from TW-11, TW-23, TW-24, MW-6, MW-24, and MW-26 generally have shown groundwater flow to the southeast, which is consistent with groundwater flow within the upper portion of the water bearing zone in this area of the site. Historic groundwater elevation data collected from MW-6, MW-24, and MW-26 have shown groundwater flow in the base of the upper water-bearing zone to be to the north-northwest. The possible presence of irrigation well on the farm property located north of the Site was suggested by EPD in the December 10, 2014 meeting with the Group as a cause of the observed gradient reversal. BC subsequently contacted the landowner and determined that no well exists or had existed on the farm property. The groundwater flow variations potentially result during times of elevated recharge as a result of the heterogeneity of the aquifer system and localized occurrence of impervious surfaces. It is believed that these conditions are temporary in nature and that the controlling groundwater flow direction is to the southeast. This is generally supported by the hexavalent chromium concentrations observed during the 2014 delineation fieldwork around MW-24. The highest hexavalent chromium concentration was observed in the groundwater sample from temporary well TW-11. Other detected concentrations of hexavalent chromium generally declined exponentially, with the primary axis of the plume extending to the south-southeast. The absence of hexavalent chromium in wells TW-23 and MW-26 at or near the northern property line supports that occasional flow reversals are temporary and do not play a significant role in long-term lateral transport. The March 2014 potentiometric surface map for the lower water bearing zone (upper portion of the Floridan Aquifer) is presented on Figure 3. Groundwater elevations range from 160.7 ft amsl in MW-7 to 158.89 ft amsl in MW-17. Groundwater flow is generally to the east toward the Flint River, which is the regional discharge point for the bedrock aquifer. #### 1.2.2 Distribution of Site Constituents of Concern All Site hexavalent chromium concentrations are observed within the upper water bearing zone around MW-11, MW-19, and MW-24. Hexavalent chromium concentrations observed near MW-11 and MW-19 are associated with the upper, or shallow, portion of the upper water bearing zone. The distribution of hexavalent chromium at these two locations is presented on Figure 4. Hexavalent chromium concentrations observed around MW-24 are associated with the base, or lower portion, of the upper water bearing zone. The distribution of hexavalent chromium associated with the MW-24 area is presented on Figure 5. The data shown in Figures 4 and 5 represent the starting concentrations used in the transport model. #### 1.3 Fate and Transport Models As indicated above, the upper water bearing zone and the underlying Floridan Aquifer are the primary lateral migration pathways associated with the Site and therefore, a diagnostic level fate and transport model was developed to evaluate COC migration within these units. Several axial 1- and 2-dimensional fate and transport analytical models were initially evaluated for use as the diagnostic level model for the Site. However, due to complexities associated with groundwater flow within the upper water bearing zone, the simple 1- and 2-dimensional analytical models were deemed inappropriate to meet the objectives of this evaluation. As a result, a numerical model using MODFLOW and MT3D were selected and updated to evaluate flow and transport, respectively. The updated diagnostic level groundwater flow model was developed using the MODFLOW 2000 computer code (Harbaugh et al., 2000). A diagnostic level flow model is a model that reasonably represents Site groundwater flow conditions, and uncertainty. A diagnostic level model was constructed and calibrated and provides a reasonable representation of Site conditions which can be used to adequately access Site risks. Solute transport modeling was performed using the MT3DMS version of the MT3D computer code coupled with the results of the flow model (Zheng, 1990). Development and quality assurance/quality control (QA/QC) of this numerical model was fully integrated using the ArcGIS™ (Version 10) Geographic Information System (GIS) software (ESRI, 2011) so that model results and input data were fully compatible between current spreadsheet, database, GIS, and modeling software packages. Groundwater Vistas, version 6 (ESI, 2011), was used as a graphic user interface to facilitate integration of model data with GIS, as well as preand post-processing of the numerical model files. ## **Section 2: Flow Model Development** #### 2.1 Model Specifications Table 1 presents the general specifications of the flow and transport model setup. Specific details and assumptions associated with the model are presented in the following sections. #### 2.2 Model Grid A model domain of 4,300 ft by 6,800 ft was selected to model flow within the upper water bearing zone and the underlying Floridan Aquifer. The long axis of the model domain was set generally parallel to the observed groundwater flow direction in the Floridan Aquifer. The model domain and grid layout is presented on Figure 6. The grid was developed as a telescoping grid. The finest grid sizes were located within the area of interest and have a starting cell size of 5 ft by 5 ft. The area of interest covers the extent of the hexavalent chromium plumes and their potential migration pathways. Once the grid extends outside the primary area of interest, the cells are increased by a factor of 1.5 until the cells reach a maximum cell size of 100 ft by 100 ft. #### 2.3 Model Layering Two layers (Layer 1 and Layer 2) were selected to represent groundwater flow within the upper water bearing zone and the lower water bearing zone (underlying Floridan Aquifer). The top of Layer 1 was varied based on the estimated topographic surface of the Site and surrounding area. The base of Layer 1 was set to an elevation of 142 ft amsl, which represents the average top of bedrock elevation obtained from Site well data. The base of Layer 2 was set at 75 ft amsl, which was deemed to provide a reasonable representation of the characteristics of the upper Floridan Aquifer as observed from Site data. The estimated thickness of the saturated water-bearing unit Layer 1 within the area of interest was estimated to be approximately 22 to 25 ft. The thickness of the upper portion of the Floridan Aquifer that that is consistent with that previously described in the CSM Section is was assumed to be 67 ft. #### 2.4 Boundary Conditions General-head boundary cells were used to represent the margins of the model. The location of the general head boundary conditions are presented on Figure 6. General Head cells were used along the perimeter of the model. The general head cells were used to represent groundwater flow into the model along this perimeter. The general head boundary heads for Layer 1 were estimated by extrapolating groundwater elevations observed on-Site to the edges of the model grid. In areas where no Site groundwater elevation contours were extrapolated, a consistent gradient and flow direction was maintained to mimic the on-Site observations. The general head boundary heads for Layer 2 were estimated by extrapolating groundwater elevations observed on-Site to the edges of the model grid. Groundwater flow and gradient within Layer 2 was much more uniform. In areas where no Site groundwater elevation contours were present a flow direction and gradient were developed consistent with that observed within the upper Floridan Aquifer Site data. ## 2.5 Recharge Average rainfall for the Albany, Georgia area is approximately 50 inches per year. Although the Albany area receives abundant rainfall, most of the precipitation does not recharge the aquifer. Estimates for the Albany area suggest approximately 12 percent of precipitation may recharge in non-urban areas (McLemore, 1990). Using the suggested 12 percent value, an estimated 6 inches per year may reach the upper water-bearing unit. Following numerous calibration runs, a recharge rate of 1.5 inches was selected to best fit the Site conditions. This is on the low end of the potential available recharge but is consistent with a partially urbanized area where much of the rainfall is carried away by surface collection systems. ## 2.6 Aquifer Parameter Slug tests were conducted in three upper water-bearing zone wells, MW-1, MW-4, and MW-12. Hydraulic conductivity values ranged from 6.7 ft/day to 15.7 ft./day, with a geometric mean value of 6.4 ft./day. This range in hydraulic conductivity may not cover the total range of the actual hydraulic conductivity variation due to the heterogeneity observed within the upper-water bearing unit. Additionally, slug tests tend to underestimate actual in-situ hydraulic conductivities by a factor of 2 to 3 (Christians and Brother, 1993). Because of the suspected heterogeneity, lateral hydraulic conductivity distribution was derived through a Pilot Point approach using the PEST inverse model (Doherty, 2010). This approach is an inverse parameterization method that statistically varies hydraulic conductivity to achieve calibration to a complex flow field. The Pest Pilot Point method is an inverse-modeling process that interpolates hydraulic conductivities within individual cells within the model domain allowing heterogeneity to be represented in more detail. The calibrated hydraulic conductivity distribution for the Site is presented on Figure 7. The Pest calibrated hydraulic conductivities range from 1 ft/day to a localized high of 690 ft/day. This high conductivity zone is located just to the south of MW-22 and MW-25. In conjunction with this localized hydraulically conductive area is a generally broad zone of projected high hydraulic conductivities that trends northeast between MW-10 and MW-19 to monitoring wells MW-2,
MW-3, and MW-13. This distribution of hydraulic conductivity was required to match the March 2014 groundwater flow field, which suggests that groundwater flow is generally influenced by this trend during that time period. The zones of elevated hydraulic conductivity values appear somewhat high as compared to general site observations. However, the distribution of hydraulic conductivity in the areas of the hexavalent chromium plumes and their migration pathways are generally consistent with the anticipated hydraulic conductivity values for the upper water-bearing zone. Hydraulic conductivity tests were conducted in Floridan Aquifer monitoring wells MW-5, MW-8, MW-9, MW-16, MW-17, and MW-20. Hydraulic conductivity values ranged from 2.2 ft/day to 56.5 ft/day, with a geomean value of 16.1 ft/day. Three of the monitoring wells tested had hydraulic conductivity values of 21.5 ft/day, 48.3 ft/day, and 56.5 ft/day. The geometric mean value for these upper bound wells was 38.8 ft/day. This suggests that the bulk hydraulic conductivity associated with the upper portion of the bedrock is higher than the geometric mean value for all the locations tested. During calibration, the hydraulic conductivity of Layer 2 of the upper Floridian Aquifer was fixed at a value of 30 ft/day. #### 2.7 Stress Periods and Initial Conditions The calibrated diagnostic level groundwater flow model was initially set-up to produce a steady-state solution for groundwater flow. In support of the updated MT3D transport model simulations, the groundwater flow model was then set to run under transient conditions. A single stress period of 40 years was used in both the flow and transport models to allow for COC plumes to be simulated 40 years into the future. #### 2.8 Calibration Given the nature of a diagnostic level model, the flow model was calibrated to target heads in Layer 1 and Layer 2 that were based on the March 2014 measurement event. Hydraulic conductivity, recharge and general head boundary elevation were varied to obtain the best match with observed water levels. The process resulted in simulated groundwater elevations that were similar to those observed in March 2014. The calibrated, simulated groundwater elevation for both layers and a comparison to actual measured groundwater elevation are presented on Figure 8 and Figure 9, respectively. As previously indicated, the PEST parameterization statistical approach was used to develop the hydraulic conductivity field that resulted in the best calibration to heads in Layer 1. A reasonable match between the model heads in both Layer 1 and Layer 2 has thus been achieved. A graph of simulated groundwater heads and observed heads is provided in Figure 10. The head plot is generally linear suggesting a reasonable calibration (Spitz and Moreno, 1996). Calibration statistics such as absolute residual mean and residual sum of squares are important measures of calibration. The general rule of thumb is that a model is deemed calibrated if one achieved absolute residual mean is equal to or less than 10 percent of the head loss over the critical model domain (Spitz and Moreno, 1996). Ten percent of the head loss across the critical model domain was estimated to be 0.35 ft. The measured absolute residual mean was calculated to be 0.24 ft. An additional calibration statistic is the residual sum of squares, which is a measure of whether the model is biased high or low. The calculated residual sum of mean squares was calculated to be 2.04 ft. The calculated absolute residual mean is within the criteria set forth and the residual sum of squares is low, suggesting that the model is slightly biased high. Given these statistics, the diagnostic level flow model is deemed calibrated and will meet objectives for the flow and updated transport modeling effort. ## 2.9 Sensitivity A sensitivity analysis was conducted to determine which of the diagnostic flow model parameters presented the greatest level of model uncertainty. Model parameters of hydraulic conductivity, recharge, and general head boundary conductance were varied independently by using multipliers of 0.5, 0.7, 0.9, 1.1, 1.3, and 1.5; and the sensitivity of the model calibration statistics to these variations was assessed. The general head boundary conductance showed little effect on the quality of the model calibration over the varied ranges of conductance, indicating that the model is relatively insensitive to these parameters. Hydraulic conductivity and recharge showed a proportionally equal but inverse effect on the quality of the model calibration over the range of multipliers; indicating that the model is proportionally equally sensitive to changes in hydraulic conductivity and/or recharge. The diagnostic level groundwater flow model was calibrated to steady-state conditions based on the values of hydraulic conductivity developed using PEST and recharge estimates varied during calibration. In doing so, the flow model does not present a unique model solution. That is, other combinations of hydraulic conductivity and recharge could also result in a reasonable calibrated solution. The use of transient or aquifer pumping test data, if made available, would allow one to define a more unique model solution. However, BC's current understanding of the CSM, ranges and distributions of hydraulic conductivity, and acceptable ranges of recharge, serve to limit the uncertainty associated with the current model. The current diagnostic level flow-model uncertainty is considered to be within acceptable ranges for its anticipated use. ## **Section 3: Updated Solute Transport Model Development** #### 3.1 Updated Solute Transport Model The primary objective of this diagnostic level transport model is to assess the general extent to which the hexavalent chromium within the upper water bearing zone will migrate off-site and at what concentration. The solute transport code, MT3DMS (or MT3D), was used to model behavior of the hexavalent chromium under the primary assumption that observed concentrations within the upper water-bearing unit are residual in nature with no continuing sources present. For this updated modeling effort, a worst-case scenario was assumed for the individual hexavalent chromium plumes. This scenario assumes that only advection and dispersion act to transport and reduce hexavalent chromium concentrations. The upper water-bearing unit was only represented as a single layer due to the observed complexities within the groundwater flow system. The hexavalent plumes associated with MW-11 and MW-19 have only been observed within the upper portion of the upper water bearing zone. The hexavalent plume associated with MW-24 has only been observed in the lower portion of the upper water bearing zone. Because the upper water bearing zone is only represented as a single layer, the total starting mass of the individual hexavalent plumes will be distributed vertically throughout the entire layer. This has resulted in a conservative over-estimation of the actual hexavalent chromium mass at each of these locations. This is very conservative and may result in an over-estimation of down-gradient migration distances and times to cleanup. However, if the results are acceptable under these conditions, then the actual risk for the Site is less than projected based on these modeling results. ## 3.2 Transport Model and Parameters MT3D was used to simulate the transport of hexavalent chromium in the upper water bearing zone. The groundwater flow model grid and cell-to-cell flow parameters were used to support the development of the MT3D transport model. The primary transport parameters used in the model simulation are as follows: Only advection and dispersion were used to transport and reduce hexavalent chromium concentrations - Because hexavalent chromium generally behaves as a conservative compound, no retardation was assumed in the transport model - Average effective porosity of the upper water bearing zone was assumed to be 25 percent (Freeze and Cherry, 1979). The average effective porosity for the lower water bearing zone (underlying upper Floridan Aquifer) was assumed to be 5 percent to represent the potential for primary flow along bedding plane fractures (Freeze and Cherry, 1979) - The longitudinal dispersivity was estimated using the Modified Xu and Eckstein equation (Xu and Eckstein, 1995) and an estimated average migration distance of 500 ft. Therefore, the longitudinal dispersivity was estimated to be 18 ft. The transverse and vertical dispersivity was estimated to be 1.8 ft and 0.18 ft, respectively. - The total transport time was 14,600 days or 40 years - No ongoing hexavalent chromium sources have been identifies and therefore no on-going sources have been represented in the transport model. - In order to reduce computational times for the transport simulation, non-essential areas of the transport grid were set to "not active". The active portion of the transport grid encompassed the Site and extended down-gradient to the south approximately 1,000 ft. ## 3.3 Transport Model Uncertainty A level of uncertainty exists associated with transport parameters such as dispersivity and porosity. Site-specific data are needed, which would require extensive field and lab testing, to further limit the overall model uncertainty. Given this, the current updated transport model is considered to be a conservative diagnostic level model, meaning that the levels of uncertainty associated with the transport model parameters are understood and are considered to be within acceptable levels to allow the objectives of the transport modeling effort to be met. #### **Section 4: Predictive Model Simulations** Three scenarios were simulated involving the transport of dissolved phase hexavalent chromium from the MW-11, MW-19, and MW-24 areas. Each scenario assumed that current dissolved phase hexavalent plumes were derived from the most recent temporary well and monitoring well data
served as the starting concentration. Each plume was then modeled forward in time 14,400 days or 40 years to access the ultimate nature of the plumes. #### 4.1 Scenario 1 Scenario 1 includes the transport of the hexavalent chromium plumes near MW-11 and MW-19, which are located in the upper water bearing zone. Figure 11 shows the hexavalent chromium results after 5 years. Concentrations in MW-11 have dropped significantly and will drop below the groundwater standard of 0.01 mg/L in between 5 and 10 years. After 15 years (Figure 12), the plume starting out in the vicinity of MW-19 has thinned, experienced an overall reduction in concentration and mass, and reached its maximum downgradient extent. The maximum plume extent down-gradient of the southern property line is approximately 375 ft. Figure 13 presents the hexavalent chromium concentration following 25 years. Here the plume associated with MW-19 has shrunk back toward the Site and will fall below the groundwater standard in between 25 and 30 years. #### 4.2 Scenario 2 Scenario 2 includes the transport of the hexavalent chromium observed near MW-24 at the base of the upper water bearing zone. Figure 14 provides plume concentrations following 40 years. The concentrations have fallen significantly and are well within the property boundaries. The hexavalent chromium plume associated with MW-24 falls below the groundwater standard between 40 and 45 years. It should be noted that no chromium concentration above a Site VRP groundwater cleanup level was observed in the lower water bearing zone (underlying Floridan Aquifer) during this transport simulation. #### 4.3 Scenario 3 Scenario 3 assumes that all of the hexavalent chromium around MW-24 has migrated into the lower water bearing zone (upper Floridan Aquifer) because of the strong downward gradients. The lower porosity, higher relative hydraulic conductivity values, and overall increase in groundwater velocity in the upper Floridan Aquifer causes the plume to dissipate much more rapidly. As shown on Figure 15, the hexavalent chromium concentrations fall below the groundwater standard after approximately 3 years. If hexavalent chromium concentrations were to leach into the underlying bedrock system, the leaching rate should be relatively slow and allow for a significant dilution factor. This coupled with the higher hydraulic conductivity and lower porosity, are expected to keep bedrock rock concentrations below the groundwater standard. This is consistent with the fact that hexavalent chromium has not been detected in any bedrock well, to date. #### **Section 5: Conclusions** The primary objective of this updated fate and transport modeling effort was to evaluate localized hexavalent chromium migration and provide sufficient predictions to assess compliance with Site VRP cleanup objectives. The results of the evaluation are as follows: - Dissolved phase hexavalent chromium concentrations around MW-11 are predicted to stay on-Site and fall below the Site VRP groundwater cleanup level in 5 to 10 years. - The updated fate and transport modeling effort demonstrated that hexavalent chromium concentrations around MW-19 will migrate approximately 375 feet down-gradient, onto the adjoining Taylor property and will not migrate beyond that property. Dissolved phase hexavalent chromium concentrations around MW-19 are predicted to fall below the Site VRP groundwater cleanup level after 25 to 30 years. - Dissolved phase hexavalent chromium concentrations around MW-24 are predicted to stay on-Site and fall below the Site VRP groundwater cleanup level in 40 to 45 years. As noted previously, a conservative approach was taken by assuming hexavalent chromium concentrations throughout the entire thickness of Layer 1. This approach may result in an overestimate of down-gradient migration distances and times to cleanup. The actual extent of migration, time to cleanup, and/or hexavalent chromium concentration is expected to be lower. ## **Section 6: References** Christians, G.L., and Brother, M.R., 1993, *In-Situ Slug Test Analysis; A Comparison of Three Popular Methods for Unconfined Aquifers,* In Proc. Of the 7th National Outdoor Action Conference, Dublin Ohio, NGWA, pages 597-607. Doherty, J., Fienen. M.N, and Hunt, R.J., 2010. Approaches to Highly Parameterized Inversion: Pilot-Point Theory, Guidelines, and Research Directions, U.S. Geological Survey, Scientific Investigation Report 2010-5168. Environmental Simulations, Inc. (ESI), 2011. Groundwater Vistas, Advanced Model Design and Analysis, Version 6.5. ESRI, 2011. ArcGIS™ software, Version 10. Freeze and Cherry, 1979, "Groundwater", Prentice-Hall Inc. 604 pages. - Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000. MODFLOW-2000, The U.S. Geological Survey Modular Ground-water Model User Guide to Modularization Concepts and the Ground-water Flow Process. U.S. Geological Survey Open-File Report 00-92. - McLemore, W. H., 1990, Groundwater, NGWA, Spring 1990 issue. - Spitz, K., and Moreno, J., 1996, A Practical Guide to Groundwater and Solute Transport Modeling, John Wiley and Sons, New York. - Xu, M. Y. Eckstein 1995, Use of Weighted Least Squares Method in Evaluation of the Relationship Between Dispersivity and Field-Scale, Ground Water, Vol. 6, pages 905-908. - Zheng, C., 1990. MT3D: A Modular Three-dimensional Transport Model for Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Groundwater Systems, U.S. EPA, R.S. Kerr Environmental Research Laboratory, Ada, Oklahoma. | Table 1. Specifications of the Numerical Flow Model | | | | |---|--|--|--| | Former MacGregor Golf Company | | | | | Albany, Georgia | | | | | Model Characteristics | Specifications | | | | Active Model Domain | Approximately 4,300 ft. by 6,800 ft. | | | | Units | Time: Days
Length: Feet | | | | Model Grid | 540 rows by 433 columns
(Active cells) | | | | Cell Size | 5 feet to 100 feet | | | | Layering – 1 Layer | Layer 1 (Upper Water-Bearing Unit); Unconfined Aquifer | | | | Layering – 2 Layer | Layer 2 (Underlying Floridan Aquifer); Confined Aquifer | | | | Leakance | Leakance from the overlying upper water-bearing unit into the Floridan Aquifer was calculated based on vertical hydraulic conductivities by the flow model | | | | Hydraulic Parameters | Layer 1 hydraulic parameters were derived using a PEST Pilot Point approach, which is a statistical parameterization method to calibrate complex flow fields. Layer 2 was consistent with measured Site parameters | | | | MODFLOW Packages | MODFLOW 2000 (groundwater flow): Basic, Layer-Property Flow, Discretization, Output Control, Solver, General Head MT3DMS (solute transport) | | | | Boundary Conditions | General head boundaries were used along the perimeter of the flow model for Layer 1 and Layer 2 to simulate site groundwater elevations along said perimeter | | | | Surface Water Interactions | None | | | | Base Flow Model Calibration Period | Steady-state model calibrated to observed heads measured in March 2014 (One Stress Period) | | | | Transport Quasi-Calibration Period | One Transient Stress Period, One time step | | | | Stress Period | Estimated Release Period length: 14,600 days (40 years) | | |