VOLUNTARY REMEDIATION PROGRAM FIRST SEMI-ANNUAL PROGRESS REPORT FORMER MACON 2 MGP FACILITY MACON, BIBB COUNTY, GEORGIA GEC JOB NO. 130659.241

PREPARED FOR

FORMER MACON 2 MGP FACILITY MACON, GEORGIA HSI #10692

SUBMITTED TO

MR. DAVID HAYES
GEORGIA DEPARTMENT OF NATURAL RESOURCES
ENVIRONMENTAL PROTECTION DIVISION
HAZARDOUS SITES RESPONSE PROGRAM
2 MARTIN LUTHER KING, JR. DRIVE, SE
SUITE 1462, EAST TOWER
ATLANTA, GEORIGA 30334

March 10, 2016

PREPARED BY

GEOTECHNICAL & ENVIRONMENTAL CONSULTANTS, INC. 514 HILLCREST INDUSTRIAL BOULEVARD MACON, GEORGIA 31204

March 10, 2016

Mr. David Hayes Georgia Environmental Protection Division Response and Remediation Program Suite 1462 East Tower 2 Martin Luther King, Jr. Drive S.E. Atlanta, GA 30334

SUBJECT: First VIRP Semi-annual Progress Report

Former Macon 2 MGP Facility

HSI #10692

Macon, Bibb County, Georgia GEC Job No. 130659.241

Dear Mr. Hayes:

In accordance with the Voluntary Investigation and Remediation Program (VIRP) for the Former Macon 2 MGP Facility site in Macon, Georgia, Geotechnical & Environmental Consultants, Inc. (GEC) is submitting this Semi-annual Progress Report. This report summarizes the results of additional soil sampling and calculation of upper confidence limits (UCLs) for a limited number of metals and semi-volatile organic compounds (SVOCs). Based upon the results of additional sampling and calculation of UCLs, GEC has also provided recommendations for future activities which will assist in moving the site to closure.

Sincerely,

GEOTECHNICAL & ENVIRONMENTAL CONSULTANTS, INC.

Carrie Holderfield, P.G. Project Geologist Georgia Reg. No. 2174 Thomas E. Driver, P.E. President Georgia Reg. No. 17394

TABLE OF CONTENTS

FIRST SEMI-ANNUAL PROGRESS REPORT FORMER MACON 2 MGP FACILITY MACON, BIBB COUNTY, GEORGIA GEC JOB NO. 130659,241

DAGE #

		PAGE#
1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION	1
3.0	BACKGROUND	1
4.0	SUMMARY OF PREVIOUS INVESTIGATIONS	2
5.0	VAPOR INTRUSION SAMPLING	5
6.0	GROUNDWATER SAMPLING	6
7.0	STATISTICAL ANALYSIS	6
8.0	CONCLUSIONS AND RECOMMENDATIONS	7

APPENDICES

APPENDIX A:	Figures
--------------------	----------------

APPENDIX B: Prior Reports

APPENDIX C: Tables

APPENDIX D: Laboratory Analytical Results

APPENDIX E: Vapor Intrusion Screening Level (VISL) Calculator Spreadsheets

APPENDIX F: Statistical Calculations

1.0 INTRODUCTION

This Voluntary Remediation Program (VRP) First Semi-annual Progress report for the Former Macon 2 Manufactured Gas Plant (MGP 2) facility (Hazardous Site Inventory [HSI] #10692) in Macon, Georgia, is being submitted to the Georgia Environmental Protection Division (EPD) on behalf of Macon-Bibb County. The following sections summarize the results of additional soil sampling and calculation of upper confidence limits (UCLs) for a limited number of metals and semi-volatile organic compounds (SVOCs). The additional soil sampling and calculation of UCLs were conducted to revise the potential use from commercial/industrial to residential, within a selected area of the property.

New potential receptors and/or potential environmental issues have not been discovered since the revised VIRP was submitted by Geotechnical and Environmental Consultants, Inc. (GEC) in February 2015.

2.0 SITE DESCRIPTION

The Former Macon MGP 2 site (hereafter referred to as site) is located northeast of Riverside Drive/SR 23 and southeast of Spring Street/SR 87 in Macon, Bibb County, Georgia. The Norfolk Southern Railway and Ocmulgee River border the property line to the north. A **Site Location Map** is presented as **Figure 1** in **Appendix A**.

The site previously operated as a MGP facility from the mid-1800s to the mid-1950s. Subsequently, the former MGP structures were removed and the site was improved with the City of Macon Central Services complex. The Central Services complex structures were removed in 2012, and the site has remained vacant since that time. The site is currently undeveloped with the exception of asphalt roadways and the concrete foundations of former structures. The majority of the site is surfaced with grass. Property utilizations in the vicinity of the site are primarily commercial.

3.0 BACKGROUND

The site was previously listed on the HSI as site #10692. The site was investigated and a Compliance Status Report (CSR prepared by Williams Environmental Services) was approved on December 19, 2003, which certified compliance with Type 4 Risk Reduction Standards (RRS) for soil. The CSR also documented the extent of soil contamination both horizontally and vertically. Groundwater was certified as compliant with Type 1 RRS.

The Georgia Environmental Protection Division (EPD) also approved a Corrective Action Plan (CAP) for the site on January 4, 2006, which required a deed notice on the property. In order to comply with the CAP, a Consent Order was executed to prevent placing, permitting or approving any

residential purpose on the site.

Finally, the Georgia EPD approved an "Area of Compliance for Type 4 Risk Reduction Standards in Soil," as identified in a CAP, prepared by RETEC Group, Inc., dated October 5, 2008. For the purposes of the report, this Area is also identified as the "Proposed Residential Use Target Zone."

Due to interest in mixed residential and commercial redevelopment of the property, Macon-Bibb County elected to modify the current site restrictions to allow residential use of the site. To that end, Macon-Bibb County submitted an updated VRP Application, which included additional investigation and possible corrective action of soils from the surface to 15-feet below ground surface (bgs), which may be needed in order to demonstrate the site's suitability for residential development. The Residential Use Target Zone is defined by a polygon shaped area depicted **Site Map** presented as **Figure 2** in **Appendix A**.

Per EPD approval, the updated VRP application was not intended to revisit the basis for the delisting of the site, or to reevaluate the previously approved CSR. The updated VRP application served only to characterize contamination in the upper 15-feet of the site in order to enable the development of a corrective action plan, which would result in remediation to Type 1 or 2 RRS within these depths at the site.

The former MGP facility and surrounding properties were backfilled on several occasions to reach the current topography. The results of soil assessment activities indicated that fill thickness range from 4.5-feet to the west of the former MGP facility to approximately 36-feet within the eastern portion and to the southeast of the former MGP facility. Based upon visual observations collected during assessment activities, the fill material primarily consists of silts, sands, and clays consistent with the area lithology, and occasionally construction debris, including brick, concrete, glass, and asphalt. The upper 15-feet of soils and fill material were the subject of this additional investigation.

4.0 SUMMARY OF PREVIOUS INVESTIGATIONS

Law Environmental Studies: Law Environmental, Inc. (LAW) conducted a Preliminary Assessment (PA) of the Site in 1991, which included a review of available file material, on-site and off-site reconnaissance, review of historical property ownership and a limited pathway survey. No sampling or analysis was conducted during the PA.

Williams Environmental Services Studies: A Compliance Status Investigation Report (CSR) for the site was initiated by Williams Environmental Services (Williams) in June of 2002. The Revised CSR was submitted on September 5, 2003. According to the CSR, 35 Hazardous Site Response Act (HSRA) regulated substances were detected at the site.

Williams advanced over 35 soil borings within the total area of the site (including areas outside of the Residential Use Target Zone) and collected soil samples, variously, from the surface to 60-feet bgs. The selected soil samples were analyzed for volatile organic compounds (VOCs), semi volatile organic compounds (SVOCs), Resource Conservation and Recovery Act (RCRA) 11 metals, and total cyanide. Soil sample analytical results were compared to Type 1 through Type 4 RRS, and background concentrations. Comparison of the soil sample analytical results with applicable RRSs indicated two SVOCs (benzo(a)pyrene and dibenzo(a,h)anthracene) and two inorganic compounds (arsenic and lead) exceeded Type 1 or 2 RRS within the Residential Use Target Zone.

Williams also collected groundwater samples during the investigation. The groundwater samples were analyzed for the same analytes as the soil samples. Groundwater sample analytical results were compared to Type 1 RRS. None of the detected analytes exceeded Type 1 RRS. Therefore, the groundwater pathway is not considered complete at the site.

A digital copy of the **CSR** prepared by Williams in 2002, and revised in 2003, is provided in **Appendix B**.

GEC 2014: GEC mobilized to the site on February 13, 2014, to conduct additional assessment of shallow soils within in the Residential Use Target Zone. Assessment activities included sampling at pre-determined depths of 0 to 6-inches and 6-inches to 2-feet bgs. These depths were selected based upon prior conversations pertaining to the re-development of the site. Specifically, the depths were selected based on the two options determined by the "Analysis of Alternatives for Redevelopment of Former Macon 2 Manufactured Gas Plant." Options 2 (Voluntary Remediation Program (VRP)) and 4 (Brownfield) both included institutional controls or limited soil removal in the upper 2-feet to enable residential use across the site. Therefore, additional sampling of soils within the upper 2-feet of the Residential Target Zone was determined to be necessary to further evaluate the possibility of pursuing Options 2 and 4.

The locations for collection of additional surface soil samples were determined by establishing an approximate 100-foot grid within the "Area of Compliance for Type 4 RRS in Soil" (aka Residential Use Target Zone) identified in the Correction Action Plan prepared by RETEC Group, Inc. (dated October 5, 2008). A total of 27 sampling locations (GB-1 through GB-27) were proposed for completion within the Residential Use Target Zone and are identified on the **GEC Sampling Locations Map** presented as **Figure 3** in **Appendix A**.

GEC mobilized to the site on February 13, 2014, and collected a total of 54 soil samples from the surface to 6-inch interval and 6-inch to 2-foot interval. To fully characterize the soils across the site, the selected soil samples were submitted for laboratory analysis of VOCs, SVOCs, and RCRA 8 metals.

Laboratory analytical results for the selected soil samples were compared to Type 1 and Type 2 RRS.

Results of the comparison indicated that VOC and SVOC concentrations in the shallow soils all measured below either Type 1 or Type 2 RRSs. Further, only lead and arsenic concentrations exceeded Type 1 or Type 2 RRSs in three of the 44 samples. The sample locations exhibiting lead and/or arsenic concentrations exceeding RRSs within the 0 to 2-foot interval are identified on **Figure 4** in **Appendix A**. Analytical results for analytes with detectable concentrations are summarized in **Table 1** in **Appendix C** and the **laboratory analytical report** is presented in **Appendix D**.

GEC 2015: GEC proposed additional sampling in a Voluntary Investigation and Remediation Plan (VIRP, dated January 9, 2015) which recommended additional sampling of soils within the surface to 15-foot interval. The proposed soil sample locations and sample intervals were selected based upon the analytical results presented in the CSR, which identified 11 locations with analyte concentrations which exceeded the highest respective Residential RRS for each constituent, including:

```
SB-4C 21.5-23.5' Benzo(a)anthracene at 37 mg/kg, Benzo(b)fluoranthene at 27 mg/kg,
Indeno(1,2,3-cd)pyrene at 15 mg/kg, Benzo(a)pyrene at 26 mg/kg (*later removed because
impacted soils are located greater than 15-feet)
SB-14 16-20' Benzo(a)pyrene at 6.8 mg/kg, Dibenzo(a,h)anthracene at 3.5 mg/kg
SB-14 24-28' Benzo(a)pyrene at 10.0 mg/kg, Dibenzo(a,h)anthracene at 4.2 mg/kg
SB-17 16-20' Benzo(a)pyrene at 5.0 mg/kg, Dibenzo(a,h)anthracene at 2.3 mg/kg
              Arsenic at 31.5 mg/kg
SB-20 0-2'
             Lead at 298 mg/kg (*later removed because impacted soils are located greater
SB-23 14-19
than 15-feet)
SB-24 8-12'
             Lead at 338 mg/kg
SB-24 2-4'
              Benzo(a)pyrene at 2.9 mg/kg
              Benzo(a)pyrene at 11.0 mg/kg
SB-25 2-4'
             Lead at 634 mg/kg
SB-27 8-12'
              Benzo(a)pyrene at 5.6 mg/kg
SB-42 2-4'
SB-41 24-29' Lead at 484 mg/kg
SB-41 19-24' Benzo(a)pyrene at 2.2 mg/kg
SB-45 10-12' Lead at 425 mg/kg
SB-45 15-17' Lead at 1070 mg/kg
```

A copy of the VIRP is presented in Appendix B.

Prior to mobilizing to the site, GEC notified the Utilities Protection Center to ensure that underground utilities were identified within the proposed investigation areas. GEC mobilized to the site on August 6, 7, 13, 24, and 25, 2015, to conduct the additional assessment activities. The soil borings were advanced utilizing a skid steer mounted Geoprobe rig or track-mounted drilling rig equipped with hollow stem augers. All downhole apparatus were decontaminated prior to introduction into the subsurface. Additionally, on-site sampling personnel wore new disposable nitrile gloves when handling any sampling equipment or samples, in order to prevent cross-

contamination of samples.

During drilling, soil cuttings were continuously observed and selected soils were screened for organic vapors utilizing a photo-ionization detector (PID). Elevated PID readings (greater than 100 parts per million [PPM]), olfactory, and/or visual evidence of potential soil contamination were not detected.

A total of 30 additional soil samples were collected from various intervals within the top 15-feet of soil, and submitted for analysis of SVOCs and metals. Additionally, the soil samples collected from the area of the former Gas Holders (GB-5 and GB-7) were analyzed for benzene, toluene, ethylbenzene, and xylene (BTEX), and carbon disulfide, total cyanides, and methylene chloride (GB-7 only).

Laboratory analytical results for the selected soil samples were compared to Type 1 and Type 2 RRS. Results of the comparison indicated that BTEX, SVOC, carbon disulfide, total cyanides, and methylene chloride concentrations in the selected soil samples all measured below either Type 1 or Type 2 RRSs, with the exception of benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene within the 13 to 15-foot interval of SB-17. Additionally, all metal concentrations measured below Type 1 or Type 2 RRSs, with the exception of lead in GB-14 (3 to 5-foot interval) and SB-24 (2 to 4-foot interval).

All sample locations, including those completed by Williams, and analytical results for analytes exceeding Type 1 or Type 2 RRSs within the 0 to 15-foot interval, are identified on **Figure 5** in **Appendix A**. Analytical results are summarized in **Tables 2** through **6**, in **Appendix C** and the **laboratory analytical reports** are presented in **Appendix D**.

5.0 VAPOR INTRUSION SAMPLING

Potential vapor intrusion at the site was addressed by sampling in two locations at the site, including the area of the former Gas Holder No. 1 (boring location GB-5) and the former Gas Holder No. 2 (boring location GB-7). Tar-Like Material (TLM) and Oil-Like Material (OLM) were encountered at depths of 13-feet or greater in both of these areas during previous studies at the site.

The temporary vapor sample "wells" (VS wells) were installed within the two areas and air samples were collected from the following depths:

VS-1 GB-7: 10-feet VS-2 GB-7: 5-feet

VS-3 GB-5: 5-feet

VS-4 GB-5: 8-feet

The vapor sample wells were constructed with approximately 2-feet of 0.010" slotted, 1"ID PVC screen, and 2"ID PVC riser to the surface. The annulus around the screen was filled with a sand pack and a bentonite seal was placed above the screened portion. Per the Office of Solid Waste and Emergency Response (OSWER) Technical Guidance for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air (dated June 2015), leak detection was performed following completion of the temporary vapor sample well, utilizing a helium tracer gas shroud. Leak detection was performed to ensure that the boring was properly sealed.

Prior to sampling, the vapor sample wells were pumped using a portable battery powered air pump, to evacuate air entrained in the wells during installation, and to induce the flow of gases from the surrounding soil into the well. A vacuum-pressurized metal Summa canister was then utilized to collect an approximately 30-minute air sample from the vapor sample from each well.

Following sample collection, the canisters were sealed and transported via FedEx to Test America in Savannah, Georgia for analysis of VOCs on a standard turnaround time. Proper chain-of-custody was maintained at all times.

Laboratory analytical results obtained for the soil vapor sample identified numerous COCs, including those typically associated with MGPs, which included, but are not limited to benzene, ethylbenzene, toluene, and xylenes. The EPA VISL Calculator worksheet for sub-slab or exterior soil gas concentrations to indoor air concentrations was utilized to evaluate each COCs carcinogenic risk and/or vapor intrusion hazards. Review of the VISL worksheets indicated that all COCs were reported below the Target Risk for Carcinogens (TCR - 1.00 x 10⁻⁵) and/or the Target Hazard Quotient for Non-Carcinogens (THQ) for Non-Carcinogens (1).

The locations of the soil vapor and indoor air sample locations are identified on the **Vapor Intrusions Air Sample Location Map** presented as **Figure 6** in **Appendix A**. Copies of the **VISL Calculator worksheets** are presented in **Appendix E**.

6.0 GROUNDWATER SAMPLING

Since no groundwater contamination has been encountered above Type 1 RRS, no additional groundwater sampling is proposed or will be performed.

7.0 STATISTICAL ANALYSIS

GEC conducted statistical analysis utilizing ProUCL Version 5.0 statistical software obtained from the Environmental Protection Agency (EPA) to calculate the 95% upper confidence limit (UCL). The UCL was calculated to determine the exposure point concentration (EPC) or average exposure that a potential receptor would have to a chemical of concern (COC) over a long period of time at the site.

UCLs were calculated for arsenic, lead, benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene, as concentrations of these COCs exceeded either Type 1 or 2 RRS. To evaluate typical residential exposures, the analytical results from the surface to 2-foot interval were analyzed separately from the analytical results from the 2 to 15-foot interval. Statistical analysis of UCLs for COCs within the 2 to 15-foot interval were calculated to evaluate typical exposures that may be expected for construction workers. Statistical analysis was not conducted for any COCs detected in soils located greater than 15-feet because proposed construction activities are anticipated to be restricted to the upper 15-feet at the site.

The results of the statistical analysis for each sample location where a COC exceeded applicable RRSs and a proposed action are presented in the COC Decision Matrix Table presented in Appendix C. Statistical calculation of the UCLs indicated that the EPC did not exceed Type 2 RRS for any of the COCs. However, per EPD request, the proposed course of action for soils exhibiting elevated arsenic and lead concentrations within the surface to 5-foot interval included excavation and proper disposal. The proposed course of action for sample locations with elevated arsenic and lead concentrations at depths greater than 5-feet included preparation of a Soil Management Plan and construction worker oversight and air monitoring for airborne arsenic and lead, if soils in those areas would be disturbed during proposed construction activities.

Copies of the **soil sample analytical data input** and **ProUCL statistical output** are provided in **Appendix F**.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The results of extensive sampling and laboratory analysis of soil samples collected from the site and the results of statistical calculation of the 95% UCL indicated that soils located within the upper 15-feet of the Residential Use Target Zone are suitable for Residential Use. As noted previously, GEC is recommending excavation and disposal of soils at five locations where elevated arsenic and lead concentrations were detected in the upper 5-foot interval. This effort will also include collection of confirmation soil samples from the floor and side walls of each excavation to ensure that all soils exhibiting elevated arsenic and lead concentrations are removed. A **Soil Management Map**, which identifies the areas where excavation and disposal activities or soil management are proposed is presented as **Figure 7** in **Appendix E**.

GEC respectfully requests approval for residential use (Type 2 RRS) within the Residential Use Target Zone. GEC also requests issuance of a Uniform Environmental Covenant (UEC) and revision of the current Consent Order, to include restrictions for soils located greater than 15-feet, including a corrective action plan which will detail requirements necessary for any excavation or other disturbance of soils located greater than 15-feet within the Residential Use Target Zone. The intent of the corrective action plan will be insuring the protection of construction workers.

APPENDIX A

Figures

Figure 1
Site Location Map
Former Macon 2 MGP Facility
Macon, Bibb County, Georgia
GEC Project No. 130659.241
Approximate Scale: 1" = 2,000'
Source: Macon West, GA Quadrangle (1985)

514 Hillcrest Industrial Boulevard, Macon, GA 31204 ● Phone: (478) 757-1606 ● Fax: (478) 757-1608

5031 Milgen Court, Columbus, GA 31907 • Phone: (706) 569-0008 • Fax: (706) 569-0940

ENVIRONMENTAL CONSULTANTS, INC.

GEC PROJECT NO. 130659.241

APPENDIX B

Prior Reports

COMPLIANCE STATUS INVESTIGATION REPORT

FORMER MACON 2 MGP FACILITY MACON, GEORGIA

Prepared For:

Georgia Power Company
Atlanta Gas Light Company
and
The City of Macon

Prepared By:

WILLIAMS ENVIRONMENTAL SERVICES INC. 500 Chase Park South, Suite 150 Birmingham, Alabama 35244

> Preparation Date: June 17, 2002 Revised September 5, 2003

STATEMENT OF FINDINGS

The Compliance Status Investigation (CSI) detailed in this report was performed by Williams Environmental Services, Inc. (Williams) on behalf of the City of Macon, the Georgia Power Company, and Atlanta Gas Light Company. The purpose of the study was to define the properties affected by a release at the former Macon 2 Manufactured Gas Plant (MGP) facility in Macon, Georgia, as well as to determine the compliance status of the properties with regard to Risk Reduction Standards (RRSs) established under the Georgia Hazardous Site Response Act (HSRA). Other objectives of the study were to delineate the extent of constituents of interest (COI) in soil and groundwater, to identify and characterize potential sources, and to identify possible human and environmental receptors potentially exposed to a release.

A Site, as defined in the report, includes all properties affected by a release of a reportable quantity of a regulated substance at or from the former MGP operations. The properties defined as part of this Site include the parcel on which the former MGP facility was located, some of the adjacent and nearby parcels, and portions of street and railroad rights-of-way near the former MGP facility.

The study includes field investigations conducted by Williams to sample soil, sediment, and groundwater at the Site, to verify the location of former MGP structures and characterize their contents, to determine background concentrations of the COI in soil and groundwater and to determine the leaching potential for COI in soil to reach groundwater. Also incorporated into this report are the results of previous investigations (Preliminary Assessment and Site Inspection) conducted by Law Environmental, Inc. (LAW).

Known and potential sources of the regulated substances identified at the Site include the former MGP structures (two gas holders, oil tanks, purifier room, condensers, and coal storage area and areas of former MGP operations). Minor amounts of tar-like and oil-like material and other by-products of the MGP processes, including slag-like material and coal fines, were found in and around remnants of the structures and former areas of MGP operations.

The COI analyzed in the soil and groundwater samples collected during the CSI included semivolatile organic compounds (SVOCs), volatile organic compounds (VOCs), and inorganics (metals and cyanide) that are commonly associated with former MGP facilities.

The extent of COI associated with the former MGP operations in soils and groundwater have been defined in all directions. The area of soils and groundwater impacts include the majority of the former MGP facility and nearby parcels to the northeast, east, and southeast.

The former MGP facility is presently secured by fencing and according to water well surveys performed, no water wells are located within a three mile-radius of the property. Potential exposure points on the property are limited to those areas where construction or excavation activities may allow potential receptors such as workers to come in contact with COI in soils or groundwater.

Types 1 through 4 RRSs for soil and groundwater were developed from the results of the background study, laboratory detection limits, and default assumptions set forth by the Georgia Environmental Protection Division. Type 4 RRSs in soil were refined based on results of a leaching potential study, default assumptions for surface soils, and construction worker exposure assumptions for subsurface soils. The Site was evaluated for compliance with HSRA Types 1 through 4 RRSs. All COI in soil at the Site are in compliance with Type 4 RRSs. All COI in groundwater at the Site are in compliance with Type 1 RRSs.

CERTIFICATION OF COMPLIANCE WITH RISK REDUCTION STANDARDS

I certify under penalty of law that this report and all attachments were prepared under my direction in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Based on my review of the findings of this report with respect to the risk-reduction standards of the Rules for Hazardous Site Response, Rule 391-3-19-.07, I have determined that the following properties (identified by Bibb County, Georgia, Tax Parcel ID numbers, if applicable, and as outlined in this report) are in compliance with Type 1 risk reduction standards for soil and groundwater:

Parcel No. OC-98-5A Parcel No. OC-98-5C Parcel No. OC-98-5D Parcel No. OC-98-5G Parcel No. OC-98-5H Parcel No. OC-98-5I Parcel No. OC-98-5JA Parcel No. OC-98-4F Parcel No. OC-98-4H Parcel No. OC-98-3A(3B) Parcel No. OC-98-3D Parcel No. OC-98-2A(2B)

The following properties are in compliance with Type 4 risk reduction standards for soil and Type 1 risk reduction standards for groundwater:

Parcel No. OC-98-5J Parcel No. OC-99-4A Parcel No. OC-99-4AB Portions of Right-of-Way of Norfolk Southern Railroad Portions of Right-of-Way of Willow Street Portions of Right-of-Way of Spring Street Lane

Certified by:

Date:

Ralph Cleveland, Vice President of Engineering & Construction

Atlanta Gas Light Company

CERTIFICATION OF COMPLIANCE WITH RISK REDUCTION STANDARDS

I certify under penalty of law that this report and all attachments were prepared under my direction in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Based on my review of the findings of this report with respect to the risk-reduction standards of the Rules for Hazardous Site Response, Rule 391-3-19-.07, I have determined that the following properties (identified by Bibb County, Georgia, Tax Parcel ID numbers, if applicable, and as outlined in this report) are in compliance with Type 1 risk reduction standards for soil and groundwater:

Parcel No. OC-98-5A
Parcel No. OC-98-5C
Parcel No. OC-98-5D
Parcel No. OC-98-5G
Parcel No. OC-98-5H
Parcel No. OC-98-5I
Parcel No. OC-98-5JA
Parcel No. OC-98-4F
Parcel No. OC-98-4H
Parcel No. OC-98-3A(3B)
Parcel No. OC-98-3D
Parcel No. OC-98-2A(2B)

The following properties are in compliance with Type 4 risk reduction standards for soil and Type 1 risk reduction standards for groundwater:

Date:

Parcel No. OC-98-5J
Parcel No. OC-99-4A
Parcel No. OC-99-4AB
Portions of Right-of-Way of Norfolk Southern Railroad
Portions of Right-of-Way of Willow Street
Portions of Right-of-Way of Spring Street Lane

Certified by:		
	•	
Honorable C. Jac City of Macon	k Ellis, Mayor	-
•	•	

GROUNDWATER SCIENTIST STATEMENT

I certify that I am a qualified ground-water scientist who has received a baccalaureate or post-graduate degree in the natural sciences or engineering, and have sufficient training and experience in ground-water hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound professional judgments regarding ground-water monitoring and contaminant fate and transport. I further certify that revisions to this report (Compliance Status Investigation Report, revised September 5, 2003 completed for the City of Macon, the Georgia Power Company, and Atlanta Gas Light Company, Former Macon 2 MGP Facility - Macon, Georgia) were prepared by appropriate qualified subordinates working under my direction.

Jeffrey D. Sneil, P.G. Professional Geologist

Certification Number 1630

9/5/03

Date

TABLE OF CONTENTS

PAGE

SECTIO	N 1 INTRODUCTION	1
SECTIO	N 2 SITE BACKGROUND	2
2.1 S	ite Description	2
2.2 H	listory of the Former MGP Facility	2
2.3 P	revious Investigations	4
	ite-Specific Constituents of Interest	
2.5 P	otential Sources	6
2.5.1	Potential Sources on the Former MGP Facility	6
2.5.2	Database Search	
2.5.3	Surrounding Land Use	10
SECTIO	N 3 SCOPE OF COMPLIANCE STATUS INVESTIGATION AND ENVIRONMENTAL SETTING	12
3.1	General Scope of Compliance Status Investigation	12
3.2 E	Environmental Setting	12
3.2.1	Regional Geology and Hydrogeology	1,2
3.2.2	Site Geology	13
3.2.3	Site Hydrology and Hydrogeology	13
SECTIO	N 4 SOIL INVESTIGATION	15
4.1	General Approach and Rationale	15
4.2 S	Sampling and Analysis MethodsSampling Methods	15
4.2.1	Sampling Methods	15
4.2.2	Field Screening	17
4.2.3	Sample Handling and Preservation Techniques	17
4.2.4	Decontamination Procedures	
4.2.5	Laboratory Methods	17
4.3 H	Background Concentration Study	18
4.4 I	Iorizontal Extent of Constituents of Interest in Soils	19
4.4,1	Visual Indications of Tar-Like Material and Oil-Like Material	21
4.4.2	Volatile Organic Compounds	
4.4.3	Semivolatile Organic Compounds	
4.4.4	Inorganics	22
4.5 V	Vertical Extent of Constituents of Interest in Soils	23

SECT	ION 5 GROUNDWATER INVESTIGATION	24
5.1	General Approach and Rationale	24
5.2	Site Hydrogeology	24
5.2		
5.2		
5.2	.3 Groundwater Flow	27
5.3	Groundwater Monitoring Well Installation and Rationale	28
5.4	Sampling and Analysis	29
	.1 Sampling Methods	29
	.3 Decontamination Procedures	30
5.4	.4 Laboratory Methods	30
5.5	Background Concentrations	31
56	Horizontal and Vertical Extent of Constituents of Interest in Groundwater	32
	1 Horizontal Extent of Volatile Organic Compounds in Groundwater	
	.2 Horizontal Extent of Semivolatile Organic Compounds in Groundwater	32
	.3 Horizontal Extent of Inorganics in Groundwater	32
	.4 Natural Attenuation Parameters	33
6.1	General Observations	34
6.2	Soil Borings	34
6.3	Monitoring Wells	34
SECT	ION 7 SEDIMENTS INVESTIGATION	35
JLU.		-
SECT		
8.1	Properties Potentially Affected by a Release	36
8.2	Other Potentially Responsible Parties	
5.2.1 General 24 5.2.2 Hydratogoologic Characteristics 24 5.2.2.1 Hydraulic Conductivity 24 5.2.2.2 Physical Soil Testing 26 5.2.3 Groundwater Flow 27 5.3 Groundwater Monitoring Well Installation and Rationale 28 5.4 Sampling and Analysis 29 5.4.1 Sampling Methods 29 5.4.2 Sample Handling and Preservation Techniques 30 5.4.3 Decontamination Procedures 30 5.4.4 Laboratory Methods 30 5.5 Background Concentrations 31 5.6 Horizontal and Vertical Extent of Constituents of Interest in Groundwater 32 5.6.1 Horizontal Extent of Semivolatile Organic Compounds in Groundwater 32 5.6.2 Horizontal Extent of Inorganics in Groundwater 32 5.6.3 Horizontal Extent of Inorganics in Groundwater 32 5.6.4 Natural Attenuation Parameters 33 SECTION 6 INVESTIGATION OF NONAQUEOUS PHASE LIQUIDS 34 6.1 General Observations 34 6.2 Soil Borings 34 6.3 Monitoring Wells 34 SECTION 8 PROPERTIES POTENTIALLY AFFECTED BY A RELEASE AND OTHER POTENTIALLY RESPONSIBLE PARTIES		
9.1	Chemical Source and Release Mechanisms	
9.2	Environmental Transport Media	38
9.	2.1 Persistence of Constituents of Interest	
9.	2.2 Potential Routes of Migration	39
	9.2.2.1 Soils	39

	9.2.2.1.1 Surface Topography	39
	9.2.2.1.2 Water Table	40
	9.2.2.1.3 Base of the Fill Material	40
	9.2.2.1.4 Base of Alluvium	40
9	2.2.2 Groundwater	40
		40
9.3	Potential Receptors at Exposure Points	4V
9.3.		
9.3.		Δ1
9.3. 9.3.		41
9.4	Exposure Routes	
9.5	HSRA Evaluation	42
9.5.	1 Soils	42
. 9	.5.1.1 Calculation of Risk Reduction Standards	42
9	.5.1.2 Leaching Potential Study	44
	9.5.1.2.1 Lead	45
	9.5.1.2.2 Semivolatile Organic Compounds	46
9	.5.1.3 Compliance With Risk Reduction Standards	47
9.5.	2 Groundwater	48
		<u></u>
SECT	ON 10 CORRECTIVE ACTION FEASIBILITY INFORMATION	51
10.1	Potential Source Material	+
10.2	Soils	51
10.3	Groundwater	51
10.4	Corrective Action	51
10.4	CUITECTIVE ACTION	,
CECT	ION 11 QUALITY ASSURANCE/QUALITY CONTROL	52
SEC I	ION 11 QUALITY ASSURANCE QUALITY CONTROL	
11.1	Laboratory Quality Assurance/Quality Control Checks	
11.2	Field Operations Quality Assurance/Quality Control Checks	
-		•
SECT	ION 12 REFERENCES	54
LIST	OF TABLES—	
TABLE:	2.1 SITE-SPECIFIC CONSTITUENTS OF INTEREST	•
TABLE		•
TABLE		
TABLE	5.2 SUMMARY OF HYDRAULIC CONDUCTIVITY DATA	
TABLE		
TABLE	5.4 GRAIN SIZE DISTRIBUTION	
TABLE		
TABLE		
	5.7 ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	

TABLE 5.8	CALCULATED BACKGROUND CONCENTRATIONS
TABLE 8.1	OWNERS OF POTENTIALLY AFFECTED PROPERTIES
TABLE 9.1	PHYSICAL AND CHEMICAL CHARACTERISTICS OF SELECT CONSTITUENTS OF INTEREST
TABLE 9.2	RISK REDUCTION STANDARDS FOR SOIL AND METHODS USED IN CALCULATIONS
TABLE 9.3	CALCULTATION OF SITE-SPECIFIC DILUTION ATTENUATION FACTOR
TABLE 9.4	CALCULATION OF SOIL SCREENING LEVELS
TABLE 9.5	RISK REDUCTION STANDARD EXCEEDANCES IN SOIL
TABLE 9.6	RISK REDUCTION STANDARDS FOR GROUNDWATER AND METHODS USED IN CALCULATIONS
TABLE 9.7	RISK REDUCTION EXCEEDANCES IN GROUNDWATER - AUGUST 2003 SAMPLING EVENT

LIST OF FIGURES—

1	LOCATION MAP	388	
2	OWNERSHIP MAP 🥌		
0	CITE MAD		

^	011	~	MAP
3	-	1 -	MAD
J	0	-	141/71

- 4 MANUFACTURED GAS PROCESS AND GENERATED RESIDUALS
- 5 SURFACE/STORM WATER FLOW PATH
- 6 GENERALIZED STRATIGRAPHIC SECTION
- 7 CROSS-SECTION A-A
- 8 CROSS-SECTION B-B'
- 9 CROSS-SECTION C-C'
- 10 UPPER BACKGROUND LIMIT CALCULATION FLOW CHART
- 11 VISUAL INDICATIONS OF TLM AND OLM IN SOILS
- 12 TOTAL DETECTED BENZENE AND VOCs IN SOILS
- 13 TOTAL DETECTED NAPHTHALENE AND SVOCs IN SOILS
- 14 BARIUM AND VANADIUM IN SOILS
- 15 LEAD AND MERCURY IN SOILS
- 16 ARSENIC, COPPER, AND ZINC IN SOILS
- 17 CHROMIUM AND CYANIDE IN SOILS
- 18 ESTIMATED TOP OF GROUNDWATER (08/20/03)
- 19 TOTAL DETECTED ACENAPHTHENE, CYANIDE, AND BARIUM IN GROUNDWATER (AUGUST 2003)
- 20 AREAS EXCEEDING RISK REDUCTION STANDARDS IN SOIL

Figures 2, 3, 7 through 9, and 11 through 20 are oversized drawings bound separately from the text.

LIST OF APPENDICES—

Α .	SANBORN FIRE II	NSURANCE MAPS AND AERIAL PHOTOGRAPHS
В	SOIL ANALYTICAL	L DATA
	B-1 ·	SITE INSPECTION
	B-2	COMPLIANCE STATUS INVESTIGATION
С	GROUNDWATER	ANALYTICAL DATA
e	C-1	SITE INSPECTION
	C-2	COMPLIANCE STATUS INVESTIGATION
D	BORING LOGS	· · · · · · · · · · · · · · · · · · ·
	D-1	SITE INSPECTION
	D-2	COMPLIANCE STATUS INVESTIGATION

	D-3	RIVER INVESTIGATION
Ε .	EDR DATA	ABASE SEARCH REPORT
F	QUALITY A	ASSURANCE/QUALITY CONTROL SAMPLES
G	DATA VAL	IDATION AND QUALITY ASSURANCE/QUALITY CONTROL REPORTS
	G-1	DATA VALIDATION REPORT
	G-2	WILLIAMS LABORATORY QA/QC REPORTS
	G-3	FIELD OPERATIONS SYSTEM AUDIT CHECKLIST
Н	BACKGRO	OUND CALCULATIONS FOR SOIL
I	SLUG TES	T DATA
J	PHYSICAL	SOIL TEST REPORTS
К	WELL CO	NSTRUCTION FORMS
L j	WATER Q	UALITY SAMPLING FORMS
·M	POTENTIA	AL RECEPTOR STUDY

LIST OF ATTACHMENTS—

ATTACHMENT A

ANALYTICAL DATA REPORTS

COMPLINACE STATUS INVESTIGATION REPORT FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 1 INTRODUCTION

SECTION 1

INTRODUCTION

Georgia Power Company, Atlanta Gas Light Company, and the City of Macon (Parties) retained Williams Environmental Services, Inc. (Williams) to conduct a Compliance Status Investigation (CSI) of a former manufactured gas plant (MGP) facility at the intersection of Spring Street Lane and Willow Street, Macon, Bibb County, Georgia (Georgia Hazardous Site Response Act [HSRA] Site Number 10692). The facility is designated as "Macon 2" to distinguish it from another former MGP facility (Macon 1) located at 137 Mulberry Street, Macon, Georgia. The CSI was conducted in a manner to meet the requirements of the Georgia HSRA regulations and included the following tasks:

- Identified locations and dimensions of former MGP structures still existing on Site;
- Chemically characterized (fingerprinted) potential by-product-like material and impacted soil from former MGP sources;
- Identified and chemically characterized (fingerprinted) non-MGP sources that may have contributed to soil
 or groundwater impacts at the Site;
- Established background concentrations of constituents of interest (COI) for soils and groundwater;
- Completely delineated COI related to the former MGP operations in soils, horizontally and vertically, at the Site;
- Completely delineated COI related to the former MGP operations in groundwater at the Site;
- Conducted assessment of potential impacts to sediments;
- Acquired data regarding physical properties of soil including porosity, hydraulic conductivity, grain-size distribution, and other relevant properties;
- Acquired data regarding aquifer characteristics;
- Evaluated potential human or environmental receptors that may be exposed to a release from the Site;
- Developed risk reduction standards (RRS) for COI (included evaluation of leaching characteristics); and
- Identified all properties which have been affected by a release from the Site.

The data collected during the CSI have been used in conjunction with data collected during the Preliminary Assessment (PA) and Site Investigation (SI) performed by Law Engineering and Environmental Services, Inc. (LAW) in 1991 and 1992, respectively, to prepare a compliance status report (CSR) as set forth by HSRA regulations in Section 391-3-19-06(3).

COMPLINACE STATUS INVESTIGATION REPORT FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 2 SITE BACKGROUND

THE THE TOTAL PROPERTY OF THE PROPERTY OF THE

SECTION 2

SITE BACKGROUND

2.1 SITE DESCRIPTION

The former Macon 2 MGP facility is located to the north of the intersection of Spring Street Lane and Willow Street (Figure 1). The term "Site" in this CSI Report refers to those parcels potentially affected by a release from the former Macon 2 MGP operations. Therefore, based on the data presented in this CSR, the Site includes the property where the former MGP facility was located and certain surrounding parcels and street rights-of-way (Figure 2). The property where the former Macon 2 MGP facility was located is currently owned by the City of Macon and is used by the City of Macon Central Services. Facilities at the property include a combined office/service shop building, a canopied equipment storage area, a warehouse and an employee parking lot (Figure 3). Most of the property is covered with asphalt paving although several areas are paved with concrete including the loading dock area to the southwest of the office/service shop and a concrete area between the equipment storage area and service shop. Grassy areas are located southwest of the office/service shop and near the southeastern property boundary. According to the topographic map of the area, elevations at the property generally range from 300 to 320 feet above mean sea level (Figure 1).

The surrounding properties are primarily commercial and include the Macon Transit Authority (bus garage) to the south, restaurants and a filling station to the west, and a filling station to the northwest. The Ocmulgee River and the Norfolk Southern Railroad are located to the east and northeast of the facility.

2.2 HISTORY OF THE FORMER MGP FACILITY

From the mid-1800's until the 1950's, MGPs in general were widely used for producing gas from coal, coke, or oil. The gas was primarily used for lighting and heating. Most of the manufactured gas was generated by one of the following processes:

- Coal gas;
- Water gas/carburetted gas; or
- Oil gas.

The coal gas process involved the carbonization of coal in retorts (ovens) which produced gas consisting of hydrocarbon elements of the coal. The water gas process involved heating coke or coal in a generator, and subsequently injecting steam into the heated vessel, which produced gas consisting of hydrogen and carbon monoxide. The carburetting process further included the injection and cracking of oil, creating a gas with hydrocarbon elements and a higher BTU content. The oil gas process involved injecting oil into a heated vessel, producing a gas consisting of the hydrocarbon elements of the oil. In all of the processes, the resultant gas was cooled and purified before distribution. As a result, various process residuals such as tars, liquors, and sludges were produced by MGP operations. A generic process flow sheet for MGP operations is presented on Figure 4.

Williams reviewed Sanborn Fire Insurance maps (1889, 1895, 1908, 1924, 1951, 1960 and 1969; included in Appendix A) and aerial photographs (1938, 1958, 1966, 1972, and 1990; included in Appendix A). Williams used this information to identify the approximate former locations of purifier boxes, condensers, a coal storage area, two oil tanks, and two gas holders. Based on the information provided on the Sanborn Fire Insurance Maps, the Macon 2 MGP facility operated prior to 1889 to no later than 1908. During this time, the gas holders were decommissioned prior to 1895.

The Sanborn Fire Insurance map dated 1889 (Appendix A) shows a main building containing purifying boxes and condensers located near the center of the property along what is now referred to as Willow Street. A motor room was located on the northwest corner of this building adjacent to the purifying boxes. Two gasometers existed on the property. The gasometer located on the northwest side of the main building had a capacity of 40,000 cubic feet and will be referred to as Gas Holder No. 1. The gasometer located east of the main building had a capacity of 60,000 cubic feet, and will be referred to as Gas Holder No. 2. Two oil tanks were located to the northeast of the main building and each had a capacity of 8,000 gallons. The property was bounded to the southwest by an alley (now Willow Street), to the northwest by Spring Street, and to the southeast by New Street. An embankment of approximately 20 feet in height was located between the main building and Gas Holder No. 2 with the area to the south and west being of the higher elevation. The surrounding property was primarily residential.

The 1895 Sanborn Fire Insurance map (Appendix A) indicates the configuration of the property boundaries as well as the development of the surrounding properties remained unchanged since 1889 with few exceptions. The 8,000 gallon oil tanks are no longer pictured on the 1895 Sanborn Fire Insurance Map. A coal house was added to the north end of main building. Rose Street is shown bounding the property to the northeast and is depicted as not graded.

The Sanborn Fire Insurance map dated 1908 (Appendix A) indicates that between 1895 and 1908 the facility was abandoned and structures were vacant and not used. The property boundaries as well as the development of the surrounding properties appear to have remained unchanged since 1895. The alley located to the southwest of the property is referred to as Willow Street on the 1908 Sanborn Fire Insurance Map. The embankment dividing the property is no longer identified.

The Sanborn Fire Insurance map dated 1924 (Appendix A) indicates that, at that time, the gas holders and the facility were still abandoned and vacant. The main building is no longer identified. Surrounding property usage appears unchanged between 1889 and 1924. The Norfolk Southern Railway and Ocmulgee River are identified to the northeast of the property. Rose Street is no longer identified as bounding the property to the northeast.

The Sanborn Fire Insurance map dated 1951 (Appendix A) indicates that between 1924 and 1951 the property was cleared of all surficial MGP structures. A gas regulator station located on the southwest property boundary at the corner of Willow Street and Spring Street Lane is the only structure identified on the property. The 1951 Map indicates that in 1950, the parcel to the south of the property was developed and operated by the Bibb Transit Company. This property included a machine shop with tire and parts storage areas and a separate building that included a filling station. The property located to the west of the former MGP facility, on the corner of Ocmulgee (now Riverside Drive) and Spring Street, had been developed into a filling station by 1951. It appears that the southwestern portion of the former

MGP property, adjacent to Willow Street, was used for bus parking by the Bibb Transit Company during this time. The property located to the west of the Bibb Transit Company was developed into a Baptist Church by 1951.

The Sanborn Fire Insurance map dated 1960 (Appendix A) indicates that between 1951 and 1960, the property located to the south of the former MGP facility (west of the Bibb Transit Company) included the development of a paint shop just northeast of the former Baptist Church. The property located across Riverside Drive, south of the former MGP facility, on the corner of Riverside Drive and New Street, was developed into a paint and plate glass company by 1960. A restaurant was built on the property located on the southwest corner of Riverside Drive and Spring Street between 1951 and 1960. All other adjacent properties appeared relatively unchanged between 1951 and 1960.

The Sanborn Fire Insurance map dated 1969 (Appendix A) indicates that between 1960 and 1969, the property located to the southwest of the former MGP property on the corner of Spring Street Lane and Riverside Drive was developed into a radio station. The property located immediately southwest of the former MGP facility, across Willow Street had been developed into a restaurant. A filling station was built on the property located to the north of the former MGP facility between 1960 and 1969.

Historical aerial photographs were obtained for 1938, 1958, 1966, 1972, and 1990. The aerial photograph from 1938 indicated that the facility had been cleared of all building structures by this time. Due to the quality of the 1938 photograph, locations of the former Gas Holders were indistinguishable. The 1958 aerial photograph shows that the buildings associated with the Bibb Transit Company had been constructed and the parcel to the north of property had been cleared by this time. The 1958 aerial photograph also shows the location of Gas Holder No. 1. Based on the aerial photographs, between 1958 and 1966 the eastern and southern portion of the property had been filled. Between 1966 and 1972, additional fill material was placed on the north and northwestern portions of the property. In addition, the property to the southwest of the former MGP facility appears to have been cleared and/or filled between 1966 and 1972. The remaining structure of Gas Holder No. 1 is visible on aerial photographs from 1966 and 1972 but was apparently covered with fill and/or pavement by 1990. Between 1972 and 1990, the current structures on the former MGP facility property, including the office building and canopied storage area, were constructed. By 1990, most of the property is covered by buildings, asphalt, or concrete.

2.3 PREVIOUS INVESTIGATIONS

Law Environmental, Inc. (LAW) conducted a Preliminary Assessment (PA) of the Site in 1991 which included a review of available file material, on-site and off-site reconnaissance, review of historical property ownership and a limited pathway survey. No sampling or analysis was conducted during the PA.

In February and March, 1992, LAW conducted a Site Inspection (SI) which included exploration of subsurface soils, collection and analysis of subsurface soil and groundwater samples, evaluation of soil and groundwater samples, evaluation of soil physical characteristics, ambient air monitoring and review of literature. The following activities were conducted during the SI:

- Seven exploratory soil borings (SB-1 to SB-7) were drilled to collect subsurface soil samples for a
 preliminary determination of the vertical and horizontal extent of impacted soils;
- Four monitoring wells were installed and screened across the water table (MW-01 to MW-04);
- Selected soil and groundwater samples were analyzed for the Target Compound List (TCL) and Target
 Analyte List (TAL) constituents using Contract Laboratory Program (CLP) protocol;
- One undisturbed soil sample was collected from soil boring SB-2 for physical parameter analyses including
 porosity, water content, dry density, hydraulic conductivity, total organic carbon, and organic content; and
- Slug tests were performed in the four monitoring wells (MW-01 through MW-04).

The sampling locations from the SI are provided in Figure 3. Analytical results from soil samples collected during the SI are included in Appendix B-1 and Appendix C-1 includes a summary of the groundwater analytical data collected during the SI.

SACAL Environmental & Management Co. submitted to the EPD a release notification on November 3, 2000, on behalf of the City of Macon. The EPD subsequently listed the Site on the Hazardous Site Inventory on January 5, 2001 (HSI Site No. 10692).

2.4 SITE-SPECIFIC CONSTITUENTS OF INTEREST

The materials of interest at MGP sites include tar, oil, and associated sludges that are complex mixtures of different polynuclear aromatic hydrocarbons (PAHs), lesser amounts of phenolics and volatile organic compounds (VOCs), and some inorganics such as various metals and cyanide. The Gas Research Institute (Management of Manufactured Gas Plant Sites, Volume I, Wastes and Constituents of Interest, October 1987 and later revisions) identifies a list of chemicals present at most MGP sites. Analytical data presented by LAW indicates that some of those chemicals on the list are present at the former MGP facility.

A list of constituents of interest (COI) for the Site was prepared based on the Gas Research Institute list plus those compounds detected in the SI above the HSRA notification concentration (NC) in soils or above background levels in groundwater. The Site-specific COI are listed in Table 2.1.

TABLE 2.1
SITE SPECIFIC CONSTITUENTS OF INTEREST

Semivolatiles	Volatiles	Inorganics
Acenaphthene	Benzene	Arsenic
Acenaphthylene	Carbon Disulfide	Barium
Anthracene	Ethylbenzene	Beryllium
Benzo(a)anthracene	Methylene Chloride	Cadmium
Benzo(a)pyrene	Toluene	Chromium
Benzo(b)fluoranthene	Total Xylenes	Copper
Benzo(g,h,i)perylene		Lead
Benzo(k)fluoranthene	Ì	Mercury
Chrysene		Nickel
Dibenzo(a,h)anthracene		Vanadium
Fluoranthene		Zinc
Fluorene		Total Cyanide
Indeno(1,2,3-cd)pyrene		
Naphthalene	ŀ	
Phenanthrene		
Phenol		
Pyrene		

2.5 POTENTIAL SOURCES

Sources which potentially have or are contributing to a release of a hazardous constituent or substance at the former MGP facility were defined during the PA, SI and CSI. The potential sources include former MGP structures which continue to exist today in whole or in part, former MGP structures or equipment which have been removed, areas where by-products of the process were stored and/or placed, and other potential sources not located on the former MGP property. These potential sources are described in greater detail in Sections 2.5.1 and 2.5.2. The quantity and chemical composition of releases (if any) associated with the identified potential sources are not known. However, based on literature and experience, VOCs and semivolatile organic compounds (SVOCs), including PAHs, are usually associated with sources where tar was accumulated (such as holders) or processed (tar separators). The manufacturing of coal gas potentially produced phenols which may be associated with sources where tar was accumulated. PAHs are also associated with oils. Trace metals and SVOCs may be associated with coal or coke storage areas or fill material containing coal fines, ash or clinkers. Cyanides are often associated with purifier operations.

2.5.1 Potential Sources on the Former MGP Facility

Former MGP structures with remaining subsurface remnants were identified during the CSI. The structures and associated sampling points are indicated on Figure 3 and are described below. As-built construction diagrams are not available.

- Gas Holder No. 1 This structure is located at the southwest corner of the warehouse between the warehouse and the pole storage rack. Gas Holder No. 1 was decommissioned prior to 1908 and was abandoned by 1924 according to the Sanborn Fire Insurance maps. The Sanborn Fire Insurance map indicates that the gas holder was 40 feet in diameter with a capacity of 40,000 gallons. Samples were described from four soil borings performed within the structure during the CSI (SB-9 through SB-11, and SB-39). Probe refusal was encountered from 12 to 13 feet below ground surface (bgs). Additional borings (no IDs) were performed to locate the extent of the foundation which was marked on the surface and surveyed. Coal-like material (CLM) and slag-like material (SLM) were observed within the structure and a small quantity (less than one-inch lens) of oil-like material (OLM), and tar-like material (TLM) were observed at the base of two of the borings (SB-11 and SB-39). Boring logs are included in Appendix D.
- Gas Holder No. 2 This structure is located east of the current canopied equipment storage area and warehouse and was used at one time to store the final gas product. According to the Sanborn Fire Insurance maps the structure was decommissioned and abandoned around the same time as Gas Holder No. 1. The Sanborn Fire Insurance maps indicate that the gas holder was 60 feet in diameter with a capacity of 60,000 gallons. Based on historical aerial photographs and current Site conditions, the Gas Holder was backfilled prior to 1938 and additional fill was later placed over the structure. The holder was identified in the field by several soil borings. Samples were described from four soil borings performed within the structure during the CSI (SB-12 through SB-15). Additional soil borings (no IDs) were performed to delineate the extent of

the foundation of Gas Holder No. 2. The extent was marked on the surface and later surveyed. Probe refusal was encountered within the holder from 38 to 41 feet bgs. Coal-like material, SLM, OLM, and TLM were observed in borings performed in the structure (see boring logs in Appendix D). The OLM and TLM were observed at the very base of the structure in a highly viscous, black, tarry layer of no more than one inch in thickness.

- Purifying Room/Condensers/Motor Room According to the Sanborn Fire Insurance maps from 1889, 1895, and 1908, this building was near the intersection of Willow Street and Spring Street Lane and would have been located at the southwest corner of the warehouse currently on the property and extending to Willow Street. Two soil borings (SB-19 and SB-20) were advanced in the general vicinity of this building to assess the potential release of COI from this structure.
- Oil Tanks The 1889 Sanborn Fire Insurance map indicates the presence of two 8,000-gallon underground oil tanks that were located northwest of Gas Holder No. 2. Based on current property conditions, the oil tanks would have been located on the northeast and northwest corners of the current warehouse. Two soil borings (SB-16 and SB-17) were advanced between the warehouse and the maintenance shop to assess the potential release of COI from the oil tanks.

All of the potential sources listed could have contributed to the release of regulated substances but it is not known if each potential source actually was a contributor. A biased sampling approach was used during the CSI to address all known potential source areas. Continuous sampling combined with field-screening methods were employed to identify impacted strata. The sampling approach is discussed more fully in Section 4.

In addition to the former MGP structures, fill material used to develop the property and surrounding properties may be a potential source of regulated substances. The former MGP facility and surrounding properties were backfilled on several occasions to reach the current topography. Fill thickness ranges from 4.5 feet to the west of the former MGP facility to approximately 36 feet on the eastern portion and to the southeast of the former MGP facility. The fill material consists of silts, sands, and clays consistent with the area lithology and construction debris including brick, concrete, glass and asphalt. Fill material within the former MGP property boundaries and fill material beyond the former MGP property boundaries appears to be from similar sources based on visual observation.

2.5.2 Database Search

A database search was performed prior to the CSI to determine the presence of facilities listed on environmental databases in the area surrounding the former Macon 2 MGP property. A report provided by Environmental Data Resources Inc. (EDR), at the request of Williams, included a listing of such facilities within a one-eighth mile, one-quarter mile, one-half mile, and in some instances a one-mile radius of the former MGP facility. The search was centered from the intersection of Spring Street Lane and Willow Street, which is the approximate location of the target property.

Facilities listed within a one-eighth mile radius of the former MGP Site include five sites found on both the Leaking Underground Storage Tank (LUST) and Underground Storage Tank (UST) databases. These facilities include Conoco #10045 (Jet #10045, EDR Report), located west-northwest of the property; Greyhound Bus Terminal, located west-southwest of the property; Spring and Riverside Exxon (former Chevron Fac ID 40452), located southwest of the property; and the Macon-Bibb County Transit Authority, located south of the property. Morgan Tire and Auto Incorporated and Spectrum #76 are also found within one-eighth mile of the property and are listed on the LUST and UST databases, respectively.

Facilities located between one-eighth and one-quarter mile from the former MGP facility include Nationwide Printing Corporation, found on the Resource Conservation and Recovery Information Systems-Small Quantity Generator (RCRIS-SQG) list. This list includes sites that generate, store, treat or dispose of hazardous waste as defined by the RCRA. This facility is located west-southwest of the Site. Three UST sites (WC&M Incorporated, Land-O-Sun, and the Radisson Hotel-Macon) and one Georgia Non-hazardous Site Inventory site (Riverside Drive Property) are also located between one-eighth and one-quarter mile from the former MGP facility.

Facilities listed on environmental databases within one-quarter and one-half mile of the Macon 2 former MGP facility include four LUST sites: the Downtown Chevron Service Center, located south of the property; AT&T, located west-southwest of the property; BST/Macon Main/R2110, located south-southwest of the property; and Paul's Fina/Paul's Service, located northeast of the property.

The Macon 1 former MGP Site, located south-southeast of the property, was listed in the Georgia State Hazardous Waste Sites records (the state's equivalent to the U. S. EPA's Comprehensive Environmental Response, Compensation and Liability Information System) and EDR's proprietary database Former Manufactured Gas (Coal Gas) Sites. This site is found within a one-half and one-mile radius of the Macon 2 former MGP facility. Also listed on the Former Manufactured Gas (Coal Gas) Sites database is the Macon 2 MGP property itself. A copy of EDR's report is included in Appendix E.

Based on information presented in EDR's database search report and a Site reconnaissance by Williams, Kemron Environmental Services (Kemron), at the request of Georgia Power, conducted a technical file review of surrounding facilities with the greatest potential of impacting the Macon 2 former MGP property. File reviews were conducted on six facilities listed in LUST and UST databases and include Spring and Riverside Exxon (Fac ID 9000192; former Chevron Fac ID 40452), Greyhound Bus Terminal (Fac ID 4110182); Conoco #10045 (JET #10045, EDR Report; Fac ID 4110086), BP/Buck's Service Station (Fac ID 4110275), Macon-Bibb Transit Authority (Fac ID 9011141), and Spectrum #76 (Fac ID 4110210). A summary of each file review follows.

Spring and Riverside Exxon (Fac ID 9000192; former Chevron Fac ID 40452), located at 893 Riverside Drive, registered five USTs in March 1986. The USTs consisted of two 10,000-gallon gasoline USTs, two 3,000-gallon gasoline USTs and one 550-gallon used oil UST. On February 2, 1989, a suspected release was reported due to gasoline vapors in the soil and groundwater. A Phase II Environmental Site Assessment was conducted and a report submitted to EPD in February 1989. Four groundwater monitoring wells were installed and sampled during the site assessment. The

maximum benzene concentration in groundwater was reported at 24,503 µg/L and total benzene, toluene, ethyl-benzene, and total xylenes (BTEX) was reported at 238,393 ug/L, indicative of free phase product. A "trace" amount of free phase product was found on the water table at the site. Groundwater flow was radial to the northeast, east and southeast.

Remedial activities at the Spring and Riverside Exxon included the removal of all UST system components and 200 tons of soil in March 1989. A new facility was constructed in August 1989 and a soil venting pilot study was conducted in October 1989 removing 1,212 pounds of volatile organic compounds (VOCs) from the soil. A Confirmatory Soil Sampling Report received by EPD on August 26, 1991, reported total petroleum hydrocarbons (TPH) and BTEX levels at 1,460 mg/Kg and 218 mg/Kg respectively, both above Corrective Action Plan (CAP) objectives. Reinstallation of the soil vapor extraction system was proposed. A letter dated January 27, 1994, was received by the EPD from the law offices of Anderson, Walker and Reichert, who were writing on behalf of the City of Macon. The letter suggests the City's property (Macon 2 former MGP property) may have been impacted by a release originating from the former Chevron property. An up-gradient baseline monitoring well placed on the City's property adjacent to the former Chevron property contained 1,300 ug/L benzene. Based on the location of the well and the direction of groundwater flow in the area, the letter concludes the former Chevron tanks may have been the source of contamination. A CAP Part A was received by EPD on January 9, 1996, but has not yet been reviewed. Additional wells, including a deep well, were installed in 1994. A CAP Part B is proposed by Chevron along with three additional wells. The site has not been delineated and remains a candidate for impacting the Macon 2 former MGP property.

The Greyhound Bus Terminal (Facility ID 4110182) registered one 10,000-gallon diesel UST in April 1986. In April of 1992, a TPH concentration of 9,100 mg/Kg was reported from a soil sample taken from the piping trench. Three wells were installed and sampled. The maximum BTEX concentration in soil was 0.297 mg/Kg. The maximum TPH concentration in soil was 77 mg/Kg. The maximum benzene concentration found in groundwater was 8,100 ug/L. Due to the high concentration of benzene and given the fact the Greyhound Bus Terminal never operated a gasoline UST, the contamination was concluded to be from another source. A Site Characterization Report (prepared by Engineering-Science, Inc.) including this information was received in August 1992. The UST was removed in January 1992. Subsequent monitoring events were conducted and reports submitted to the EPD to solidify the argument that benzene contamination was from an up-gradient petroleum source. No free phase product was found. EPD issued a letter on June 24, 1994, indicating no further action required. Monitoring wells used in the diesel UST investigation have been decommissioned.

Conoco #10045 (Facility ID 4110086; Jet #10045, EDR Report) reported a release in October 1995 due to a failed line tightness test. EPD requested a site check on October 27, 1995. The leak was verified and soil samples were collected. A CAP Part A was received by the EPD on October 26, 1996. A CAP Part B was received August 4, 1997. The maximum concentration of benzene in groundwater was reported as 2,000 ug/L and a model was prepared to justify an alternative concentration level (ACL) of over 20,000 ug/L. Remediation by natural attenuation with annual monitoring was proposed. A Groundwater Monitoring report received by the EPD in May 1999 reported maximum concentrations of benzene in groundwater at 970 ug/L. Groundwater flow at the site was determined to be east-northeast. Two additional wells were installed down gradient to achieve delineation. Free product has been measured

several times in the well on that site designated MW-1. High vacuum recovery was approved by the EPD on January 10, 2001, to recover the free phase product. Monitoring wells near the site boundary show minimal impact; however, the contaminant plume has the potential to impact the northeast corner of the Macon 2 Former MGP property.

BP/Buck's Service Station (Facility ID 4110275) issued an Initial Site Characterization Report to the EPD on June 8, 1993. Three 8,000-gallon USTs and one 4,000-gallon UST were reported on site. Seven soil borings were installed with one sample containing detectable benzene at 1.5 mg/Kg. Benzene concentrations in groundwater were found at 24,543 ug/L and total BTEX concentrations were indicative of free phase product. EPD requested a CAP on July 26, 1993. A UST Closure Assessment Report was received by the EPD November 30, 1993. Seven tanks were closed and fourteen soil samples were collected. The highest detected total BTEX concentration was 467 mg/Kg in the soil samples. A total of 470 tons of contaminated soil were disposed of. EPD requested a CAP part A which was received in March of 1998. No free product was found at that time. The maximum benzene concentration in groundwater was 3,240 ug/L. Semi-annual monitoring was proposed. A CAP Part B is pending. This site is considered a candidate for a potential source of contamination at the Macon 2 facility; however, the groundwater flow is not directly towards the Site. Free product has recently (June 2000) been discovered in one of the wells.

Macon-Bibb County Transit Authority (Fac ID 9011141) submitted a UST Closure Report that was received by the EPD on February 10, 2000. The submittal reported the results of the closure of two 12,000-gallon diesel USTs and one 300-gallon waste oil UST. TPH and BTEX were found in several soil samples and some results exceeded applicable soil threshold levels (STLs). The maximum BTEX and TPH concentrations in the soil were reported at 11.32 mg/Kg and 480 mg/Kg, respectively. EPD requested a CAP Part A on April 10, 2000. On July 21, 2000, a letter submitted by Dobbs Environmental was received by the EPD requesting no further action. Subsequently, an additional soil boring was installed to the top of bedrock (groundwater was not encountered). The sample collected just above the bedrock contained a concentration of 0.83 mg/Kg benzene.

Spectrum #76 (Fac ID 4110210) does not appear to be a potential source of impacts to the Macon 2 Site. A Closure Report was received by EPD on January 6, 1997, after one 1,000-gallon UST was removed in November 1996. Piping was replaced to six active tanks and a report was submitted on January 28, 1998. BTEX, gasoline range organics (GRO), diesel range organics (DRO), and PAHs were all below detectable limits. A "No Further Action Requested" status was issued by the EPD on June 5, 1998. No release has been reported.

2.5.3 Surrounding Land Use

According to Sanborn Fire Insurance maps the area surrounding the former MGP facility has been historically developed for commercial, industrial and residential purposes. The properties located immediately northwest of the facility, northwest across Willow Street, and west and south across Willow Street were listed as a residential (dwellings) from 1889 through 1924. Properties to the north and east were not depicted on the Sanborn maps until 1924 which shows the Norfolk Southern Railway and Ocmulgee River running on the east side of the facility. The Bibb Transit Company, a filling station, and a Baptist church occupied the property to the south by 1951. The church property was a paint shop and office in 1960 and a radio station and paint shop in 1969. Properties to the northwest and west remained

residential until at least 1960. By 1960 a plate glass company occupied the property the south of the facility across Riverside Drive on the corner of New Street and Riverside Drive. The 1969 Sanborn map shows that a restaurant and filling station occupied part of the property to the west and northwest and a filling station occupied the property immediately northwest of the facility.

Currently, the property south of the former MGP facility is occupied by the City of Macon Transit Authority Bus Garage. West of the facility is a fast food establishment, restaurant, and filling station. Another filling station is located northwest of the facility. The Norfolk Southern Railway and Occurrently Bus Currently, the property to the east.

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 3 SCOPE OF COMPLIANCE STATUS INVESTIGATION AND ENVIRONMENTAL SETTING

SECTION 3 SCOPE OF COMPLIANCE STATUS INVESTIGATION AND ENVIRONMENTAL SETTING

3.1 GENERAL SCOPE OF COMPLIANCE STATUS INVESTIGATION

The CSI field work was performed from February 2001 to May 2001 with a second event occurring in August 2003. The primary objective of the investigation was to define the horizontal and vertical extent of COI related to the former MGP operations in soil and groundwater. Other tasks included determining the presence of potential NAPL in source structures, aquifer characterization, physical testing of soil samples, collection of corrective action feasibility information, characterization of material in source areas for possible remedial alternatives, a Site survey, and an evaluation of sediments in the Ocmulgee River. Soil samples were collected for analysis from a total of 35 soil borings performed during the CSI. Three monitoring wells were installed during the CSI, and groundwater samples were collected for analysis from a total of seven monitoring wells (including four installed by LAW during the SI). In addition, 21 sediment borings were performed in the Ocmulgee River during the CSI for visual observation of potential impact from former MGP operations. Sediment samples were not analyzed and sediment sample locations were not surveyed during the CSI. After completion of the investigation, a Site survey, including new soil borings and wells and property boundaries, was performed by a surveyor certified by the State of Georgia (Donaldson, Garrett, & Associates, Inc.). Williams performed the survey during the August 2003 field event.

3.2 ENVIRONMENTAL SETTING

3.2.1 Regional Geology and Hydrogeology

The southern part of Macon, Bibb County, Georgia, is located in the Atlantic Coastal Plain Physiographic province and the northern part is in the Piedmont province. The Fall Line is defined as an arbitrary line that separates the two physiographic regions and is why this region is sometimes referred to as the Fall Line District. The Coastal Plain province in Bibb County is characterized by distinctive light-colored sandy hills of Cretaceous age that slope gently towards the southeast. The Piedmont province is characterized by a rolling to hilly upland area of moderate relief that slopes gently to the south.

The former Macon 2 MGP facility is located in the vicinity of the Fall Line between the Atlantic Coastal Plain and the Piedmont Province, approximately 200 feet southwest of the Ocmulgee River. Elevations in the investigation area range from approximately 300 to 320 feet above mean sea level (USGS Topographic Map Macon West and Macon East, Georgia; Figure 1). The area is underlain by Pleistocene- to recent-age alluvial deposits up to 40 feet thick. These alluvial deposits are described as unsorted sand, gravel and clay (LeGrand, 1962). Below the alluvial deposits, the Late Eocene upper sand member of the Barnwell Formation, if present, lies unconformably above the Cretaceous-age Tuscaloosa Formation, if present. The upper sand of the Barnwell Formation is described as a deep red clayey sand (LeGrand and others, 1956). The Tuscaloosa Formation consists of fine to coarse, subangular, micaceous, arkosic sands that are interbedded with gray to green, locally iron-stained kaolinitic, micaceous sandy clays (Herrick and Vorhis,

1963). The base of the Tuscaloosa in this area dips slightly to the southeast at approximately 30 feet per mile and lies unconformably above the much older crystalline rocks below. The Palcozoic and older igneous and metamorphic rock lie at a depth of approximately 50 feet bgs (LeGrand, 1962).

According to the City of Macon Water Department, the Ocmulgee River is the only source of drinking water in the Macon water system. The intake is located on the Ocmulgee River approximately three miles upstream from the former Macon 2 MGP facility (Figure 5). Towards the south and west there is an increase in well usage; the Tuscaloosa sands gradually increase in thickness allowing for more availability of water from wells. Recharge to the Tuscaloosa occurs in outcrop areas west of the Ocmulgee River. Natural discharge from the Tuscaloosa is into the Flint and Ocmulgee Rivers and smaller streams crossing the outcrop area (Pollard and Vorhis, 1980).

3.2.2 Site Geology

The geology encountered during the CSI consisted of unconsolidated alluvial clays, sands, gravels, and clays, saprolite (a clayey silt to fine sand), and a mafic to felsic gneiss bedrock (Figure 6). Cross sections A-A' through C-C' (Figures 7, 8, and 9) were prepared to illustrate the Site geology. Fill material consisting of sand, silt, clay, gravel, construction debris and asphalt was encountered from the ground surface to depths ranging from approximately 0.5 to 36 feet bgs. The fill material is thicker on the northern and eastern portions of the Site, where the 20 foot embankment was previously located (see 1889 Sanborn Fire Insurance map). Underlying the fill material across most of the Site is an alluvial deposit that consists primarily of micaceous silts and clays with some fine to coarse sand and gravel in scattered lenses. The alluvium also contains some deposited organic matter such as leaves and wood fragments. Alluvium was not encountered in borings installed to the south and southwest of the property or on the southwest corner of the property in the vicinity of Gas Holder No. 1. The alluvial deposit, where encountered, ranges in thickness from 5 to 35 feet at the Site and is encountered at the surface in borings (SB-30 through SB-31) installed along the west side of the Ocmulgee River. The alluvial deposit lies unconformably above the saprolite. The saprolite in the area of the Site is generally a micaceous silt and very fine sand that is characterized by relic foliation and other structures associated with igneous and metamorphic rock. Saprolite was encountered at depths ranging from 4.5 feet (in SB-36, located southwest of the former MGP property) to 61 feet bgs. The depth at which saprolite is encountered increases towards the river and was not observed to a total depth of 64 feet in boring SB-43 located southeast of the former MGP property. Where encountered, the thickness of the saprolite ranges from a few inches to four feet thick and is thickest on the south and southwest portions of the Site. The underlying bedrock consists of a mafic to felsic gneiss and, where encountered, ranges in depth from six feet to 62 feet bgs. The bedrock appears to slope to the east and northeast of the Site towards the Ocmulgee River.

3.2.3 Site Hydrology and Hydrogeology

Figure 5 (Site Map and Surface/Storm Water Flow Path) identifies the flow paths of surface water at the Site and surrounding areas. Storm water at the former MGP property flows to various storm drains located at the facility (Figure 3) or as a sheet flow over the embankment located on the eastern boundary of the property. Storm water that flows

towards the embankment accumulates in standing pools on the western side of the Norfolk Southern Railway and eventually seeps through the railway gravel bed and to the Ocmulgee River. Stormwater which falls on up-gradient properties including the Exxon station, Pizza Hut restaurant, Burger King restaurant, and Conoco station, flows into either storm drains that feed into storm drains located at the facility, as surface flow over the embankment previously mentioned, or into a drainage located on the southwestern side of the Spring Street bridge. Storm water that flows into the drainage located on the southwestern side of the Spring Street bridge empties into the Ocmulgee River at a point on the southwestern side of the bridge (Figure 5).

Hydrogeology at the Site was evaluated by the use of seven monitoring wells (this includes four installed during the SI and three installed during the CSI). The uppermost portion of the surficial aquifer is located in fill material across the Site. Cross-sections A-A', B-B', and C-C' (Figures 7, 8, and 9) indicate the relationship of the top of groundwater with geologic units at the Site. Monitoring well MW-1 is screened within the saprolite and monitoring wells MW-2 through MW-5 and MW-7 are all screened within the fill material with some extending into the alluvium. Monitoring well MW-6 is screened within the alluvium. The fill material consists of clays and silty clays with abundant debris including concrete, brick, and asphalt. The matrix of the fill material does not appear very porous; however, due to the abundance of debris that creates void spaces within the fill material, wells screened within the fill material exhibited high conductivity values (see Section 5.1.1.2). The base of the alluvium in locations of the eastern area of the Site contains an alluvial clay which in some areas lies directly above the saprolite; this and the underlying saprolite appear to serve as an aquitard consisting of clays, silty clays, and clayey silts. A mafic to felsic gneiss bedrock underlies the saprolite. Based on water level measurements obtained on August 20, 2003, the top of the water table ranges from 7.32 (MW-01) to 22.75 feet bgs (MW-04). Water level measurements obtained from MW-06 were not used in determining the water table elevations due to the fact that it is screened below the top of groundwater. In addition, the proximity of MW-04 to MW-06 and their relative water levels indicate a downward flow gradient with the upper water bearing zone (see Section 5.2.3). Groundwater under the former MGP facility has a horizontal flow to the east and northeast. Three surface water bodies are located near the facility. The first is a drainage ditch located to the northwest of the former MGP property that feeds into the Ocmulgee River in the vicinity of the Spring Street bridge. Another drainage ditch is located approximately 130 feet southeast of the former MGP property and feeds into a drainage on the west side of the Norfolk Southern Railway. Based on field observations made during a period of heavy rainfall, the railway drainage has no obvious flow direction but most likely seeps through the railroad base material and into the Ocmulgee River. The third is the Ocmulgee River which is located approximately 250 feet to the east/northeast of the facility and appears to be a gaining water body.

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 4 SOIL INVESTIGATION

SECTION 4 SOIL INVESTIGATION

4.1 GENERAL APPROACH AND RATIONALE

Soil samples were collected at various locations to define the extent of the COI related to the former MGP operations, determine background concentrations, and evaluate potential pathways for migration of the COI. The majority of soil samples collected from soil borings performed during the CSI field work were obtained with direct-push technology (DPT) samplers equipped with liners. Where DPT was not feasible, soil samples were collected by either split-spoon samplers used in conjunction with hollow-stem augering (HSA) techniques or with hand-driven DPT.

A general sampling rationale was developed in the Work Plan (Williams, 2001) to select soil samples for laboratory analysis from geologic unit contacts and subsurface key horizons where the COI could potentially migrate. During the CSI, soil samples were field-screened to aid in the selection of soil samples for off-site laboratory analysis. Continuous sampling on four- to five-foot intervals (with two-foot, four-foot, and five-foot sampling spoons) was attempted to ensure that adequate soil samples were obtained at and between the key horizons. Field-screening using closed headspace procedures with a photoionization detector (PID) was used to determine if samples potentially contained volatile organic compounds.

Samples from the following intervals were analyzed for COI at most locations advanced:

- 0 to 2 feet bgs;
- Base of the fill;
- Top of the groundwater;
- Base of the alluvium;
- Deepest interval; and
- The soil sample with the highest PID reading.

The water table encountered during the CSI within soil borings ranged from approximately eight feet to approximately 26 feet bgs. Soil samples collected in some locations intersected the water table. If a soil sample was <50% saturated, the interval was considered part of the vadose (unsaturated) zone. If a soil sample exhibited >50% saturation, the sample was considered to be from the saturated zone.

4.2 SAMPLING AND ANALYSIS METHODS

4.2.1 Sampling Methods

Direct-push technology sampling methods were utilized to collect the majority of the soil samples to minimize CSI-derived waste. The method also allows sampling of discrete intervals with minimal interference from flowing sands and/or cave-ins that sometimes occur during augering operations. The method involves pushing a closed two-, three-, or

four-foot sampling spoon with a liner to the desired depth, unlocking the spoon tip, and pushing the spoon through the sampling interval.

Hollow-stem augering techniques in conjunction with split-spoon sampling were utilized to advance selected borings where DPT was limited by depth. In those borings, five-foot long split-spoons were advanced with the augers for sample collection and description.

The soil borings installed during the CSI were labeled with the prefix "SB" followed by the appropriate sample location number. Some soil borings were denoted with the suffix "B" to denote a soil boring adjacent to previous soil boring locations advanced during the CSI. The locations of soil borings are shown on Figure 3.

A boring log was maintained for each soil boring installed during the CSI. Each log contains general Site information and specific information about each boring including: date sampled, sampling method, sampler, sample identification number, sample interval, time sampled, moisture content, field-screening, a complete lithologic description, and comments. Boring logs are included in Appendix D.

Soil samples were collected according to the general rationale described in this section and according to the CSI Work Plan (Williams, 2001). During field sampling, the center portion of the sample interval was collected for field-screening with a PID. Field-screening samples were placed into sealable plastic bags. A portion of the center of the interval was also collected for possible laboratory analysis of volatile organic compounds (VOCs). Each VOC sample was collected in a 4-ounce glass jar for analysis of percent solids and high-level VOCs and two five-gram aliquots of soil were also placed into two pre-weighed vials containing a five-milliliter solution of sodium bisulfate for low-level analysis of VOCs. Samples for VOC analysis and field-screening were not homogenized before they were placed into the appropriate containers. Samples for possible analysis of SVOCs and inorganics were collected over the entire interval, thoroughly homogenized on heavy duty aluminum foil (on glass during the August 2003 sampling event), and placed in laboratory-provided containers.

Sample jars filled for possible laboratory analysis were immediately labeled, placed into sealable plastic bags, and stored on ice in a cooler. Samples for field-screening were labeled and allowed to warm in the sun for a minimum of 30 minutes to allow the volatilization of organic compounds.

One soil sample containing potential OLM (GH-2-41) was collected from the base of Gas Holder No. 2 for analysis of VOCs, SVOCs, synthetic precipitation leachability procedure (SPLP) VOCs and SPLP SVOCs. This sample was collected in a 4-ounce glass jar, placed in a sealable plastic bag and stored on ice in a separate cooler to prevent cross contamination to other soil samples. This sample was shipped under chain-of-custody as part of a SDG.

Four soil samples indicated elevated lead concentrations (above the Type 3 Risk Reduction Standard of 400 mg/Kg). Upon receipt of the analytical results, three of these samples were also run for SPLP lead to determine the potential for the lead to leach into groundwater above RRSs.

Four undisturbed (UD) soil samples were collected during the CSI with Shelby tube samplers using HSA techniques for the analysis of physical characteristics of the soil (Section 5.2).

Following completion of the CSI field work, surveys were performed by a surveyor certified by the State of Georgia (Donaldson, Garrett, & Associates, Inc.) to locate the soil borings (soil borings performed in August 2003 were surveyed by Williams). The surveys were tied into the previous Site survey conducted during the SI.

4.2.2 Field Screening

Field-screening performed during the CSI was conducted utilizing closed headspace procedures by placing a portion of the sample into a sealable plastic bag. The sample was placed in the sun and allowed to warm. After sufficient time was allowed for organic compounds to volatilize (a minimum of 30 minutes), the sample was screened with a PID. The PID probe tip was inserted through the bag opening into the headspace of each container and the maximum reading was recorded. The PID was calibrated at the beginning and end of each day of use with isobutylene and zero gas. The PID reading of each sample is noted on the boring logs (Appendix D).

4.2.3 Sample Handling and Preservation Techniques

Soil samples collected during the CSI were placed in ice-filled coolers which were temporarily stored in a locked office until a determination of samples to be analyzed was made. Soil samples selected for laboratory analysis were recorded on chain-of-custody forms. Those samples selected for analysis were organized into sample delivery groups (SDGs) which were secured in ice-filled coolers and shipped or courriered to Analytical Environmental Services, Inc. (AES) in Atlanta, Georgia for analysis. Chain-of-custody documents accompanied each shipment. In general, a trip blank, field blank, rinsate, and duplicate sample were included with each SDG. One rinsate sample was collected each day or for each SDG from decontaminated or new sampling equipment. A sample was collected from the potable water supply used for decontamination procedures for analysis for the COI. The results of analysis of QA/QC samples are summarized in Appendix F.

4.2.4 Decontamination Procedures

Nondisposable sampling equipment was decontaminated before and between each sample by washing with phosphate-free detergent and water and rinsing with tap water, deionized water, isopropanol, and organic-free water. Equipment transported to a sampling point from the decontamination area was wrapped in aluminum foil. Large equipment, such as the drilling rig and ancillary tools, was decontaminated at the beginning of each day and between boreholes. Decontamination water was collected and placed into a wastewater tank and/or drums on the City of Macon property until it could be characterized for disposal.

4.2.5 Laboratory Methods

Analyses were performed according to current approved EPA methods. Volatile organic compounds were analyzed using SW-846 Method 8260 and SVOCs were analyzed using SW-846 Method 8270A. Soil samples collected for VOC analysis during CSI field work were collected and analyzed using the up-dated SW-846 Method 5035. Most inorganic compounds were analyzed using SW-846 Method 6010 except mercury (SW-846 Method 7471) and total cyanide (SW-846 Method 9010A). The Contract Required Quantitation Limit (CRQL) for each compound was based on

the laboratory's self-determined Practical Quantitation Limit (PQL). Summaries of analytical data for the CSI are contained in Appendix C-2. Attachment A of this CSR contains copies of analytical data collected during the CSI.

A complete Contract Laboratory Program (CLP) like data package was prepared by AES for one SDG containing soil samples collected during the CSI. The data package was submitted to Southern Company Chemical Services, Norcross, Georgia, for data validation using USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, 1994, and Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, 1994. Southern Company Chemical Services indicated that all laboratory data for the soil samples were acceptable. Southern Company Chemical Services also reviewed the laboratory data for precision, accuracy, representativeness, compatibility and completeness (PARCC) parameters. Southern Company Chemical Services found the PARCC parameters acceptable. A copy of Southern Company Chemical Services' report is included in Appendix G-1. Laboratory reports for other SDGs were reviewed by Williams for QA/QC measurements and the Williams QA/QC reports are included in Appendix G-2.

4.3 BACKGROUND CONCENTRATION STUDY

The lithology beneath the Site was divided into two units (fill material and natural soils) for the purpose of establishing upper-background limits (UBLs) and delineation. The background study included the collection of soil samples from areas topographically and hydrogeologically up-gradient or cross-gradient from the former MGP facility operations. Background borings included SB-33, SB-34, SB-36, SB-38, SB-38B, and SB-43. The data set for the fill material UBLs include 25 samples and 23 samples composed the data set for the natural soils. Table 4.1 lists the calculated UBLs for the COI with respect to units. Background concentrations for VOCs are determined to be the detection limit.

The background soil data were statistically evaluated to determine the UBL for each analyte for each unit. A flow-chart for the method described below is presented in Figure 10. First, the data were evaluated to determine the percentage of detected values. If the percentage of detects was less than 85 percent and the data set contained at least one detected value, a Nonparametric UBL was calculated. The Nonparametric UBL equaled the greatest detected value. If there were no detected values, the UBL was determined to be the detection limit.

If the percentage of detects was 85 percent or more, nondetect values were substituted with one-half the detection limit. Next, the underlying distributional assumption was tested using the Shapiro-Wilk Test. Then, the data was tested for outliers by calculating the 99% confidence outlier value. If a value in the data set was greater than the 99% confidence outlier value, an outlier was suspected. To be conservative, suspect outliers were removed from the initial run. If the data were determined, by the Shapiro-Wilk Test, to be normally distributed with no outliers, the UBL was calculated as the mean plus two standard deviations. If the data set was determined not to be normally distributed with no outliers, a Nonparametric UBL was calculated. If the original data set was determined to contain a suspect outlier, the outlier was removed and the modified data set was re-evaluated. If the modified data set contained another suspect

outlier and/or was not normally distributed, a Nonparametric UBL was determined based on the modified data set. The data set and calculations for background concentrations are detailed in Appendix H.

4.4 HORIZONTAL EXTENT OF CONSTITUENTS OF INTEREST IN SOILS

Cross-sections A-A' through C-C' (Figures 7 through 9) depict the relationship of the COI distribution to the Site soils and show the horizontal and vertical extent of the COI as well as visual identification of TLM and OLM in soil intervals. Visual identification of TLM and OLM in soil is also noted in plan view on Figure 11. Isoconcentration maps (Figures 12 through 17) were prepared for various COI in soil. Data from the CSI and the SI were used in the evaluation of the extent of the COI in soil. Analytical results of the COI for all soil samples collected during the SI and CSI are summarized in Appendix B-1 and Appendix B-2, respectively.

Samples from background borings which exceeded calculated background concentrations were not included in the contours (except for the VOCs delineation) since, by definition, they are background samples. A background calculation based on the mean plus two standard deviations corresponds to a 97.7% confidence level of the distribution. Therefore, it is expected that a portion of the background samples will exceed the calculated background levels. For data sets of these sizes, it is typical that one sample will exceed the UBL. Additionally, to be conservative, suspect outliers from the UBL data set were removed for calculations of UBLs.

TABLE 4.1
CALCULATED BACKGROUND CONCENTRATIONS IN SOIL

FILL MATERIAL	٠.			
SVOCs		· · ·		
ANALYTE	RANGE (mg/Kg)	% NONDETECTS	STATISTICAL METHOD	UPPER BACKGROUND LIMIT (mg/Kg)
Acenaphthene	<0.35 -<0.40	0%	Detection Limit	DL
Acenaphthylene	<0.35 - <0.40	0%	Detection Limit	DL
Anthracene	<0.35 - <0.40	0%	Detection Limit	DL
Benzo(a)anthracene	<0.35 - 0.56	25%	Nonparametric 85% Prediction Limit	0,56
Benzo(a)pyrene	<0,35 - 0.69	25%	Nonparametric 85% Prediction Limit	0.69
Benzo(b)fluoranthene	<0,35 - 0.61	33%	Nonparametric 85% Prediction Limit	0.61
Benzo(g,h,i)pyrene	<0.35 - 0.69	17%	Nonparametric 85% Prediction Limit	0,69
Benzo(k)fluoranthene	<0.35 - 0.57	17%	Nonparametric 85% Prediction Limit	0,57
Chrysene	<0,35 - 0.68	25%	Nonparametric 85% Prediction Limit	0.68
Dibenzo(a,h)anthracene	<0,35 - <0.40	0%	Detection Limit	DL
Fluoranthene	<0.35 - 0.12	42%	Nonparametric 85% Prediction Limit	1.2
Fluorene	<0,35 -<0.40	0%	Detection Limit	DL
Indeno(1,2,3-cd)pyrene	<0.35 - 0.58	17%	Nonparametric 85% Prediction Limit	0.58
Naphthalene	<0.35 -<0.40	0%	Detection Limit	DL.
Phenanthrene	<0,35 ~ 0.56	33%	Nonparametric 85% Prediction Limit	0,56
Phenol	<0.35 -<0.40	0%	Detection Limit	ĎL
Pyrene	<0.35 -0.92	42%	Nonparametric 85% Prediction Limit	0.92

TABLE 4.1 (CONTINUED)
CALCULATED BACKGROUND CONCENTRATIONS IN SOIL

ANALYTE	RANGE (mg/Kg)	%NONDETECTS	STATISTICAL METHOD	UPPER BACKGROUND LIMIT (mg/Kg)
Arsenic (As)	<.2.98 - 7.05	8%	Nonparametric 85% Prediction Limit	7.05
Barium (Ba)	11.1 - 126	100%	Mean + 2 SDs	115
Beryllium (Be)	<1.49 - <3.04	0%	Detection Limit	DL
Cadmium (Cd)	<1.49 - <3.04	0%	Detection Limit	DL
Chromium (Cr)	7.01 - 46.3*	100%	Nonparametric 85% Prediction Limit (Outlier Removed)	28.7
Copper (Cu)	5.54 - 74.9*	100%	Nonparametric 85% Prediction Limit (Outlier Removed)	43.4
Lead (Pb)	<5.67 - 379*	96%	Mean + 2 SDs (Outlier Removed)	204
Mercury (Hg)	<0.0938 - 0.541	80%	Nonparametric 85% Prediction Limit	0.541
Nickel (Ni)	3.10 - 14.4	28%	Nonparametric 85% Prediction Limit	14.4
Vanadium (V)	14.0 - 79.3*	100%	Nonparametric 85% Prediction Limit (Outlier Removed)	58.9
Zinc (Zn)	6.33 - 339*	100%	Nonparametric 85% Prediction Limit (Outlier Removed)	257
Cyanide (CN)	<0.678 -<1.22	0%	Detection Limit	DL
ANALYTE	RANGE (mg/Kg)	%NONDETECTS	STATISTICAL METHOD	UPPER BACKGROUND LIMIT (mg/Kg)
Arsenic (As)	<3.77 - <10.5	0%	Detection Limit	DL
Barium (Ba)	<5.04 - 338	87%	Mean + 2 SDs	275
Beryllium (Be)		0%	Detection Limit	DL
	<1.88 - <5.2 <i>i</i>			
	<1.88 - <5.27 <1.88 - <5.77	0%	Detection Limit	DL
Cadmium (Cd)		0% 96%	Detection Limit Mean + 2 SDs (Outlier Removed)	DL 52.8
Cadmium (Cd) Chromium	<1.88 - <5.77			
Cadmium (Cd) Chromium Copper	<1.88 - <5.77 < 2.52 - 87.2*	96%	Mean + 2 SDs (Outlier Removed)	52.8
Cadmium (Cd) Chromium Copper Lead	<1.88 - <5.77 < 2.52 - 87.2* < 2.52 - 45.5	96% 87%	Mean + 2 SDs (Outlier Removed) Mean + 2 SDs	52.8 35.7
Cadmium (Cd) Chromium Copper Lead Mercury (Hg)	<1.88 - <5.77 < 2.52 - 87.2* < 2.52 - 45.5 < 4.94 - 26.5	96% 87% 65%	Mean + 2 SDs (Outlier Removed) Mean + 2 SDs Nonparametric 85% Prediction Limit	52.8 35.7 26.5 DL 29.7
Cadmium (Cd) Chromium Copper Lead Mercury (Hg) Nickel (Ni)	<1.88 - <5.77 < 2.52 - 87.2* < 2.52 - 45.5 < 4.94 - 26.5 <0.101 - <0.237	96% 87% 65% 0%	Mean + 2 SDs (Outlier Removed) Mean + 2 SDs Nonparametric 85% Prediction Limit Detection Limit	52.8 35.7 26.5 DL 29.7 120
Cadmium (Cd) Chromium Copper Lead Mercury (Hg) Nickel (Ni) Vanadium (V)	<1.88 - <5.77 < 2.52 - 87.2* < 2.52 - 45.5 < 4.94 - 26.5 <0.101 - <0.237 <5.04 - 29.7	96% 87% 65% 0% 70%	Mean + 2 SDs (Outlier Removed) Mean + 2 SDs Nonparametric 85% Prediction Limit Detection Limit Nonparametric 85% Prediction Limit	52.8 35.7 26.5 DL 29.7 120 80.3
Cadmium (Cd) Chromium Copper Lead Mercury (Hg) Nickel (Ni) Vanadium (V) Zinc (Zn) Cyanide (CN)	<1.88 - <5.77 < 2.52 - 87.2* < 2.52 - 45.5 < 4.94 - 26.5 <0.101 - <0.237 <5.04 - 29.7 <5.04 - 152	96% 87% 65% 0% 70% 96%	Mean + 2 SDs (Outlier Removed) Mean + 2 SDs Nonparametric 85% Prediction Limit Detection Limit Nonparametric 85% Prediction Limit Mean + 2 SDs	52.8 35.7 26.5 DL 29.7 120

Samples were typically collected in two-foot or four-foot intervals which sometimes resulted in samples selected across a lithologic contact. If this occurred, the lithologic unit for the sample would be classified by what the majority of the sample was composed of.

4.4.1 Visual Indications of Tar-Like Material and Oil-Like Material

TLM and OLM were observed in soil borings (SB-11 and SB-39) advanced within Gas Holder No. 1 and soil borings (SB-12, SB-13 and SB-15) advanced within Gas Holder No. 2. The TLM and OLM were observed at the base of Gas Holder No. 1 at a depth of approximately 12.5 feet bgs and in Gas Holder No. 2 at a depth of approximately 41 feet bgs. In both gas holders, the TLM/OLM was a very high viscosity, black material and was observed in less than a one-inch layer or in tarry globules existing in less than a one-inch intervals.

4.4.2 Volatile Organic Compounds

Upper background limits (UBLs) for VOCs in the soils are determined to be the detection limit. Figure 12 is a contour map of the horizontal extent of total detected benzene and total VOCs in soils. The horizontal extent of benzene in soil is defined to the north by soil samples from borings SB-03, SB-04, and SB-41. Benzene was detected in soil from boring SB-38 at a concentration of 0.062 mg/Kg. Based on the fact that benzene was not detected in soil samples collected from soil boring SB-21 (between the former MGP property and soil boring SB-38) the benzene concentration detected in SB-38 is most likely related to an off-property source. Soil borings SB-27 and SB-34 contain benzene concentrations in soil of 0.031 mg/Kg and 0.0057 mg/Kg, respectively. These borings are located up-gradient of the former MGP operations and these concentrations are most likely related to off-property sources. Benzene in soil is horizontally defined to the east by soil borings SB-02, SB-04, SB-22 and SB-26. To the west benzene in soil is horizontally defined by soil borings SB-16, SB-19, SB-20, and SB-28.

Total VOCs in soil are defined in all directions. To the north, the limits of VOCs in soil are defined by samples collected from soil borings SB-30, SB-31, and SB-38. The VOC concentrations detected in soil borings SB-34 and SB-38 consisted only of benzene and as described above, are likely related to off-property sources. To the east, the horizontal extent of total VOCs is defined by samples collected from soil borings SB-22, SB-23, SB-26, and SB-32. The only detected VOC in soil from SB-23 and SB-24 was carbon disulfide. This area is separated from the remaining VOC plume and is defined in all directions. The horizontal extent of VOCs is defined to the south by samples collected from soil borings SB-33 and SB-34 and to the west by samples collected from soil borings SB-29 and SB-36.

4.4.3 Semivolatile Organic Compounds

The background limits for SVOCs are presented in Table 4.1 and on Figure 13. Figure 13 is a contour map of the horizontal extent of naphthalene detected in soils and total SVOC concentrations above background limits in soils. The horizontal limits of naphthalene in soil are defined in all directions. Three areas of naphthalene concentrations in soil are located at the Site and include an area northeast of the office and service shop, an area in the vicinity of Gas Holder No. 2, and an area along the southeastern property boundary. These are defined to the north by samples collected from soil borings SB-23, SB-31, and SB-41; to the east by samples from borings SB-32 and SB-43; to the south by samples from borings SB-26, SB-27, and SB-33; and to the west by samples from borings SB-19, SB-20, and SB-40.

The horizontal extent of total SVOCs in soil above UBLs is defined in all directions. The horizontal extent is defined to the north by samples from soil borings SB-23, SB-30, and SB-31. To the east the extent is defined by soil samples collected from borings SB-32 and SB-43. To the south, the horizontal limits of SVOCs above UBLs are defined by samples from soil borings SB-33/33B and SB-34 and to the west the extent is defined by samples collected from soil borings SB-21 and SB-36.

The soil sample initially collected from soil boring SB-33 at a depth of two to four feet bgs indicated a total SVOC concentration of 23.7 mg/Kg. A second sample was collected (SB-33B-2-4) from a boring adjacent to SB-33 and analyzed for SVOCs. The analytical results from this sample indicated a total SVOC concentration of 6.3 mg/Kg. Based on these results, the concentrations reported in the original sample collected from SB-33 are likely to have been a result of the presence of asphalt in the sample.

4.4.4 Inorganics

Figure 14 is a map of the horizontal extent of barium and vanadium concentrations in soil above the UBLs. This map indicates that the horizontal extents of barium and vanadium are defined in all directions. The horizontal extent of barium in soil is defined to the north by samples from borings SB-04, SB-22, SB-30, and SB-38; to the east by SB-32 and SB-43 (background soil boring); to the south by SB-33 and SB-34; and to the west by SB-06, SB-19, and SB-20. The horizontal extent of vanadium in soil is defined to the north by samples from borings SB-30 and SB-38; to the east by SB-02, SB-04, and SB-22; to the south by SB-27; and to the west by SB-06, SB-28, and SB-39.

Figure 15 illustrates the horizontal delineation of lead and mercury concentrations above UBLs in soils. The horizontal extents of lead and mercury in soil above the UBL are defined in all directions. The horizontal extent of lead in soil is defined to the north by samples from borings SB-21, SB-30, and SB-31; to the east by SB-43 (background soil boring); to the south by SB-33 and SB-34; and to the west by SB-06, SB-19, SB-20, SB-29 and SB-44. The highest concentration of lead detected in soils is from a sample (SB-45-15-17; 1,070 mg/Kg) collected from fill material on a property that is located up-/cross-gradient and to the south of the former MGP operations. Lead associated with this sample is highly unlikely to be related to the former MGP operations, and is more likely related to fill material. Lead at this location is delineated to the UBLs in all directions. The sample collected from SB-32 (located east of the former MGP facility along the Ocmulgee River) at two to four feet bgs contained a lead concentration of 43 mg/Kg in natural soils. This result is likely related to river deposition since no direct route of migration exists between SB-32 and the former MGP property. Also, concentrations of lead above the UBL from soil borings (SB-23 and SB-24) located on the MGP property occurred in the fill material and not in natural soils. No other COI was detected above a UBL in SB-32. Mercury concentrations in soil above the UBL are horizontally defined in all directions at the Site. The horizontal extent of mercury in soils is defined to the north by samples collected from soil borings SB-31 and SB-38; to the east by samples from borings SB-32 and SB-43; to the south by samples from borings SB-33 and SB-34; and to the west by samples from boring SB-36. Mercury was detected in soil boring SB-30 (located to the north of the former MGP facility, in the direction of the Ocmulgee River) at a depth of 8 to 12 feet bgs, at a concentration of 0.154 mg/Kg. The mercury UBL concentration for natural soils is the detection limit which is 0.129 mg/Kg. As with the lead UBL exceedance in soil boring SB-32, the mercury exceedance in SB-30 is in natural soils and is likely related to river depositions. Other than beryllium, mercury was the only COI exceeding background in SB-30 and beryllium was not detected above the UBL anywhere else on the Site.

Figure 16 is a contour map of sample locations with arsenic, copper and zinc concentrations in soil above the UBLs. The horizontal extents of arsenic, copper and zinc in soil exceeding the UBL are defined in all directions. The horizontal extent of arsenic in soil is defined to the north by samples from boring SB-14; to the east by SB-25; to the south by SB-34; and to the west by SB-39. The horizontal extent of copper in soil is defined to the north by samples from borings SB-02; SB-03, SB-06, SB-07, SB-23, SB-25, and SB-26; to the east by SB-32 and SB-43 (background soil boring); to the south by SB-33 and SB-34; and to the west by SB-36 (background soil boring) and SB-38. The horizontal extent of zinc in soil is defined to the north by samples from borings SB-15 and SB-22; to the east by SB-32 and SB-43 (background soil boring); to the south by SB-33; and to the west by SB-19 and SB-20.

Figure 17 illustrates the horizontal delineations of chromium and cyanide concentrations above the UBLs. The horizontal extents of chromium and cyanide concentrations exceeding the UBL are defined in all directions. Chromium was present in two areas of the Site. The horizontal extent of chromium in soil in the first area is defined to the north by samples from borings SB-38B; to the east by SB-41; and to the south by SB-29. The second areas is defined by SB-04 to the north; SB-22 to the east; SB-02 to the south; and SB-15 and SB-40 to the west. The horizontal extent of cyanide in soil is defined to the north by samples from borings SB-21, SB-31, and SB-41; to the east by SB-22 and SB-25; to the south by SB-33 and SB-34; and to the west by SB-29 and SB-36 (background soil boring).

Cadmium and nickel were not detected above their respective UBLs in any samples collected during the SI and CSI.

4.5 VERTICAL EXTENT OF CONSTITUENTS OF INTEREST IN SOILS

The vertical extent of COI in soils exceeding the UBL is defined at the Site by one of three methods, including:

- The deepest samples in a given soil boring are below the UBL (e.g., in SB-27 the soil sample collected from 8 to 12 feet bgs had a lead concentration of 634 mg/Kg but the sample collected from 20 to 21 feet bgs had a lead concentration of 6.35 mg/Kg);
- A sample collected at a deeper depth from a near by boring exhibited concentrations below the UBL (e.g., samples collected from SB-04 at 21.5 to 23.5 feet bgs had SVOC concentrations above the UBL but samples collected during the installation of MW-6 at a depth of 34 to 39 feet bgs were below detection limits for all analyzed SVOCs); and
- The deepest sample in the boring is immediately above competent rock (e.g., the sample collected from SB-38 at a depth of 34 to 38 feet bgs had a benzene concentration of 0.062 mg/Kg and auger refusal was encountered at 38 feet bgs).

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 5 GROUNDWATER INVESTIGATION

SECTION 5

GROUNDWATER INVESTIGATION

5.1 GENERAL APPROACH AND RATIONALE

Groundwater at the Site was evaluated by the use of seven permanent monitoring wells (four installed during the SI and three installed during the CSI). All seven monitoring wells (MW-01 through MW-07) were constructed as Type II (single-cased) monitoring wells. The objectives of the study were to define the horizontal and vertical extents of dissolved COI related to the former MGP operations, to collect data in regard to aquifer characterization, and to obtain data concerning natural attenuation parameters. The locations of the sampling points were determined by the presence of existing monitoring wells, historical information, and information gathered during the CSI. Each of the monitoring wells was designated by MW-#. After completion of the field work, surveys were conducted of sampling points by a surveyor certified by the State of Georgia (Donaldson, Garrett, & Associates, Inc.). Williams performed the survey of MW-07. The surveys referenced the previous Site survey conducted during the SI.

5.2 SITE HYDROGEOLOGY

5.2.1 General

The most recent water level measurements were collected at each of the monitoring wells (MW-01 through MW-07) on August 20, 2003 between 7:15 a.m. to 9:00 a.m., utilizing an electronic water level indicator. Depth to water in each well was measured from the northern side on the top of each casing. Elevations of top of casings and ground elevations for each monitoring well are listed on Figure 3. Depth to top of groundwater measured in the monitoring wells ranged from 7.32 feet to 22.75 feet below top of casing on August 20, 2003 (excludes MW-06 as this is a deep monitoring well). Table 5.1 summarizes the historical depths to water and elevations for the monitoring wells.

5.2.2 Hydrogeologic Characteristics

5.2.2.1 Hydraulic Conductivity

Hydraulic conductivity was estimated through slug tests conducted in monitoring wells during the SI and the CSI. LAW performed slug tests in 1992, during the SI, in monitoring wells MW-01, MW-02, MW-03, and MW-04. Slug tests were performed during the CSI on April 12 and 13, 2001, in monitoring wells MW-01 through MW-06 (data collected from MW-03 were not usable).

The following methods were utilized during slug tests performed during the CSI. Slug-in tests were performed by lowering a weighted, five-foot long PVC pipe into the water column in each of the tested wells to cause an instantaneous water level change in the well. Slug-out tests were performed by withdrawing the PVC slug and recording head changes versus time. The changes in head with respect to time were recorded with a pressure transducer and data logger. The data from all of the slug tests were analyzed using the Bouwer and Rice (1976) analytical method for estimating

hydraulic conductivity of unconfined aquifers or leaky confined aquifers. The computer program AQTESOLV (Geraghty and Miller, 1991) was used to calculate the hydraulic conductivity and prepare graphs of the data.

TABLE 5.1
WATER LEVEL DEPTHS AND ELEVATIONS

		Top of		
Well		Casing	Depth to	Water Table
ID#	Date Gauged	Elevation*	Groundwater	Elevation*
MW-01	March 11, 1992	325.84	7.85	317.99
	March 12, 2001		10.42	315.42
	March 29, 2001	-	9,50	316.34
_	August 20, 2003		7.32	318.52
MW-02	March 11, 1992	317.87	20.14	297.73
	March 12, 2001		20.61	297.26
	March 29, 2001		19.99	297.88
	August 20, 2003		18.23	299.64
MW-03	March 11, 1992	317.09	23.47	293,62
	March 12, 2001		22.36	294.73
	March 29, 2001		23.22	293.87
	August 20, 2003		22.00	295.09
MW-04	March 11, 1992	318.42	24.77	293.65
	March 12, 2001		25.40	293.02
	March 29, 2001		25.61	292.81
	August 20, 2003		22,75	295.67
MW-05	March 11, 1992	316.62	NA	NA
	March 12, 2001		NA .	NA
	March 29, 2001		22.32	294.30
	August 20, 2003		19.17	297.45
MW-06	March 11, 1992	318.41	NA	NA NA
	March 12, 2001]	NA	NA.
	March 29, 2001]	32,31	286.10
	August 20, 2003		35.28	283.13
MW-07	March 11, 1992	318.07	NA	NA _
	March 12, 2001		NA	NA
	March 29, 2001		NA	NA
	August 20, 2003]	18,95	299.12

*in feet above mean sea level (MSL) NA – Not Available (well not constructed)

The average hydraulic conductivity for wells (MW-02, MW-04, and MW-05) screened in the fill material was determined to be 1.73 E-02 feet per minute (ft/min). The average hydraulic conductivity for the well screened in the saprolite (MW-01) and the well screened in the alluvium (MW-06) was determined to be 3.77 E-04 ft/min and 3.60 E-04 ft/min, respectively. Table 5.2 summarizes the results of slug tests performed both during the SI and the CSI and indicates the depth each well was screened. Appendix I includes the time and head data, input parameters, and graphs from the slug tests performed during the CSI.

TABLE 5.2 SUMMARY OF HYDRAULIC CONDUCTIVITY DATA

		//////////////////////////////////////	TORAULIC CO			1.5	
Well ID	Test Date	Well Depth (ft. BTOC)	Water Level (ft, BTOC)	Screened Interval (ft. BTOC)	Test Type	Hydraulic Conductivity (ft/min)	
Saprolite	rest Date	(10. 10.00)	111. 51001		; 103. 19ps	(10111111)	
LAW DATA (from	GI)						
MW-01	03/13/92	18	8.9	8-18	Slug-out	4.8 E-05	
WILLIAMS DATA		10	0.3	<u> </u>	i Olag-out	7.0 _ 0.0	
MW-01	04/13/01	18	9.15	8-18	Slug-out	7.05 E-04	
AVERAGE (Law a	L		1 0.10	0.10	olag out	3.77 E-04	
Fill	HIC ARBIGING DO						
LAW DATA (from	SI)						
MW-02	03/12/92	28	19.96	18.28	Slug-out	1.1 E-03	
MW-04	03/12/92	33	24.78	23-33	Slug-out	2.1 E-02	
WILLIAMS DATA	(from CSI)						
MW-02	04/13/01	28	19.83	18-28	Slug-out	1.61 E-03	
MW-04	04/13/01	33	24.30	23-33	Slug-out	5.89 E-02	
MW-05	06/07/01	30	21.81	15-30	Slug-out	3.79 E-03	
AVERAGE (Law a	nd Williams Da	ta)				1.73 E-02	
Alluvium							
MW-06	06/07/01	50	33.69	40-50	Slug-in	3.95 E-04	
•			1		Slug-out	3.24 E-04	
AVERAGE	AVERAGE 3.60 E-						
BTOC - below top	of casing.						
ft. – feet.	-	4					
ft/min – feet per m	inute.						

5.2.2.2 Physical Soil Testing

Physical soil testing was performed during the SI on one soil sample collected from the boring associated with the installation of monitoring well MW-02. The sample was analyzed for total porosity, water content, dry density, hydraulic conductivity, total organic carbon, and organic content. Four soil samples were collected during the CSI from the boring associated with the installation of monitoring well MW-05 to determine grain size distribution, specific gravity, permeability, porosity, and percent moisture for the soils encountered across the area.

The samples collected during the CSI were analyzed by Southern Company Central Laboratory. Laboratory results for the physical soil tests from both the SI and CSI are shown in Tables 5.3, 5.4, and 5.5. Laboratory reports for samples collected during the CSI are included as Appendix J.

TABLE 5.3
SUMMARY OF PHYSICAL SOIL TESTS
CONDUCTED DURING THE SI

Sample ID	Water Content (%)	Porosity (%)	Vertical Permeability cm/sec	TOC (mg/Kg)	Organic Content (%)	Dry Unit Weight (pcf)
ASB-02 (24-26)*	22.4	36.3	1.9 E-06	3,400	1.4	105.4
cm/sec – centimete mg/Kg – milligrams	per kilogram	,				
PCF – Pounds per TOC – Total organ			•			
* approximate depi						

TABLE 5.4
GRAIN SIZE DISTRIBUTION

Sample ID	% Gravel	% Sand	% Silt/Clay
Fill			
ST-1-4-6.5	6.4	57.5	36.1
ST-1-12-14.5	1.9	60.3	37.8
ST-1-20-22.5	0.3	58.3	41.4
ST-1-28-30.5	1.2	64.1	34.7

TABLE 5.5
SUMMARY OF PHYSICAL SOIL TESTS
CONDUCTED DURING THE CSI

Sample ID	Water Content (%)	Porosity (%)	Vertical Permeability (cm/sec)	Specific Gravity	Wet Unit Weight (PCF)	Dry Unit Weight (pcf)
ST-1-4-6.5	17.7	37.4	4.9 E-05	2.64	121.3	103.1
ST-1-12-14.5	17.1	38.1	2.3 E-05	2.65	119.8	102.3
ST-1-20-22.5	17.3	33.5	8.6 E-07	2.65	129.1	110.1
ST-1-28-30.5	21.0	35.4	5.2 E-05	2.65	129.3	106.9

5.2.3 Groundwater Flow

PCF - Pounds per cubic foot

Figure 18 is a map showing the configuration of the top of the water table on August 20, 2003. Depth to top of groundwater ranged from 7.32 feet below top of casing (MW-01) to 22.75 feet below top of casing (MW-04). Due to the proximity of MW-06 to MW-04, and the difference in water table elevations between these two wells, MW-06 was not used in determining groundwater flow direction or gradient in the upper water bearing zone. However, the relationship of these two wells provides data to determine the general vertical flow characteristics at the Site. The higher groundwater elevation measured in MW-04 (295.67), which is screened across the water table (295.38 to 285.38), versus the potentiometric head measured in MW-06 (283.13), which is screened below the water table (278.76 to 268.76), indicates a downward flow regime. The horizontal flow pattern for groundwater in the soils under the former MGP facility is generally to the east at an average gradient of 0.086 ft/ft (Figure 18).

The groundwater flow velocity or seepage velocity (V) can be determined using the horizontal hydraulic conductivity, hydraulic gradient, and effective porosity. Site values for horizontal hydraulic conductivity and hydraulic gradient were determined from the data collected during the SI and CSI. Effective porosity can be estimated from published literature based on the presence of fine sand/clayey sand. The groundwater flow velocity was calculated separately for groundwater within the saprolite (from monitoring well MW-01), fill material (from monitoring wells MW-02, MW-04, MW-05, and MW-07) and alluvium (from monitoring well MW-06).

The groundwater flow velocity is calculated from the equation:

$$V = k * \frac{i}{n_e}$$

Where:

- k = hydraulic conductivity = 3.7 E-04 ft/min. for saprolite, 1.73 E-02 ft/min. for fill material, and 3.60 E-04 ft/min for alluvium (average from slug tests);
- i = hydraulic gradient = 0.086 (from Figure 18); and
- n_e = effective porosity = 0.20 for saprolite and fill material (silt), and 0.33 for alluvium (fine sand); from Groundwater Hydrology and Hydraulics, D. B. McWhorter and D. K. Sunada, 1977).

Using the assumptions listed above, the average groundwater flow velocity at the Site is approximately 0.23 ft/day or 84 ft/year for groundwater flow in the saprolite, 10.7 ft/day or 3,900 ft/year for groundwater flow within the fill material, and 0.14 ft/day or 200 ft/year for groundwater flow within the alluvium. However, due to adsorption and degradation, the COI are expected to migrate at a slower rate.

5.3 GROUNDWATER MONITORING WELL INSTALLATION AND RATIONALE

Descriptions of the installation and rationale of monitoring wells MW-01 through MW-04 can be found in the SI Report by LAW.

Monitoring wells MW-05, MW-06, and MW-07 were installed during the CSI. Monitoring wells MW-05 and MW-07 were installed to define the horizontal extent of COI related to the former MGP operations in groundwater. Monitoring well MW-06 was installed adjacent to MW-04 and approximately 16 feet deeper to insure vertical delineation of COI related to the former MGP operations in groundwater.

Soil borings for the Type II monitoring wells installed during the CSI were advanced with 6.25-inch outside-diameter (OD) HSAs. The soil borings for monitoring wells MW-05 and MW-07 were advanced to 30 feet bgs and 32.5 feet bgs, respectively. Monitoring wells MW-05 and MW-07 were constructed with 15 feet of two-inch diameter, 0.010-inch slotted schedule 40 PVC screen and 15 feet of two-inch diameter schedule 40 PVC riser. Following installation of the well screen and riser, a sand pack was placed in the annulus from the total depth to a point approximately two feet above the top of the screen. Approximately two feet of bentonite were placed in the annulus above the sand pack to effect a seal. Grout was placed in the annulus from the top of the seal to ground level.

Monitoring well MW-06 was constructed with 10 feet of pre-packed well screen and 40 feet of PVC riser. The pre-packed screen consisted of 10-feet of an inner two-inch diameter, 0.010-inch slot, schedule 40 PVC screen and an outer 3.5-inch diameter, 0.010-inch slot schedule 40 PVC screen. The annular space between the screens was filled with sand pack material prior to installation. Following installation of the well screen and riser, a sand pack was placed in the annulus between the borehole and well construction material from the total depth to a point approximately two feet above the top of the screen. Approximately two feet of bentonite were placed in the annulus above the sand pack to effect a seal. Grout was placed in the annulus from the top of the seal to ground level. Each well was finished at the surface with a flush-mounted metal well guard.

More detailed information concerning well construction for all of the monitoring wells at the Site are summarized on Table 5.6. Monitoring well construction diagrams are included in Appendix K.

Each of the new and existing monitoring wells was developed, or redeveloped, respectively, by pumping with a submersible pump until the water was relatively free of suspended solids. The water removed from the wells was pumped into a waste water tank or drums located at the Site.

TABLE 5.6
SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION

	•		SCREENED INTERVAL		
Well ID#	Ground Surface Elevation *	Top of Casing Elevation*	Elevation (MSL)	Feet bgs	
MW-01	326.45	325.84	314.95-304.95	11.5-21.5	
MW-02	318.34	317.87	300.84-290.34	18-28	
MW-03	317.55	317.09	297.05-287.05	20.5-30.5	
MW-04	318.88	318,42	295.38-285.38	23.5-33.5	
MW-05	316.99	316.62	301.99-286.99	15-30	
MW-06	318.76	318.41	278.76-268.76	40-50	
MW-07	318.33	318.07	300.83-285.83	17.5-32.5	

5.4 SAMPLING AND ANALYSIS

Two rounds of groundwater sampling were performed as part of the CSI. The first sampling event occurred during March 2001 and the second event occurred during August 2003. Groundwater analytical data were obtained through groundwater samples collected from the monitoring wells. The groundwater samples were analyzed by Analytical Environmental Services, Inc. (AES) for the COI. Groundwater samples collected for natural attenuation parameters during the March 2001 sampling event were analyzed by Microseeps in Pittsburgh, Pennsylvania. Appendix C-2 contains summary tables of the analytical reports. Attachment A of this CSR contain copies of analytical data collected during the CSI.

5.4.1 Sampling Methods

Depths to groundwater were measured in the monitoring wells using a water level indicator. Depths to water, well diameter and well depths from the monitoring wells were used to calculate well volumes. Purging was accomplished using a peristaltic pump and dedicated polyethylene tubing. A minimum of three well volumes of water was removed from each well during purging. Temperature, pH, specific conductivity, dissolved oxygen, turbidity, and oxidation/reduction potential were measured during purging. The wells were purged until these field parameters had equilibrated and turbidity was less than 5 NTUs. Measurements were recorded on water quality sampling forms found in Appendix L. Groundwater samples collected during the March 2001 sampling event for VOCs and SVOCs were collected immediately following purging. Samples for analyses of inorganic COI were collected within 24 hours of purge completion using quiescent sampling techniques. For the August 2003 sampling event, samples were collected

immediately following purging with the exception of the sample from MW-01 which was allowed to recharge overnight after the well went dry. Purge water was collected and transported to the waste water tank or drums.

Groundwater samples were also collected during the March 2001 sampling event from each monitoring well for natural attenuation parameters which included ammonia as nitrogen, ferrous iron, nitrate, sulfate, sulfate, iron, manganese, dissolved manganese, carbon dioxide, methane, nitrogen, and oxygen. Natural attenuation parameters in groundwater were analyzed to determine the applicability of biodegradation of COI in groundwater for the purposes of remediation if necessary.

5.4.2 Sample Handling and Preservation Techniques

Groundwater samples collected for COI related to former MGP operations from the monitoring wells were analyzed for VOCs, SVOCs, metals, and cyanide. The samples were collected in the following order: 1) VOCs; 2) SVOCs; and 3) inorganic compounds. The samples were placed in the appropriate containers with the appropriate preservatives prescribed by the Work Plan. The samples were designated by the well number and identified by attaching sample labels with the required information completed. The sample containers were sealed in plastic bags, placed in a trash bag and sealed in a cooler with plastic bubble wrap and ice. Chain-of-custody forms were completed for each SDG and shipped with the samples. Each shipment of samples was assigned a SDG number. Equipment rinse blanks and field duplicate samples were included in the SDGs and were analyzed for the COI. Trip blanks and field blanks were included in the SDGs and analyzed for VOCs only.

Groundwater samples collected for natural attenuation parameters were placed in appropriate containers with the appropriate preservative as prescribed by the Work Plan. The sample containers were sealed in plastic bags, placed in a trash bag and sealed in a cooler with plastic bubble wrap and ice. Chain-of-custody documentation accompanied each shipment. All samples sent for natural attenuation parameters were shipped overnight via Federal Express.

5.4.3 Decontamination Procedures

Decontamination procedures were followed according to the Work Plan. All reusable down-hole equipment, consisting of the water level indicator, pressure transducer, and tape measure was decontaminated prior to entering the well. Decontamination was performed by washing the equipment in a solution of tap water and Liquinox, and rinsing with deionized water, isopropanol and organic-free water. Throughout the sampling and decontamination procedures, new disposable gloves were worn when equipment was handled.

5.4.4 Laboratory Methods

Groundwater samples for COI analyses were shipped to AES, via Federal Express Priority Overnight. Samples were analyzed for VOCs and methyl-tert-butyl-ether (MTBE; only during the March 2001 sampling event) according to SW-846 Method 8260, SVOCs according to SW-846 Method 8270A, and inorganic constituents using SW-846 Method 6010 except for mercury and total cyanide which were analyzed using SW-846 Method 7471 and SW-846 Method 9010, respectively. The CRQLs were based on the laboratory's self-determined PQL.

Groundwater samples collected for natural attenuation parameters were shipped to Microseeps, via Federal Express Priority Overnight. Table 5.7 lists the methods numbers for each parameter analyzed.

TABLE 5.7
ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS

Method	
EPA Method 350.2	
Nodified SW-846 Method 7199	
SW-846 Method 9056	
EPA Method 376.1	
SW-846 Method 6010	
AM 15*	
AM 18*	
_	

A complete CLP-like data package was prepared by AES for one water SDG. The data package was submitted to Southern Company Chemical Services for data validation using USEPA SMO Data Validation Functional Guidelines. All laboratory data were considered by Southern Company Chemical Services to be acceptable. Southern Company Chemical Services also reviewed the laboratory data for PARCC parameters. Southern Company Chemical Services found the PARCC parameters acceptable (Appendix G-1). The laboratory packages for the remaining SDGs were reviewed and qualified by Williams for quality assurance/quality control measurements and results are included in Appendix G-2.

5.5 BACKGROUND CONCENTRATIONS

Background concentrations of the COI for groundwater were determined from the groundwater samples collected from monitoring well MW-01 for inorganic compounds. This well is located up-gradient from any known MGP source area (Figure 18). Table 5.8 lists the background concentrations for the inorganic COI in groundwater. The UBLs for VOCs and SVOCs were assumed to be the detection limit.

TABLE 5.8
CALCULATED BACKGROUND
CONCENTRATIONS

GROUNDWATER					
INORGANICS					
ANALYTE	UPPER BACKGROUND LIMIT (mg/L)				
Arsenic (As)	Detection Limit				
Barium (Ba)	Detection Limit				
Beryllium (Be)	Detection Limit				
Cadmium (Cd)	Detection Limit				
Chromium (Cr)	Detection Limit				
Copper (Cu)	Detection Limit				
Lead (Pb)	Detection Limit				
Mercury (Hg)	Detection Limit				
Nickel (Ni)	Detection Limit				
Zinc (Zn)	0.029				
Cyanide (CN)	Detection Limit				

5.6 HORIZONTAL AND VERTICAL EXTENT OF CONSTITUENTS OF INTEREST IN GROUNDWATER

Analytical results of the COI for all groundwater samples collected during the CSI are summarized in Appendix C-2. Cross-sections A-A' through C-C' (Figures 7 through 9) show the horizontal and vertical extent of the COI in groundwater samples collected during the CSI sampling event. An isoconcentration map (Figure 19) was also prepared for various COI detected in the groundwater from monitoring wells sampled during the August 2003 CSI field sampling event. In addition to the previously listed COI, MTBE analyses were conducted on collected groundwater samples during the March 2001 for the purpose of fingerprinting possible impacts and determining potential off-property sources.

5.6.1 Horizontal Extent of Volatile Organic Compounds in Groundwater

Groundwater samples collected during the August 2003 sampling event did not contain any detectable concentrations of VOCs. The groundwater sample collected from monitoring well MW-01 (up-gradient of the former MGP facility) during the March 2001 sampling event contained benzene at a concentration of 9.1 µg/L (duplicate sample Dup031201A collected from MW-01 did not contain a detectable concentration of benzene). This was the only groundwater sample collected during the CSI that contained benzene and MW-01 is located immediately down-gradient of a known off-Site UST release (these plumes are presented on Figure 19). Therefore, the benzene concentration detected in MW-01 during the March 2001 sampling event is not related to the former MGP facility.

MTBE was detected in groundwater samples collected from MW-02 and MW-04 at 8.5 µg/L and 18 µg/L, respectively during the March 2001 sampling event. As MTBE is a synthetic compound developed in the 1970's, and MGP operations ceased in the early 1900's, it can be assumed that the concentrations of MTBE in groundwater at the Site are representative of off-site sources (likely related to the up-gradient USTs).

5.6.2 Horizontal Extent of Semivolatile Organic Compounds in Groundwater

Detectable SVOC concentrations were reported in only two groundwater samples collected during the August 2003 CSI sampling event (MW-02 and MW-05; Figure 19). Analytical results indicated the presence of acenaphthene at concentrations of 12 µg/L and 14 µg/L slightly above the detection limit of 10 µg/L in MW-02 and MW-05, respectively. No other SVOCs were detected in groundwater samples collected during the August 2003 sampling event.

5.6.3 Horizontal Extent of Inorganics in Groundwater

The horizontal extents of inorganic constituents detected in groundwater above the background limits are defined at the Site (Figure 19). Concentrations of all inorganic COI, with the exception of barium and cyanide, were below the laboratory detection limit in the groundwater samples collected during the August 2003 sampling event. Barium was detected in monitoring wells MW-02 through MW-07. The background monitoring well (MW-01) did not contain detectable levels of barium. When evaluated independently, the chemical data suggests that there has been a barium release to groundwater that is not defined. However, when the data is evaluated in combination with geologic units and background soil chemical analysis, the data suggests the barium present in the groundwater at the Site is related to

alluvial soils and fill material. This is based on the fact that the background well (MW-01) is the only well that is screened within the saprolite and the remaining wells are screened within fill material and/or alluvium. Specifically, MW-03, MW-05, and MW-07 are screened completely in the fill material, MW-02 and MW-06 are screened completely in the alluvium, and MW-04 is screened across the fill material and alluvium contact. An evaluation of barium in soil from the background soil borings shows that barium is not present above the detection limit in the saprolite background soil samples, however, barium is present in the fill material and alluvium background soil samples at concentrations ranging from 11.1 mg/kg to 126 mg/kg and 30.1 mg/kg to 338 mg/kg, respectively. Additionally, barium is not present in soils at the locations of former MGP operations at concentrations exceeding the soil background concentrations, demonstrating that a release of barium has not occurred at the MGP facility. Therefore, the barium present in the groundwater is directly related to the barium present in the fill material and alluvium, and not the former MGP operations. Cyanide was detected in monitoring well MW-02 at a concentration of 0.048 mg/L (Figure 19) and is defined in all directions by MW-01, MW-04, MW-05, and MW-07 (MW-07 is a new well that was installed to define the cyanide present in MW-02).

5.6.4 Natural Attenuation Parameters

Groundwater samples were collected from all monitoring wells (MW-01 through MW-06) during the March 2001 sampling event and analyzed for natural attenuation parameters. Based on analytical results of COI in groundwater, further study of the results from the natural attenuation parameter analysis is not warranted at this time.

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 6 INVESTIGATION OF NONAQUEOUS PHASE LIQUIDS

SECTION 6 INVESTIGATION OF NONAQUEOUS PHASE LIQUIDS

6.1 GENERAL OBSERVATIONS

Non-aqueous phase liquids (NAPL) were not identified at the Site during the CSI. Williams advanced borings in the vicinity of former structures where NAPL could potentially be encountered in the subsurface.

6.2 SOIL BORINGS

During the CSI, borings were advanced in areas where structures appear to have been located according to the Sanborn maps. A minimal amount of TLM and/or OLM was observed in two borings (SB-11 and SB-39) installed within Gas Holder No. 1 and three borings (SB-12, SB-13, and SB-15) installed within Gas Holder No. 2. In SB-11 and SB-39, the TLM and/or OLM were observed at the base of the gas holder at a depth of approximately 12.5 feet bgs in less than one-inch lens. The TLM and/or OLM were observed at the base of Gas Holder No. 2 at a depth of approximately 41 feet bgs in a less than one-inch layer.

6.3 MONITORING WELLS

No measurable thickness of light non-aqueous phase liquid (LNAPL) or dense non-aqueous phase liquid (DNAPL) was observed during the CSI in any of the monitoring wells.

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 7 SEDIMENTS INVESTIGATION

SECTION 7 SEDIMENTS INVESTIGATION

The CSI assessed the potential impact of the COI on sediments in the Ocmulgee River. The river is located approximately 200 feet northeast of the former MGP facility.

Williams performed an investigation of the sediments of the Ocmulgee River on April 11, 2001. Sediment samples were collected using hand DPT for visual observation only to determine if sediments had been impacted by former MGP operations. Sediment samples were collected at approximately 100 foot intervals along the western bank of the river beginning at the Spring Street bridge and extending approximately 700 feet south of the bridge. At each interval, samples were collected from 0-2 feet and 2-4 feet below the top of the sediment at approximately three feet and 13 feet from the edge of the river bank. Depth to the top of the sediment from the water level was measured for each location and is recorded on boring logs included in Appendix D-3. The boring logs also include a lithologic description and any observation of visible staining, if present. Additional sediment samples were collected for visual observation at the culvert located on the south side of the bridge (Figure 3).

A hydrocarbon-like staining and odor (possibly diesel fuel in nature) were noted in four sediment samples (SD-D-30, SD-D-40, SD-E-3, and SD-E-8) collected in the vicinity of the culvert. Due to the large drainage basin that includes several other potential sources (several UST facilities, manufacturing facilities, commercial area and roadways) associated with this culvert, the lack of a direct hydraulic connection with the former MGP facility and the fact that the hydrocarbon-like odor resembled that of diesel fuel, it does not appear likely this is associated with the former MGP operations (see Figure 5). Minor amounts of coal-like material were observed in the sediment sample (SD-D-20) collected approximately 20 feet outward from the culvert and one piece of slag-like material was observed in the sample collected approximately 20 feet downstream and approximately three feet from the edge of the bank (SD-E-3). None of the sediment samples collected indicated the presence of TLM or OLM semi-volatile organic compounds.

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 8 PROPERTIES POTENTIALLY AFFECTED BY A RELEASE AND OTHER POTENTIALLY RESPONSIBLE PARTIES

SECTION 8 PROPERTIES POTENTIALLY AFFECTED BY A RELEASE AND OTHER POTENTIALLY RESPONSIBLE PARTIES

8.1 PROPERTIES POTENTIALLY AFFECTED BY A RELEASE

As defined by the CSI, the properties potentially affected by a release from the former MPG facility are shown on Figure 2 and include the following owners and/or occupants listed in Table 8.1.

TABLE 8.1
OWNERS OF POTENTIALLY AFFECTED PROPERTIES

			Address and
Affected Parcel	Parcel Address	Parcel Owner	Telephone Number
OC-98-5I	32 Spring Street	Eagle West, LLC	Outdoor West
	Macon, Georgia		8976 N. Expressway
			Griffin, GA 30223
			Phone: 770-227-2060
OC-98-5C	40 Spring Street	Kayo Oil Company	Kayo Oil Company
OC-98-5D	40 Spring Street		c/o Canaco
OC-98-5G	40 Spring Street		P.O. Box 1039
OC-98-5H	36 Spring Street		Wilmington, GE 19899
		<u> </u>	Phone: 770-425-2507
OC-98-5A	44 Spring Street	Pizza Hut of America, Inc.	66 Frank Street
			Macon, GA 31201
			Phone: 912-741-2525
0C-98-4F	66 Spring Street	Travis R. Crouch, Jr. et Al.	Jeanette C. Miller
	1 4 3	·	P.O. Box 35370
	_	2	Louisvitle, KY 40232
			Phone: Not Available
OC-98-3A	856 Riverside Drive	Schuster Enterprises, Inc.	Schuster Enterprises, Inc.
OC-98-3B	855 Riverside Drive		P.O. Box 12029
OC-98-3D	856 Riverside Drive		Columbus, GA 31917
OC-98-4H	886 Willow Street		Phone: 706-563-3066
OC-99-4AB	815 Riverside Drive	City of Macon, Transit Authority	City Hall
	Macon, Georgia		700 Poplar Street
			Macon, GA 31201
			Phone: 478-751-7110
OC-98-2A	847 Riverside Drive	Roscoe Douglas, Jr.	P.O. Box 2823
OC-98-2B	839 Riverside Drive		Macon, GA 31203
			Phone: 478-475-9555
OC-98-5J	801 Riverside Drive	City of Macon Central Services	801 Riverside Drive
			Macon, GA 31201
		·	478-751-9147
OC-99-4A	725 Riverside Drive	Macon-Bibb County	305 Collseum Drive
y.		Urban Development Authority	Macon, GA 31201
			Phone: 478-741-8000
R-O-W Norfolk Southern	NA	Norfolk Southern Corporation	Three Commercial Place
o as same continue			Norfolk, VA 23510-9227
	1		757-629-2600

8.2 OTHER POTENTIALLY RESPONSIBLE PARTIES

HSRA regulations, by which this report is being prepared, require the name, address, and telephone number of any other person who may be a responsible party for the Site and a description of the type and amount of regulated substances such party may have contributed to a release.

The following potentially responsible parties have been identified at this time:

The City of Macon 700 Poplar street Macon, Georgia

Georgia Power Company 241 Ralph McGill Boulevard, NE Atlanta, GA 30308

Atlanta Gas Light Company 10 Peachtree Place Atlanta, GA 30309 COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 9 POTENTIAL RECEPTOR STUDY AND RISK REDUCTION STANDARDS

SECTION 9 POTENTIAL RECEPTOR STUDY AND RISK REDUCTION STANDARDS

This section evaluates the potential for exposure of human populations to COI detected in soil and groundwater at the Site. For exposure to occur a contaminant has to reach a receptor. Movement of a substance through the environment from a source, to a point of contact with an individual is defined as exposure pathway. A complete exposure pathway consists of four elements: 1) chemical source and release mechanisms, 2) environmental transport media, 3) a receptor at the exposure point, and 4) an exposure route at the exposure point. Without all four elements, an exposure pathway is incomplete, and consequently, no exposure could occur. Each of the elements as they exists at the Site are described below.

9.1 CHEMICAL SOURCE AND RELEASE MECHANISMS

At the Macon 2 former MGP facility, MGP constituents appear to have potentially been released from more than one source involved in the manufacture or storage of gas or its by-products. Section 2.5 lists known and potential sources of the COI and a general description of each identified potential source. The actual mechanism for release of COI from each source is not known; however, releases likely occurred due to spillage or leakage during the gas manufacturing process or leakage during storage of MGP by-products.

9.2 ENVIRONMENTAL TRANSPORT MEDIA

9.2.1 Persistence of Constituents of Interest

The primary MGP constituents detected in soil and groundwater at the Site are PAHs, VOCs, metals, and cyanide. The physical and chemical characteristics of these compounds vary widely which causes differences in the behavior of movement of each compound in the environment. Table 9.1 lists physical and chemical characteristics for select COI found at the Site that determine their fate and transport in environmental media.

PHYSICAL AND CHEMICAL CHARACTERISTICS OF SELECT CONSTITUENTS OF INTEREST

Constituent of Interest	Water Solubility (ppm)	Vapor Pressure (torr)	Henry's Law Constant	Koc Water/Carbon (ml/g)
Benzene	1.8E+03	9.5E+01	5,6E-03	5.51E+01
Benzo(a)pyrene	1.63E-03	5,5E-09	1.1E-06	7.91E+05
Naphthalene	3.1E+01	8.5E-02	4.8E-04	1.76E+03
Pyrene	1.4E-00	4.6E-06	1.1E-05	6.56E+04
Lead		0.00E+0		<u> </u>
Source: Superfund Che	mical Data Matrix, EPA,	1996		

Those chemicals with higher water solubility values, such as benzene, are more likely to be dissolved into groundwater and be potentially transported from the Site. Those with high water/carbon partitioning coefficients (such as benzo(a)pyrene) are much more likely to become bound to the organic fraction of soils. Chemicals with high vapor pressures such as benzene are likely to volatilize when in contact with air.

In general, PAH compounds tend to have a high affinity for organic compounds and low solubility in water. Therefore, in soils and sediments, PAH compounds tend to be bound to the soil particles and dissolve slowly. Volatilization of some lighter end PAH compounds may occur although most volatilize slowly due to their low vapor pressures. Biodegradation is an important process in that microorganisms are capable of breaking down PAH compounds. According to the Gas Research Institute (Management of Manufactured Gas Plant Sites, 1988) the half-life of most PAH compounds in soil varies from 140 to 480 days under good conditions. The rate of biodegradation is highly dependent upon the availability of oxygen and nutrients in the subsurface and other soil conditions.

Benzene and other VOCs tend to dissolve in groundwater and volatilize in air much more easily than PAH compounds. Therefore, they do not usually last for long periods at the surface but may be persistent in groundwater.

Metals and ferrocyanide, usually the dominant form of cyanide at MGP Sites (Management of Manufactured Gas Plant Sites, 1988), are relatively insoluble and tend to be persistent in soil. They are usually closely bound to particulate matter and may be transported in soil eroded by wind or rain. Over time, oxidation and biological action may cause reaction of sulfur and cyanide compounds to form thiocyanates which are very soluble in water.

9.2.2 Potential Routes of Migration

9.2.2.1 Soils

Surface and subsurface soils at or near identified sources appear to be the first media impacted by the release of MGP constituents. The primary route of migration of MGP-related constituents is movement through subsurface soils by the percolation of rainwater through the vadose zone to the water table. The migration of the COI occurs along preferential pathways where changes in permeability occur. Several key horizons were identified during the CSI which appear to be possible migration pathways including the ground surface, the water table, the base of fill material, the alluvial sands, and the base of alluvium. Constituents can also be moved from place to place on the surface by the erosion of impacted surface soils. Transport of COI from the Site as a result of surface soil erosion is not likely to occur because buildings, asphalt and concrete cover all but approximately 500 square feet (covered by grass) of the former MGP facility, as show in Figure 3.

9.2.2.1.1 Surface Topography

Surface topography at the Site slopes to the northeast and east. Surface soils at the property contain COI exceeding background concentrations. Surface water runoff would follow surface topography, as discussed in Section 2, to one of the two drainages discussed in Sections 3.2.3 and 9.3.2. However, as mentioned in the previous Section, COIs are not likely to be found in surface water runoff because there are no exposed surface soils at the Site. Therefore, the migration of MGP-related constituents from eroded surface soils or former MGP operations in surface water runoff is not considered to be the potential path of contaminant migration from the Site.

9.2.2.1.2 Water Table

As soil saturation increases near the water table, permeability to fluids other than water decreases. The result is a vertical change in the conductivity of the soil. Therefore, some migration may be expected to have occurred in a downgradient direction along the water table. Figure 18 is a map depicting the elevation of the water table.

9.2.2.1.3 Base of the Fill Material

The clays, sands and gravels of the fill material exhibit a higher conductivity than the underlying clays and silts of the alluvium and saprolite. Therefore, the base of the fill material may be a preferential flow pathway.

9.2.2.1.4 Base of Alluvium

The medium to coarse sands and gravels observed in the alluvium at the Site has a higher conductivity than the underlying silts and fine sands of the saprolite or of the gneissic bedrock. Therefore, the contact between the base of the alluvium and the underlying saprolite or bedrock could represent a preferential flow pathway.

9.2.2.2 Groundwater

Groundwater may be impacted by COI when residual MGP constituents in subsurface soil come in contact with the groundwater or when percolating rainwater leaches the COI into the groundwater. The migration of MGP constituents that have been dissolved into the groundwater is directly controlled by the flow direction and flow rate of the groundwater. The distributions of the COI in groundwater are shown in Figure 19.

In any groundwater flow regime there is usually some component of vertical movement of groundwater. Areas where groundwater has some component of downward movement are called recharge areas. Areas where groundwater is moving up (towards the surface) are known as discharge areas. The relationship between monitoring wells MW-4 and MW-6 provides data to determine the general vertical flow characteristics at the Site. The higher groundwater elevation measured in MW-04 (295.67) which is screened across the water table (295.38 to 285.38), versus the elevation measured in MW-06 (283.13) which is screened below the water table (278.76 to 268.76), indicates a downward flow regime or recharge.

9.3 POTENTIAL RECEPTORS AT EXPOSURE POINTS

Exposure points include any areas where MGP constituents are accessible in soils and groundwater to potential human (i.e., children, adult residents, and workers) and/or environmental (i.e., such as plant and animal species) receptors. Potential exposure points at the Site and its vicinity include those areas where local residents, commercial and potential future construction workers come into contact with the COI in soils or groundwater. Commercial and residential workers may potentially be exposed to COI in surface soils whereas construction workers are expected to be mainly exposed to COI detected in subsurface soils during construction or excavation activities that may occur in the

future at the Site. In addition, aquifers impacted by the COI are potential exposure points to humans who may use them as drinking water sources.

9.3.1 Water Wells

A water well survey was conducted by Williams during the CSI for former Macon 2 MGP facility. The water well survey entailed a database search performed by the U.S.G.S. No water wells were found in use within a three-mile radius of the former MGP facility. The area surrounding the Site is served by the municipal water supply which obtains its water from the Ocmulgee River approximately three miles upstream from the Site.

9.3.2 Surface Water

Figure 5 (Site Map and Surface/Storm Water Flow Path) identifies the flow paths of surface water at the Site and at surrounding areas. Storm water at the former MGP property flows to various storm drains located at the facility (Figure 3) or as a sheet flow over the embankment located on the eastern boundary of the property. Storm water that flows towards the embankment accumulates in standing pools on the western side of the Norfolk Southern Railway and eventually seeps through the railway gravel bed and to the Ocmulgee River. Stormwater which falls on up-gradient properties including the Exxon station, Pizza Hut restaurant, Burger King restaurant, and Conoco station, flows into either storm drains that feed into storm drains located at the facility, as surface flow over the embankment previously mentioned, or into a drainage located on the southwestern side of the Spring Street bridge. Storm water that flows into the drainage located on the southwestern side of the Spring Street bridge empties into the Ocmulgee River at a point on the southeastern side of the bridge (Figure 5).

9.3.3 Crops and Hunting

Bibb County contains approximately 24,600 acres of land used for agriculture. The majority of this land is located in the southern portion of the county. However, near the Site, the land is utilized for urban and industrial purposes and, therefore, is not suitable for agriculture. Accordingly, potential exposure through ingestion of crops that might be affected by Site contaminants is not likely.

Several species of wildlife are hunted in Bibb County including fox squirrel, white-tailed deer, bobwhite, quail, and mourning dove. However, hunting is not likely to occur on the Site due to its commercial/industrial setting. Some fishing may occur in the Ocmulgee River although the potential of exposure through fish is expected to be low since the COI related to the Site were detected below Type 1 RRSs in groundwater and they have been delineated prior to entering the river. Therefore, potential human exposure to Site contaminants through ingestion of local wildlife and fish is expected to be low, if at all.

9.3.4 Environmental Receptors

Environmental receptors include plant and animal species that might be exposed to the COI in soil at the Site.

The discussion of potential receptors in Appendix M includes a list of species in Bibb County and adjacent counties of

Crawford, Houston, Jones, Monroe, Peach, and Twigs considered by the U.S. Fish and Wildlife Service, Georgia Department of Natural Resources, and the Georgia Natural Heritage Program as threatened, endangered, protected, and/or species of special concern. These species are not likely to inhabit the Site due to its commercial/industrial setting.

9.4 EXPOSURE ROUTES

Potential exposure routes at the exposure points include incidental ingestion, inhalation and dermal contact with the COI detected in soils and groundwater by potential receptors (i.e., Site workers or residential receptors). The potential exposure of workers and residential populations to COI present in surface soil is limited since most of the area where the COI were found in soils are covered by buildings, asphalt or concrete. In addition, no residences were noted in any of the areas defined as impacted by the COI. Construction workers are the most likely receptors that may potentially be exposed to COI detected in soils through incidental ingestion, dermal contact or inhalation of COI during construction/excavation activities.

Potential human indirect routes of exposure include ingestion by humans of plants or wildlife that have bioaccumulated/biomagnified the COI from surface soils. Indirect exposure at the Site is not likely because no terrestrial wildlife species were observed on the Site. The potential for exposure of terrestrial and aquatic wildlife to COI potentially discharged in groundwater to Ocmulgee River is low because COI related to the Site are not likely to discharge to the River. Overall, the potential for transfer of the contaminants through the food web to humans or ecological receptors is low considering the urban/industrial setting of the Site and the absence of impact of the Site-related groundwater contaminants on the Ocmulgee River.

9.5 HSRA EVALUATION

Regulated substances identified at a site must be compared with appropriate Risk Reduction Standards (RRSs) as required by HSRA. RRSs are based on property use (i.e., residential or non-residential) and, when applicable, Site-specific conditions. Thirty-five HSRA-regulated substances were detected in soils or groundwater at the Macon 2 former MGP facility during the CSI. The concentrations detected were first compared with Type 1 RRSs (most stringent residential) to determine which chemicals required further evaluation. The following subsections address the evaluation of HSRA regulated substances for compliance with RRSs.

9.5.1 Soils

9.5.1.1 Calculation of Risk Reduction Standards

Types 1 through 4 RRSs for soils at the Site were derived to evaluate Site compliance with HSRA regulations (Appendix M). The RRSs and the methods by which they were derived are summarized in Table 9.2. The methods for Types 1 and 3 RRSs include, as applicable, values given in the tables of the HSRA rules (Tables 1 and 2, Appendix III), the appropriate Risk Assessment Guidance for Superfund (RAGS) Equations, or background concentrations. Type 2 RRSs were determined by calculating the appropriate RAGS equations with default exposure assumptions published by

TABLE 9.2 **RISK REDUCTION STANDARDS FOR SOIL AND** METHODS USED IN CALCULATIONS

Constituent	1-0.00	hest ntration* >2'	Type 1		Type 2		Type 3 0-2'	Type 3 >2'	3 . *1	Type 4 0-2'	Type 4 >2'	
VOCs	(4		*			(4						
Benzene	ND	0.0310	0.500	В	8.37	D	0.500	0.500	В	0.500	0.500	H
Ethylbenzene	ND	ND.	70.0	В	139	E	70.0	70	В	70.0	70.0	Н
Toluene	ND	0.0100	100	В	514	E	100	100	В	100	100	Н
Total Xylenes	ND	0.00550	1,000	В	1,000	E	1,000	1,000	В	1,000	1,000	Н
Carbon Disulfide	ND	0.0320	400	В	228	E	400	400	В	400	400	Н
Methylene Chloride	ND	ND	0.500	В	96,5	D	0.500	0.500	В	0.500	0.500	Н
SVOCs		#5			13			.0 6 2		•		
Acenaphthene	ND	6.10	300	Α	4,690	Е	300	300	Α	300	300	Н
Acenaphthylene	ND	8.80	130	Α	2,350	E	130	130	Α	130	130	Н
Anthracene	ND	33.0	500	Α	23,500	E	500	500	Α	500	500	Н
Benzo(a)anthracene	0.750	37.0	5.00	Α.	12.5	D	5.00	5.00	Α	78.4	120	D.
Benzo(a)pyrene	0.740	26.0	1.64	Α	1.25	D	1.64 .	1.64	Α	7.84	63.3	D.
Benzo(b)fluoranthene	0,690	27.0	5.00	Α	12.5	D	5.00	5.00	Α	78.4	298	D,
Benzo(g,h,i)perylene	0.540	5.00	500	Α	2,350	E	500	500	Α	500	500	H
Benzo(k)fluoranthene	0.780	28.0	5.00	Α	125	D	5.00	5.00	Α	5.00	5.00	F
Chrysene	0.770	37.0	5.00	Α	1,250	D	5.00	5.00	Α	5.00	5.00	H
Dibenzo(a,h)anthracene	ND	3.50	2.00	D	1.25	D	. 5.00	5.00	Α	5.00	5.00	H
Fluoranthene	1.50	68.0	500	Α	3,130	E	500	500	Α	500	500	H
Fluorene	· ND	31.0	360	Α	3,130	E	360	360	Α	360	360	H
Indeno(1,2,3-cd)pyrene	0.380	15.0	5.00	Α	12.5	D	5.00	5.00	Α	78.4	924	D
Naphthalene	ND	51.0	100	Α	59.9	E	100	100	Α	100	100	F
Phenanthrene	1.10	110	110	Α	2,350	E	110	110	Α	110	110	F
Phenol	ND	ND	400	В	46,900	E	400	400	В	400	400	H
Pyrene	1.10	70.0	500	· A	2,350	E	500	500	Α	500	500	
organics												_
Arsenic	31.5	7.47	20.0	С	6.08	D	38.1	41.0	D/A	38.1	41.0	H
Barium	119	279	1,000	С	5,430	E	1,000	1,000	С	1,000	1,000	H
Beryllium	ND	ND	2.00	C	156	E	3.00	3.00	Α	3.00	3.00	1
Cadmium	ND	ND	2.00	С	78.2	E	39.0	39.0	Α	39.0	39.0	H
Chromium	25.0	46.3	100	С	234	E	1,200	1,200	Α	1,200	1,200	H
Copper	63.7	89.1	100	С	3,130	E	1,500	1,500	Α	1,500	1,500	H
Lead	151	1070	75.0/204	C/F	400	**	400	400	**	1,070	1,070	
Mercury	0.825	9,43	0.500/0.540	C/F	23.5	E	17.0	17.0	Α	17.0	17.0	1
Nickel	8.29	14.4	50.0	С	1,560	E	420	420	A	420	420	1
Vanadium	75.3	79.3	100/120	C/G	548	Е	100	100	Α	100	100	Н
Zinc	160	544	100/257	C/F	23,500	E	2,800	2,800	Α	2,800	2,800	Н
Total Cyanide	ND	1.44	20.0	В	1,560	E	20.0	20.0	В	20.0	20.0	H

Values listed in milligrams per kilogram (mg/Kg)

Values rounded to three significant digits

^{* -} Data from the February/April 2001 sampling event ** - Derived based on the EPA Integrated Exposure Biokinetic Model.

A – Appendix I Notification Requirement
B – Appendix III Table 1 times 100
C – Appendix III Table 2
D- Upperbound excess cancer risk

E- Noncarcinogenic risk

F- Background in fill material

G - Background in natural soils

H – Calculated Type 4 RRS by RAGS was not evaluated for leachability; therefore, defaults to Type 3.

I – Concentration protective of groundwater is less than Type 4 RRS calculated by RAGS, therefore Type 4 has been adjusted to be protective of groundwater.

the Georgia EPD or by background concentrations. Type 4 RRSs were determined for COI that exceeded Types 1 through 3 RRSs by calculating RAGS equations for the two exposure scenarios based on depth of soils at the Site. The Type 4 RRSs were additionally evaluated by a leaching potential study (Section 9.5.1.2) to demonstrate the values are protective of groundwater. The lesser of the calculated RRSs by RAGs and the leaching potential study were used as the Type 4 RRS for soil. For COI that did not exceed Types 1 through 3 RRS in soil, the Type 4 RRS was defaulted to a lower type RRS as the COI already meet a more stringent RRS. These COI include all compounds detected in the Site soils except for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, indeno(1,2,3-cd)pyrene, and lead.

For surface soils (i.e., soil depth interval of 0-2 feet bgs.), Type 4 RRSs were determined for a commercial worker by calculating the appropriate RAGS equations with default exposure assumptions published by the Georgia EPD or by background concentrations. For subsurface soils (i.e., soil depth interval greater than 2 feet bgs.), Type 4 RRSs were determined by calculating the appropriate RAGS equations with exposure assumptions for a construction worker. Construction activities involve a direct contact with subsurface soils primarily through incidental ingestion of soil and inhalation of volatile compounds and soil particulates. Accordingly, Type 4 RRSs for subsurface soil were derived to be protective of construction workers. Exposure parameters used in derivation of subsurface soil Type 4 RRS are the same as those used in calculating surface soil Type 4 RRS except for frequency of exposure, duration of exposure and incidental soil ingestion rate. In this case, exposure frequency was assumed to be 125 days/year and duration of exposure was selected as 0.5 year as subsurface construction activities at the Site are not expected to last more than 0.5 years. These parameters were selected based on best professional judgment, assuming that moderate construction activities may occur at the Site in the future. Incidental soil ingestion rate for construction workers was set at 330 mg per day, based on the USEPA draft guidance document; Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (USEPA, 2001). A more complete discussion of the calculation of HSRA RRSs along with calculated results of RAGS equations and a list of HSRA table values is included in Appendix M.

Because toxicity values are not available for lead, Type 2 RRSs and Type 4 RRSs were developed based on the USEPA's Integrated Exposure Uptake Model for Lead and Georgia Adult Lead Model (GALM); respectively, using standard assumptions and a Site specific groundwater lead concentration of 0.01 mg/L (refer to Appendix M for discussion of derivation of RRSs for lead). In fact, lead was not detected in groundwater beneath the Site and the detection limit was used as the lead groundwater concentration in the GALM. Compliance with a RRS for a given constituent was not evaluated if the constituent already met a more restrictive RRS (e.g., for a given constituent, compliance with a Type 3 RRS was not evaluated if the compound was in compliance with its Type 2 RRS).

9.5.1.2 Leaching Potential Study

The COI at the Macon 2 MGP Site were evaluated to determine if concentrations in soil at their respective Type 4 RRS have the potential to leach at concentrations that may cause groundwater concentrations to exceed a Type 4 RRS for groundwater (leachability study). The first step of the leachability study included screening out those COI that did not exceed Types 1, 2, and 3 RRSs in soil since these COI are already in compliance with a more restrictive RRS. For the Macon 2 MGP Site, the only five COI exceeding Types 1 through 3 RRS in soil include: lead, benzo(a)anthracene,

benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene. Additional studies were performed on these COI to determine what concentrations would not cause groundwater to exceed applicable RRSs.

A dilution attenuation factor (DAF) of 20 was utilized in the leachability study for this Site based on the default value provided in the Environmental Protection Agency (EPA) "Soil Screening Guidance: User Guide, Second Edition," July 1996 (SSG). The SSG states that this DAF is protective of sources up to 0.5 acres. As the source areas at the Site are greater than this, a Site-specific value was calculated per the SSG (Table 9.3). The Site-specific calculated value was 86.2, which is greater than the default, therefore the DAF was lowered to the default value to be conservative.

TABLE 9.3
CALCULATION OF SITE-SPECIFIC DILUTION ATTENUATION FACTOR

DAF = 1	i+(Kid)/(iL)	
Where:		
d = (0.011)	2*L ²) ^{0.5} +d _a {1-exp[(-L!)/(Kid _a)]}	
86.2	DAF - Dilution Attenuation Factor (unitless)	Calculated
2,770	K - Aquifer Hydraulic Conductivity (m/yr.)	Site-specific
0.086	i - Hydraulic Gradient (m/m)	Site-specific*
0.178	I - Infiltration Rate (m/yr.)	DRASTIC
7.0	d - Mixing Zone (m)	Calculated (Limited by d _a)
110	L - Source Length Parallel to GW Flow (m)	Site-specific
7.0	d _a - Aquifer Thickness (m)	Site-specific
Notes: .		
Hydro	- DRASTIC: A Standardized System for Evaluating Ground V geologic Setting, EPA, June 1997.	Nater Pollution Potential Using
	lic gradient from August 20, 2003 (Figure 18).	
	ons - Piedmont Blue Ridge Ground-Water Region; (8D) Regol	ith; Net Recharge Infiltration Rate (Net
Rechi	arge) Range of 0.101 m/yr. to 0.178 m/yr. (4-7 in/yr.).	

9.5.1.2.1 Lead

Three soil samples collected from unsaturated soils during the CSI contained concentrations of lead (634 mg/Kg at SB-27-8-12; 425 mg/Kg at SB-45-10-12; and 1,070 mg/Kg at SB-45-15-17) exceeding the maximum of Types 1, 2, and 3 RRS (400 mg/Kg). Since the maximum lead concentration in unsaturated soils at the Site was less than the calculated Type 4 RRS for lead (based on the GALM), samples SB-27-8-12 and SB-45-15-17 were analyzed for lead following synthetic precipitation leaching potential (SPLP) extraction. The SPLP results for sample SB-27-8-12 was 0.038 mg/L and for sample SB-45-15-17 was 0.0808 mg/L. These data were evaluated following protocols presented in the SSG. As stated in the SSG, "To calculate SSLs (soil screening levels) for the migration to groundwater pathway, multiply the acceptable groundwater concentration by the dilution factor to obtain a target soil leachate concentration." Multiplying the acceptable groundwater concentration of 0.015 mg/L (Type 4 groundwater RRS) and the DAF of 20, the target soil leachate concentration equals 0.30 mg/L. The SSG states "if a leach test is used, compare the target soil leachate concentration to the extract concentrations from the leach tests." The lead leachate concentrations from samples SB-27-8-12 and SB-45-15-17 are 0.038 mg/L and 0.0808 mg/L, respectively, which are an order of magnitude below the target soil leachate concentration of 0.30 mg/L. Therefore, for the former Macon 2 MGP Site, the Type 4 soil RRS for lead will equal 1,070 mg/Kg which is the maximum detected lead value in the data set for the Site, meets the target soil leachate concentration evaluation, and does not exceed the calculated Type 4 RRS for lead using the GALM.

9.5.1.2.2 Semivolatile Organic Compounds

Soil samples were not collected during the CSI to perform SPLP analysis for SVOCs to be utilized in a leachability study, therefore, an additional step taken from the SSG was used to determine the appropriate concentrations of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene in soil that would not cause groundwater to exceed the higher of Types 1 through 4 groundwater RRSs. To determine the target soil leachate for these COI, the acceptable groundwater concentrations (based on RRSs for groundwater) were multiplied by a DAF of 20. Equation 10 (Soil Screening Level Partitioning Equation for Migration to Groundwater) from the SSG was used in lieu of a leach test. Table 9.4 identifies the input values used in this equation and the sources of the data. Based on the input values, concentrations of 38.3 mg/Kg benzo(a)pyrene, 120 mg/Kg benzo(a)anthracene, 298 mg/Kg benzo(b)fluoranthene, and 966 mg/Kg indeno(1,2,3-cd)pyrene in soil will not cause groundwater to exceed the Type 4 groundwater RRS. Therefore, the Type 4 soil construction worker RRS (i.e., soils deeper than 2 feet bgs.) for benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene default to these values, as they are protective of human health based on RAGS calculations and will not cause groundwater concentrations to exceed Type 4 RRSs.

TABLE 9.4
CALCULATION OF SOIL SCREENING LEVELS

SSL = Cw * {	Kd + [Ow + (Oa * H')] / Pb}	
Benzo(a)anthrac	cene	
120	SSL - Soil Screening Level (mg/Kg)	Calculated
0.00075	RRS – Groundwater Risk Reduction Standard (mg/L)	Type 4 RRS
20	DAF - Dilution attenuation factor	Soil Screening Guidance, July 1996
0.015	Cw - Target soil leachate conc. (mg/L)	RRS * DAF
8024	Kd - Soil-water partition coefficient (L/Kg)	Koc * foc
4.01E+05	Koc - Soil organic carbon/water partition coefficient (L/Kg)	USEPA, SCDM, June 1996
0.020	foc - Fraction organic carbon in soil (g/g)	GAEPD, Chapter 391-3-19,
		Appendix III, Table 3
0.19	Ow - Water-filled soil porosity (Lwater/Lsoil)	Site-specific
0.17	Oa - Air-filled soil porosity (Lair/Lsoil)	n - Ow
1.69	Pb - Dry soil bulk density (Kg/L)	Site-specific
0.36	n - Soil porosity (Lpore/Lsoil)	Site-specific
2.65	Ps - Soil particle density (Kg/L)	Site-specific
3.40E-06	H' - Dimensionless Henry's Law constant	USEPA, SCDM, June 1996
Benzo(a)pyrene		
63.3	SSL - Soil Screening Level (mg/Kg)	Calculated
0.0002	RRS - Groundwater Risk Reduction Standard (mg/L)	· Type 3 RRS
20	DAF - Dilution attenuation factor	Soil Screening Guidance, July 1996
0.004	Cw - Target soil leachate conc. (mg/L)	RRS * DAF
15820	Kd - Soil-water partition coefficient (L/Kg)	Koc * foc
7.91E+05	Koc - Soil organic carbon/water partition coefficient (L/Kg)	USEPA, SCDM, June 1996
0.020	foc - Fraction organic carbon in soil (g/g)	GAEPD, Chapter 391-3-19,
		Appendix III, Table 3
0.19	Ow - Water-filled soil porosity (Lwater/Lsoil)	Site-specific
0.17	Oa - Air-filled soil porosity (Lair/Lsoil)	n - Ow
1.69	Pb - Dry soil bulk density (Kg/L)	Site-specific
0.36	n - Soil porosity (Lpore/Lsoil)	Site-specific
2.65	Ps - Soil particle density (Kg/L)	Site-specific
1.10E-04	H' - Dimensionless Henry's Law constant	USEPA, SCDM, June 1996

TABLE 9.4
CALCULATION OF SOIL SCREENING LEVELS (CONTINUED)

SSL = Cw * ([Kd + [Ow + (Oa * H')] / Pb}	
Benzo(b)fluorar	nthene	
298	SSL - Soil Screening Level (mg/Kg)	Calculated
0.00075	RRS - Groundwater Risk Reduction Standard (mg/L)	Type 4 RRS
20	DAF - Dilution attenuation factor	Soil Screening Guldance, July 1996
0.015	Cw - Target soil leachate conc. (mg/L)	RRS * DAF
19843	Kd - Soil-water partition coefficient (L/Kg)	Koc⁻* foc
9.92E+05	Koc - Soil organic carbon/water partition coefficient (L/Kg)	USEPA, SCDM, June 1996
0.020	foc - Fraction organic carbon in soil (g/g)	GAEPD, Chapter 391-3-19,
		Appendix III, Table 3
0.19	Ow - Water-filled soil porosity (Lwater/Lsoil)	Site-specific
0.17	Oa Air-filled soil porosity (Lair/Lsoil)	n - Ow
1,69	Pb - Dry soil bulk density (Kg/L)	Site-specific
0.36	n – Soil poresity (Lpore/Lsoil)	Site-specific
2.65	Ps – Soil particle density (Kg/L)	Site-specific
1.10E-04	H' - Dimensionless Henry's Law constant	USEPA, SCDM, June 1996
Indeno(1,2,3-cd	pyrene	
924	SSL - Soil Screening Level (mg/Kg)	Calculated
0.00075	RRS - Groundwater Risk Reduction Stendard (mg/L)	Type 4 RRS
20	DAF - Dilution attenuation factor	Soil Screening Guidance, July 1996.
0.015	Cw - Target soil leachate conc. (mg/L)	RRS * DAF
61600	Kd – Soil-water partition coefficient (L/Kg)	Koc * foc
3.08E+06	Koc - Soil organic carbon/water partition coefficient (L/Kg)	USEPA, SCDM, June 1996
0.020	foc - Fraction organic carbon in soil (g/g)	GAEPD, Chapter 391-3-19, Appendix III,
:		Table 3
0.19	Ow - Water-filled soil porosity (Lwater/Lsoil)	Site-specific
0.17	Oa Air-filled soil porosity (Lair/Lsoil)	ก - Ow
1.69	Pb - Dry soil bulk density (Kg/L)	Site-specific
0.36	n – Soil porosity (Lpore/Lsoil)	Site-specific
2.65	Ps – Soil particle density (Kg/L)	Site-specific
1.60E-06	H' - Dimensionless Henry's Law constant	USEPA, SCDM, June 1996

9.5.1.3 Compliance With Risk Reduction Standards

An evaluation of the COI detected in the Site soils with regards to Types 1 through 4 RRSs is presented in Table 9.5. Concentrations of all six detected VOCs (benzene, carbon disulfide, ethylbenzene, methylene chloride, toluene and total xylenes), ten PAHs (acenaphthene, acenaphthylene, anthracene, benzo(g,h,i)pyrene, fluoranthene, fluorene, naphthalene, phenanthrene, phenol and pyrene), seven metals (barium, beryllium, cadmium, chromium, copper, nickel and vanadium) and cyanide did not exceed Type 1 RRS. Type 3 RRSs for soils deeper than 2 feet bgs were exceeded by four PAHs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene) and lead. None of the COIs detected in the Site soils exceeded Type 4 RRSs. The areas in which RRSs are exceeded in soil are shown on Figure 20.

TABLE 9.5
RISK REDUCTION STANDARD EXCEEDANCES IN SOIL

Constituent	Type 1	Type 2	Type 3	Type 4
VOCs				
Benzene	N	*	*	*
Ethylbenzene	- N	*	*	*
Toluene	N	*	*	*
Total Xylenes	. N	*	*	*
Methylene Chloride	N	*	*	*
Carbon Disulfide	N	*	*	*
SVOCs				
Acenaphthene	N	*	*	*
Acenaphthylene	N	. *	*	*
Anthracene	N	*	*	ż
Benzo(a)anthracene	Y	Υ	Υ.	N
Benzo(a)pyrene	Y	Y	Υ	N
Benzo(b)fluoranthene	Υ	Υ	Y	N
Benzo(k)fluoranthene	Υ	N	*	*
Benzo(g,h,i)perylene	N	*	*	*
Chrysene	Υ	N ·	*	*
Dibenzo(a,h)anthracene	Υ	Υ	N	*
Fluoranthene	N	*	*	*
Fluorene	N	*	*	*
Indeno (1,2,3-cd)pyrene	Υ	Υ	Y	N
Naphthalene	N .	*	*	*
Phenanthrene	N	*	*	*
Phenol	N	*	*	*
Pyrene -	N	*	*	*
Inorganics				
Arsenic	Y	Υ	N	*
Barium	N	. *	*	*
Beryllium	N	*	*	*
Cadmium	N	*	*	*
Chromium	N	*	*	*
Copper	N	+	*	*
Lead	. Y	· Y	Υ	N
Mercury	Υ	N	*	*
Nickel	N	*	. *.	*
Vanadium	N	*	*	*
Zinc -	Υ	N ·	. *	*
Total Cyanide	N	*	*	*

Y - Yes; exceeds RRS.

9.5.2 Groundwater

Types 1 through 4 RRSs for groundwater at the Site were derived in accordance with HSRA requirements and are summarized in Table 9.6. Calculations for the RRSs are attached in Appendix M. The Types 1 and 3 RRSs are based on the concentrations listed in Table 1, Appendix III of the HSRA regulations. Also, for Types 1 and 3, the sum of regulated substances in a single sample must not exceed 10 mg/L if the Table 1 value for each compound is less than 5 mg/L. If at least one compound has a Table 1 value greater than or equal to 5 mg/l, the sum of concentrations must not exceed the maximum Table 1 value plus 10 mg/l.

Types 2 and 4 RRSs are based on the lesser of the concentrations calculated by using RAGS equations 1 and 2 with default residential (Type 2) and non-residential (Type 4) exposure assumptions published by the Georgia EPD. A discussion of the calculation of the RRSs and a table of RAGS equations results for each constituent are shown in Appendix M. Compliance with a RRS for a given constituent was not evaluated if the constituent already met a more

N - No; does not exceed RRS.

^{*-} Constituent meets more restrictive RRS

restrictive RRS (e.g., for a given constituent, compliance with a Type 3 RRS was not evaluated if the constituent was in compliance with its Type 2 RRS).

Groundwater data collected during the CSI, August 2003 sampling event at the Site were used in evaluating compliance with the RRSs. Compliance of each COI detected in groundwater beneath the Site with RRSs is presented in Table 9.7. All COI detected in groundwater beneath the Site did not exceed any of the Types of RRSs.

TABLE 9.6
RISK REDUCTION STANDARDS FOR GROUNDWATER
AND METHODS USED IN CALCULATION

	Highest							
Constituent	Concentration*	Type 1/3		Type 2		Type 4		
VOCs	Outomination	1300 110	ł	.JE				
Benzene			A	0.0582	D	0.0734	D	
Ethylbenzene	ND ND	0.700	A	0.0002	D	1.10	D	
Toluene	ND ND	1.00			D	204	D	
Total Xylenes	ND ND	10.0	A	31.3	D	1.70	ם	
Carbon Disulfide	ND	4.00	A	0.329			C	
Methylene Chloride	ND	0.00500	A	0.0622	<u>C</u>	0.119	<u>D</u>	
Methyl-tert-butyl-ether	NA NA	DL	В	1.79	D	8.76	ען	
SVOCs		T						
Acenaphthene	0.014	2,00 -	A	0.939	D	6.13	D	
Acenaphthylene	ND	DL	В	0.469	D	3.07	П	
Anthracene	ND	DL	В	4.69	D	30.7	D	
Benzo(a)anthracene	ND	0.000100	Α	0.000450	C	0,000747	С	
Benzo(a)pyrene	ND	0.000200	A	0.0000450	С	0.0000747	С	
Benzo(b)fluoranthene	ND	0,000200	A	0.000450	С	0.000747	С	
Benzo(g,h,i)perylene	ND	DL	В	0.469	D	3,07	D	
Benzo(k)fluoranthene	ND	DL	В	0.00450	С	0.00747	С	
Chrysene	ND	DL	В	0.0450	С	0.0747	C	
Dibenzo(a,h)anthracene	ND ·	0.000300	Α	0.0000450	С	0.0000747	С	
Fluoranthene	ND	1.00	Α	0,626	D	4.09	D	
Fluorene	ND	1.00	Α	0.626	D	4.09	D	
Indeno(1,2,3-cd)pyrene	ND	0.000400	Α	0.000450	С	0.000747	С	
Naphthalene	ND	0.0200	Α	0.00187	D	0.00916	D	
Phenanthrene	ND	DL	В	0.469	D	3.07	D	
Phenol	ND	4.00	Α	9.39	D	61.3	D	
Pyrene	ND	1.00	Α	0.469	D	3.07	D	
Inorganics								
Arsenic	ND	0.0500	Α	0.000568	С	0.00191	C	
Barium	1.85	2.00	Α	1.10	D	7.15	D	
Beryllium	ND	0.00500	Α	0.0313	D	0.204	D	
Cadmium	ND	0.00500	Α	0.00782	С	0.0511	С	
Chromium	ND	0.100	Α	0.0469	D	0.307	D	
Copper	ND	1.30	Α	0.626	D	4.09	D	
Lead	ND .	0.0150	Α	0.0150	Α	0.0150	Α	
Mercury	ND	0.00200	Α	0.00469	D	0.0307	С	
Nickel	ND	0.100	Α	0.313	D	2.04	D	
Vanadium	· ND	0.200	Α	0.110	D	0.715	D	
Zinc	ND	2.00	Α	4.69	D	30.7	D	
Total Cyanide	0.048	0.200	Α	0.313	D	2.04	D	

^{*-} Data from the August 2003 sampling event

A - Appendix III Table 1

B - Detection limit

C- Upperbound excess cancer risk

D- Noncarcinogenic risk

Values listed in milligrams per liter (mg/L)

Values rounded to three significant digits

TABLE 9.7 RISK REDUCTION STANDARD EXCEEDANCES IN GROUNDWATER -AUGUST 2003 SAMPLING EVENT

Constituent	Type 1	Type 2	Type 3	Type 4
VOCs				
Benzene	N	*	*	*
Ethylbenzene	. N	*	*	*
Toluene	N	*	*	*
Total Xylenes	N	*	*	*
Carbon Disulfide	N	*	*	*
Methylene Chloride	N	*	*	*
Methyl-tert-butyl-ether	N	*	*	
SVOCs				
Acenaphthene	N	*	*	*
Acenaphthylene	N	*	*	*
Anthracene	N	*	*	*
Benzo(a)anthracene	N	*	*	*
Benzo(a)pyrene	N	*	*	*
Benzo(b)fluoranthene	N	*	* *	*
Benzo(g,h,i)perylene	N	*	*	* .
Benzo(k)fluoranthene	N	*	*	*
Chrysene	N	*	*	*
Dibenzo(a,h)anthracene	N	*	ż	*
Fluoranthene	N	*	*	*
Fluorene	N	*	*	*
Naphthalene	N	*	*	*
Phenanthrene	N	*	* *	*
Phenol	N	*	*	*
Pyrene	N	*	. *	*
Inorganics				
Arsenic	N	*	*	*
Barium	N	*	*	*
Beryllium	N	+	*	*
Cadmium	N	*	*	*
Chromium	. N .	*	ŧ	*
COPPEI	, N	*	*	*
Lead	N	*	*	*
Mercury	· N	*	*	*
Nickel	N	*	*	*
Vanadium	N	*	*	*
Zinc	N	*.	*	*
Total Cyanide Y – Yes; exceeds RRS.	N .	*	±	*

N - No; does not exceed RRS.

^{* -} Constituent meets more restrictive RRS.

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 10 CORRECTIVE ACTION FEASIBILITY INFORMATION

SECTION 10 CORRECTIVE ACTION FEASIBILITY INFORMATION

The property owned by the City of Macon is partially encompassed by a security fence. The property is accessible by vehicle through two gates which are closed and locked at nights and on weekends and which control access to the property.

10.1 POTENTIAL SOURCE MATERIAL

Figure 11 indicates the horizontal distribution of TLM and/or OLM at the Site. The only observed potential source material was located within the two gas holders and consisted of limited amounts of TLM and/or OLM. As described in Section 2.5.1, within both of these holders, no more than one-inch of TLM and/or OLM was observed and therefore the material appears to be minimal. A sample (GH-2-41) of the most visibly concentrated TLM and/or OLM observed at the Site was collected and analyzed for VOCs and SVOCs. Based on the analytical results of the sample, this material does not appear to meet the definition of source material. Additionally, HSRA regulation 391-3-19-.07(9)(a) states "all source materials must be removed or decontaminated to Type 4 media criteria." The total results from sample GH-2-41 (Appendix C-2) indicate that this material already meets Type 4 or more restrictive RRSs. Based on this and that the only TLM and/or OLM observed at the Site was within the holders, no remedial actions will be required at the Site with respect to potential source material.

10.2 SOILS

As discussed in Section 9, soils at the Site are in compliance with Type 4 or more restrictive RRSs. Therefore, no remedial actions will be required to certify the Site in compliance with Type 4 RRSs with regard to soils.

10.3 GROUNDWATER

Groundwater at the Site is in compliance with all RRSs. Therefore, no remedial actions will be required to certify the Site in compliance with Type 1 RRSs with regards to groundwater.

10.4 CORRECTIVE ACTION

As previously noted, the Site is in compliance with Type 4 RRSs. Upon the Director's concurrence with the Type 4 certification, the following corrective action requirements will be implemented:

- GPC, AGLC, and the City of Macon will submit a monitoring program to the EPD to assure compliance with Section 391-3-19-.07(9)(b); and
- GPC, AGLC, and the City of Macon will make the required property notices as specified under Section 391-3-19-.08(1) and (2).

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL

SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL

During the field work of the CSI, certain procedures were followed to:

- insure that laboratory methods are within control limits;
- verify the quality of data collected during field measurements; and
- insure that cross contamination has not occurred during sample collection or sample transport.

11.1 LABORATORY QUALITY ASSURANCE/QUALITY CONTROL CHECKS

Analytical Environmental Services, Inc. was used to perform laboratory analyses for this CSI and is an accredited National Environmental Laboratory Accreditation Program laboratory (certificate number E87582). A complete CLP-like data package was prepared by AES for one SDG containing soil samples and one SDG containing groundwater samples collected during the CSI. The data packages were submitted to Southern Company Chemical Services, Norcross, Georgia, for data validation using USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, 1994, and Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, 1994. Southern Company Chemical Services indicated that all laboratory data for the soil and groundwater samples were acceptable. Southern Company Chemical Services also reviewed the laboratory data for precision, accuracy, representativeness, compatibility and completeness (PARCC) parameters. Southern Company Chemical Services found the PARCC parameters acceptable. A copy of Southern Company Chemical Services' report is included in Appendix G-1

Internal laboratory quality control checks were conducted by Williams to monitor data integrity for each SDG. These checks included evaluating method blanks, matrix spikes, matrix spike duplicates, blank spikes, internal standards, surrogate standards, calibration standards, and reference standards. Laboratory data precision for organic analyses was monitored through the use of matrix spike/matrix spike duplicate sample analyses. For other parameters, laboratory data precision was monitored through the use of field duplicates and/or laboratory duplicates. A relative percent difference (RPD) between the replicated samples was calculated. All RPDs were within the laboratory established limits except where noted in the Williams Laboratory QA/QC reports included in Appendix G-2.

Laboratory accuracy was assessed with the use of matrix spikes, surrogate spikes and reference standards. Accuracy was measured in terms of percent recovery. Percent recoveries were within laboratory established limits except where noted in the Williams Laboratory QA/QC report included in Appendix G-2.

11.2 FIELD OPERATIONS QUALITY ASSURANCE/QUALITY CONTROL CHECKS

Field performance was monitored by the Field Manager during the CSI field investigation. Field instrumentation, including the PID and water field measurement equipment were calibrated each morning prior to use and generally each afternoon using supplied standards to insure that the equipment was functioning properly and measurements were

accurate. Results of the calibrations were recorded in the calibration log. An internal audit was conducted on March 2, 2001, by the Quality Assurance Officer to verify that field measurements and field meter calibrations were taken according to established protocol and that work being performed was consistent with the Work Plan. The QAO also reviewed all field reports and drilling logs to determine if field documentation was appropriate and complete. The QAO also reviewed the duplicate, rinse and trip blank data to identify any deficiencies in field sampling, handling or decontamination procedures. A Field Operations System Audit Checklist, reports the results of the internal audit and is included in Appendix G-3. All field operations were conducted according to the Work Plan and standard procedures except where noted in the checklist.

A rinse blank sample was collected for each SDG to monitor the cleanliness of the sampling equipment and the effectiveness of the cleaning procedures. Rinse blanks were taken using organic-free water which was supplied by the laboratory and were analyzed for COI. Barium was detected in five rinse blank samples at very low concentrations. Chromium and lead were detected in one rinse blank sample at concentrations just above the detection limits. Copper was detected in one rinse blank sample just above the detection limit. Based on the low concentrations of these COI reported in the rinse blank samples, it is unlikely that analytical results of the collected soil or groundwater were affected by the sampling equipment. The equipment from which the samples were collected and analytical results for the rinse blank samples are reported in Appendix F.

A trip blank was also collected for each SDG to assess whether cross-contamination may have occurred during sample storage and transport. Trip blanks were supplied by the laboratory in appropriately preserved containers and analyzed for VOCs only. All concentrations of VOCs in trip blank samples were below detection limits. Analytical results for the trip blank samples are included in Appendix F.

Field blanks were collected for each SDG to determine if contaminants present in the sampling area may have had an affect on sample integrity. Field blanks were collected with organic-free water and containerized in 40-milliliter vials preserved with hydrochloric acid. Field blanks accompanied the applicable SDG and were analyzed for VOCs. All concentrations of VOCs in field blank samples were reported below detection limits. Analytical results for the field blank samples are included in Appendix F.

A sample of potable water was collected at the beginning of the field investigation for analysis of the Site COI. The potable water sample (TAP WATER) was collected from the source that supplied water for DPT and HSA equipment decontamination to determine if decontamination procedures could affect sample analytical results. VOC and SVOC concentrations in the tap water sample were reported below detection limits. Barium and copper were reported in the tap water sample at concentrations just above their respective detection limits and it is not believed these results would affect the integrity of the analytical results for the soil and groundwater samples collected at the Site.

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 12 REFERENCES

SECTION 12 REFERENCES

Management of Manufactured Gas Plant Sites, Volume I, Wastes and Chemicals of Interest, Gas Research Institute (GRI), 1987.

Management of Manufactured Gas Plant Sites, Volume III, Risk Assessment, Gas Research Institute (GRI), 1988.

Geology and Ground-Water Resources of the Macon Area, Georgia, H. E. LeGrand, Georgia Geologic Survey Bulletin 72, 1962.

Geology and Ground-Water Resources of Central-East Georgia, H. E. LeGrand, A. S. Furcron, R. F. Carter, and A. C. Lendo, Georgia Geologic Survey Bulletin 64, 1956.

Subsurface Geology of the Georgia Coastal Plain, Stephen M. Herrick and Robert C. Vorhis, Georgia Geologic Survey Information Circular 25, 1963.

The Geohydrology of the Cretaceous Aquifer System in Georgia, Lin D. Pollard and Robert C. Vorhis, Georgia Geologic Survey Hydrologic Atlas 3, 1980.

Groundwater Hydrogeology and Hydraulics, D. B. McWhorter and D. K. Sunada, 1977.

Preliminary Assessment, Former Manufactured Gas Plant Site, Macon, Georgia, LAW Environmental, Inc., 1991.

Site Inspection, Former Manufactured Gas Plant Site, Macon, Georgia, LAW Environmental, Inc., 1992.

An Introduction to the Rock-Forming Minerals, W.A. Deer, R.A. Howie, and J. Zussman, 1971.

Igneous and Metamorphic Petrology, F.J. Turner and J. Verhoogen, 1960.

Solutions, Minerals, and Equilibria, R.M. Garrels and C.L. Christ, 1965.

For Background Statistics:

"Determination of Background Concentrations of Inorganics in Soils and Sediments at Hazardous Waste Sites." Breckenridge, R. P., and Crockett, A. B. (1995). U.S. Environmental Protection Agency. Washington, D. C.

"Statistical Analysis of Groundwater Monitoring Data At RCRA Facilities - Addendum to Interim Final Guidance." EPA. (1992). U.S. Environmental Protection Agency. Washington, D. C.

For Hazardous Waste Determination:

"SW-846. Test Methods for Evaluating Solid Waste." EPA. (1986). U.S. Environmental Protection Agency. Washington, D. C.

DRAFT

DESIGNED	
DRAWN	TCM
CHECKED	_
DATE	06/25/2001
PROJ. NUMBER	1100-2990
FIGURE NO.	1

SITE LOCATION MAP

FORMER MACON 2 MGP FACILTY GPC/AGLC/CITY OF MACON MACON. GEORGIA

Prepared By:

WILLIAMS SHVINGHMENTAL SERVICES, INC.

A Williams Group International Company
500 Chase Park South, Suite 150, Birmingham, Alabama 35244
205-988-8305 Fax: 205-988-5249

COMPLIANCE STATUS REPORT FORMER MACON 2 MGP FACILITY, MACON, GEORGIA REVISED - SEPTEMBER 05, 2003

EET NO.	DEV WHICH IT FE
1	PPOPERTY BOUNDARY MAR
3	SUC MAP
7	FROSS - SECTION A-4"
2	CMOSS - SECTION 8-B
9	CROSS - SECTION C-C'
11	VASIAL INDICATIONS OF ILM AND SUM IN 164.5
12	TOTAL DETECTED BENZERE AND WOCH HE SOL
.1	TOTAL PETECTED MAPHIMALENE AND SNOLS IN \$95
14	BASICH AND VANADRUM IN 50 .5
15	LIAD AND MERCURE IN SOILS
16	AUGING, COPPLE AND INC. IN SQ. 5
1,1	CHRONIUM AND CLANDE IN COLS
. E	MATER THE E ELEVATION MAP FOR AUGUST 20, 2003
19	TETAL TENEGRO ACEMACHINERS, CRANICE, AND CARLIN GROUNDWATER AUGUST 2003
20	LATAS EXCEPTED BY A FACTOR OF STANLINGS AS SEE

proported by

WILLIAMS ENVIRONMENTAL SERVICES, INC.

Consulting Engineers and Scientists

500 CHASE PARK SOUTH - SUITE '50 BIRTHINGHA . ALABATA 35244-1869

APPROXIMATE DRAINAGE BASIN FOR OUTFALL

A Williams Group International Company 500 Chase Park South, Suite 150, Birmingham, Alab: 205-988-8305 Fax: 205-988-5249

THE REAL PROPERTY OF THE PARTY OF THE PARTY

FACILITY SURFACE/STORM WATER FLOW 2 MGP F GEORGIA

FORMER MACON, MACON,

DESIGNED DRAWN TCM SCALE DATE 1" 2000" 06/18/2001 PROJ. NUMBER 1100-2990 5 FIGURE NO.

DRAFT

DESIGNED	200 2
DRAWN	TCM
CHECKED	_
DATE	06/25/2001
PROJ. NUMBER	-
FIGURE NO.	6

FORMER MACON 2 MGP FACILITY GPC/AGLC/CITY OF MACON MACON, GEORGIA

WILLIAMS ENVIRONMENTAL SERVICES, INC.

A Williams Group International Company 500 Chase Park South, Suite 150, Birmingham, Alabama 35244 205-988-8305 Fax: 205-988-5249

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

B-2 COMPLIANCE STATUS INVESTIGATION

			1						
,								,	
	Saturated/Unsaturated		ene ene	Carbon Disulfide	Ethylbenzene	Methylene Chloride	Je.	es	Total Detected VOCs
-	Satur	Unit	Вепzепе	Carbo	Ethyll	Methy	Toluene	Xylenes	Fotal
UBL - Fill Material			DL	DL	. DL	DL.	DL	DL	
UBL - Nat. Soils			DL	DL,	DL	DL	DL	DL	
SB-14-0.5-2	U	Fill	5.8U	5.8U	. 5.8U	23U	5.8U	5.8U	. 0
SB-14-16-20	U	Fill	5.1U	5.1U	5.1U	20U	. 5,1U	5.1U	0
SB-14-24-28	S	Fill	14 to 50 93	8.2U	8.2U	33U	8.2U	8.2U	9.3
SB-15-4-8	U	Fill	4.2U	4.2U	4.2U	17U	4.2U	4.2U	0
SB-15-36-41	S	Fill	5.1U	16 1 17	5.1U	20U	5.1U	5.1U	17
SB-16-0.5-2	U	Fill	6U	6U	6U	24U	6U	6U	. 0
SB-16-2-4	U	Fill	4.90	4.9U	4.9U	20U	4.9U	4.9U	0
SB-16-19-24	U	Fill	4.9U	4.9U	4.9U	20U	4.9U	4.9U	0
SB-16-24-29	s	Fill	6.6U	* ± ±14	6.60	26U	6.6U	6.6U	14
SB-16-29-34	S	Nat. Soil	7U	7U	70	28U	7U	7U	. 0
SB-16-34-37	S	Nat. Soil	5.60	5.6U	5,6U	22U	5.6U	5.6∪	0
SB-17-0.5-2	U	Fill	6.1U	6.1U	6.1U	24U	6.1U	6.1U	0
SB-17-2-4	U	Fill	4.4U	4.4U	4.4U	18U	4.4U	4.4U	0
SB-17-16-20	U	Fill	5U	5.3	5U	20U	5U	5U	5.3
SB-17-24-28	S	Fill	5.10	5.1U	5.1U	20U	5.1U	5.1U	0
SB-17-29-33	S	Fill	16	6.3U	6.3U	25U	6.3U	6.3U	13
SB-17-44-49 .	S	Nat. Soil	5100	6.9U	I 20	28U	150	61	5300
SB-17-49-51	S	Nat. Soil	19 42 110	5U	5U	20U	5U	5U	10
SB-17-54-59	S	Nat. Soil	15	4.9U	4.9U	20U	4.9U	4.9U	15
SB-18-0.5-2		Fin	5.6U	5.6U	5.6U	22U	5.6U	5.6U	0
SB-18-2-4	U	Fill	5.1U	5.10	5.1U	20U	5.1U	5.10	0
SB-18-16-18	U	Fill	5.2U	5.2U	5.2U	21U	5.2U	5.2U	0
SB-18-28-32	S	Fill	4.6U	4.6U	4.6U	18U	4.6U	4.6U	0
SB-18-32-36	S	Nat. Soil	94	5.7U	15	23U	9.6	1 1-2 0-31	160
SB-18-56-60	S	Nat. Soil	6.5U	6.5U	6.5U	26U	6.5U	6.5U	0
SB-19-0.5-2	U	Fill	4.4U	4.4U	4.40	18U	4.4U	4.4U	0
SB-19-2-4	U	Fill	5.1U	· 5.1U	5.1U	20U	5.10	5.1U	0
DUP032101A	Ų	Fill	4.8U	4.8U	4.80	19U	4.8U	4.8U	0
SB-19-4-8	U	Fill	· 4.6U	4.6U	4.6U	18U	4.60	4.6U	0
SB-19-8-11	U	Nat. Soil	5.2U	5.2U	5.2U	21U	5.2บ	5.2U	0
SB-20-0-2	· U	Fill	5.8U	5.8U	5.8U	23U	5.80	5.8U	0
DUP031501B	U	Fill	5.3U	5.30	5.3U	21U	5.3U	5.3U	0
SB-20-2-4	U	Fill	4.3U	4.3U	4.3U	17U	4.3U	4.3U	0
SB-20-4-8	υ	Fill	4.8U	4.8U	4.8U	19U	4.8U	4.8U	0
SB-20-9-13	U	Nat. Soil	5.5U	5.5U	5.5U	22U	5.5U	5.5U	0
SB-21-0-2	U	Fill	4.6U	4.6U	4.6U	18U	4.6U	4.6U	0
DUP030601A	U	Fill	4.8U	4.8U	4.8U	19U	4.8U	4.8U	0
SB-21-2-4	U	Fill	7.1U	7.1U	7.1U	29U	7.1U	7.1U	0
SB-21-12-16		Fill	4ì.9U	4.9U	4.9U	20U	£ 6.7	4.9U	6.7
SB-21-16-20	-	Fili	5.4U	5.4U	5.4U	22U	The state of the s	5.4U	Ō
SB-21-28-30	s	Fill	5.3U	/ 10	5.3U	21U	5.3U	5.3U	10
SB-21-44-48	_	Nat. Soil	5U	5U	5U	20U	5U	5U	0
						• 			
SB-21-60-64	S	Nat. Soil	4.6U	4.6U	4.6U	18U	4.6U	4.6U	0

								1	
	Saturated/Unsaturated	Unit	Benzene	Carbon Disulfide	Ethylbenzene	Methylene Chloride	Toluene	Xylenes	Total Detected VOCs
UBL - Fill Material			DL	DL	DL	DL.	DL	DL	
UBL - Nat. Soils			DL	DL	DL	DL	. DL	DL	
SB-22-2-4	U	Fill	3.6U	3.6U	3.6U	15U	3,6U	3.6U	0
SB-22-19-24	U	Fill	3.8U	3.8U	3.8U	15U	3.8U	3.8U	0
SB-22-24-29	S	Nat. Soil	4.5U	4.5U	4.5U	18U	4.5U	4.5U	0
SB-22-59-62	S	Nat. Soil	5.1U	5.1U	5.1U	21U	5.10	5.1U	0
SB-23-0-2	U	Fill	5.6U	5.6U	5.6U	22U	5.6U	5.6U	0
DUP032201B	U	Fill	5.5U	5.5U	5.5U	22U	5.5U	5.5U	0
SB-23-2-4	Ü	Fill	3.8U	3.8U	3.8U	15U	3.8U	3.8U	. 0
SB-23-14-19	٥	Fill	5.2U	5.2U	5.2U	21U	5.2U	5.2U	0
SB-23-24-29	S	Fill	5.9U	5.9U	5.90	23U	5.9U	5.9U	0
SB-23-59-62	S	Nat. Soil	6.2U	6.2U	6.2U	25U	6.2U	6.2U	0
SB-24-0-2	υ	Fill	4.10	4.1U	4.10	16U	4.1U	4.1U	0
SB-24-2-4	U	Fill	3.5U	3.5U	3.5U	14U	3.5U	3.5U	0
SB-24-8-12	U	Fill	4.8U	15.4	4.8U	19U	4.8U	4.8U	5.4
SB-24-32-34	S	Fill	5.4U	18	5.4U	22U	5.4U	5.4U	18
SB-24-40-42	S	Nat. Soil	5.60	5.6U	5.6U	22U	5.6U	5.6U	0
SB-24-44-48	S	Nat. Soil	5.3U	5.3U	5.3U	21U	5.3U	5.3U	0
DUP030101A	S	Nat. Soil	4.5U	4.5U	4.5U	18U	4.5U	4.5U	0
SB-24-52-56	S	Nat. Soil	4.90	4.9U	4.9U	19U	4.90	4.9U	0
SB-25-0.5-2	υ	Fill	4.4U	4.4U	4.40	18U	4.4U	4.4U	0
SB-25-2-4	U	Fill	4.7U	4.7U	4.7U	19U	4.7U	4.7U	0
SB-25-16-20	U	FIII	3.7U	3.7U	3.7U	15U	3.7U	3.7U	0
SB-25-28-32	S	Fill	5U	5U	, 5U	20U	5U:	5U	0
SB-25-44-48	s	Nat. Soil	5.1U	5.10	5.10	21U	5.1U	5.1U	0
SB-25-56-60	S	Nat. Soil	4.4U	4.4U	4.40	17U	4.4U	4.4U	0
SB-25-60-61	S	Nat. Soil	6U	6U	6U	24U	6U	6U	0
SB-26-0.5-2	U	Fill	4.7U	4.7U	4.7U	19U	4.7U	4.70	0
SB-26-2-4		Fill	4.1U			16U	4.10		
SB-26-8-12		Fill	5U	- 5U	50	20U	5U	5U	0
DUP030201A		Fill	3:9U	3.9U	3.90	16U	3.90	3.90	
SB-26-20-24	U	Fill	3.5U	3.5U	3.5U	140	3.5U	3.5U	0
SB-26-32-36	'.S	Fill	5.20	5.2U		21U	5.2U	5.2U	. 0
SB-26-48-51	S	Nat. Soil	6.8U	6.8U	1	270	6.8U	6.8U	. 0
SB-26-51-52	\$	Nat. Soil	5.9U	5.9U		24U	5.9U 5.4U	5.9U 5.4U	0
SB-27-0.5-1.5	U	Fill	5.40	5.4U	5.40	21U 18U	4.5U	4.5U	0
SB-27-2-4	U	Fill	4.5U	4.5U 5.4U	4.5U 5.4U	22U	4.50	I	43
SB-27-8-12	U	Fill	4.8U	4.8U	<u> </u>	19U	4.8U	4.8U	0
SB-27-16-20 SB-27-20-21	U	Nat. Soil	4.80 4.90	4.8U 4.9U		19U	4.8U 4.9U	4.8U	0
SB-27-20-21 SB-28-0.5-2	S	Nat. Soil Fill	5.4U	4.90 5.4U	5.4U	21U	5.4U	5.4U	0
	U	Fill	4.5U	4.5U	4.5U	18U	4.5U	4.5U	0
SB-28-2-4	U	Fill	4.5U 4.8U				4.80	4.8U	5.7
SB-28-4-8	╄	Nat. Soil	5.3U	And the second of the second of the second of the	ļ		5.3U	5.3U	0.7
SB-28-8-9.5	U		5,3U 5U				5.30 5U		0
SB-29-0.5-2	U	Fill	5U				5U		
DUP030501A	U	Fill	1	30	1 30		1 30	30	<u> </u>

						,		_	
									. •
	Saturated/Unsaturated	Unit	Benzene	Carbon Disulfide	Ethylbenzene	Methylene Chloride	Toluene	Xylenes	Total Detected VOCs
UBL - Fill Material	ιÿ	_ 5	m DL	ඊ DL	亚 DL	≊ DL	<u>⊬</u> DL	∑. DL	ř
UBL - Nat. Soils			DL	DL	DL	DL	DL	DL	
SB-29-2-4	U	Fill	4.7U	4.70	4.7U	19U	4.7U	4.7U	0
SB-29-20-24	U	Fill	3.5U	3.5U	3.5U	.14U	3.5U	3.5U	0
SB-29-28-32	S	Fill	4.8U	4.8U	4.8U	19U	4.8U	4.8U	0
SB-29-48-52	S	Nat. Soil	7U	7U	7.30 7U	28U	7.00 7U	7.0U	0
SB-29-52-53	S	Nat. Soil	4.6U	4.6U	4.6U	18U	4.6U	4.6U	0
SB-30-0-2	U	Nat. Soil	5.8U	5.8U	5.80	23U	5.8U	5.8U	0
DUP041201A	U	Nat. Soil	6,1U	6.1U	6.10	23U 24U	6.1U	6.1U	0
SB-30-2-4	Ü	Nat. Soil	. 6.90	6.90	6.90	24U	6.90	6.9U	0
SB-30-8-12		Nat. Soil	6.8U	6.8U	6.8U	28U 27U	6.80	6.8U	0
SB-30-16-20	S	Nat. Soil	5.5U	5.5U	5.5U	27U	5.5U	5.5U	0
SB-31-0-2		Nat. Soil	6,9U	6.9U	6.9U	28U	6.9U	6.9U	0
SB-31-2-4	Ü	Nat. Soil	7U	7U	7U	28U	7U	7U	0
SB-31-4-8	Ü	Nat. Soil	6.3U	6.3U	6,3U	25U	6.3U	6.3U	0
SB-31-8-12	U	Nat. Soil	6.7U	6.7U	6.7U	27U	6.7U	6.7U	0
SB-31-16-20	s	Nat. Soil	6.4U	6.4U	6.4U	26U	6.4U	6.4U	
SB-32-0-2	<u> </u>	Nat. Soil	7.3U	7.3U	7.3U	29U	7.3U	7.3U	0
SB-32-2-4	Ü	Nat. Soil	. 5.8U	5.8U	5.8U	23U	5.8U	5.8U	0
SB-32-4-8		Nat. Soil	6.4U	6.4U	6.4U	26U	6.4U	6,4U	0
SB-32-16-20		Nat. Soil	6U	6U	6U	24U	6U	6U	0
SB-33-0.5-2		Fill	4.2U	4.2U	4.2U	17U	4.2U	4.2U	
SB-33-2-4		Fill	4,6U	4.6U	4.6U	19U	4.6U	4.6U	- 0
SB-33-8-10	Ü	Fill	5.3U	5.3U	5.3U	210	5.3U	5.3U	0
SB-33-10-14	Ü	Nat. Soil	4.7U	4.7U	4.7U	19U	4.7U	4.7U	
SB-34-0.5-2	Ū	Fill	4.7U	4.7U	4.7U	19U	4.7U	4,7U	
SB-34-2-4	Ü	Fill	4.7U	4.7U	4.7U	190	4.7U	4.7U	0
SB-34-4-8	Ü	Fill	5.7	4.1U	4.10	17U	4.1U	4.10	5.7
SB-34-8-10		Nat. Soil	7.3U	7.3U	7.3U	29U	7.3U	7.3U	0
SB-36-0.5-2		Fill	5.4U	5.40	5.4U	210	5.4U	5.4U	· 0
SB-36-2-4		Fill	6.6U	6.6U	6.6U	26Ü	6.6U	6.6U	0
SB-36-4-6		Nat. Soil	8.5U	8.5U	8.5U	34U	8.5U	8.5U	0
SB-38-0-2		Fill	5.70	5.7U	5.7U	23U	5.7U	5.7U	0
DUP041201B		Fill	5.6U	5.6U	5.6U	23U	5.6U	5.6U	0
SB-38-2-4		FIII	5.5U	5.5U	5.5U	22U	5.5U	5.5U	0
SB-38-4-6.5		Fill	6,1U	6.1U	6.1U	24U	· 6.1U	6.1U	. 0
SB-38-14-19		Nat. Soil	6,6U	6.6U	6.6U	26U	6.6U	6.6U	0
SB-38-34-38	s	Nat. Soil	62	6.8U	6.8U	27U	6.8U	6.8U	62
SB-39-0,5-2 ··		Fill	6.1U	6.1U	6.1U	24U	6.1U	6,1U	. 0
SB-39-4-8		Fill	4.6U	4.6U	4.6U	18U	4.6U	4.6U	0
SB-39-8-12.5		Fill	4.5U	4.5U	4.5U	18U	4.5U	4.5U	0
SB-40-0.5-2		Fill	6U	6U	6U	24U	6U	6U	0
SB-40-2-4		Fill	5.1U	5.1U	5.1U	20U	5.1U	5.1U	0
SB-40-16-20		Fill	4.7U	4.7U	4.7U	. 19U	4.7U	4.7U	0
SB-40-24-28		Fill	4.6U	4.6U	4.6U	18U	4.6U	4.6U	0
SB-40-40-44			38	4.5U	4.5U	18U	4.5U	4,5U	33

	Saturated/Unsaturated	Unit	Benzene	Carbon Disulfide	Ethylbenzene	Methylene Chloride	Toluene	Xylenes	Total Detected VOCs
UBL - Fill Material			DL	DL	DL	DL	DL	Dt.	
UBL - Nat. Soils			DL	DL	DL	DL.	DL	DL	
DUP032001A	S	Nat. Soil	64	6.10	6.1U	24U	6.10	6.10	64
SB-40-56-58	S	Nat. Soil	4.9U	4.9U	4.9U	20U	4.9U	4.9U	0
SB-41-0-2	U.	Fill	7.9U	7.9U	7.9U	32U	7.9U	7.9U	0
SB-41-2-4	U	Fill	5.1U	5.1U	5.1U	20U	5.10	5.1U	0
SB-41-19-24	U	Fill	4.5U		4.5U	18U	4.5U	4.5U	12
SB-41-24-29	S	Fill	8.3U	Beautrale 15	8.3U	33U	8.3U	8.3U	15
SB-41-54-59	S	Nat. Soil	4.9U	4.9U	4.9U	20U	4.9U	4.9U	0
MW-6-34-39	S	Nat, Soil	6.1U	6.1U	6.1U	25U	6.1U	6.1U	0
MW-6-44-49	S	Nat. Soil	6.3U	6.3U	6.3U	25U	6.3U	6.3U	0
DUP032701A	S	Nat. Soil	5.6U	5.6U	5.6U	22U	5.6U	5.6U	0
GH-2-41	S	F	7.5U	7.5U	7.5U	30U	7.5U	7.5U	0.

•			_	_		_	_	0	0		0	0	01	0	o	_	o l	_	0	οl	ा	0	0	0	0	0	ा	ा	0
Total Detected SVOCs	î	•)	94,000	130,000)	15,000))	006'9)))		67,000		16,000				Ŭ))))			
Total Detected SVOCs Exceeding Background	-	1	0	94,000	130,000	0	15,000	0	0	6,200	0	0	0	0	0	67,000	0	16,000	0	0	0	0	0	0	0	0	0	0	0
Pyrene	920	Ja	420U	11,000	15,000	410U	5,300	450U	370U	086	410U	460U	4100	3900	410U	7,400	400U	3,900	4800	400C	4000	380U	3700	3700	420N	420U	440U	410U	380U
Phenol	DF	JO .	420U	370U	400U	4100	3800	450U	370U	3800	4100	460U	4100	3900	4100	4000	400U	420∪	480U	400C	.400€	3800	370U	3700	420U	420N	440U	410U	3800
Phenanthrene	260	Б	420U	ODO EL	45,000	410U	2,100	450U	370U	1,000	410U	460U	410U	3900	410U	7,500	400U	2,600	480U	400U	400U	3800	370U	3700	420N	420U	4400	4100	380U
Naphthalene	٦a	2	420U	2,100	1,800	4100	3800	450U	370U	380U	4100	460U	410U	390∪	410U	400∪	400U	420U	480U	400U	400U	380U	370U	370U	420U	420N	440U	4100	380U
Indeno(1,2,3-cd)pyrene	580	70	420U	6,100	2,100	4100	0/8	450U	370U	380U	410U			3900	410U	4,700	400U	840	480U	400U	400U	380U	N0/E	370U	420U	420N	440N	410U	3800
Fluorene	DF	Πα	420U	2,300	2.700	410U	380U	450U	370U	380U	4.10U	460U	4100	3900	410U	1/300	400U	420U	480∪	400U	400∪	08E	370U	370U	420U	750∪	440U	4100	3800
Fluoranthene	1,200	겁	420U	14,000	20,000	410U	2,600	450U	3700	-1,500	4100	460U	410U	390U	4100	11,000	400U	3,000	480U	400U	400U	380U	370U	370U	420U	420U	4400	410U	380U
Dibenzo(a,h)anthracene	Б	占	420U	3.500	4,200	410U	390	450U	370U	380U	410U	460U	4100	3900	410U	2,300	400U	420U	480U	400C	400U	380U	3700	3700	420U	420U	440U	4100	380U
Chrysene	680	Б	420N	000'9	0096	4100	001.7	450U	3700	089	4100	460U	410U	3900	4100	2,100	400U	006	480U	400U	400U	3800	3700	3700	420U	420U	440U	410U	3800
Benzo(k)fluoranthene	570	겁	420U	2,800	9,300	4100	720	450U	370U	002	4100	460U	410U	3900	4100	006'E	400U	076	480U	400U	400U	3800	3700	370U	420U	420U	440U	410U	380∪
Benzo(g,h,i)perylene	069	占	420U	000'5	8,500	4100	0001	450U	370U	380U	4100	460U	410U	3900	410D	4,900	400U	1,300	480U	400U	400N	3800	3700	370U	420U	420U	440N	4100	3800
Benzo(b)fluoranthene	610	겁	420U	5,600	8,900	4100	4,100	450U	370U	089	4100	460U	410U	3900	410U	4,500	400U	089	480∪	400U	400U	380U	370U	370U	420U	420U	440U	410U	380U
Benzo(a)pyrene	069	ä	420U	6,800	70,000	4100	1,200	450U	370U	07/2	410U	460U	410U	3900	410U	000'9	4000	0+6	480U	400U	400U	3800	370U	3700	420U	420U	440U	410U	3800
Benzo(a)anthracene	560	10	420U	9.600	0068	410U	1,100	450U	370U	029	410∪	460U	410U	3900	4100	008(57)	400∪	870	480U	400U	400U	380U	370U	370U	420U	420U	4400	4100	3800
Anthracene	Ы	Ы	420N	2,700	4,000	4100	250	450U	370∪	380U	410U	460U	4100	3900	410U	~2,600	400U	420U	480U	400U	400U	380U	370U	370U	420U	420U	4400	410U	380U
Acenaphthylene	<u> </u>		420U	370U	400U		<u></u>		3700	3800	410U	460U	410U	3900	L		400U	450	480∪		400U	380U	370∪	L	420U	<u> </u>	440N		3800
Acenaphthene	DI.	ID.	420N	2,200	2,100	410U	380U	450U	370U	3800	410U	460U	4100	3900	410U	009,1	400C	420N	480U	4000	400U	3800	370U	3700	420N	420U	4400	410U	3800
Unit			Fill	記	- I	H	E	E	置	置	E	Nat. Soil	Nat. Soil	置	Fill	III.	FIII	E	Nat. Soil	Nat. Soil	Nat. Soil	Ī	置		Ē	Nat. Soil	Nat. Soil	Fill	
Saturated/Unsaturated	ial	100)	S	_	S	-	5	$\overline{}$	1	S	S	Þ	5	5	တ	-	+-	_	ဟ	_	Þ	5	S	1	_	_	5
	UBL - Fill Material	UBL - Nat. Soils	SB-14-0.5-2	SB-14-16-20	SB-14-24-28	SB-15-4-8	SB-15-36-41	SB-16-0.5-2	SB-16-2-4	SB-16-19-24	SB-16-24-29	SB-16-29-34	SB-16-34-37	SB-17-0.5-2	SB-17-2-4	SB-17-16-20	SB-17-24-28	SB-17-29-33	SB-17-44-49	SB-17-49-51	SB-17-54-59	SB-18-0.5-2	SB-18-2-4	SB-18-16-18	SB-18-28-32	SB-18-32-36	SB-18-56-60	SB-19-0.5-2	SB-19-2-4

	ŧ	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o	<u> </u>	٥l	0	0	0	0	0	o l	0	0
Total Detected SVOCs																					21,000						920		
Total Detected SVOCs Exceeding Background	11	1	0	0	0	0	0	0	0	О	0	0	0	0	0	0	0	0	0	0	21,000	0	0	0	0	0	0	0	0
Pyrene	920	Ы	370U	370U	360U	420U	4000	3900	360U	3700	400N	410U	430U	3900	3800	400U	430U	460U	400U	360U	2,300	3900	380U	440U	370U	360U	410	3900	450U
Phenol	סר	DL	370U	370U	360U	420U	400U	3900	360U	370U	400U	410U	430U	3900	380U	400U	430U	460U	400U	360U	370U	390U	3800	440U	3700	360U	360U	3900	450U
Phenanthrene	560	DI	3700	370U	360U	420U	400U	3900	360U	370U	. 400∪	4100	430U	390U	380U	400U	430U	460U	400U	360U	2,800	3900	3800	440N	370U	360∪	360U	3900	450U
Naphthalene	DF	οΓ	370U	3700	360U	420U	400U	3900	360U	3700	400€	4100	430∪	3900	380U	400U	430U	460U	400U	360∪	12,500	3900	3800	0044	370∪	360∪	360U	390∪	450U
Indeno(1,2,3-cd)pyrene	580	ᆸ	370U	370U	360U	420U	400U	3900	360U	370U	400U	4100	4300	N06E	108E	∩00 1	430U	460U	400U	360U	鰋	390U	380U	440N	3700	360U	360U	3900	450U
Fluorene	70	ā	370U	370U	360∪	420∩	400U	3900	360U	370U	400U	4100			380U	400U	430U	460U	400€	360U		390∪	380U	440U	370U				450U
Fluoranthene	1,200	70	3700	3700	360U	420U	400U	3900	360U	370U	400U	4100	430U	390U	380U	400U	430U	460U	400U	360U	\$,000	390U	380U	440U	370U	360∪	510	3900	450U
Dibenzo(a,h)anthracene	DΓ	ā	370U	3700	360U	420N	400U	3900	360U	370U	400U	4100	430U	10068	380U	400U	430N	460U	400U	360U	# 470	3900	3800	440€	370∪	360U	360U	3900	450U
Chrysene	989	Б	370U	370U	360U	420N	400∪	3900	360U	370U	400U	410U	430U	3900	380U	400U	430U	460U	400U	360U	1,400	N06E	380U	440U	3700	360U	360U	3900	450U
Benzo(k)fluoranthene	570	Б	370U	370U	360U	420U	400U	∩06€	∩09E	370U	400U	4100	430U	3900	08E	400U	430U	160U	1000¥	360U		∩06E	3800	440U	370U	360U	360∪	3900	450U
Benzo(g,h,i)perylene	069	Б	3700	370U	09E	420U	400U	006E	360U	370U	400U	410U	430U	006E	3800	400U	430U	460U	400U	09E	980	106E	3800	4400	370U	360U	360U	3900	450U
Benzo(b)fluoranthene		ם	3700	370U	360U	420N	400U	106E	360U	370U	400U	410U	430U	70ee	3800	400U	430N		L	360U	11,300	06€	3800	440U	370∪	360U	360U		450U
Benzo(a)pyrene		010	370U	3700	L	420U		_	360U	ᆫ	L	410U	430∪		<u> </u>	400U	L	<u> </u>	_	360U	14400	L	J 380U	1440U	3700	J 360U	上	3900	
Benzo(a)anthracene		ă	370U	370U	360U	420N	400U	3900	360U		400∪	410N	430N	3900	3800	. 400U	430U	460U	L	3600	1,400	3900	3800	1440U	370U	L	L		J 450U
Anthracene		<u></u>	3700	L.	360U	<u> </u>		L	L	L	L		<u> </u>	006€		1 400U		J 460U	L	J 360U	羅	<u> </u>	L	_	J 370U	J 360U	<u> </u>	_	J 450U
Acenaphthylene		<u></u>	3/	J 370U	1 360∪	J 420U	1 400U	1 390U	J 360U	J 370U	J 400U	J 410U	J 430U	J 390U	J 380U	1 400U	J 430U	J 460U	L	7 360U		J 390U	J 380U	L	J 370U		<u> </u>	L	J 450U
Acenaphthene	Image: control of the con	占	370U	370U	360U	420N	400U	3900	360U	3700	400U	4100	430U	3900	3800	4000	430N	460U	400U	360U	420	3900	3800	440U	370U	360U	360U	3900	450U
Unid			Fill		Nat. Soil	E	Ē	i.	iii	Nat. Soil	E	EL.	Fill	Fill	ii.		Nat. Soil	Nat. Soil	Ē	ii.	臣	Nat. Soil		į.	Ш	III.	E	III.	Nat. Soil
Saṭurated/Unsaturated	rial	S	Э	5	5	5	5	5	5	5	?	5	5	Э	9	S		တ	5	5	Э	S	S	_)	Б	5	$\overline{}$	Ţ
	- Fill Material	- Nat. Soils	DUP032101A	SB-19-4-8	SB-19-8-11	SB-20-0-2	DUP031501B	SB-20-2-4	SB-20-4-8	SB-20-9-13	SB-21-0-2	DUP030601A	SB-21-2-4	SB-21-12-16	SB-21-16-20	21-28-30	SB-21-44-48	SB-21-60-64	SB-22-0-2	SB-22-2-4	SB-22-19-24	SB-22-24-29	SB-22-59-62	SB-23-0-2	DUP032201B	SB-23-2-4	SB-23-14-19	SB-23-24-29	SB-23-59-62
	UBL	UBL	DO	SB-1	SB-1	SB-2	DUP	SB-2	SB-2	SB-2	SB-2	DUP	SB-2	SB-2	SB-2	SB-2	SB-2	SB-2	SBS	SB-2	SB-2	SB-2	SB-2	SB-2	PUP	SB-	SB.	SB.	SB.

	1	1	0	0	0	0	0	0	0	0	Q.	0	0	ा	0	0	0	0	0	ा	0	0	0	0	0	0	9	9	ा
Total Detected SVOCs				30,000	410						7,400	100,000										7,500					4,800	11,000	
Total Detected SVOCs Exceeding Background		1	0	30,000	0	0	0	0	0	0	7,400	100,000	0	0	0	0	0	0	0	0	0	5,700	0	0	0	0	720	11,000	0
Pyrene	920	Dľ	360U	4,400	3800	440U	400N	430U	430U	360U	1,100	13,000	380U	480U	440N	450U	470N	3700	3700	3700	3700	1,200	3900	400U	420U	400U	770	0061)	3900
Phenol	DF	חר	360U	370U	380∪	440N	400U	430U	430U	360U	370U	360∪	380U	480U	440U	450U	470U	3700	370∪	370U	370U	3700	390∪	400U	420U	400U	370U	460U	3900
Phenanthrene	560	<u> </u>	360U	3,700	380U	440U	400U	430U	430U	360U	001.1		380U	480U	440U	450U	470U	370U	370U	370U	370U	0024	3900	400U	420U	1004	720	2,000	3900
Naphthalene	ΠO	DE DE		102E	08E	440U	400∪	. 430U	4300	360U	370U		380U	480∪	440N	450∪	470U	370∪	370∪	370U	370U	370U	3900	400U	420U	400U			3900
Indeno(1,2,3-cd)pyrene	280	TO	360U	069	08E	∩0 <i>†</i>	1004	430N	430U	360U	370U	2,600	3800	480U	440N	450U	470U	370U	3700	370U	370U	370	3900	400U		400U		460U	3900
Fluorene		DI	360∪	420	∩08€	440U	400U	430∪	4300		370U	026	∩08E	480U	440□	450U	470U	370U	370U	370U		370∪	390∪	400U	420U	400U			3900
Fluoranthene	1,200	占	360U	009'S	410	440N	400U	430U	430U	360U	1,500	17,000	380U	480U	440U	450U	470U	370U	3700	370U	370U	4,400	3900	400U	420U	400U	960	7,000	3900
Dibenzo(a,h)anthracene	D.	Ы	360U	370U	3800	440U	4000	430U	430U	360∪	370U	059	3800	480U	440N	450U	470U	370U	370U	370U	370U	3700	3900	400U	420N	400U	370U	460U	3900
Chrysene	089	DF	360U	2,500	3800	4400	4000	4300	430U	360U	770	001.6	3800	480U	440U	450U	470U	370U	370U	370U	370U	069	3900	4000	420U	400U	460	1,000	3900
Benzo(k)fluoranthene	570	d	360U	2,100	380U	4400	400U	430U	430U	360U	780	12,000	3800	480U	440U	450U	470U	370∪	370∪	370U	3700	610	3900	400U	420N	400U	500	930	3900
Benzo(g,h,i)perylene	069	Dľ	360U	7.30	3800	440U	400U	430U	430U	360U	370U	2,500	380U	480U	440U	450U	470U	3700	370U	3700	370U	380	3900	400U	420U	400U	370U	460U	3900
Benzo(b)fluoranthene	610	Ja	360U	3.200	3800	440U	400U	430U	430U	360U	069	12,000	380U	480U	440U	450U	470U	370∪	370U	370U	370∪	500	3900	400U	420U	400U	430	蠿	3900
Benzo(a)pyrene	069	П	360U	2,900	3800	440C	400U	430U	4300	360U	740	14,000	3800	480U	440U	450U	470U	3700	3700	370U	370U	610	3900	400U	420N	400U	540	1.100	3900
Benzo(a)anthracene	560	DL	360U	2,500	380U	440U	400U	430U	430U	360U	05/1,1/20	8.300	380∪	480U	440U	450U	470U	3700	370U	370U	370U	580	3900	400C	420N	400U	450	086	3900
Anthracene	D	ᆸ	360U	1,100	3800	440N	400U	430U	430U	360U	370U	2,000	380	480U		450U	470U	370U	370U	370U	3700	370U	3900	400U	420N	400U	370U	490	3900
Acenaphthylene		占	360U	370U	3800	440N	400U	430∪	430U		370U	360U	3800	480U	ļ	L	470U	370U	370U	370U	L	3700	3900	↓_	L		3700	J 460U	3900
Acenaphthene	D.	占	360U	370U	3800	440N	400U	430U	430U	360U	370U	008	380€	480U	440N	450U	470U	370U	370U	370U	370U	370U	3900	400U	420N	400U	370U	4600	3900
Uni			證	Ē	Ē	置	Nat. Soil	Nat. Soil	Nat. Soil		Fill	ii.	記	III.	Nat. Soil	Nat. Soil		E	E	III	III.	III.		Nat. Soil	1 .	III.		III.	Nat. Soil
Saturated/Unsaturated	i <u>a</u>	ا . ـ	F	Ē	5	S	_		_	$\overline{}$	_	E	5	S	S	S	S	5	5	5	5	1	_	1	S	T-	5	5	5
	UBL - Fill Material	UBL - Nat. Soils	4-0-2	SB-24-2-4	SB-24-8-12	SB-24-32-34	SB-24-40-42	SB-24-44-48	DUP030101A	SB-24-52-56	SB-25-0.5-2	SB-25-2-4	SB-25-16-20	SB-25-28-32	SB-25-44-48	SB-25-56-60	SB-25-60-61	SB-26-0.5-2	SB-26-2-4	SB-26-8-12	DUP030201A	SB-26-20-24	SB-26-32-36	SB-26-48-51	SB-26-51-52	SB-27-0.5-1.5	SB-27-2-4	SB-27-8-12	SB-27-16-20

Total Detected SVOCs													52							41									
Total Detected SVOCs Exceeding Background	ŧ	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pyrene	920	1	3800	410U	3900	4100	360U	430U	420U	400U	3900	410U	490U	3900	340U	3500	360U	430U	420U	410U	410U	430U	440U	430U	400U	430U	410U	420U	360∪
Phenol	DL	DE	3800	4100	3900	410U	360U	430U	420U	400U	3900	4100	490U	3900	3400	320∩	360U	430U	420U	410U	410U	430U	440U	430U	400U	430U	4100	420U	360U
Phenanthrene	560	Б	3800	410U	3900	4100	360U	430U	420U	400U	3900	410∪	490N	3900	340∪	350U	360U	430U	420U	410U	410U	430U	4400	430U	400U	430U	410U	420U	360U
Naphthaiene	Ы	DF.	3800	410U	3900	4100	360U	430U	420U	400U	3900	410U	490U	3900	340U	3200	360U	430∪	420N	410U	410U	430U	440U	430U	400U	430U	410U	420U	360U
Indeno(1,2,3-cd)pyrene	580	Ы	3800	410U	3900	410U	360U	430U	420U	400U	3900	410U	490U	3900	340U	3500	360U	430U	420U	410U	410U	430U	440C	430U	400U	430U	410U	420U	360U
Fluorene	D	ď	3800	410U	3900	4100	360U	4300	420U	400U	3900	410U	490U	390U	340U	350U	360U	430N	420U	4100	410U	430N	440U	430U	400U	430U	410U	420U	360U
Fluoranthene	1,200	머	380U	410U	3900	410U	360U	430U	420U	400U	390U	4100	490U	3900	340U	350U	360U	430U	420U	410	4100	430U	440N	430U	400U	430U	410U	420U	360U
Dibenzo(a,h)anthracene	D.	D	3800	410U	3900	4100	360U	430U	420U	400∪	3900	410U	490∩	3900	340U	350U	360U	430U	420U	410U	410U	430U	440U	430N	400U	430∪	4100	420U	360U
Chrysene	089	70	3800	410U	3900	410U	360U	430U	420U	400U	3900	4100	490U	3900	340U	3500	360U	430U	420U	410U	410U	430U	440N	430N	400U	4300	4100	420U	360U
Benzo(k)fluoranthene	270	DF	380∪	4100	3900	410U	360U	430U	420U	400U	390U	410U	490U	3900	340U	350U	360U	430U	420U	410U	4100	430U	440U	430U	400U	430U	4100	420U	360U
Benzo(g,h,i)perylene	069	DI	380∪	410U	3900	410U	360U	430U	420U	400N	390U	4100	490U	3900	340U	3500	360U	430U	420U	410U	410U	4300	440U	430U	400U	4300	4100	420N	360U
Benzo(b)fluoranthene	_	DL	008E	410U	006E	410∪	360U	430U	420U	400U	390U		li	390U	340U	3200	360U	430U	420U	410U	410U	430U	440U	4300	400U	430U	4100	420U	360U
Benzo(a)pyrene	069	· DL	380U	410U	390U	410U	360U	430U	420U	400U	3900	410U	520	3900	340∪	350U	360∪	430U	420∪	410U	410Ù	430U	440U	430U	400U	430∪	4100	420U	360U
Benzo(a)anthracene	560	DF	380U	410U	390U	410U	. 360U	430U	420U	400U	390U	410U	490∪	390U	340U	. 350U	360U	430U	420U	410U	410U	430U	440U	430U	. 400∪	430U	4100	420U	360U
Anthracene	סר	סר	∩08€	410U	N06E	4100	360∪	430U	420∪	400U	390U	410U	490U	106E	340N	109E	360∪	430U	420U	410U	410U	430U	440N	430N	400U	430U	4100	420U	3600
- Acenaphthylene	םר	סר	08E	4100	3900	4100	360U	430U	420∪	400U	390U	410U	490U	N068	340∪	350U	360U	430U	420U	410U	4100	430U	440N	130∪	400∪	430U	410U	420U	360U
Acenaphthene	7a	חם	108E	410U	390∪	410U	360∪	430∪	420U	400N	3900	410U	490U	106E	340N	350U	. 360U	430U	420U	4100	410U	4300	440N	4300	400U	430U	410U	420U	360U
Unit			Nat. Soil	Fill	Fill.	Fill	Nat. Soil	FIII	Surface	<u></u>	三	Fill	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Vat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil		Nat. Soil	Ē
Saturated/Unsaturated	iał	10	S		n	n		n	n					S	n	<u> </u>		တ	S	n.	<u> </u>	n	n	S	n	⊃			<u> </u>
	UBL - Fill Material	UBL - Nat. Soils	SB-27-20-21	SB-28-0.5-2	SB-28-2-4	SB-28-4-8	SB-28-8-9.5	SB-29-0.5-2	DUP030501A	SB-29-2-4	SB-29-20-24	SB-29-28-32	SB-29-48-52	SB-29-52-53	SB-30-0-2	DUP041201A	SB-30-2-4	SB-30-8-12	SB-30-16-20	SB-31-0-2	SB-31-2-4	SB-31-4-8	SB-31-8-12	SB-31-16-20	SB-32-0-2	SB-32-2-4	SB-32-4-8	SB-32-16-20	SB-33-0.5-2

1100000000000000000

<u> </u>	,	1 7	lo.		0		0	C	0	lo	0	0	0	0	0	0	0	0	0	0	0	0	О	0		0	Ю	a	<u> </u>
Total Detected SVOCs	,	,	24,000		_	6,310		1,100						5,30	3,900	5,700									5,600				_
Total Detected SVOCs Exceeding Background			24,000	0	0	0	0	0	0	0	0	0	0	0	670	0	0	0	0	0	0	o ,	0	0	2,300	¢	0	0	0
Pyrene	920	ā	3,200	400U	360U	850	3500	230	360U	350U	350U	3800	460U	920	670	006	400U	430U	450U	430U	3800	3900	4100	3900	760	3900	450U	430U	430U
Phenol	Ы	70	370U	400U	360∪	370U	350U	360U	360U	350U	320N	3800	460U	3700	370∪	370∪	400U	430U	450U	430U	3800	3900	410U	3900	360U	3900	450U	430U	430U
Phenanthrene	560	Б	1,300	400U	360U	530	3500	360U	360U	350∪	350U	3800	460∪	480	029	260	400U	430U	450U	430U	3800	3900	410U	3900	096	3900	450U	430U	430N
Naphthalene	ď	ដ	370U	400U	360U	370U	350U	360U	360U	350U	350U	380U	460U	370U	370U	370U	400U	430U	450U	430U	3800	3900	410U	3900	360U	3900	450U	430U	430U
Indeno(1,2,3-cd)pyrene	580	DE	1,300	400U	വാട	280	3500				0038		7		370U	U075					380U	3900	l	L	360U	006E	450U	430U	430U
Fluorene		10					350U		09E				460U			370U		430U	450U	430U	380∪	3900	410U	_		006E	450U	430U	430U
Fluoranthene	1,200	D	3,200	400U	360U	970	350U	610	360U	350U	350U	380U	460U	1,000	870	1,200	400U	430U	450U	430U	3800	3900	410U	3900	1,300	3900	450U	430U	430U
Dibenzo(a,h)anthracene	김	П	520	400U	360U	370U	350U	360U	360U	350U	3500	3800	460U	370U	370U	370U	400U	430U	450U	430U	3800	3900	4100	3900	360U	3900	450U	430U	430U
Chrysene	680	DI.	2,300	400U	360U	540	350U	360U	360U	350U	3500	380U	460U	490	370	089	400U	430U	450U	430U	380U	3900	410U	3900	220	3900	450U	430U	430U
Benzo(k)fluoranthene	570	2	H2:200	400U	360U	430	350U	360U	360U	350U	350U	380U	460U	370U	370U	570	400U	430U	450U	430U	3800	3900	410U	3900	510	100E	450U	430U	430U
Benzo(g,h,i)perylene		ᆸ	006" -	400U	360U	069	350U	360U	360U	350U	350U	380U	460U	540	440	370U	400U	430U	450U	430U	380U	3900	410U	3900	360U	3900	450U	430U	430U
Benzo(b)fluoranthene			2,500		∩09E	240	350U	09E	∩09E	350U	nose	∩08E	460U	290	420	610	400U	430U	450U	430U	3800	706E	410U	1390U	380	106E	450U	430U	430U
Benzo(a)pyrene	069	D D	8,200	400U	360U	L	350U	109E	360U	350U	350U	380U	4				400U	430N	450U	430U	3800	_		3900	550	3900	450U	430U	430U
Benzo(a)anthracene		ᆸ	2300	. 400U	360U	490	320∩	09€			350U	3800	4		370∪	260	400U		·	430U	3800	3900		3900	540	3900	450U	430U	430U
Anthracene		占	3700	400U	109E	370U	3500	360U	360U	350U	350U	<u> </u>				370U	400U			430U	3800	3900	_	3900	360U	3900	450U	430U	430U
Acenaphthylene		TO	420	400U	109E		350U		360U		3500	_	460U				400U	430U		L		3900	<u> </u>	3900	360U	3900	450U		430U
Acenaphthene	겁	겁	3700	400U	360U	370U	350U	09e	360U	350U	350∪	3800	460U	370U	370U	3700	400U	430U	450U	430U	380∪	3900	410U	3900	360U	3900	450U	430U	430U
. · . Unit			Fill		Nat. Soil	☶	E	Fill		Nat. Soil	Fill	E	Nat. Soil	正	FIII	Fill	Fill	Nat. Soil	Nat. Soil	Fill	Fill	ii:	Ē	E	E		Nat. Soil	Nat. Soil	Nat. Soil
Saturated/Unsaturated	rial	S	0	5	5	5	5	n I	2	<u>-</u>	5	5	5	5	5	<u>ה</u>	5	S		5	5	5	5	5	5	တ	S		S
	UBL - Fill Material	UBL - Nat. Soils	SB-33-2-4	SB-33-8-10	SB-33-10-14	SB-33B-2-4	SB-34-0.5-2	SB-34-2-4	SB-34-4-8	SB-34-8-10	SB-36-0.5-2	SB-36-2-4	SB-36-4-6	SB-38-0-2	DUP041201B	SB-38-2-4	SB-38-4-6.5	SB-38-14-19	SB-38-34-38	SB-39-0.5-2	SB-39-4-8	SB-39-8-12.5	SB-40-0.5-2	SB-40-2-4	SB-40-16-20	SB-40-24-28	SB-40-44	DUP032001A	SB-40-56-58

Total Detected SVOCs	1	-	0	0	27,000	0	0	71,000	2,100	0	0	0	270,000
Total Detected SVOCs Exceeding Background	l .	1	0	0	26,000	0	0	71,000	0	0	0	0.	270,000
Pyrene	920	ם	3900	360U	3,600	550U	430U	006'9	260	440€	440U	460U	47,000
Phenol	DF	DL	390∪	360U	3800	5500	430U	370U	3500	440U	440U	460∪	530U
Phenanthrene	560	DI	3900	360U	∓ 4,100	2500	430U	006'6	480	440N	440U	460U	25,000
Naphthalene	Τα	D	3900	360U	380U	550U	430U	1,800	350U	440U	440N	460U	24,000
Indeno(1,2,3-cd)pyrene	580	ď	3900	360U	710	250U	430U	3,700	350U	440N	440N	460U	0000
Fluorene	Ы	DF	3900	360U	069	5500	430U	1200	350U	440U	440U	460U	11,000
Fluoranthene	1,200	DI	3900	360∪	4,800	550U	430U	-42,000	069	440U	440U	460U	37,000
Dibenzo(a,h)anthracene	Ы	겁	3900	360U	3800	550U	430U	1,500	320N	440N	4400	460U	670
Chrysene	680	ם	3900	360U	2,100	550U	430U	6,100	350U	440U	440U	460∪	000 LE
Benzo(k)fluoranthene	220	DE.	3900	360U	1,700	250U	430U	7,4,600	320∩	440N	440∩	460∪	7,900
Benzo(g,h,i)perylene	069	Б	3900	360U	630	550U	430U	4200	350U	440N	440U	460U	002'9
Benzo(b)fluoranthene	610	Б	3900	360U	2 200	550U	430U	4,900	390	440N	440U	460U	7,400
Benzo(a)pyrene	069	П	3900	360∪	2,200	550U	430U	2,600	3500	440N	440N	460U	16,000
Benzo(a)anthracene	260	TO	3900	360∪	2,300	5500	430U	6.100	350U	440N	440N	∩09 7	7,000 TO 000
Anthracene	ם	겁	3900	360U	008 13	250U	430U	1,800	350U	440U	440U	460U	
Acenaphthylene	딥	<u>D</u>	3900	360U	380U	250U	430U	3700	350U	4400	440U	460∪	4 400
Acenaphthene	īo	חה	3900	360U	21,530	250U	430U	0011	3500	440∪	440U	460U	001/9
Unit				置	Ē	E	Nat. Soil		- III	Nat. Soil	Nat. Soil	Nat. Soil	iii.
Saturated/Unsaturated	-		5	5	5	S	S	<u> </u>	5	S	S	တ	S
	iL - Fill Material	L - Nat. Soils	-41-0-2	-41-2-4	-41-19-24	-41-24-29	-41-54-59	-42-2-4	43-2-4	V-6-34-39	V-6-44-49	IP032701A	1-2-41

T-Cyanide	DI	<u></u>	0.959U	1.09U	0.985U	1.10	1,17	1.13U	0.754U	0.735U	0.739U	1.08U	1.06U	1.2U	. 1.25U	0.738U	0.833U	1.03U	1.32U	0.989U	0.97U	1.17U	1.110	1.110	1.28U	181	1.33U	1.010	0.96U
Zinc	257	80.3	47.0	267	39.1	32.5	11.7	18.8				14.3	4.98	48.1		58.3									44.0		41.9	44.5	16.9
Vanadium	58.9	120	2.69		18.1				24.6	31.5	19.9	9.81	5.88			14.0				8.64	5.29∪	46.1	39.8	23.6			40.9		25.9
Nickel 	14.4	29.7	6.33U	5.76	5.66U	5.09U	4.6U	6.26U				5.26U			5.16U	5.91U			13.4	5.35U	5.29U	5.44U	4.34	3.610	10.1	5.54	9.04	6.72	4.32U
Mercury		D[0.131	6,43	0.147	l	0.0957U	0.124∪				0			0.115U				0.128U		0.118U			0.824	0.0988U			٥	0.102
Lead		26.5				9.72			7.94				7.69	,		54.3				5.35U									21.6
Copper		35.7						39.2								13.2				2				12.1	18.3		14.2		16.4
Chromium			9.48			7.37							3.73							6.44	7.35	9.84	10.9	7.78	79.1		22.7		8.07
Cadmium	_	겁	3.16U		2		2.3U			2.59U		2.63U				2.95U											2.89U	2.40	2.16U
Beryllium		Ta	3.16U	2.77U				3.13U					2.18U		2.58U	2.95U						ļ,			2.98U		2		2.16U
Barium		275	100	. 104	61.8	53.1	25.6	65.3	6.52	88.1	37.5	76.0	6.77	114	80.1	44.2	75.4		157	13.4	24.0	68.2	65.4	59.6	111	74.6	68.8	87.9	29.9
Arsenic	7.05	П	UEE.8	5.54U	.5.66∪	2.09U	4.6U	6.26U	4.63U	5.19U	5.410	5.26U	4.36U	020'9	5.16U	5.910	4.95U	5.78	6.89U	5.35U	5.29U	5.44U	3.98U	3.610	5.96U	4.82U	5.78U	4.810	4.32U
Unit			Fill	·	Ē		臣		F		Fill	Nat. Soil	Nat. Soil	. III.4	Fill		EL.	Ē	Nat. Soil	Nat. Soil	Nat. Soil	Ē	Ē	匪	Fill	Nat. Soil	Nat. Soil	Fill	Fill
Saturated/Unsaturated			<u> </u>	7	တ	<u> </u>	တ	>	5	<u> </u>	တ	တ	Ø	_	⊃	∍	S	ဟ	ဟ	တ	တ	Э	Э	>	ဟ	တ	S	⊃	미
	UBL - Fill Material	UBL - Nat. Soils	SB-14-0.5-2	SB-14-16-20	SB-14-24-28	SB-15-4-8	SB-15-36-41	SB-16-0.5-2	SB-16-2-4	SB-16-19-24	SB-16-24-29	SB-16-29-34	SB-16-34-37	SB-17-0.5-2	SB-17-2-4	SB-17-16-20	SB-17-24-28	SB-17-29-33	SB-17-44-49	SB-17-49-51	SB-17-54-59	SB-18-0.5-2	SB-18-2-4	SB-18-16-18	SB-18-28-32	SB-18-32-36	SB-18-56-60	SB-19-0.5-2	SB-19-2-4

INORGANIC COMPOUNDS

T-Cyanide	<u>п</u>	Ja.	0.873U	1.08U	10	1.27U	1.22U	1.17U	1.10	1.13U	0.936U	1.07U	0.992U	0.879U	1.08U	0.772U	1.25U	0.886U	0.912U	1.03U	0.828U	0.734U	0.901U	0.996U	1.02U	0.9440	10	0.767U	0.852U
Zinc	257	80.3	11.2	13.8	4.74U	97.2	39.4	33.6	45.5	6.24	153	73.8	48.2	68.8	45.0	43.2	61.9	32.1	36.4	43.3	62.3	30.0	10.9	34.0	33.5	30.1	244	60.5	20.7
Vanadium	58.9	120	24.3	20.8	99.6	50.1	60.6	34.9	29.9	6.97	40.8	73.5	62	25.5	40.1	20.7	69.2	33.4	50.8	26.7	17.6	16.7	5.01	48.4	39.6	19,5	23.6	17.9	25.8
Nickel	14.4	29.7	4.79U	4.62U	4.74U	5.85	6.74	4.64U	5,25	4.15U	5.98U	5.69U	60.6	5.88U	5.420	5.23U	12.1	6.38U	5.56U	4.55U	5,29U	5.77U	4.02U	6.58U	4.2U	5.010	10.3	4.78	6.210
Mercury		סר	0.11U	0.0963U	0.108U	** 0.825	-	1.14		0.103U									٥	0.121	0.161	9.164	0.1110	0.12U		0.554		0.133	0.124U
. Lead	204	26.5	11.2	11.1	4.			28.0			·					54.6		9		,,	138	= 192.1	4.02U	7.82	7.20			42.4	6.210
Copper		35.7		11.3	2.37U	21.8					21.2		31.4		14.3						31.1		2.010	14.1					5.57
Chromium	28.7	52.8	6.75	7.34	4.84	25.0	12.3	9.05	12.2	8.22	10.6	23.5			767	9.72	37.1	18.8	8.45	82'9	9.38	8.44	4.51	8.31				13.0	13.3
Gadmium		DF	2.40	2.31U	2.37U	2.47U	2.65U	2.32U	2.62U	2.07U	2.99U	2.85U	3.02U	2.94U	2.71U	2.62U	2.93U	3.19U	2.78U	2:27U	2.64U	2.89U	2.010	3.29U	2.1U	2.5U	2.42U	2.23U	3.10
Beryllium	DF	TO DF	2.40	2.310	2.37U					2.07U			3.02U	2.940		2.62∪	2.93U							3.29U	2.10		2.42U	2	3.10
Barium		275	29.4	47.6	9.45	47.5	88.3	50.4	65.4	8.32	7.97	6.09	#8F	47.8		47.4	121	78.9	92.1	52.3	31.8	33.2	13.3	80.8	49.0	50.9	897	60.7	38.3
Arsenic	7.05	DT.	4.790	4.62U	4.74U	916	5.3∪	4.64∪	5.24U	4.150	5.98U	5.69U	6.04U	5.88U	5.56	5.23U	5.86∪	0.38∪	5.56U	4.55U	5.29U	5.77U	4.02U	6.58U	4.2U	5.010	6.81	4.45U	6.21U
Unit				FII	Nat. Soil	E	Œ		Ē	Nat. Soil	FIII∶	温	計	ii.	æ	Fill	Nat. Soil	Nat. Soil	Ē		昰	Nat. Soil	Nat. Soil		Ē	Fil	Fill	Fill	Nat. Soil
Saturated/Unsaturated) -	>	>	2	<u>.</u>	2	5	2	<u> </u>	<u> </u>	-	_	∍	S	တ	တ	2	>	_	S	S	-	Э	Э	Э	တ	တ
	UBL - FIII Material	UBL - Nat. Soils	DUP032101A	SB-19-4-8	SB-19-8-11	SB-20-0-2	DUP031501B	SB-20-2-4	SB-20-4-8	SB-20-9-13	SB-21-0-2	DUP030601A	SB-21-2-4	SB-21-12-16	SB-21-16-20	SB-21-28-30	SB-21-44-48	SB-21-60-64	SB-22-0-2	SB-22-2-4	SB-22-19-24	SB-22-24-29	SB-22-59-62	SB-23-0-2	DUP032201B	SB-23-2-4	SB-23-14-19	SB-23-24-29	SB-23-59-62

T-Cyanide	D	ᆸ	0.889	0.748U	1.08U	1.24U	0.745U	1.110	0.928U	0.958U	0.793U	0.879U	0.942U	1.010	1.32U	0.842U	0.87U	0.999U	0.883U	1.010	0.823U	1.01U	1.14U	1.03U	0.888U	0.933U	0.986U	144	0.766U
Zinc	257	80.3	96.6	53.7	462	106	12.5	63.0	59.0	45.3	59.1	21.5	104	26.2	61.9	47.9	46.3	22.7	59.8	24.0	39.6	41.9	5.93U	22.1	54.6	40.5	7.1.7	219	10.2
Vanadium	58.9	120	24.7	23.9	19.3	31.6	14.4	72.5	76.2	55.2	28.7	13.1	22.4	38.3	74.5	60.8	52.1	43.0	18.7	32.0	31.8	18.0	10.8	29.6	25.0	33.6	20.5	19.6	21.1
Nickel	14.4	29.7	5.38U	5.44U	5.32U	6.43U	6.11U	15.0	14.4	11.1	5.25U	5.4∪	3.76	4.97U	11.7	10.6	11.5	5.19U	5.11U	5.53U	6.14	5.36U	5.93U	5.74U	11.5	5.6U	5.3U	6.46U	5.93U
Mercury	0.541	DF.	0.650	1.09'0	0.412	0.465	0.112U	0.126	0.126U	0.109U	0.289	0.154	0.346	0.454	0.134∪	0.1310	0.139U	0.203	0.151	0.125	0.286	0.237	0.438	0.118U	0.122U	0.242	0.266	4,59	0.154
Lead	204	26.5	151	80.9	938	152	14.5	12.1	13.8			29.5	85.3	20.9	36,3	10.7	7.49	15.7	89.3	20.1	59.9	75.1	6.65	6.87	9.90	57.4	104	634	18.5
Copper	43.4	35.7	11.6	11.5	13.8	928	4.36			15.2		9.23	10.1	8.63		18.8		27.9		09.9			3.57	6.76			24.8		4.69
Chromium	28.7	52.8	13.5	9.63	9.75	15.9	7.44	41.9	43.2	29.8	10.3	6.21	9.10	17.2	36.0	31.0	25.6	14.2	96.6	13.3	14.5	7.86	9.67	.15.8	13.1	10.4	11.5	22.6	11.8
Cadmium	DI	10	2.69U	2.72U	2.66U	3.22U	3.06∪	3.28U	3.22U	2.63U	2.63U	2.7U	1.73U	2.49U	2.74U	3.07U	3.24∪	2.6U	2.55U	2:77U	2.62U	2.68∪	2.96U	2.87U	2.95U	2.8U	2.65U	3.23U	2,96U
Beryllium	:	10	2.69U	2.72U	2.66U	3.22U	3.06U	3.28U	3.22U	2.63U	2.63U	2.70	1.73U	2.49∪		3.07∪	ļ.				2.62U	2.68∪	2.96U	2.87U				3.23U	2.96U
Barium	115	275	74.6	42.4	181	74.5	40.1	186	175	134	56.9	23.0	93.6	50.5	169	160	91.9	50.1	33.8	54.2	104	42.4	5.93U	58.8	48.8	53.9	42.0	209	44.7
Arsenic	7.05	TO	5.38U	5.44U	5.32U	6.43U	6.11U	6.56U	6.43U	5.26U	5.25U	5.40	3.46U	4.97∪	5.47U	6.15U	6.48U	5.19U	5.11U	5.53U	5.25U	5.36U	5.93U	5.74U	5.9U	5.6U	5.3U	7.47	5.93U
Unit			ii.	昰		置	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Fill	HII.		Œ	Nat. Soil	Nat. Soil	Nat. Soil	Œ	E	置		E	Ш	Nat. Soil	Nat. Soil	III	Fill	Fill	Nat. Soil
Saturated/Unsaturated			⊃	>	-	တ	တ	တ	တ	တ	2	2	>	တ	တ	တ	ဟ	ם	2	-	⊃)	S	S	တ	2	Э	_	ב
	UBL - Fill Material	UBL - Nat. Soils	SB-24-0-2	SB-24-2-4	SB-24-8-12	SB-24-32-34	SB-24-40-42	SB-24-44-48	DUP030101A	SB-24-52-56	SB-25-0.5-2	SB-25-2-4	SB-25-16-20	SB-25-28-32	SB-25-44-48	SB-25-56-60	SB-25-60-61	SB-26-0.5-2	SB-26-2-4	SB-26-8-12	DUP030201A	SB-26-20-24	SB-26-32-36	SB-26-48-51	SB-26-51-52	SB-27-0.5-1.5	SB-27-2-4	SB-27-8-12	SB-27-16-20

INORGANIC COMPOUNDS

	겁	占	040	€	1.20	<u></u>	8	[≳	<u></u>	2	12	ာ္က	<u></u>	4	2	9	€	읈	12	R	<u>@</u>	9	3	₽	₽	2	₽	₽	<u>6</u>
T-Cyanide			1.0	1.23	1	1.25	1.09	1.13	0.759L	1.15	0.841	1.03		1.04	0.817	0.8891	1.03	1.13	1.27	1.17	0.976	0.856	L	0.7181	0.871	0.9951	0.74	0.9410	0.929
Zinc	257	80.3	5.43U	33.3	41.1	101	4.910	17.3	28.8	29.6	13.3	22.6	37.4	17.8	15.2	18.7	19.8	44.0	9.99	51.0	37.9	37.1	12.8	24.3	43.0	27.8	22.8	22.3	33.5
Vanadium	58.9	120	11.0	56.0	48.6	31.9	9.80	72.8	6 09	44.6	22.1	22.7	35.9	14.7	12.9	16.5	21.6	62.8	72.0	35.5	36.7	54.3	16.7	30.4	37.2	38.2	38.8	26.7	21.7
Nickel	14.4	29.7	5.43U	6.13U	09	6.15U	4.91U	4.24U	6.34U	4.72	5.35U	4.11	9.46	5.07U	2.98U	3.59U	3.72	11.1	14.2	7.42	6.19	9.02	6.55U	5.76U	6.62	6.32	6.04U	6.18U	4.40
Mercury	0.541	סר	0.115U	0.115	0.12U	1-10.814	0.105U	0.126U	0.149	0.114U	0.134	0.553	0.1380	0.11U	0.0913U	0.103U	0.1010	0.154	0.122U	0.12U	0.125U	0.126U	0.124U	0.125U	0.12U	0.121U	0.121U	0.126U	0.174
Lead	204	26.5	6.35	12.5	9.52	76.3	6.35	11.6	22.0	12.8	14.1	11.0	8.98	5.07U	7.46	6.34	11.2	16.3	12.3	21.2	23.5	14.1	6.55U	5.76	20.4	430	12.1	6.18U	32.9
Copper	43.4	35.7	3.55	975	Z 46 💳	16.8	2.46U	42.6	8.99	31.7	3.64	4.99	10.5	2.53U	5.28	5.67	8.69	19.7	19.6	12.9	14.0	15.8	4.19	7.29	13.0	12.0	10.1	6.00	6.71
Chromium	28.7	52.8	9.62	10.0	8.53	12.6	5.26	14.7	11.6	13.2	5.78	16.3	21.1	5.69	11.1	10.7	13.1	30.6	40.9	18.9	18.8	26.5	8.43	15.9	19.5	20.1	18.0	20.6	8.10
Cadmium	겁	ם	2.72U	3.06U	nε	3.08U	2.46U	2.12U	3.17U	2.3U	2.67U	1.83U	2.77U	2.53U	1.49U	1.8U	1.39U	1.910	2.07U	2.510	2.65U	2.9U	3.28U	2.88U	2.55U	2.79U	3.02U	3.09U	2.2U
Beryllium	Ы	7	2.72U	3.06U	ാദ	3.08U	2.46U	2.12U	3.17∪	2.3U	2.67U	1.83U	2.77U	2.53U	1.49U	1.8U	1.39U	1.910	5,42	2.510	2.65U	2.90	3.28U	2.88U	2.55U	2.79U	3.02U	3.09∪	2.2U
Barlum	115	275	5.43U	. 81.0	85.4	73.1	5.88	50.3	31.6	67.2	17.3	72.9	88.0	9.52	. 25.5	33.5	45.7	128	159	102	93.0	119	40.2	57.2	95.0	85.5	83.5	63.5	99.7
Arsenic	7.05	ď	5.430	6.13U	N9 .	6.15U	4.91U	4.24U	6.34∪	4.6U	5.35U	3.65U	5.55U	5.07U	2.98U	3.59U	2.78U	3.83U	4.14U	5.03U	5.3U	5.8∪	6.55U	5.76U	5.09U	5.57U	6.04∪	6.18U	4.4U
Unit			Nat. Soil	Fill		Fill	Nat. Soil	Fill	ii.	Ē	Fill		Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Fill
Saturated/Unsaturated			တ	n	n	n	n	n	n	n	n	S	S	S	n	n	Ω	S	S	n	n	⊃	⊃	တ	n	Ω	n	S	n
	UBL - Fill Material	UBL - Nat. Soils	SB-27-20-21	SB-28-0.5-2	SB-28-2-4	SB-28-4-8	SB-28-8-9.5	SB-29-0.5-2	DUP030501A	SB-29-2-4	SB-29-20-24	SB-29-28-32	SB-29-48-52	SB-29-52-53	SB-30-0-2	DUP041201A	SB-30-2-4	SB-30-8-12	SB-30-16-20	SB-31-0-2	SB-31-2-4	SB-31-4-8	SB-31-8-12	SB-31-16-20	SB-32-0-2	SB-32-2-4	SB-32-4-8	SB-32-16-20	SB-33-0.5-2

	T-Cyanide	D	٦	1.02U	1.02U	0.963U	0.82U	0.87U	1.08U	1.03U	1.07U.	0.908U	1.06U	1.14U	1.130	1.11U	1.22U	1.34U	1.26U	1.23U	1.32U	1.33U	1.30	1.27U	1.33U	1.310	1.38U	1.37U	0.991U	1.2U
		257	80.3	73.7	6.33	5.43U (160	58.8	85.4	5.04U	15.9	339	6.56U	106	95.8	102	15.8	23.8	38.8	41.1	35.1	27.7	40.2	27.0	13.3	42.5	57.6	50.8		46.9
	Zinc						ε.							8																
	Vanadium	58.9	1.	43.4	28		17.3	24.5	18	5.040	24.7	79.8	14.6	27.8	21	20.9	17	33.9	45.9	55	32.8	32	36.6	34.6	15.	48.1	68.4	71.9	78.3	75.
	Nickel	14.4	29.7	4.58U	5.67U	5.43U	8.29	4.93U	4.92U	5.04U	4.23U	5.10	6.56U	5.69U	.5.63U	5.55U	6.08U	6.72U	7.62	8.45	8.24	6.65U	6.88	6.35U	6.64U	8.28	11.1	10.3	15.9	12.1
-	Mercury	0.541	םר	0.541	0.247	0.105U	0.241	0.318	0.264	0.101U	0.0938U	0.380	0.122U	0.248	0.182	0.336	0.117U	0.133U	0.119U	0.122U	0.126U	0.131U	0.1210	0.118U	0.124U	0.123U	0.124U	0.125U	0.136U	0.126U
	Lead	204	26.5	8'29	5.67U	5.43U	149	60.1	95.7	5.040	8.98	282	6.56U	135	94.3	116	18.1	7.88	6.33	7.47	6.62U	6.65U	6.95	6.35U	6.64U	8.34	13.6	14.7	15.0	14.6
	Copper	43.4	35.7	43.4	5.74	2.72U	42.2	10.8	10.8	2.52U	8.42	-749	3.28U	11.9	11.6	12.4	5.54	9.53	11.3	11.9	10.1	8.44	11.6	99.6	4.02	13.8	23.1	22.1	23.4	19.5
	Chromium	28.7	52.8	22.0	28.7	5.58	9.40	12.9	14.4	2.52U	12.3	46.5	5.63	11.5	8.49	9.08	9.68	16.3	23.5	24.6	17.7	15.5	20.0	15.0	7.76	24.5	36.3	35.3	41.4	39.4
	Cadmium	DF	DL	2.29U	2.84U	2.72U	2.31U	2.47U	2.46U	2.52U	2.12U	2.55U	3.28U	2.84U	2.82U	2.77U	3.040	3.36U	3.16U	3.08U	3:310	3.32U	3.26U	3.18U	3.32U	3.26U	3:46U	3.42U	2.98U	3.14U
	Beryllium	DF	머	2.29U	2.84U	2.72U	2.310	2.47U	2.46U	2.52U	2.12U	2.55U	3.28∪	2.84U	2.820	2.77U	3.040	3.36U	3.16U	3.08U	3.31U	3.32U	3.26U	3.18U	3.32U	3.26U	3.46U	3.42U	2.98U	3.140
	Barium	115	275	81.1	11.1	5.430	87.2	41.5	95.7	5.040	24.8	70.1	6.56U	54.4	57.1	63.9	21.6	84.1	91.5	83.4	63.2	. 51.2	92.5	62.9	30.1	110	155	155	169	147
	Arsenic	7.05	DL	4.58U	5.67U	5.430	4.61U	4.93U	4.92U	5.04U	4.23U	7.05	6.56U	5.69∪	5.63U	5,55U	6.08U	6.72U	6.320	6.15U	6.62U	6.65U	6.51U	6.35U	6.64U	6.53U	6.92U	6.84U	5.96U	6.27U
	Unit			Fill	Fill	Nat. Soil	Fill	Fill	Fill	Nat. Soil	Fill	Fill	Nat. Soil	Eii		Ш	Ē	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil	Nat. Soil
	Saturated/Unsaturated			n	n	⊃	n		n	n	n:	n	5	D	n	n		n	5	n .	n	n	S	S					S	
		UBL Fill Material	UBL - Nat. Soils	SB-33-2-4	SB-33-8-10	SB-33-10-14	SB-34-0.5-2	SB-34-2-4	SB-34-4-8	SB-34-8-10	SB-36-0.5-2	SB-36-2-4	SB-36-4-6	SB-38-0-2	DUP041201B	SB-38-2-4	SB-38-4-6.5	SB-38-6.5-9	SB-38-9-11.5	SB-38-11.5-14	SB-38-14-16.5	SB-38-16.5-19	SB-38-19-21.5	SB-38-21.5-24	SB-38-24-26.5	SB-38-26.5-29	SB-38-29-31.5	SB-38-31.5-34	SB-38-34-36	SB-38-36-38

	٠		r=-	T	-		-	_		-		[I	-	-					r			T		1			
T-Cyanide	70	Ы	0.971U	0.915U	0.749U	0.8810	0.678U	0.795U	0.8010	1.010	0.958U	1.03U	1.06U	1.15U	1.03U	0.985U	0.985U	0.889U	0.897U	1.08U	0.878U	0.961U	0.998U	1.090	0.854U	0.928U	1.03U	0.971U	1.09U
Zinc	257	80.3	65.2	69.5	145	76.6	62.4	61.7	64.1	20.1	32.9	21.6	,		105	24.0	47.6	43.1	44.9	48.5	37.3	219	84.4	46.3	6.96	124	71.2	86.8	55.7
Vanadium	58.9	120	23.8	23.6	20.3	20.4	50.1	19.6	19.0	39.0	30.4	34.1	46.8	26.9	12.4	13.7	48.4	42.0	58.9	8 69	43.6	18.5	18.6	58.1	14	18.6	28	24.6	25.3
Nickel	14.4	29.7	4.80	5.410	4.89U	14.4	4.54U	6.05	4.27U	6.3U	5.70	5.17U	5.92U	5.58U	5.03U	5.80	10.0	8.93	10.4	6.82	5.45	4.97U	6.39U	10.8	3.79U	3.1	3.86U	4.91	3.86
Mercury	0.541	DF	0.132	0.156	0.318	0.188	0.385	0.329	0.293	0.12U	0.262		0.185		0.498		0.118U	0.127U	0.108U	0.1010	0.1010	0.228	1.33	0.125U	0.242	0.274	0.139		0.134U
Lead	204	26.5	59.1	72.6	164	77.9	62.9	73.2	7.5.7	8.97	0.89	23.1			140	17.2	7.16	6.82	10.3	11.2	7.25	166	484	10.4	166	170	99.2	113	51.3
Copper	43.4	35.7	11.6	11.0	11.5	12.3	21.1	17.1	. 11.8	44.5	39.8	27.1	18.3	10.5	13.4	6.36	13.7	14.2	16.6	35.2	12.9	9.66	9.05	17.3	7.78	11.7	9.22	12	9.16
Chromium	28.7	52.8	10.3	11.2	10.2	11.6	11.6	16.0	9.43	6.34	12.8	14.7	10.2	11.8	5.83	8.94	27.0	24.1	31.3	12.0	11.3	10.8	13.0	31.3	7.01	14.5	9.11	16.7	13.90
Cadmium	Dľ	٦c	2.40	2.7U	2.44∪	2.05U	2.27U	2.13U	2.13U	3.15U	2.49U	2.59U	2.96U	2.79U	2.51U	2.13U	3.26U	3.23U	3.14U	2.78U	2.37U	2.49U	3.19U	2.89U	1.9U	1.49U	1.93U	2.070	1.54U
Beryllium	DI	סר	2.4U	2.7U	2.44∪	2.05∪	2.27∪	2.13U	2.13∪	3.15U	2.49U	.2.59∪	2.96∪	2.79U	2.510	2.13U	3.26∪	3.23U	3.14U	2.78U	2.37U	2.49U	3.19U	2.89∪	1.9∪	1.49∪	1.93U	2.07U	1.54U
Barium	115	275	53.8	52.9	6.69	59.4	63.3	52.8	49.7	53.6	58.0	42.3	51.2	83.7	74.0	53.9	119	104	104	92.0	63.2	512	212	114	69.2	70.4	126	78.6	55.9
Arsenic	7.05	DL	4.8∪	5.41U	4.89U	4:1N	4.54U	4.26U	4.27U	6.3U	4.98∪	5.17U	. 5.92U	5.58U	5.03U	4.27U	6.52U	6.45U	6.27U	5.56U	4.75U	4.97U	6.39U	5.78U	3.79U	2.98U	3.86U	4.14U	3.07U
Unit			Fill	Fill	FIII	Fil	Fill		Fill	II.	E	Hi.	Fill		Fill	Fill	Nat. Soil	Nat. Soil	Nat. Soil	Fil	Fill	E	Eil	Nat. Soil	Fill	Fill	Fill	Fill	. III.
Saturated/Unsaturated			n	n	n	n	n	n	ח	n	ח	Э	n	n	n	S	S	S	S	n	n	ר	တ	ဟ	Ω	'n	D	U	'n
	UBL - Fill Material	UBL - Nat. Soils	SB-38B-0-2	DUP041301A	SB-38B-2-4	SB-38B-4-6	SB-38B-6-8	SB-38B-8-10	SB-38B-10-12	SB-39-0.5-2	SB-39-4-8	SB-39-8-12.5	SB-40-0.5-2	SB-40-2-4	SB-40-16-20	SB-40-24-28	SB-40-40-44	DUP032001A	SB-40-56-58	SB-41-0-2	SB-41-2-4	SB-41-19-24	SB-41-24-29	SB-41-54-59	SB-43-2-4	SB-43-4-8	SB-43-8-12	SB-43-12-16	SB-43-16-20

T-Cyanide	占	ฉ	1.06U	0.706U	0.829U	1.22U	0.995U	1.81U	1.04U	1.23U	1.22U	1.13U	Ä	NA	NA	A A	NA	NA	NA	NA	NA	ŊĄ	NA	NA	NA	NA	NA	1.190	1.14U
Zinc	257	80.3	257	69.1	49.8	54.9	9.89	125	68.3	89	46	24.9	ΑN	NA	NA	ΑN	NA AA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	54.5	46.9
Vanadium	58.9	120	16.4	31	16.5	58.9	9.96	791	88.1	75	59.6	28.4	ΝΑ	NA	NA	ΑN	NA	NA	NA	NA	NA	AN	NA	NA	NA	NA	NA	68.3	49.5
Nickel	14.4	29.7	3.58U	4.24U	4.36	13	15.8	29.7	16.3	14.7	10.8	5.89	NA	NA	NA.	NA	A A	NA	NA	NA	NA	ΑN	NA	ΑN	NA	ÝΝ	NA	10.6	11.6
Mercury	0.541	· DL	0.184	0.109U	0.114U	0.123U	0.130U	0.237U	0.132U	0.1310	0.138U	0.139U	NA	NA							NA	NA	NA	NA	NA	NA	NA	0.125U	0.123U
Lead	204	26.5	676			12.8	4	2		15.6		4.94U	12.1	25.3	181	5.53U	5.54U	58.5	35.6	425	1070	38.6	37.8	15.6	70.6	34.5		24.6	7.52
Copper	43.4	35.7	11.1	7.34	6.3			45.5		24.2	17.7	7.39	NA	ΑN	ΝÀ	NA	ΑÃ	AN.	ΑN	NA	NA	Ϋ́	Ν	AN	NA	NA	NA	23.5	
Chromium	28.7	52.8	17.80	18.40	12.6	31.3	51.5	87.2	44.7	41	29.3	15.7	NA	NA	AN	NA	NA	NA	A A	NA	NA	AN	NA	NA	NA	NA	NA	26.7	25.5
Cadmium	TG	Ы	1.79U	2.12U	1.97U	2.610	2.95U	5.27U	2.47U	2.77U	1.88U	2.47U	NA	NA	AN	ΝΑ	NA	NA	AN	NA.	NA	AN	AN	AN	NA	NA.	AA	3.21U	3.18U
Beryllium	ᆸ	DL	1.79U	2.12U	1.97U	2.610	2.95U	5.27U	2.47U	2.77U	1.88U	2.47U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN.	AN	NA	NA	NA	3.210	3.18U
Barium	115	275	68	. 37.1	67.7	158.0	197	338	204	219	116	50.4	NA	NA	ΑN	NA	AA	NA	AN	NA	NA	ΑN	NA NA	AN	AN	AN	NA	173	114
Arsenic	7.05	DL	4.19	4.24U	3.94U	5.22U	9.90	10.5U	4.94U	5.53U	3.77U	4.940	NA	NA	Α̈́	NA	AN	ΑN	AN	ΑN	ΑN	Ϋ́	¥	₹	AA	ΑN	NA	6.43U	0.36∪
Unit			jii.	記	iii	Nat. Soil	ij.	Œ	ii.	Nat. Soil	Nat. Soil	Ē	Fill	III.			E	E	<u> </u>		ii.	Nat. Soil	Nat. Soil						
Saturated/Unsaturated			_	S	တ	တ	တ	S	S	S	S	တ		<u> </u>	-	_	n	2	2	Э	2	<u>-</u>	5	∍	>	>	>	ဟ	ဟ
	UBL - Fill Material	UBL - Nat. Soils	SB-43-20-24	SB-43-24-28	SB-43-32-36	SB-43-36-40	SB-43-40-44	SB-43-44-48	SB-43-48-52	SB-43-52-56	SB-43-56-60	SB-43-60-64	SB-44-0-2	SB-44-5-7	SB-44-10-12	SB-44-15-17	SB-44-20-21	SB-45-0-2	SB-45-5-7	SB-45-10-12	SB-45-15-17	SB-45-18.5-20	DUP082003A	SB-46-0-2	SB-46-0-2	SB-46-0-2	SB-46-0-2	MW-6-34-39	MW-6-44-49

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

C-2 COMPLIANCE STATUS INVESTIGATION

	Date	Benzene	Carbon Disulfide	Ethylbenzene	Methylene Chloride	Methyl-tert-butyl-ether	Toluene	Xylenes	Total Detected VOCs
UBL		DL	DL	DL	DL	DL	DL	DL.	
MW-1	March-01	9.1	5U	5U	5U	5U	5U	5U	9.1
	August-03	5υ	5U	5U	5U		5U	5U	o
MW-2	March-01	5U	5U	5U	5U	8.5	5U	5U	8.5
	August-03	5U	5U	5U	5U	N/A	5U	5Ų	o
MW-3	March-01	50	5U	5U	5U	5บ	5U	5U	0
Dup 031201A	March-01	- 5U	5U	5U	5 U	5U	5U	5 U	0
	August-03	5U	5U	5U	5U	N/A	5Ú	50	0
Dup082003A	August-03	50	5U	5U	5U	N/A	5U	5U	o
MW-4	March-01	5U	5U	5U	5U	- 18	5U	5U	18
-	August-03	5∪	5U	5U	5U	N/A	- 5U	5U	· o
MW-5	March-01	5U	5U	5U	5Ü	. 5U	5U	5U	0
Dup032901A	March-01	50	5U	5U	5U	5U	5U	5U	· 0
	August-03	5U	5U	5U	5U	N/A	5U	5 U	0
MW-6	March-01	5U	5U	5U	5U	5U	5U	5U	0
	August-03	5U	5U	5U	. 5U	N/A	5U	5U	0
MW-7	August-03	. 5U	. 5U	5U	5U	N/A	5U	5U	0

SEMI-VOLATILE ORGANIC COMPOUNDS
GROUNDWATER SAMPLES-COMPLIANCE STATUS INVESTIGATION
MACON 2 FORMER MGP FACILITY/WILLIAMS PROJECT NO. 1100-2990
VALUES LISTED IN MICROGRAMS PER LITER (ug/L)

Total Detected SVOCs	1	0	0	0	12	0	0	Ō	0	0	0	13	12	14	0	0	0
Phenol	ក	100	100	100	100	<u>1</u> 0	100	100	100	100	100	100	100	100	100	100	1001
Pyrene	ᆸ	100	100	100	J01	195	100	100	10C	100	100	100	100	10C	100	100	1001
Phenanthrene	ď	100	10U	100	100	100	100	1001	100	100	<u>10</u>	100	100	100	100	1001	1001
Naphthalene	7	€	1001	_10€	100	1001	10 <u>C</u>	100	100	100	10C	100	10C	100	100	100	100
Indeno(1,2,3-cd)pyrene	Ы	100	100	10C	10C	100	100	10C	100	<u>1</u> 0	100	100	100	100	100	100	100
Fluorene	Ы	100	16 5	100	10	<u>1</u>	100	<u>10</u>	100	5	100	100	100	16U	100	100	100
Fluoranthene	D	1001	100	100	100	100	10U	1001	100	100	100	100	100	10U	10U	100	100
Dibenzo(a,h)anthracene	7d	£ €	100	100	<u>3</u>	100	<u>₹</u>	10C	100	1001	100	100	16	100	100	1001	100
Chrysene	TO	100	100	100	<u>1</u> 0	100	100	<u>1</u> 0	100	100	10U	100	100	. 10U	100	10U	100
Benzo(k)fluoranthene	DL	1001	100	1001	100	100	10	10	5	100	160	100	5	100	1001	100	1001
Benzo(g,h,i)perylene	DL	100	100	100	햔	10J	10 2	10	100	10C	100	10U	100	100	100	100	10U
Benzo(b)fluoranthene	DL	100	100	100	100	100	€	10 10	10	100	100	1001	100	100	10U	.10U	100
Benzo(a)pyrene	DL	100	100	10N	100	100	100	100	100	1	100	100	100	100	1001	100	100
Benzo(a)anthracene	DL	100	100	100	100	100	100	10C	100	100	100	10U	100	100	100	100	1001
Anthracene	DL	100	10U	1001	100	100	100	165	100	100	10C	1001	<u></u> €	100	10U	100	100
Acenaphthylene	סר	100	100	100	100	100	10 10	10C	100	<u>1</u> 00	100	100	5	100	10U	100	1001
Acenaphthene	DF	100	10U	100	3 11-	100	100	<u>1</u> 6	5	100	100	61	12	14	100	100	1001
Date	ľ	March-01	August-03	March-01	August-03	March-01	March-01	August-03	August-03	March-01	August-03	March-01	March-01	August-03	March-01	August-03	August-03
	UBL	MW-1		MW-2		MW-3	Dup 031201A		Dup082003A	MW-4		MW-5	Dup032901A		MW-6		MW-7

Page 3 of 3

INORGANIC COMPOUNDS
GROUNDWATER SAMPLES-COMPLIANCE STATUS INVESTIGATION
MACON 2 FORMER MGP FACILITY/WILLIAMS PROJECT NO. 1100-2990
VALUES LISTED IN MILLIGRAMS PER LITER (mg/L)

	Date	Arsenic	Barium	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Vanadium	Zinc	T-Cyanide
UBL	+	DL	Dľ	חם	ΩΓ	DI	ָםר	70	Б	na	DF	0.0290	DL
MW-1	March-01	0.02U	0.02U	0.005U	0.005U	0.010	0.010	0.010	0.0005U	0.02U	0.010	0.0290	0.010
	August-03	0.02U	0.02U	0.005U	0.005U	0.01U	0.010	0.010	0.0005U	0.020	0.010	0.020	0.010
MW-2	March-01	0.02U		0.005U	0.0050	0.01U	0.010	0.010	0.0005U	0.02U	0.010	0.02U	0.0680
٠	August-03	0.02U		0.005∪	0.005U	0.010	0.01U	0.010	0.0005U	0.02U	0.010	0.020	0.048
MW-3	March-01	0.020	0.856	0.005U	0.005U	0.01U	0.01U	0.010	0.0005U	0.02U	0.010	0.020	0.010
Dup 031201A	March-01	0.020		0.005U	0.005U	0.010	0.010	0.010	0.0005U	0.02U	0.010	0.020	0.010
	August-03	0.020	669 0	0.005U	0.005U	0.010	0.010	0.010	0.0005U	0.020	0.010	0.020	0.010
Dup082003A	August-03	0:020	0.692	0.005U	0.005U	0.010	0.010	0.010	0.0005U	0.02U	0.010	0.020	0.010
MW-4	March-01	0.020	678.0	0.005U	0.005U	0.01U	0.010	0.010	0.0005U	0.02U	0.010	0.02U	0.010
	August-03	0.020	0.880	0.005U	0.005U	0.01U	0.01U	0.010	0.0005U	0.02U	0.010	0.02U	0.010
MW-5	March-01	0.020		0.010	0.010	0.010	0.010	0.010	0.0005U	0.02U	0.010	0.02U	0.010
Dup032901A	March-01	0.02U	06 /	0.010	0.010	0.010	0.010	0.010	0.0005U	0.02U	0.010	0.02U	0.010
	August-03	0.02U	98 (1.25)	0.005U	0.005U	0.010	0.010	0.010	0.0005U	0.020	0.010	0.02U	0.010
MW-6	March-01	0.02U	191 D	0.005U	0.005U	0.010	0.010	0.010	0.0005U	0.02U	0.010	0.020	0.010
	August-03	0.02U	0.168	0.005U	0.005U	0.010	0.010	0.01U	0.0005U	0.02U	0.010	0.020	0.010
MW-7	August-03	0.02U	878 U	0.0050	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.010	0.02U	0.010

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

D-2 COMPLIANCE STATUS INVESTIGATION

Williams Environmental Services, Inc.

A Subsidiary of Will a	ams Group Interna	ional, Inc.								DOMING LOG	
BORING NUME	3ER	\$8-44	PAGE	1	OF .	1	PROJECT NUM	BER		1100-2990	
PROJECT	Macon 2 M	GP					DRILLING CON	TRACTO	R	Georgia Power Company	
BORING LOCA	TION						GROUND ELEV	NOITA			
DRILLING MET AND EQUIPME		HSA with conti	nuous sa	mpler			TOP OF CASIN	G			
DATE	8/20/03	START	7.	30	FINISH		820	LO	GGER	Mike Dillon	
			SAMPLI	<u> </u>						SOIL DESCRIPTION/COMMENTS	\Box
DEPTH BELOW GROUND SURFACE (feet)	SAMPLE INTERVAL	TYPE AND	TIME	REC. %	OVM PEAK/ AVG. (ppm)	R	EMARKS	SYMBOLIC		NAME, GRADATION OR PLASTICITY, PARTICLE SIZE, RIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENS R CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	
0	0, =							FILL	i .	Asphalt	
	025	0-2	730	100%				. •	-	0-3' Sandy clay - light brown, fine sand, plastic, stiff, dry	\dashv
	0-3.5			100%							
	1.										
	}								<u> </u>	3-3.5' Clayey sandy silt - dark yellowish orange, fine sand,	\dashv
										slightly cohesive, dry	
	1								Γ	3.5-6.5' Clayey silty sand - dark yellowish brown, very	.]
5			ļ	4000						cohesive, medium sand, dry	_
	3.5-8.5	5-7	740	100%						٦ .	
	1	.	' '								
·····							é		<u> </u>	6.5-8.5 Same as above; less clay content, no cohesiveness,	\dashv
										glass and brick fragments	
	1								-		
										8.5-12' Gravelly silty sand - dusky yellowish brown, dry,	_
40							•			gravel size brick, glass, fine sand, wood	
10	8.5-13.5			80%						-	
		. 10-12	750		•						
								ŀ			ľ
	1		ļ						—		_
											\perp
								240	-	13.5-18.5' Clayey silty sand - saprolite - mottled grayish	
	1							SAP	<u></u>	orange and pale red, dry, relict foliation almost vertical	\dashv
15						٠				friable	
	13.5-18.5			95%							l
	-	15-17	800				•		-	•	\exists
]										\Box
		,									
	1								\vdash		\dashv
						•			L	18.5-21 Same as above; less friable, more cohesive, dry	
	40.5.04			050/						•	
20	18.5-21	20-21	810	95%					-	_	
					,				<u> </u>		_
						ľ				Boring Termination 21' at bedrock	
	1								- .		\dashv
l									<u></u>		
. <u></u>											
-	1.	,							H		\dashv
25									l	_	

Milliams	Invironmental	Sanders.	lnı

BORING NUMB	SER		PAGE	1	OF _	1 PROJECT NUM	BER	1100-2990
PROJECT	Macon 2 M	GP		,		DRILLING CON	ITRACTOR	R Georgia Power Company
BORING LOCA	TION					GROUND ELEV	/ATION	
DRILLING MET AND EQUIPME		HSA with conti	nuous sa	mpler		TOP OF CASIN	G	
DATE	8/20/03	START	8:	30	FINISH	920	LOG	GGER Mike Dillon
			SAMPLI					SOIL DESCRIPTION/COMMENTS
DEPTH BELOW GROUND SURFACE (feet)	SAMPLE INTERVAL	TYPE AND NUMBER	TIME	REC. %	OVM PEAK/ AVG. (ppm)	REMARKS	SýMBOLÍC LOG	NAME, GRADATION OR PLASTICITY, PARTICLE SIZE, DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSIT OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL
0 	0-3.5	0-2	830	100%			FILL	Asphalt 0-3.5' Sandy clay - light brown, plastic, medium sand, stiff, dry
	3.5-8.5	5-7	840	80%				5-5.5' Clayey sand - dusky yellowish brown, very cohesive, medium sand, dry 5.5-6.5' Same as above; pale yellowish brown 6.5-7.5' Sandy clay - medium light gray, very fine sand, plastic, 3" brick fragment at base
10								8.5-13.5' Clayey gravelly sand - dusky yellowish brown, abundant organic material, wood, sticks, glass, brick fragments
	8.5-13.5	. 10-12	850	95%			-	- -
								13.5-17.5' Same as above - abundant particle board
15	13.5-18.5	15-17	900	80%				
					-			18.5-23.5' Clayey sand - dusky yellowish green, medium
20	49 5 22 5	18,5-20	910	80%				sand, slightly cohesive, wet at 20' bgs
-	18.5-23.5			00%			-	
25								Boring Termination 23.5'

William .	Environmental Services.	inn
williams	LIIGH BIIRICHEAF 3GIUIGGS.	HIG.

A Subsidiary of Will-	ams Group Interna	ionai, Inc.								
BORING NUMBER SB-46 PAGE 1 OF						1 PROJECT NUMBER				1100-2990
PROJECT Macon 2 MGP						DRILLING CONTRACTOR			R	Georgia Power Company
BORING LOCA	ATION				·		GROUND ELEV	ATION		
DRILLING MET AND EQUIPME	HSA with conti	with continuous sampler			TOP OF CASING ELEVATION					
DATE	8/20/03	START	940 FINISH				1040	LOGGER		Mike Dillon
		SAMPLE			<u> </u>			- 	Γ	SOIL DESCRIPTION/COMMENTS
DEPTH BELOW GROUND SURFACE (feet)	SAMPLE INTERVAL	TYPE AND NUMBER	TIME	REC. %	OVM PEAK/ AVG. (ppm)	ı	REMARKS	SYMBOLIC LOG		NAME, GRADATION OR PLASTICITY, PARTICLE SIZE, RIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY R CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL
0	0-3.5	0-2	950	100%				FILL		Asphalt 0-0.5' Gravelly silty sand - dusky yellowish brown, brick frags., dry, very fine sand, slightly cohesive, glass 0.5-6' Same as above; light brown
		-						-	<u>-</u>	_
	3.5-8.5	5-7 10	10000	95%					, ,	6-8.5' Sand - pale brown, dry, medium, some gravel sized brick fragments
									_	· · · · · · · · · · · · · · · · · · ·
10	-		_						_	8.5-12' Gravelly clayey fine sand - moderate yellowish brown, slightly cohesive, minor amount of rounded river gravel (quartz)
	8.5-13.5	. 10-12 1010	95%							
									_	12-13.5' Gravelly sand clay - dusky yellowish brown, gravel size rocks & brick fragments, dry, plastic, stiff
15										13.5-18.5' 3" brick at top - Clayey sandy silt - grayish orange, dry, very fine sand, slightly cohesive, glass
	13.5-18.5	15-17 1020	80%			, • •··•••				
		,							_	
20	18.5-23.5			25%			•	∇		1.25' of Gravelly sand - dusky yellowish brown, gravel size rocks & brick, medium sand, glass, saturated (difficult to determine depth)
·.	10.0720.0			2078						
25									_	Boring Termination 23.5'

Williams Environmental Services, Inc.

A Subsidiary of Wild	ans Group Interna	ional, Inc.		Secretary			DOKING LOG			
BORING NUME	BER	MW-07 PAGE 1 OF				2 PROJECT NUMBER				1100-2990
PROJECT Macon 2 MGP						DRILLING CONTRACTOR			TRACTO	OR Georgia Power Company
BORING LOCATION GROUND ELEVATION										
DRILLING METHOD HSA AND EQUIPMENT						TOP OF CASING				
DATE	8/19/03	START 1400 FINISH					1630			OGGER Mike Dillon
		SAMPLE								SOIL DESCRIPTION/COMMENTS
DEPTH BELOW GROUND SURFACE (feet)	SAMPLE INTERVAL	TYPE AND NUMBER	TIME	REC. %	OVM PEAK/ AVG. (ppm)	REMARKS		SYMBOLIC LOG	NAME CRADATION OF BLASTICITY PARTICLE SIZE	
0			-			Logged	from Cutti	ngs	FILL	Asphalt Clay - light brown, cohesive, plastic, dry Gravelly sand - moderate yellowish brown, dry, fine sand, medium size gravel
5		-			-		•			
										Same as above; slight cohesiveness, slightly moist
10										Gravelly clay - plastic, moderate brown, small gravel
15						•				Sandy clay - dark yellowish brown, stiff, medium sand, plastic, dry
·		,						-		Clayey fine sand - dusky yellowish brown, cohesive, dry
20			-							
									∇	Gravelly sandy clay - dusky yellowish brown, gravel rock & brick fragments, glass, wet
25										

William e	Environmental Services.	Inc
vviii i aiu e	Lituit billit ontat 3 5 lot 5 04.	111 0

A Subsidiary of Williams Group International, Inc.									DOMING EOG			
BORING NUMBER		MW-07 PAGE 1			. OF	2	PROJECT NUMBER			1100-2990		
PROJECT Macon 2 MGP				-	DRILLING CONTRACTOR				Georgia Power Company			
BORING LOCA	ATION						GROUND ELE	VATION		·		
DRILLING ME AND EQUIPMI		HSA			•	TOP OF CASI	OP OF CASING					
DATE	8/19/03	START	T 1400		FINISH		1630		GGER	Mike Dillon		
DEPTH BELOW GROUND SURFACE (feet)		SAI			SAMPLE					SOIL DESCRIPTION/COMMENTS		
	SAMPLE INTERVAL	TYPE AND NUMBER	TIME	REC. %	OVM PEAK/ AVG. (ppm)	F	REMARKS	SYMBOLIC LOG	DISTE	NAME, GRADATION OR PLASTICITY, PARTICLE SIZE, RIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY R CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL		
25						Logged	from Cuttings			Same as above; moderate yellowish brown, rock && brick		
							•		\vdash	fragments		
									<u></u>	-		
_	1							ŀ		· -		
_	-							į	-	-		
30								ļ				
										Clayey sand - dusky yellowish brown, very saturated,		
	1							ŀ				
 	-								-			
<u> </u>					· ·			ŀ	_	-		
	'									Boring Termination 33.5'		
	1.						•			_		
35	1	· ·								-		
	4								<u> </u>	_		
									L			
	1								一	-		
	-								-			
40			ĺ			· .				<u>.</u> :.		
										·		
	-							1				
· _	-								_			
			-						L			
45						٠.						
45	1									- .		
	4								-	· -		
										,		
1	1									-		
_	-			-					-	-		
50								1				

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

APPENDIX F QUALITY ASSURANCE / QUALITY CONTROL SAMPLES

VOLATILE ORGANIC COMPOUNDS

QA/QC SAMPLES-COMPLIANCE STATUS INVESTIGATION
MACON 2 FORMER MGP FACILITY/WILLIAMS PROJECT NO. 1100-2990
VALUES LISTED IN MICROGRAMS PER LITER (ug/L)

	Sample Collected From	Benzene	Carbon Disulfide	Ethylbenzene	Methylene Chloride	Methyl-tert-butyl-ether	Toluene	Xytenes	Total Detected VOCs
FB030101A	NA	5U	50	5U	5U	N/A	5U	5U	0
FB030201A	NA	5U	5U'	5U	10U	N/A	5U	5U	0
FB030501A	NA	5U	5U	5U	10U	N/A	5U	5U	0
FB030601A	NA	5U	5U.	5U	. 10U	N/A	5U	5U	. 0
FB030701A	NA	5U	5U	5U:	10U	N/A	5U	5U	0
FB031201A	NA	5U	5U	5U	5U	5U	5U-	5U	.0
FB031401A	NA	5U	, 50	. 5U	10U	N/A	5U	5U	0
FB032001A	NA	5U	5U	5 <u>U</u>	10U	N/A	5U	5U	0
FB032101A	NA	5U	5U:	5U	10U	5U	5U	5U	0
FB032201A	NA	5U	5U:	5U	100	N/A	5U	5U	0
FB032601A	NA	5U	5U	5U	10U	N/A	5U	5U	0
FB041201A	NA	5U	5U	5U	10U	5U	5U	5U	0
FB041201B	NA .	5U	5U	5U	10U	5U	5U	5U	. 0
FB041301A	NA	5U	5U:	5U	10U	5U	5U	5U	0
RB030101A	Liner	5U	5U	5U	·10U	N/A	5U	. 50	0
RB030201A	Liner	5U	5U:	5U	100	N/A	5U	5U	0
RB030501A	Liner	5U	5U	5U	10U	N/A	5U	50	0
RB030601A	Liner	5U	5U	5U	10U	N/A	5U	5U	0
RB030701A	Liner	5U	5 U	5U	10U	N/A	5U	5UI	0
RB031401A	Liner	5U	5U	5U	10U	N/A	5U	5U	- 0
RB032001A	Split spoon	5U	5U	- 5U	10U	N/A	. 5U	5U	0
RB032101A	Liner	5U	5U	5U	10U	N/A	5U	5U	0
RB032201A	Liner	5U	5U	5Ú	10U	5U	50	5U	0
RB032601A	Split spoon	5U	5U	5U	10U	N/A	5U	5U	0
RB032901A	Peristaltic pump and tubing	5U	5U	. 50	10U	N/A	5U	5U 5U	0
RB041201A	Liner	5U	50	5U	10U	5U	5U:		
RB041201B	Gloves	5U	50	5U	10U	5U	5U	5U	0
RB041301A	Liner	5U	50	5U	. 10U	5U	5U	5U	0
RB082103	Tubing	5U	5U	5U	5U	N/A	5U	5U	0
TB030101A	NA NA	5U	5U	5U	5U	N/A	5U 5U	5U 5U	0
TB030201A	NA	5U	5U:	5U	10U	N/A			0
TB030701A	NA	50	5U	- 5U	100	N/A	5U	5U	0
TB031601A	NA	5U	5U	5U	10U	N/A	5U	5U	, 0
TB032001A	NA	5U	50	5U	10U	N/A	5U	5U	
TB032301A	NA	5U	50	, 5U	100	5U	5U	5U	0
TB032301B	NA	5U	50	5U	10U	N/A	5U	5U	. 0
TB032901A	NA	5U	50	5U	100	5U	5U	50	
TB033001A	NA	5U	5U	5U	5∪	5U	5U	5U	0
TB040301A	NA	5U	5U	5U	5U	5U	5Ú	5U	0
TB041301A	NA	5U	5U	5U	100	5U	50	5U	0
TB041301B	NA	5U	50	5U	10U	5U	5U	5U	0
TB041301C	NA ·	5U	50	5U	100	5U	5U	5U	0
TB082103	NA Loading dock	50	5U	5U	5U	N/A	5U	5U	-
TAP WATER NA - Not Available	spicket	5U	. 5U	5U	5 U	N/A	5U	5U	0

NA - Not Available

N/A - Not Analyzed

SEMI-VOLATILE ORGANIC COMPOUNDS QA/QC SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MIGROGRAMS PER LITER (ug/L)

Total Detected SVOCs	0	0	ा	0	0	0	0	0	0	0		٥	0	ী	0	ा	0	
Total Detected SVOCS	3	1001	100	2) DC	100) 	Я	100	100		2	2	2	2	3	100	
Pyrene	J 10C				_	_										`		
Phenol	10L	100	10C	10	10C	100	10C	10C	10L	100		199	16	100	160	£ €	100	
Phenanthrene	1001	100	1001	100	100	100	10U	100	100	100		100	160	5	100	<u>1</u>	10U	-
Naphthalene	100	10U	100	100	100	100	10U	100	100	100	,	5	5	<u>5</u>	10U	10U	100	
Indeno(1,2,3-cd)pyrene	-100 -100	100	100	100	100	100	100	1001	100	100		100	5	<u>\$</u>	100	10C	100	
Fluorene	100	100	100	10U	10C	100	100	10U	100	J01		100	<u>3</u>	3	100	10U	100	
Fluoranthene	10∪	10U	100	10N	100	100	100	100	100	10C		<u>5</u>	<u>\$</u>	10C	100	100	100	
Dibenzo(a,h)anthracene	<u>1</u>	100	100	100	100	1001	100	100	100	100		100	<u>\$</u>	10 10	100	100	100	
Chrysene	105	100	100	100	10£	100	100	101	100	100		5	<u>5</u>	100	1001	100	190	
Benzo(k)fluoranthene	100	100	1001	100	100	100	100	±01	100	1001		10C	100	100	100	100	100	٠,
Benzo(g,h,i)perylene	<u>1</u>	100	1001	3	<u>\$</u>	1001	3	1001	100	1001		5	100	100	100	100	100	
Benzo(b)fluoranthene	100	100	100	100	100	100	100	100	100	100		100	10U	10N	100	100	100	
Benzo(a)pyrene	100	100	1001	1001	100	£ 16	£ 0	100	100	100		10U	100	100	100	100	100	
Benzo(a)anthracene	100	100	100	100	100	100	100	36	100	3		100	100	1001	100	100	100	
Anthracene	100	100	100	105	16	100	100	100	5	100		100	100	100	100	100	100	
Acenaphthylene	100	100	100	<u>1</u>	100	35	3	1001	191	1001		<u>5</u>	10E	₽	100	1001	10C	
Acenaphthene	100	101	100	100	100	100	101	100	101	105		<u>5</u>	100	100	100	100	101	
Sample Collected From	Liner	Liner	Liner	Liner	Liner	Liner	Split spoon	Liner	Liner	Split spoon	Peristaltic pump	and tubing	Liner	Gloves	Liner	Tubing	Loading dock spicket	pe
	RB030101A			RB030601A					RB032201A			RB032901A	RB041201A	RB041201B	RB041301A		TAP WATER	N/A - Not Analyzed

INORGANIC COMPOUNDS QA/QC SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/MILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MILLIGRAMS PER LITER (mg/L)

Vanadium Zinc Nickel	0.02U 0.02U 0.01U	0.02U 0.02U	0.020 0.020	0.02U 0.02U 0.01U	0.02U	U 0.02U 0.02U 0.01U 0.01U	0.02U	0.02U	U 0.02U 0.02U 0.01U 0.01U	U 0.02U 0.02U 0.01U 0.01U		U 0.02U 0.02U 0.01U 0.01U	0.02U 0.02U	0.02U	U 0.02U 0.02U 0.01U 0.01U	
Mercury			U 0.0005U		U 0.0005L	U 0.0005L	U 0.0005U	U 0.0005U	U 0.0005L	.⊈ 0.0005L	U 0.0005U	U 0.0005L		U 0.0005U	∩ 0.0005U	
Lead		J 0.01U	J 0.01U		J 0.01U	0.010	J 0.01U	J 0.01U	J 0.01U	J 0.0264	J 0.01U	J 0.01U	J 0.01U	J 0.01U	J 0.01U	
Соррег		0.010	0.010	0.010	0.010	90100	J 0.01U	J 0.01U	J 0.01L	0.01U	0.010	1 0.01	J 0.01U	J 0.01U	J 0.01U	The second second
Chromium	0.01U	0.010	0.010	0.01U	0.010	0.010	0.010	0.010	0.010	00000	0.01U	0.010	0.010	0.01U	0.010	
Cadmium		0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.01U	0.005U	0.005U	0.005U	0.005U	
Barium	801.0	2010	0.408	0.408	0.02U	0.020	0.02∪	0.020	0.020	0.02U	0.020		0.02U	0.02U	0.02U	
Arsenic	0.020	0.02U	0.020	0.02U	0.02U	0.020	0.02U	0.02U	0.020	0.020	0.02U	0.020	0.020	0.02U	0.02U	
Sample Collected From	Liner	Liner	Liner	Liner	Liner	Liner	Split spoon	Liner	Liner	Split spoon	Peristaltic pump and tubing	Liner	Gloves	Liner	Liner	
	RB030101A	RB030201A	RB030501A	RB030601A	RB030701A	RB031401A	RB032001A	RB032101A	RB032201A	RB032601A	RB032901A	RB041201A	RB041201B	RB041301A	RB082103	

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

G-2 WILLIAMS LABORATORY QA/QC REPORTS

Analytical Data Validation Report

Client: Georgia Power Company
Project Location: Macon, Georgia
Project Number: 1100-2990
Laboratory: Analytical Environmental Services, Inc.
Date of Sample Collection: August 20, 2003
Samples Collected By: Mike Dillon
Date Samples Received By Laboratory: August 21, 2003
Laboratory Remarks: None
Laboratory Code: 0308662

Analytical Data Validation Report Continued

Project Number: 1100-2990
Laboratory Code: 0308662

Sample ID# SB-44-0-2, SB-44-5-7, SB-44-10-12, SB-44-15-17, SB-44-20-21, SB-45-0-2, SB-45-5-7, SB-45-10-12, SB-45-15-17, SB-45-18.5-20, SB-46-0-2, SB-46-5-7, SB-46-10-12, SB-46-15-17, DUP082003A, DRUM-1 Analysis: **Total Lead** Method: SW6010B Matrix: Soil Preservative: Ice for soil 6 months **Holding Time:** Date of Collection: August 20, 2003 Date of Analysis: August 25, 2003 Samples Analyzed Within Holding Time: Yes Yes Laboratory Method Blank Less Than Laboratory Reporting Limits: Surrogate Spike Recovery Within Quality Control Limits: N/A Laboratory Control Sample (LCS) Percent Recovery Within Advisory Limits: Yes_ Relative Percent Difference (RPD) Between Field Duplicate Sample and Laboratory Duplicate Sample Below Quality Control Limits: Yes Matrix Spike Percent Recovery Within Advisory Limits: Yes Trip Blank Result Less Than Laboratory Reporting Limits: N/A No equipment blank Equipment Blank Result Less Than Laboratory Reporting Limits: collected. A duplicate sample of SB-45-18.5-20 was collected and Comparison of Duplicate Results: identified as DUP082003A. A comparison of the results is shown in the table below.

Comparison of Sample and Duplicate Results (mg/kg-dry)

Parameter	SB-45-18.5-20	DUP082003A
Total Lead	38.6	37.8

Analytical Data Validation Report

Client: Georgia Power Company
Project Location: Macon, Georgia
Project Number: 1100-2990
Laboratory: Analytical Environmental Services, Inc.
Date of Sample Collection: August 20 & 21, 2003
Samples Collected By: Pete Robinson
Date Samples Received By Laboratory: August 21, 2003
Laboratory Remarks: None
Laboratory Code: 0308663

Sample ID# MVV-5, MVV-2, MVV-3, I	VIVV-4, MIVV-7, MIVV-6, MIVV	-1, DUP082003, RB082103						
Analysis: Total Metals								
Method: SW6020 for all metals except mercury, 7470A for mercury								
Matrix: Water								
Preservative: Nitric Acid and Ice								
Holding Time: 6 months for all met	tals except mercury, 28 d	ays for mercury						
Date of Collection: August 20, 200	3							
Date of Analysis: August 25 & 26, 2003								
Samples Analyzed Within Holding Time: Yes								
Laboratory Method Blank Less Tha	n Laboratory Reporting	Limits: Yes						
Surrogate Spike Recovery Within Q	uality Control Limits:	N/A						
Laboratory Control Sample (LCS) P Advisory Limits:	ercent Recovery Within	Yes, except where noted in the QC Report.						
Relative Percent Difference (RPD) Between Field Duplicate Sample and Laboratory Duplicate Sample Below Quality Control Limits: Yes								
Matrix Spike Percent Recovery With	in Advisory Limits:	Yes, except where noted in the QC Report and the Case Narrative						
Trip Blank Result Less Than Laboratory Reporting Limits: N/A								
Equipment Blank Result Less Than Laboratory Reporting Limits: Yes								
Comparison of Duplicate Results:	as DUP082003. All of the the duplicate were below the exception of barium.	W-3 was collected and identified the results for both the sample and a laboratory detection limits with lit was detected at 699 µg/l in the 22 µg/l in the duplicate sample.						

Sample ID# MW-5, MW-2, MW-3, MW-4, MW-7, MW-6, MW-1, DUP082003, RB082103
Analysis: Semivolatile Organic Compounds
Method: SW8270C
Matrix: Water
Preservative: lce
Holding Time: 14 days until extraction, 40 days after extraction
Date of Collection: August 20, 2003
Date of Analysis: August 22, 23, and 25, 2003
Samples Analyzed Within Holding Time: Yes
Laboratory Method Blank Less Than Laboratory Reporting Limits: Yes
Surrogate Spike Recovery Within Quality Control Limits: Yes
Laboratory Control Sample (LCS) Percent Recovery Within Advisory Limits: Yes
Relative Percent Difference (RPD) Between MS and MSD Below Quality Control Limits: Yes
Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Percent Recoveries Within Advisory Limits: Yes
Trip Blank Result Less Than Laboratory Reporting Limits: N/A
Equipment Blank Result Less Than Laboratory Reporting Limits: Yes
Comparison of Duplicate Results: A duplicate sample of MW-3 was collected and identified as DUP082003. All of the results for both the sample and the duplicate were below laboratory detection limits.

TB082103	MVV-4, MVV-7, MVV-6, MVV-1, DUPU82003, RB082103,						
Analysis: Volatile Organic Com	pounds						
Method: SW8260B							
Matrix: Water							
Preservative: Hydrochloric Acid a	nd Ice						
Holding Time: 14 days							
Date of Collection: August 20, 2003							
Date of Analysis: August 22, and 25, 2003							
Samples Analyzed Within Holding Time: Yes							
Laboratory Method Blank Less Tha	n Laboratory Reporting Limits: Yes						
Surrogate Spike Recovery Within G	Quality Control Limits: Yes						
Laboratory Control Sample (LCS) F	Percent Recovery Within Advisory Limits: Yes						
Relative Percent Difference (RPD) Between MS and MSD Below Quality Control Limits: Yes							
Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Percent Recoveries Within Advisory Limits: Yes							
Trip Blank Result Less Than Laboratory Reporting Limits: Yes							
Equipment Blank Result Less Than Laboratory Reporting Limits: Yes							
Comparison of Duplicate Results:	A duplicate sample of MW-3 was collected and identified as DUP082003. All of the results for both the sample and the duplicate were below laboratory detection limits.						

Sample ID#							
Analysis: Cyanide							
Method: SW9014							
Matrix: Water							
Preservative: Sodium Hydroxide and Ice							
Holding Time: 14 days							
Date of Collection: August 20, 2003							
Date of Analysis: August 21, 2003							
Samples Analyzed Within Holding Time: Yes							
Laboratory Method Blank Less Than Laboratory Reporting Limits: Yes							
Surrogate Spike Recovery Within Quality Control Limits: N/A							
Laboratory Control Sample (LCS) Percent Recovery Within Advisory Limits: Yes							
Relative Percent Difference (RPD) Between Field Duplicate Sample and Laboratory Duplicate Sample Below Quality Control Limits: Yes							
Matrix Spike Percent Recovery Within Advisory Limits: Yes							
Trip Blank Result Less Than Laboratory Reporting Limits: N/A							
Equipment Blank Result Less Than Laboratory Reporting Limits: Yes							
Comparison of Duplicate Results: A duplicate sample of MW-3 was collected and identified as DUP082003. All of the results for both the sample and the duplicate were below laboratory detection limits.							

Analytical Data Validation Report

Client: Georgia Power Company

Project Location: Macon, Georgia

Project Number: 1100-2990

Laboratory: Analytical Environmental Services, Inc.

Date of Sample Collection: August 20, 2003

Samples Collected By: Mike Dillon

Date Samples Received By Laboratory: August 21, 2003

Laboratory Remarks: None

Laboratory Code: 0308828

Sample ID# SB-45-15-17
Analysis: ICP Metals, SPLP
Method: SW1312/6010B
Matrix: Soil
Preservative: lce
Holding Time: 14 days
Date of Collection: August 20, 2003
Date of Analysis: August 27, 2003
Samples Analyzed Within Holding Time: Yes
Laboratory Method Blank Less Than Laboratory Reporting Limits: Yes
Surrogate Spike Recovery Within Quality Control Limits: N/A
Laboratory Control Sample (LCS) Percent Recovery Within Advisory Limits: Yes
Relative Percent Difference (RPD) for Laboratory Duplicate Sample Below Quality Control Limits: Yes
Matrix Spike Percent Recovery Within Advisory Limits: Yes
Trip Blank Result Less Than Laboratory Reporting Limits: N/A
Equipment Blank Result Less Than Laboratory Reporting Limits: No equipment blank collected.
Comparison of Duplicate Results: No duplicate sample collected.

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

APPENDIX I SLUG TEST DATA

MW-01-OUT

Data Set: L:\Mike Dillon\1100\2990\mw1out.aqt

Date: 08/22/03 Time: 14:48:37

PROJECT INFORMATION

Company: Williams Environmental

Client: Georgia Power Company

Project: 1100-2990

Test Location: Macon, Ga

Test Well: MW-01
Test Date: 4/13/01

AQUIFER DATA

Saturated Thickness: 40. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-01)

Initial Displacement: 1.297 ft
Wellbore Radius: 0.2813 ft

Screen Length: 9.39 ft Gravel Pack Porosity: 0.3 Casing Radius: 0.08333 ft Well Skin Radius: 0.2813 ft

Total Well Penetration Depth: 8.85 ft

SOLUTION

Aquifer Model: Unconfined

K = 0.0007049 ft/min

Solution Method: Bouwer-Rice

√A -- A E204 #

Data Set: L:\Mike Dillon\1100\2990\mw1out.aqt

Title: MW-01-OUT Date: 08/22/03 Time: 14:48:43

PROJECT INFORMATION

Company: Williams Environmental Client: Georgia Power Company

Project: 1100-2990 Location: Macon, Ga Test Date: 4/13/01 Test Well: MW-01

AQUIFER DATA

Saturated Thickness: 40. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Initial Displacement: 1.297 ft Casing Radius: 0.08333 ft Wellbore Radius: 0.2813 ft Well Skin Radius: 0.2813 ft Sereen Length: 9.30 ft

Screen Length: 9.39 ft

Total Well Penetration Depth: 8.85 ft

Gravel Pack Porosity: 0.3

No. of observations: 66

		Observ	ation Data		
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	<u>Time (min)</u>	Displacement (ft)
-0.0001^{-1}	1.297	0.2829	0.49	3.149	0.36
0.0112	0.919	0.3172	0.488	3:316	0.353
0.0224	0.835	0.3359	0.486	3.6 4 9	0.338
0.0335	0.784	0.3767	0.482	3.983	0.328
0.0447	0.749	0.3989	0.48	4.149	0.319
0.0559	0.719	0.4224	0.478	4.316	0.313
0.067	0.702	0.4472	0.475	4.649	0.3
0.0782	0.689	0.5015	0.467	4.983	0.287
0.0894	0.606	0.5957	0.46	5.149	0.283
0.1005	0.604	0.7077	0.454	5.483	0.27
0.1117	0.597	0,7495	0.452	5.649	0.261
0.1229	0.593	0.7939	0.448	5.983	0.249
0.134	0.589	0.8409	0.443 ,	6.149	0.24
0.1452	0.587	1.121	0.433	6.316	0.229
0.1564	0.582	1.411	0.424	6.483	0.221
0.1675	`√ 0.512	1.677	0.413	6.649	0.214
0.1787	0.51	1.993	0.403	6.983	0.204
0.1899	0.508	2.111	0.398	7.316	0.191
0.2127	0.501	2.237	0.394	7.483	0.184
0.2252	0.499	2.51	0.386	7.816	0.174
0.2384	0.497	2.659	0.377	8.149	0.163
0.2524	0.495	2.983	0.366	8.816	0.152

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter K y0 Estimate 0.0007049 0.5284

ft/min ft

MW-02-OUT

Data Set: L:\Mike Dillon\1100\2990\mw2out.aqt

Date: 08/22/03

Time: 14:49:07

PROJECT INFORMATION

Company: Williams Environmental Client: Georgia Power Company

Project: 1100-2990

Test Location: Macon, Ga

Test Well: MW-02 Test Date: 4/13/01

AQUIFER DATA

Saturated Thickness: 40. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-02)

Initial Displacement: 1.722 ft Wellbore Radius: 0.2813 ft

Screen Length: 9.39 ft

Gravel Pack Porosity: 0.3

Casing Radius: 0.08333 ft

Well Skin Radius: 0.2813 ft

Total Well Penetration Depth: 8.17 ft

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

- 0 004640 #/--!-

Data Set: L:\Mike Dillon\1100\2990\mw2out.aqt

Title: MW-02-OUT Date: 08/22/03 Time: 14:49:12

PROJECT INFORMATION

Company: Williams Environmental Client: Georgia Power Company

Project: 1100-2990 Location: Macon, Ga Test Date: 4/13/01 Test Well: MW-02

AQUIFER DATA

Saturated Thickness: 40. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Initial Displacement: 1.722 ft Casing Radius: 0.08333 ft Wellbore Radius: 0.2813 ft
Well Skin Radius: 0.2813 ft
Screen Length: 9.39 ft
Total Well Penetration Depth: 8.17 ft

Gravel Pack Porosity: 0.3

No. of observations: 47

•		Observ	ation Data		
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
0.001	1.722	0.2713	0.391	<u></u> 2.131	0.231
0.011	1.202	0.3185	0.383	2:256	0.224
0.022	1.016	0.3747	0.372	2.529	0.212
0.033	0.86	0.4413	0.361	2.835	0.199
0.044	0.702	0.5205	0.344	3.002	0.194
0.055	0.625	0.5502	0.346	3.335	0.177
0.066	0.563	0.5815	0.34	3.502	0.173
0.077	0.53	0.6498	0,331	3.835	0.16
0.088	0.503	0.7267	0.323	4.168	0.149
0.099	0.483	0.8128	0.314	4.502	0.143
0.11	0.468	0.9623	0.304	5.002	0.132
0.121	0.458	1.206	0.282	5.335	0.122
0.132	0.443	1.351	0.274	5.668	0.113
0.187	0.423	1.602	0.259	6.168	0.102
0.209	0.411	1.696	0.252	6.335	0.1
0.2317	0.404	2.012	0.239	4.300	

SOLUTION

Aguifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	0.001612	ft/min
y0	0.4533	ft

MW-04-OUT

Data Set: L:\Mike Dillon\1100\2990\mw4out.aqt

Date: 08/22/03

Time: 14:49:26

PROJECT INFORMATION

Company: Williams Environmental Client: Georgia Power Company

Project: 1100-2990

Test Location: Macon, Ga

Test Well: MW-04 Test Date: 4/13/01

AQUIFER DATA

Saturated Thickness: 40. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-04)

Initial Displacement: 1.119 ft Wellbore Radius: 0.2813 ft

Screen Length: 9.39 ft Gravel Pack Porosity: 0.3 Casing Radius: 0.08333 ft Well Skin Radius: 0.2813 ft

Total Well Penetration Depth: 8.7 ft

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

Data Set: L:\Mike Dillon\1100\2990\mw4out.aqt

Title: MW-04-OUT Date: 08/22/03 Time: 14:49:31

PROJECT INFORMATION

Company: Williams Environmental Client: Georgia Power Company

Project: 1100-2990 Location: Macon, Ga Test Date: 4/13/01 Test Well: MW-04

AQUIFER DATA

Saturated Thickness: 40. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Initial Displacement: 1.119 ft Casing Radius: 0.08333 ft Wellbore Radius: 0.2813 ft Well Skin Radius: 0.2813 ft Screen Length: 9.39 ft

Total Well Penetration Depth: 8.7 ft

Gravel Pack Porosity: 0.3

No. of observations: 20

* *		Observ	ation Data		•
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
0.001	1.119	0.077	0.047	0.154	0.015
0.011	0.396	0.088	0.036	0:165	0.013
0.022	0.199	0.099	0.03	0.176	0.013
0.033	0.113	0.11	0.025	0.187	0.01
0.044	0.098	0.121	0.021	0.2317	0.01
0.055	0.066	0.132	0.019	0.2442	0.008
0.066	0.06	0.143	0.021		

SOLUTION

Aguifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	0.05886	ft/min
γ0	0.1847	ft

MW-05-OUT

Data Set: L:\Mike Dillon\1100\2990\mw5out.aqt

Date: 08/22/03

Time: 14:50:31

PROJECT INFORMATION

Company: Williams Environmental Client: Georgia Power Company

Project: 1100-2990

Test Location: Macon, Ga

Test Well: MW-05 Test Date: 4/13/01

AQUIFER DATA

Saturated Thickness: 40. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-05)

Initial Displacement: 1.289 ft Casing Radius: 0.08333 ft Wellbore Radius: 0.3438 ft Well Skin Radius: 0.3438 ft

Screen Length: 15. ft Gravel Pack Porosity: 0.3 Well Skin Radius: 0.3438 ft
Total Well Penetration Depth: 8.19 ft

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

Data Set: L:\Mike Dillon\1100\2990\mw5out.aqt Title: MW-05-OUT Date: 08/22/03

Time: 14:50:37

PROJECT INFORMATION

Company: Williams Environmental Client: Georgia Power Company

Project: 1100-2990 Location: Macon, Ga Test Date: 4/13/01 Test Well: MW-05

AQUIFER DATA

Saturated Thickness: 40. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Initial Displacement: 1.289 ft Casing Radius: 0.08333 ft Wellbore Radius: 0.3438 ft Well Skin Radius: 0.3438 ft

Screen Length: 15.ft

Total Well Penetration Depth: 8.19 ft

Gravel Pack Porosity: 0.3

No. of observations: 44

		Observ	ation Data		
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
0.001	1.289	-0.165	0.315	-0.3747^{-1}	0.235
0.011	0.801	0.176	0.302	0.3957	0.231
0.022	0.976	0.187	0.293	0.4178	0.227
0.033	0.843	0.198	0.289	0.4413	0.223
0.044	0.753	0.209	0.283	0.4662	0.221
0.055	0.668	0.22	. 0.276	0.5205	0.21
0.066	0.599	0.2317	0.272	0.6147	0.203
0.077	0.548	0.2442	0.268	0.6872	0.193
0.088	0.484	0.2573	0.263	0.8128	0.184
0.099	0.443	0.2713	0.259	1.018	0.173
0.11	0.405	0,2862	0.255	1.43	0.161
0.121	0,379	0.3018	0.248	1.602	0.154
0.132	0.358	0.3185	0.246	2.256	0.139
0.143	0.34	0.3362	0.242	2.678	0.131
0.154	0.325	0.3548	0.24		

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	0.003787	ft/min
v0	0.3663	ft

MW-06-IN

Data Set: L:\Mike Dillon\1100\2990\mw6in.aqt

Date: 08/22/03

Time: 14:49:44

PROJECT INFORMATION

Company: Williams Environmental

Client: Georgia Power Company

Project: 1100-2990

Test Location: Macon, Ga

Test Well: MW-06 Test Date: 4/13/01

AQUIFER DATA

Saturated Thickness: 40. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-06)

Initial Displacement: 1.757 ft Wellbore Radius: 0.3438 ft

Screen Length: 10. ft Gravel Pack Porosity: 0.3 Casing Radius: 0.08333 ft Well Skin Radius: 0.3438 ft

Total Well Penetration Depth: 16.31 ft

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

Data Set: L:\Mike Dillon\1100\2990\mw6in.aqt

Title: MW-06-IN Date: 08/22/03 Time: 14:49:50

PROJECT INFORMATION

Company: Williams Environmental Client: Georgia Power Company Project: 1100-2990

Location: Macon. Ga Test Date: 4/13/01 Test Well: MW-06

AQUIFER DATA

Saturated Thickness: 40. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Initial Displacement: 1.757 ft Casing Radius: 0.08333 ft Wellbore Radius: 0.3438 ft Well Skin Radius: 0.3438 ft Screen Length: 10. ft

Total Well Penetration Depth: 16.31 ft

Gravel Pack Porosity: 0.3

No. of observations: 79

			ation Data		D: 1 (ft)
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft) 0.488
0.001	1.757 1.54	0.3892 0.4155	1.097 1.088	2.054 2.179	0.458
0.011 0.022	1.506	0.4435	1.067	2.311	0.433
0.022	1.14	0.4732	1.048	2.452	0.405
0.044	1.521	0.5045	1.033	2.6	0.379
0.055	1.305	0.5377	1.013	2.758	0.351
0.066	1.32	0.5728	0.996	2.925	0.326
0.077	1.35	0.6102	0.979	3.091 3.258	0.298 0.281
0.088	1.3 1.287	0.6497 0.6915	0.958 0.94	3.425	0.259
0.099 0.11	1.279	0.7358	0.919	3.591	0.238
0.121	1.27	0.7828	0.898	3.758	0.223
0.132	1.262	0.8327	0.876	3.925	0.208
0.143	1.253	0.8853	0.855	4.091	0.195
0.1547	1.245	0.9412	0.829	4.258	0.178 0.167
0.1672	1.234	1. 1.063	0.808 0.782	4.425 4.591	0.154
0.1803 0.1943	1.225 1.215	1.129	0.758	4.758	0.144
0.1943	1.206	1.2	0.733	4.925	0.133
0.2248	1.195	1.274	0.707	5.091	0.122
0.2415	1,185	1.353	0.679	5.258	0.116
0.2592	1.172	1.437	0.653	5.425	0.109 0.101
0.2778	1.161	1.525	0.625	5.591 5.758	0.101
0.2977	1.148	1.619 1.718	0.598 0.572	5.736 5.925	0.09
0.3187 0.3408	1.137 1.122	1.824	0.544	0.040	
0.3643	1,11	1.935	0.514		

SOLUTION

Aguifer Model: Unconfined

Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter K y0 Estimate 0.0003948 1.339

ft/min

MW-06-OUT

Data Set: L:\Mike Dillon\1100\2990\mw6out.aqt

Date: 08/22/03

Time: 14:50;01

PROJECT INFORMATION

Company: Williams Environmental

Client: Georgia Power Company

Project: 1100-2990

Test Location: Macon, GA

Test Well: MW-06 Test Date: 4/13/01

AQUIFER DATA

Saturated Thickness: 40. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-06)

Initial Displacement: 3.396 ft

Wellbore Radius: 0.3438 ft

Screen Length: 10. ft Gravel Pack Porosity: 0.3 Casing Radius: 0.08333 ft Well Skin Radius: 0.3438 ft

Total Well Penetration Depth: 16.31 ft

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

A 44 F

Data Set: L:\Mike Dillon\1100\2990\mw6out.aqt

Title: MW-06-OUT Date: 08/22/03 Time: 14:50:08

PROJECT INFORMATION

Company: Williams Environmental Client: Georgia Power Company Project: 1100-2990

Project: 1100-2990 Location: Macon, GA Test Date: 4/13/01 Test Well: MW-06

AQUIFER DATA

Saturated Thickness: 40. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Initial Displacement: 3.396 ft Casing Radius: 0.08333 ft Wellbore Radius: 0.3438 ft Well Skin Radius: 0.3438 ft

Screen Length: 10. ft

Total Well Penetration Depth: 16.31 ft

Gravel Pack Porosity: 0.3

No. of observations: 96

	Observ	ation Data		
Displacement (ft)	Time (min)		Time (min)	Displacement (ft)
				0.518
				0.49 0.46
1.430				0.433
	0.5205		3.168	0.409
1.411	0.5502	1.109	3.335	0.381
1.405		1.097		0.358
1.396	0.6147	1.077		0.336
	0.6498		3.835 4.002	0.315 0.298
				0.281
				0.261
				0.246
1.332	0.8598	0.974	4.668	0.231
				0.218
				0.206
	1.018			0.193 0.182
	1.077			0.169
			5.668	0.161
				0.15
1.272	1.351	0.803	6.002	0.139
				0.131
				0.124
				0.107 0.101
	1.090	0.709	0.033 7.168	0.101
				0.084
		0.625		0.073
1.208	2.131	0.602	8.168	0.06
1.197	2.256	0.572	8.502	0.054
	3.396 1.486 1.428 1.428 1.411 1.405 1.396 1.373 1.358 1.258 1.258 1.258 1.259 1.251 1.255 1.216 1.208	Displacement (ft) Time (min) 3.396 0.4178 1.486 0.4413 1.456 0.4662 1.428 0.5205 1.411 0.5502 1.405 0.5815 1.396 0.6147 1.386 0.6498 1.373 0.6872 1.358 0.7267 1.358 0.7685 1.341 0.8128 1.332 0.8598 1.332 0.9097 1.317 0.9623 1.309 1.018 1.302 1.077 1.294 1.14 1.287 1.206 1.281 1.277 1.272 1.351 1.266 1.43 1.259 1.514 1.251 1.602 1.242 1.696 1.234 1.796 1.225 1.901 1.216 2.012 1.208 2.131	3.396 0.4178 1.174 1.486 0.4413 1.163 1.456 0.4662 1.154 1.428 0.4925 1.148 1.428 0.5205 1.12 1.411 0.5502 1.109 1.405 0.5815 1.097 1.396 0.6147 1.077 1.386 0.6498 1.064 1.373 0.6872 1.047 1.358 0.7267 1.03 1.358 0.7685 1.011 1.341 0.8128 0.994 1.332 0.8598 0.974 1.326 0.9097 0.955 1.317 0.9623 0.936 1.309 1.018 0.914 1.302 1.077 0.895 1.294 1.14 0.874 1.287 1.206 0.85 1.281 1.277 0.829 1.272 1.351 0.803 1.259 1.514 0.756 1.251 1.602 0.732 1.242 1.696	Displacement (ft) Time (min) Displacement (ft) Time (min) 3.396 0.4178 1.174 2.529 1.486 0.4413 1.163 2.678 1.456 0.4662 1.154 2.835 1.428 0.4925 1.148 3.002 1.428 0.5205 1.12 3.168 1.411 0.5502 1.097 3.355 1.405 0.5815 1.097 3.502 1.396 0.6147 1.077 3.668 1.386 0.6498 1.064 3.835 1.373 0.6872 1.047 4.002 1.358 0.7267 1.03 4.168 1.358 0.7685 1.011 4.335 1.341 0.8128 0.994 4.502 1.332 0.8598 0.974 4.668 1.326 0.9097 0.955 4.835 1.317 0.9623 0.936 5.002 1.287 1.206 0.85 5.668

SOLUTION

Aguifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter Estimate 0.000324 ft/min 1.41 ft

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

APPENDIX K WELL CONSTRUCTION FORMS

TYPE II MONITORING WELL

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

APPENDIX L WATER QUALITY SAMPLING FORMS

Client:	MACON II MGP		Project Number:	11002990	
Sample Number:	MW-1		Date:	8/20/03	
Sample Type:	GROUNDWATER		Time:	***************************************	
Sampled By:	PNR		Weather:	CLEAR 83 ⁰ F	
WELL DEVELOPMENT	THE V				
Depth to Water:	7.32	٠	Well Diameter:	2"	
Depth of Well:	17.89				
Height of Water Column:	10.57				
Water Column (gal):					
Gallons Purged: 5	5 GALS (WELL DI	RY)	-		
WATER SAMPLE COLLE	CTION DATA				
Method of Removal:	PUMP	•	Pump Time:		
Method of Sampling:	PUMP		Pump On:		1057
Time of Sampling:	8/12/03	0830	Pump Off:		1133
	9.06 NTU'S		•		
FIELD ANALYSES					
	Well Vol. 1	Well Vol. 2	Well Vol. 3	Well Vol. 4	Well Vol. 5
Temperature:	25.8	24.7	24.7	24.5	24.4
pH:	7.44	5,63	5.71	5.05	5,35
Specific Conductance:	21.0 ms/m	21.4	22.2	19.0	20.2
Dissolved Oxygen:	10.24	8.16	7.06	6.58	6.10
Redox Potential:	135	176	178	233	220
Gallons Purged	0	1.0	2.0	3.0	4.0
NTU's	27.6	26.6	12.9	57.2	57.2
Time:	1058	1105	1112	1119	1126
Reason for Sampling: Other (Specify):		100 701 1 10 1			•
Method of Shipment:	HAND DELIVER		·.		
Physical Appearance:	CLEAR W/NO O			·	
Type of Analysis:	VOC'S	svoc's	METALS	CN	
Container Size and Type:	2@40ml	2@1liter	500ml	500ml	
Preservative:	HCL	ICE	HNO3	NAOH	
•					
REMARKS AND OBSER		(03			
Well dry @ 5.5 gals. Let recharge o	vernight. Sampled 8/21/	103			
			·.	······································	
tion: MACON, GA					
· ·		Willi:	am s Environmental Sei	wices, Inc.	

11002990

MW-1

Client:	MACON II MGP		Project Number:	11002990	
Sample Number:	MW-1		Date:	8/20/03	
Sample Type:	GROUNDWATE	R	Time:		
Sampled By:	PNR		Weather:	CLEAR 83 ⁰ F	
WELL DEVELOPMENT					
Depth to Water:	7.32		Well Diameter:	2"	
Depth of Well:	17.89	-			
Height of Water Column:	10.57				
Water Column (gal):					
Gallons Purged: 5	5,5 GALS (WELL D	RY)			7.11
WATER SAMPLE COLLE	CTION DATA				
Method of Removal:	PUMP		Pump Time:	•	
Method of Sampling:	PUMP	,	Pump On:		1057
Time of Sampling:	8/12/03	0830	Pump Off:		1133
V	9,06 NTU'S		 ·		
FIELD ANALYSES					
	FINAL	_			
Temperature:	24.2		·		
pH:	5.24				
Specific Conductance:	19.5				
Dissolved Oxygen:	5.47				-
Redox Potential:	231				
Gallons Purged	5.0				
NTU's	>1000				
Time:	1133				
Reason for Sampling: Other (Specify):					
	HAND DELIVER				
Method of Shipment:	CLEAR W/NO				
Physical Appearance:	VOC'S	SVOC'S	METALS	CN	
Type of Analysis:		2@1liter	500ml	500ml	
Container Size and Type:	2@40ml HCL	ICE	HNO3	NAOH	
Preservative:	HCL	ICE	FINO3	·	
REMARKS AND OBSER Well dry @ 5.5 gals. Let recharge of		1/03			
	-				
ion: MACON, GA		(11)	llion e Invironmantal Ca	nijepe Ino	
			Illiam & Environmental Se Josidary of Williams Group Internation	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mana varance
		1		Well I.D.	

11002990

MW-1 Pg.2

		1			
ion: MACON, GA	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		am s Environmental Sel		
REMARKS AND OBSERV	AHUNS				
				1 1 1 1 1 1	
Preservative:	HCL	ICE	HNO3	NAOH	
Container Size and Type:	2@40ml	2@1liter	500ml	500ml	
Type of Analysis:	VOC'S	SVOC'S	METALS	CN	
Physical Appearance:	CLEAR W/NO O	DOR			·
Other (Specify): Method of Shipment:	HAND DELIVER				
Reason for Sampling:					
Time:	0759	0805	0815		
NTU's	91.1	11.0	4.84		
Gallons Purged	0	1.0	2.0		
Redox Potential:	-169	-186	-179		
Dissolved Oxygen:	4.54	3.08	2.77		
Specific Conductance:	84.0 ms/m	83.3	82.9	-	
pH:	8.08	7.85	7.80		
Temperature:	24.2	23.7	23.8		
·	Well Vol. 1	Well Vol. 2	FINAL		
FIELD ANALYSES		,	•	•	
Time of Sampling:	0820		Pump Off:		0820
Method of Sampling:	PUMP		Pump On:		0758
Method of Removal:	PUMP		Pump Time:		- ₁ u.
WATER SAMPLE COLLEC	CTION DATA				
Gallons Purged:	2 GALS.				
Water Column (gal):					***************************************
Height of Water Column:	9.67				·
Depth of Well:	27.90				
WELL DEVELOPMENT Depth to Water:	18.23'		Well Diameter:	2"	
Sampled By:	PNR		Weather:	SUNNY 83 ⁰ F	
Sample Type:	GROUNDWATER	₹ .	_ Time:		
campio i tamboi.	MW-2		_ Date:	8/20/03	
Sample Number:	MANA/ O		Dotor	0.100.100	

11002990

MW-2

Date:

	8/20/03	-	41	002990		MW-3 DUP	
		Project No.		Williams Environmental Services, Inc. A Subsidiary of Williams Group International, Inc. Well I.D.			
ation:	MACON, GA						
<u>RE</u>	MARKS AND OBSER	<u>VATIONS</u>					
Pre	eservative:	HCL	ICE	HNO3	NAOH	· · · · · · · · · · · · · · · · · · ·	
	ntainer Size and Type:	2@40ml	2@1liter	500ml	500ml	-	
	oe of Analysis:	VOC'S	SVOC'S	METALS	CN		
	/sical Appearance:	CLEAR W/NO C					
	thod of Shipment:	HAND DELIVER					
	er (Specify):	LIAND DELIVER					
Rea	ason for Sampling:	٠					
Tim	ne;	1235	1244	1253	<u> </u>		
NTU		35.8	6,97	3.44	<u> </u>		
	lons Purged	. 0	1.0	2.0			
	dox Potential:	-126	-132	-137			
	solved Oxygen:	9:26	6.26	5.17			
	ecific Conductance:	.128 ms/m	.128	.128			
pH:		6.70	6.81	6.84			
	nperature:	26.3	22.6	22.4			
т	marature:	Well Vol. 1	Well Vol. 2	FINAL			
FIE	LD ANALYSES		T	<u> </u>			
	o or ouripining.						
	e of Sampling:	1300		_ Pump Off:	•	1300	
	thod of Sampling:	PUMP		_ Fump Time. Pump On:		1234	
	ATER SAMPLE COLLE thod of Removal:	CTION DATA PUMP		Pump Time:			
Gall	lons Purged:	2 GALS.		W-11-4	V		
Wat	ter Column (gal):						
Heig	ght of Water Column:	8.3					
Dep	oth of Well:	30.30		-			
	TLL DEVELOPMENT oth to Water:	22.00'		Well Diameter:	2 ¹¹ .		
San	npled By:	PNR		_ Weather:	SUNNY 90°F	·	
San	nple Type:	GROUNDWATE	Ř	_ Time:		-	
Sam	nple Number:	MW-3 DUP0820	03	_ Date:	8/20/03		
1	int:	MACON II MGP		Project Number:	11002990		

Date:

Client:	MACON II MGP		Project Number:	11002990		
Sample Number:	MW-4		_ Date:	8/20/03		
Sample Type:	GROUNDWATER	3	_ Time:	Time:		
Sampled By:	PNR		_ Weather;	SUNNY 910F		
WELL DEVELOPMENT				Ψ.	DR WANTE CO.	
Depth to Water:	22.75'		Well Diameter:	2"		
Depth of Well:	32.85					
Height of Water Column:	10.1					
Water Column (gal):			- -			
Gallons Purged:	3 GALS.					
WATER SAMPLE COLL	FCTION DATA			•		
Method of Removal:	PUMP		Pump Time;			
Method of Sampling:	PUMP	•	Pump On:	11. 11.	1347	
Time of Sampling:	1415		- Pump Off:	·	1415	
			-			
FIELD ANALYSES	Well Vol. 1	Well Vol. 2	Mall Mak 2	EINAL		
Temperature:	23.3		Well Vol. 3	FINAL		
·		22.4	22.4	22.4		
pH:	7.55	7.51	7.56	7,55		
Specific Conductance:	.137 s/m	131	.129	128		
Dissolved Oxygen:	9.39	6.75	5,42	5.40		
Redox Potential:	-194	-191	-194	-195		
Gallons Purged	0	1.0	2.0	3.0		
NTU's	37.4	10.9	4.63	4.38		
Time:	1349	1356	1404	1411		
Reason for Sampling:						
Other (Specify):						
Method of Shipment:	HAND DELIVER		•		,	
Physical Appearance:	CLEAR W/NO O	DOR				
Type of Analysis:	VOC'S	SVOC'S	METALS	CN		
Container Size and Type:	2@40ml	2@1liter	500ml	500ml		
Preservative:	HCL	ICE	HNO3	NAOH		
REMARKS AND OBSE	RVATIONS		•			
TEMPORE OF THE OFFICE O	<u> </u>		-	-		
	,				•	
·						
tion: MACON, GA				. 1	and an internal	
			ams Environmental Sei lary & Williams Group International			
The state of the s	Project No.	A Subsk	ica y u minians aroup international	Well I.D.		
	irioieci NO.			ivvett t.t		

11002990

MW-4

Date:

8/20/03

	8/20/03		11	002990	MW-5		
		Project No.		am s Environmental Sen iary & Wilams Group International,			
ion:	MACON, GA						
		•.				-	
	_ 		· · · · · · · · · · · · · · · · · · ·	· .			
REMAR	RKS AND OBSER	<u>VATIONS</u>					
Preserva	ative:	HCL	ICE	HNO3	NAOH		
	er Size and Type:	2@40ml	2@1liter	500ml	500ml		
	Analysis:	VOC'S	SVOC'S	METALS	CN		
-	I Appearance:	CLEAR W/NO			· · ·		
	of Shipment:	HAND DELIVER				An.	
Other (S							
	for Coverille				1 0102	0,40	
Time:		0643	0704	0721	0732	0745	
NTU's		22.8	19.3	15.8	10.4	4.46	
Gallons		0	2.0	4.0	6.0	8.0	
	otential:	-177	-223	-224	-224	-224	
	ed Oxygen:	6.56	3.96	3,47	3.29	3.27	
•	Conductance:	.103 s/m	.104	.103	.099	.099	
рН:		7.71	7.78	7.80	7.82	7.82	
Tempera	ature:	23.3	22.6	22.6	22.6	22.6	
FIELD /	ANALYSES	Well Vol. 1	Well Vol. 2	Well Vol. 3	Well Vol. 4	FINAL	
Time of	Sampling:	0745		Pump Off:		0745	
Method	of Sampling:	PUMP		Pump On:		0642	
	R SAMPLE COLLE of Removal:	ECTION DATA PUMP		Pump Time:		, .	
Gallons	Purged:	8 GALS.					
Water C	olumn (gal):			-			
Height o	of Water Column:	11.03					
Depth o	f Well:	30.20			-		
	DEVELOPMENT Water:	19.17'		Well Diameter:	2"		
Sample	d By:	PNR		_ Weather:	CLEAR 75 ⁰ F		
Sample	• -	GROUNDWATE	:K	_ Time:	·		
-	Number:	MW-5		_ Date:	8/20/03		

MW-5

Date:

8/20/03

Carron la Niveraliano	MACON II MGP			11002990		
Sample Number:	MW-6		Date:	8/21/03	*****	
Sample Type:	GROUNDWATER	}	Time:			
Sampled By:	PNR		Weather:	CLEAR 85°F		
WELL DEVELOPMENT						
Depth to Water:	35.28'		Well Diameter:	2"		
Depth of Well:	50.20					
Height of Water Column:	14.92					
Water Column (gal):						
Gallons Purged:	3.0 GALS.				. ,	
WATER SAMPLE COLLI	ECTION DATA					
			Pump Time:	٠		
Method of Sampling:	PUMP				0739	
Time of Sampling:	0815		- Pump Off:		0815	
-						
FIELD ANALYSES		ı		· · · · · · · · · · · · · · · · · · ·		
-	Well Vol. 1	Well Vol. 2	Well Vol. 3	FINAL	·	
Temperature:	23.0	22.0	22.0	22.1		
pH:	7.09	6.53	6.51	6.51		
Specific Conductance:	43.3 ms/m	42.9	42,7	42.6		
Dissolved Oxygen:	6.24	4.33	4.30	4.29		
Redox Potential:	-35	-32	-29	-27		
Gallons Purged	0	1.0	2.0	3.0		
NTU's	62.2	14.3	10.7	4.46		
Time:	0740	0748	0756	0805		
Dagger for Compline						
	HAND DELIVER					
•		OOR				
			METALS	CN		
1		•			· · · · · · · · · · · · · · · · · · ·	
	-				.	
REMARKS AND OBSER	VATIONS			•		
		·		*.		
ion: MACON GA						
in tooli, on		Willis	ams Environmental Se	rvices, Inc.		
		-4	iary of Williams Group International		NOWEL WAR	
	Sampled By: WELL DEVELOPMENT Depth to Water: Depth of Well: Height of Water Column: Water Column (gal): Gallons Purged: WATER SAMPLE COLLE Method of Removal: Method of Sampling: Time of Sampling: Time of Sampling: FIELD ANALYSES Temperature: pH: Specific Conductance: Dissolved Oxygen: Redox Potential: Gallons Purged NTU's Time: Reason for Sampling: Other (Specify): Method of Shipment: Physical Appearance: Type of Analysis: Container Size and Type: Preservative:	Sampled By: WELL DEVELOPMENT Depth to Water: 35.28' Depth of Well: 50.20 Height of Water Column: 14.92 Water Column (gal): Gallons Purged: 3.0 GALS. WATER SAMPLE COLLECTION DATA Method of Removal: PUMP Method of Sampling: PUMP Time of Sampling: 0815 FIELD ANALYSES Well Vol. 1 Temperature: 23.0 pH: 7.09 Specific Conductance: 43.3 ms/m Dissolved Oxygen: 6.24 Redox Potential: -35 Gallons Purged 0 NTU's 62.2 Time: 0740 Reason for Sampling: Other (Specify): Method of Shipment: HAND DELIVER Physical Appearance: CLEAR W/NO Of Type of Analysis: VOC'S Container Size and Type: 2@40ml Preservative: HCL REMARKS AND OBSERVATIONS	MR WELL DEVELOPMENT Depth to Water: 35.28' Depth of Well: 50.20 Height of Water Column: 14.92 Water Column (gal): 3.0 GALS. Gallons Purged: 3.0 GALS. WATER SAMPLE COLLECTION DATA Method of Removal: PUMP Method of Sampling: PUMP Time of Sampling: 0815 FIELD ANALYSES Well Vol. 1 Well Vol. 2 Temperature: 23.0 22.0 pH: 7.09 6.53 Specific Conductance: 43.3 ms/m 42.9 Dissolved Oxygen: 6.24 4.33 Redox Potential: -35 -32 Gallons Purged 0 1.0 NTU's 62.2 14.3 Time: 0740 0748 Reason for Sampling: Other (Specify): HAND DELIVER Physical Appearance: CLEAR W/NO ODOR Type of Analysis: VOC'S SVOC'S	Sampled By: PNR	Sampled By: PNR Weather: CLEAR 85°F	

11002990

MW-6

Project No.

8/21/03

Date:

Client:	MACON II MGP		Project Numb 11002990		
Sample Number:	MW-7		Date:	8/21/03	
Sample Type:	GROUNDWATE	R	_ Time:		
Sampled By:	PNR		Weather:	CLEAR 75 ⁰ F	
WELL DEVELOPMENT					
Depth to Water:	21.45'		Well Diameter	2"	
Depth of Well:	34.83				
Height of Water Column:	13.38				
Water Column (gal):					
Gallons Purged:	8.0 GALS.				
WATER SAMPLE COLLE	ECTION DATA	,			
Method of Removal:	PUMP		Pump Time:		
Method of Sampling:	PUMP		Pump On:		0538
Time of Sampling:	0650		Pump Off:		0650
<u>FIELD ANALYSES</u>	Well Vol. 1	Well Vol. 2	14/0111/21 2	Mollyfold	TIK1 A
Temperature:	24.2	24.1	Well Vol. 3	Well Vol. 4	FINA
pH:	7.91	7.32	7.18	'24.1 7.14	24.1
Specific Conductance:	84.9 ms/m	85.0	91.0	93.3	7.14 93.4
Dissolved Oxygen:	5.45	4.01	3.46	3.14	3,12
Redox Potential:	-168	-165	-156	-154	-154
Gallons Purged	0	2.0	4.0	6.0	8.0
NTU's	34.7	268	31.3	16.1	4.98
Time:	0538	0552	0608	0623	064
, mile.	0000		1 0000	1 0023	L
Reason for Sampling:	www				
Other (Specify):				·	
Method of Shipment:	HAND DELIVER	}	, , <u>, , , , , , , , , , , , , , , , , </u>		
Physical Appearance:	CLEAR W/NO C	DOR			
Type of Analysis:	VOC'S	SVOC'S	METALS	CN	
Container Size and Type:	2@40ml	2@1liter	500ml	500ml	
Preservative:	HCL	ICE	HNO3	NAOH	
REMARKS AND OBSER	VATIONS				

Project No.

8/21/03

Date:

William's Environmental Services, Inc. A Subsidiary of William's Group International, Inc.

11002990

Well I.D.

MW-7

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

APPENDIX M POTENTIAL RECEPTOR STUDY

SECTION 1 INTRODUCTION

The Hazardous Site Response Act (HSRA) Rules (GEPD, 2003) allow for the determination of Risk Reduction Standards (RRS) that are protective of human health and the environment. Regulated substances identified at a given site must be compared with appropriate RRS that are based on property use (i.e., residential or non-residential) and, when applicable, site specific conditions. The five types of RRS against which a site's compliance status may be evaluated are described below:

- Type 1 standardized exposure assumptions for residential properties;
- Type 2 site-specific exposure determinations for residential properties;
- Type 3 standardized exposure assumptions for non-residential properties;
- Type 4 site-specific exposure determinations for non-residential properties; and

Type 5- restricted exposure assumptions evolving from engineering and institutional controls, such as caps, slurry walls, fences, deed restrictions, etc., to minimize exposure on properties where it is not appropriate and/or practical to apply Types 1 through 4 RRS.

The Macon 2 former Manufactured Gas Plant (MGP) facility is located on a 2.5-acre parcel, southeast of Spring Street between Riverside Drive and the Ocmulgee River in Macon, Georgia. The property is currently owned by the City of Macon and is used by the City of Macon to house the Electrical Service Shop. Facilities at the property include a combined office/service shop, equipment storage area, a warehouse and an employee parking lot. The majority of the property is covered with asphalt.

The Macon Transit Authority Bus Garage is located to the south of the former MGP facility. A Burger King restaurant, an Exxon service station and a Pizza Hut restaurant are located to west of the former MGP facility. The Norfolk Southern Railroad abuts the property to the northeast. The Ocmulgee River is located approximately 250 feet east of the Macon 2 former MGP facility.

The derivation of RRS and an ecological receptor evaluation were performed for an area encompassed by Macon 2 former MGP facility as well as all properties potentially affected by former MGP operations. Henceforth this area will be called the Site. The results of the Compliance Status Investigation (CSI) conducted by Williams Environmental Services, Inc., from February through April, 2001 and August 2003, revealed the presence of 35 regulated substances in soils and/or groundwater beneath the Site. The maximum concentrations of regulated substances detected in soil and groundwater were compared with Types 1 through 4 RRS to determine Site compliance. All four types of RRS are potentially applicable for the Site because the former Macon 2 MGP facility is located or adjacent to areas zoned for commercial, industrial as well as residential use and the future use of these areas is expected to remain the same. Type 5 RRS were not considered for this Site.

SECTION 2 RISK REDUCTION STANDARDS

The following section presents methods used to calculate RRS for the constituents of interest (COIs) detected in soil and groundwater.

2.1 **SOIL**

The equations employed in calculating Types 1 through 4 RRS for COI detected in Site soils are presented below. The assumptions employed in derivation of each type of RRS are discussed in Sections 2.1.1 through 2.1.4.

Non-carcinogenic Effects:

$$C_{soil} = \frac{HI * BW * AT * 365 \text{ days/year}}{ED*EF* [(1/RfD_o*CF *IR) + (1/RfD_o*IR_o*(1/VF+1/PEF)]}$$

Carcinogenic Effects:

 $C_{soil} = \frac{TR * BW * AT * 365 days/year}{ED*EF* [CSF_o*CF *IR) + (CSF_i*IR_a*(1/VF+1/PEF)]}$

Where:

C_{soil} = Concentration of a contaminant in soil (mg/kg)

HI = Hazard Index

BW = Body Weight (kg)

AT = Averaging Time, non-carcinogenic effects (years)

AT = Averaging Time, carcinogenic effects (years)

ED = Exposure Duration (years)

EF = Exposure Frequency (days/year)

RFD₀ = Oral Reference Dose (mg/kg-d)

CF = Conversion Factor (kg/mg)

IR = Ingestion Rate (mg/day)

RfD = Inhalation Reference Dose (mg/kg-d)

 $IR_a = Inhalation rate (m^3/day)$

VF = Volatilization Factor (m³/kg)

PEF = Particulate Emission Factor (m^3/kg)

CSFo = Oral Cancer Slope Factor (mg/kg-d)⁻¹

CSFi = Inhalation Cancer Slope Factor (mg/kg-d)-1

2.1.1 TYPE 1 RISK REDUCTION STANDARDS

Type 1 RRS (generic residential) for soil were developed for the Site in accordance with HSRA Rule 391-3-19-.07(6) by selecting the smallest concentration fitting the following criteria:

- 1. The highest value of:
 - (a) Soil concentrations that trigger notification requirements (Appendix I of HSRA Rules);
 - (b) 100-times the Type I groundwater criteria listed in Appendix III, Table 1 of the HSRA Rules; and
 - (c) Type 1 soil criteria listed in Appendix III, Table 2 of the HSRA Rules
- 2. The non-cancer effects RRS, as calculated by equation 7 from Part B of the Risk Assessment Guidance (RAGS

Part B; USEPA, 1991); and

3. The carcinogenic effects RRS as calculated by equation 6 from RAGS Part B.

The equations used to calculate Type 1 RRS concentrations for non-carcinogenic and carcinogenic effects (i.e., RAGS Part B equation 7 and equation 6, respectively; USEPA, 1991a) are presented in Section 2.1. Type 1 RRS concentrations are calculated based on residential adult exposure via incidental ingestion of soil and inhalation of particulates and volatile compounds. The default exposure parameters used to calculate Type 1 RRS were obtained from Table 3 of Appendix III of HSRA Rules (GEPD, 2003) and included the following: 70 kilograms (Kg) body weight for an adult, 30 years exposure duration, 350 days per year frequency of exposure and 114 mg/day for an incidental ingestion of soil. The inhalation rate for adult residential receptors used was 20 m³/day. The soil-to-air volatilization factors for volatile compounds were derived according to an equation presented in the footnote to Table 3, Appendix III of the HSRA Rules. Physical and chemical properties of the regulated substances required to derive the volatilization factor for each compound such as diffusitivity in air (D_i), Henry's Law Constant (H), and the organic partitioning coefficient (K_{oc}) were obtained from widely cited USEPA sources and are presented in Table 1. The particulate emission factor of 4.63 x 10⁻⁹ m³/Kg used in calculating fugitive dust emission for each compound was obtained from Appendix III of the HSRA Rules.

Toxicity values of regulated compounds [i.e., the cancer slope factors (CSFs), used to assess potential carcinogenic effects risks, and reference doses (RfDs), used to assess non-carcinogenic effects], are employed in the derivation of RRS. These toxicity values were primarily obtained from the United States Environmental Protection Agency (USEPA) Integrated Risk Information System (IRIS, 2001). When toxicity values were not available in IRIS, other sources of information were used. These include Health Effects Assessment Tables (USEPA, 1997) and the National Center for Environmental Assessment. These sources of toxicity data have been accepted by the GEPD in the past. Toxicity values used in derivation of RRS are presented in Table 2.

Table 3 presents a comparison of maximum detected concentrations of COIs in soil to Type 1 RRS. Eleven COIs [benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, arsenic, lead, mercury, and zinc) exceeded Type 1 RRS.

2.1.2 Type 2 Risk Reduction Standards

Residential exposure factors were used to calculate the Type 2 RRS for COIs detected in Site soils through incidental ingestion of soils and inhalation of volatile compounds and fugitive dust. Since the vicinity of the Site is inhabited by both adults and children, Type 2 RRS concentrations were calculated for each of these receptor populations separately and the lesser of the two values was taken as the Type 2 RRS. The exposure factors used to calculate Type 2 RRS included: 70 Kg body weight for an adult and 15 Kg for a child, 30 years exposure duration for an adult and 6 years for a child, and incidental soil ingestion rates of 100 mg/day for an adult and 200 mg/day for a child. The inhalation rate for adult residential receptors used was 20 m³/day and 15 m³/day for a child. It was also assumed that

residents would be at home 350 days per year. The equations used in the derivation of Type 2 RRS are presented in Section 2.1 and the Type 2 RRS for the 35 COI are presented in Table 4.

Type 2 RRS cannot be calculated for lead because toxicity values are not available for this metal. A better prediction of potential exposure for lead is obtained through determining blood lead levels of exposed populations. Sensitive populations include preschool-age children and fetuses. In children, a blood lead level of 10 micrograms per deciliter (ug/dL) has been identified as a level at which no adverse effects would be expected (Centers for Disease Prevention and Control, 1985).

The Type 2 RRS for lead in soil was determined to be 400 mg/Kg based on the concentration in soil that triggers a notification concentration under HSRA. A cleanup target level of 400 mg/Kg for lead was also established by the Office of Solid Waste and Emergency Response as presented in the "Interim Guidance on Establishing Soil Lead Cleanup Levels at RCRA Facilities" (USEPA, 1994a). A concentration of 400 mg/Kg lead in soil is also supported by the USEPA's Integrated Exposure Uptake Model for Lead in Children (IEUBK; USEPA, 1994b). The IEUBK predicts that 400 mg/Kg lead in soil would cause 6 year old child to have a probability of no greater than 5 percent of a blood lead level of 10 ug/dL assuming exposure to Site soil and groundwater and other media not necessarily related to the Site such as food and maternal milk.

The comparison of maximum detected soil concentrations of COIs with Type 2 RRS (Table 3) indicated that benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, arsenic and lead exceeded Type 2 RRS.

2.1.3 Type 3 Risk Reduction Standards

Compounds that exceeded Type 2 RRS for soil were evaluated for compliance with Type 3 RRS. Type 3 RRS (generic non-residential) for soil were developed for the Site by selecting the highest concentration among the following criteria:

- 1. Soil concentrations that trigger notification requirements (Appendix I of HSRA Rules);
- 2. 100-times the Type I groundwater criteria listed in Appendix II, Table 1 of the HSRA Rules;
- 3. For lead, 400 mg/kg
- 4. Type 1 soil criteria listed in Appendix III, Table 2 of the HSRA Rules; and
- 5. For constituents detected in the top two feet of soil (surface soil) the lower of:
 - (a) the non-cancer effects RRS as calculated by equation 7 from RAGS Part B; and
 - (b) The carcinogenic effects RRS as calculated by equation 6 from RAGS Part B.

Type 3 RRS concentrations for carcinogenic and non-carcinogenic effects were calculated based on the exposed commercial/industrial worker scenario. Default exposure parameters for non-residential exposures obtained from Table 3, Appendix III of the HSRA Rule were applied in these calculations. The exposure factors include the following; 70 Kg body weight, 25 years exposure duration, 250 days per year as frequency of exposure, incidental soil ingestion rate of 50 mg/day, and inhalation rate of 20 m³/day. It was also assumed that workers would be at work for 8 hours per day and 5

days per week

As indicated in Table 5, no COI detected in surface soils (i.e., soil depth interval of 0-2 feet bgs.) exceeded Type 3 RRS for surface soils. The maximum detected concentrations of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, indeno(1,2,3-cd)pyrene, and lead in deep soils (i.e., soil depth interval greater than 2 feet) exceeded Type 3 RRS for deep soils.

2.1.4 Type 4 Risk Reduction Standards

Exposure factors for commercial land use were employed to derive RRS for surface soils. For soils deeper than 2 feet, RRS were derived based on a construction worker scenario. Since commercial and/or industrial use of the Site is anticipated to continue, industrial exposure scenario is a conservative assumption for the surface soils at the Site and provides an adequate level of protection for potentially exposed populations. In the future, construction or excavation might be performed at the Site, therefore, the RRSs developed for deep soils based on construction worker scenario are also appropriate. During construction and/or excavation activities, workers might potentially come to contact with contaminants in soils below ground surface. Type 4 RRS are presented in Table 6. The exposure parameters used for a commercial worker scenario are the same as those used for derivation of Type 3 RRS. Exposure parameters used in derivation of Type 4 RRSs for construction worker scenario differ in incidental ingestion of soil, 330 mg/day (USEPA, 2001), and duration of exposure, assumed to be 0.5 years based on best professional judgment that subsurface construction activities would not be expected to last more than a half a year. Therefore, construction workers would not likely be exposed to site COI in the subsurface soils greater than a 0.5 years.

The Type 4 RRS for lead in soil was calculated using the Georgia Adult Lead Model (GALM) that was finalized in November 1999. The GALM was based on USEPA's methodology for assessing risk associated with adult exposures to lead known as the "adult lead model" (USEPA, 1996). Like the adult lead model, the GALM is based on the protection of fetal blood levels. However, the GALM considers intakes from both soil and groundwater. The approach used by the GALM relates intake of lead from soil and groundwater to blood lead concentrations in women of child-bearing age who might spend considerable time at the Site (GEPD, 1998). Protection of the blood lead of a hypothetical fetus ensures that any other person working the site will be adequately protected. For the Macon 2 former MGP facility, the Type 4 RRS for lead was calculated using the GALM that employed parameters presented in the HSRA Rules. The site-specific input parameter is the concentration of lead detected in groundwater beneath the Site. The analytical groundwater data indicated that lead was not detected at the Site. Therefore, the detection limit (0.01 mg/L) was used as the lead groundwater concentration in the GALM. The equations employed in derivation of Type 4 RRS for lead are presented in Table 7. The derived Type 4 RRS for lead is 1,429 mg/kg and is the same for both receptors (i.e., commercial and construction worker).

The HSRA regulations indicate that in addition to being protective of human health, Type 4 RRSs for soil should not cause impacts to groundwater above Type 4 RRSs established for groundwater. For those COI which did not exceed

Type 3 soil RRS, the Type 4 soil RRS was defaulted to the Type 3 RRS. Most of the COI were in compliance with more restrictive RRSs. Therefore, leachability studies were performed for only those COI which exceeded Type 3 RRS for soil, and the Type 4 RRSs have been adjusted accordingly. Section 9.5.1.2 of the CSR discusses the leachability study.

Comparison of the maximum detected concentrations of COI in soils (Table 5) indicated that no COIs exceeded Type 4 RRS and, therefore, the Site is in compliance with Type 4 RRS.

2.2 GROUNDWATER

The equations employed in calculating Types 1 through 4 RRS for contaminants detected in Site groundwater are presented below. The assumptions used in derivation of each type of RRS are discussed in Sections 2.2.1 and 2.2.4.

Non-carcinogenic Effects:

 $C_{groundwater} = \underbrace{\frac{HI*BW*AT*365 \text{ days/year}}{ED*EF*[(1/RfD_o*IR_w)+(1/RfD_i*K*IR_a)]}}$

Carcinogenic Effects:

 $C_{groundwater} = \frac{TR*BW *AT*365 days/year}{ED*EF*[CSF_o*IR_w)+(CSF_i*K*IR_a)]}$

Where:

C_{groundwater} = Concentration of a contaminant in groundwater (mg/l)

HI = Hazard Index

BW = Body Weight (kg)

AT = Averaging Time, non-carcinogenic effects (years)

AT = Averaging Time, carcinogenic effects (years)

ED = Exposure Duration (years)

EF = Exposure Frequency (days/year)

 $RFD_0 = Oral Reference Dose (mg/kg-d)$

 $IR_w = Ingestion Rate (I/day)$

RfD_i = Inhalation Reference Dose (mg/kg-d)

 $IR_a = Inhalation rate (m^3/day)$

K = Volatilization Factor (unitless)

CSF_o = Oral Cancer Slope Factor (mg/kg-d)⁻¹

CSF_i = Inhalation Cancer Slope Factor (mg/kg-d)⁻¹

2.2.1 Types 1 and 3 Risk Reduction Standards

Type 1 RRSs apply at any point where groundwater has been affected by a release. To be in compliance, concentrations of COI in groundwater shall not exceed concentrations given in Table 1 of Appendix III of the HSRA Rules or, for those substances not listed, the background or detection limit concentration. If two or more regulated

organic compounds are present in groundwater, their sum in a single sample shall not exceed 10 mg/L if the Table 1 value for each compound is less than 5 mg/L, or, where at least one compound has a Table 1 value greater than or equal to 5 mg/L, the sum of the concentrations shall not exceed the maximum Table 1 value for a detected compound plus 10 mg/L.

No COI were detected in groundwater beneath the Site at concentrations exceeding their respective Type 1 RRS (Table 8). Therefore, groundwater at the Site is in compliance with Type 1 RRSs.

2.2.2 Type 2 Risk Reduction Standards

The groundwater Types 2 and 4 RRS concentrations for carcinogenic and non-carcinogenic effects were calculated using Equations 1 and 2, respectively from RAGS Part B. These equations are presented in Section 2.2. Residential exposure factors were used to calculate Type 2 RRSs for COI detected in groundwater. The Type 2 RRSs are based on potential residential exposure of both children and adult populations. The Type 2 RRSs take under account that groundwater might be used as a source of potable water. Accordingly, exposure through ingestion of groundwater and inhalation of volatile compounds are considered as potential exposure pathways. The exposure factors used to calculate Type 2 RRSs are obtained from Appendix III, Table 3 of the HSRA Rules. Water intake rates for adult and child were assumed to be 2 L/day and 1 L/day, respectively. The remaining exposure factors (i.e., body weight of adult and child receptor, exposure frequency and duration of exposure etc.) were the same as the ones used to calculate residential (Type 2) RRS for soil.

RAGS Equations 1 and 2 include a default water-air volatilization factor of 0.5 L/m³ for compounds that easily evaporate from water. Based on RAGS Part B this volatilization factor is only applicable to chemicals with Henry's Law constant of greater than 1 x 10⁻⁵ atm-m³/mole. Accordingly, the volatilization potential for compounds that did not meet these criteria were not included in the derivation of groundwater RRSs.

Type 2 RRS are presented in Table 9. Comparison of maximum detected concentrations of COI in groundwater with Type 2 RRS indicate that no COI were detected in groundwater exceeding a Type 2 RRS (Table 8).

2.2.3 Type 3 Risk Reduction Standards

The Type 3 RRS criteria for groundwater are the same as the Type 1 RRS (see Section 2.2.1). As indicated in Table 10, concentrations of COI in groundwater are below the Type 3 RRSs.

2.2.4 Type 4 Risk Reduction Standards

Non-residential exposure factors based on a commercial worker scenario were used to calculate Type 4 RRS concentrations for COIs detected in groundwater beneath the Site. Under the commercial worker scenario it was assumed that persons working at the Site might be exposed to groundwater through ingestion of 1 liter of water per day and through inhalation of volatile compounds. All the other exposure intakes such are the same as those used for

calculation of Types 4 RRS for soil. Derived Type 4 RRSs for COI are presented in Table 11. No COI detected in groundwater exceeded Type 4 RRSs for groundwater (Table 10).

SECTION 3 ECOLOGICAL RECEPTORS EVALUATION

The following section identifies ecological receptors likely to be present at the Site and its vicinity and evaluates potential pathways whereby local fauna and flora might be exposed to contaminants detected in Site soils and groundwater.

3.1 ECOLOGICAL SETTING

The former Macon 2 MGP facility is located in an area developed largely for industrial and commercial use. Due to its location and use, there are no suitable (natural) ecological habitats at the Site. The Site is comprised of buildings and open areas mostly covered by asphalt and/or concrete. The Site is located approximately 250 feet from the Ocmulgee River. The stretch of Ocmulgee River that lies adjacent to the former Macon 2 MGP facility is located in the industrial area. The banks of the river are densely vegetated by shrubs, grasses and mixed hardwood and pine trees. Bottomland hardwood habitats are limited to a narrow strip of land along the river banks due to proximity of urban and industrial/commercial areas. Trees commonly observed in areas adjacent to the site include loblolly-shortleaf pine, oak, hickory, sweet gum, yellow poplar, elm, maple and white ash. The plants sighted in the area include wild black cherry, passion flower, Catesby's trillium and mountain laurel. Reptiles commonly found in this part of Georgia include timber rattlesnakes, kingsnakes, cottonmouth, copperhead, and the black rat snakes and these may be present in this area. Common birds found in this area include red-tailed hawk, northern bobwhite, summer tanager, blue jay, downy woodpecker, dove, wood duck and snowy egret. Small wildlife such as grey squirrels, opossums and chipmunks are expected to inhabit this area. This area is also a suitable habitat for white-tailed deer, raccoons and cottontail rabbits.

The Ocmulgee River at Macon passes through the downtown area and is approximately 280 feet wide. The river provides habitat for a variety of aquatic species such as striped bass, largemouth bass, catfish, common carp and black and white crappie as well as a variety of mussels.

3.2 THREATENED AND ENDANGERED SPECIES

Based on information obtained from the Georgia Natural Heritage, and the U.S. Fish and Wildlife databases, several federal endangered and threatened plant and animal species are listed (Table 12) for Bibb County and adjacent counties (Crawford, Houston, Jones, Monroe, Peach and Twiggs) and may, therefore, potentially inhabit this area. The endangered and threatened animal species include bald eagle, (Haliaeetus leucocephalus), wood stork (Mycteria americana), red-cockaded woodpecker (Picoides borealis), Eastern indigo snake (Drymarchon corais couperi), Barbour's map turtle (Graptemys barbouri), alligator snapping turtle (Macroclemys temmincki) and gopher tortoise (Gpherus polyphemus). The endangered and threatened plant species include sweet pitcher-plant (Sarracenia rubra), fringed campion (Silene polypetala), Shoals spider-lily (Hymenocallis coronaria), Ocmulgee skullcap (Scutellaria ocmulgee), green pitcher-plant (Sarracenia rubra), Indian olive (Nestronia umbellula) and relict trillium (Trillium reliquum). Aquatic species listed as threatened and endangered species that may inhabit the stretch of Ocmulgee River

adjacent to the Site include bluestripe shiner (*Cyprinella callitaenia*), purple bankclimber mussel (*Elliptoideus sloatianus*), shiny-rayed pocketbook mussel (*Lampsilis subangulata*), Gulf moccasinshell mussel (Medionidus pencillatus) and oval pigtoe mussel (Pleurobema pyriforme).

3.3 POTENTIAL EXPOSURE

The potential for exposure of ecological species to contaminants detected in soil and groundwater at the Site is low. Terrestrial wildlife is not likely to enter the Site because the Site is covered by buildings and pavement and therefore does not provide a suitable habitat for wildlife. The Ocmulgee River and areas adjacent to the River present a suitable habitat for aquatic birds, fish and terrestrial wildlife. These receptors could potentially be exposed to contaminants in surface soils through ingestion of soil, dermal contact and inhalation of fugitive dust. However, ecological receptors are not likely to be affected by contaminants detected in the Site soils because the Site is currently paved and, therefore, there are no mechanisms for transport of soil contaminants (i.e., via surface water runoff or through fugitive emissions) from the Site. Contaminants detected in groundwater beneath the Site might potentially discharge to surface waters in Ocmulgee River. However, the impact on Ocmulgee River is expected to be low because all of the COIs detected in groundwater are below Type 1 RRS (see Section 2.2). In addition, the extent of COI in groundwater has been delineated to background levels and does not extend to the river.

SECTION 4 REFERENCES

Centers for Disease Prevention and Control (CDC), 1985. Preventing Lead Poisoning in Children, U.S. Department of Health and Human Services, Atlanta, Georgia.

Georgia Department of Natural Resources, Environmental Protection Division (GEPD), 1998. Georgia Adult Lead Model. March 23, 1998.

Georgia Department of Natural Resources, Environmental Protection Division (GEPD), 2003. Rules of GEPD Chapter 391-3-19 Hazardous Site Response.

Health Effect Assessment Summary Tables, 1997. Office of Research and Development U.S. Environmental Protection Agency, Washington, D.C. FY-1995 Annual.

Integrated Risk Information System (IRIS), 2000. U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Cincinnati, Ohio.

- U.S. Environmental Protection Agency (USEPA), 1991a. Risk Assessment Guidance for Superfund: Volume I Human Health Evaluation Manual (Part B): Development of Risk-Based Preliminary Remediation Goals, Interim. Office of Emergency and Remedial Response, Washington, DC. OSWER Dir. 9285.7-01B. December 1991.
- U.S. Environmental Protection Agency (USEPA), 1991b. Exposure Factors Handbook. Interim final. OSWER Directive No. 9285.6-03.
- U.S. Environmental Protection Agency (USEPA), 1994a. Interim Guidance on Establishing Soil Lead Cleanup Levels at RCRA Facilities. OSWER Directive #9355.4-12.
- U.S. Environmental Protection Agency (USEPA), 1994b. Guidance Manual for the Integrated Exposure Uptake Biokinetic Model. OSWER Directive #9285.7-15.1, BB93-963510, February 1994.
- U.S. Environmental Protection Agency (USEPA), 1996. Methodology for Assessing Risk Associated with Adult Exposure to Lead in Soil.
- U.S. Environmental Protection Agency (USEPA), 2001. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites Draft.

TABLE 1 PHYSICAL AND CHEMICAL PROPERTIES OF CONSTITUENTS OF INTEREST Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia

	Di	Н	Koc	VF
<u>Parameter</u>	(cm²/sec)	(atm-m³/mol)	(cm³/g)	(m³/kg)
VOCs	· · · · · · · · · · · · · · · · · · ·			
Benzene	0.088	5.60E-03	55.1	2.76E+03
Carbon Disulfide	0.104	3.00E-02	66.2	1.12E+03
Ethylbenzene	0.075	7.88E-03	341	6.36E+03
Methylene Chloride	1.01E-01	2.20E-03	12.80	1.95E+03
l'oluene	0,087	6.60E-03	165	4.47E+03
(ylenes	0.0769	7.30E-03	341	6.53E+03
Semi-VOCs				-
Acenaphthene	0.0421	1,60E-04	6820	2.68E+05
Acenaphthylene	0.06703	1.10E-04	10700	3.21E+05
Anthracene	0.0324	6.50E-05	26500	9.44E+05
Fluorene	0.0363	6.40E-05	13500	6.42E+05
Vaphthalene	0.059	4.80E-04	1760	6.64E+04
Phenanthrene	0.0543	2.56E-05	26500	1.16E+08

Superfund Chemical Data Marix, EPA, 1996.

Derivation Of VF Values (Soil-to-Air Volatilization Factor):

$$VF(m^{3}/kg) = \frac{(LS \times V \times DH)}{A} \times \frac{(\pi \times \alpha \times T)^{1/2}}{(2 \times D_{el} \times E \times K_{es} \times 10^{-3} \text{ kg/g})}$$

where:

LS = length of side of contaminated area (m): V = wind speed in mixing zone (m/s):	45 2.25
DH = diffusion height (m):	2
A = area of contamination (cm ²)	2.03E+07
$\pi = pi$:	3.1415927
$\alpha = (cm^2/s)$:	$(D_{ei} \times E)/(E + (\rho s \times ((1-E)/K_{as})))$
T = exposure interval (s), industrial:	7,88E+08
$\rho_s = \text{density of soil solids (g/cm}^3)$:	2.65
OC = soil organic carbon content fraction (unitles	s): 0.02
D_{ei} = effective diffusivity (cm ² /s):	D _i x E ^{0,33}
D_i = molecular diffusivity (cm ² /s):	chemical-specific
E = total soil porosity (unitless):	0.35
K _{as} = soil/air partition coefficient (g soil/cm ³ air):	(H/K₀) x 41
H = Henry's law constant (atm-m³/mol):	chemical-specific
K _d = soil-water partition coefficient (cm ³ /g):	K _∞ x OC
K _{oc} = organic carbon partition coefficient (cm³/g):	chemical-specific

m = meter

s = second

cm = centimeter

g = gram

atm-m3/mol = atmospheres-cubic meters per mole

TABLE 2 CANCER SLOPE FACTORS AND REFERENCE DOSES FOR CONSTITUENTS OF INTEREST Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia

	RfD₀		RfD _i		CSF.		CSFi	
Parameter	(mg/kg-d)		(mg/kg-d)		(mg/kg-d) ⁻¹		(mg/kg-d) ⁻¹	
·- ·· · · · · · · · · · · · · · · · · ·			- 1 - 3 - 1 - 1					
VOCs							•	
Benzene	4.00E-03	а	8.60E-03	а	5.50E-02	а	2.73E-02	а
Carbon Disulfide	1.00E-01	а	2.00E-01	а	NA		NA	
Ethylbenzene	1.00E-01	а	2.90E-01	а	NA		3.90E-03	е
Methylene Chloride	6.00E-02	а	8.60E-01	b	7.50E-03	а	1.65E-03	а
Methyl-tert-butyl-ether	NA		8.57E-01	а	NA		, NA	
Toluene	2.00E-01	а	1.14E-01	a	NA		NA	
Xylenes ,	2,00E+00	а	3.00E-03	a	NA		NA	
SVOCs								
Acenaphthene	6.00E-02	а.	NA		NA		NA ·	
Acenaphthylene	3.00E-03	С	NA		NA		NA	
Anthracene	3.00E-01	а	NA		NA		NA	
Benzo(a)anthracene	NA		NA		7.30E-01	d	3.10E-01	d
Benzo(a)pyrene	NA.		NA .		7.30E+00	a	3.10E+00	g
Benzo(b)fluoranthene	NA		NA		7.30E-01	d	3.10E-01	d
Benzo(g,h,i)perylene	3.00E-02	е	NA		NA		NA	
Benzo(k)fluoranthene	NA		NA		7.30E-02	d	3.10E-02	d
Chrysene	NA		NA		7.30E-03	d	3.10E-03	d
Dibenzo(a,h)anthracene	· NA		NA		7.30E+00	d	3.10E+00	ď
Fluoranthene	4.00E-02	а	, NA		NA		NA	
Fluorene	4.00E-02	8	NA		NΑ		NA	
Indeno(1,2,3-cd)pyrene	NA		NA		7.30E-01	d	3.10E-01	d
Naphthalene	2.00E-02	а	9.00E-04	а	NA		NA	
Phenanthrene	3.00E-02	C	NA		NA		NA	
Phenol	6.00E-01	а	NA		NA		NA	
Pyrene	3.00E-02	а	NA		NA		NA	
Inorganics								
Arsenic	3.00E-04	а	NA		1.50E+00	а	1.51E+01	а
Barium	7.00E-02	a	1.40E-04	b	NA		NA "	
Beryilium	2.00E-03	а	5.70E-06	а	NA		8.40E+00	а
Cadmlum	1.00E-03	a, f	5.70E-05	e	NA		6.30E+00	а
Chromium	3.00E-03	а	3.00E-05	а	NA		4.10E+01	b
Copper	4.00E-02	b	NA		NA		NA	
Cyanide	2.00E-02	а	NA		NA		NA	
Lead	NA		NA		NA		NA	
Mercury	3.00E-04	а	8.60E-05	а	NA	•	NÁ	
Nickel	2.00E-02	а	NA		NA		NA	a
Vanadium	7.00E-03	. b	NA		NA		NA	
Zinc	3.00E-01	а	NA		NA		NA	

⁽a) IRIS (2003)

⁽b) HEAST(7/97)

⁽c) Pyrene used as surrogate

⁽d) Toxicity Equivalence Factor (TEF) relative to benzo(a)pyrene were obtained from:

USEPA Region IV Office of Technical Sevices Supplemental Guidance to RAGS; October, 1996.

(e) EPA-NCEA

⁽f) Value based on exposure to cadmium through food intake; RfD for cadmium-water is 5E-04 mg/kg-day NA = Not available or not applicable

TABLE 3

COMPARISON OF MAXIMUM CONCENTRATIONS DETECTED IN SOIL TO TYPES 1 AND 2 RISK REDUCTION STANDARDS

Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia

	Max.Conc.	Type 1	Source of	Type 2	Source of
Barrar Mari	Above Water Table	RRS	Type 1	RRS	Type 2
Parameter	(mg/kg)	(mg/kg)	Standard	(mg/kg)	Standard
VOCs			•		
Benzene	0.031	0.500	b	8.37	d
Carbon Disulfide	0.032	400	b	228	f
Ethylbenzene	ND	70.0	b	139	f
Methylene Chloride	ND	0.500	b	96.5	d
Toluene	0.010	100	b	514	f
Xylenes	0.0055	1,000	b	1,000	f
SVOCs					
Acenaphthene	6.1	300	а	4,690	f
Acenaphthylene	8.8	130	а	2,350	f
Anthracene	33	500	a	23,500	f
Benzo(a)anthracene	37	5.00	la	12.5	d
Benzo(a)pyrene	26	1.64	а	1.25	d
Benzo(b)fluoranthene	27	5.00	а	12.5	i d
Benzo(g,h,i)perylene	5.0	500	a	2,350	f .
Benzo(k)fluoranthene	- 28	5.00	a	125	d
Chrysene	37	5.00	a	1,250	d
Dibenzo(a,h)anthracene	3.5	2.00	d	1.25	d
Fluoranthene	68	500	a	3,130	f
Fluorene	31	360 .	- a	3,130	f
Indéno(1,2,3-cd)pyrene	15	5.00	a	12.5	d
Naphthalene	51	100	а	59.9	
Phenanthrene	110	110	a	2,350	f
Phenol	ND	400	b	46,900	f
Pyrene	70	500	a	2,350	f
Inorganics					
Arsenic	31.5	20.0] c	6.08	d
Barium	279	1,000	C	5,430	f
Beryllium	ND	2.00	C	156	f
Cadmium	ND	2.00	C	78.2	f
Chromium	46.3	100	C	234	f
Copper	89.1	100	c	3,130	f
Cyanide	1.44	20.0	, b	1,560	f
Lead	634	75.0/204	c/e	400	
Mercury	9.43	0.500/0.540	c/e	23.5	f
Nickel-	. 14.4	50,0	C	1,560	f
Vanadium	79.3	100/120	, c/g	548	f
Zinc	544	100/257	c/e	23,500	f

Blocked values exceed Risk Reduction Standards

- * = Derived based on the EPA Integrated Exposure Biokinetic Model.
- a = Appendix I Notification Requirement (GEPD, 1999)
- b = Appendix III Table 1 times 100 (GEPD, 1999)
- c = Appendix III Table 2 (GEPD, 1999)
- d = Upperbound excess cancer risk
- e = Background in fill material
- f = Noncarcinogenic risk
- g = Background in natural soils
- NA = Not available

TABLE 4
TYPE 2 RISK REDUCTION STANDARDS FOR
POTENTIAL RESIDENTIAL (ADULT AND CHILD) EXPOSURE TO SOIL
Former Macon 2 Manufactured Gas Plant Facility
Macon, Georgia

	Calculated Goal	Calculated Goal	Calculated Goal	Calculated Goal	
•	Child (Nonc)	Child (Carc)	Adult (Nonc)	Adult (Carc)	Type 2 RRSs
Parameter	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
VOCs					
Benzene	22.91	11.44	84.04	8.368	8.37
Carbon Disulfide	227.7	NA	811.8	NA	228
Ethylbenzene	1,544	199	6,166	139	139
Methylene Chloride	1,275	128.7	5,374	96.45	96.5
Toluene	514.5	NA	1,839	NA	514
Xylenes	156,429	NA	1,460,000	NA	156,429
SVOCs				·	
Acenaphthene	4,693	NA	43,800	NA	4,693
Acenaphiniene Acenaphihylene	2,346	NA.	21,900	NA NA	2,346
Anthracene	23,464	NA NA	219,000	NA NA	23,464
Benzo(a)anthracene	20,404 NA	12.50	19,000 NA	23.33	12.5
Benzo(a)pyrene	NA NA	1.250	NA	2.333	1.25
Benzo(b)fluoranthene	NA -	12,50	NA	23.33	12.5
Benzo(g,h,i)perylene	2,346	NA	21,900	NA	2,346
Senzo(k)fluoranthene	NA NA	125.0	NA NA	233	125
Chrysene	NA NA	1,250	NA .	2,333	1,250
Dibenzo(a,h)anthracene	NA NA	1.250	NA	2.333	1.25
Fluoranthene	3,129	NA	29,200	NA NA	3,129
Fluorene	3,129	NA	29,200	NA .	3,129
ndeno(1,2,3-cd)pyrene	NA NA	12.50	NA NA	23.33	12.5
Naphthalene	59.9	NA	214.8	NA	59.9
Phenanthrene	2,346	NA.	21,900	NA.	2,346
Phenol	46,929	NA	438,000	NA	46,929
Pyrene	2,346	NA	21,900	NA	2,346
inorganics					
Arsenic	23.46	6.082	219.0	11.35	6.08
Barium	5,431	NA ·	50,020	NA	5,431
Beryllium	155.5	67,056	1,438	46,939	156
Cadmium	78.19	89,408	729.4	62,586	78.2
Chromium	234.3	13,738	2,181	9,617	234
Copper	3,129	NA	29,200	NA	3,129
Cyanide	1,564	NA	14,600	NA	1,564
Lead	NA	NA	NA	NA	400
Mercury	23.46	NA	218.9670	NA	23.5
Nickel	1,564	NA	14,600	NA	1,564
Vanadium	548	NA .	5,110	NA	548
Zinc	23,464	NA	219,000	NA	23,464

NA = Not available

^{* =} Derived based on the EPA Integrated Exposure Biokinetic Model.

TABLE 4

TYPE 2 RISK REDUCTION STANDARDS FOR POTENTIAL RESIDENTIAL (ADULT AND CHILD) EXPOSURE TO SOIL Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia

Noncarcinogens:

c =

HI*BW*AT*365 days/year

 $\mathsf{EF^*ED}[(1/\mathsf{RfD}_o\,{}^*\mathsf{IR^*CF+}(1/\mathsf{RfD}_l{}^*\mathsf{IR}_o\,{}^*(1/\mathsf{VF+}1/\mathsf{PEF})]$

 $\frac{\text{Carcinogens:}}{\text{C = }} \frac{\text{TR*BW*AT* 365 days/year}}{\text{EF*ED*[(CSF,o*1R*CF)+(CSF,o*1R,o*(1/VF+1/PEF))]}}$

where:	
HI (Hazard Index)	1
BW = Body Weight (kg), adult	70
BW = Body Weight (kg), child	15
AT = Averaging Time (years), child	6
AT = Averaging Time (years), (carc)	70
EF = Exposure Frequency (days/year)	350
ED = Exposure Duration (years), adult	30
ED = Exposure Duration (years), child	6
RfD _o = Oral Reference Dose	Chemical-specific
RfD _i = Inhalation Reference Dose	Chemical-specific
IR = Ingestion Rate (mg/day), child	200
IR = Ingestion Rate (mg/day), adult	100
TR = Target Risk	1.00E-05
CSF _o = Oral Cancer Slope Factor	Chemical-specific
CSF _I = Inhalation Cancer Slope Factor	Chemical-specific
IR _a = Air Inhalation Rate (child) (m ³ /day)	15
IR _a = Air Inhalation Rate (Adult) (m ³ /day)	15
1/PEF = Inv of Particulate Emission Factor (kg/m³)	2.16E-10
CF = Conversion Factor (kg/mg)	1.00E-06
VF = Volatilization Factor (m³/kg)	Chemical-specific

TABLE 5 COMPARISON OF MAXIMUM CONCENTRATIONS DETECTED IN SOIL TO TYPES 3 AND 4 RISK REDUCTION STANDARDS

Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia

Parameter	Max.Conc. Above Water Table (mg/kg) 0-2'	Max.Conc. Above Water Table (mg/kg) >2'	Type 3 RRS (mg/kg) 0-2'	Type 3 RRS (mg/kg) >2'	Source of Type 3 Standard	Type 4 RRS (mg/kg) 0-2'	Type 4 RRS (mg/kg) >2'	Source of Type 4 Standard
VOCs								
Benzene	ND	0.031	0.500	0.500	b	0.500	0.500	е
Carbon Disulfide	. ND	0.032	400	400	b	400	400	е
Ethylbenzene	ND	ND	70.0	70.0	b	70.0	70.0	е
Methylene Chloride	ND '	ND	0.500	0.500	b	0.500	0.500	e
Toluene	ND	0.010	100	100	b	100	100	е
Xylenes	ND	0.0055	1,000	1,000	b	1,000	1,000	е.
SVOCs								
Acenaphthene	ND	6.1	300	300	a	300	300	. е
Acenaphthylene	ND ·	8.8	130	130	a	130	130	е
Anthracene	ND	33	500	500	a	500	500	е
Benzo(a)anthracene	0.75	37	5.00	5,00	a	78.4	120	d/f
Benzo(a)pyrene	0.74	26	1.64	1.64	а	7.84	63,3	d/f
Benzo(b)fluoranthene	0.69	27	5.00	5.00	а	78.4	298	d/f
Benzo(g,h,i)perylene	0.540	5.0	500	500	а	500	500	е
Benzo(k)fluoranthene	0.780	28	5.00	5.00	а	5.00	5.00	е
Chrysene	0.77	37	5.00	5.00	а	5.00	. 5.00	е
Dibenzo(a,h)anthracene	ND	3.5	5.00	5.00	а	5.00	5.00	е
Fluoranthene	1.5	68	500	500	а	500	500	Đ
Fluorene	ND	31	360	360	а	360	360	€ `
Indeno(1,2,3-cd)pyrene	0.38	15	5.00	5.00	а	78.4	924	d/f
Naphthalene	DL	51·	100	100	а	100	100	е
Phenanthrene	1.1	110	110	110	а	110	110	е
Phenol	ND	ND	400	400	b	400	400	е
Pyrene	1.1	70	500	500	а	500	500	е
Inorganics								
Arsenic	31.5	7.47	38.1	41.0	d,a	38.1	41.0	е
Barlum	119	279	1,000	1,000	C	1,000	1,000	е.
Beryllium	ND 1	ND	3.00	3.00	а	3.00	3.00	e
Cadmium	ND	ND	39.0	39.0	а	39.0	39.0	e
Chromium	25.0	46.3	1,200	1,200	а	1,200	1,200	e
Copper	63.7	89.1	1,500	1,500	а	1,500	1,500	е
Cyanide	ND	1.44	20.0	20.0	b	20.0	20.0	е
Lead	151	634	400	400	а	1,070	1,070	f
Mercury	0.825	9.43	17.0	17.0	а	17.0	17.0	. е
Nickel	8.29	14.4	420	420	a	420	420	е
Vanadium	75.3	79.3	100	100	а	100	100	е
Zinc	160	544	2,800	2,800	<u> </u>	2,800	2,800	6

ND = Non detect

Blocked values exceed Risk Reduction Standards

a = Appendix i Notification Requirement (GEPD, 1999)

b = Appendix III Table 1 times 100 (GEPD, 1999)

c = Appendix III Table 2 (GEPD, 1999)

d = Upperbound excess cancer risk

e = Calculated Type 4 RRS by RAGs was not evaluated for leachability; therefore, defaults to Type 3.

f = Concentration protective of groundwater is less than Type 4 RRS calculated by RAGs, therefore, Type 4 has been adjusted to be protective of groundwat NA = Not available

TABLE 6 TYPE 4 RISK REDUCTION STANDARDS FOR POTENTIAL COMMERCIAL AND CONSTRUCTION EXPOSURE TO SOIL Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia

			Commercial Worker			Construction Worker
			Type 4			Туре 4
	Calculated	Calculated	RRSs	Calculated	Calculated	RR\$
	Goal (Nonc)	Goal (Carc)	(mg/kg)	Goal (Noncar)	Goal (Car)	(mg/kg)
Parameter	(mg/kg)	(mg/kg)	0-2'	(mg/kg)	(mg/kg)	>2'
VOCs						
Benzene	119.4	14.25	14.25	220.7	1,324	220.7
Carbon Disulfide	1,143	NA	1,143	2,216	NA	2,216
Ethvibenzene	9,013	233.4	233,4	14,457	23,344	14,457
Methylene Chloride	8,016	165.6	165,6	11,736	14,762	11,736
Toluene	2,590	NA	2,590	5,003	NA	5,003
Xylenes	4,088,000	NA .	4,088,000	* 1,238,788	NA	1,238,788
SVOCs						
Acenaphthene	122,640	NA	122,640	37,164	NA	37,164
Acenaphthylene	6,132	NA NA	6,132	1,858	NA	1,858
Anthracene	613,200	NA ·	613,200	185,818	NA	185,818
Benzo(a)anthracene	NA	78.4	78.40	NA	1,188	1,188
Benzo(a)pyrene	NA	7.84	7.840	NA NA	118.8	118.8
Benzo(b)fluoranthene	NA	78.4	78.40	NA NA	1,188	1,188
Benzo(g,h,i)perylene	61,320	NA	61,320	18,582	NA	18,582
Benzo(k)fluoranthene	NA	784	784.0	NA	11,879	11,879
Chrysene	NA	7,840	7,840	NA :	118,787	118,787
Dibenzo(a,h)anthracene	NA	7.84	7.840	NA	118.8	118.8
Fluoranthene	81,760	NA	81,760	24,776	NA	24,776
Fluorene	81,760	-NA	81,760	24,776	NA	24,776
Indeno(1,2,3-cd)pyrene	NA	78.4	78.40	. NA	1,188	1,188
Naphthalene	303	NA	302.9	581.6	NA	582
Phenanthrene	61,320	NΑ	61,320	18,582	NA.	18,582
Phenol	1,228,400	NA	1,226,400	* 371,636	NA	371,636
Ругеле	61,320	NA	61,320	18,582	NA	18,582
inorganics						
Arsenic	613.2	38.12	38.12	185.8	578.0	186
Barium	137,155	NA	137,155	43,076	NA	43,076
Beryllium	3,968	78,858	3,968	1,233	112,654	1,233
Cadmium	2,041	105,144	2,041	619,3	10,514,403	619
Chromium	6,079	18,156	6,079	1,856	11,540	1,856
Copper	81,760	NA	81,760	24,776	NA	24,776
Cyanide	40,880	NA	40,880	12,388	NA	12,388
Lead	NA	NA	1,429	· ** NA	NA	1,429
Mercury	613.0	NA	613.0	185.8	NA	18 6
Nickel	40,880	NA	40,880	12,388	NA	12,388
Vanadium	14,308	NA	14,308	4,336	NA ·	4,336
Zinc	613,200	NA	613,200	185,818	NA	185,818

NA = Not available

^{* =} Type 4 RRS > 1.00E+08, therefore it defaults to Type 3 RRS.

** = Calculated based on Georgia Adult Lead Model (see Table 7)

TABLE 6 TYPE 4 RISK REDUCTION STANDARDS FOR POTENTIAL COMMERCIAL AND CONSTRUCTION EXPOSURE TO SOIL Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia

Noncarcinogens:

Hi*BW*AT* 365 days/year C = EF*ED*[(1/RfD₀*CF*R)+((1/RfD₀*IR_a*(1/VF+1/PEF)]

Carcinogens:

TR*BW*AT* 365 days/year
C = EF*ED*[(CSF₀*IR*CF)+(CSF₁*IR₃*(1/VF+1/PEF)]

where:	Commercial Worker	Construction Worker
HI (Hazard Index)	1	1
BW = Gody Weight (kg), adult	70	70
AT = Averaging Time (years), (adult/carc)	70	70
AT = Averaging Time (years), (adult/nonc)	25	0.5
EF = Exposure Frequency (days/year)	250	125
ED = Exposure Duration (years), adult/carc	25	0.5
RfD _o = Oral Reference Dose	Chemical-specific	Chemical-specific
RfD _i = Inhalation Reference Dose	Chemical-specific	Chemical-specific
CSF _o = Oral Cancer Slope Factor	Chemical-specific	Chemical-specific
CSF _i = Inhalation Cancer Stope Factor	Chemical-specific	Chemical-specific
IR = Ingestion Rate (mg/day), adult	50	330
TR = Target Risk	1.00E-05	1.00E-05
IR _a = Air Inhalation Rate (adult)	20 .	20
1/PEF = inv of Particulate Emission Factor (kg/m³)	2.16E-10	2.16E-10
CF = Conversion Factor (kg/mg)	1.00E-06	1.00E-06
VF = Volatilization Factor (m ³ /kg)	Chemical-specific	Chemical-specific

TABLE 7
CALCULATION OF TYPE 4 RISK REDUCTION STANDARDS FOR LEAD IN SOIL
Former Macon 2 Manufactured Gas Facility
Macon, Georgia

Baseline blood lead concentration in adults	ng/dL	1.38	
	ug/df.	5	
	ug/di_	3. 4.	Calculated from equation 1 (see below)
l lead concentration	unitless	2.04	
entration at birth	unitless	6:0	
and maternal blood lead concentration			
Biokinetic stope factor ug/	ug/dL per ug/day	4.0	
	days/year	219	
	days/year	365	-
で	g/day	0.05	
ption factor for ingested lead in soil and in dust	unitless	0.12	-
dwater at site.	ng/L	0.01	Detection Limit
	L/day	-	
ion factor for lead ingested in groundwater	unitless	0.2	
	mg/kg	1429.44	Calculated from equation 2 (see below)

Model, HSRA Appendix IV, October 27, 1999.

PbB = <u>PbB_{tetal}</u> R*GSD^{1.645} RRS = $[(PbB - PbB_b) - (C_w^*l_w^*A_w)]^* (l_s^*A_s)^{-1}$ BSF*(EF/AT)

TABLE 8 COMPARISON OF MAXIMUM CONCENTRATIONS DETECTED IN GROUNDWATER TO TYPES 1 AND 2 RISK REDUCTION STANDARDS

Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia

	Maximum Detected	Type 1	,	Type 2	
	Concentration*	RRS	Source of	RRS	Source of
Parameter	(mg/L)	(mg/L)	Type 1 Standard	(mg/L)	Type 2 Standard
<u>VOCs</u>					_
Benzene	ND	0.00500	а	0.00545	d
Carbon Disulfide	ND	4.00	а	0.329	d
Ethylbenzene	ND	0.700	а	0.0582	· d
Methylene Chloride	ND	0.00500	a	0.0622	C
Methyl-tert-butyl-ether	NA .	DL	b	1.79	d
Toluene	ND	1.00	а	0.221	d
Xylenes	ND ·	10.0	a	31.3	, d
SVOC8	· .				
Acenaphthene	0.014	2.00	a	0.939	d
Acenaphthylene	ND	DL	b	0.469	d
Anthracene	ND	DL	b	4.69	d
Benzo(a)anthracene	ND .	0.000100	a	0.000450	C
Benzo(a)pyrene	ND	0.000200	а	0.0000450	C
Benzo(b)fluoranthene	ND	0.000200	а	0.000450	С
Benzo(g,h,i)perylene	ND	DL	b	0.469	đ
Benzo(k)fluoranthene	ND	DL	b	0.00450	С
Chrysene	ND	DL	b	0.0450	С
Dibenzo(a,h)anthracene	ND	0.000300	a ·	0.0000450	С
Fluoranthene	ND	1.00	a	0.626	d
Fluorene	ND	1.00	a	0.626	d
Indeno(1,2,3-cd)pyrene	ND	0.000400	a	0.000450	C
Naphthalene	ND	0.0200	а	0.00187	d
Phenanthrene	ND	DL	b	0.469	d
Phenol	ND	4.00	а	9.39	d
Pyrene	ND	1.00	a.	0.469	, d
<u>Inorganics</u>					
Arsenic	ND	0.0500	а	0.000568	C
Barlum	1.85	2.00	а	1.10	d
Beryllium	ND	0.00500	а	0.0313	d
Cadmium	ND	0.00500	а	0.00782	C
Chromium	ND	0.100	а	0.0469	ď
Соррег	ND	1.30	a	0.626	d
Cyanide	0.048	0.200	a	0.313	d
Lead	ND	0.0150	а	0.0150	а
Mercury	ND	0.00200	а	0.00469	d
Nickel	ND	0.100	a ,	0.313	ď
Vanadium	ND .	0.200	a ·	0.110	d
Zinc	ND	2,00	а	4.69	d

Blocked values = Risk Reduction Standard exceeded

- a = Appendix III Table 1 (GEPD, 1999)
- b = Detection limit
- c = Upperbound excess cancer risk
- d = Noncarcinogenic risk
- * = Based on August 2003 sampling event.

TABLE 9 TYPE 2 RISK REDUCTION STANDARDS FOR POTENTIAL RESIDENTIAL (CHILD AND ADULT) EXPOSURE TO GROUNDWATER Former Macon 2 Manufactured Gas Plant Macon, Georgia

	Calculated Goal	Calculated Goal	Calculated Goal	Calculated Goal	
	Child (Noncarc)	Child (Car)	Adult (Noncarc)	Adult (Carc)	Type 2 RRS
Parameter	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
VOCs					
Benzene	0.01394	0.007087	0.05320	0.005451	0.00545
Carbon Disulfide	0.3293	NA	1.270	NA	0.329
Ethylbenzene	0.4362	0.06239	1.592	0.05823	0.0582
Methylene Chloride	0.6162	0.09182	1,736	0.06222	0.0622
Methyl-tert-butyl-ether	1.787	NA	8.341	NA	1.79
Toluene	0.2210	NA	0.9632	NA	0.221
Kylenes	31.29	·NA =	73.00	NA -	31.3
SVOCs					
Acenaphthene	0.9386	NA	2.190	NA	0.939
Acenaphthylene	0.4693	NA	1.095	NA	0.469
Anthracene	4.693	NA	10.95	NA	4,69
Benzo(a)anthracene	NA NA	0.000597	NA	0.000450	0.000450
Benzo(a)pyrene	NA	0.0000597	NA	0.0000450	0.0000450
Benzo(b)fluoranthene	NA	0.000597	NA	0.000450	0.000450
Benzo(g,h,l)perylene	0.4693	NA	1.095	NA	0.469
Benzo(k)fluoranthene	NA .	0.00597	NA	0.00450	0.00450
Chrysene	NA	0.0597	NA	0.0450	0.0450
Dibenzo(a,h)anthracene	. NA	0.0000597	NA	0.0000450	0.0000450
Fluoranthene	0.6257	NA	1.460	NA	0.626
Fluorene	0.6257	NA	1.460	NA	0.626
Indeno(1,2,3-cd)pyrene	NA	0.000597	NA	0.000450	0.000450
Naphthalene	0.001866	NA	0.7300	NA	0.00187
Phenanthrene	0.4693	NA ·	1.095	NA	0.469
Phenol	9.386	NA	21.90	NA	9.39
Pyrene	0.4693	NA	1.095	NÁ	0.469
norganics					
Arsenic	0.004693	0.00122	0.0110	0.000568	0.000568
Barlum ·	1.095	NA	2.555	NA	1.10
Beryllium	0.03129	NA	0.07300	NA	0.0313
Cadmium	0.007821	NA	0.01825	NA	0.00782
Chromium	0.04693	NA	0.1095	NA .	0.0469
Copper	0.6257	NA	1.460	NA	0.626
Cyanide	0.3129	. NA	0.7300	NA ·	0.313
Lead	NA	NA	NA	NA	NA
Mercury	0.004693	NA .	0.01095	NA	0.00469
Nicket	0.3129	NA	0.7300	NA -	0.313
Vanadium	0.1095	NA	0.2555	NA	0.110
Zinc	4.693	NA	10.95	NA	4.69

TABLE 9

TYPE 2 RISK REDUCTION STANDARDS FOR POTENTIAL RESIDENTIAL (CHILD AND ADULT) EXPOSURE TO GROUNDWATER Former Macon 2 Manufactured Gas Plant

Macon, Georgia

Noncarcinogens:

 $c = \frac{THI*BW*AT*365 \text{ days/year}}{EF*ED*[(1/RFD_i*K*IR_a)+(1/RfD_o*IR_w)]}$

Carcinogens:

	TR*BW*AT*365 days/year
c =	EF*ED*[(CSF;*K*IR _s)+(CSF _o *IR _w)]
1	
15	
70	
70	
6	
. 30	
350	
6	
30	
0.5	
15	
. 15	•
2	
1	
Chemical-specific	
Chemical-specific	
1.00E-05	•
Chemical-specific	
Chemical-specific	- -
	•
	1 15 70 70 6 30 350 6 30 0.5 15 15 15 2 1 Chemical-specific Chemical-specific 1.00E-05 Chemical-specific

TABLE 10 COMPARISON OF MAXIMUM DETECTED CONCENTRATIONS IN GROUNDWATER TO TYPES 3 AND 4 RISK REDUCTION STANDARDS Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia

	Maximum Detected	Type 3		Type 4	
	Concentration*	RRS	Source of	RRS	Source of
Parameter	(mg/L)	(mg/L)	Type 3 Standard	(mg/L)	Type 4 Standard
VOCa					
Benzene	ND	0.00500	а	0.0088	C
Carbon Disulfide	ND	4.00	a	1.70	ď
Ethylbenzene	ND	0.700	a	0.0734	d
Methylene Chloride	ND	0.00500	a	0.119	C
Methyl-tert-butyl-ether	NA	DL	Ь.	8.76	d
Toluene	ND	1.00	a	1.10	d
Xylenes	ND	10.0	а	204	ď
SVOCs					
Acenaphthene	0.014	2.00	a	6.13	. d
Acenaphthylene	ND	DL	b	3.07	d
Anthracene	ND	DL	b	30.7	- d
Benzo(a)anthracene	ND	0.000100	а	0.000747	¢
Benzo(a)pyrene	ND	0.000200	a	0.0000747	¢
Benzo(b)fluoranthene	ND	0.000200	a	0.000747	c ·
Benzo(g,h,l)perylene	ФИ	DL	а	3.07	đ
Benzo(k)fluoranthene	ND	DL	b	0.00747	¢
Chrysene	ND	DL	а	0.0747	C
Dibenzo(a,h)anthracene	ND	0.000300	b	0.0000747	C
Fluoranthene	ND	1.00	b	4.09	d.
Fluorene	ND	1.00	а	4.09	d
Indeno(1,2,3-cd)pyrene	ND	0.000400	а	0.000747	C .
Naphthalene	ND	0.0200	а	0.00916	d ·
Phenanthrene	ND	DL	b	3.07	d
Phenol	ND	4.00	а	61.3	d
Pyrene	ND	1.00	a	3.07	d
<u>Inorganics</u>					
Arsenic	ND	0.0500	а	0.00191	C
Barium	1.85	2.00	а	7.15	ď
Beryllium -	ND	0.00500	a	0.204	ď
Cadmium	ND	0.00500	а	0.0511	C
Chromium	ND	0.100	a	0.307	d 1
Copper	ND	1.30	a "	4.09	d
Cyanide	0.048	0.200	a	2.04	d
Lead	ND	0.0150	а	0.0150	d .
Mercury	ND	0.00200	a	0.0307	C
Nickel	ND.	0.100	a	2.04	ď
Vanadium	ND	0.200	a ·	0.715	d
Zinc	ND	2.00	a	30.7	d

Blocked values = Risk Reduction Standard exceeded

a = Appendix III Table 1 (GEPD, 1999)

b = Detection limit

c = Upperbound excess cancer risk

d = Noncarcinogenic risk

^{* =} Based on August 2003 sampling event.

TABLE 11 TYPE 4 RISK REDUCTION STANDARDS FOR POTENTIAL INDUSTRIAL GROUNDWATER EXPOSURE Former Macon 2 Manufactured Gas Plant, Macon, Georgia

	Calculated	Calculated	
	Goal (Nonc)	Goal (Carc)	RRS Type 4
Parameter	(mg/L)	(mg/L)	(mg/L)
VOÇs			
Benzene	0.0723	0.0088	0.0088
Carbon Disulfide	1,703	NA	1.70
Ethylbenzene	2,298	0.07337	0.0734
Methylene Chloride	3,612	0.1192	0.119
Methyl-tert-butyl-ether	8.759	NA	8.76
Toluene	1.102	NA NA	1.10
Xylenes	204.4	NA NA	204
rry, on so	2017-1	,	207
SVOCs			
Acenaphthene	6.132	ÑA	6.13
Acenaphthylene	3.066	NA	3.07
Anthracene	30.66	NA	30.7
Benzo(a)anthracene	NA	0.000747	0.000747
Benzo(a)pyrene	NA	0.0000747	0.0000747
Benzo(b)fluoranthene	NA	0.000747	0.000747
Benzo(g,h,i)perylene	3.066	NA	3.07
Benzo(k)fluoranthene	NA	0.00747	0.00747
Chrysene	· NA	0.07472	0.0747
Dibenzo(a,h)anthracene	NA	0.0000747	0.0000747
Fluoranthene	4.088	NA	4.09
Fluorene	4.088	NA	4.09
Indeno(1,2,3-cd)pyrene	NA	0.000747	0.000747
Naphthalene	0.00916	NA	0.00916
Phenanthrene	3.066	NA	3.07
Phenol	61.32	NA ·	61.3
Pyrene	3.066	NA	3.07
Inorganics		-	
Arsenic	0.03068	0.001908	0.00191
Barium	7.154	NA NA	7.15
Beryllium	0.2044	NA NA	0.204
Cadmium	0.05110	NA NA	0.0511
Chromium	0.3066	NA NA	0.307
Copper	4.088	NA NA	4.09
Coppei Cyanide	2.044	NA NA	2.04
Lead	2.044 NA	NA NA	NA
Mercury	0.03066	NA NA	0.0307
Nickel	2.044	NA NA	2.04
Nickei Vanadium	2.044 0.7154	NA NA	0.715
Variadium Zinc	30.66	NA NA	30.7

NA = Not available

TABLE 11 TYPE 4 RISK REDUCTION STANDARDS FOR POTENTIAL INDUSTRIAL GROUNDWATER EXPOSURE Former Macon 2 Manufactured Gas Plant, Macon, Georgia

Non-carcinogens:

 $c = \frac{THI^*BW^*AT^*365 \text{ days/year}}{EF^*ED^*[(1/RfD_i^*K^*IR_n)^*(1/RfD_o^*IR_w)]}$

Carcinogens:

 $c = \frac{TR*BW*AT*365 \text{ days/year}}{EF*ED*[(CSF_i*K*lR_o)+(CSF_o*lR_w)]}$

where:	•
THI = Target Hazard Index	1
BW = Body Weight (kg), adult	70
AT = Averaging Time (years) adult (nonc)	25
AT = Averaging Time (years) adult (carc)	70
EF = Exposure Frequency (days/year)	250
ED = Exposure Duration (year), adult (nonc)	25
K = Volatilization Factor (unitless)	0.5
IR _a = Inhalation Rate of Air (m³/day), adult	. 20
IR _w = Ingestion Rate of Water (L/day), adult	1
RfD _o = Oral Reference Dose	Chemical-specific
RfD _i = Inhalation Reference Dose	Chemical-specific
TR = Target Risk	1.00E-05
CSF _o = Oral Cancer Slope Factor	Chemical-specific
CSF _i = Inhalation Cancer Slope Factor	Chemical-specific
NA = Not Applicable	•

PROTECTED ANIMAL AND PLANT SPECIES POTENTIALLY OCCURRING IN BIBB COUNTY AND THE SURROUNDING COUNTIES OF CRAWFORD, HOUSTON, JONES, MONROE, PEACH, AND TWIGGS

Macon 2 Former Manufactured Gas Plant Facility

Macon, Georgia Table 12

Species Name	County	Federal Status ^(a)	State Status ^(b)	Preferred Habitat
BIRDS				
11 4	1 0 0 1		4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
baid eagle	Bibb, Crawiora,	-	디	Associated With coasts, river and takes, usually nesting within sight of large bodies
(Haliaeetus leucocephalus)	Houston, Jones,			of water.
	Monroe, Peach,			
	Twiggs			
Wood stork	Bibb, Crawford,	H	E	Primarily feed on fish in fresh and brackish wetlands and nest in cypress or other
(Mycteria americana)	Houston, Jones,			wooded swamps.
	Peach, Twiggs			
Red-cockaded woodpecker	Bibb, Crawford,	E	田	Nest in mature pine with low understory vegetation, forage in pine hardwood
(Picoides borealis)	Houston, Jones,			stands greater than 30 years of age.
	Monroe, Peach.			
•	Twiggs			
prepre				
FISHES				
Bluestripe shiner	Crawford	Z,	1	Restricted to the Apalachicola - Chattahoochee-Flint (ACF) River system, in large
(Cyprinella callitaenia)				streams with open, sand or rock-bottomed channels with flowing water and little or
				no aquatic vegetation.
MUSSELS				
Purple bankclimber mussel	Crawford,	Ţ	T	Main channels of ACF Basin rivers in moderate currents over sand, sand mixed
(Elliptoideus sloatianus)	Peach			mud, or gravel substrates.
Shiny-rayed pocketbook	Crawford,	ធ	田	Medium Creeks to mainstream of rivers (Choctawhatchee and Ochlockonee only)
mussel	Peach			with slow to moderate currents over sandy substrates and associated with rock or
(Lampsilis subangulata)				clay.
Gulf moccasinshell mussel	Crawford,	田	田	Medium creeks to mainstream of rivers (Choctawhatchee and Ochlockonee only)
(Medionidus pencillatus)	Peach			with slow to moderate currents over sandy substrates and associated with rock or
				clay.
		ļ		
Oval pigtoe mussel	Crawtord,	ப	ъ	Kiver tributaries and main channels (Apalachicola, Chattahoochee, and Flint basin)
(Pleurobema pyriforme)	Peach			in slow to moderate currents over silty sand, muddy sand, sand, and gravel
				substrates.

Species Name	County	Federal	State	Preferred Hahitat
-		Status (a)	Status ^(b)	
PLANTS				
Shoals spider-lily .	Bibb	NL	п	Major streams and rivers in rocky shoals and in cracks of exposed bedrock, plants
(Hymenocallis coronaria)				can be completely submerged during flooding.
Green pitcher-plant	Bibb	щ	旦	Open seepy meadows along sandy flushed banks of streams, and in partially
(Sarracenia oreophila)	,			shaded red maple-blackgum low woods or poorly drained oak-pine flatwoods;
				believed to be extirpated from Bibb County.
Sweet pitcher-plant	Bibb, Crawford,	NL	Ħ	Acidic soils of open bogs, sandhill seeps, Atlantic white cedar swamps, wet
(Sarracnia rubra)	Peach	,		savannas, and low areas in pine flatwoods and along sloughs and ditches.
Ocmulgee skullcap	Bibb, Houston	NFS	T	Prefers forested terraces, hardwood slopes and riverbanks of tributaries to the
(Scutellaria ocmulgee)				Ocmulgee, Oconee, and Savannah Rivers.
Fringed campion	Bibb, Crawford	H	E	Mature hardwood or hardwood-pine forests on river bluffs, small stream terraces,
(Silene polypetala)				moist slopes and well shaded ridge crests.
Relict trillium	Bibb, Houston,	ш	3	Hardwood forests; in the Piedmont on either rich ravines or adjacent alluvial
(Trillium reliquum)	Jones			terraces with other spring-flowering herbs.
Indian olive	Peach	NFS	ho	Dry open upland pine-hardwood forests.
(Nestronia umbellula)				
AMPHIBIANS AND REPTILES	ES			
Eastern indigo snake	Bibb, Houston,	T	${ m L}$	Winters in xeric sandhills habitat associated with gopher tortoises; forages in creek
(Drymarchon corais couperi)	Twiggs	-		bottoms, upland forests, and agricultural fields during the worm months.
Barbour's map turtle	Crawford	NFS	L	Restricted to Apalachicola River and large tributaries including Chipola,
(Graptemys barbouri)				Chattahoochee, and Flint Rivers in eastern Alabama, western Georgia, and western
				Florida.
Alligator snapping turtle	Crawford,	NFS	R	Rivers, lakes, and large ponds
(Macroclemys temmincki)	Peach			
Gopher tortoise	Bibb, Crawford,	NFS	I	Well drained sandy soils in forest and grassy areas often associated with pine
(Gopherus polyphemus)	Houston			overstory with grass associated with pine overstory and open understory with grass
				and groundcover, and sunny areas for nesting.

Source: http://www.fws.gov/r4gafo/

(a) Federal; E = Endangered; T = Threatened; NFS = No Federal Status
(b) State; E = Endangered; T = Threatened

COMPLIANCE STATUS INVESTIGATION REPORT

ATTACHMITA

FORMER MACON 2 MGP FACILITY

MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

June 17, 2002 - Revised September 5, 2003

COMPLIANCE STATUS INVESTIGATION REPORT ATTACHMENT A

FORMER MACON 2 MGP FACILITY MACON, GEORGIA

Prepared For:

Georgia Power Company Atlanta Gas Light Company and The City of Macon

Prepared By:

WILLIAMS ENVIRONMENTAL SERVICES INC. 500 Chase Park South, Suite 150 Birmingham, Alabama 35244

Analytical Environmental Services, Inc.

August 25, 2003

Mike Dillon Williams Environmental Services, Inc 500 Chase Park South Suite 150 Birmingham, AL 35244

TEL: (205) 988-8305 FAX (205) 988-5249

RE: Macon II MGP

Dear Mike Dillon:

Order No.: 0308662

Analytical Environmental Servs, Inc. received 16 samples on 8/21/2003 9:50:00 AM for the analyses presented in the following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative. AES' certifications are as follows:

-NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water, effective 07/02/03-06/30/04.

-AIHA Certification number 505 for analysis of Air, Paint Chips, Soil and Dust Wipes, effective until 10/01/03.

These results relate only to the items tested. This report may only be reproduced in full and contains 20 total pages (including cover letter).

If you have any questions regarding these test results, please feel free to call.

Sincerely,

Allison Cantrell

allison (autill

Project Manager

CHAMIN DE CUSTODY

Work Order:

Date: 81286 & Page

oť

でののできる AS Presidential Pkv ta. GA 30340-3704
EL: (770) 457-8171 / TC__ FREE: (800) 972-4889 / FAX: (770) 457-8188

MPANX: CRUY, DEBINGS	ADDRESS: 500	調査工行	A PARK	*	ANALYSIS REQUESTED		
		أيتن					
IONE 2051 1989 # 805	FAX:			ı			Sipuiei
5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	SIGNATURE COLOR.	000		in the works	DW-103		поЭдо
	SAMPLED			cs)		REMARKS	# ON
H SAMPLE ID			dení compos	xintsN See cod	PRESERVATION		
C. 4. 2. 2. 3. 4.	DAIE Callaga	S S S	 				
ري ري ري ب		-		****			
			吴				
			مسيد				
S. 2 - 4 H - 2 B - 2 L	7.7	20.	13.5×				
(7) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	000	_	7	دىم	Stylen.		
			24	38424 <u>—</u>			
		 	بز				
	00.840	_	12/				
	250		مين ا				1
		<u> </u>	6.4				:
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u>کر</u>				
		_	م ال	=īne≠			Ī
	21 1		<u>.</u>	*			
	DATE/TIME RECEIVED BY		-	DATE/TIME	PROJECT INFORMATION	REC'EIPT	T
		00	40)	G.S.C	PROJECT NAME: () (A ODA) 近 NY (A)	Total # of Containers	
	نۃ[The Market		
		-			FAC ID#:		
	3;				SITE ADDRESS. SPOKE ST. CA. MAKEN	Same Day Rush (auth req.) Next Business Day Rush	
					and the state of t		** <u>-</u>
ECIAL INSTRUCTIONS:COMMENTS:	•	SHIPMENT METHOD	VIA:				
	100		VIA:		IT FROM ABOVE)	PROGRAM (see codes):	
	CLIENT	OPS		COURIER			
)H(GREYHÖUÑD	ND OTHER	¥.			DATA PACKAGE: 1 II III IV	-
JOTE CONTRACT #:	- 11		il.				
The County Of the County OF a Sediment	SO + Coil	SW = Surface Water		W - Water (Blanks)	O = Other (specify)		

O = Other (specify) NA = None W - Water (Blanks) U = Other (specify) N = Nitric acid + ice S = Sulfuric acid + ice ATRIX (ODES: A = Air GW = Groundwater SE = Sediment SO = Soil SW = Surface Water

TOGRAM: FLUST FLIX ALUST INUIST MSUST NCUST SCUST GAUST GACONV FLCONV

White Copy - ORIGINAL; Yellow Copy - LAB; Pink Copy - CLIENT

Ydotsus ac //HS

1866 C Work Order: 🌊

Page

Date: 8/20/23

THE PROPERTY.

785 Presidential Pkw, ...lanta, GA 30340-3704 EL: (770) 457-8177 / TOLL FREE: (800) 972-4889 / FAX: (770) 457-8188

INALYTICAL RONMENTAL SERVICES, INC.

لمستود المستود المركز Мо # of Containers jo. ≥ Standard 3-5 Business Days Turnaround Time Request Same Day Rush (auth req.) Ξ Next Business Day Rush 2 Business Day Rush Total # of Containers RECEIPT PROGRAM (see codes): REMARKS DATA PACKAGE: Other ANALYSIS REQUESTED PROJECT INFORMATION PRESERVATION SITE ADDRESS: ハリチュシン (エア PROJECT MANAGER: ALI 12 INVOICE TO: (IF DIFFERENT FROM ABOVE) VANCEN II PROJECT#: 1100 PROJECT NAME: 5つれと可用 までに FAC 1D#: 9474L61 DATE/TIME (See codes) sh. G ` @ 'A ;* Matrix るべきのである CLIENT (FEGEX) UPS MAIL COURIER SIGNATURE WWW. NO. LULL ADDRESS SECTION AND THEKE SEE SECTION OF SECTION AND S Composite SHIPMENT METHOD VIA: Grab OTHER TIME GREYHOUND ~1 ~1 SAMPI.ED FAX: 52 1-1 DATE/TIME RECEIVED BY 3 63 63 DATE C ALED TOWNS A OUT Z 2000 1-1-10 1-10-10 1-10-10 本語の自然のから 100 mm SAMPLEID ECIAL INSTRUCTIONS COMMENTS: CORPORATE CON 1 SACA! T.INQUISHED BY MIPLED BY:

UOTE CONTRACT #:

SE = Sediment SO = Soil SW = Surface Water W - Water (Blunks) O = Other (specify) GW = Groundwater ATRIX CODES: A # Air

RESERVATIVE CODES: H = Hydrochloric acid + ice 1 = Ice only N = Nitric acid + ice S = Sulfuric acid + ice O = Other (specify) NA = None

UKIRAM: FLUST FLIST ALUST TNUST MSUST NCUST SCUST GAUST GACONV FLCONV

White Copy - ORIGINAL; Yellow Copy - LAB; Pink Copy - CLIENT

Date: 25-Aug-03

CLIENT:

Williams Environmental Services, Inc

0308662

Lab Order: Project:

Macon II MGP

Lab ID:

0308662-001

Client Sample ID: SB-44-0-2

Collection Date: 8/20/2003 7:30:00 AM

Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL		SW6010B	٠		Analyst: CDW
Lead	12.1	5.79	mg/Kg-dry	1	8/25/2003 12:57:00 AM
PERCENT MOISTURE		D2216			Analyst: DCC
Percent Moisture	20.1	. 0	wt%	1	8/21/2003 5:00:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level	
	BRL	Below Reporting Limit	
	H	Holding times for preparation or analysis exceeded	
	N	Analyte not NELAC certified	
	Rpt Limit	Reporting Limit	

Analyte detected in the associated Method Blank В

E Value above quantitation range

Analyte detected below quantitation limits

NELAC analyte certification pending Page 1 of 15 Spike Recovery outside accepted recovery limits

Date: 25-Aug-03

CLIENT:

Williams Environmental Services, Inc

Lab Order:

0308662

Macon II MGP

Project: Lab ID:

0308662-002

Client Sample ID: SB-44-5-7

Collection Date: 8/20/2003 7:40:00 AM

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL		SW6010B			Analyst: CDW
Lead	25.3	5.67	mg/Kg-dry	1	8/25/2003 1:02:00 AM
PERCENT MOISTURE		D2216			Analyst: DCC
Percent Moisture	14.4	0	wt%	1	8/21/2003 5:00:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level		В	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit	**	E	Value above quantitation range
	H	Holding times for preparation or analysis exceeded		J	Analyte detected below quantitation limits
	N	Analyte not NELAC certified		P	NELAC analyte certification pending Page 2 of 15 Spike Recovery outside accepted recovery limits
	Rpt Limit	Reporting Limit	-	S	Spike Recovery outside accepted recovery limits

Date: 25-Aug-03

CLIENT:

Williams Environmental Services, Inc

Lab Order:

0308662

Project:

Macon II MGP

Lab ID:

0308662-003

Client Sample ID: SB-44-10-12

Collection Date: 8/20/2003 7:50:00 AM

Analyses	Result	Limit Qual U	U nits	DF	Date Analyzed
METALS, TOTAL		SW6010B			Analyst: CDW
Lead	181	5.76 n	ng/Kg-dry	1	8/25/2003 1:06:00 AM
PERCENT MOISTURE		D2216			Analyst: DCC
Percent Moisture	14.6	0 v	vt%	1	8/21/2003 5:00:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level
	BRL	Below Reporting Limit
•	H	Holding times for preparation or analysis exceeded
	N	Analyte not NELAC certified
	Rpt Limit	Reporting Limit

- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- NELAC analyte certification pending Page 3 of 15 Spike Recovery outside accepted recovery limits

Date: 25-Aug-03

CLIENT:

Williams Environmental Services, Inc

Client Sample ID: SB-44-15-17

Lab Order:

0308662

Project:

Macon II MGP

Collection Date: 8/20/2003 8:00:00 AM

Lab ID:

0308662-004

Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL Lead	BRL	SW6010B 5.53	mg/Kg-dry	1	Analyst: CDW 8/25/2003 1:11:00 AM
PERCENT MOISTURE Percent Moisture	11.5	D2216 0	wt%	1	Analyst: DCC 8/21/2003 5:00:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level
	BRL	Below Reporting Limit
	H	Holding times for preparation or analysis exceeded
	N	Analyte not NELAC certified

Rpt Limit Reporting Limit

- Analyte detected in the associated Method Blank В
- E Value above quantitation range
- Analyte detected below quantitation limits
 - NELAC analyte certification pending Page 4 of 15 Spike Recovery outside accepted recovery limits

CLIENT: Williams Environmental Services, Inc

Lab Order: 0308662

Project: Macon II MGP

Lab ID: 0308662-005

Date: 25-Aug-03

Client Sample ID: SB-44-20-21

Collection Date: 8/20/2003 8:16:00 AM

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL		SW6010B	•		Analyst: CDW
Lead	BRL	5.54	mg/Kg-dry	1	8/25/2003 1:15:00 AM
PERCENT MOISTURE		D2216			Analyst: DCC
Percent Moisture	12.9	0	wt%	1	8/21/2003 5:00:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level	
	BRL	Below Reporting Limit	
	H	Holding times for preparation or analysis exceeded	
	N	Analyte not NELAC certified	
-	Rot Limit	Reporting Limit	

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P NELAC analyte certification pending
 Spike Recovery outside accepted recovery limits

Date: 25-Aug-03

CLIENT:

Williams Environmental Services, Inc

Lab Order:

0308662

Project:

Macon II MGP

Lab ID:

0308662-006

Client Sample ID: SB-45-0-2

Collection Date: 8/20/2003 8:36:00 AM

Matrix: SOIL

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
METALS, TOTAL		SW6010	В `		Analyst: CDW
Lead	58.5	5.42	mg/Kg-dry	1	8/25/2003 1:31:00 AM
PERCENT MOISTURE		D2216			Analyşt: DCC
Percent Moisture	15.4	0	wt%	1	8/21/2003 5:00:00 PM

Qualifiers:	*	Valı	
	DDY	D.L	

lue exceeds Maximum Contaminant Level

Below Reporting Limit BRL

Η Holding times for preparation or analysis exceeded

Analyte not NELAC certified N

Rpt Limit Reporting Limit

В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits

P

NELAC analyte certification pending Page 6 of 15 Spike Recovery outside accepted recovery limits

CLIENT:

Williams Environmental Services, Inc

Lab Order:

0308662

Project:

Macon II MGP

Lab ID:

0308662-007

Date: 25-Aug-03

Client Sample ID: SB-45-5-7

Collection Date: 8/20/2003 8:40:00 AM

Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL		SW6010B	4		Analyst: CDW
Lead	35.6	4.50	mg/Kg-dry	1	8/25/2003 1:35:00 AM
PERCENT MOISTURE		D2216			Analyst: DCC
Percent Moisture	9.10	0	wt%	1	8/21/2003 5:00:00 PM

Qualifiers:	7	Value exceeds Maximum Contaminant Level
	BRL	Below Reporting Limit
•	H	Holding times for preparation or analysis exceeded

Ν Analyte not NELAC certified Rpt Limit Reporting Limit

В Analyte detected in the associated Method Blank

Е Value above quantitation range

Analyte detected below quantitation limits

NELAC analyte certification pending Page 7 of 15
Spike Recovery outside accepted recovery limits

Williams Environmental Services, Inc

Lab Order: 0308662

Project: Macon II MGP

Lab ID:

CLIENT:

0308662-008

Date: 25-Aug-03

Client Sample ID: SB-45-10-12

Collection Date: 8/20/2003 8:50:00 AM

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL		SW6010B			Analyst: CDW
Lead	425	4.33	mg/Kg-dry	1	8/25/2003 1:40:00 AM
PERCENT MOISTURE		D2216			Analyşt: DCC
Percent Moisture	11.2	0	wt%	1	8/21/2003 5:00:00 PM

Qualifiers:	
-------------	--

- Value exceeds Maximum Contaminant Level
- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- Rpt Limit Reporting Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P NELAC analyte certification pending
- S Spike Recovery outside accepted recovery limits

Date: 25-Aug-03

CLIENT:

Williams Environmental Services, Inc

Lab Order:

0308662

Project:

Macon II MGP

Lab ID:

0308662-009

Client Sample ID: SB-45-15-17

Collection Date: 8/20/2003 9:00:00 AM

Analyses	Result	Limit Qual	Units	DF.	Date Analyzed
MÉTALS, TOTAL		SW6010B			Analyst: CDW
Lead	1070	5.51	mg/Kg-dry	1	8/25/2003 1:44:00 AM
PERCENT MOISTURE		D2216			Analyst: DCC
Percent Moisture	33.3	0	wt%	1	8/21/2003 5:00:00 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level
- BRL**Below Reporting Limit**
- Н Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- Rpt Limit Reporting Limit

- В Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- Analyte detected below quantitation limits J
- NELAC analyte certification pending
- Spike Recovery outside accepted recovery limits

Date: 25-Aug-03

CLIENT:

Williams Environmental Services, Inc

Client Sample ID: SB-45-18.5-20

Lab Order:

0308662

Collection Date: 8/20/2003 9:10:00 AM

Project: Lab ID: Macon II MGP

0308662-010

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL		SW6010B	`		Analyst: CDW
Lead	38.6	4.48	mg/Kg-dry	1	8/25/2003 1:49:00 AM
PERCENT MOISTURE		D2216			Analyşt: DCC
Percent Moisture	17.7	0	wt%	1	8/21/2003 5:00:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level
	BRL	Below Reporting Limit
	H	Holding times for preparation or analysis exceeded
	N	Analyte not NELAC certified
	Rpt Limit	Reporting Limit

- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits
- NBLAC analyte certification pending Spike Recovery outside accepted recovery limits

Date: 25-Aug-03

CLIENT:

Williams Environmental Services, Inc

Client Sample ID: SB-46-0-2

Lab Order:

0308662

Project:

Macon II MGP

Collection Date: 8/20/2003 9:50:00 AM

Lab ID:

0308662-011

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL		SW6010B		•	Analyst: CDW
Lead	15.6	4.84	mg/Kg-dry	1	8/25/2003 1:53:00 AM
PERCENT MOISTURE		D2216			Analyst: DCC
Percent Moisture	23.8	0	wt%	1	8/21/2003 5:00:00 PM

Qualifi	ers:
---------	------

- Value exceeds Maximum Contaminant Level
- BRL **Below Reporting Limit**
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- Rpt Limit Reporting Limit

- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P
- NELAC analyte certification pending Page 11 of 15 Spike Recovery outside accepted recovery limits S

Date: 25-Aug-03

Collection Date: 8/20/2003 10:00:00 AM

CLIENT: Lab Order: Williams Environmental Services, Inc

Project:

0308662

Lab ID:

Macon Π MGP

0308662-012

Matrix: SOIL

Client Sample ID: SB-46-5-7

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL		SW6010B			Analyst: CDW
Lead	70.6	3.82	mg/Kg-dry	1	8/25/2003 1:58:00 AM
PERCENT MOISTURE		D2216			Analyst: DCC
Percent Moisture	24.4	0	wt%	1	8/21/2003 5:00:00 PM

<u> </u>					
Оu	aı	ш	еI	5	

- Value exceeds Maximum Contaminant Level
- BRL **Below Reporting Limit**
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified

Rpt Limit Reporting Limit

- Analyte detected in the associated Method Blank В
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P
- NELAC analyte certification pending Page 12 of 15 Spike Recovery outside accepted recovery limits

CLIENT: Williams Environmental Services, Inc

Lab Order: 0308662

Project:

Macon II MGP

Lab ID:

0308662-013

Date: 25-Aug-03

Client Sample ID: SB-46-10-12

Collection Date: 8/20/2003 10:10:00 AM

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
METALS, TOTAL		SW6010B			Analyst: CDW
Lead	34.5	4,51	mg/Kg-dry	1	8/25/2003 2:02:00 AM
PERCENT MOISTURE		D2216			Analyst: DCC
Percent Moisture	24.2	0	wt%	1	8/21/2003 5:00:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit	E	Value above quantitation range
	H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	N	Analyte not NELAC certified	P	NELAC analyte certification pending Page 13 of 15
	Rnt Limit	Reporting Limit	S	Snike Recovery outside accented recovery limits

Date: 25-Aug-03

CLIENT:

Williams Environmental Services, Inc

Client Sample ID: SB-46-15-17

Lab Order:

0308662

Project:

Macon II MGP

Collection Date: 8/20/2003 10:20:00 AM

Lab ID:

0308662-014

Analyses	Result	Limit Qual Units	DF	Date Analyzed
METALS, TOTAL		SW6010B		Analyst: CDW
Lead	20.0	3.78 mg/Kg-dry	1	8/25/2003 2:07:00 AM
PERCENT MOISTURE		D2216		Analyst: DCC
Percent Moisture	15.7	0 wt%	1	8/21/2003 5:00:00 PM

Ų	u	a.	H.	11	eı	S	:

- Value exceeds Maximum Contaminant Level
- BRLBelow Reporting Limit
- Н Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- Rpt Limit Reporting Limit

- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P
- NELAC analyte certification pending Spike Recovery outside accepted recovery limits

CLIENT:

Williams Environmental Services, Inc

Client Sample ID: DUP082003A

Lab Order:

0308662

Project:

Collection Date: 8/20/2003

Date: 25-Aug-03

Lab ID:

Macon II MGP 0308662-015

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL		SW6010B			Analyst: CDW
Lead	37.8	3.65	mg/Kg-dry	1 -	8/25/2003 12:44:00 AM
PERCENT MOISTURE		D2216			Analyst: DCC
Percent Moisture	18.5	0	wt%	1	8/21/2003 5:00:00 PM

Qualifiers:	:
-------------	---

- Value exceeds Maximum Contaminant Level
- BRLBelow Reporting Limit
- Н Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- Rpt Limit Reporting Limit

- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P
- NELAC analyte certification pending Page 15 of 15 Spike Recovery outside accepted recovery limits S

Sample/Cooler Receipt Checklist

Client Williams Enu- Services		Work Orde	er Number	0308662
Checklist completed by North Dave Signature Da	8[21]03 te	·		n.
Carrier name: FedExUPS Courier Client U	JS Mail Othe	er	·	
Shipping container/cooler in good condition?	Yes	No	Not Present	<u>-</u> :
Custody seals intact on shipping container/cooler?	Yes L	No _	Not Present	<u> </u>
Custody seals intact on sample bottles?	Yes	No	Not Present	<u>L</u>
Container/Temp Blank temperature in compliance?	Yes in	No		
Cooler #1 5.0% Cooler #2 Cooler #3	Cooler #4	Co	ooler#5	Cooler #6
Chain of custody present?	Yes L	No		·
ain of custody signed when relinquished and received?	Yes L	No _		
Chain of custody agrees with sample labels?	Yes Jumen	No		
Samples in proper container/bottle?	Yes 1	No		
Sample containers intact?	Yes	No		
Sufficient sample volume for indicated test?	Yes 1	No		
All samples received within holding time?	Yes bear	No		
Was TAT marked on the COC?	Yes in	No		
Proceed with Standard TAT as per project history?	Yes _	No	Not Applica	ble 1
Water - VOA vials have zero headspace? No VOA vials s	ubmitted 1	Yes _	No _	
Water - pH acceptable upon receipt?	Yes _	No	Not Applica	ble 1
Adjusted?	Che	cked by		

Case Narrative for resolution of the Non-Conformance.

Date: 25-Aug-03

Williams Environmental Services, Inc CLIENT:

0308662 Work Order:

Macon II MGP Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: 37297

Sample ID MB-37297 Client ID:	SampType: MBLK Batch ID: 37297	TestCod	TestCode: 6010B_S TestNo: SW6010B	Units: mg/Kg		Prep Date: Analysis Date:	Prep Date: 8/21/2003 llysis Date: 8/25/2003	RunNo: 41861 SeqNo: 762036	
Analyte	Result	POL 5.00	SPK value	SPK value SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD Ref Val	%RPD RPDLimit	nit Qual
Sample ID LCS-37297 Client ID:	SampType: LCS Batch ID: 37297	TestCod	TestCode: 6010B_S TestNo: SW6010B	Units: mg/Kg		Prep Date: 8/21/2003 Analysis Date: 8/25/2003	8/21/2003 8/25/2003	RunNo: 41861 SeqNo: 762035	
Analyte Lead	Result	PQL 5.00	SPK value	SPK Ref Val	%REC 96.4	LowLimit Hi	HighLimit RPD Ref Val	%RPD RPDLimit	nit Qual
Sample ID 0308662-015AMS Client ID: DUP082003A	SampType: MS Batch ID: 37297	TestCod	TestCode: 6010B_S TestNo: SW6010B	Units: mg/Kg-dry		Prep Date: 8/21/2003 Analysis Date: 8/25/2003	8/21/2003 8/25/2003	RunNo: 41861 SeqNo: 762039	
Analyte	Result 75.08	PQL 3.70	SPK value 36.96	SPK Ref Val 37.76	%REC 101	LowLimit Hi	HighLimit RPD Ref Val	%RPD RPDLimit	nit Qual
Sample ID 0308662-015ADUP Client ID: DUP082003A	SampType: DUP Batch ID: 37297	TestCod	TestCode: 6010B_S TestNo: SW6010B	Units: mg/Kg-dry		Prep Date: 8/21/2003 Analysis Date: 8/25/2003	8/21/2003 8/25/2003	RunNo: 41861 SeqNo: 762038	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD Ref Val	RPDLimit	nit Qual
Lead	42.63	3.73	0	0	0	0	0 37.76	12.1	20

Page 1 of 1

Analyte detected below quantitation limits BRL Below Reporting Limit Holding times for preparation or analysis exceeded Analyte detected in the associated Method Blank RPD outside accepted recovery limits . я н ч Qualifiers:

Spike Recovery outside accepted recovery limits

Value above quantitation range Analyte not NELAC certified шΖ

August 27, 2003

Matt Ebbert Williams Environmental Services, Inc 500 Chase Park South Suite 150 Birmingham, AL 35244

TEL: (205) 988-8305 FAX (205) 988-5249

RE: Macon II MGP

Dear Matt Ebbert:

Order No.: 0308663

Analytical Environmental Servs, Inc. received 10 samples on 8/21/2003 12:30:00 PM for the analyses presented in the following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative. AES' certifications are as follows:

-NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water, effective 07/02/03-06/30/04.

-AIHA Certification number 505 for analysis of Air, Paint Chips, Soil and Dust Wipes, effective until 10/01/03.

If you have any questions regarding these test results, please feel free to call.

Sincerely,

Allison Cantrell

allison (quitall

Project Manager

CHAMM F CUSTODY

L: (770) 457-8177 / TOLL FREE: (800) 972-4889 / FAX: (770) 457-8188

.nta, GA 30340-3704

CONMENTAL SERVICES, INC.

VALYTICAL E 5 Presidential Pkwy.

\$ 30C

Work Order:

10 3 No # of Conginers 1) ١ 9 Ì if) led M 2 Standard 3-5 Business Days E J Same Day Rush (auth req.) Tumaround Time Request Next Business Day Rush 2 Business Day Rush Fotal # of Containers RECEIPT PROGRAM (see codes): REMARKS DATA PACKAGE ANALYSIS REQUESTED PROJECT INFORMATION PRESERVATION PROJECT NAME: ACOM INVOICE TO: (IF DIFFERENT FROM ABOVE) PROJECT MANAGER: SITE ADDRESS: PROJECT #: FAC 1D#: 5 DOM 100 3 DATE/TIME (See codes) Ŧ хпльМ UPS MAIL COURIER Charles A. C. SHIPMENT METHOD VIA: FAX. 2037 938 - 524 . | | OTHER TIME 1.00 m (N) CLIENT FedEx GREYHOUND Surte 100 SCOCKAS SAMPLED . . DATE/TIME RECEIVED BY SIGNATURE: iŻ ないで The state of the s 300 Z. 3 TUO Z MONTH MONT SAMPLEID THE INSTRUCTIONS COMMENTS: STATE OF 行の対につい 0000 E MA The Contract 300 公司 MIN-INOUGHED BY S. C. L. PLED BY: (PANY:

SE = Sediment SO = Soil SW = Surface Water GW = Groundwater FRIX CODES: A = Air

DIECONTRACT#

O = Other (specify) NA = None H = Hydrochloric acid + ice 1 = Ice only N = Nitric acid + ice S = Suifuric acid + ice KIRAM: FLUST FLIX ALUST TNUST MSUST NCUST SCUST GAUST GACONV FLCONV SERVATIVE CODES:

0 = Other (specify)

W - Water (Blanks)

White Copy - ORIGINAL; Yellow Copy - LAB; Pink Copy - CLIENT

Date: 27-Aug-03

CLIENT:

Williams Environmental Services, Inc

Client Sample ID: MW-5

Lab Order:

0308663

Collection Date: 8/20/2003 7:45:00 AM

Project:

Macon II MGP

Lab ID:

0308663-001

Analyses	Result	Limit	Qual Unit	s DF	Date Analyzed
TOTAL METALS BY ICP/MS		SW6	020		Analyst: SSS
Arsenic	BRL	20.0	μg/L ⁻	1	8/25/2003 12:03:34 PM
Barium	1850	200	μg/L	10	8/26/2003 12:57:43 PM
Beryllium	BRL	5.00	μg/L	1	8/25/2003 12:03:34 PM
Cadmium	BRL	5.00	μg/L	1	8/25/2003 12:03:34 PM
Chromium	BRL	10.0	μg/L	. 1	8/25/2003 12:03:34 PM
Copper	BRL	10.0	μg/L	1	8/25/2003 12:03:34 PM
Lead	BRL	10.0	μg/L	1	8/25/2003 12:03:34 PM
Nickel	BRL	20.0	μg/L	1	8/25/2003 12:03:34 PM
Vanadium	BRL	10.0	μg/L	1	8/25/2003 12:03:34 PM
Zinc	BRL	20.0	μg/L	1	8/25/2003 12:03:34 PM
WERCURY, TOTAL		SW74	70A		Analyst: JDJ
Mercury	BRL	0.00050	mg/L	. 1	8/25/2003
SEMIVOLATILE ORG. COMP. BY	GC/MS	SW82	70C		Analyst: EP
Acenaphthene	14	10	μg/Ľ	1	8/22/2003 10:02:00 PM
Acenaphthylene	BRL	10	µg/L	1	8/22/2003 10:02:00 PM
Anthracene	BRL	10	μg/L	1	8/22/2003 10:02:00 PM
Benz(a)anthracene	BRL	10	μg/L	1	8/22/2003 10:02:00 PM
Benzo(a)pyrene	BRL	10	μg/L	1	.8/22/2003 10:02:00 PM
Benzo(b)fluoranthene	BRL	10	μg/L	. 1	8/22/2003 10:02:00 PM
Benzo(g,h,i)perylene	BRL	10	μg/L	1	8/22/2003 10:02:00 PM
Benzo(k)fluoranthene	BRL	10	μg/L	1 .	8/22/2003 10:02:00 PM
Chrysene	BRL	10	μg/L	1	8/22/2003 10:02:00 PM
Dibenz(a,h)anthracene	BRL	10	μg/Ľ	1	8/22/2003 10:02:00 PM
Fluoranthene	BRL	10	μg/L	1	8/22/2003 10:02:00 PM
Fluorene	BRL	10	μg/L	1	8/22/2003 10:02:00 PM
indeno(1,2,3-cd)pyrene	BRL	10	μg/L	1	8/22/2003 10:02:00 PM
Naphthalene	BRL	10	μg/L	1	8/22/2003 10:02:00 PM
Phenanthrene	BRL	10	μg/L	. 1	8/22/2003 10:02:00 PM
Phenol	BRL	10	µg/L	1	8/22/2003 10:02:00 PM
Pyrene	BRL	10	μg/L	1	8/22/2003 10:02:00 PM
Surr: 2,4,6-Tribromophenol	118	37-127	%REC	1	8/22/2003 10:02:00 PM
Surr: 2-Fluorobiphenyl	97.7	43-110	%REC		8/22/2003 10:02:00 PM
Surr: 2-Fluorophenol	66.3	13-100	%REC	1	8/22/2003 10:02:00 PM
Surr: 4-Terphenyl-d14	87.6	10-121	%REC		8/22/2003 10:02:00 PM
Surr: Nitrobenzene-d5	82.7	40-110	%REC		8/22/2003 10:02:00 PM
Surr: Phenol-d5	20.5	10-121	%REC		8/22/2003 10:02:00 PM
OLATILE ORGANIC COMPOUNE	S BY GC/MS	SW82	60B		Analyst: AD
Benzene	BRL	5.0	µg/L	1	8/22/2003.9:11:00 PM
Carbon disulfide	BRL	5.0	µg/L	1	8/22/2003 9:11:00 PM
Oualifiers: * Value exceeds N	Maximum Contaminant I	_evel	В	Analyte detected in	the associated Method Blank
BRL Below Reporting		· · · - ·	E	Value above quanti	
	or preparation or analysis	exceeded	J	=	elow quantitation limits
N Analyte not NEI		, encourt	, p	NICL ACTION OF	-1641
Rpt Limit Reporting Limit	a so continui			STEERC analyte cel	side accepted recovery limits

Date: 27-Aug-03

CLIENT:

Williams Environmental Services, Inc

Client Sample ID: MW-5

Lab Order:

0308663

Collection Date: 8/20/2003 7:45:00 AM

Project: Lab ID: Macon II MGP 0308663-001

Matrix: GROUNDWATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	BY GC/MS	SW8260)B		Analyst: AD
Ethylbenzene	BRL	5.0	μg/L	1	8/22/2003 9:11:00 PM
Methylene chloride	BRL	5.0	μg/L	1	8/22/2003 9:11:00 PM
Toluene	BRL	5.0	μg/L	1	8/22/2003 9:11:00 PM
Xylenes, Total	BRL.	5.0	μg/L	1	8/22/2003 9:11:00 PM
Surr: 4-Bromofluorobenzene	88.6	71.8-143	%REC	. 1	8/22/2003 9:11:00 PM
Surr: Dibromofluoromethane	93.4	80.3-123	%REC	1	8/22/2003 9:11:00 PM
Surr: Toluene-d8	89.1	70.1-142	%REC	1	8/22/2003 9:11:00 PM
CYANIDE		SW901	4		Analyst: VS
Cyanide, Total	BRL	0.010	mg/L	. 1	8/21/2003 6:20:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level
	BRL	Below Reporting Limit

H Holding times for preparation or analysis exceeded

Rpt Limit Reporting Limit

N Analyte not NELAC certified

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P NELAC analyte certification pending

Page 2 of 19
Spike Recovery outside accepted recovery limits

Date: 27-Aug-03

CLIENT:

Williams Environmental Services, Inc

Client Sample ID: MW-2

Lab Order:

0308663

Collection Date: 8/20/2003 8:20:00 AM

Project:

Macon II MGP

Lab ID:

0308663-002

Analyses	Result	Limit.	Qual Units	DF	Date Analyzed	
TOTAL METALS BY ICP/MS		swe	6020		Analyst: SS	
Arsenic	BRL	. 20.0	μg/L [*]	1	8/25/2003 12:12:38 Ph	
Barium	178	20.0	μg/L	1	. 8/25/2003 12:12:38 PM	
Beryllium	BRL	5.00	μg/L	1.	8/25/2003 12:12:38 PM	
Cadmium	BRL	5.00	μg/L	1	8/25/2003 12:12:38 PM	
Chromium	BRL	10.0	µg/L	1	8/25/2003 12:12:38 PM	
Copper	BRL	10.0	μg/L	1	8/25/2003 12:12:38 PM	
Lead	BRL	10.0	μg/L	1	8/25/2003 12:12:38 PM	
Nickel	BRL	20.0	μ g/ L	1	8/25/2003 12:12:38 PM	
Vanadium	BRL .	10.0	μg/L	1	8/25/2003 12:12:38 PM	
Zinc	BRL	20.0	µg/L	1	8/25/2003 12:12:38 PN	
MERCURY, TOTAL		SW7	470A		Analyst: JDJ	
Mercury	BRL	0.00050	mg/L	1	8/25/2003	
SEMIVOLATILE ORG. COMP. BY	GC/MS	SW8	270C		Analyst: EP	
Acenaphthene	12	∵ 10	μg/L	1	8/22/2003 10:38:00 PM	
Acenaphthylene	BRL	10	µg/L	1 '	8/22/2003 10:38:00 PN	
Anthracene	BRL	. 10	µg/L	1	8/22/2003 10:38:00 PN	
Benz(a)anthracene	BRL	10	µg/L	1	8/22/2003 10:38:00 PM	
Benzo(a)pyrene	BRL	10	µg/L	1	8/22/2003 10:38:00 PN	
Benzo(b)fluoranthene	BRL	10	µg/L	. 1	8/22/2003 10:38:00 PN	
Benzo(g,h,i)perylene	BRL	10	μg/L	1	8/22/2003 10:38:00 PN	
Benzo(k)fluoranthene	BRL	10	μg/L	1	8/22/2003 10:38:00 PM	
Chrysene	BRL	10	µg/∟	1	8/22/2003 10:38:00 PN	
Dibenz(a,h)anthracene	BRL	10	μg/L	1	8/22/2003 10:38:00 PN	
Fluoranthene	BRL	10	μg/L	1	8/22/2003 10:38:00 PM	
Fluorene	BRL	10	μg/L	1	8/22/2003 10:38:00 PM	
Indeno(1,2,3-cd)pyrene	BRL	10	µg/L	1	8/22/2003 10:38:00 PN	
Naphthalene	BRL	10	μg/L	1	8/22/2003 10:38:00 PN	
Phenanthrene	BRL	10	μg/L	. 1	8/22/2003 10:38:00 PN	
Phenol	BRL	10	µg/Ľ	1	8/22/2003 10:38:00 PN	
Pyrene	BRL	10	µg/L	1	8/22/2003 10:38:00 PM	
Surr: 2,4,6-Tribromophenol	109	37-127	%REC	1	8/22/2003 10:38:00 PM	
Surr: 2-Fluorobiphenyl	92.5	43-110	%REC	1	8/22/2003 10:38:00 PM	
Surr: 2-Fluorophenol	62.8	13-100	%REC	1	8/22/2003 10:38:00 PM	
Surr: 4-Terphenyl-d14	81.9	10-121	%REC	1	8/22/2003 10:38:00 PN	
Surr: Nitrobenzene-d5	80.2	40-110	%REC	1	8/22/2003 10:38:00 PM	
Surr: Phenol-d5	39.7	10-121	%REC	1	8/22/2003 10:38:00 PM	
OLATILE ORGANIC COMPOUND	S BY GC/MS	SW82	260B		Analyst: AD	
Benzene	BRL	5.0	µg/L	. 1	8/22/2003 9:42:00 PM	
Carbon disulfide	BRL	5.0	μg/L	. 1	8/22/2003 9:42:00 PM	
Qualifiers: * Value exceeds M	laximum Contaminant L	evel	В	Analyte detected in	the associated Method Blank	
BRL Below Reporting	: Limit		· E	Value above quantit	ation range	
H Holding times for	r preparation or analysis	exceeded	. j	Analyte detected below quantitation limits		
N Analyte not NEL			. P	NELAC analyte cert	ification pending	
Rpt Limit Reporting Limit			S · ·	Spike Recovery outs	Page 3 ide accepted recovery limit	
Rpt Limit Reporting Limit			Ş	Spike Recovery outs	ide accepted recovery?	

Date: 27-Aug-03

CLIENT:

Williams Environmental Services, Inc

Client Sample ID: MW-2

Lab Order:

0308663

Project:

Macon II MGP

Collection Date: 8/20/2003 8:20:00 AM

Lab ID:

0308663-002

Matrix: GROUNDWATER

Analyses ·	Result	Limit Qu	al Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	BY GC/MS	SW8260	В		Analyst: AD
Ethylbenzene	BRL	5.0	μg/L ·	1	8/22/2003 9:42:00 PM
Methylene chloride	BRL	5.0	μg/L	1	8/22/2003 9:42:00 PM
Toluene	BRL	5.0	μg/L	1	8/22/2003 9:42:00 PM
Xylenes, Total	BRL	5.0	μg/L	1	8/22/2003 9:42:00 PM
Surr: 4-Bromofluorobenzene	88.4	71.8-143	%REC	1	8/22/2003 9:42:00 PM
Surr: Dibromofluoromethane	101	80.3-123	%REC	1	8/22/2003 9:42:00 PM
Surr: Toluene-d8	91.1	70.1-142	%REC	1	8/22/2003 9:42:00 PM
CYANIDE		SW9014			Analyst: VS
Cyanide, Total	0.048	0.010	mg/L	1	8/21/2003 6:20:00 PM

Value exceeds Maximum Contaminant Level Below Reporting Limit

BRL H. Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

Rpt Limit Reporting Limit

В Analyte detected in the associated Method Blank

E. Value above quantitation range

J. Analyte detected below quantitation limits

NELAC analyte certification pending

Spike Recovery outside accepted recovery fimits

Date: 27-Aug-03

CLIENT:

Williams Environmental Services, Inc

Client Sample ID: MW-3

Lab Order:

0308663

Project:

Macon II MGP

Analyte not NELAC certified

Rpt Limit Reporting Limit

Collection Date: 8/20/2003 1:00:00 PM

Lab ID:

0308663-003

Matrix: GROUNDWATER

NELAC analyte certification pending

Spike Recovery outside accepted recovery filmuts

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
TOTAL METALS BY ICP/MS		SW602	:0		Analyst: SSS
Arsenic	BRL	. 20.0	μg/L	1	8/25/2003 12:17:12 PM
Barium	699	20.0	µg/L	1	8/25/2003 12:17:12 PM
Beryllium	BRL	5.00	μg/L	1	8/25/2003 12:17:12 PM
Cadmium	BRL	5.00	μg/L	1	8/25/2003 12:17:12 PM
Chromium	BRL	10.0	μg/L	1	8/25/2003 12:17:12 PM
Соррег	BRL ·	10.0	μg/L	1	8/25/2003 12:17:12 PM
Lead	BRL	10.0	μg/L `	1.	8/25/2003 12:17:12 PM
Nickel	BRL	20.0	μg/L	1	8/25/2003 12:17:12 PM
Vanadium	BRL	10.0	μg/L	1	8/25/2003 12:17:12 PM
Zinc	BRL	20.0	µg/L	1	8/25/2003 12:17:12 PM
MERCURY, TOTAL		SW7470)A		Analyst: JDJ
Mercury	BRL	0.00050	mg/L	1	8/25/2003
SEMIVOLATILE ORG. COMP. BY G	C/MS	SW8270	C		Analyst: EP
Acenaphthene	BRL	10	µg/L	1	8/22/2003 11:15:00 PM
Acenaphthylene	BRL	10	μg/L	1	8/22/2003 11:15:00 PM
Anthracene	BRL	10	μg/L	1	8/22/2003 11:15:00 PM
Benz(a)anthracene	BRL	10	μg/L	1	8/22/2003 11:15:00 PM
Benzo(a)pyrene	BRL	10	µg/L	1	8/22/2003 11:15:00 PM
Benzo(b)fluoranthene	BRL	10	μg/L	1	8/22/2003 11:15:00 PM
Benzo(g,h,i)perylene	BRL	10	μg/L	1	8/22/2003 11:15:00 PM
Benzo(k)fluoranthene	BRL	10	μg/L	1	8/22/2003 11:15:00 PM
Chrysene	BRL	10	μg/L	1	8/22/2003 11:15:00 PM
Dibenz(a,h)anthracene	BRL	10	μg/L	1	8/22/2003 11:15:00 PM
Fluoranthene	BRL	10	μg/L	1	8/22/2003 11:15:00 PM
Fluorene	BRL	10	μg/L	1	8/22/2003 11:15:00 PM
Indeno(1,2,3-cd)pyrene	BRL	10	µg/L	1	8/22/2003 11:15:00 PM
Naphthalene	BRL	10	µg/L	1	8/22/2003 11:15:00 PM
Phenanthrene	BRL	10	μg/L	. 1	8/22/2003 11:15:00 PM
Phenol	BRL	10	µg/L	1	8/22/2003 11:15:00 PM
Pyrene	BRL	10	µg/L	1	8/22/2003 11:15:00 PM
Surr: 2,4,6-Tribromophenol	107	37-127	%REC	1	8/22/2003 11:15:00 PM
Surr: 2-Fluorobiphenyl	89.2	43-110	%REC	1	8/22/2003 11:15:00 PM
Surr: 2-Fluorophenol	60.1	13-100	%REC	1	8/22/2003 11:15:00 PM
Surr: 4-Terphenyl-d14	85.5	10-121	%REC	1	8/22/2003 11:15:00 PM
Surr: Nitrobenzene-d5	74.4	40-110	%REC	1	8/22/2003 11:15:00 PM
Surr: Phenol-d5	43.0	10-121	%REC	1	8/22/2003 11:15:00 PM
OLATILE ORGANIC COMPOUNDS	BY GC/MS	SW8260	В		Analyst: AD
Benzene	BRL	5.0	µg/L	. 1	8/22/2003 10:13:00 PM
Carbon disulfide	BRL	5.0	µg/L	1	8/22/2003 10:13:00 PM
Qualifiers: * Value exceeds Max	kimum Contaminant L	evel	В	Analyte detected in t	he associated Method Blank
BRL Below Reporting L	imit		E	Value above quantita	
	preparation or analysis	exceeded	J	· - ·	ow quantitation limits

Date: 27-Aug-03

CLIENT:

Williams Environmental Services, Inc

Client Sample ID: MW-3

Lab Order:

0308663

Collection Date: 8/20/2003 1:00:00 PM

Project: Lab ID: Macon II MGP 0308663-003

Analyses	Result	Limit Qı	al Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	BY GC/MS	SW8260	В	-	Analyst: AD
Ethylbenzene	BRL	5.0	μg/L⁻	1	8/22/2003 10:13:00 PM
Methylene chloride	BRL	5.0	μg/L	1	8/22/2003 10:13:00 PM
Toluene	BRL	5.0	μg/L	1	8/22/2003 10:13:00 PM
Xylenes, Total	BRL	5.0	μg/L	1	8/22/2003 10:13:00 PM
Surr; 4-Bromofluorobenzene	88.8	71.8-143	%REC	1	8/22/2003 10:13:00 PM
Surr: Dibromofluoromethane	91.9	80.3-123	%REC	1	8/22/2003 10:13:00 PM
Surr: Toluene-d8	91.6	70.1-142	%REC	1	8/22/2003 10:13:00 PM
CYANIDE		SW9014	4		Analyst: VS
Cyanide, Total	BRL	0.010	mg/L	1	8/21/2003 6:20:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level		В	Analyte detected in the associated Method Blank
·	BRL	Below Reporting Limit		E	Value above quantitation range
	H	Holding times for preparation or analysis exceeded	-	J	Analyte detected below quantitation limits
	N	Analyte not NELAC certified	•	₽	NELAC analyte certification pending
	Rpt Limit	Reporting Limit		S	NELAC analyte certification pending Page 6 of 19 Spike Recovery outside accepted recovery limits

CLIENT: Williams Environmental Services, Inc.

0308663

Project: Macon II MGP

Lab Order:

Lab ID: 0308663-004

Date: 27-Aug-03

Client Sample ID: MW-4

Collection Date: 8/20/2003 2:15:00 PM

Analyses	Result	Limit Qual	Units	DF	Date Analyzed	
TOTAL METALS BY ICP/MS		SW6020			Analyst: SSS	
Arsenic	BRL	20.0	μg/L ¯	1	8/25/2003 12:21:48 PM	
Barium	389	20.0	μg/L	1	8/25/2003 12:21:48 PM	
Beryllium	BRL	5.00	μg/L	1	8/25/2003 12:21:48 PM	
Cadmium	BRL	5.00	μg/L	1	8/25/2003 12:21:48 PM	
Chromium	BRL	10.0	μg/L	1	8/25/2003 12:21:48 PM	
Copper	BRL	10.0	µg/L	1	8/25/2003 12:21:48 PM	
Lead	BRL	10.0	μg/L	1	8/25/2003 12:21:48 PM	
Nickel	BRL	20.0	µg/L	1	8/25/2003 12:21:48 PM	
Vanadium	BRL	10.0	μg/L	1	8/25/2003 12:21:48 PM	
Zinc	BRL	20.0	µg/L	1	8/25/2003 12:21:48 PM	
MERCURY, TOTAL		SW7470A			Analyst: JDJ	
Mercury	BRL	0.00050	mg/L	1	8/25/2003	
SEMIVOLATILE ORG. COMP. BY GC/MS		SW8270C		•	Analyst: EP	
Acenaphthene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Acenaphthylene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Anthracene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Benz(a)anthracene	BRL	10	µg/Ŀ	1	8/22/2003 11:51:00 PM	
Benzo(a)pyrene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Benzo(b)fluoranthene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Benzo(g,h,i)perylene	BRL	10	µg/∟	1	8/22/2003 11:51:00 PM	
Benzo(k)fluoranthene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Chrysene	BRL	10	µg/L	1	8/22/2003 11:51:00 PM	
Dibenz(a,h)anthracene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Fluoranthene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Fluorene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Indeno(1,2,3-cd)pyrene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Naphthalene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Phenanthrene	BRL	10	μg/L	. 1	8/22/2003 11:51:00 PM	
Phenol	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Pyrene	BRL	10	µg/L	1	8/22/2003 11:51:00 PM	
Surr: 2,4,6-Tribromophenol	119	37-127	%REC	1	8/22/2003 11:51:00 PM	
Surr: 2-Fluorobiphenyl	94.8	43-110	%REC		8/22/2003 11:51:00 PM	
Surr: 2-Fluorophenol	94.6 62.7			1	8/22/2003 11:51:00 PM 8/22/2003 11:51:00 PM	
Surr: 4-Terphenyl-d14		.1,3-100	%REC	1		
	89.4	10-121	%REC	1	8/22/2003 11:51:00 PM	
Surr: Nitrobenzene-d5 Surr: Phenol-d5	80.4 42.4	40-110 10-121	%REC %REC	1 1	8/22/2003 11:51:00 PM 8/22/2003 11:51:00 PM	
•		·	, , , , _ ,	·	•	
OLATILE ORGANIC COMPOUNDS BY GO Benzene		SW8260B	t on P	4	Analyst: AD	
	BRL	5.0	µg/L	1	8/22/2003 10:45:00 PM	
Carbon disulfide	BRL	5.0	µg/L	1	8/22/2003 10:45:00 PM	
Qualifiers: * Value exceeds Maximum C	ontaminant L	.evel	В	Analyte detected in the associated Method Blank Value above quantitation range Analyte detected below quantitation limits		
BRL Below Reporting Limit			E			
H Holding times for preparation	on or analysis	exceeded	Ĵ			
N Analyte not NELAC certific	ed	-	P	NELAC analyte certif	ication pending	
Rpt Limit Reporting Limit			S	Spike Recovery outsid	le accepted recovery limits	

Date: 27-Aug-03

CLIENT:

Williams Environmental Services, Inc.

Client Sample ID: MW-4

Lab Order:

0308663

Project:

Macon II MGP

Collection Date: 8/20/2003 2:15:00 PM

Lab ID:

0308663-004

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	BY GC/MS	SW8260)B		Analyst: AD
Ethylbenzene	BRL	. 5.0	μg/L¯	1	8/22/2003 10:45:00 PM
Methylene chloride	BRL	5.0	μg/L	1	8/22/2003 10:45:00 PM
Toluene	BRL	5.0	μg/L	1	8/22/2003 10:45:00 PM
Xylenes, Total	BRL	5.0	μg/L	1	8/22/2003 10:45:00 PM
Surr: 4-Bromofluorobenzene	90.0	71.8-143	%REC	· 1	8/22/2003 10:45:00 PM
Surr: Dibromofluoromethane	91.4	80.3-123	%REC	1	8/22/2003 10:45:00 PM
Surr: Toluene-d8	91.6	70.1-142	%REC	1	8/22/2003 10:45:00 PM
CYANIDE		SW901	4		Analyst: VS
Cyanide, Total	BRL	0.010	mg/L	1 .	8/21/2003 6:20:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level		В	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit		Ε	Value above quantitation range
-	H	Holding times for preparation or analysis exceeded	٠	J	Analyte detected below quantitation limits
	N -	Analyte not NELAC certified	•	P	NELAC analyte certification pending
	Rpt Limit	Reporting Limit		S	NELAC analyte certification pending Spike Recovery outside accepted recovery fimits

Date: 27-Aug-03

CLIENT:

Williams Environmental Services, Inc.

Client Sample ID: MW-7

Lab Order:

0308663

Collection Date: 8/21/2003 8:15:00 AM

Project:

Macon II MGP

Lab ID:

0308663-005

Analyses		Result	Limit	Qual Units	DF	Date Analyzed	
TOTAL ME	TALS BY ICP/M	is	SW	6020		Analyst: SSS	
Arsenic		BRL	20.0	μg/L	1	8/25/2003 12:35:30 PN	
Barium		328	20.0	μg/L	1	8/25/2003 12:35:30 PM	
Beryllium		BRL	5.00	μg/L	1	8/25/2003 12:35:30 PM	
Cadmium		BRL	5.00	μg/L	1	8/25/2003 12:35:30 PN	
Chromium		BRL	10.0	μg/L	. 1	8/25/2003 12:35:30 PM	
Copper		BRL	10.0	μg/L	1	8/25/2003 12:35:30 PM	
Lead		BRL	10.0	µg/L	` 1	8/25/2003 12:35:30 PM	
Nickel		BRL	20.0	µg/L	1	8/25/2003 12:35:30 PM	
Vanadium		BRL	10.0	μg/L	1	8/25/2003 12:35:30 PM	
Zinc		BRL	20.0	μg/L	1	8/25/2003 12:35:30 PM	
MERCURY	, TOTAL		SW7	470A		Analyst: JDJ	
Mercury		BRL	0.00050	mg/L	1	8/25/2003	
SEMIVOLA	TILE ORG. COM	MP. BY GC/MS	SW8	270C		Analyst: EP	
Acenaphth	ene	BRL	10	µg/L	1	8/23/2003 12:27:00 AM	
Acenaphth	ylene ·	BRL	10	μg/L	1	8/23/2003 12:27:00 AM	
Anthracene	•	BRL	10	μg/L	1	8/23/2003 12:27:00 AM	
Benz(a)ant	hracene	BRL	10	μg/L	1	8/23/2003 12:27:00 AM	
Benzo(a)py	rene	BRL	10	μg/L	1	8/23/2003 12:27:00 AM	
Benzo(b)flu	oranthene	BRL	10	μg/L	1	8/23/2003 12:27:00 AM	
Benzo(g,h,)perylene	BRL	10	μg/L	1	8/23/2003 12:27:00 AM	
Benzo(k)flu	oranthene	BRL	10	μg/L	1	8/23/2003 12:27:00 AM	
Chrysene		BRL	10	µg/L	1	8/23/2003 12:27:00 AM	
Dibenz(a,h	anthracene	BRL	10	pg/L	1	8/23/2003 12:27:00 AM	
Fiuoranthei	ne	BRL	10	μg/L	1	8/23/2003 12:27:00 AM	
Fluorene		BRL	10	μg/L	1	8/23/2003 12:27:00 AM	
Indeno(1,2,	3-cd)pyrene	BRL.	10	μg/L	1	8/23/2003 12:27:00 AM	
Naphthalen	e	BRL	10	µg/L	1	8/23/2003 12:27:00 AM	
Phenanthre	ne	BRL	10	μg/L	. 1	8/23/2003 12:27:00 AM	
Phenol .	reserve ap	BRL	10	μg/L	1	8/23/2003 12:27:00 AM	
Pyrene		BRL	10	µg/L	1	8/23/2003 12:27:00 AM	
Surr: 2,4	6-Tribromophenol	105	37-127	%REC	1	8/23/2003 12:27:00 AM	
	luorobiphenyi	86.5	43-110	%REC	1	8/23/2003 12:27:00 AM	
Surr: 2-F	luorophenol	58.8	13-100	%REC	1 ·	8/23/2003 12:27:00 AM	
	erphenyl-d14	83.8	10-121	%REC	1	8/23/2003 12:27:00 AM	
	obenzene-d5	74.0	40-110	%REC	1	8/23/2003 12:27:00 AM	
Surr: Phe	enol-d5	39.0	10-121	%REC	1	8/23/2003 12:27:00 AM	
OLATILE (ORGANIC COMI	POUNDS BY GC/MS	SW82	260B		Analyst: AD	
Benzene	=7	BRL	5.0	μg/L	1	8/22/2003 11:16:00 PM	
Carbon disu	lfide	BRL	5.0	μg/L	1	8/22/2003 11:16:00 PM	
Qualifiers:	* Value e	exceeds Maximum Contaminar	nt I evel	В	Applyte detected :	the appointed Mathad Di	
£		Reporting Limit	K LOVOI	B E	Analyte detected in the associated Method Blank Value above quantitation range Analyte detected below quantitation limits NELAC analyte certification pending		
		times for preparation or analy	ieje avoaadod	. J			
		•	roto GAUCEUEU	. ј			
N Analyte not NELAC certified					INPLAL analyte ceri	TREETION SONGING	

Date: 27-Aug-03

CLIENT:

Williams Environmental Services, Inc.

Lab Order:

0308663

Project:

Macon II MGP

Lab ID:

0308663-005

Client Sample ID: MW-7

Collection Date: 8/21/2003 8:15:00 AM

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	BY GC/MS	SW8260)B		Analyst: AD
Ethylbenzene	BRL	. 5.0	μg/L	1.	8/22/2003 11:16:00 PM
Methylene chloride	BRL	5.0	μg/L	1	8/22/2003 11:16:00 PM
Toluene	BRL	5.0	μg/L	1	8/22/2003 11:16:00 PM
Xylenes, Total	BRL	5.0	μg/L	. 1	8/22/2003 11:16:00 PM
Surr: 4-Bromofluorobenzene	89.3	71.8-143	%REC	1	8/22/2003 11:16:00 PM
Surr: Dibromofluoromethane	89.7	80.3-123	%REC	1	8/22/2003 11:16:00 PM
Surr: Toluene-d8	90.9	70.1-142	%REC	1	8/22/2003 11:16:00 PM
CYANIDE		SW901	4 .		Analyst: VS
Cyanide, Total	BRL	0.010	mg/L	1	8/21/2003 6:20:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level
	BRL	Below Reporting Limit
	H	Holding times for preparation or analysis exceeded
	N	Analyte not NELAC certified
	Rpt Limit	Reporting Limit

- \mathbf{B} Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits
- NELAC analyte certification pending
- Spike Recovery outside accepted recovery limits

Date: 27-Aug-03

CLIENT:

Williams Environmental Services, Inc.

Client Sample ID: MW-6

Lab Order:

0308663

Collection Date: 8/21/2003 6:50:00 AM

Project:

Macon II MGP

Lab ID:

0308663-006

Analyses		Result	Limit	Qual	Units		DF	Date Analyzed
TOTAL ME	TALS BY ICP/MS	,	SW	3020	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		Analyst: SSS
Arsenic.		BRL	20.0		μg/L		1	8/25/2003 2:02:48 PM
Barium		168	20.0		μg/L		1	8/25/2003 2:02:48 PM
Beryllium		BRL	5.00		μg/L		1	8/25/2003 2:02:48 PM
Cadmium		BRL	5.00		μg/L		1	8/25/2003 2:02:48 PM
Chromium		BRL	10.0	٠	μg/L		1	8/25/2003 2:02:48 PM
Copper		BRL	10.0		μg/L		1	8/25/2003 2:02:48 PM
Lead		BRL	10.0		µg/L `		1	8/25/2003 2:02:48 PM
Nickel		BRL	20.0		μg/L		1	8/25/2003 2:02:48 PM
Vanadium		BRL	10.0		µg/L		1	8/25/2003 2:02:48 PM
Zinc		BRL	20.0		μg/L		1	8/25/2003 2:02:48 PM
MERCURY	, TOTAL		SW7	470A				Analyst: JDJ
Mercury		BRL	0.00050		mg/L		1	8/25/2003
SEMIVOLA	TILE ORG. COMP. BY GC	/MS	SW8	270C				Analyst: EP
Acenaphth	ene	BRL	10		µg/L		1	8/23/2003 1:03:00 AM
Acenaphth	ylene	BRL	10		µg/L		1	8/23/2003 1:03:00 AM
Anthracene	•	BRL	10		µg/L		1	8/23/2003 1:03:00 AM
Benz(a)ani		BRL	10		μg/L		1	8/23/2003 1:03:00 AM
Benzo(a)py		BRL	10		μg/L		1	8/23/2003 1:03:00 AM
Benzo(b)flo		BRL	10		μg/L		1	8/23/2003 1:03:00 AM
Benzo(g,h,		BRL	10		µg/L		1	8/23/2003 1:03:00 AM
Benzo(k)flı	oranthene	BRL	10		μg/Ĺ		1	8/23/2003 1:03:00 AM
Chrysene	•	BRL	10		hâ\ŗ		1	8/23/2003 1:03:00 AM
•)anthracene	BRL	10		µg/L		1	8/23/2003 1:03:00 AM
Fluoranthe	ne	BRL	10		μg/L		1	8/23/2003 1:03:00 AM
Fluorene		BRL	10		μg/L		1	8/23/2003 1:03:00 AM
	,3-cd)pyrene	BRL	10		μg/L 		1	8/23/2003 1:03:00 AM
Naphthaler		BRL	10		μg/L		1	8/23/2003 1:03:00 AM
Phenanthre	ene	BRL	10		µg/L		1	8/23/2003 1:03:00 AM
Phenol		BRL	10		µg/L		1	8/23/2003 1:03:00 AM
Pyrene	· .	BRL	10		μg/L		1	8/23/2003 1:03:00 AM
	,6-Tribromophenol	110	37-127		%REC		1	8/23/2003 1:03:00 AM
	luorobiphenyl	84.9	43-110		%REC		1	8/23/2003 1:03:00 AM
	iuorophenol	58.5	13-100		%REC		1	8/23/2003 1:03:00 AM
	erphenyl-d14	84.0	10-121		%REC	-	1	8/23/2003 1:03:00 AM
Surr: Niti Surr: Ph	robenzene-d5 enol-d5	74.4 39.5	40-110 10-121		%REC %REC		1	8/23/2003 1:03:00 AM 8/23/2003 1:03:00 AM
					701 VIII O		•	•
OLATILE Benzene	ORGANIC COMPOUNDS I		SW8		//	4	1	Analyst: AD
Carbon dis	ilfida	BRL	5.0		μg/L ug/l	· ·	1 1	8/22/2003 11:47:00 PM 8/22/2003 11:47:00 PM
Carbon dis	инос	BRL 	5.0	<u> </u>	µg/L		1 	0/42/2005 TT:47:00 PW
Qualifiers:		mum Contaminant Level			В	Analyte detected in the associated Method Blank		
	BRL Below Reporting Lin				E	Value above	-	
		preparation or analysis exceeded			J	Analyte detected below quantitation limits		
	N Analyte not NELAC	certified		-	P	NELAC ana	lyte cert	ification pending
	Rpt Limit Reporting Limit				S	Spike Recov	ery outs	Page 11 o

Date: 27-Aug-03

CLIENT:

Williams Environmental Services, Inc.

Client Sample ID: MW-6

Lab Order:

0308663

Collection Date: 8/21/2003 6:50:00 AM

Project:

Macon II MGP

Lab ID:

0308663-006

Analyses	Result	Limit Q	nal Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS BY GC/MS		SW8260)B		Analyst: AD
Ethylbenzene	BRL	5.0	μg/L [*]	1	8/22/2003 11:47:00 PM
Methylene chloride	BRL	5.0	μg/L	1	8/22/2003 11:47:00 PM
Toluene	BRL	5.0	µg/L	1	8/22/2003 11:47:00 PM
Xylenes, Total	BRL	5.0	μg/L	1	8/22/2003 11:47:00 PM
Surr: 4-Bromofluorobenzene	89.2	71.8-143	%REC	. 1	8/22/2003 11:47:00 PM
Surr: Dibromofluoromethane	99.0	80.3-123	%REC	1	8/22/2003 11:47:00 PM
Surr: Toluene-d8	91.2	70.1-142	%REC	1.	8/22/2003 11:47:00 PM
CYANIDE		SW901	4		Analyst: VS
Cyanide, Total	BRL	0.010	mg/L	1	8/21/2003 6:20:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level
	BRL	Below Reporting Limit
	H	Holding times for preparation or analysis exceeded
	N	Analyte not NELAC certified
	Rpt Limit	Reporting Limit

- В Analyte detected in the associated Method Blank Ε
 - Value above quantitation range
- J Analyte detected below quantitation limits
- P
- NELAC analyte certification pending Page 12 of 19 Spike Recovery outside accepted recovery limits

Date: 27-Aug-03

CLIENT:

Williams Environmental Services, Inc

Lab Order:

0308663

Macon II MGP

Project: Lab ID:

0308663-007

Client Sample ID: MW-1

Collection Date: 8/21/2003 8:30:00 AM

Analyses	Result	Limit Qual	Units	DF	Date Analyzed	
TOTAL METALS BY ICP/MS		SW6020			Analyst: SSS	
Arsenic	BRL	. 20.0	μg/L	1	8/25/2003 2:07:24 PM	
Barium	BRL	20.0	μg/L	1	8/25/2003 2:07:24 PM	
Beryllium	BRL	5.00	μg/L	1	8/25/2003 2:07:24 PM	
Cadmium	BRL	5.00	μg/L	1	8/25/2003 2:07:24 PM	
Chromium	BRL	10.0	μg/L	1	8/25/2003 2:07:24 PM	
Copper	BRL	10.0	µg/L	1	8/25/2003 2:07:24 PM	
Lead	BRL	10.0	μg/L	1	8/25/2003 2:07:24 PM	
Nickel	BRL	20.0	μg/L	1	8/25/2003 2:07:24 PM	
Vanadium	BRL	10.0	μg/L	1	8/25/2003 2:07:24 PM	
Zinc	BRL.	20.0	μg/L	1	8/25/2003 2:07:24 PM	
MERCURY, TOTAL		SW7470A			Analyst: JDJ	
Mercury	BRL	0.00050	mg/L	1	8/25/2003	
SEMIVOLATILE ORG. COMP. BY GC/MS		SW8270C			Analyst: EP	
Acenaphthene	BRL	10	µg/L	1	8/23/2003 1:39:00 AM	
Acenaphthylene	BRL	10	µg/L	1	8/23/2003 1:39:00 AM	
Anthracene	BRL	10	μg/L	1	8/23/2003 1:39:00 AM	
Benz(a)anthracene	BRL	10	μg/L	1	8/23/2003 1:39:00 AM	
Benzo(a)pyrene	BRL	10	μg/L	1	8/23/2003 1:39:00 AM	
Benzo(b)fluoranthene	BRL BRL	10	μg/L	1	8/23/2003 1:39:00 AM 8/23/2003 1:39:00 AM	
Benzo(g,h,i)perylene		10	µg/L	1		
Benzo(k)fluoranthene	BRL	10	μg/L	1	8/23/2003 1:39:00 AM	
Chrysene	BRL	10	μg/L	1	8/23/2003 1:39:00 AM	
Dibenz(a,h)anthracene	BRL	10	µg/L	1	8/23/2003 1:39:00 AM	
Fluoranthene	BRL	10	μg/L	1	8/23/2003 1:39:00 AM	
Fluorene	BRL	10	μg/L	1	8/23/2003 1:39:00 AM	
Indeno(1,2,3-cd)pyrene	BRL	10	µg/L	. 1	8/23/2003 1:39:00 AM	
Naphthalene	BRL	10	µg/L	1	8/23/2003 1:39:00 AM	
Phenanthrene	BRL	10	μg/L	¹, 1	8/23/2003 1:39:00 AM	
Phenoi	BRL	10	μg/L	1	8/23/2003 1:39:00 AM	
Pyrene	BRL	10	μg/L	1	8/23/2003 1:39:00 AM	
Surr: 2,4,6-Tribromophenol	117	37-127	%REC	1	8/23/2003 1:39:00 AM	
Surr: 2-Fluorobiphenyl	98.1	43-110	%REC	1	8/23/2003 1:39:00 AM	
Surr: 2-Fluorophenol	67.3	13-100	%REC	1	8/23/2003 1:39:00 AM	
Surr: 4-Terphenyl-d14	86.0	10-121	%REC	1 .	8/23/2003 1:39:00 AM	
Surr. Nitrobenzene-d5	85.4	40-110	%REC	1	8/23/2003 1:39:00 AM	
Surr: Phenol-d5	44.0	10-121	%REC	1	8/23/2003 1:39:00 AM	
OLATILE ORGANIC COMPOUNDS BY G	C/MS	SW8260B			Analyst: NWH	
Benzene	BRL	5.0	μg/L	. 1	8/25/2003 11:48:00 AM	
Carbon disulfide	BRL	5.0	μg/L	1	8/25/2003 11:48:00 AM	
Qualifiers: * Value exceeds Maximum	aximum Contaminant Level Limit r preparation or analysis exceeded			Analyte detected in the associated Method Blank		
BRL Below Reporting Limit				Value above quantita		
					ow quantitation limits	
N Analyte not NELAC certif	-	,	J P	NELAC analyte certification pending Page 13 of Spike Recovery outside accepted recovery limits		
Rpt Limit Reporting Limit	4		S	TELLIC analyse cert	Page 13 of	

Date: 27-Aug-03

CLIENT:

Williams Environmental Services, Inc

Lab Order:

0308663

Client Sample ID: MW-1 Collection Date: 8/21/2003 8:30:00 AM

Project:

Macon II MGP

Lab ID:

0308663-007

Analyses	Result	Limit Q	nal Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS BY GC/MS		SW8260)B		Analyst: NWH
Ethylbenzene	BRL	. 5.0	μg/L ¯	1	8/25/2003 11:48:00 AM
Methylene chloride	BRL	5.0	μg/L	1	8/25/2003 11:48:00 AM
Toluene	BRL	5.0	μg/L	. 1	8/25/2003 11:48:00 AM
Xylenes, Total	BRL	5.0	μg/L	1	8/25/2003 11:48:00 AM
Surr: 4-Bromofluorobenzene	85.8	71.8-143	%REC	1	8/25/2003 11:48:00 AM
Surr: Dibromofluoromethane	95.1	80.3-123	%REC	1,	8/25/2003 11:48:00 AM
Surr: Toluene-d8	96.4	70.1-142	%REC	1	8/25/2003 11:48:00 AM
CYANIDE		SW901	4	•	Analyst: VS
Cyanide, Total	BRL	0.010	mg/L	1	8/21/2003 6:20:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level				
	BRL	Below Reporting Limit				
	H	Holding times for preparation or analysis exceeded				
	N	Analyte not NELAC certified				
`	Rpt Limit	Reporting Limit				

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P NELAC analyte certification pending
- Spike Recovery outside accepted recovery limits

Williams Environmental Services, Inc

CLIENT: Lab Order:

0308663

Macon II MGP

Project: Lab ID:

0308663-008

Date: 27-Aug-03

Client Sample ID: DUP082003

Collection Date: 8/20/2003

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed	
TOTAL METALS BY ICP/MS		SW6	020	,		Analyst: SSS	
Arsenic ⁻	BRL	20.0		µg/L	1	8/25/2003 2:11:58 PM	
Barium	692	20.0		μg/L	1	8/25/2003 2:11:58 PM	
Beryllium	BRL	5.00		μg/L	1	8/25/2003 2:11:58 PM	
Cadmium	BRL	5.00		μg/L	1	8/25/2003 2:11:58 PM	
Chromium	BRL	10.0		μg/L	1	8/25/2003 2:11:58 PM	
Copper	BRL	10.0		μg/L	1	8/25/2003 2:11:58 PM	
Lead	BRL	10.0		μg/L `	1	8/25/2003 2:11:58 PM	
Nickel	BRL	20.0		μg/L	1	8/25/2003 2:11:58 PM	
Vanadium	BRL	10.0		μg/L	1	8/25/2003 2:11:58 PM	
Zinc	BRL	20.0		μg/L	. 1	8/25/2003 2:11:58 PM	
MERCURY, TOTAL		SW74	70A			Analyst: JDJ	
Mercury	BRL	0.00050		mg/L	1	8/25/2003	
SEMIVOLATILE ORG. COMP. BY	GC/MS	SW82	70C			Analyst: YH	
Acenaphthene	BRL	10		μg/L	1	8/25/2003 2:00:00 PM	
Acenaphthylene	BRL	10]	μg/L	1	8/25/2003 2:00:00 PM	
Anthracene	BRL	10		µg/L	1	8/25/2003 2:00:00 PM	
Benz(a)anthracene	BRL	10		μg/L	1	8/25/2003 2:00:00 PM	
Benzo(a)pyrene	BRL	10 1		µg/L	1 .	8/25/2003 2:00:00 PM	
Benzo(b)fluoranthene	BRL.	10		µg/L	1	8/25/2003 2:00:00 PM	
Benza(g,h,i)perylene	BRL	10		μg/L	1	8/25/2003 2:00:00 PM	
Benzo(k)fluoranthene	BRL	10		μg/L	1	8/25/2003 2:00:00 PM	
Chrysene	BRL	10		µg/L	1	8/25/2003 2:00:00 PM	
Dibenz(a,h)anthracene	BRL	10		μg/L	1	8/25/2003 2:00:00 PM	
Fluoranthene	BRL	10		µg/L	1	8/25/2003 2:00:00 PM	
Fluorene	BRL	10		μg/L	1	8/25/2003 2:00:00 PM	
Indeno(1,2,3-cd)pyrene	BRL	10		μg/L	1	8/25/2003 2:00:00 PM	
Naphthalene	BRL	10		μg/L	1	8/25/2003 2:00:00 PM	
Phenanthrene	BRL	10		μg/L	. 1	8/25/2003 2:00:00 PM	
Phenol	BRL	10		ug/L	1	8/25/2003 2:00:00 PM	
Pyrene	BRL	10		ug/L	1	8/25/2003 2:00:00 PM	
Surr: 2,4,6-Tribromophenol	107	37-127		%REC	1	8/25/2003 2:00:00 PM	
Surr: 2-Fluorobiphenyl	92.6	43-110		%REC	1	8/25/2003 2:00:00 PM	
Surr: 2-Fluorophenol	71.8	13-100		%REC	1	8/25/2003 2:00:00 PM	
Surr: 4-Terphenyl-d14	98.4	10-121		%REC	1	8/25/2003 2:00:00 PM	
Surr: Nitrobenzene-d5	88.6	40~110		%REC	1	8/25/2003 2:00:00 PM	
Surr: Phenol-d5	52.0	10-121		%REC	1	8/25/2003 2:00:00 PM	
OLATILE ORGANIC COMPOUND	S BY GC/MS	SW82	60B			Analyst: NW H	
Benzene	BRL	5.0		ıg/L	. 1	8/25/2003 1:11:00 PM	
Carbon disulfide	BRL	5.0		19/L	1	8/25/2003 1:11:00 PM	
Onalifiers: * Value exceeds M	Cost - I - X		·····		41	1. 2	
Qualifiers: * Value exceeds M BRL Below Reporting	E Limit E				Analyte detected in the associated Method Blank Value above quantitation range		
, ,	r preparation or analysis exceeded J				Analyte detected below quantitation limits		
_					NELAC analyte certification pending Spike Recovery outside accepted recovery limits		
N Analyte not NEL	AC certified			NELAC analyte certi	meation pending		

Date: 27-Aug-03

CLIENT:

Williams Environmental Services, Inc.

Client Sample ID: DUP082003

Lab Order:

0308663

Collection Date: 8/20/2003

Project:

Macon II MGP

Lab ID:

0308663-008

Matrix: GROUNDWATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	BY GC/MS	SW8260	В		Analyst: NWH
Ethylbenzene	BRL	. 5.0	μg/L˙	1	8/25/2003 1:11:00 PM
Methylene chloride	BRL	5.0	μg/L	1	8/25/2003 1:11:00 PM
Toluene	BRL	5.0	μg/L	1	8/25/2003 1:11:00 PM
Xylenes, Total	BRL	5.0	μg/L	1	8/25/2003 1:11:00 PM
Surr: 4-Bromofluorobenzene	85.7	71.8-143	%REC	1	8/25/2003 1:11:00 PM
Surr: Dibromofluoromethane	96.4	80.3-123	%REC	1	8/25/2003 1:11:00 PM
Surr: Toluene-d8	100	70.1-142	%REC	1	8/25/2003 1:11:00 PM
CYANIDE		SW9014	Į.		Analyst: VS
Cyanide, Total	BRL	0.010	mg/L	1	8/21/2003 6:20:00 PM

- · · · · · · · · · · · · · · · · · · ·		
Qualifiers:	<i>#</i>	Value exceeds Maximum Contaminant Level
	BRL	Below Reporting Limit
	H	Holding times for preparation or analysis exceeded
	N	Analyte not NELAC certified
	Rpt Limit	Reporting Limit

- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits
- NELAC analyte certification pending Page 16 of 19 Spike Recovery outside accepted recovery limits

Date: 27-Aug-03

CLIENT:

Williams Environmental Services, Inc.

Client Sample ID: RB082103

Lab Order:

0308663

Collection Date: 8/21/2003 10:00:00 AM

Project:

Macon II MGP

Lab ID:

0308663-009

Matrix: GROUNDWATER

		08003-009	·		······································				
Analyses		<u> </u>	Result	Limit	Qual	Units		DF	Date Analyzed
TOTAL MET	ALS BY	ICP/MS		sw	6020				Analyst: SS
Arsenic			BRL	20.0	•	μg/L		1	8/25/2003 2:16:29 PM
Barium			BRL	20.0		µg/L		1	8/25/2003 2:16:29 PM
Beryllium		•	BRL	5.00		μg/L		1	8/25/2003 2:16:29 PM
Cadmium			BRL	5.00		μg/L		1	8/25/2003 2:16:29 PM
Chromium			BRL	10.0		μg/L		1	8/25/2003 2:16:29 PM
Copper		•	BRL	10.0		μg/L		1	8/25/2003 2:16:29 PM
Lead			BRL	10.0		μg/L		1	8/25/2003 2:16:29 PM
Nickel			BRL	20.0		μg/L		1	8/25/2003 2:16:29 PM
Vanadium			BRL	10.0		μg/L		1	-8/25/2003 2:16:29 PM
Zinc			BRL	20.0		µg/L		1	8/25/2003 2:16:29 PM
MERCURY,	TOTAL	•		SW7	470A				Analyst: JD.
Mercury			BRL	0.00050		mg/L		1	8/25/2003
SEMIVOLAT	ILE ORG	G. COMP. BY GC/M	IS	SW8	270C		÷		Analyst: YH
Acenaphther	ne ·		BRL	10		µg/L		1	8/25/2003 2:38:00 PM
Acenaphthyl	ene		BRL	10		μg/L		1	8/25/2003 2:38:00 PM
Anthracene			BRL	10		µg/L	•	1	8/25/2003 2:38:00 PM
Benz(a)anthi	acene	-	BRL	10		µg/L		1	8/25/2003 2:38:00 PM
Benzo(a)pyre	ene		BRL	10		µg/L		1	8/25/2003 2:38:00 PM
Benzo(b)fluo	ranthene		BRL	10		μg/L		1	8/25/2003 2:38:00 PM
Benzo(g,h,i)p	erylene		BRL	10		μg/L		1	8/25/2003 2:38:00 PM
Benzo(k)fluo			BRL	10		μg/L		1	8/25/2003 2:38:00 PM
Chrysene			BRL	10		μg/L		1	8/25/2003 2:38:00 PM
Dibenz(a,h)a	nthracene	,	BRL	10		μg/L		1	8/25/2003 2:38:00 PM
Fluoranthene			BRL	10		μg/L		1	8/25/2003 2:38:00 PM
Fluorene			BRL	10		μg/L		1	8/25/2003 2:38:00 PM
Indeno(1,2,3	-cd)pyrene	•	BRL	10		μg/L		1	8/25/2003 2:38:00 PM
Naphthaiene			BRL	10		μg/L		1	8/25/2003 2:38:00 PM
Phenanthren			BRL	10		µg/L		1	8/25/2003 2:38:00 PM
Phenol			BRL	10		μg/L		1	8/25/2003 2:38:00 PM
Pyrene			BRL	10		μg/L		1	8/25/2003 2:38:00 PM
Surr: 2,4,6	-Tribrama	phenal	91.8	37-127		%REC	•	1	8/25/2003 2:38:00 PM
Surr: 2-Flu		•	86.9	43-110		%REC		1	8/25/2003 2:38:00 PM
Surr. 2-Flu		-	64.5	13-100		%REC		1:	8/25/2003 2:38:00 PM
Surr; 4-Te			97.0	10-121		%REC		1	8/25/2003 2:38:00 PM
Surr: Nitro			84.1	40-110		%REC		1	8/25/2003 2:38:00 PM
Surr: Phen		•	42.8	10-121		%REC		1	8/25/2003 2:38:00 PM
OLATILE O	RGANIC	COMPOUNDS BY	GC/MS	SW8	260B				Analyst: AD
Benzene			BRL	5.0		µg/L		1	8/22/2003 8:09:00 PM
Carbon disulf	ide		BRL	5.0		µg/L		1	8/22/2003 8:09:00 PM
Qualifiers:	*	Value exceeds Maximu	m Contaminant I	evel		В	Analyte dete	ected in thi	e associated Method Blank
*		Below Reporting Limit		· · · · · · ·		E	Value above		
		Holding times for prepa		exceeded	_	J		-	w quantitation limits
	N	Analyte not NELAC ce	=	CACCOLLOI	•	P	-		-
		Reporting Limit					TILL CALLE	ay to och till	ication pending Page 17 c le accepted recovery limits

Date: 27-Aug-03

CLIENT:

Williams Environmental Services, Inc.

0308663

Client Sample ID: RB082103

Lab Order:

Macon II MGP

Project: Lab ID:

0308663-009

Matrix: GROUNDWATER

Collection Date: 8/21/2003 10:00:00 AM

Analyses	Result	Limit Qu	ial Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	BY GC/MS	SW8260	В		Analyst: AD
Ethylbenzene	BRL	5.0	μg/L ¯	1	8/22/2003 8:09:00 PM
Methylene chloride	BRL	5.0	μg/L	1	8/22/2003 8:09:00 PM
Toluene	BRL	5.0	μg/L	1	8/22/2003 8:09:00 PM
Xylenes, Total	BRL	5.0	μg/L	1	8/22/2003 8:09:00 PM
Surr: 4-Bromofluorobenzene	89.7	71.8-143	%REC	1	8/22/2003 8:09:00 PM
Surr: Dibromofluoromethane	92.3	80.3-123	%REC	1	8/22/2003 8:09:00 PM
Surr: Toluene-d8	88.8	70.1-142	%REC	1	8/22/2003 8:09:00 PM
CYANIDE	•	SW901	4		Analyst: VS .
Cyanide, Total	BRL	0.010	mg/L	1	8/21/2003 6:20:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level
	BRL	Below Reporting Limit
	H	Holding times for preparation or analysis exceeded
	N	Analyte not NELAC certified
	Rpt Limit	Reporting Limit

- Analyte detected in the associated Method Blank В
- E Value above quantitation range
- Analyte detected below quantitation limits
- NELAC analyte certification pending Page 18 of 19 Spike Recovery outside accepted recovery limits

Date: 27-Aug-03

CLIENT:

Williams Environmental Services, Inc.

Client Sample ID: TB082103

Lab Order:

0308663

Collection Date: 8/21/2003 10:05:00 AM

Matrix: GROUNDWATER

Project:

Macon II MGP

Lab ID:

0308663-010

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	BY GC/MS	SW8260)B		Analyst: AD
Benzene	BRL	5.0	μg/L ¯	1	8/22/2003 8:40:00 PM
Carbon disulfide	BRL	5.0	μg/L	1	8/22/2003 8:40:00 PM
Ethylbenzene	BRL	5.0	μg/L	1	8/22/2003 8:40:00 PM
Methylene chloride	BRL	5.0	μg/L	1	8/22/2003 8:40:00 PM
Toluene	BRL	5.0	μg/Ľ	1	8/22/2003 8:40:00 PM
Xylenes, Total	BRL	5.0	μg/L	1	8/22/2003 8:40:00 PM
Surr: 4-Bromofluorobenzene	87.0	71.8-143	%REC	1	8/22/2003 8:40:00 PM
Surr: Dibromofluoromethane	94.7	80.3-123	%REC	1	8/22/2003 8:40:00 PM
Surr: Toluene-d8	91.9	70.1-142	%REC	1	8/22/2003 8:40:00 PM

Qualifiers:	#	Value exceeds Maximum Contaminant Level
	BRL	Below Reporting Limit
	H	Holding times for preparation or analysis exceeded
	N	Analyte not NELAC certified
	Rpt Limit	Reporting Limit

- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P
- NELAC analyte certification pending Page 19 of 19 Spike Recovery outside accepted recovery limits

Sample/Cooler Receipt Checklist

Client WESI	•	Work Order Number <u>0308663</u>
Checklist completed by Notice (Signature Date	80/103	
Carrier name: FedEx UPS Courier Client U	S Mail Othe	r
Shipping container/cooler in good condition?	Yes L	No Not Present
Custody seals intact on shipping container/cooler?	Yes	No _ Not Present
Custody seals intact on sample bottles?	Yes	No _ Not Present &
Container/Temp Blank temperature in compliance?	Yes L	No
Cooler #1 5.2° Cooler #2 4.8° Cooler #3 5.5	Cooler #4	Cooler#5 Cooler #6
Chain of custody present?	Yes L	No
onain of custody signed when relinquished and received?	Yes L	No
Chain of custody agrees with sample labels?	Yes 1	No
Samples in proper container/bottle?	Yes 1	No
Sample containers intact?	Yes bearing	No
Sufficient sample volume for indicated test?	Yes L	No
All samples received within holding time?	Yes 1	No
Was TAT marked on the COC?	Yes **	No
Proceed with Standard TAT as per project history?	Yes	No Not Applicable
Water - VOA vials have zero headspace? No VOA vials su	bmitted	Yes No
Water - pH acceptable upon receipt?	Yes L	No Not Applicable
Adjusted?	Che	cked byN O

Case Narrative for resolution of the Non-Conformance.

Date: 27-Aug-03

CLIENT:

Williams Environmental Services, Inc

Project:

Macon II MGP

Lab Order:

0308663

CASE NARRATIVE

Metals Analysis by Method 6020B:

Zn was detected in Method Blank 37318 at $23\mu g/l$ which was above reporting limit of $20\mu g/l$ resulting in "B" qualified data. Associated sample values were greater than approximately 10X the blank value or less than reporting limit and data was not affected.

LCS-37318 is flagged For Zn due to the hit in the method blank.

Williams Environmental Services, Inc CLIENT:

0308663 Work Order:

Macon II MGP Project:

ANALYTICAL QC SUMMARY REPORT

Date: 28-Aug-03

					-		-	,		
Sample ID: MB-37280	SampType: MBLK	TestCode: 8260_TCL_W	CL_W Units: µg/L		Prep Date:	8/21/2003		RunNo: 41772		
Client ID:	Batch ID: 37280	TestNo: SW8260B	æ	¥.	Analysis Date:	8/21/2003		SeqNo: 759657	~	
Analyte	Result	POL SPK value	e SPK Ref Val	%REC L	LowLimit Hi	HighLimit RPD Ref Val	ef Val	%RPD R	RPDLimit (Qual
Benzene	BRL	5.0								
Carbon disulfide	BRL	5.0								
Ethylbenzene	BRL	5.0						•	٠.	
Methylene chloride	BRL	5.0								
Toluene	BRL	5.0								
Xylenes, Total	BRL	5.0						•		
Surr: 4-Bromofluorobenzene	48.99	0	50 0	86	71.8	143	0	0		
Surr: Dibromofluoromethane	57.34	0	20 . 0	115	80.3	123	0	0		
Surr: Toluene-d8	52.42	0	50 0	105	70.1	142	0	0		
Sample ID: MB-37280	SampType: MBLK	TestCode: 8260B_W	W Units: µg/L		Prep Date:	8/21/2003	-	RunNo: 41762		
Client ID:	Batch ID: 37280	TestNo: SW8260B	. B	An	Analysis Date:	8/20/2003		SeqNo: 759401	_	
Analyte	Result	PQL SPK value	e SPK Ref Val	%REC L	LowLimit Hi	HighLimit RPD Ref Val	ef Val	%RPD R	RPDLimit (Qual
Benzene	BRL	5.0								
Carbon disulfide	BRL	5.0								
Ethylbenzene	BRL	5.0								,
Methylene chloride	BRL	5.0			-					
Toluene	BRL	5.0								
Xylenes, Total	BRL	5.0								
Surr: 4-Bromofluorobenzene	47.64	5.0	50 0	95.3	71.8	143	0	0		
Surr; Dibromofluoromethane	57.18	5.0 5.	50 0	114	80.3	123	0	0		
Surr: Toluene-d8	53.72	5.0 5	50 0	107	70.1	142	0	0		
Sample ID: LCS-37280	SampType: LCS	TestCode: 8260B_W	W Units: µg/L		Prep Date:	8/21/2003		RunNo: 41762		
Client ID:	Batch ID: 37280	TestNo: SW8260B	8	Ą	Analysis Date:	8/20/2003		SeqNo: 759402	8	
Analyte	Result	PQL SPK value	e SPK Ref Vai	"REC L	LowLimit Hi	HighLimit RPD Ref Val	ef Val	%RPD R	RPDLimit	Qual
Benzene	50.06	5.0 5	50 0	100	71.1	120	0	0		
	Analyte detected in the associated Method Blank	BRL	Below Reporting Limit	;			ve quantií	Value above quantitation range		
H. Holding tim R. RPD outside	Holding times for preparation or analysis exceeded RPD outside accepted recovery limits	w	Analyte detected below quantitation limits Spike Recovery outside accepted recovery limits	ititation limits pted recovery l	imits	N Analyte n	Analyte not NELAC certified	certified	Page	Page I of 13

CLIENT:

Williams Environmental Services, Inc 0308663

Work Order:

Macon II MGP Project:

ANALYTICAL QC SUMMARY REPORT

Result PQL Standard Stand	Sample ID: LCS-37280	SampType: LCS	TestCoc	TestCode: 8260B_W	Units: µg/L		Prep Date:	ie: 8/21/2003	3	RunNo: 41762	62	
Feesult POL SPK value SPK Rel Val %REC LowLinit HighLinit RPD Ref Val %RPD RPDLinit RPD Ref Val %RPD Ref Val %RPD Ref Val %RPD RPDLinit RPD Ref Val %RPD RPDLinit RPD Ref Val %RPD Ref Val %RPD Ref Val %RPD Ref Val %RPD RPDLinit RPD Ref Val %RPD Ref Val %RP	Client ID:	Batch ID: 37280	Testh	lo: SW8260B			Analysis Dal		5	SeqNo: 759	402	
SampType: MS TestCode: 8260B_W Units: pg/L Frep Date: 812412003 SampType: MS TestCode: 8260B_W Units: pg/L Frep Date: 812412003 SampType: MS TestCode: 8260B_W Units: pg/L Frep Date: 812412003 SampCode: 8260B_W Units: pg/L U	Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit		RPD Ref Val	%RPD	RPDLimit	Qual
47.87 5.0 5.0 9.6 7 71.8 (mode) 143 (mode) 0	Toluene	51.32	5.0	50	0	103	84	124	0	0	,	
SampType: MS TestCode: 8260B_W Units: pg/L Prep Date: 8171/2003 RunNo: 41934 Batch ID: 37280 TestVocde: 8260B_W Units: pg/L Analysis Date: 8171/2003 SeqNo: 764647 Batch ID: 37280 TestVocde: 8260B_W Units: pg/L Analysis Date: 8171/2003 SeqNo: 764647 SampType: MS TestCode: 8260B_W Units: pg/L Analysis Date: 8171/2003 SeqNo: 764649 SampType: MS TestCode: 8260B_W Units: pg/L Analysis Date: 8171/2003 SeqNo: 764649 SampType: MS TestCode: 8260B_W Units: pg/L Analysis Date: 8171/2003 SeqNo: 764649 SampType: MBLK TestCode: 8260B_W Units: pg/L Analysis Date: 8171/2003 SeqNo: 763649 SampType: MBLK TestCode: 8260B_W Units: pg/L Analysis Date: 8171/2003 SeqNo: 763649 SampType: MBLK TestCode: 8260B_W Units: pg/L Analysis Date: 8171/2003 SeqNo: 763649 SampType: MBLK TestCode: 8260B_W Units: pg/L Analysis Date: 8171/2003 SeqNo: 763616 SampType: MBLK TestCode: 8260B_W Units: pg/L Analysis Date: 8171/2003 SeqNo: 763716 SampType: MBLK TestCode: 8260B_W Units: pg/L Analysis Date: 8171/2003 SeqNo: 763716 Batch ID: 37280 TestNo: SW6260B Analysis Date: 8171/2003 SeqNo: 763716 Batch ID: 37280 TestCode: 8260B_W Units: pg/L Analysis Date: 8171/2003 SeqNo: 763716 BRL SO	Surr: 4-Bromofluorobenzene	47.87	5.0	50	0	95.7	71.8	143	0	0		
SampType: MS TestCode: 8280B_W Units: Lg/L Prep Date: 812112003 SeqNo: 744647 Racutt D: 37280 TestCode: 8280B_W Units: Lg/L Prep Date: 812112003 SeqNo: 746447 Racutt POL SPK value SPK Ref Val SP	Surr: Dibromofluoromethane	54.15	5.0	50	0	108	80.3	123	0	· o		
SampType: MS TestCocde: 8280B_W Unils: µg/L Analysis Date: Analysis Date: B12/12003 Run/No: 41934 Run/No: 41934 Batch ID: 37280 TestNo: SWR320B NREC LowLimit HighLimit RPD Ref Val %RPD RPD Limit 4.534 5.0 50 0 96.7 75 126 0 0 4.332 5.0 50 0 96.7 76 126 0	Surr: Toluene-d8	51.32	.5.0	20	. 0	103	70.1	142	0	0		
Peatch ID: 37280 Peath Country Peatch Country Peatch ID: 37280	Sample ID: 0308573-016AMS	SampType: MS	TestCoc	le: 8260B_W	Units: µg/L		Prep Dat	ll .	13	RunNo: 419:	34	
Result PQL SPK Nature SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLim 45.94 5.0 5.0 5.0 96.7 79 125 0 0 48.37 5.0 5.0 5.0 96.7 79 125 0 0 43.22 5.0 5.0 5.0 96.7 71.8 143 0 0 43.22 5.0 5.0 0 96.7 70.1 143 0 0 44.98 5.0 5.0 0 95.6 70.1 142 0 0 SampType: MSD TestCode: 8260B_W Units: ug/L Analysis Date: 81/21/2003 Runho: 41849 3.03 3 44.57 5.0 5.0 5.0 92.8 79 125 44.98 0 0 46.4 5.0 5.0 5.0 96.7 70.1 142 47.81 0 0 46.8 5.0	Client ID;	· Batch ID: 37280	Testh	lo: SW8260B			Analysis Dat		ញ	SeqNo: 764	647	
45.94 5.0 50 0 96.7 79 125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit		RPD Ref Val	%RPD	RPDLimit	Qual
48.37 5.0 50 0 96.7 79 125 0 0 0 6 48.4 71.8 143 0 0 0 6 44.32 123 0 0 0 0 44.98 5.0 5.0 5.0 0 96.8 4 71.8 143 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Benzene	45.94	5.0	50	0	91.9	75	130	0	0		
43.22 5.0 50 86.4 71.8 143 0 0 44.98 5.0 50 60 80.3 123 0 0 44.98 5.0 50 60 90 80.3 123 0 0 SampType: MSD TestCode: 8260B_W Units: pg/L Analysis Date: 8121/2003 RunNo: 41934 Batch ID: 37280 TestNo: Sw8260B Units: pg/L Analysis Date: 8726/2003 RunNo: 41934 Result PQL SPK Nef Val %REC LowLimit HighLimit RPD Ref Val %RPD RPD Lim 44.57 5.0 50 0 88.1 71.8 44.3 3.03 3.3 43.51 5.0 50 0 92.8 70.1 142 44.9 0 48.35 5.0 50 0 96.7 70.1 142 47.81 0 Batch ID: 37280 TestNo: SW8260B Analysis Date: 8/20/2003 SeqNo: 759216	Toluene	48.37	5.0	20	0	96.7	62	125	0	0	,	
SampType: MSD 50 90	Surr: 4-Bromofluorobenzene	43.22	5.0	20	0	86.4	71.8	143	0	0		
SampType: MSD TestCode: 8260B_W Units: µg/L Prep Date: RIZI/2003 RunNo: 41934	Surr: Dibromofluoromethane	44.98	5.0	20	0	06	80.3	123	0	0		
SampType: MSD TestCode: 8260B_W Units: µg/L Analysis Date: 8/26/2003 RunNo: 41934 Batch ID: 37280 TestNo: SW8260B Analysis Date: 8/26/2003 SeqNo: 764649 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLim 44.57 5.0 50 0 92.8 79 125 45.94 3.03 3 45.62 5.0 50 0 92.8 79 125 44.96 0 45.62 5.0 50 0 91.2 80.3 123 44.96 0 48.35 5.0 50 0 96.7 70.1 142 47.81 0 8ampType: MBLK TestCode: 8260B_W_CL Units: µg/L Analysis Date: 8/21/2003 8/21/2003 SeqNo: 759216 Batch ID: 37280 TestNo: Sw8260B SPK Ref Val %REC LowLimit HighLimit Rph LiphLimit Rph LiphLimit Rph LiphLimit Rph LiphLimit Rph LiphL	Surr: Toluene-d8	47.81	5.0	20	0	95.6	70.1	142	0	0		
Pick	Sample ID: 0308573-016AMSD	SampType: MSD	TestCoc	le: 8260B_W	Units: µg/L		Prep Dat	i I	13	RunNo: 419:	34	
PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPD Limit RPD Ref Val RPD Ref Val %RPD RPD Limit RPD Ref Val RP	Client ID;	Batch ID: 37280	Testh	lo: SW8260B			Analysis Dal		<u> </u>	SeqNo: 764	649	
44.57 5.0 50 60 89.1 75 130 45.94 3.03 3 46.4 5.0 50 0 92.8 79 125 48.37 41.6 3 nethane 45.62 5.0 50 0 91.2 80.3 123 44.98 0 0 48.35 5.0 50 0 96.7 70.1 142 47.81 0 0 SampType: MBLK TestCode: 8260B_W_CL Units: µg/L Analysis Date: 8/21/2003 RunNo: 41761 0 Batch ID: 37280 TestNo: SW8260B Analysis Date: 8/20/2003 SeqNo: 759216 SeqNo: 759216 BRL 5.0 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDI	Analyte	Result	Pol	SPK value	SPK Ref Val	%REC	LowLimit		RPD Ref Val	%RPD	RPDLimit	Qual
46.4 5.0 50 92.8 79 125 48.37 4.16 3 nethane 43.51 5.0 50 60 91.2 80.3 123 44.98 0 0 nethane 45.62 5.0 5.0 60 91.2 80.3 123 44.98 0 0 A8.35 5.0 5.0 60 96.7 70.1 142 47.81 0 0 SampType: MBLK TestCode: 8260B_W_CL Units: µg/L Analysis Date: 8/20/2003 8/20/2003 SeqNo: 759216 Batch ID: 37280 TestNo: SW8260B Analysis Colspan="6">Analysis Date: 8/20/2003 8/20/2003 SeqNo: 759216 BRL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPD Ref Val RPD Ref Val RPD Ref Val RPD Ref Val	Benzene	44.57	5.0	20	0	89.1	75	130	45.94	3.03	30	
Designation 43.51 5.0 50 0 87 71.8 143 43.22 0 nethane 45.62 5.0 50 0 91.2 80.3 123 44.98 0 48.35 5.0 50 0 96.7 70.1 142 47.81 0 SampType: MBLK TestCode: 8260B_W_CL Units: µg/L Analysis Date: 8/21/2003 RunNo: 47.81 0 Batch ID: 37280 TestNo: SW8260B Analysis Date: 8/20/2003 SeqNo: 759216 Result PQL SPK Nalue SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDI BRL 5.0 Analyte detected below quantitation limits B Analyte detected below quantitation limits Analyte not NELAC certified	Toluene	46.4	5.0	50	0	92.8	79	125	48.37	4.16	30	
Nethane 45.62 5.0 50 91.2 80.3 123 44.98 0 91.2 80.3 123 44.98 0 91.2 80.3 123 44.98 0 91.2 80.3 123 44.98 0 91.2 80.3 123 44.98 0 91.2 80.3 123	Surr: 4-Bromofluorobenzene	43.51	5.0	50	0	87	71.8	143	43,22	0	0	
SampType: MBLK TestCode: 8260B_W_CL Units: µg/L Prep Date: 8/21/2003 RunNo: 47.81 0 Batch ID: 37280 TestNo: 8W8260B_W_CL Units: µg/L Analysis Date: 8/20/2003 SeqNo: 759216 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD Ref Val %RPD Immage RBL 5.0 Analyte detected below quantitation limits Evalue above quantitation range N Analyte not NELAC certified	Surr: Dibromofluoromethane	45.62	5.0	50	0	91.2	80.3	123	44.98	0	0	
SampType: MBLK TestCode: 8260B_W_CL Units: µg/L Analysis Date: 8/21/2003 RunNo: 41751 Batch ID: 37280 TestNo: SW8260B Analysis Date: 8/20/2003 SeqNo: 759216 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLim BRL 5.0 BRL Below Reporting Limit E Value above quantitation range olding times for preparation or analysis exceeded J Analyte detected below quantitation limits N Analyte not NELAC certified	Surr: Toluene-d8	48.35	5.0	50	0	96.7	70.1	142	47.81	0	0	
BRL 5.0 Analyte detected in the associated Method Blank BRL Below Reporting Limits B Analyte detected in the associated Method Blank BRL 5.0 BRL Below Reporting Limits B Analyte detected on analysis exceeded J Analyte detected below quantitation limits B Analyte not NELAC certified SeqNo: 759216	Sample ID: MB-37280	SampType: MBLK	TestCoc	le: 8260B_W_	1		Prep Dat	ı	13	RunNo: 417	51	
Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLim BRL 5.0 H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits N Analyte not NELAC certified	Client ID:	Batch ID: 37280	Testh	lo: SW8260B			Analysis Dal		13	SeqNo: 759	216	
BRL 5.0 B Analyte detected in the associated Method Blank BRL Below Reporting Limit H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits N Analyte not NELAC certified	Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit		RPD Ref Val	%RPD	RPDLimit	Qual
B Analyte detected in the associated Method Blank BRL Below Reporting Limit H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits N Analyte not NELAC certified	Benzene	BRL	5.0									-
Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits N Analyte not NELAC certified	89 :	cted in the associated Method I	3lank		Reporting Limit				alue above quan	ıtitation range		
		es for preparation or analysis ex	papaaa	J Analyt	te detected below quar	titation lim	its		nalyte not NEL.	AC certified	Pa	ge 2 of

Page 3 of 13

Williams Environmental Services, Inc

0308663 Macon II MGP Work Order:

CLIENT:

Project:

BatchID: 37280

ANALYTICAL QC SUMMARY REPORT

Sample ID: MB-37280	SampType: MBLK	TestCo	TestCode: 8260B_W_CL Units: µg/L	L Units: µg/L		Prep Date:	Prep Date: 8/21/2003		RunNo: 41751	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Client ID:	Batch ID: 37280	Test	TestNo: SW8260B		·	Analysis Date: 8/20/2003	8/20/2003		SeqNo: 759216	.16`	
Analyte	Result	Pol	SPK value	SPK Ref Val	%REC	%REC LowLimit HighLimit		RPD Ref Val	%RPD	RPDLimit	Qual
Carbon disulfide	BRL	5.0									
Ethylbenzene	BRL	5.0									•
Methylene chloride	BRL	5.0									
Toluene	BRL	5.0									
Xylenes, Total	BRL	5.0									,
Surr: 4-Bromofluorobenzene	47.64	0	50	0	95.3	71.8	143	0	0		
Surr: Dibromofluoromethane	57.18	0	50		114	80.3	123	0	0	•	
Surr. Toluene-d8	53.72	0	50	0	107	70.1	142	0	0		
Sample ID: LCS-37280	SampType: LCS	TestCor	TestCode: 8260B_W_CL Units: µg/l	'L Units: µg/L		Prep Date:	8/21/2003		RunNo: 41751	_	
Client ID:	Batch ID: 37280	Test	TestNo: SW8260B			Analysis Date: 8/20/2003	8/20/2003		SeqNo: 759217	17	
Analyte	Result	Pol	SPK value	SPK Ref Val	%REC	LowLimit H	%REC LowLimit HighLimit RPD Ref Val	Ref Val	%RPD	RPDLimit	Qual
Benzene	50.06	5.0	50	0	100	71.1	120	0	0		
Toluene	51.32	5.0	50	0	103	84	124	0	0		
Surr: 4-Bromofluorobenzene	47.87	0	. 50	0	95.7	71.8	143	0	0		
Surr: Dibromofluoromethane	54.15	0	50	0	108	80.3	123	0	0		
Surr: Toluene-d8	51.32	0	50	0	103	70.1	142	0	0		

						######################################
Qualifiers:	CC.	Analyte detected in the associated Method Blank	BRL	BRL Below Reporting Limit	щ	Value above quantitation range
	H	Holding times for preparation or analysis exceeded	_	Analyte detected below quantitation limits	z	Analyte not NELAC certified
,	~	RPD outside accepted recovery limits	v	Spike Recovery outside accented recovery limits		

CLIENT: Williams Environmental Services, Inc

Work Order: 0308663

Project: Macon II MGP

ANALYTICAL QC SUMMARY REPORT

Campio 10: 1810-5/282	SampType: MBLK	TestCo	TestCode: 8270 A2 W	Unite: 160/1		Pren Date.	te: 8/24/2003	03	Losh Adama		
Client ID:	Batch ID: 37292	Test	TestNo: SW8270C			Analysis Date:		03	SeaNo: 762476	(r	
Analyte	Result	Po	SPK value S	SPK Ref Val	%REC	LowLimit	Ω,	RPD Ref Val	%RPD R	RPDLimit Qual	<u> </u>
Acenaphthene	BRL	10								· · · · · · · · · · · · · · · · · · ·]
Acenaphthylene	BRL	10									٠
Anthracene	BRL	40									
Benz(a)anthracene	BRL	10									
Benzo(a)pyrene	BRL	10									
Benzo(b)fluoranthene	BRL	10									
Benzo(g,h,i)perylene	BRL	10								٠	
Benzo(k)fluoranthene	BRL	10									
Chrysene	BRL	10					٠				
Dibenz(a,h)anthracene	BRL	10									
Fluoranthene	BRL	10					-				
Fluorene	BRL	10								ŧ	
Indeno(1,2,3-cd)pyrene	BRL	10							٠		
Naphthalene	BRL	10									
Phenanthrene	BRL	10									
Phenol	BRL	10									
Pyrene	BRL	10									
Surr: 2,4,6-Tribromophenol	98.68	0	100	0	98.7	19	124	0	0		
Surr: 2-Fluorobiphenyl	47.61	0	50	0	95.2	26	. 115	0	0		
Surr: 2-Fluorophenol	92.27	0	100	0	92.3	10	121	0	0		
Surr: 4-Terphenyl-d14	49.27	0	50	0	98.5	18	137	0	0		
Surr: Nitrobenzene-d5	47.42	0	50	0	94.8	5	120	0	0		
Surr: Phenol-d5	69.67	0	100	0	2.69	18	113	0	0		-
Sample ID: LCS-37292	SampType: LCS	TestCod	de: 8270_A2_W	Units: µg/L		Prep Date:	te: 8/21/2003	03	RunNo: 41884		
Client ID:	Batch ID: 37292	TestN	Vo: SW8270C			Analysis Date:	ite: 8/22/2003	03	SeqNo: 762477		
Analyte	Result	POL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD R	RPDLimit Qual	<u></u>
Acenaphthene	85.07	10	100	0	85.1	47	145	0	0]
Phenoi	66.02	10	100	0	99	ιn	112	0	0		
Pyrene	97.49	10	100	0	97.5	52	115	0	0		
Qualifiers: B Analyte det	Analyte detected in the associated Method Blank	Blank	BRL Below Re	Below Reporting Limit			Э	Value above quantitation range	ritation range		
H Holding tin	Holding times for preparation or analysis exceeded	xceeded	J Analyte d	Analyte detected below quantitation limits	ntitation lim	its	z	Analyte not NELAC certified	C certified	1	•
R RPD outsid	RPD outside accepted recovery limits		S Spike Red	Spike Recovery outside accepted recovery limits	spted recove	ry limits				Page 4 of 13	t of 13

Williams Environmental Services, Inc CLIENT:

0308663 Macon II MGP Work Order: Project:

ANALYTICAL QC SUMMARY REPORT

Sample ID: LCS-37292	SampType: LCS	TestCo	TestCode: 8270_A2_W	W Units: µg/L		Prep Date:	: 8/21/2003	03	RunNo: 41884	884	-
Client ID:	Batch ID: 37292	Test	TestNo: SW8270C			Analysis Date:	: 8/22/2003	03	SeqNo: 762477	2477	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 2,4,6-Tribromophenol	98.58	0	100	0	98.6	19	124	0	0		
Surr: 2-Fluorobiphenyl	43.48	0	50	0	87	26	115		0		
Surr: 2-Fluorophenol	83,96	0	100	0	84	10	121	0	0		
Surr: 4-Terphenyl-d14	48.94	0	50	0	97.9	18	137	0			
Surr: Nitrobenzene-d5	40.59	0	20	0	81.2	15	120	0	0		
Surr: Phenol-d5	72.88	0	100	0	72.9	18	113	0	0		
Sample ID: 0308605-001AMS	SampType: MS	TestCoc	TestCode: 8270_A2_W	W Units: µg/L		Prep Date:	8/21/2003	33	RunNo: 418	41884	
Client ID:	Batch ID: 37292	Testh	TestNo: SW8270C			Analysis Date:	: 8/22/2003	33	SeqNo: 762479	2479	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	79.45	10	1001	0	79.4	47	145	0	0		
Phenoi	56.12	10	100	0	56.1	ស	112	0	0		
Pyrene	85.02	10	100	0	85	52	115	0	0		
Surr: 2,4,6-Tribromophenol	94.98	0	100	0	95	19	124	0	0		
Surr: 2-Fluorobiphenyl	40.05	0	20	0	80.1	26	115	0	0		
Surr: 2-Fluorophenol	71.33	0	100	0	71.3	10	121	0	0 .		
Surr: 4-Terphenyl-d14	42.67	0	50	0	85.3	18	137	0	0		
Surr: Nitrobenzene-d5	38.17	0	50	0	76.3	15	120	0	0		
Surr: Phenol-d5	60.84	0	100	0	60.8	18	113	0	0		
Sample ID: 0308605-001AMSD	SampType: MSD	TestCoc	TestCode: 8270_A2_W	W Units: µg/L		Prep Date:	8/21/2003	33	RunNo: 41884	384	
Client ID:	Batch ID: 37292	Testh	TestNo: SW8270C			Analysis Date:	: 8/22/2003	33	SeqNo: 762480	2480	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai
Acenaphthene	85.02	9	100	0	85	47	145	79.45	6.77	0	
Phenol	60.89	10	100	0	60.9	ហ	112	56.12	8.15	0	
Pyrene	90,53	10	100	0	90.5	52	115	85.02	6.28	0	
Surr: 2,4,6-Tribromophenol	94.16	0	100	0	94.2	10	124	94.98	0	0	
Surr: 2-Fluorobiphenyl	40.28	0	20	0	80.6	26	115	40.05	0	0	
Surr: 2-Fluorophenol	74.29	0	100	0	74.3	10	121	71.33	0	0	
Qualifiers: B Analyte detec	Analyte detected in the associated Method Blank	ank	BRL Below	Below Reporting Limit			E	Value above quantitation range	titation range	-	
	Holding times for preparation or analysis exceeded	seded		Analyte detected below quantitation limits	atitation lim	its	Z	Analyte not NELAC certified	AC certified		
R RPD outside	RPD outside accepted recovery limits		S Spike	Spike Recovery outside accepted recovery limits	pted recove	ry limits			٠	Fa	Page 5 of 13

Page 6 of 13

Williams Environmental Services, Inc

0308663 Work Order:

CLIENT:

Project:

Macon II MGP

ANALYTICAL QC SUMMARY REPORT

Sample ID: 0308605-001AMSD SampType: MSD Client ID: 37292	SampType: MSD Ratch ID: 37292	TestCo	tCode: 8270_A2_V	TestCode: 8270_A2_W Units: µg/l.		Prep Da	Prep Date: 8/21/2003	93	RunNo: 41884	184	
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	Analysis Da LowLimit	Anarysis Date: 8/22/2003 LowLimit HighLimit RF	Analysis Date: 6/2/2/003 %REC LowLimit HighLimit RPD Ref Val	SeqNO: /62480	INO: 762480	G
								5			Kaai
Surr: 4-Terphenyi-d14	43.23	0	20	0	86.5	18	137	42.67	0	0	
Surr: Nitrobenzene-d5	38.16	0	50	0	76.3	15	120	38.17	0	0	
Surr: Phenol-d5	63.7	0	100	0	63.7	. 82	113	60.84	0	0	

3 Value above quantitation range	Analyte not NELAC certified	
ED	Ζ,	
Below Reporting Limit	Analyte detected below quantitation limits	Spike Recovery outside accepted recovery limits
BRL	,	S
Analyte detected in the associated Method Blank	Holding times for preparation or analysis exceeded	RPD outside accepted recovery limits
æ	H	ద
Qualifiers:		

CLIENT:

Williams Environmental Services, Inc

Work Order:

0308663 Macon II MGP Project:

ANALYTICAL QC SUMMARY REPORT

Sample ID: MB-37318	SampTy	SampType: MBLK	TestCod	TestCode: 6020_W	Units: µg/L		Prep Date:	e: 8/22/2003	3	RunNo: 41893	33	
Client (D):	Batch	Batch ID: 37318	TestN	TestNo: SW6020			Analysis Date:	e: 8/25/2003	8	SeqNo: 76267 1	57.1	
Analyte	-	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		BRL	20.0									
Barium		BRL	20.0									
Beryllium		BRL	5.00								٠	
Cadmium	•	BRL	5.00									
Chromium		BRL	10.0									
Copper		BRL	10.0									
Lead		BRL	10.0									
Nickel	•	BRL	20.0									
Vanadium		BRL	10.0	-								
Zinc		30.67	20.0									
Sample ID: LCS-37318		SampType: LCS	TestCod	TestCode: 6020_W	Units: µg/L		Prep Date:	e: 8/22/2003	3	RunNo: 41893	33	
Client ID:	Batch	Batch ID: 37318	TestN	TestNo: SW6020		•	Analysis Date:	e: 8/25/2003		SeqNo: 762672	572	
Analyte		Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		97.27	20.0	100	0.858	96.4	85	115	0	0		
Barium		105.5	20.0	100	0.18	105	85	115	0	0		
Beryllium		107.3	5.00	100	0	107	85	115	0	0		
Cadmium		108.9	5.00	100	0	109	85	115	0	0		
Chromium	•	105.5	10.0	100	0	106	85	115	0	0		
Copper		107.3	10.0	100	0.642	107	85	115	0	0		-
Lead		105.1	10.0	. 100	0.26	105	85	115	0	0	•	
Nickel		107.5	20.0	100	0	108	85	115	0	0		
Vanadium		104.8	10.0	100	0	105	85	115	0	0		
Zinc		112.7	20.0	100	30.67	82	85	115	0	0		ဟ
Sample ID: 0308663-001DMS	31DMS SampType: MS	pe: MS	TestCod	TestCode: 6020_W	Units: µg/L		Prep Date:	e: 8/22/2003		RunNo: 41893	33	
Client ID: MW-5	Batch	Batch ID: 37318	TestN	TestNo: SW6020			Analysis Date:	e: 8/25/2003	~	SeqNo: 762675	375	<u></u>
Analyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		105.5	20.0	100	4.477	101	70	130	0	0		
Qualifiers: B An	Analyte detected in the associated Method Blank	ssociated Method Bla	mk	BRL Below	Below Reporting Limit			E Va	lue above qua	Value above quantitation range	-	
	Holding times for preparation or analysis exceeded	ition or analysis exce	papa		Analyte detected below quantitation limits	titation limi	S	N An	Analyte not NELAC certified	AC certified	pad	Page 7 of 13
× ×	RPD outside accepted recovery limits	overy limits		S Spike	Spike Recovery outside accepted recovery limits	pted recover	y limits		÷		40 7	Cr (2 / 2)

Page 8 of 13

Williams Environmental Services, Inc

0308663 Work Order:

CLIENT:

Project:

Macon II MGP

BatchID: 37318

ANALYTICAL QC SUMMARY REPORT

Cifent ID: MW45 Result Pol. SPK Net Val.	Sample ID: 0308663-001DMS	SampType: MS	TestCo	TestCode: 6020_W	Units: µg/L		Prep Date:	e: 8/22/2003	13	RunNo: 41893	33	,
Result POL SPK value SPK Ref Val %REC LowLinit Hight lmit RPD Ref Val %RPD RPD Linit RPD Ref Val R	Client ID: MW-5	Batch ID: 37318	Test	No: SW6020			Analysis Dat		.	SeqNo: 762(375	
103.8 5.00 100 0 104 70 130 0 0 0 0 0 0 0 0 0	Analyte	Resuit	PQL	SPK value	SPK Ref Val	%REC		HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
104.4 5.00 100 104.4 100 100 104 104 104 104 104 104 104 104 104 104 105 100 100 104	Beryllium	103.8	5.00	100	0	104	70	130	0	0		
1038 100	Cadmium	104.4	5.00	100	0.419	104	70	130	0	0		
10 100 1004 98.8 70 130 0 0 0 0 0 0 0 0 0	Chromium	103.8	10.0	100	0	104	20	130	0	0		
111 10.0 1	Copper .	99.78	10.0	100	1.004	98.8	70	130	0	0		
101 105 105 105 105 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 107	Lead	111	10.0	100	0.918	110	70	130	0	0		
105.9 10.0	Nickel	101	20.0	100	0.619	100	70	130	0	0		
103.76 103.76 103.77 103.76 100	Vanadium	105.9	10.0	100	0.164	106	20	130	0	0		,
Name Samp Type: DUP TestCode: 6020_W Units: µg/L Analysis Date: 8/25/2003 Sagnot 7.52674 Sagnot 7.526744 Sagnot 7.52674 Sagnot 7.526744 Sagnot 7.526744 Sagnot 7.52674 Sagnot 7.52674 Sagnot 7.52674 Sagnot 7.52674 Sa	Zinc	103.7	20.0	100	23.22	80.5	70	130	0	0		œ
MW-5 Batch ID: 37318 TestNo: SW6020 SPK Ref Value SPK Ref Value<	Sample ID: 0308663-001DDUP	SampType: DUP	TestCo	de: 6020_W	Units: µg/L	-	Prep Date	3: 8/22/200	13	RunNo: 4189	13	
Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPD Limit n BRL 20.0 0 0 0 0 0 0 20 m BRL 5.00 0 0 0 0 0 0 0 20 20 0		Batch ID: 37318	Test	No: SW6020			Analysis Datı		<u>ي</u>	SeqNo: 7626	574	
BRL 20.0 0 0 0 0 4.477 0 m BRL 5.00 0	Analyte	Result	Pal	SPK value	SPK Ref Val	%REC			RPD Ref Val	%RPD	RPDLimit	Qual
n BRL 5.00 0 0 0 0 0 0 0 0 m BRL 5.00 0 0 0 0 0 0 0 m BRL 10.0 0 0 0 0 0 0 BRL 20.0 0 0 0 0 0 0 m BRL 20.0 0 0 0 0 0 BRL 20.0 0 0 0 0 0 0 m BRL 20.0 0 0 0 0 0 0	Arsenic	BRL	20.0	0	0	0	0	0	4.477	0	20	
m BRL 5.00 0 0 0 0 0 0.419 0 Jm BRL 10.0 0 0 0 0 0 0 0 BRL 10.0 0 0 0 0 0 0 0 0 m BRL 20.0 0 0 0 0 0 0 0 m BRL 20.0 0 0 0 0 0 0 0	Beryllium	BRL	2.00	0	0	0	0	0	0	0	20	
Jame BRL 10.0 0 0 0 0 0 0 0 BRL 10.0 0 0 0 0 0 0 0 BRL 20.0 0 0 0 0 0 0 0 Im BRL 20.0 0 0 0 0 0 0 0 BRL 20.0 0 0 0 0 0 0 0 0 0	Cadmium	BRL	5.00	0	0	0	0	0	0.419	0	20	
BRL 10.0 0 0 0 0 1.004 0 BRL 10.0 0 0 0 0 0.918 0 Im BRL 10.0 0 0 0 0 0 0 BRL 20.0 0 0 0 0 0 0.164 0	Chromium	BRL	10.0	0	0	0	0	0	0	0 ,	20	
i BRL 10.0 0 0 0 0 0.918 0 0 didm BRL 20.0 0 0 0 0.619 0 didm 23.22 0	Copper	BRL	10.0	0	0 .	0	0	0	1.004	0	20	
if BRL 20.0 0 0 0 0 0.619 0 dium BRL 10.0 0 0 0 0 0.164 0 BRL 20.0 0 0 0 0 23.22 0	Lead	BRL	10.0	0	0	0	0	0	0.918	0	20	
dium BRL 10.0 0 0 0 0 0.164 0 BRL 20.0 0 0 0 0 23.22 0	Nickel	BRL	20.0	0	0	0	0	0	0.619	0	20	
BRL 20.0 0 0 0 0 23.22 0	Vanadium	BRL	10.0	0	0	0	0	0	0.164	0	20	
	Zinc	BRL	20.0	0	0	0		0	23.22	0	20	

	S Smile Denomination and a second assessment file.	ø	RPD outside accented recovery limits	~	
N Analyte not NELAC certified	Analyte detected below quantitation limits		Holding times for preparation or analysis exceeded	I	
E Value above quantitation rang	Below Reporting Limit	BRL B	Analyte detected in the associated Method Blank	Ф	Qualifiers:

Page 9 of 13

Williams Environmental Services, Inc

0308663 Work Order:

CLIENT:

Macon II MGP Project:

BatchID: 37320

ANALYTICAL QC SUMMARY REPORT

Sample ID: MB-37320	SampTune: MBI K	Total	Tout Code: 0044 16r	11-11-11-11			000017010			
	camp type: Miben	oolea I	Je. 30 14 W	OMIS: mg/L		Prep Date	Prep Date: 8/21/2003	KunNo: 41809	41809	-
Client ID:	Batch ID: 37320	Test	TestNo: SW9014			Analysis Date:	8/21/2003	SeqNo:	SeqNo: 760439	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	HighLimit RPD Ref Val		%RPD RPDLimit	Qual
Cyanide, Total	BRL	0.0100	0	0	0	0	0	0	0	- 2
Sample ID: LCS-37320	SampType: LCS	TestCoc	TestCode: 9014_W	Units: mg/L		Prep Date	Prep Date: 8/21/2003	RunNo: 41809	41809	
Client ID:	Batch ID: 37320	Test	TestNo: SW9014			Analysis Date	Analysis Date: 8/21/2003	SeqNo:	SeqNo: 760440	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	LowLimit HighLimit RPD Ref Val	al %RPD	PD RPDLimit	Qual
Cyanide, Total	0.2469	0.0100	0.25	0	98.8	85	115	0	0	
Sample ID: 0308663-009C MS	SampType: MS	TestCoc	TestCode: 9014_W	Units: mg/L		Prep Date.	8/21/2003	RunNo: 41809	41809	
Client ID: RB082103	Batch ID: 37320	Testh	TestNo: SW9014			Analysis Date:	8/21/2003	SeqNo:	SeqNo: 760451	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val		%RPD RPDLimit	Qual
Cyanide, Total	0.2369	0.0100	0.25	0	94.8	70	130	0	0	
Sample ID: 0308663-009C DUP	SampType: DUP	TestCoc	TestCode: 9014_W	Units: mg/L		Prep Date	Prep Date: 8/21/2003	RunNo: 41809	41809	
Client ID: RB082103	Batch ID: 37320	Test	TestNo: SW9014		•	4nalysis Date	Analysis Date: 8/21/2003	SeqNo:	SeqNo: 760450	
Analyte	Result	Pol	SPK value	SPK Ref Val	%REC	%REC LowLimit HighLimit	HghLimit RPD Ref Val	ai %RPD	PD RPDLimit	Qual
Cyanide, Total	BRL	0.0100	0	0	0	0	0	0	0 20	

llyte detect	lding times	O outside a
nalyte detected in the associated Method Blank	lolding times for preparation or analysis exceeded	RPD outside accepted recovery limits

RPD outside accepted recovery limits

BRL Below Reporting Limit

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Value above quantitation range Analyte not NELAC certified

m z

Williams Environmental Services, Inc CLIENT:

0308663 Work Order: Macon II MGP Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: 37326

Sample ID: 0308631-013CPDS	SampType: PDS	TestCo	TestCode: 7470A_W_T	T Units: mg/L		Prep Date:	8/25/2003		RunNo: 41912		
Client ID:	Batch ID: 37326	Test	TestNo: SW7470A		7	Analysis Date:	8/25/2003	m	SeqNo: 763544		
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD RPI	RPDLímit Qual	a
Mercury	0.01258	0.000320	0.0125	0	101	85	115	0	0		
Sample ID: MB-37326	SampType: MBLK	TestCo	TestCode: 7470A_W_T	T Units: mg/L		Prep Date:	8/22/2003	8	RunNo: 41912		
Client ID:	Batch ID: 37326	Test	TestNo: SW7470A			Analysis Date:	8/25/2003	~	SeqNo: 763538		
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit F	RPD Ref Val	WRPD RPI	RPDLimit Qual	70
Mercury	BRL	0.000160		The state of the s							
Sample ID: LCS-37326	SampType: LCS	TestCo	TestCode: 7470A_W_T	T Units: mg/L		Prep Date:	8/22/2003		RunNo: 41912		
Client ID:	Batch ID: 37326	Test	TestNo: SW7470A		`	Analysís Date:	8/25/2003	•	SeqNo: 763539		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD RP	RPDLimit Qual	76
Mercury	0.005488	0.000170	0.005	0	110	85	115	0	0]
Sample ID: 0308631-013CMS	SampType: MS	TestCo	TestCode: 7470A_W_T	T Units: mg/L		Prep Date:	8/25/2003	_	RunNo: 41912		
Client ID:	Batch ID: 37326	Testl	TestNo: SW7470A	-	*	Analysis Date:	8/25/2003		SeqNo: 763542		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RPD Ref Val	RPD Ref Val	%RPD RPI	RPDLimit Qual	<u></u>
Mercury	0.005072	0.000160	0.005	0	101	70	130	0	0		
Sample ID: 0308631-013CMSD	SampType: MSD	TestCo	TestCode: 7470A_W_T	r Units: mg/L		Prep Date:	8/25/2003		RunNo: 41912		
Client ID:	Batch ID: 37326	Testl	TestNo: SW7470A		*	Analysis Date:	8/25/2003		SeqNo: 763543		
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit F	RPD Ref Val	%RPD RPC	RPDLimit Qual	
Mercury	0.00503	0.000160	0.005	0	101	70	130	0.005072	0.841	20	
-:											

E Z Spike Recovery outside accepted recovery limits Analyte detected below quantitation limits BRL Below Reporting Limit S Holding times for preparation or analysis exceeded Analyte detected in the associated Method Blank RPD outside accepted recovery limits Ω H & Qualifiers:

Value above quantitation range Analyte not NELAC certified

Page 10 of 13

CLIENT:

Williams Environmental Services, Inc

0308663 Work Order:

Macon II MGP **Project**:

ANALYTICAL QC SUMMARY REPORT

Sample ID: MB-37356	SampType: MBLK	TestCoc	TestCode: 8260B W	Units: µg/L		Prep Date	Prep Date: 8/23/2003	33	RunNo. 41898	«6	
Client ID:	Batch ID: 37356	Test	TestNo: SW8260B	•		Analysis Date:	8/25/2003	33	SeaNo: 762844	844	
Analyte	Result	Pa	SPK value	SPK Ref Val	%REC	LowLimit		RPD Ref Val	%RPD	² DLimit	Qual
						1	,				
Benzene	BRL	5.0								,	
Carbon disulfide	BRL	5.0									
Ethylbenzene	BRL	5.0									
Methylene chloride	BRL	5.0									
Toluene	BRL	5.0									
Xylenes, Total	BRL	5.0									-
Surr: 4-Bromofluorobenzene	42.94	5.0	50	0	85.9	71.8	143	0	c		
Surr: Dibromofluoromethane	48.34	5.0	20	0	96.7	80.3	123	0	, c		
Surr: Toluene-d8	49.09	5.0	50	0	98.2	70.1	142	0	0		
Sample ID: LCS-37356	SampType: LCS	TestCoc	le: 8260B_W	Units: µg/L		Prep Date:	8/23/2003	13	RunNo: 41898	86	
Client ID:	Batch ID: 37356	Test	TestNo: SW8260B		•	Analysis Date:	8/25/2003		SeqNo: 762845	945	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	46.71	5.0	909	0 .	93.4	71.1	120	0	0		
Toluene	42.67	5.0	90	0	85.3	84	124	0	0		
Surr: 4-Bromofluorobenzene	42.27	5.0	20	0	84.5	71.8	143	0	0		
Surr: Dibromofluoromethane	45.31	5.0	20	0	90.6	80.3	123	0	0		
Surr: Toluene-d8	42.87	5.0	20	0	85.7	70.1	142	0	0		
Sample ID: 0308663-007AMS	SampType: MS	TestCoc	TestCode: 8260B_W	Units: µg/L		Prep Date:	8/23/2003	13	RunNo: 41898	86	
Client ID: MW-1	Batch ID: 37356	TestN	lo: SW8260B			Analysis Date:	8/25/2003	13	SeqNo: 763261	261	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	44.96	5.0	90	0	89.9	75	130	0	0		
Toluene	46.47	5.0	50	0	92.9	79	125	0	0	•	
Surr: 4-Bromofluorobenzene	41.73	5.0	50	0	83.5	71.8	143	0	0		
Surr. Dibromofluoromethane	50.29	5.0	50	0	101	80.3	123	0	0		٠.
Surr: Toluene-d8	48.65	5.0	20	0	97.3	70.1	142	0	0		

CLIENT:

0308663 Macon II MGP Work Order: Project:

Williams Environmental Services, Inc

ANALYTICAL QC SUMMARY REPORT

Sample ID: 0308663-007AMSD	SampTvoe: MSD	TestCod	TestCode: 8260B W	[Inits: na/]		Pren Date:	8/23/2003		Dundo: 41808	80	
Client ID: MW-1	Batch ID: 37356	TestNo	TestNo: SW8260B			Analysis Date:			SeqNo: 763264	264	
Analyte	Result	POP	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	43.59	5.0	20	0	87.2	75	130	44.96	3.09	30	
Toluene	45.1	5.0	20	0	90.2	79	125	46.47	2.99	30	
Surr: 4-Bromofluorobenzene	41.32	2.0	20	0	82.6	71.8	143	41.73	0		
Surr: Dibromofluoromethane	44.54	5.0	20	0	89.1	80.3	123	50.29	0		
Surr: Toluene-d8	47.23	5.0	50	0	94.5	70.1	142	48.65	0	0	
Sample ID: MB-37356	SampType: MBLK	TestCode	TestCode: 8260B_W_CL	CL Units: µg/L		Prep Date:	8/23/2003		RunNo: 41872	72	
Client ID:	Batch ID: 37356	TestNo	TestNo: SW8260B			Analysis Date:	8/23/2003		SeqNo: 762282	282	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Onal
Benzene	BRL	5.0			-					,	
Carbon disulfide	BRL	5.0						-			
Ethylbenzene	BRL	5.0									
Methylene chloride	BRL	5.0						-			
Toluene	BRL	5.0									
Xylenes, Total	BRL	5.0									
Surr: 4-Bromofluorobenzene	43.72	0	20	0	87.4	71.8	143	0	0 ,		
Surr: Dibromofluoromethane	47.82	0	20	0	92.6	80.3	123	0	0		
Surr: Toluene-d8	49.24	0	50	0	98.5	70.1	142	0	0		
Sample ID: MB-37356-1	SampType: MBLK .	TestCode	TestCode: 8260B_W_CL	CL Units: µg/L		Prep Date:	8/23/2003		RunNo: 41894	46	
Client ID;	Batch ID: 37356	TestNo	TestNo: SW8260B			Analysis Date:	8/25/2003	_	SeqNo: 762725	725	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit h	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	BRL	5.0									
Carbon disulfide	BRL	5.0									
Ethylbenzene	BRL	5.0									
Methylene chloride	BRL	5.0									é
Toluene	BRL	5.0									
Xylenes, Total	BRL	5.0									
Surr: 4-Bromofluorobenzene	42.94	0	20	0	85.9	71.8	143	0	0		
Qualifiers: B Analyte dete	Analyte detected in the associated Method Blank	3lank	BRL Below	Below Reporting Limit			E Va	Value above quantitation range	titation range		
	Holding times for preparation or analysis exceeded	pepeed		Analyte detected below quantitation limits	ıtítation limi	23	N An	Analyte not NELAC certified	AC certified	Dans	Dags 12 of 12
K KPD outside	RPD outside accepted recovery limits		S Spike F	Spike Recovery outside accepted recovery limits	pted recover	y limits				age r	C1 f0 71 :

Page 13 of 13

Williams Environmental Services, Inc

0308663 Work Order:

CLIENT:

Macon II MGP Project:

37356 BatchID:

ANALYTICAL QC SUMMARY REPORT

Sample ID: MB-37356-1 Client ID:	SampType: MBLK Batch ID: 37356	TestCo	stCode: 8260B_W_C TestNo: SW8260B	TestCode: 8260B_W_CL Units: µg/L TestNo: SW8260B	-	Prep Date:	8/23/2003		RunNo: 41894 SeaNo: 762725	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	ighLimit	RPD Ref Val	%RPD RPDLimit	iit Qual
Surr: Dibromofluoromethane Surr: Toluene-d8	48.34	00	50	0	96.7	80.3	123	0	0 0	and the state of t
Sample ID: LCS-37356	SampType: LCS	TestCoo	le: 8260B_W_(TestCode: 8260B_W_CL_Units: µg/L		Prep Date:	8/23/2003		RunNo: 41872	
Client ID:	Batch ID: 37356	Test	TestNo: SW8260B			Analysis Date: 8/23/2003	8/23/2003		SeqNo: 762283	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	Ref Val	%RPD RPDLimit	iit Qual
Benzene	95.37	5.0	100	0	95,4	71.1	120	0	0	-
Toluene	98.13	5.0	100	0	98.1	84	124	0	0	
Surr: 4-Bromofluorobenzene	46.54	0	50	0	93.1	71.8	143	0	0	
Surr: Dibromofluoromethane	49.3	0	20	0	98.6	80.3	123	0	0	
Surr: Toluene-d8	48.37	0	20	0	2.96	70.1	142	0		
Sample ID: LCS-37356-1	SampType: LCS	TestCoo	le: 8260B_W_C	TestCode: 8260B_W_CL Units: µg/L		Prep Date:	8/23/2003		RunNo: 41894	
Client ID:	Batch ID: 37356	Test	TestNo: SW8260B			Analysis Date:	8/25/2003		SeqNo: 762726	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit		RPD Ref Val	, %RPD RPDLimit	iit Qual
Benzene	46.71	5.0	50	0	93.4	71.1	120	0	0	
Toluene	42.67	5.0	50	0	85.3	84	124	0	0	
Surr: 4-Bromofluorobenzene	42.27	0	20	0	84.5	71.8	143	0	0	
Surr: Dibromofluoromethane	45.31	0	50	0	90.6	80.3	123	0	0	
Surr: Toluene-d8	42.87	0	20	0	85.7	70.1	142	0	0	

В	Analyte detected in the associated Method Blank	BRL	BRL Below Report
Ħ	Holding times for preparation or analysis exceeded	Ţ	Analyte detec
œ	RPD outside accepted recovery limits ·	S	Spike Recove

Qualifiers:

Spike Recovery outside accepted recovery limits ected below quantitation limits rting Limit S

E Value above quantitation rangeN Analyte not NELAC certified Analyte not NELAC certified

August 29, 2003

Matt Ebbert Williams Environmental Services, Inc 500 Chase Park South Suite 150 Birmingham, AL 35244

TEL: (205) 988-8305 FAX (205) 988-5249

RE: Macon II MGP

Dear Matt Ebbert:

Order No.: 0308828

Analytical Environmental Servs, Inc. received 1 sample on 8/21/2003 9:50:00 AM for the analyses presented in the following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative. AES' certifications are as follows:

-NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water, effective 07/02/03-06/30/04.

-AIHA Certification number 505 for analysis of Air, Paint Chips, Soil and Dust Wipes, effective until 10/01/03.

If you have any questions regarding these test results, please feel free to call.

Sincerely,

Allison Cantrell

allison (autull

Project Manager

030

CHAIN OF CUSTODY

5Pt 082003A

3785 Presidential Pkwy., Atlanta, GA 30340-3704 TEL: (770) 457-817/ TOLL FREE: (800) 972-4889 / FAX: (770) 457-8188 ALTALYTICAL ENVIRONMENTAL SERVICES, INC.

Work Order: 65 0 8662 Date: 8/20103 Page (of 2

Williams ENV. SERVICES	ADDITION SOO CHASE PARK, SO	ANALYSIS REQUESTED	CED .	
	B'ham, AL 35244			
MIONE: 205-788-8305	FAX: 5249			sionii
SAMPLED BY: MIKE DING	SIGNATURE MUN. UM	N. W.		րսույթ
	əni		REMARKS	4 0 0
B SAMPLE (D)		PRESERVATION		l
58-44-0-2	3 03% × 050 5			1-
28-44-5-7	0440		The second secon	
21-01-11-85	\vdash			
58-44-15-17				
12-07-11-85				
513-45-0-2	0836 X			
58-45-5-7				
58-45-10-12	φ50 χ			
58-45-15-17			100-	
\$8-45-18.5-20	1 0910 X			
513-46-0-2				
58-46-5-7	X 0001			
SB-46-10-12	X 0101			
	105		-	
٠	RECEIVED BY	PROJECT INFORMATION	HECEIPT	
Me W. Wir gulos	1 W 8 [U105 giso "	PROJECT NAME. MALON IT MGP	Total # of Containers	
2;	3	552	Turmenal lime Request	
		FAC ID#:	9;	
Ä.	ë	SITE ADDRESS. SPING ST CA, MACON	Same Day Rush (auth req.) Next Business Day Rush	
SPECTAL INSTRUCTIONS COMMENTS:	SIIIPMENT METHOD	PROJECT MANAGER: MIKE DILLON		1
	OUT VIA:	INVOICE TO:	O Other	
	IN VIA: VIA: COURTER MAIL COURTER	(IF DIFFERENT FROM ABOVE)	PRINIRAM (see codes):	
10.4%	HOTOND OTHER	-	DATA PACKAGE: 1 JI III IV	
QUOTE CONTRACT #:				
MATRIX (************************************	ien SO - Soil SW - Surface Water W - Water (Blanks)	() · ()ther (specify)		

PRESERVATIVE CODES. II 113 docularic acid - 1ce 1 - 1ce only N-Nitric acid - 1ce S = Saffaric scid - 1cc 0 - Other (specify) NA - None MATRIX CODES: A - Air GW - Groundwater SE - Sediment SO - Soil SW - Surface Water Water (Blanks) O - Other (specify) PROGRAM, FLUST FLDC ALUST INUST MSJEST NCUST SCUST GAUST GACONV FLCONV

White Copy - ORIGINAL: Yellow Copy - LAB, Pink Copy - CLIENT

8 380

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

CHAIN OF CUSTODY

Work Order: 08080

kwy., Ailania, GA 30340-3704 77 / TOLL FREE: (800) 972-4889 / FAX: (7	70)457-8188 SPG 062003 A)03A	20/02/83 :Date: 18/00/05	S Page 2 of 2
COMPANY: WEST	ADDRESS SO CHASE MOLLSO	05176	ANALYSIS REQUESTED	
	181 man 135244			•
5-488-8305	FAX: 52 49			यञ्च
SANPIED BY MILE DILLOW	SIGNATURE: ${\cal M}{\cal M}{\cal M}{\cal N}$	Z	1427	uo.) [to
	SAMPLED			REMARKS
SAMINE IN	DATE TIME	Compo Marnx (See co	TABORNALIAN	,
ASOUROS DUDOBZOOSA	× 	50	1	
	8 20,03 1230	X 50	76/1	ランメナイ
_				
				A CONTRACTOR OF THE PROPERTY O
RELINQUISHED BY DATE TIME	DATE TIME RECEIVED BY.	DATETIME		RECEDET
1. Din 8/20/03	TM	8/11/03 9,50	PROJECT NAME. MACON IL MAP	Total # of Containers
2:	7.		27 92	Tunkaman Ting Request
	<u>~</u>		SITE ADDRESS: MACON, GA	Same Day Rush (auth req.) Next Business Day Rush
SPECIAL INSTRUCTIONS COMMENTS:	SIIIPMENT METHOD		E DIMON	
				O Other PROGRAM (see endes):
IV.X.E.	GREYHOUND OTHER	CONFIER	VI VA	DATA PACKAGE: 1 II III IV
(4)#;	1			

PRESERVATIVE CODES. If Ity drochlore acid ince 1: tee only N - Nitric acid ince S = Suifure acid ince O = Other (specify) NA = None GW - Graundwater SE - Sediment SO + Soil SW - Surface Water W - Water (Blanks) O - Other (specify) PROGRAME FLUST FLDC ALUSI FNEST MSUST NCUST SCUST GALIST GACONV FLCONV MATRIX CODES: A .. Air

White Copy - ORIGINAL: Yellow Copy - LAB. Pink Copy - CLIENT

Sample/Cooler Receipt Checklist

Client Williams Ens. Services		Work Orde	r Number	0308662	030882
Checklist completed by Nucleur Signature Date	121/03				
Carrier name: FedEx UPS _ Courier _ Client _ U	S Mail Othe	я <u>.</u>			
Shipping container/cooler in good condition?	Yes 🔽	No _	Not Present	ARAMAN	
Custody seals intact on shipping container/cooler?	Yes L	No	Not Present	_	
Custody seals intact on sample bottles?	Yes	No _	Not Present	<u></u>	
Container/Temp Blank temperature in compliance?	Yes L	No	-		
Cooler #1 5.0° Cooler #2 Cooler #3	Cooler #4	Co	oler#5	Cooler #6	
Chain of custody present?	Yes 🔽	No			
Chain of custody signed when relinquished and received?	Yes 🔽	No _			
Chain of custody agrees with sample labels?	Yes	No			
Samples in proper container/bottle?	Yes 1	No			
Sample containers intact?	Yes 🔽	No			
Sufficient sample volume for indicated test?	Yes L	No			
All samples received within holding time?	Yes L	No			
Was TAT marked on the COC?	Yes <u>L</u>	No _			
Proceed with Standard TAT as per project history?	Yes	No _	Not Applica	able <u> </u>	
Water - VOA vials have zero headspace? No VOA vials st	abmitted 1	Yes	, No		
Water - pH acceptable upon receipt?	Yes	No	Not Applica	able	•
1 12 4 10	~	.1 13			

See Case Narrative for resolution of the Non-Conformance.

C:\Documents and Settings\Chemist\Desktop\SampleReceiptChecklistRptREV.rtf

Date: 29-Aug-03

CLIENT:

Williams Environmental Services, Inc

Lab Order:

0308828

Project:

Macon II MGP

Lab ID:

0308828-001

Client Sample ID: SB-45-15-17

Collection Date: 8/20/2003 9:00:00 AM

Matrix: SOIL

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed		
ICP METALS, SPLP		SW1312/6	010B		Analyst: CDW		
Lead	0.0808	0.0500	mg/L	1	8/27/2003 2:21:00 PM		

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit	E,	Value above quantitation range
	H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	N	Analyte not NELAC certified	· P	NELAC analyte certification pending
	Rpt Limit	Reporting Limit	S	Spike Recovery outside accepted recovery limits
	•			

Analyti

anvironmental Servs, Inc.

Williams Environmental Services, Inc CLIENT:

0308828 Work Order: Project:

Macon II MGP

ANALYTICAL QC SUMMARY REPORT

Date: 29-Aug-03

Sample ID MB-37474	SampType: MBLK	TestCod	TestCode: 1312_M	Units: mg/L	When the first resident	Prep Date:	Prep Date: 8/28/2003		RunNo: 42025	
Client ID:	Batch ID: 37474	TestN	TestNo: SW1312/6010	010		Analysis Date:	8/27/2003		SeqNo: 766072	
Analyte	Result	Pol	SPK value	SPK Ref Val	%REC	LowLimit H	LowLimit HighLimit RPD Ref Val	ef Val	%RPD RPDLimit Qual	Qual
Lead	BRL	0.0500				***************************************				
Sample ID LCS-37474	SampType: LCS	TestCod	TestCode: 1312_M	Units: mg/L		Prep Date:	8/28/2003		RunNo: 42025	
Client ID:	Batch ID: 37474	TestN	TestNo: SW1312/6010	010		Analysis Date:	8/27/2003		SeqNo: 766071	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit H	LowLimit HighLimit RPD Ref Val	≀ef Val	%RPD RPDLimit	Qual
Lead	5.093	0.0500	5	0	102	85	115	0	0	*
Sample ID 0308828-001AMS	SampType: MS	TestCoc	TestCode: 1312_M	Units: mg/L		Prep Date:	8/28/2003		RunNo: 42025	
Client ID: SB-45-15-17	Batch ID: 37474	TestN	TestNo: SW1312/6010	010	1	Analysis Date:	8/27/2003		SeqNo: 766075	
Analyte	Result	Pol	SPK value	SPK Ref Val	%REC	LowLimit H	LowLimit HighLimit RPD Ref Val	tef Val	%RPD RPDLimit	Qual
Lead	5.211	0.0500	5	0.0808	103	7.5	125	0	0	*
Sample ID 0308828-001ADUP	SampType: DUP	TestCoc	TestCode: 1312_M	Units: mg/L		Prep Date:	8/28/2003		RunNo: 42025	
Client ID: SB-45-17	Batch ID: 37474	Testh	TestNo: SW1312/6010	010	7	Analysis Date:	8/27/2003		SeqNo: 766074	
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit h	%REC LowLimit HighLimit RPD Ref Val	∂ef Val	%RPD RPDLimit	Qual
Lead	0.06985	0.0500	0	0	0	0	0	0.0808	14.5 20	

Spike Recovery outside accepted recovery limits Analyte detected below quantitation limits BRL Below Reporting Limit

J Analyte detected below g

S Spike Recovery outside a Holding times for preparation or analysis exceeded Analyte detected in the associated Method Blank RPD outside accepted recovery limits 医耳氏 Qualifiers:

E Value above quantitation range
N Analyte not NELAC certified Analyte not NELAC certified

Date: 29-Aug-03

CLIENT:

Williams Environmental Services, Inc

Project:

Macon II MGP

Lab Order:

0308828

CASE NARRATIVE

Matt Ebbert requested SPLP Pb analysis on sample "SB-45-15-17" as next day rush turnaround 8/27/03 2:00pm.

= Brildings

LEGEND

PROPERTY LINE	
OVERHEAD POWER	
EXISTING WATER LINE	
STORM SEWER	
SANITARY SEWER	
CHAIN LINK FENCE	
MONITORING WELL LOCATION	♦ va·e
SOIL BORING LOCATION	6 58 - 22
BACKGROUND SOIL BORING LOCATION (DEFINES MAXIMUM EXTENT)	6.4.3
FORMER MGP STRUCTURE (LOCATION APPROXIMATE UNLESS NOTED IN REPORT)	()
AREAS EXCEEDING TYPE 1 RISK REDUCTION STANDARDS	
AREAS EXCEEDING TYPE 1 AND 2 RISK REDUCTION STANDARDS	
AREAS EXCEEDING TYPE 1, 2, AND 3 RISK REDUCTION STANDARDS	[]
AREAS EXCEEDING TYPE 1, 2, 3, AND 4 RISK REDUCTION STANDARDS	11111
DIRECTION OF RIVER FLOW	
BOUNDARY PARCELS	19 149

APPENDIX C Tables

Table 1. Soil Detections from February 13, 2014 Sampling Event Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia

GEC Project No. 130659.241

SAMPLE	Sample Depth	Depth	Units_					
ID	(Top)	(Bottom)	Depth	DATE SAMPLED	MATRIX	Constituent	Result	UNITS
GB-1	0.5	2	FT	2/13/2014 14:30	SOIL	Barium	55.2	mg/kg
GB-1	0.5	2	FT	2/13/2014 14:30	SOIL	Chromium		mg/kg
GB-1	0.5	2	FT	2/13/2014 14:30	SOIL	Lead		mg/kg
GB-1	0	6	IN	2/13/2014 14:27	SOIL	Barium	76.8	mg/kg
GB-1	0	6	IN	2/13/2014 14:27	SOIL	Chromium	8.65	mg/kg
GB-1	0	6	IN	2/13/2014 14:27	SOIL	Lead	8.76	mg/kg
GB-2	0.5	2	FT	2/13/2014 14:16	SOIL	Barium	22.6	mg/kg
GB-2	0.5	2	FT	2/13/2014 14:16	SOIL	Chromium	8.19	mg/kg
GB-2	0.5	2	FT	2/13/2014 14:16	SOIL	Lead	20	mg/kg
GB-2	0.5	2	FT	2/13/2014 14:16	SOIL	Mercury	0.221	mg/kg
GB-2	0	6	IN	2/13/2014 14:13	SOIL	Barium	77.3	mg/kg
GB-2	0	6	IN	2/13/2014 14:13	SOIL	Chromium	9.4	mg/kg
GB-2	0	6	IN	2/13/2014 14:13	SOIL	Lead	12.4	mg/kg
GB-3	0.5	2	FT	2/13/2014 14:37	SOIL	Barium	168	mg/kg
GB-3	0.5	2	FT	2/13/2014 14:37	SOIL	Cadmium	1.49	mg/kg
GB-3	0.5	2	FT	2/13/2014 14:37	SOIL	Chromium	10.9	mg/kg
GB-3	0.5	2	FT	2/13/2014 14:37	SOIL	Lead		mg/kg
GB-3	0	6	IN	2/13/2014 14:35	SOIL	Barium	59.7	mg/kg
GB-3	0	6	IN	2/13/2014 14:35	SOIL	Chromium	7.76	mg/kg
GB-3	0	6	IN	2/13/2014 14:35	SOIL	Lead		mg/kg
GB-3	0	6	IN	2/13/2014 14:35	SOIL	Toluene	0.0228	mg/kg
GB-4	0.5	2	FT	2/13/2014 14:46	SOIL	Barium		mg/kg
GB-4	0.5	2	FT	2/13/2014 14:46	SOIL	Chromium	8.59	mg/kg
GB-4	0.5	2	FT	2/13/2014 14:46	SOIL	Lead		mg/kg
GB-4	0	6	IN	2/13/2014 14:44	SOIL	Barium	116	mg/kg
GB-4	0	6	IN	2/13/2014 14:44	SOIL	Chromium	9.37	mg/kg
GB-4	0	6	IN	2/13/2014 14:44	SOIL	Lead	13.9	mg/kg
GB-5	0.5	2	FT	2/13/2014 14:09	SOIL	Barium	68.1	mg/kg
GB-5	0.5	2	FT	2/13/2014 14:09	SOIL	Chromium	10.6	mg/kg
GB-5	0.5	2	FT	2/13/2014 14:09	SOIL	Lead	13.2	mg/kg
GB-5	0.5	2	FT	2/13/2014 14:09	SOIL	Methyl acetate	0.0666	mg/kg
GB-5	0	6	IN	2/13/2014 14:07	SOIL	Barium	85.4	mg/kg
GB-5	0	6	IN	2/13/2014 14:07	SOIL	Chromium	7.41	mg/kg
GB-5	0	6	IN	2/13/2014 14:07	SOIL	Lead	14.6	mg/kg
GB-6	0.5	2	FT	2/13/2014 13:58	SOIL	Barium	105	mg/kg
GB-6	0.5	2	FT	2/13/2014 13:58	SOIL	Cadmium	1.23	mg/kg
GB-6	0.5	2	FT	2/13/2014 13:58	SOIL	Chromium	13.4	mg/kg
GB-6	0.5	2	FT	2/13/2014 13:58	SOIL	Lead		mg/kg
GB-6	0	6	IN	2/13/2014 13:56	SOIL	Barium		mg/kg
GB-6	0	6	IN	2/13/2014 13:56	SOIL	Cadmium	1.45	mg/kg

Table 1. Soil Detections from February 13, 2014 Sampling Event Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia

GEC Project No. 130659.241

SAMPLE	Sample Depth	Depth	Units_					
ID	(Top)	(Bottom)	Depth	DATE SAMPLED	MATRIX	Constituent	Result	UNITS
GB-6	0	6	IN	2/13/2014 13:56	SOIL	Chromium	10.8	mg/kg
GB-6	0	6	IN	2/13/2014 13:56	SOIL	Lead		mg/kg
GB-7	0.5	2	FT	2/13/2014 13:54	SOIL	Barium		mg/kg
GB-7	0.5	2	FT	2/13/2014 13:54	SOIL	Cadmium	1.28	mg/kg
GB-7	0.5	2	FT	2/13/2014 13:54	SOIL	Chromium	7.46	mg/kg
GB-7	0.5	2	FT	2/13/2014 13:54	SOIL	Lead	15.1	mg/kg
GB-7	0.5	2	FT	2/13/2014 13:54	SOIL	Methyl acetate	0.0767	mg/kg
GB-7	0	6	IN	2/13/2014 13:52	SOIL	Barium	92.5	mg/kg
GB-7	0	6	IN	2/13/2014 13:52	SOIL	Cadmium	1.15	mg/kg
GB-7	0	6	IN	2/13/2014 13:52	SOIL	Chromium		mg/kg
GB-7	0	6	IN	2/13/2014 13:52	SOIL	Lead	12.1	mg/kg
GB-8	0.5	2	FT	2/13/2014 14:03	SOIL	Barium	62.3	mg/kg
GB-8	0.5	2	FT	2/13/2014 14:03	SOIL	Chromium	22	mg/kg
GB-8	0.5	2	FT	2/13/2014 14:03	SOIL	Lead	18.9	mg/kg
GB-8	0.5	2	FT	2/13/2014 14:03	SOIL	Mercury	0.107	mg/kg
GB-8	0	6	IN	2/13/2014 14:00	SOIL	Barium	41.9	mg/kg
GB-8	0	6	IN	2/13/2014 14:00	SOIL	Lead		mg/kg
GB-9	0.5	2	FT	2/13/2014 10:18	SOIL	Barium	198	mg/kg
GB-9	0.5	2	FT	2/13/2014 10:18	SOIL	Chromium	12.4	mg/kg
GB-9	0.5	2	FT	2/13/2014 10:18	SOIL	Lead	37.8	mg/kg
GB-9	0.5	2	FT	2/13/2014 10:18	SOIL	Selenium	1.73	mg/kg
GB-9	0.5	2	FT	2/13/2014 10:18	SOIL	Mercury		mg/kg
GB-9	0	6	IN	2/13/2014 10:15	SOIL	Barium	74.1	mg/kg
GB-9	0	6	IN	2/13/2014 10:15	SOIL	Chromium	11	mg/kg
GB-9	0	6	IN	2/13/2014 10:15	SOIL	Lead	53.7	mg/kg
GB-10	0.5	2	FT	2/13/2014 13:46	SOIL	Barium	14.9	mg/kg
GB-10	0.5	2	FT	2/13/2014 13:46	SOIL	Chromium	12.4	mg/kg
GB-10	0.5	2	FT	2/13/2014 13:46	SOIL	Lead	12.1	mg/kg
GB-10	0	6	IN	2/13/2014 13:44	SOIL	Barium	58.4	mg/kg
GB-10	0	6	IN	2/13/2014 13:44	SOIL	Cadmium	1	mg/kg
GB-10	0	6	IN	2/13/2014 13:44	SOIL	Chromium	6.16	mg/kg
GB-10	0	6	IN	2/13/2014 13:44	SOIL	Lead	8.1	mg/kg
GB-11	0.5	2	FT	2/13/2014 13:42	SOIL	Barium	209	mg/kg
GB-11	0.5	2	FT	2/13/2014 13:42	SOIL	Chromium	9.4	mg/kg
GB-11	0.5	2	FT	2/13/2014 13:42	SOIL	Lead	465	mg/kg
GB-11	0.5	2	FT	2/13/2014 13:42	SOIL	Silver	1.48	mg/kg
GB-11	0.5	2	FT	2/13/2014 13:42	SOIL	Mercury	0.199	mg/kg
GB-11	0.5	2	FT	2/13/2014 13:42	SOIL	Methyl acetate	0.0299	mg/kg
GB-11	0.5	2	FT	2/13/2014 13:42	SOIL	Fluoranthene	0.449	mg/kg
GB-11	0.5	2	FT	2/13/2014 13:42	SOIL	Pyrene	0.411	mg/kg

Table 1. Soil Detections from February 13, 2014 Sampling Event Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia GEC Project No. 130659.241

SAMPLE	Sample Depth	Depth	Units_					
ID	(Top)	(Bottom)	Depth	DATE SAMPLED	MATRIX	Constituent	Result	UNITS
GB-11	0	6	IN	2/13/2014 13:40	SOIL	Barium	88.9	mg/kg
GB-11	0	6	IN	2/13/2014 13:40	SOIL	Lead		mg/kg
GB-11	0	6	IN	2/13/2014 13:40	SOIL	Methyl acetate	0.0283	mg/kg
GB-12	0.5	2	FT	2/13/2014 12:23	SOIL	Barium	38.5	mg/kg
GB-12	0.5	2	FT	2/13/2014 12:23	SOIL	Cadmium	1.26	mg/kg
GB-12	0.5	2	FT	2/13/2014 12:23	SOIL	Chromium	34.7	mg/kg
GB-12	0.5	2	FT	2/13/2014 12:23	SOIL	Lead	9.9	mg/kg
GB-12	0	6	IN	2/13/2014 12:20	SOIL	Barium	69.6	mg/kg
GB-12	0	6	IN	2/13/2014 12:20	SOIL	Chromium	19	mg/kg
GB-12	0	6	IN	2/13/2014 12:20	SOIL	Lead	72.9	mg/kg
GB-12	0	6	IN	2/13/2014 12:20	SOIL	Mercury	0.0616	mg/kg
GB-12	0	6	IN	2/13/2014 12:20	SOIL	Benzo(a)anthracene	0.461	mg/kg
GB-12	0	6	IN	2/13/2014 12:20	SOIL	Benzo(a)pyrene	0.466	mg/kg
GB-12	0	6	IN	2/13/2014 12:20	SOIL	Benzo(b)fluoranthene	0.41	mg/kg
GB-12	0	6	IN	2/13/2014 12:20	SOIL	Chrysene	0.428	mg/kg
GB-12	0	6	IN	2/13/2014 12:20	SOIL	Fluoranthene	1.06	mg/kg
GB-12	0	6	IN	2/13/2014 12:20	SOIL	Phenanthrene	0.526	mg/kg
GB-12	0	6	IN	2/13/2014 12:20	SOIL	Pyrene	0.778	mg/kg
GB-13	0.5	2	FT	2/13/2014 11:23	SOIL	Barium	11.2	mg/kg
GB-13	0.5	2	FT	2/13/2014 11:23	SOIL	Chromium	23.7	mg/kg
GB-13	0.5	2	FT	2/13/2014 11:23	SOIL	Lead	7.66	mg/kg
GB-13	0.5	2	FT	2/13/2014 11:23	SOIL	Mercury	0.137	mg/kg
GB-13	0	6	IN	2/13/2014 11:09	SOIL	Arsenic	6.22	mg/kg
GB-13	0	6	IN	2/13/2014 11:09	SOIL	Barium	42.9	mg/kg
GB-13	0	6	IN	2/13/2014 11:09	SOIL	Cadmium	1.13	mg/kg
GB-13	0	6	IN	2/13/2014 11:09	SOIL	Chromium	26.7	mg/kg
GB-13	0	6	IN	2/13/2014 11:09	SOIL	Lead	32.4	mg/kg
GB-14	0.5	2	FT	2/13/2014 12:28	SOIL	Barium	61	mg/kg
GB-14	0.5	2	FT	2/13/2014 12:28	SOIL	Chromium		mg/kg
GB-14	0.5	2	FT	2/13/2014 12:28	SOIL	Lead	425	mg/kg
GB-14	0.5	2	FT	2/13/2014 12:28	SOIL	Mercury	0.743	mg/kg
GB-14	0.5	2	FT	2/13/2014 12:28	SOIL	Anthracene	0.892	mg/kg
GB-14	0.5	2	FT	2/13/2014 12:28	SOIL	Benzo(a)anthracene	2.82	mg/kg
GB-14	0.5	2	FT	2/13/2014 12:28	SOIL	Benzo(a)pyrene	0.637	mg/kg
GB-14	0.5	2	FT	2/13/2014 12:28	SOIL	Benzo(b)fluoranthene	3.29	mg/kg
GB-14	0.5	2	FT	2/13/2014 12:28	SOIL	Benzo(g,h,i)perylene		mg/kg
GB-14	0.5	2	FT	2/13/2014 12:28	SOIL	Benzo(k)fluoranthene		mg/kg
GB-14	0.5	2	FT	2/13/2014 12:28	SOIL	Carbazole	0.649	mg/kg
GB-14	0.5	2	FT	2/13/2014 12:28	SOIL	Chrysene	2.57	mg/kg
GB-14	0.5	2	FT	2/13/2014 12:28	SOIL	Dibenz(a,h)Anthracene	0.464	mg/kg

Table 1. Soil Detections from February 13, 2014 Sampling Event Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia

GEC Proj	ect No.	130659.241
-----------------	---------	------------

SAMPLE	Sample Depth	Depth	Units_					
ID	(Top)	(Bottom)	Depth	DATE SAMPLED	MATRIX	Constituent	Result	UNITS
GB-14	0.5	2	FT	2/13/2014 12:28	SOIL	Fluoranthene	4.15	mg/kg
GB-14	0.5	2	FT	2/13/2014 12:28	SOIL	Fluorene		mg/kg
GB-14	0.5	2	FT	2/13/2014 12:28	SOIL	Indeno(1,2,3-c,d)Pyrene		mg/kg
GB-14	0.5	2	FT	2/13/2014 12:28	SOIL	Naphthalene		mg/kg
GB-14	0.5	2	FT	2/13/2014 12:28	SOIL	Phenanthrene	4.41	mg/kg
GB-14	0.5	2	FT	2/13/2014 12:28	SOIL	Pyrene		mg/kg
GB-14	0	6	IN	2/13/2014 12:25	SOIL	Barium	45.9	mg/kg
GB-14	0	6	IN	2/13/2014 12:25	SOIL	Chromium	9.93	mg/kg
GB-14	0	6	IN	2/13/2014 12:25	SOIL	Lead	62.8	mg/kg
GB-14	0	6	IN	2/13/2014 12:25	SOIL	Mercury	0.117	mg/kg
GB-15	0.5	2	FT	2/13/2014 11:35	SOIL	Barium		mg/kg
GB-15	0.5	2	FT	2/13/2014 11:35	SOIL	Chromium	26.1	mg/kg
GB-15	0.5	2	FT	2/13/2014 11:35	SOIL	Lead	8.3	mg/kg
GB-15	0.5	2	FT	2/13/2014 11:35	SOIL	Mercury	0.105	mg/kg
GB-15	0	6	IN	2/13/2014 11:32	SOIL	Arsenic	7.59	mg/kg
GB-15	0	6	IN	2/13/2014 11:32	SOIL	Barium	55.6	mg/kg
GB-15	0	6	IN	2/13/2014 11:32	SOIL	Cadmium	1.21	mg/kg
GB-15	0	6	IN	2/13/2014 11:32	SOIL	Chromium	28.8	mg/kg
GB-15	0	6	IN	2/13/2014 11:32	SOIL	Lead	95.1	mg/kg
GB-15	0	6	IN	2/13/2014 11:32	SOIL	Mercury	0.0914	mg/kg
GB-15	0	6	IN	2/13/2014 11:32	SOIL	Methyl acetate	0.0134	mg/kg
GB-16	0.5	2	FT	2/13/2014 12:49	SOIL	Barium	70.1	mg/kg
GB-16	0.5	2	FT	2/13/2014 12:49	SOIL	Chromium	15.5	mg/kg
GB-16	0.5	2	FT	2/13/2014 12:49	SOIL	Lead	119	mg/kg
GB-16	0.5	2	FT	2/13/2014 12:49	SOIL	Mercury	0.214	mg/kg
GB-16	0	6	IN	2/13/2014 12:46	SOIL	Barium	12.2	mg/kg
GB-16	0	6	IN	2/13/2014 12:46	SOIL	Chromium	7.33	mg/kg
GB-16	0	6	IN	2/13/2014 12:46	SOIL	Lead	5.85	mg/kg
GB-16	0	6	IN	2/13/2014 12:46	SOIL	Methyl acetate	0.148	mg/kg
GB-17	0.5	2	FT	2/13/2014 12:57	SOIL	Barium	46	mg/kg
GB-17	0.5	2	FT	2/13/2014 12:57	SOIL	Chromium	13.8	mg/kg
GB-17	0.5	2	FT	2/13/2014 12:57	SOIL	Lead	18.2	mg/kg
GB-17	0.5	2	FT	2/13/2014 12:57	SOIL	Mercury	0.0851	mg/kg
GB-17	0	6	IN	2/13/2014 12:55	SOIL	Barium	36	mg/kg
GB-17	0	6	IN	2/13/2014 12:55	SOIL	Chromium	14.5	mg/kg
GB-17	0	6	IN	2/13/2014 12:55	SOIL	Lead	9.56	mg/kg
GB-18	0.5	2	FT	2/13/2014 13:38	SOIL	Arsenic	5.89	mg/kg
GB-18	0.5	2	FT	2/13/2014 13:38	SOIL	Barium	170	mg/kg
GB-18	0.5	2	FT	2/13/2014 13:38	SOIL	Chromium	11.1	mg/kg
GB-18	0.5	2	FT	2/13/2014 13:38	SOIL	Lead	147	mg/kg

Table 1. Soil Detections from February 13, 2014 Sampling Event Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia

GEC Project No. 130659.241

SAMPLE	Sample Depth	Depth	Units_					
ID	(Top)	(Bottom)	Depth	DATE SAMPLED	MATRIX	Constituent	Result	UNITS
GB-18	0.5	2	FT	2/13/2014 13:38	SOIL	Mercury	0.373	mg/kg
GB-18	0.5	2	FT	2/13/2014 13:38	SOIL	Benzo(a)anthracene		mg/kg
GB-18	0.5	2	FT	2/13/2014 13:38	SOIL	Benzo(a)pyrene		mg/kg
GB-18	0.5	2	FT	2/13/2014 13:38	SOIL	Benzo(b)fluoranthene	0.597	mg/kg
GB-18	0.5	2	FT	2/13/2014 13:38	SOIL	Chrysene		mg/kg
GB-18	0.5	2	FT	2/13/2014 13:38	SOIL	Fluoranthene		mg/kg
GB-18	0.5	2	FT	2/13/2014 13:38	SOIL	Phenanthrene	0.932	mg/kg
GB-18	0.5	2	FT	2/13/2014 13:38	SOIL	Pyrene	1	mg/kg
GB-18	0	6	IN	2/13/2014 13:36	SOIL	Barium	95.9	mg/kg
GB-18	0	6	IN	2/13/2014 13:36	SOIL	Chromium		mg/kg
GB-18	0	6	IN	2/13/2014 13:36	SOIL	Lead	171	mg/kg
GB-18	0	6	IN	2/13/2014 13:36	SOIL	Mercury	0.271	mg/kg
GB-18	0	6	IN	2/13/2014 13:36	SOIL	Methyl acetate	0.0319	mg/kg
GB-18	0	6	IN	2/13/2014 13:36	SOIL	Benzo(b)fluoranthene	0.431	mg/kg
GB-18	0	6	IN	2/13/2014 13:36	SOIL	Fluoranthene	0.635	mg/kg
GB-18	0	6	IN	2/13/2014 13:36	SOIL	Pyrene	0.639	mg/kg
GB-19	0.5	2	FT	2/13/2014 12:33	SOIL	Barium	12.2	mg/kg
GB-19	0.5	2	FT	2/13/2014 12:33	SOIL	Chromium	14.3	mg/kg
GB-19	0.5	2	FT	2/13/2014 12:33	SOIL	Lead	7.46	mg/kg
GB-19	0.5	2	FT	2/13/2014 12:33	SOIL	Methyl acetate	0.0159	mg/kg
GB-19	0	6	IN	2/13/2014 12:31	SOIL	Barium	24.8	mg/kg
GB-19	0	6	IN	2/13/2014 12:31	SOIL	Chromium		mg/kg
GB-19	0	6	IN	2/13/2014 12:31	SOIL	Lead	19.3	mg/kg
GB-19	0	6	IN	2/13/2014 12:31	SOIL	Mercury	0.0679	mg/kg
GB-20	0.5	2	FT	2/13/2014 12:40	SOIL	Barium	11.6	mg/kg
GB-20	0.5	2	FT	2/13/2014 12:40	SOIL	Chromium	6.17	mg/kg
GB-20	0.5	2	FT	2/13/2014 12:40	SOIL	Methyl acetate	0.0136	mg/kg
GB-20	0	6	IN	2/13/2014 12:38	SOIL	Methyl acetate	0.0956	mg/kg
GB-21	0.5	2	FT	2/13/2014 12:44	SOIL	Barium	44.8	mg/kg
GB-21	0.5	2	FT	2/13/2014 12:44	SOIL	Chromium	18.8	mg/kg
GB-21	0.5	2	FT	2/13/2014 12:44	SOIL	Lead	7.14	mg/kg
GB-21	0	6	IN	2/13/2014 12:42	SOIL	Barium	9.73	mg/kg
GB-21	0	6	IN	2/13/2014 12:42	SOIL	Mercury	0.06	mg/kg
GB-21	0	6	IN	2/13/2014 12:42	SOIL	Methyl acetate	0.0533	mg/kg
GB-22	0.5	2	FT	2/13/2014 12:01	SOIL	Barium	21.6	mg/kg
GB-22	0.5	2	FT	2/13/2014 12:01	SOIL	Chromium	5.66	mg/kg
GB-22	0.5	2	FT	2/13/2014 12:01	SOIL	Lead		mg/kg
GB-22	0.5	2	FT	2/13/2014 12:01	SOIL	Mercury		mg/kg
GB-22	0.5	2	FT	2/13/2014 12:01	SOIL	Methyl acetate	0.0127	mg/kg
GB-22	0	6	IN	2/13/2014 12:59	SOIL	Barium	60.2	mg/kg

Table 1. Soil Detections from February 13, 2014 Sampling Event Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia GEC Project No. 130659.241

SAMPLE	Sample Depth	Depth	Units_					
ID	(Top)	(Bottom)	Depth	DATE SAMPLED	MATRIX	Constituent	Result	UNITS
GB-22	0	6	IN	2/13/2014 12:59	SOIL	Chromium	6.94	mg/kg
GB-22	0	6	IN	2/13/2014 12:59	SOIL	Lead	1	mg/kg
GB-22	0	6	IN	2/13/2014 12:59	SOIL	Mercury	0.131	mg/kg
GB-23	0.5	2	FT	2/13/2014 13:33	SOIL	Barium	25.4	mg/kg
GB-23	0.5	2	FT	2/13/2014 13:33	SOIL	Chromium	25.4	mg/kg
GB-23	0.5	2	FT	2/13/2014 13:33	SOIL	Lead	9.28	mg/kg
GB-23	0	6	IN	2/13/2014 13:30	SOIL	Barium		mg/kg
GB-23	0	6	IN	2/13/2014 13:30	SOIL	Chromium	8.71	mg/kg
GB-23	0	6	IN	2/13/2014 13:30	SOIL	Lead	19.3	mg/kg
GB-23	0	6	IN	2/13/2014 13:30	SOIL	Mercury	0.066	mg/kg
GB-24	0.5	2	FT	2/13/2014 13:27	SOIL	Barium	31.4	mg/kg
GB-24	0.5	2	FT	2/13/2014 13:27	SOIL	Chromium		mg/kg
GB-24	0.5	2	FT	2/13/2014 13:27	SOIL	Lead	22.7	mg/kg
GB-24	0	6	IN	2/13/2014 13:25	SOIL	Barium	155	mg/kg
GB-24	0	6	IN	2/13/2014 13:25	SOIL	Chromium	18.2	mg/kg
GB-24	0	6	IN	2/13/2014 13:25	SOIL	Lead	211	mg/kg
GB-24	0	6	IN	2/13/2014 13:25	SOIL	Mercury	1	mg/kg
GB-24	0	6	IN	2/13/2014 13:25	SOIL	Fluoranthene	0.524	mg/kg
GB-24	0	6	IN	2/13/2014 13:25	SOIL	Pyrene	0.451	mg/kg
GB-25	0.5	2	FT	2/13/2014 12:03	SOIL	Barium	55.1	mg/kg
GB-25	0.5	2	FT	2/13/2014 12:03	SOIL	Chromium	1	mg/kg
GB-25	0.5	2	FT	2/13/2014 12:03	SOIL	Lead	71.4	mg/kg
GB-25	0.5	2	FT	2/13/2014 12:03	SOIL	Mercury	0.879	mg/kg
GB-25	0	6	IN	2/13/2014 12:04	SOIL	Barium	36.3	mg/kg
GB-25	0	6	IN	2/13/2014 12:04	SOIL	Chromium	4.89	mg/kg
GB-25	0	6	IN	2/13/2014 12:04	SOIL	Lead	7.65	mg/kg
GB-25	0	6	IN	2/13/2014 12:04	SOIL	Methyl acetate	0.0401	mg/kg
GB-26	0.5	2	FT	2/13/2014 13:16	SOIL	Barium	63.3	mg/kg
GB-26	0.5	2	FT	2/13/2014 13:16	SOIL	Chromium	13.8	mg/kg
GB-26	0.5	2	FT	2/13/2014 13:16	SOIL	Lead	76.8	mg/kg
GB-26	0.5	2	FT	2/13/2014 13:16	SOIL	Mercury	0.735	mg/kg
GB-26	0.5	2	FT	2/13/2014 13:16	SOIL	Benzo(a)anthracene	0.487	mg/kg
GB-26	0.5	2	FT	2/13/2014 13:16	SOIL	Benzo(a)pyrene	0.385	mg/kg
GB-26	0.5	2	FT	2/13/2014 13:16	SOIL	Benzo(b)fluoranthene	0.528	mg/kg
GB-26	0.5	2	FT	2/13/2014 13:16	SOIL	Chrysene	0.423	mg/kg
GB-26	0.5	2	FT	2/13/2014 13:16	SOIL	Fluoranthene		mg/kg
GB-26	0.5	2	FT	2/13/2014 13:16	SOIL	Phenanthrene	0.603	mg/kg
GB-26	0.5	2	FT	2/13/2014 13:16	SOIL	Pyrene	0.838	mg/kg
GB-26	0	6	IN	2/13/2014 13:13	SOIL	Barium	88.2	mg/kg
GB-26	0	6	IN	2/13/2014 13:13	SOIL	Chromium	13.6	mg/kg

Table 1. Soil Detections from February 13, 2014 Sampling Event Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia GEC Project No. 130659.241

SAMPLE	Sample Depth	Depth	Units_					
ID	(Тор)	(Bottom)	Depth	DATE SAMPLED	MATRIX	Constituent	Result	UNITS
GB-26	0	6	IN	2/13/2014 13:13	SOIL	Lead	95.5	mg/kg
GB-26	0	6	IN	2/13/2014 13:13	SOIL	Mercury	0.244	mg/kg
GB-26	0	6	IN	2/13/2014 13:13	SOIL	Benzo(a)anthracene	0.723	mg/kg
GB-26	0	6	IN	2/13/2014 13:13	SOIL	Benzo(b)fluoranthene	0.577	mg/kg
GB-26	0	6	IN	2/13/2014 13:13	SOIL	Chrysene	0.614	mg/kg
GB-26	0	6	IN	2/13/2014 13:13	SOIL	Fluoranthene	1.22	mg/kg
GB-26	0	6	IN	2/13/2014 13:13	SOIL	Phenanthrene	1.02	mg/kg
GB-26	0	6	IN	2/13/2014 13:13	SOIL	Pyrene	1.35	mg/kg
GB-27	0.5	2	FT	2/13/2014 13:20	SOIL	Barium	31.9	mg/kg
GB-27	0	6	IN	2/13/2014 13:18	SOIL	Arsenic	74.9	mg/kg
GB-27	0	6	IN	2/13/2014 13:18	SOIL	Barium	98.9	mg/kg
GB-27	0	6	IN	2/13/2014 13:18	SOIL	Chromium	19.2	mg/kg
GB-27	0	6	IN	2/13/2014 13:18	SOIL	Lead	172	mg/kg
GB-27	0	6	IN	2/13/2014 13:18	SOIL	Mercury	0.16	mg/kg

Highlight designates value above the Type 1 or Type 2 RRS.

Notes: 1. Type 2 RRS for Lead in Soil is 400 mg/kg.

- 2. Type 1 RRS for Lead in Soil is 75 mg/kg.
- 3. Type 2 RRS for Arsenic in Soil is 6.08 mg/kg.
- 4. Type 1 RRS for Arsenic in Soil is 20.0 mg/kg.
- 5. Type 2 RRS for Mercury in Soil is 23.5 mg/kg.
- 6. Type 1 RRS for Mercury in Soil is 0.5 mg/kg.

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
GB-11 13-15	8/10/2015 10:41	7440-38-2	Arsenic	20		2.7	
GB-11 13-15	8/10/2015 10:41	7440-39-3	Barium	1000		36	В
GB-11 13-15	8/10/2015 10:41	7440-41-7	Beryllium	2		0.12	J
GB-11 13-15	8/10/2015 10:41	7440-43-9	Cadmium	2		0.27	J
GB-11 13-15	8/10/2015 10:41	7440-47-3	Chromium	100		6.7	
GB-11 13-15	8/10/2015 10:41	7440-50-8	Copper	100		11	
GB-11 13-15	8/10/2015 10:41	7439-92-1	Lead	75		74	
GB-11 13-15	8/10/2015 10:41	7440-02-0	Nickel	50		1.9	J
GB-11 13-15	8/10/2015 10:41	7782-49-2	Selenium			1	U
GB-11 13-15	8/10/2015 10:41	7440-22-4	Silver			0.063	U
GB-11 13-15	8/10/2015 10:41	7440-62-2	Vanadium	100		16	
GB-11 13-15	8/10/2015 10:41	7440-66-6	Zinc	100		55	
GB-11 3-5	8/10/2015 10:31	7440-38-2	Arsenic	20		1.5	J
GB-11 3-5	8/10/2015 10:31	7440-39-3	Barium	1000		49	В
GB-11 3-5	8/10/2015 10:31	7440-41-7	Beryllium	2		0.3	J
GB-11 3-5	8/10/2015 10:31	7440-43-9	Cadmium	2		0.1	U
GB-11 3-5	8/10/2015 10:31	7440-47-3	Chromium	100		13	
GB-11 3-5	8/10/2015 10:31	7440-50-8	Copper	100		7.8	
GB-11 3-5	8/10/2015 10:31	7439-92-1	Lead	75		73	
GB-11 3-5	8/10/2015 10:31	7440-02-0	Nickel	50		2.8	J
GB-11 3-5	8/10/2015 10:31	7782-49-2	Selenium			0.99	U
GB-11 3-5	8/10/2015 10:31	7440-22-4	Silver			0.061	U
GB-11 3-5	8/10/2015 10:31	7440-62-2	Vanadium	100		28	
GB-11 3-5	8/10/2015 10:31	7440-66-6	Zinc	100		51	
GB-11 8-10	8/10/2015 10:36	7440-38-2	Arsenic	20		2.2	
GB-11 8-10	8/10/2015 10:36	7440-39-3	Barium	1000		33	В
GB-11 8-10	8/10/2015 10:36	7440-41-7	Beryllium	2		0.18	J
GB-11 8-10	8/10/2015 10:36	7440-43-9	Cadmium	2		0.1	U
GB-11 8-10	8/10/2015 10:36	7440-47-3	Chromium	100		11	

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
GB-11 8-10	8/10/2015 10:36	7440-50-8	Copper	100		10	
GB-11 8-10	8/10/2015 10:36	7439-92-1	Lead	75		72	
GB-11 8-10	8/10/2015 10:36	7440-02-0	Nickel	50		2.7	J
GB-11 8-10	8/10/2015 10:36	7782-49-2	Selenium			0.99	U
GB-11 8-10	8/10/2015 10:36	7440-22-4	Silver			0.061	U
GB-11 8-10	8/10/2015 10:36	7440-62-2	Vanadium	100		25	
GB-11 8-10	8/10/2015 10:36	7440-66-6	Zinc	100		28	
GB-14 13-15	8/6/2015 12:59	7440-38-2	Arsenic	20		6.3	
GB-14 13-15	8/6/2015 12:59	7440-39-3	Barium	1000		42	
GB-14 13-15	8/6/2015 12:59	7440-41-7	Beryllium	2		0.25	J
GB-14 13-15	8/6/2015 12:59	7440-43-9	Cadmium	2		0.14	J
GB-14 13-15	8/6/2015 12:59	7440-47-3	Chromium	100		7.8	
GB-14 13-15	8/6/2015 12:59	7440-50-8	Copper	100		38	
GB-14 13-15	8/6/2015 12:59	7439-92-1	Lead	75	400	97	
GB-14 13-15	8/6/2015 12:59	7440-02-0	Nickel	50		3	J
GB-14 13-15	8/6/2015 12:59	7782-49-2	Selenium			1.4	U
GB-14 13-15	8/6/2015 12:59	7440-22-4	Silver			0.086	J
GB-14 13-15	8/6/2015 12:59	7440-62-2	Vanadium	100		11	
GB-14 13-15	8/6/2015 12:59	7440-66-6	Zinc	100		99	
GB-14 3-5	8/6/2015 12:47	7440-38-2	Arsenic	20		3.9	
GB-14 3-5	8/6/2015 12:47	7440-39-3	Barium	1000		100	
GB-14 3-5	8/6/2015 12:47	7440-41-7	Beryllium	2		0.34	J
GB-14 3-5	8/6/2015 12:47	7440-43-9	Cadmium	2		0.097	U
GB-14 3-5	8/6/2015 12:47	7440-47-3	Chromium	100		12	
GB-14 3-5	8/6/2015 12:47	7440-50-8	Copper	100		18	
GB-14 3-5	8/6/2015 12:47	7439-92-1	Lead	75	400	720	
GB-14 3-5	8/6/2015 12:47	7440-02-0	Nickel	50		7.5	
GB-14 3-5	8/6/2015 12:47	7782-49-2	Selenium			0.95	U
GB-14 3-5	8/6/2015 12:47	7440-22-4	Silver			0.48	J

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
GB-14 3-5	8/6/2015 12:47	7440-62-2	Vanadium	100		21	
GB-14 3-5	8/6/2015 12:47	7440-66-6	Zinc	100		98	
GB-14 8-10	8/6/2015 12:54	7440-38-2	Arsenic	20	6.08	25	
GB-14 8-10	8/6/2015 12:54	7440-39-3	Barium	1000		490	
GB-14 8-10	8/6/2015 12:54	7440-41-7	Beryllium	2		1.9	
GB-14 8-10	8/6/2015 12:54	7440-43-9	Cadmium	2		1.1	
GB-14 8-10	8/6/2015 12:54	7440-47-3	Chromium	100		15	
GB-14 8-10	8/6/2015 12:54	7440-50-8	Copper	100		71	
GB-14 8-10	8/6/2015 12:54	7439-92-1	Lead	75	400	360	
GB-14 8-10	8/6/2015 12:54	7440-02-0	Nickel	50		13	
GB-14 8-10	8/6/2015 12:54	7782-49-2	Selenium			1.5	U
GB-14 8-10	8/6/2015 12:54	7440-22-4	Silver			0.25	J
GB-14 8-10	8/6/2015 12:54	7440-62-2	Vanadium	100		23	
GB-14 8-10	8/6/2015 12:54	7440-66-6	Zinc	100	23500	540	
GB-16 2-4	8/6/2015 13:29	7440-38-2	Arsenic	20		3.1	J
GB-16 2-4	8/6/2015 13:29	7440-39-3	Barium	1000		38	
GB-16 2-4	8/6/2015 13:29	7440-41-7	Beryllium	2		0.33	J
GB-16 2-4	8/6/2015 13:29	7440-43-9	Cadmium	2		0.19	U
GB-16 2-4	8/6/2015 13:29	7440-47-3	Chromium	100		5	
GB-16 2-4	8/6/2015 13:29	7440-50-8	Copper	100		4.1	J
GB-16 2-4	8/6/2015 13:29	7439-92-1	Lead	75		55	
GB-16 2-4	8/6/2015 13:29	7440-02-0	Nickel	50		3.1	J
GB-16 2-4	8/6/2015 13:29	7782-49-2	Selenium			1.8	U
GB-16 2-4	8/6/2015 13:29	7440-22-4	Silver			0.11	U
GB-16 2-4	8/6/2015 13:29	7440-62-2	Vanadium	100		10	
GB-16 2-4	8/6/2015 13:29	7440-66-6	Zinc	100		36	
GB-16 4-6	8/6/2015 13:35	7440-38-2	Arsenic	20		3.4	
GB-16 4-6	8/6/2015 13:35	7440-39-3	Barium	1000		6.8	
GB-16 4-6	8/6/2015 13:35	7440-41-7	Beryllium	2		0.13	J

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
GB-16 4-6	8/6/2015 13:35	7440-43-9	Cadmium	2		0.12	U
GB-16 4-6	8/6/2015 13:35	7440-47-3	Chromium	100		15	
GB-16 4-6	8/6/2015 13:35	7440-50-8	Copper	100		3.9	
GB-16 4-6	8/6/2015 13:35	7439-92-1	Lead	75		5.2	
GB-16 4-6	8/6/2015 13:35	7440-02-0	Nickel	50		1.3	J
GB-16 4-6	8/6/2015 13:35	7782-49-2	Selenium			1.2	U
GB-16 4-6	8/6/2015 13:35	7440-22-4	Silver			0.074	U
GB-16 4-6	8/6/2015 13:35	7440-62-2	Vanadium	100		31	
GB-16 4-6	8/6/2015 13:35	7440-66-6	Zinc	100		6.2	
GB-18 2-4	8/6/2015 15:05	7440-38-2	Arsenic	20		6.5	
GB-18 2-4	8/6/2015 15:05	7440-39-3	Barium	1000		100	
GB-18 2-4	8/6/2015 15:05	7440-41-7	Beryllium	2		0.32	J
GB-18 2-4	8/6/2015 15:05	7440-43-9	Cadmium	2		0.36	J
GB-18 2-4	8/6/2015 15:05	7440-47-3	Chromium	100		12	
GB-18 2-4	8/6/2015 15:05	7440-50-8	Copper	100		57	
GB-18 2-4	8/6/2015 15:05	7439-92-1	Lead	75	400	200	
GB-18 2-4	8/6/2015 15:05	7440-02-0	Nickel	50		4.7	
GB-18 2-4	8/6/2015 15:05	7782-49-2	Selenium			0.97	U
GB-18 2-4	8/6/2015 15:05	7440-22-4	Silver			0.094	J
GB-18 2-4	8/6/2015 15:05	7440-62-2	Vanadium	100		18	
GB-18 2-4	8/6/2015 15:05	7440-66-6	Zinc	100		110	
GB-18 4-6	8/6/2015 15:15	7440-38-2	Arsenic	20		6	
GB-18 4-6	8/6/2015 15:15	7440-39-3	Barium	1000		220	
GB-18 4-6	8/6/2015 15:15	7440-41-7	Beryllium	2		0.26	J
GB-18 4-6	8/6/2015 15:15	7440-43-9	Cadmium	2		0.15	J
GB-18 4-6	8/6/2015 15:15	7440-47-3	Chromium	100		74	F2
GB-18 4-6	8/6/2015 15:15	7440-50-8	Copper	100		61	
GB-18 4-6	8/6/2015 15:15	7439-92-1	Lead	75	400	250	
GB-18 4-6	8/6/2015 15:15	7440-02-0	Nickel	50		12	F1

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
GB-18 4-6	8/6/2015 15:15	7782-49-2	Selenium			0.92	U
GB-18 4-6	8/6/2015 15:15	7440-22-4	Silver			0.25	J
GB-18 4-6	8/6/2015 15:15	7440-62-2	Vanadium	100		47	
GB-18 4-6	8/6/2015 15:15	7440-66-6	Zinc	100	23500	270	
GB-19 8-10	8/6/2015 11:30	7440-38-2	Arsenic	20		1.6	J
GB-19 8-10	8/6/2015 11:30	7440-39-3	Barium	1000		0.21	U
GB-19 8-10	8/6/2015 11:30	7440-41-7	Beryllium	2		0.22	J
GB-19 8-10	8/6/2015 11:30	7440-43-9	Cadmium	2		0.13	U
GB-19 8-10	8/6/2015 11:30	7440-47-3	Chromium	100		3.5	
GB-19 8-10	8/6/2015 11:30	7440-50-8	Copper	100		0.29	J
GB-19 8-10	8/6/2015 11:30	7439-92-1	Lead	75		2.5	
GB-19 8-10	8/6/2015 11:30	7440-02-0	Nickel	50		4.6	J
GB-19 8-10	8/6/2015 11:30	7782-49-2	Selenium			1.3	U
GB-19 8-10	8/6/2015 11:30	7440-22-4	Silver			0.078	U
GB-19 8-10	8/6/2015 11:30	7440-62-2	Vanadium	100		4.1	
GB-19 8-10	8/6/2015 11:30	7440-66-6	Zinc	100		9.2	
GB-19 13-15	8/25/2015 11:30	7440-38-2	Arsenic	20		1.5	J
GB-19 13-15	8/25/2015 11:30	7440-39-3	Barium	1000		1.9	
GB-19 13-15	8/25/2015 11:30	7440-41-7	Beryllium	2		0.11	J
GB-19 13-15	8/25/2015 11:30	7440-43-9	Cadmium	2		0.098	U
GB-19 13-15	8/25/2015 11:30	7440-47-3	Chromium	100		3.6	
GB-19 13-15	8/25/2015 11:30	7440-50-8	Copper	100		0.79	J
GB-19 13-15	8/25/2015 11:30	7439-92-1	Lead	75		4.6	
GB-19 13-15	8/25/2015 11:30	7440-02-0	Nickel	50		1.6	J
GB-19 13-15	8/25/2015 11:30	7782-49-2	Selenium			0.95	U
GB-19 13-15	8/25/2015 11:30	7440-22-4	Silver			0.059	U
GB-19 13-15	8/25/2015 11:30	7440-62-2	Vanadium	100		3.5	
GB-19 13-15	8/25/2015 11:30	7440-66-6	Zinc	100		5.1	
GB-21 8-10	8/6/2015 10:45	7440-38-2	Arsenic	20		3.5	

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
GB-21 8-10	8/6/2015 10:45	7440-39-3	Barium	1000		7.8	
GB-21 8-10	8/6/2015 10:45	7440-41-7	Beryllium	2		1	
GB-21 8-10	8/6/2015 10:45	7440-43-9	Cadmium	2		0.11	U
GB-21 8-10	8/6/2015 10:45	7440-47-3	Chromium	100		5.3	
GB-21 8-10	8/6/2015 10:45	7440-50-8	Copper	100		1.4	J
GB-21 8-10	8/6/2015 10:45	7439-92-1	Lead	75		4.9	
GB-21 8-10	8/6/2015 10:45	7440-02-0	Nickel	50		15	
GB-21 8-10	8/6/2015 10:45	7782-49-2	Selenium			1	U
GB-21 8-10	8/6/2015 10:45	7440-22-4	Silver			0.064	U
GB-21 8-10	8/6/2015 10:45	7440-62-2	Vanadium	100		5.1	
GB-21 8-10	8/6/2015 10:45	7440-66-6	Zinc	100		49	
GB-21 13-15	8/25/2015 11:50	7440-38-2	Arsenic	20		3.5	
GB-21 13-15	8/25/2015 11:50	7440-39-3	Barium	1000		50	
GB-21 13-15	8/25/2015 11:50	7440-41-7	Beryllium	2		0.26	J
GB-21 13-15	8/25/2015 11:50	7440-43-9	Cadmium	2		0.1	U
GB-21 13-15	8/25/2015 11:50	7440-47-3	Chromium	100		57	
GB-21 13-15	8/25/2015 11:50	7440-50-8	Copper	100		5.1	
GB-21 13-15	8/25/2015 11:50	7439-92-1	Lead	75		24	
GB-21 13-15	8/25/2015 11:50	7440-02-0	Nickel	50		3.9	J
GB-21 13-15	8/25/2015 11:50	7782-49-2	Selenium			0.97	U
GB-21 13-15	8/25/2015 11:50	7440-22-4	Silver			0.06	U
GB-21 13-15	8/25/2015 11:50	7440-62-2	Vanadium	100		28	
GB-21 13-15	8/25/2015 11:50	7440-66-6	Zinc	100		29	
GB-25 2-4	8/10/2015 11:39	7440-38-2	Arsenic	20		2.9	
GB-25 2-4	8/10/2015 11:39	7440-39-3	Barium	1000		7.8	В
GB-25 2-4	8/10/2015 11:39	7440-41-7	Beryllium	2		0.18	J
GB-25 2-4	8/10/2015 11:39	7440-43-9	Cadmium	2	_	0.099	U
GB-25 2-4	8/10/2015 11:39	7440-47-3	Chromium	100		4.9	
GB-25 2-4	8/10/2015 11:39	7440-50-8	Copper	100		1.5	J

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
GB-25 2-4	8/10/2015 11:39	7439-92-1	Lead	75		5.7	
GB-25 2-4	8/10/2015 11:39	7440-02-0	Nickel	50		1.3	J
GB-25 2-4	8/10/2015 11:39	7782-49-2	Selenium			0.96	U
GB-25 2-4	8/10/2015 11:39	7440-22-4	Silver			0.06	U
GB-25 2-4	8/10/2015 11:39	7440-62-2	Vanadium	100		10	
GB-25 2-4	8/10/2015 11:39	7440-66-6	Zinc	100		5.8	
GB-25 4-6	8/10/2015 11:42	7440-38-2	Arsenic	20		2.8	
GB-25 4-6	8/10/2015 11:42	7440-39-3	Barium	1000		32	В
GB-25 4-6	8/10/2015 11:42	7440-41-7	Beryllium	2		0.2	J
GB-25 4-6	8/10/2015 11:42	7440-43-9	Cadmium	2		0.12	J
GB-25 4-6	8/10/2015 11:42	7440-47-3	Chromium	100		17	
GB-25 4-6	8/10/2015 11:42	7440-50-8	Copper	100		17	
GB-25 4-6	8/10/2015 11:42	7439-92-1	Lead	75	400	98	
GB-25 4-6	8/10/2015 11:42	7440-02-0	Nickel	50		4	J
GB-25 4-6	8/10/2015 11:42	7782-49-2	Selenium			1	U
GB-25 4-6	8/10/2015 11:42	7440-22-4	Silver			0.063	U
GB-25 4-6	8/10/2015 11:42	7440-62-2	Vanadium	100		10	
GB-25 4-6	8/10/2015 11:42	7440-66-6	Zinc	100		58	
GB-26 2-4	8/10/2015 12:20	7440-38-2	Arsenic	20		3.1	
GB-26 2-4	8/10/2015 12:20	7440-39-3	Barium	1000		73	В
GB-26 2-4	8/10/2015 12:20	7440-41-7	Beryllium	2		0.39	
GB-26 2-4	8/10/2015 12:20	7440-43-9	Cadmium	2		0.18	J
GB-26 2-4	8/10/2015 12:20	7440-47-3	Chromium	100		11	
GB-26 2-4	8/10/2015 12:20	7440-50-8	Copper	100		13	
GB-26 2-4	8/10/2015 12:20	7439-92-1	Lead	75	400	110	
GB-26 2-4	8/10/2015 12:20	7440-02-0	Nickel	50		3.4	J
GB-26 2-4	8/10/2015 12:20	7782-49-2	Selenium			0.94	U
GB-26 2-4	8/10/2015 12:20	7440-22-4	Silver			0.058	U
GB-26 2-4	8/10/2015 12:20	7440-62-2	Vanadium	100		27	

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
GB-26 2-4	8/10/2015 12:20	7440-66-6	Zinc	100		95	
GB-26 4-6	8/10/2015 12:25	7440-38-2	Arsenic	20		2.6	
GB-26 4-6	8/10/2015 12:25	7440-39-3	Barium	1000		130	В
GB-26 4-6	8/10/2015 12:25	7440-41-7	Beryllium	2		1.2	
GB-26 4-6	8/10/2015 12:25	7440-43-9	Cadmium	2		0.095	U
GB-26 4-6	8/10/2015 12:25	7440-47-3	Chromium	100		12	
GB-26 4-6	8/10/2015 12:25	7440-50-8	Copper	100		11	
GB-26 4-6	8/10/2015 12:25	7439-92-1	Lead	75		44	
GB-26 4-6	8/10/2015 12:25	7440-02-0	Nickel	50		4.5	
GB-26 4-6	8/10/2015 12:25	7782-49-2	Selenium			0.92	U
GB-26 4-6	8/10/2015 12:25	7440-22-4	Silver			0.057	U
GB-26 4-6	8/10/2015 12:25	7440-62-2	Vanadium	100		22	
GB-26 4-6	8/10/2015 12:25	7440-66-6	Zinc	100		85	
GB-27 13-15	8/10/2015 12:48	7440-38-2	Arsenic	20		1.4	J
GB-27 13-15	8/10/2015 12:48	7440-39-3	Barium	1000		41	В
GB-27 13-15	8/10/2015 12:48	7440-41-7	Beryllium	2		0.15	J
GB-27 13-15	8/10/2015 12:48	7440-43-9	Cadmium	2		0.11	J
GB-27 13-15	8/10/2015 12:48	7440-47-3	Chromium	100		11	
GB-27 13-15	8/10/2015 12:48	7440-50-8	Copper	100		12	
GB-27 13-15	8/10/2015 12:48	7439-92-1	Lead	75		64	
GB-27 13-15	8/10/2015 12:48	7440-02-0	Nickel	50		2	J
GB-27 13-15	8/10/2015 12:48	7782-49-2	Selenium			1.1	U
GB-27 13-15	8/10/2015 12:48	7440-22-4	Silver			0.067	U
GB-27 13-15	8/10/2015 12:48	7440-62-2	Vanadium	100		21	
GB-27 13-15	8/10/2015 12:48	7440-66-6	Zinc	100		27	
GB-27 3-5	8/10/2015 12:33	7440-38-2	Arsenic	20		2.4	J
GB-27 3-5	8/10/2015 12:33	7440-39-3	Barium	1000		56	В
GB-27 3-5	8/10/2015 12:33	7440-41-7	Beryllium	2		0.36	J
GB-27 3-5	8/10/2015 12:33	7440-43-9	Cadmium	2		0.16	J

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
GB-27 3-5	8/10/2015 12:33	7440-47-3	Chromium	100		11	
GB-27 3-5	8/10/2015 12:33	7440-50-8	Copper	100		12	
GB-27 3-5	8/10/2015 12:33	7439-92-1	Lead	75	400	100	
GB-27 3-5	8/10/2015 12:33	7440-02-0	Nickel	50		2.7	J
GB-27 3-5	8/10/2015 12:33	7782-49-2	Selenium			1.3	U
GB-27 3-5	8/10/2015 12:33	7440-22-4	Silver			0.078	U
GB-27 3-5	8/10/2015 12:33	7440-62-2	Vanadium	100		17	
GB-27 3-5	8/10/2015 12:33	7440-66-6	Zinc	100		68	
GB-27 8-10	8/10/2015 12:45	7440-38-2	Arsenic	20		2.4	
GB-27 8-10	8/10/2015 12:45	7440-39-3	Barium	1000		40	В
GB-27 8-10	8/10/2015 12:45	7440-41-7	Beryllium	2		0.14	J
GB-27 8-10	8/10/2015 12:45	7440-43-9	Cadmium	2		0.18	J
GB-27 8-10	8/10/2015 12:45	7440-47-3	Chromium	100		9.3	
GB-27 8-10	8/10/2015 12:45	7440-50-8	Copper	100		11	
GB-27 8-10	8/10/2015 12:45	7439-92-1	Lead	75	400	110	
GB-27 8-10	8/10/2015 12:45	7440-02-0	Nickel	50		2	J
GB-27 8-10	8/10/2015 12:45	7782-49-2	Selenium			0.96	U
GB-27 8-10	8/10/2015 12:45	7440-22-4	Silver			0.059	U
GB-27 8-10	8/10/2015 12:45	7440-62-2	Vanadium	100		17	
GB-27 8-10	8/10/2015 12:45	7440-66-6	Zinc	100		85	
GB-28 13-15	8/6/2015 14:30	7440-38-2	Arsenic	20		5.2	
GB-28 13-15	8/6/2015 14:30	7440-39-3	Barium	1000		150	
GB-28 13-15	8/6/2015 14:30	7440-41-7	Beryllium	2		0.22	J
GB-28 13-15	8/6/2015 14:30	7440-43-9	Cadmium	2		0.15	J
GB-28 13-15	8/6/2015 14:30	7440-47-3	Chromium	100		16	
GB-28 13-15	8/6/2015 14:30	7440-50-8	Copper	100		31	
GB-28 13-15	8/6/2015 14:30	7439-92-1	Lead	75	400	950	
GB-28 13-15	8/6/2015 14:30	7440-02-0	Nickel	50		3.4	J
GB-28 13-15	8/6/2015 14:30	7782-49-2	Selenium			1	U

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
GB-28 13-15	8/6/2015 14:30	7440-22-4	Silver			0.067	J
GB-28 13-15	8/6/2015 14:30	7440-62-2	Vanadium	100		23	
GB-28 13-15	8/6/2015 14:30	7440-66-6	Zinc	100	23500	210	
GB-28 2-4	8/6/2015 14:00	7440-38-2	Arsenic	20		3.6	
GB-28 2-4	8/6/2015 14:00	7440-39-3	Barium	1000		17	
GB-28 2-4	8/6/2015 14:00	7440-41-7	Beryllium	2		0.31	J
GB-28 2-4	8/6/2015 14:00	7440-43-9	Cadmium	2		0.12	U
GB-28 2-4	8/6/2015 14:00	7440-47-3	Chromium	100		7.1	
GB-28 2-4	8/6/2015 14:00	7440-50-8	Copper	100		2.2	J
GB-28 2-4	8/6/2015 14:00	7439-92-1	Lead	75		5.9	
GB-28 2-4	8/6/2015 14:00	7440-02-0	Nickel	50		3.2	J
GB-28 2-4	8/6/2015 14:00	7782-49-2	Selenium			1.2	U
GB-28 2-4	8/6/2015 14:00	7440-22-4	Silver			0.074	U
GB-28 2-4	8/6/2015 14:00	7440-62-2	Vanadium	100		14	
GB-28 2-4	8/6/2015 14:00	7440-66-6	Zinc	100		12	
GB-28 8-10	8/6/2015 14:20	7440-38-2	Arsenic	20		1.8	J
GB-28 8-10	8/6/2015 14:20	7440-39-3	Barium	1000		2.3	
GB-28 8-10	8/6/2015 14:20	7440-41-7	Beryllium	2		0.092	J
GB-28 8-10	8/6/2015 14:20	7440-43-9	Cadmium	2		0.1	U
GB-28 8-10	8/6/2015 14:20	7440-47-3	Chromium	100		2.3	
GB-28 8-10	8/6/2015 14:20	7440-50-8	Copper	100		0.76	J
GB-28 8-10	8/6/2015 14:20	7439-92-1	Lead	75		2.6	
GB-28 8-10	8/6/2015 14:20	7440-02-0	Nickel	50		0.82	J
GB-28 8-10	8/6/2015 14:20	7782-49-2	Selenium			0.97	U
GB-28 8-10	8/6/2015 14:20	7440-22-4	Silver			0.06	U
GB-28 8-10	8/6/2015 14:20	7440-62-2	Vanadium	100		4.4	
GB-28 8-10	8/6/2015 14:20	7440-66-6	Zinc	100		3.6	
GB-3 13-15	8/7/2015 15:42	7440-38-2	Arsenic	20		3.4	
GB-3 13-15	8/7/2015 15:42	7440-39-3	Barium	1000		39	

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
GB-3 13-15	8/7/2015 15:42	7440-41-7	Beryllium	2		0.32	J
GB-3 13-15	8/7/2015 15:42	7440-43-9	Cadmium	2		0.11	U
GB-3 13-15	8/7/2015 15:42	7440-47-3	Chromium	100		20	
GB-3 13-15	8/7/2015 15:42	7440-50-8	Copper	100		6.7	
GB-3 13-15	8/7/2015 15:42	7439-92-1	Lead	75		14	
GB-3 13-15	8/7/2015 15:42	7440-02-0	Nickel	50		3	J
GB-3 13-15	8/7/2015 15:42	7782-49-2	Selenium			1	U
GB-3 13-15	8/7/2015 15:42	7440-22-4	Silver			0.065	U
GB-3 13-15	8/7/2015 15:42	7440-62-2	Vanadium	100		43	
GB-3 13-15	8/7/2015 15:42	7440-66-6	Zinc	100		26	
GB-3 8-10	8/7/2015 15:36	7440-38-2	Arsenic	20		5.3	
GB-3 8-10	8/7/2015 15:36	7440-39-3	Barium	1000		53	
GB-3 8-10	8/7/2015 15:36	7440-41-7	Beryllium	2		0.4	J
GB-3 8-10	8/7/2015 15:36	7440-43-9	Cadmium	2		0.14	U
GB-3 8-10	8/7/2015 15:36	7440-47-3	Chromium	100		29	
GB-3 8-10	8/7/2015 15:36	7440-50-8	Copper	100		10	
GB-3 8-10	8/7/2015 15:36	7439-92-1	Lead	75		42	
GB-3 8-10	8/7/2015 15:36	7440-02-0	Nickel	50		3.9	J
GB-3 8-10	8/7/2015 15:36	7782-49-2	Selenium			1.3	U
GB-3 8-10	8/7/2015 15:36	7440-22-4	Silver			0.083	U
GB-3 8-10	8/7/2015 15:36	7440-62-2	Vanadium	100		55	
GB-3 8-10	8/7/2015 15:36	7440-66-6	Zinc	100		59	
GB-5 8-10	8/7/2015 13:45	7440-38-2	Arsenic	20		6.4	
GB-5 8-10	8/7/2015 13:45	7440-39-3	Barium	1000		84	
GB-5 8-10	8/7/2015 13:45	7440-41-7	Beryllium	2		0.4	J
GB-5 8-10	8/7/2015 13:45	7440-43-9	Cadmium	2		0.12	U
GB-5 8-10	8/7/2015 13:45	7440-47-3	Chromium	100		19	
GB-5 8-10	8/7/2015 13:45	7440-50-8	Copper	100	3130	190	
GB-5 8-10	8/7/2015 13:45	7439-92-1	Lead	75	400	100	

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
GB-5 8-10	8/7/2015 13:45	7440-02-0	Nickel	50		9.2	
GB-5 8-10	8/7/2015 13:45	7782-49-2	Selenium			1.2	U
GB-5 8-10	8/7/2015 13:45	7440-22-4	Silver			0.17	J
GB-5 8-10	8/7/2015 13:45	7440-62-2	Vanadium	100		35	
GB-5 8-10	8/7/2015 13:45	7440-66-6	Zinc	100		83	
GB-5 13-15	8/24/2015 15:08	7440-38-2	Arsenic	20		1.2	J
GB-5 13-15	8/24/2015 15:08	7440-39-3	Barium	1000		2	F2 F1
GB-5 13-15	8/24/2015 15:08	7440-41-7	Beryllium	2		0.082	J
GB-5 13-15	8/24/2015 15:08	7440-43-9	Cadmium	2		0.1	U
GB-5 13-15	8/24/2015 15:08	7440-47-3	Chromium	100		1.6	
GB-5 13-15	8/24/2015 15:08	7440-50-8	Copper	100		1.5	J F2 F1
GB-5 13-15	8/24/2015 15:08	7439-92-1	Lead	75		1.4	
GB-5 13-15	8/24/2015 15:08	7440-02-0	Nickel	50		0.4	U
GB-5 13-15	8/24/2015 15:08	7782-49-2	Selenium			1	U
GB-5 13-15	8/24/2015 15:08	7440-22-4	Silver			0.063	U
GB-5 13-15	8/24/2015 15:08	7440-62-2	Vanadium	100		3.8	F2 F1
GB-5 13-15	8/24/2015 15:08	7440-66-6	Zinc	100		1.6	J F2 F1
GB-5 18	8/24/2015 15:17	7440-38-2	Arsenic	20		0.96	J
GB-5 18	8/24/2015 15:17	7440-39-3	Barium	1000		0.43	J
GB-5 18	8/24/2015 15:17	7440-41-7	Beryllium	2		0.057	J
GB-5 18	8/24/2015 15:17	7440-43-9	Cadmium	2		0.099	U
GB-5 18	8/24/2015 15:17	7440-47-3	Chromium	100		1	
GB-5 18	8/24/2015 15:17	7440-50-8	Copper	100		0.39	J
GB-5 18	8/24/2015 15:17	7439-92-1	Lead	75		1.1	
GB-5 18	8/24/2015 15:17	7440-02-0	Nickel	50		0.38	U
GB-5 18	8/24/2015 15:17	7782-49-2	Selenium			0.96	U
GB-5 18	8/24/2015 15:17	7440-22-4	Silver			0.06	U
GB-5 18	8/24/2015 15:17	7440-62-2	Vanadium	100		3.2	
GB-5 18	8/24/2015 15:17	7440-66-6	Zinc	100		0.92	J

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
GB-7 13-15	8/7/2015 10:00	7440-38-2	Arsenic	20		1.2	J
GB-7 13-15	8/7/2015 10:00	7440-39-3	Barium	1000		64	
GB-7 13-15	8/7/2015 10:00	7440-41-7	Beryllium	2		0.51	
GB-7 13-15	8/7/2015 10:00	7440-43-9	Cadmium	2		0.099	U
GB-7 13-15	8/7/2015 10:00	7440-47-3	Chromium	100		7.6	
GB-7 13-15	8/7/2015 10:00	7440-50-8	Copper	100		22	
GB-7 13-15	8/7/2015 10:00	7439-92-1	Lead	75		10	
GB-7 13-15	8/7/2015 10:00	7440-02-0	Nickel	50		4.8	
GB-7 13-15	8/7/2015 10:00	7782-49-2	Selenium			0.96	U
GB-7 13-15	8/7/2015 10:00	7440-22-4	Silver			0.059	U
GB-7 13-15	8/7/2015 10:00	7440-62-2	Vanadium	100		48	
GB-7 13-15	8/7/2015 10:00	7440-66-6	Zinc	100		40	
GB-7 18	8/7/2015 10:06	7440-38-2	Arsenic	20		2	J
GB-7 18	8/7/2015 10:06	7440-39-3	Barium	1000		95	
GB-7 18	8/7/2015 10:06	7440-41-7	Beryllium	2		0.49	
GB-7 18	8/7/2015 10:06	7440-43-9	Cadmium	2		0.11	U
GB-7 18	8/7/2015 10:06	7440-47-3	Chromium	100		12	
GB-7 18	8/7/2015 10:06	7440-50-8	Copper	100		19	
GB-7 18	8/7/2015 10:06	7439-92-1	Lead	75		41	
GB-7 18	8/7/2015 10:06	7440-02-0	Nickel	50		5.5	
GB-7 18	8/7/2015 10:06	7782-49-2	Selenium			1.1	U
GB-7 18	8/7/2015 10:06	7440-22-4	Silver			0.065	U
GB-7 18	8/7/2015 10:06	7440-62-2	Vanadium	100		40	
GB-7 18	8/7/2015 10:06	7440-66-6	Zinc	100		60	
GB-7 8-10	8/7/2015 9:54	7440-38-2	Arsenic	20		1.6	J
GB-7 8-10	8/7/2015 9:54	7440-39-3	Barium	1000		61	
GB-7 8-10	8/7/2015 9:54	7440-41-7	Beryllium	2		0.48	
GB-7 8-10	8/7/2015 9:54	7440-43-9	Cadmium	2		0.11	U
GB-7 8-10	8/7/2015 9:54	7440-47-3	Chromium	100		9.5	

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
GB-7 8-10	8/7/2015 9:54	7440-50-8	Copper	100		20	
GB-7 8-10	8/7/2015 9:54	7439-92-1	Lead	75		16	
GB-7 8-10	8/7/2015 9:54	7440-02-0	Nickel	50		5.5	
GB-7 8-10	8/7/2015 9:54	7782-49-2	Selenium			1.1	U
GB-7 8-10	8/7/2015 9:54	7440-22-4	Silver			0.082	J
GB-7 8-10	8/7/2015 9:54	7440-62-2	Vanadium	100		51	
GB-7 8-10	8/7/2015 9:54	7440-66-6	Zinc	100		43	
GB-9 8-10	8/10/2015 9:57	7440-38-2	Arsenic	20		2.8	
GB-9 8-10	8/10/2015 9:57	7440-39-3	Barium	1000		46	В
GB-9 8-10	8/10/2015 9:57	7440-41-7	Beryllium	2		0.39	J
GB-9 8-10	8/10/2015 9:57	7440-43-9	Cadmium	2		0.11	U
GB-9 8-10	8/10/2015 9:57	7440-47-3	Chromium	100		6.3	
GB-9 8-10	8/10/2015 9:57	7440-50-8	Copper	100		3.6	
GB-9 8-10	8/10/2015 9:57	7439-92-1	Lead	75		14	
GB-9 8-10	8/10/2015 9:57	7440-02-0	Nickel	50		3.8	J
GB-9 8-10	8/10/2015 9:57	7782-49-2	Selenium			1	U
GB-9 8-10	8/10/2015 9:57	7440-22-4	Silver			0.064	U
GB-9 8-10	8/10/2015 9:57	7440-62-2	Vanadium	100		15	
GB-9 8-10	8/10/2015 9:57	7440-66-6	Zinc	100		14	
GB-9 13-15	8/10/2015 10:06	7440-38-2	Arsenic	20		2.3	
GB-9 13-15	8/10/2015 10:06	7440-39-3	Barium	1000		170	В
GB-9 13-15	8/10/2015 10:06	7440-41-7	Beryllium	2		1.9	
GB-9 13-15	8/10/2015 10:06	7440-43-9	Cadmium	2		0.11	U
GB-9 13-15	8/10/2015 10:06	7440-47-3	Chromium	100		27	
GB-9 13-15	8/10/2015 10:06	7440-50-8	Copper	100		53	
GB-9 13-15	8/10/2015 10:06	7439-92-1	Lead	75		26	
GB-9 13-15	8/10/2015 10:06	7440-02-0	Nickel	50		16	
GB-9 13-15	8/10/2015 10:06	7782-49-2	Selenium			1.1	U
GB-9 13-15	8/10/2015 10:06	7440-22-4	Silver			0.069	U

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
GB-9 13-15	8/10/2015 10:06	7440-62-2	Vanadium	100		77	
GB-9 13-15	8/10/2015 10:06	7440-66-6	Zinc	100	23500	110	
SB-17 13-15	8/7/2015 14:56	7440-38-2	Arsenic	20		2.3	
SB-17 13-15	8/7/2015 14:56	7440-39-3	Barium	1000		49	
SB-17 13-15	8/7/2015 14:56	7440-41-7	Beryllium	2		0.2	J
SB-17 13-15	8/7/2015 14:56	7440-43-9	Cadmium	2		0.23	J
SB-17 13-15	8/7/2015 14:56	7440-47-3	Chromium	100		11	
SB-17 13-15	8/7/2015 14:56	7440-50-8	Copper	100		16	
SB-17 13-15	8/7/2015 14:56	7439-92-1	Lead	75	400	96	
SB-17 13-15	8/7/2015 14:56	7440-02-0	Nickel	50		2.8	J
SB-17 13-15	8/7/2015 14:56	7782-49-2	Selenium			0.98	U
SB-17 13-15	8/7/2015 14:56	7440-22-4	Silver			0.061	C
SB-17 13-15	8/7/2015 14:56	7440-62-2	Vanadium	100		25	
SB-17 13-15	8/7/2015 14:56	7440-66-6	Zinc	100		90	
SB-17 8-10	8/7/2015 14:50	7440-38-2	Arsenic	20		0.8	U
SB-17 8-10	8/7/2015 14:50	7440-39-3	Barium	1000		18	
SB-17 8-10	8/7/2015 14:50	7440-41-7	Beryllium	2		0.29	J
SB-17 8-10	8/7/2015 14:50	7440-43-9	Cadmium	2		0.1	U
SB-17 8-10	8/7/2015 14:50	7440-47-3	Chromium	100		7.1	
SB-17 8-10	8/7/2015 14:50	7440-50-8	Copper	100		3.3	
SB-17 8-10	8/7/2015 14:50	7439-92-1	Lead	75		8.3	
SB-17 8-10	8/7/2015 14:50	7440-02-0	Nickel	50		2.1	J
SB-17 8-10	8/7/2015 14:50	7782-49-2	Selenium			0.97	U
SB-17 8-10	8/7/2015 14:50	7440-22-4	Silver			0.06	U
SB-17 8-10	8/7/2015 14:50	7440-62-2	Vanadium	100		12	
SB-17 8-10	8/7/2015 14:50	7440-66-6	Zinc	100		8.4	
SB-20 0-2	8/7/2015 15:04	7440-38-2	Arsenic	20		2.5	
SB-20 0-2	8/7/2015 15:04	7440-39-3	Barium	1000		99	
SB-20 0-2	8/7/2015 15:04	7440-41-7	Beryllium	2		1.1	

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
SB-20 0-2	8/7/2015 15:04	7440-47-3	Chromium	100		16	
SB-20 0-2	8/7/2015 15:04	7440-50-8	Copper	100		27	
SB-20 0-2	8/7/2015 15:04	7439-92-1	Lead	75		14	
SB-20 0-2	8/7/2015 15:04	7440-02-0	Nickel	50		6.3	
SB-20 0-2	8/7/2015 15:04	7782-49-2	Selenium			0.98	U
SB-20 0-2	8/7/2015 15:04	7440-22-4	Silver			0.06	U
SB-20 0-2	8/7/2015 15:04	7440-62-2	Vanadium	100		66	
SB-20 0-2	8/7/2015 15:04	7440-66-6	Zinc	100		36	
SB-20 0-2	8/7/2015 15:04	7440-43-9	Cadmium	2		0.1	U
SB-20 2-4	8/7/2015 15:04	7440-38-2	Arsenic	20		1.6	J
SB-20 2-4	8/7/2015 15:04	7440-39-3	Barium	1000		99	
SB-20 2-4	8/7/2015 15:04	7440-41-7	Beryllium	2		1.6	
SB-20 2-4	8/7/2015 15:04	7440-47-3	Chromium	100		9.5	
SB-20 2-4	8/7/2015 15:04	7440-50-8	Copper	100		60	
SB-20 2-4	8/7/2015 15:04	7439-92-1	Lead	75		13	
SB-20 2-4	8/7/2015 15:04	7440-02-0	Nickel	50		6.7	
SB-20 2-4	8/7/2015 15:04	7782-49-2	Selenium			0.97	U
SB-20 2-4	8/7/2015 15:04	7440-22-4	Silver			0.06	U
SB-20 2-4	8/7/2015 15:04	7440-62-2	Vanadium	100		61	
SB-20 2-4	8/7/2015 15:04	7440-66-6	Zinc	100		56	
SB-20 2-4	8/7/2015 15:04	7440-43-9	Cadmium	2		0.1	U
SB-24 13-15	8/6/2015 15:50	7440-38-2	Arsenic	20		1.7	J
SB-24 13-15	8/6/2015 15:50	7440-39-3	Barium	1000		37	
SB-24 13-15	8/6/2015 15:50	7440-41-7	Beryllium	2		0.13	J
SB-24 13-15	8/6/2015 15:50	7440-43-9	Cadmium	2		0.14	J
SB-24 13-15	8/6/2015 15:50	7440-47-3	Chromium	100		11	
SB-24 13-15	8/6/2015 15:50	7440-50-8	Copper	100		8.2	
SB-24 13-15	8/6/2015 15:50	7439-92-1	Lead	75	400	86	
SB-24 13-15	8/6/2015 15:50	7440-02-0	Nickel	50		2.1	J

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
SB-24 13-15	8/6/2015 15:50	7782-49-2	Selenium			0.96	U
SB-24 13-15	8/6/2015 15:50	7440-22-4	Silver			0.059	U
SB-24 13-15	8/6/2015 15:50	7440-62-2	Vanadium	100		21	
SB-24 13-15	8/6/2015 15:50	7440-66-6	Zinc	100		60	
SB-24 2-4	8/6/2015 15:25	7440-38-2	Arsenic	20		2.7	
SB-24 2-4	8/6/2015 15:25	7440-39-3	Barium	1000		49	
SB-24 2-4	8/6/2015 15:25	7440-41-7	Beryllium	2		0.18	J
SB-24 2-4	8/6/2015 15:25	7440-43-9	Cadmium	2		0.11	U
SB-24 2-4	8/6/2015 15:25	7440-47-3	Chromium	100		12	
SB-24 2-4	8/6/2015 15:25	7440-50-8	Copper	100		10	
SB-24 2-4	8/6/2015 15:25	7439-92-1	Lead	75		75	
SB-24 2-4	8/6/2015 15:25	7440-02-0	Nickel	50		2.7	J
SB-24 2-4	8/6/2015 15:25	7782-49-2	Selenium			1.1	U
SB-24 2-4	8/6/2015 15:25	7440-22-4	Silver			0.068	U
SB-24 2-4	8/6/2015 15:25	7440-62-2	Vanadium	100		25	
SB-24 2-4	8/6/2015 15:25	7440-66-6	Zinc	100		53	
SB-24 4-6	8/6/2015 15:32	7440-38-2	Arsenic	20		3.7	
SB-24 4-6	8/6/2015 15:32	7440-39-3	Barium	1000		88	
SB-24 4-6	8/6/2015 15:32	7440-41-7	Beryllium	2		0.34	J
SB-24 4-6	8/6/2015 15:32	7440-43-9	Cadmium	2		0.27	J
SB-24 4-6	8/6/2015 15:32	7440-47-3	Chromium	100		14	
SB-24 4-6	8/6/2015 15:32	7440-50-8	Copper	100		25	
SB-24 4-6	8/6/2015 15:32	7439-92-1	Lead	75	400	260	
SB-24 4-6	8/6/2015 15:32	7440-02-0	Nickel	50		3.1	J
SB-24 4-6	8/6/2015 15:32	7782-49-2	Selenium			1.2	U
SB-24 4-6	8/6/2015 15:32	7440-22-4	Silver		_	0.074	U
SB-24 4-6	8/6/2015 15:32	7440-62-2	Vanadium	100		29	
SB-24 4-6	8/6/2015 15:32	7440-66-6	Zinc	100	23500	120	
SB-24 8-10	8/6/2015 15:38	7440-38-2	Arsenic	20		3.4	

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
SB-24 8-10	8/6/2015 15:38	7440-39-3	Barium	1000		73	
SB-24 8-10	8/6/2015 15:38	7440-41-7	Beryllium	2		0.29	J
SB-24 8-10	8/6/2015 15:38	7440-43-9	Cadmium	2		0.14	U
SB-24 8-10	8/6/2015 15:38	7440-47-3	Chromium	100		24	
SB-24 8-10	8/6/2015 15:38	7440-50-8	Copper	100		20	
SB-24 8-10	8/6/2015 15:38	7439-92-1	Lead	75	400	82	
SB-24 8-10	8/6/2015 15:38	7440-02-0	Nickel	50		5.4	
SB-24 8-10	8/6/2015 15:38	7782-49-2	Selenium			1.3	U
SB-24 8-10	8/6/2015 15:38	7440-22-4	Silver			0.081	U
SB-24 8-10	8/6/2015 15:38	7440-62-2	Vanadium	100		22	
SB-24 8-10	8/6/2015 15:38	7440-66-6	Zinc	100	23500	160	
SB-25 0-2	8/10/2015 10:56	7440-38-2	Arsenic	20		1.8	J
SB-25 0-2	8/10/2015 10:56	7440-39-3	Barium	1000		55	В
SB-25 0-2	8/10/2015 10:56	7440-41-7	Beryllium	2		0.39	J
SB-25 0-2	8/10/2015 10:56	7440-43-9	Cadmium	2		0.1	U
SB-25 0-2	8/10/2015 10:56	7440-47-3	Chromium	100		23	
SB-25 0-2	8/10/2015 10:56	7440-50-8	Copper	100		20	
SB-25 0-2	8/10/2015 10:56	7439-92-1	Lead	75		38	
SB-25 0-2	8/10/2015 10:56	7440-02-0	Nickel	50		4.3	
SB-25 0-2	8/10/2015 10:56	7782-49-2	Selenium			1	U
SB-25 0-2	8/10/2015 10:56	7440-22-4	Silver			0.063	U
SB-25 0-2	8/10/2015 10:56	7440-62-2	Vanadium	100		39	
SB-25 0-2	8/10/2015 10:56	7440-66-6	Zinc	100		50	
SB-25 13-15	8/10/2015 11:21	7440-38-2	Arsenic	20		3.9	
SB-25 13-15	8/10/2015 11:21	7440-39-3	Barium	1000		75	В
SB-25 13-15	8/10/2015 11:21	7440-41-7	Beryllium	2		0.43	
SB-25 13-15	8/10/2015 11:21	7440-43-9	Cadmium	2		0.11	U
SB-25 13-15	8/10/2015 11:21	7440-47-3	Chromium	100		11	
SB-25 13-15	8/10/2015 11:21	7440-50-8	Copper	100		10	

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
SB-25 13-15	8/10/2015 11:21	7439-92-1	Lead	75		64	
SB-25 13-15	8/10/2015 11:21	7440-02-0	Nickel	50		4.8	
SB-25 13-15	8/10/2015 11:21	7782-49-2	Selenium			1	U
SB-25 13-15	8/10/2015 11:21	7440-22-4	Silver			0.064	U
SB-25 13-15	8/10/2015 11:21	7440-62-2	Vanadium	100		23	
SB-25 13-15	8/10/2015 11:21	7440-66-6	Zinc	100		50	
SB-25 2-4	8/10/2015 10:56	7440-38-2	Arsenic	20		4.7	
SB-25 2-4	8/10/2015 10:56	7440-39-3	Barium	1000		120	В
SB-25 2-4	8/10/2015 10:56	7440-41-7	Beryllium	2		0.28	J
SB-25 2-4	8/10/2015 10:56	7440-43-9	Cadmium	2		1.2	
SB-25 2-4	8/10/2015 10:56	7440-47-3	Chromium	100		10	
SB-25 2-4	8/10/2015 10:56	7440-50-8	Copper	100		20	
SB-25 2-4	8/10/2015 10:56	7439-92-1	Lead	75	400	1800	
SB-25 2-4	8/10/2015 10:56	7440-02-0	Nickel	50		3.4	J
SB-25 2-4	8/10/2015 10:56	7782-49-2	Selenium			0.98	U
SB-25 2-4	8/10/2015 10:56	7440-22-4	Silver			0.14	J
SB-25 2-4	8/10/2015 10:56	7440-62-2	Vanadium	100		15	
SB-25 2-4	8/10/2015 10:56	7440-66-6	Zinc	100	23500	470	
SB-25 4-6	8/10/2015 11:11	7440-38-2	Arsenic	20		2.5	
SB-25 4-6	8/10/2015 11:11	7440-39-3	Barium	1000		6.4	В
SB-25 4-6	8/10/2015 11:11	7440-41-7	Beryllium	2		0.069	J
SB-25 4-6	8/10/2015 11:11	7440-43-9	Cadmium	2		0.11	U
SB-25 4-6	8/10/2015 11:11	7440-47-3	Chromium	100		8.6	
SB-25 4-6	8/10/2015 11:11	7440-50-8	Copper	100		1.6	J
SB-25 4-6	8/10/2015 11:11	7439-92-1	Lead	75		5	
SB-25 4-6	8/10/2015 11:11	7440-02-0	Nickel	50		0.9	J
SB-25 4-6	8/10/2015 11:11	7782-49-2	Selenium			1.1	U
SB-25 4-6	8/10/2015 11:11	7440-22-4	Silver			0.066	U
SB-25 4-6	8/10/2015 11:11	7440-62-2	Vanadium	100		12	

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
SB-25 4-6	8/10/2015 11:11	7440-66-6	Zinc	100		5.3	
SB-25 8-10	8/10/2015 11:17	7440-38-2	Arsenic	20		2.3	
SB-25 8-10	8/10/2015 11:17	7440-39-3	Barium	1000		59	В
SB-25 8-10	8/10/2015 11:17	7440-41-7	Beryllium	2		0.098	J
SB-25 8-10	8/10/2015 11:17	7440-43-9	Cadmium	2		0.1	U
SB-25 8-10	8/10/2015 11:17	7440-47-3	Chromium	100		9.5	
SB-25 8-10	8/10/2015 11:17	7440-50-8	Copper	100		3.6	
SB-25 8-10	8/10/2015 11:17	7439-92-1	Lead	75	400	88	
SB-25 8-10	8/10/2015 11:17	7440-02-0	Nickel	50		1.5	J
SB-25 8-10	8/10/2015 11:17	7782-49-2	Selenium			1	U
SB-25 8-10	8/10/2015 11:17	7440-22-4	Silver			0.063	U
SB-25 8-10	8/10/2015 11:17	7440-62-2	Vanadium	100		16	
SB-25 8-10	8/10/2015 11:17	7440-66-6	Zinc	100		86	
SB-41 13-15	8/10/2015 9:28	7440-38-2	Arsenic	20		1.7	J
SB-41 13-15	8/10/2015 9:28	7440-39-3	Barium	1000		30	В
SB-41 13-15	8/10/2015 9:28	7440-41-7	Beryllium	2		0.25	J
SB-41 13-15	8/10/2015 9:28	7440-43-9	Cadmium	2		0.11	U
SB-41 13-15	8/10/2015 9:28	7440-47-3	Chromium	100		11	
SB-41 13-15	8/10/2015 9:28	7440-50-8	Copper	100		5.9	
SB-41 13-15	8/10/2015 9:28	7439-92-1	Lead	75		29	
SB-41 13-15	8/10/2015 9:28	7440-02-0	Nickel	50		2.5	J
SB-41 13-15	8/10/2015 9:28	7782-49-2	Selenium			1	U
SB-41 13-15	8/10/2015 9:28	7440-22-4	Silver			0.065	U
SB-41 13-15	8/10/2015 9:28	7440-62-2	Vanadium	100		28	
SB-41 13-15	8/10/2015 9:28	7440-66-6	Zinc	100		30	
SB-41 4-6	8/10/2015 9:20	7440-38-2	Arsenic	20		2.3	
SB-41 4-6	8/10/2015 9:20	7440-39-3	Barium	1000		110	B F2
SB-41 4-6	8/10/2015 9:20	7440-41-7	Beryllium	2		0.47	
SB-41 4-6	8/10/2015 9:20	7440-43-9	Cadmium	2	78.2	2.7	

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
SB-41 4-6	8/10/2015 9:20	7440-47-3	Chromium	100		13	F1
SB-41 4-6	8/10/2015 9:20	7440-50-8	Copper	100		12	F2 F1
SB-41 4-6	8/10/2015 9:20	7439-92-1	Lead	75	400	190	F1 F2
SB-41 4-6	8/10/2015 9:20	7440-02-0	Nickel	50		3.6	J
SB-41 4-6	8/10/2015 9:20	7782-49-2	Selenium			0.95	U
SB-41 4-6	8/10/2015 9:20	7440-22-4	Silver			0.059	U
SB-41 4-6	8/10/2015 9:20	7440-62-2	Vanadium	100		24	F1
SB-41 4-6	8/10/2015 9:20	7440-66-6	Zinc	100	23500	960	F2
SB-41 8-10	8/10/2015 9:24	7440-38-2	Arsenic	20		1.9	
SB-41 8-10	8/10/2015 9:24	7440-39-3	Barium	1000		42	В
SB-41 8-10	8/10/2015 9:24	7440-41-7	Beryllium	2		0.45	
SB-41 8-10	8/10/2015 9:24	7440-43-9	Cadmium	2		0.096	U
SB-41 8-10	8/10/2015 9:24	7440-47-3	Chromium	100		9.1	
SB-41 8-10	8/10/2015 9:24	7440-50-8	Copper	100		7.8	
SB-41 8-10	8/10/2015 9:24	7439-92-1	Lead	75		28	
SB-41 8-10	8/10/2015 9:24	7440-02-0	Nickel	50		3.1	J
SB-41 8-10	8/10/2015 9:24	7782-49-2	Selenium			0.93	U
SB-41 8-10	8/10/2015 9:24	7440-22-4	Silver			0.058	U
SB-41 8-10	8/10/2015 9:24	7440-62-2	Vanadium	100		20	
SB-41 8-10	8/10/2015 9:24	7440-66-6	Zinc	100		31	
SB-42 13-15	8/6/2015 16:15	7440-38-2	Arsenic	20		13	
SB-42 13-15	8/6/2015 16:15	7440-39-3	Barium	1000		50	
SB-42 13-15	8/6/2015 16:15	7440-41-7	Beryllium	2		0.28	J
SB-42 13-15	8/6/2015 16:15	7440-43-9	Cadmium	2		0.1	U
SB-42 13-15	8/6/2015 16:15	7440-47-3	Chromium	100		12	
SB-42 13-15	8/6/2015 16:15	7440-50-8	Copper	100		15	
SB-42 13-15	8/6/2015 16:15	7439-92-1	Lead	75		67	
SB-42 13-15	8/6/2015 16:15	7440-02-0	Nickel	50		3.6	J
SB-42 13-15	8/6/2015 16:15	7782-49-2	Selenium			0.99	U

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
SB-42 13-15	8/6/2015 16:15	7440-22-4	Silver			0.061	U
SB-42 13-15	8/6/2015 16:15	7440-62-2	Vanadium	100		25	
SB-42 13-15	8/6/2015 16:15	7440-66-6	Zinc	100		38	
SB-42 2-4	8/6/2015 16:02	7440-38-2	Arsenic	20		3.3	
SB-42 2-4	8/6/2015 16:02	7440-39-3	Barium	1000		240	
SB-42 2-4	8/6/2015 16:02	7440-41-7	Beryllium	2	156	2.3	
SB-42 2-4	8/6/2015 16:02	7440-43-9	Cadmium	2		0.12	J
SB-42 2-4	8/6/2015 16:02	7440-47-3	Chromium	100		18	
SB-42 2-4	8/6/2015 16:02	7440-50-8	Copper	100		26	
SB-42 2-4	8/6/2015 16:02	7439-92-1	Lead	75		39	
SB-42 2-4	8/6/2015 16:02	7440-02-0	Nickel	50		12	
SB-42 2-4	8/6/2015 16:02	7782-49-2	Selenium			0.96	U
SB-42 2-4	8/6/2015 16:02	7440-22-4	Silver			0.059	U
SB-42 2-4	8/6/2015 16:02	7440-62-2	Vanadium	100		54	
SB-42 2-4	8/6/2015 16:02	7440-66-6	Zinc	100	23500	130	
SB-42 4-6	8/6/2015 16:05	7440-38-2	Arsenic	20		2.1	
SB-42 4-6	8/6/2015 16:05	7440-39-3	Barium	1000		220	
SB-42 4-6	8/6/2015 16:05	7440-41-7	Beryllium	2		1.6	
SB-42 4-6	8/6/2015 16:05	7440-43-9	Cadmium	2		0.095	U
SB-42 4-6	8/6/2015 16:05	7440-47-3	Chromium	100		26	F1
SB-42 4-6	8/6/2015 16:05	7440-50-8	Copper	100		13	
SB-42 4-6	8/6/2015 16:05	7439-92-1	Lead	75		22	
SB-42 4-6	8/6/2015 16:05	7440-02-0	Nickel	50		11	F1
SB-42 4-6	8/6/2015 16:05	7782-49-2	Selenium			0.92	U
SB-42 4-6	8/6/2015 16:05	7440-22-4	Silver			0.057	U
SB-42 4-6	8/6/2015 16:05	7440-62-2	Vanadium	100		50	
SB-42 4-6	8/6/2015 16:05	7440-66-6	Zinc	100	23500	100	
SB-42 8-10	8/6/2015 16:10	7440-38-2	Arsenic	20		3	
SB-42 8-10	8/6/2015 16:10	7440-39-3	Barium	1000		94	

Client Sample ID	Collection Date	CAS	Analyte by 6010 C	Type 1 RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
SB-42 8-10	8/6/2015 16:10	7440-41-7	Beryllium	2		0.65	
SB-42 8-10	8/6/2015 16:10	7440-43-9	Cadmium	2		0.22	J
SB-42 8-10	8/6/2015 16:10	7440-47-3	Chromium	100		14	
SB-42 8-10	8/6/2015 16:10	7440-50-8	Copper	100		12	
SB-42 8-10	8/6/2015 16:10	7439-92-1	Lead	75	400	160	
SB-42 8-10	8/6/2015 16:10	7440-02-0	Nickel	50		3.5	J
SB-42 8-10	8/6/2015 16:10	7782-49-2	Selenium			0.94	U
SB-42 8-10	8/6/2015 16:10	7440-22-4	Silver			0.058	U
SB-42 8-10	8/6/2015 16:10	7440-62-2	Vanadium	100		22	
SB-42 8-10	8/6/2015 16:10	7440-66-6	Zinc	100		95	

Notes:

Red = Analytical result exceeds the higher of the respective Type 1 or 2 RRS

[&]quot;B" Flag = Compound was found in the blank and sample.

[&]quot;U" Flag = Indicates the analyte was analyzed for but not detected.

[&]quot;F1" Flag = MS and/or MSD Recovery is outside acceptance limits.

[&]quot;F2" Flag = MS/MSD RPD exceeds control limits.

[&]quot;J" Flag = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Table 3. Analytical Summary Table - Mercury

Macon MGP #2

Macon, Ga

Sample ID	Collection Date	Analyte by Method 7471 B	Type I RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
GB-11 13-15	8/10/2015 10:41	Mercury	0.5	23.5	0.092	
GB-11 3-5	8/10/2015 10:31	Mercury	0.5	23.5	0.2	۸
GB-11 8-10	8/10/2015 10:36	Mercury	0.5	23.5	0.19	
GB-14 13-15	8/6/2015 12:59	Mercury	0.5	23.5	0.89	
GB-14 3-5	8/6/2015 12:47	Mercury	0.5	23.5	0.49	
GB-14 8-10	8/6/2015 12:54	Mercury	0.5	23.5	1.4	
GB-16 2-4	8/6/2015 13:29	Mercury	0.5	23.5	0.14	
GB-16 4-6	8/6/2015 13:35	Mercury	0.5	23.5	0.0095	U
GB-18 2-4	8/6/2015 15:05	Mercury	0.5	23.5	0.27	
GB-18 4-6	8/6/2015 15:15	Mercury	0.5	23.5	0.27	
GB-19 8-10	8/6/2015 11:30	Mercury	0.5	23.5	0.01	U
GB-19 13-15	8/25/2015 11:30	Mercury	0.5	23.5	0.0079	U
GB-21 8-10	8/6/2015 10:45	Mercury	0.5	23.5	0.0086	U
GB-21 13-15	8/25/2015 11:50	Mercury	0.5	23.5	0.099	
GB-25 2-4	8/10/2015 11:39	Mercury	0.5	23.5	0.0094	J
GB-25 4-6	8/10/2015 11:42	Mercury	0.5	23.5	0.13	
GB-26 2-4	8/10/2015 12:20	Mercury	0.5	23.5	0.32	
GB-26 4-6	8/10/2015 12:25	Mercury	0.5	23.5	0.098	
GB-27 13-15	8/10/2015 12:48	Mercury	0.5	23.5	0.14	
GB-27 3-5	8/10/2015 12:33	Mercury	0.5	23.5	0.91	
GB-27 8-10	8/10/2015 12:45	Mercury	0.5	23.5	0.15	
GB-28 13-15	8/6/2015 14:30	Mercury	0.5	23.5	0.56	
GB-28 2-4	8/6/2015 14:00	Mercury	0.5	23.5	0.011	U
GB-28 8-10	8/6/2015 14:20	Mercury	0.5	23.5	0.061	
GB-3 13-15	8/7/2015 15:42	Mercury	0.5	23.5	0.029	
GB-3 8-10	8/7/2015 15:36	Mercury	0.5	23.5	0.081	
GB-5 8-10	8/7/2015 13:45	Mercury	0.5	23.5	0.18	

Table 3. Analytical Summary Table - Mercury

Macon MGP #2

Macon, Ga

Sample ID	Collection Date	Analyte by Method 7471 B	Type I RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
GB-5 13-15	8/24/2015 15:08	Mercury	0.5	23.5	0.0084	U
GB-5 18	8/24/2015 15:17	Mercury	0.5	23.5	0.0084	U
GB-7 13-15	8/7/2015 10:00	Mercury	0.5	23.5	0.29	F1 F2
GB-7 18	8/7/2015 10:06	Mercury	0.5	23.5	0.13	
GB-7 8-10	8/7/2015 9:54	Mercury	0.5	23.5	0.062	
GB-9 8-10	8/10/2015 9:57	Mercury	0.5	23.5	0.0077	U
GB-9 13-15	8/10/2015 10:06	Mercury	0.5	23.5	0.11	۸
SB-17 13-15	8/7/2015 14:56	Mercury	0.5	23.5	0.17	
SB-17 8-10	8/7/2015 14:50	Mercury	0.5	23.5	0.014	J
SB-20 0-2	8/7/2015 15:04	Mercury	0.5	23.5	0.046	
SB-20 2-4	8/7/2015 15:04	Mercury	0.5	23.5	0.028	
SB-24 13-15	8/6/2015 15:50	Mercury	0.5	23.5	0.13	
SB-24 2-4	8/6/2015 15:25	Mercury	0.5	23.5	0.41	
SB-24 4-6	8/6/2015 15:32	Mercury	0.5	23.5	0.43	F1 F2
SB-24 8-10	8/6/2015 15:38	Mercury	0.5	23.5	0.28	
SB-25 0-2	8/10/2015 10:56	Mercury	0.5	23.5	0.086	
SB-25 13-15	8/10/2015 11:21	Mercury	0.5	23.5	0.19	
SB-25 2-4	8/10/2015 10:56	Mercury	0.5	23.5	0.51	
SB-25 4-6	8/10/2015 11:11	Mercury	0.5	23.5	0.01	J
SB-25 8-10	8/10/2015 11:17	Mercury	0.5	23.5	0.029	
SB-41 13-15	8/10/2015 9:28	Mercury	0.5	23.5	0.19	^
SB-41 4-6	8/10/2015 9:20	Mercury	0.5	23.5	0.14	۸
SB-41 8-10	8/10/2015 9:24	Mercury	0.5	23.5	0.28	۸
SB-42 13-15	8/6/2015 16:15	Mercury	0.5	23.5	0.12	
SB-42 2-4	8/6/2015 16:02	Mercury	0.5	23.5	0.057	
SB-42 4-6	8/6/2015 16:05	Mercury	0.5	23.5	0.027	
SB-42 8-10	8/6/2015 16:10	Mercury	0.5	23.5	0.13	

Notes:

Sample ID	Collection Date	Analyte by Method 7471 B	Type I RRS (mg/kg)	Type 2 RRS (mg/kg)	Analytical Result (mg/kg)	Flag
-----------	-----------------	-----------------------------------	-----------------------	--------------------------	---------------------------------	------

Red = Analytical result exceeds the greater of the Type 1 or 2 RRS Mercury CAS # 7439-97-6

[&]quot;U" Flag = Indicates the analyte was analyzed for but not detected.

[&]quot;J" Flag = Result is less than the RL but greater than

[&]quot;^" Flag =

[&]quot;F1" Flag = MS and/or MSD Recovery is outside acceptance limits.

[&]quot;F2" Flag = MS/MSD RPD exceeds control limits.

Sample ID	Collection Date	CAS	Analyte by Method 8260B	Type 1 RRS (mg/kg)	Result (mg/kg)	Flag
GB-5 8-10	8/7/2015 13:45	71-43-2	Benzene	0.5	0.00072	U
GB-5 8-10	8/7/2015 13:45	75-15-0	Carbon disulfide	400	0.0011	U
GB-5 8-10	8/7/2015 13:45	100-41-4	Ethylbenzene	70	0.0013	U
GB-5 8-10	8/7/2015 13:45	75-09-2	Methylene Chloride	0.5	0.00096	U
GB-5 8-10	8/7/2015 13:45	108-88-3	Toluene	100	0.00083	U
GB-5 8-10	8/7/2015 13:45	1330-20-7	Xylenes, Total	1000	0.0011	U
GB-7 8-10	8/7/2015 9:54	71-43-2	Benzene	0.5	0.00074	U
GB-7 8-10	8/7/2015 9:54	75-15-0	Carbon disulfide	400	0.0011	U
GB-7 8-10	8/7/2015 9:54	100-41-4	Ethylbenzene	70	0.0013	U
GB-7 8-10	8/7/2015 9:54	75-09-2	Methylene Chloride	0.5	0.00099	U
GB-7 8-10	8/7/2015 9:54	108-88-3	Toluene	100	0.00085	U
GB-7 8-10	8/7/2015 9:54	1330-20-7	Xylenes, Total	1000	0.0011	U
GB-7 13-15	8/7/2015 10:00	71-43-2	Benzene	0.5	0.00062	U
GB-7 13-15	8/7/2015 10:00	75-15-0	Carbon disulfide	400	0.00093	U
GB-7 13-15	8/7/2015 10:00	100-41-4	Ethylbenzene	70	0.0011	U
GB-7 13-15	8/7/2015 10:00	75-09-2	Methylene Chloride	0.5	0.00083	U
GB-7 13-15	8/7/2015 10:00	108-88-3	Toluene	100	0.00071	U
GB-7 13-15	8/7/2015 10:00	1330-20-7	Xylenes, Total	1000	0.00093	U
GB-7 18	8/7/2015 10:06	71-43-2	Benzene	0.5	0.00065	U
GB-7 18	8/7/2015 10:06	75-15-0	Carbon disulfide	400	0.00098	U
GB-7 18	8/7/2015 10:06	100-41-4	Ethylbenzene	70	0.0012	U
GB-7 18	8/7/2015 10:06	75-09-2	Methylene Chloride	0.5	0.00087	U
GB-7 18	8/7/2015 10:06	108-88-3	Toluene	100	0.00075	U
GB-7 18	8/7/2015 10:06	1330-20-7	Xylenes, Total	1000	0.00098	U
GB-5 13-15	8/24/2015 15:08	71-43-2	Benzene	0.5	0.00066	U
GB-5 13-15	8/24/2015 15:08	75-15-0	Carbon disulfide	400	0.00099	U
GB-5 13-15	8/24/2015 15:08	100-41-4	Ethylbenzene	70	0.0012	U
GB-5 13-15	8/24/2015 15:08	75-09-2	Methylene Chloride	0.5	0.00088	U

GB-5 13-15	8/24/2015 15:08	108-88-3	Toluene	100	0.00076	U
GB-5 13-15	8/24/2015 15:08	1330-20-7	Xylenes, Total	1000	0.00099	U
GB-5 18	8/24/2015 15:17	71-43-2	Benzene	0.5	0.00066	U
GB-5 18	8/24/2015 15:17	75-15-0	Carbon disulfide	400	0.001	U
GB-5 18	8/24/2015 15:17	100-41-4	Ethylbenzene	70	0.0012	U
GB-5 18	8/24/2015 15:17	75-09-2	Methylene Chloride	0.5	0.00089	U
GB-5 18	8/24/2015 15:17	108-88-3	Toluene	100	0.00076	U
GB-5 18	8/24/2015 15:17	1330-20-7	Xylenes, Total	1000	0.001	U

Notes:

[&]quot;U" Flag = Indicates the analyte was analyzed for but not detected.

Sample ID	Collection Date	Analyte by 9012B	Type I RRS (mg/kg)	Result (mg/kg)	Flag
GB-14 3-5	8/6/2015 12:47	Cyanide, Total	20	0.23	U
SB-24 4-6	8/6/2015 15:32	Cyanide, Total	20	0.26	U
SB-24 8-10	8/6/2015 15:38	Cyanide, Total	20	0.29	U
SB-24 13-15	8/6/2015 15:50	Cyanide, Total	20	0.24	U
SB-42 2-4	8/6/2015 16:02	Cyanide, Total	20	0.22	U
SB-42 4-6	8/6/2015 16:05	Cyanide, Total	20	0.23	U
SB-42 8-10	8/6/2015 16:10	Cyanide, Total	20	0.23	U
SB-42 13-15	8/6/2015 16:15	Cyanide, Total	20	0.23	U
GB-16 2-4	8/6/2015 13:29	Cyanide, Total	20	0.42	U
GB-16 4-6	8/6/2015 13:35	Cyanide, Total	20	0.27	U
GB-18 2-4	8/6/2015 15:05	Cyanide, Total	20	0.3	J
GB-14 8-10	8/6/2015 12:54	Cyanide, Total	20	0.86	J
GB-18 4-6	8/6/2015 15:15	Cyanide, Total	20	0.78	
GB-3 8-10	8/7/2015 15:36	Cyanide, Total	20	0.33	U
GB-3 13-15	8/7/2015 15:42	Cyanide, Total	20	0.25	U
GB-5 8-10	8/7/2015 13:45	Cyanide, Total	20	0.48	J
GB-7 8-10	8/7/2015 9:54	Cyanide, Total	20	0.26	U
GB-7 13-15	8/7/2015 10:00	Cyanide, Total	20	0.24	U
GB-7 18	8/7/2015 10:06	Cyanide, Total	20	0.25	U
SB-17 8-10	8/7/2015 14:50	Cyanide, Total	20	0.24	U
SB-17 13-15	8/7/2015 14:56	Cyanide, Total	20	0.24	U
SB-20 0-2	8/7/2015 15:04	Cyanide, Total	20	0.23	U
GB-14 13-15	8/6/2015 12:59	Cyanide, Total	20	0.3	U
SB-20 2-4	8/7/2015 15:04	Cyanide, Total	20	0.25	U
GB-19 8-10	8/6/2015 11:30	Cyanide, Total	20	0.3	U
GB-21 8-10	8/6/2015 10:45	Cyanide, Total	20	0.25	U
GB-28 2-4	8/6/2015 14:00	Cyanide, Total	20	0.29	U
GB-28 8-10	8/6/2015 14:20	Cyanide, Total	20	0.24	U

Sample ID	Collection Date	Analyte by 9012B	Type I RRS (mg/kg)	Result (mg/kg)	Flag
GB-28 13-15	8/6/2015 14:30	Cyanide, Total	20	0.24	U
SB-24 2-4	8/6/2015 15:25	Cyanide, Total	20	0.25	U

Notes:

Total Cyanide CAS #57-12-5

[&]quot;U" Flag = Indicates the analyte was analyzed for but not detected.

[&]quot;J" Flag = Result is less than the RL but greater than or equal to

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
	Note: RR	S are provide	d for detected concentrations not	"J" flagged o	nly.		
GB-11 13-15	8/10/2015 10:41	206-44-0	Fluoranthene			1.6	J
GB-11 13-15	8/10/2015 10:41	129-00-0	Pyrene			1.3	J
GB-11 13-15	8/10/2015 10:41	205-99-2	Benzo[b]fluoranthene			1.1	J
GB-11 13-15	8/10/2015 10:41	85-01-8	Phenanthrene			1	J
GB-11 13-15	8/10/2015 10:41	56-55-3	Benzo[a]anthracene			0.84	J
GB-11 13-15	8/10/2015 10:41	218-01-9	Chrysene			0.78	J
GB-11 13-15	8/10/2015 10:41	50-32-8	Benzo[a]pyrene			0.67	J
GB-11 13-15	8/10/2015 10:41	191-24-2	Benzo[g,h,i]perylene			0.51	J
GB-11 13-15	8/10/2015 10:41	193-39-5	Indeno[1,2,3-cd]pyrene			0.45	J
GB-11 13-15	8/10/2015 10:41	207-08-9	Benzo[k]fluoranthene			0.43	J
GB-11 13-15	8/10/2015 10:41	120-12-7	Anthracene			0.22	J
GB-11 13-15	8/10/2015 10:41	92-52-4	1,1'-Biphenyl			9.7	U
GB-11 13-15	8/10/2015 10:41	51-28-5	2,4-Dinitrophenol			4.7	U
GB-11 13-15	8/10/2015 10:41	100-02-7	4-Nitrophenol			1.9	U
GB-11 13-15	8/10/2015 10:41	87-86-5	Pentachlorophenol			1.9	U
GB-11 13-15	8/10/2015 10:41	534-52-1	4,6-Dinitro-2-methylphenol			0.97	U
GB-11 13-15	8/10/2015 10:41	105-60-2	Caprolactam			0.38	U
GB-11 13-15	8/10/2015 10:41	100-52-7	Benzaldehyde			0.33	U
GB-11 13-15	8/10/2015 10:41	106-47-8	4-Chloroaniline			0.3	U
GB-11 13-15	8/10/2015 10:41	121-14-2	2,4-Dinitrotoluene			0.28	U
GB-11 13-15	8/10/2015 10:41	100-01-6	4-Nitroaniline			0.28	U
GB-11 13-15	8/10/2015 10:41	88-74-4	2-Nitroaniline			0.26	U
GB-11 13-15	8/10/2015 10:41	99-09-2	3-Nitroaniline			0.26	U
GB-11 13-15	8/10/2015 10:41	105-67-9	2,4-Dimethylphenol			0.25	U
GB-11 13-15	8/10/2015 10:41	15831-10-4	3 & 4 Methylphenol			0.25	U
GB-11 13-15	8/10/2015 10:41	7005-72-3	4-Chlorophenyl phenyl ether			0.25	U
GB-11 13-15		606-20-2	2,6-Dinitrotoluene			0.24	U
GB-11 13-15	8/10/2015 10:41	95-57-8	2-Chlorophenol			0.23	U
GB-11 13-15	8/10/2015 10:41	88-75-5	2-Nitrophenol			0.23	U
GB-11 13-15	8/10/2015 10:41	83-32-9	Acenaphthene			0.23	U
GB-11 13-15	8/10/2015 10:41	77-47-4	Hexachlorocyclopentadiene			0.23	U
GB-11 13-15	8/10/2015 10:41	91-57-6	2-Methylnaphthalene			0.22	U
GB-11 13-15	8/10/2015 10:41	111-91-1	Bis(2-chloroethoxy)methane			0.22	U
GB-11 13-15	8/10/2015 10:41	53-70-3	Dibenz(a,h)anthracene			0.22	U
GB-11 13-15	8/10/2015 10:41	118-74-1	Hexachlorobenzene			0.22	U
GB-11 13-15	8/10/2015 10:41	101-55-3	4-Bromophenyl phenyl ether			0.21	U
GB-11 13-15	8/10/2015 10:41	208-96-8	Acenaphthylene			0.21	U
GB-11 13-15	8/10/2015 10:41	84-66-2	Diethyl phthalate			0.21	U
GB-11 13-15	8/10/2015 10:41	86-73-7	Fluorene			0.21	U
GB-11 13-15	8/10/2015 10:41	87-68-3	Hexachlorobutadiene			0.21	U
GB-11 13-15	8/10/2015 10:41	95-95-4	2,4,5-Trichlorophenol			0.2	U
GB-11 13-15 GB-11 13-15	8/10/2015 10:41	120-83-2	2,4-Dichlorophenol			0.2	U
OD-11 12-12	0/ 10/ 2013 10.41	120-03-2	2,4-Dictrior optienor		<u> </u>	U.Z	U

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-11 13-15	8/10/2015 10:41	91-58-7	2-Chloronaphthalene			0.2	U
GB-11 13-15	8/10/2015 10:41	59-50-7	4-Chloro-3-methylphenol			0.2	U
GB-11 13-15	8/10/2015 10:41	132-64-9	Dibenzofuran			0.19	U
GB-11 13-15	8/10/2015 10:41	131-11-3	Dimethyl phthalate			0.19	U
GB-11 13-15	8/10/2015 10:41	78-59-1	Isophorone			0.19	U
GB-11 13-15	8/10/2015 10:41	86-30-6	N-Nitrosodiphenylamine			0.19	U
GB-11 13-15	8/10/2015 10:41	108-95-2	Phenol			0.19	U
GB-11 13-15	8/10/2015 10:41	621-64-7	N-Nitrosodi-n-propylamine			0.18	U
GB-11 13-15	8/10/2015 10:41	88-06-2	2,4,6-Trichlorophenol			0.17	U
GB-11 13-15	8/10/2015 10:41	108-60-1	bis (2-chloroisopropyl) ether			0.17	U
GB-11 13-15	8/10/2015 10:41	117-81-7	Bis(2-ethylhexyl) phthalate			0.17	U
GB-11 13-15	8/10/2015 10:41	86-74-8	Carbazole			0.17	U
GB-11 13-15	8/10/2015 10:41	84-74-2	Di-n-butyl phthalate			0.17	U
GB-11 13-15	8/10/2015 10:41	117-84-0	Di-n-octyl phthalate			0.17	U
GB-11 13-15	8/10/2015 10:41	91-20-3	Naphthalene			0.17	U
GB-11 13-15	8/10/2015 10:41	91-94-1	3,3'-Dichlorobenzidine			0.16	U
GB-11 13-15	8/10/2015 10:41	98-86-2	Acetophenone			0.16	U
GB-11 13-15	8/10/2015 10:41	67-72-1	Hexachloroethane			0.16	U
GB-11 13-15	8/10/2015 10:41	95-48-7	2-Methylphenol			0.15	U
GB-11 13-15	8/10/2015 10:41	85-68-7	Butyl benzyl phthalate			0.15	U
GB-11 13-15	8/10/2015 10:41	98-95-3	Nitrobenzene			0.15	U
GB-11 13-15	8/10/2015 10:41	1912-24-9	Atrazine			0.13	U
GB-11 13-15	8/10/2015 10:41	111-44-4	Bis(2-chloroethyl)ether			0.26	U *
GB-11 13-15	8/10/2015 10:41	321-60-8	2-Fluorobiphenyl	NL	NL	3.2	
GB-11 3-5	8/10/2015 10:31	92-52-4	1,1'-Biphenyl			9.7	U
GB-11 3-5	8/10/2015 10:31	51-28-5	2,4-Dinitrophenol			4.7	U
GB-11 3-5	8/10/2015 10:31	100-02-7	4-Nitrophenol			1.9	U
GB-11 3-5	8/10/2015 10:31	87-86-5	Pentachlorophenol			1.9	U
GB-11 3-5	8/10/2015 10:31	534-52-1	4,6-Dinitro-2-methylphenol			0.97	U
GB-11 3-5	8/10/2015 10:31	105-60-2	Caprolactam			0.38	U
GB-11 3-5	8/10/2015 10:31	207-08-9	Benzo[k]fluoranthene			0.37	U
GB-11 3-5	8/10/2015 10:31	100-52-7	Benzaldehyde			0.33	U
GB-11 3-5	8/10/2015 10:31	106-47-8	4-Chloroaniline			0.3	U
GB-11 3-5	8/10/2015 10:31	50-32-8	Benzo[a]pyrene			0.3	U
GB-11 3-5	8/10/2015 10:31	121-14-2	2,4-Dinitrotoluene			0.28	U
GB-11 3-5	8/10/2015 10:31	100-01-6	4-Nitroaniline			0.28	U
GB-11 3-5	8/10/2015 10:31	88-74-4	2-Nitroaniline			0.26	U
GB-11 3-5	8/10/2015 10:31	99-09-2	3-Nitroaniline			0.26	U
GB-11 3-5	8/10/2015 10:31	105-67-9	2,4-Dimethylphenol	1		0.25	U
GB-11 3-5	8/10/2015 10:31	15831-10-4	3 & 4 Methylphenol	1		0.25	U
GB-11 3-5	8/10/2015 10:31	7005-72-3	4-Chlorophenyl phenyl ether	1		0.25	U
GB-11 3-5	8/10/2015 10:31	606-20-2	2,6-Dinitrotoluene			0.24	U
GB-11 3-5	8/10/2015 10:31	95-57-8	2-Chlorophenol			0.23	U

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-11 3-5	8/10/2015 10:31	88-75-5	2-Nitrophenol			0.23	U
GB-11 3-5	8/10/2015 10:31	83-32-9	Acenaphthene			0.23	U
GB-11 3-5	8/10/2015 10:31	77-47-4	Hexachlorocyclopentadiene			0.23	U
GB-11 3-5	8/10/2015 10:31	91-57-6	2-Methylnaphthalene			0.22	U
GB-11 3-5	8/10/2015 10:31	205-99-2	Benzo[b]fluoranthene			0.22	U
GB-11 3-5	8/10/2015 10:31	111-91-1	Bis(2-chloroethoxy)methane			0.22	U
GB-11 3-5	8/10/2015 10:31	53-70-3	Dibenz(a,h)anthracene			0.22	U
GB-11 3-5	8/10/2015 10:31	118-74-1	Hexachlorobenzene			0.22	U
GB-11 3-5	8/10/2015 10:31	101-55-3	4-Bromophenyl phenyl ether			0.21	U
GB-11 3-5	8/10/2015 10:31	208-96-8	Acenaphthylene			0.21	U
GB-11 3-5	8/10/2015 10:31	84-66-2	Diethyl phthalate			0.21	U
GB-11 3-5	8/10/2015 10:31	86-73-7	Fluorene			0.21	U
GB-11 3-5	8/10/2015 10:31	87-68-3	Hexachlorobutadiene			0.21	U
GB-11 3-5	8/10/2015 10:31	95-95-4	2,4,5-Trichlorophenol			0.2	U
GB-11 3-5	8/10/2015 10:31	120-83-2	2,4-Dichlorophenol			0.2	U
GB-11 3-5	8/10/2015 10:31	91-58-7	2-Chloronaphthalene			0.2	U
GB-11 3-5	8/10/2015 10:31	59-50-7	4-Chloro-3-methylphenol			0.2	U
GB-11 3-5	8/10/2015 10:31	132-64-9	Dibenzofuran			0.19	U
GB-11 3-5	8/10/2015 10:31	131-11-3	Dimethyl phthalate			0.19	U
GB-11 3-5	8/10/2015 10:31	78-59-1	Isophorone			0.19	U
GB-11 3-5	8/10/2015 10:31	86-30-6	N-Nitrosodiphenylamine			0.19	U
GB-11 3-5	8/10/2015 10:31	108-95-2	Phenol			0.19	U
GB-11 3-5	8/10/2015 10:31	206-44-0	Fluoranthene			0.18	U
GB-11 3-5	8/10/2015 10:31	621-64-7	N-Nitrosodi-n-propylamine			0.18	U
GB-11 3-5	8/10/2015 10:31	88-06-2	2,4,6-Trichlorophenol			0.17	U
GB-11 3-5	8/10/2015 10:31	108-60-1	bis (2-chloroisopropyl) ether			0.17	U
GB-11 3-5	8/10/2015 10:31	117-81-7	Bis(2-ethylhexyl) phthalate			0.17	U
GB-11 3-5	8/10/2015 10:31	86-74-8	Carbazole			0.17	U
GB-11 3-5	8/10/2015 10:31	84-74-2	Di-n-butyl phthalate			0.17	U
GB-11 3-5	8/10/2015 10:31	117-84-0	Di-n-octyl phthalate			0.17	U
GB-11 3-5	8/10/2015 10:31	91-20-3	Naphthalene			0.17	U
GB-11 3-5	8/10/2015 10:31	91-94-1	3,3'-Dichlorobenzidine			0.16	U
GB-11 3-5	8/10/2015 10:31	98-86-2	Acetophenone			0.16	U
GB-11 3-5	8/10/2015 10:31	67-72-1	Hexachloroethane			0.16	U
GB-11 3-5	8/10/2015 10:31	193-39-5	Indeno[1,2,3-cd]pyrene			0.16	U
GB-11 3-5	8/10/2015 10:31	95-48-7	2-Methylphenol			0.15	U
GB-11 3-5	8/10/2015 10:31	56-55-3	Benzo[a]anthracene			0.15	U
GB-11 3-5	8/10/2015 10:31	85-68-7	Butyl benzyl phthalate			0.15	U
GB-11 3-5	8/10/2015 10:31	98-95-3	Nitrobenzene			0.15	U
GB-11 3-5 GB-11 3-5	8/10/2015 10:31	85-01-8	Phenanthrene			0.15	U
GB-11 3-5 GB-11 3-5	8/10/2015 10:31	129-00-0	Pyrene			0.15	U
GB-11 3-5 GB-11 3-5	8/10/2015 10:31	120-12-7	Anthracene			0.13	U
GB-11 3-5 GB-11 3-5	8/10/2015 10:31	1912-24-9	Atrazine			0.14	U
OD-TT 2-2	0/ 10/ 5010 10:01	1312-24-9	Attazille			0.13	U

Client Sample				Type 1 RRS	Type 2 RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-11 3-5	8/10/2015 10:31	191-24-2	Benzo[g,h,i]perylene	(6161	(6)6)	0.13	U
GB-11 3-5	8/10/2015 10:31	218-01-9	Chrysene			0.12	U
GB-11 3-5	8/10/2015 10:31	111-44-4	Bis(2-chloroethyl)ether			0.26	U*
GB-11 3-5	8/10/2015 10:31	321-60-8	2-Fluorobiphenyl	NL	NL	2.8	
GB-11 8-10	8/10/2015 10:36	92-52-4	1,1'-Biphenyl			9.7	U
GB-11 8-10	8/10/2015 10:36	51-28-5	2,4-Dinitrophenol			4.7	U
GB-11 8-10	8/10/2015 10:36	100-02-7	4-Nitrophenol			1.9	U
GB-11 8-10	8/10/2015 10:36	87-86-5	Pentachlorophenol			1.9	U
GB-11 8-10	8/10/2015 10:36	534-52-1	4,6-Dinitro-2-methylphenol			0.97	U
GB-11 8-10	8/10/2015 10:36	105-60-2	Caprolactam			0.38	U
GB-11 8-10	8/10/2015 10:36	207-08-9	Benzo[k]fluoranthene			0.37	U
GB-11 8-10	8/10/2015 10:36	100-52-7	Benzaldehyde			0.33	U
GB-11 8-10	8/10/2015 10:36	106-47-8	4-Chloroaniline			0.3	U
GB-11 8-10	8/10/2015 10:36	50-32-8	Benzo[a]pyrene			0.3	U
GB-11 8-10	8/10/2015 10:36	121-14-2	2,4-Dinitrotoluene			0.28	U
GB-11 8-10	8/10/2015 10:36	100-01-6	4-Nitroaniline			0.28	U
GB-11 8-10	8/10/2015 10:36	88-74-4	2-Nitroaniline			0.26	U
GB-11 8-10	8/10/2015 10:36	99-09-2	3-Nitroaniline			0.26	U
GB-11 8-10	8/10/2015 10:36	105-67-9	2,4-Dimethylphenol			0.25	U
GB-11 8-10	8/10/2015 10:36	15831-10-4	3 & 4 Methylphenol			0.25	U
GB-11 8-10	8/10/2015 10:36	7005-72-3	4-Chlorophenyl phenyl ether			0.25	U
GB-11 8-10	8/10/2015 10:36	606-20-2	2,6-Dinitrotoluene			0.24	U
GB-11 8-10	8/10/2015 10:36	95-57-8	2-Chlorophenol			0.23	U
GB-11 8-10	8/10/2015 10:36	88-75-5	2-Nitrophenol			0.23	U
GB-11 8-10	8/10/2015 10:36	83-32-9	Acenaphthene			0.23	U
GB-11 8-10	8/10/2015 10:36	77-47-4	Hexachlorocyclopentadiene			0.23	U
GB-11 8-10	8/10/2015 10:36	91-57-6	2-Methylnaphthalene			0.22	U
GB-11 8-10	8/10/2015 10:36	205-99-2	Benzo[b]fluoranthene			0.22	U
GB-11 8-10	8/10/2015 10:36	111-91-1	Bis(2-chloroethoxy)methane			0.22	U
GB-11 8-10	8/10/2015 10:36	53-70-3	Dibenz(a,h)anthracene			0.22	U
GB-11 8-10	8/10/2015 10:36	118-74-1	Hexachlorobenzene			0.22	U
GB-11 8-10	8/10/2015 10:36	101-55-3	4-Bromophenyl phenyl ether			0.21	U
GB-11 8-10	8/10/2015 10:36	208-96-8	Acenaphthylene			0.21	U
GB-11 8-10	8/10/2015 10:36	84-66-2	Diethyl phthalate			0.21	U
GB-11 8-10	8/10/2015 10:36	86-73-7	Fluorene			0.21	U
GB-11 8-10	8/10/2015 10:36	87-68-3	Hexachlorobutadiene			0.21	U
GB-11 8-10	8/10/2015 10:36	95-95-4	2,4,5-Trichlorophenol			0.2	U
GB-11 8-10	8/10/2015 10:36	120-83-2	2,4-Dichlorophenol			0.2	U
GB-11 8-10	8/10/2015 10:36	91-58-7	2-Chloronaphthalene			0.2	U
GB-11 8-10	8/10/2015 10:36	59-50-7	4-Chloro-3-methylphenol			0.2	U
GB-11 8-10	8/10/2015 10:36	132-64-9	Dibenzofuran			0.19	U
GB-11 8-10	8/10/2015 10:36	131-11-3	Dimethyl phthalate			0.19	U
GB-11 8-10	8/10/2015 10:36	78-59-1	Isophorone			0.19	U

Client Sample				Type 1 RRS	Type 2 RRS	Result	
ID	Collection Date	CAS	Analyta by Mathad 9270D				Flog
GB-11 8-10	8/10/2015 10:36	86-30-6	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg) 0.19	Flag U
GB-11 8-10 GB-11 8-10	8/10/2015 10:36	108-95-2	N-Nitrosodiphenylamine Phenol			0.19	U
GB-11 8-10 GB-11 8-10	8/10/2015 10:36	206-44-0	Fluoranthene	+		0.19	U
GB-11 8-10 GB-11 8-10	8/10/2015 10:36	621-64-7	N-Nitrosodi-n-propylamine	+		0.18	U
GB-11 8-10 GB-11 8-10	8/10/2015 10:36	88-06-2	2,4,6-Trichlorophenol			0.18	U
GB-11 8-10 GB-11 8-10	8/10/2015 10:36	108-60-1	bis (2-chloroisopropyl) ether			0.17	U
GB-11 8-10 GB-11 8-10	8/10/2015 10:36	117-81-7	Bis(2-ethylhexyl) phthalate			0.17	U
GB-11 8-10 GB-11 8-10	8/10/2015 10:36	86-74-8	Carbazole			0.17	U
GB-11 8-10 GB-11 8-10	8/10/2015 10:36	84-74-2				0.17	U
GB-11 8-10 GB-11 8-10	8/10/2015 10:36	117-84-0	Di-n-butyl phthalate	+		0.17	U
GB-11 8-10 GB-11 8-10			Di-n-octyl phthalate				
	8/10/2015 10:36	91-20-3	Naphthalene			0.17	U
GB-11 8-10	8/10/2015 10:36	91-94-1	3,3'-Dichlorobenzidine			0.16	U
GB-11 8-10	8/10/2015 10:36	98-86-2	Acetophenone			0.16	U
GB-11 8-10	8/10/2015 10:36	67-72-1	Hexachloroethane			0.16	U
GB-11 8-10	8/10/2015 10:36	193-39-5	Indeno[1,2,3-cd]pyrene			0.16	U
GB-11 8-10	8/10/2015 10:36	95-48-7	2-Methylphenol			0.15	U
GB-11 8-10	8/10/2015 10:36	56-55-3	Benzo[a]anthracene			0.15	U
GB-11 8-10	8/10/2015 10:36	85-68-7	Butyl benzyl phthalate			0.15	U
GB-11 8-10	8/10/2015 10:36	98-95-3	Nitrobenzene			0.15	U
GB-11 8-10	8/10/2015 10:36	85-01-8	Phenanthrene			0.15	U
GB-11 8-10	8/10/2015 10:36	129-00-0	Pyrene			0.15	U
GB-11 8-10	8/10/2015 10:36	120-12-7	Anthracene			0.14	U
GB-11 8-10	8/10/2015 10:36	1912-24-9	Atrazine			0.13	U
GB-11 8-10	8/10/2015 10:36	191-24-2	Benzo[g,h,i]perylene			0.13	U
GB-11 8-10	8/10/2015 10:36	218-01-9	Chrysene			0.12	U
GB-11 8-10	8/10/2015 10:36	111-44-4	Bis(2-chloroethyl)ether			0.26	U *
GB-11 8-10	8/10/2015 10:36	321-60-8	2-Fluorobiphenyl	NL	NL	2.3	
GB-14 13-15	8/6/2015 12:59	120-12-7	Anthracene			0.19	J
GB-14 13-15	8/6/2015 12:59	53-70-3	Dibenz(a,h)anthracene			0.14	J
GB-14 13-15	8/6/2015 12:59	91-57-6	2-Methylnaphthalene			0.13	J
GB-14 13-15	8/6/2015 12:59	91-20-3	Naphthalene			0.13	J
GB-14 13-15	8/6/2015 12:59	208-96-8	Acenaphthylene			0.12	J
GB-14 13-15	8/6/2015 12:59	86-73-7	Fluorene			0.075	J
GB-14 13-15	8/6/2015 12:59	83-32-9	Acenaphthene			0.074	J
GB-14 13-15	8/6/2015 12:59	86-74-8	Carbazole			0.071	J
GB-14 13-15	8/6/2015 12:59	132-64-9	Dibenzofuran			0.052	J
GB-14 13-15	8/6/2015 12:59	92-52-4	1,1'-Biphenyl			2.5	U
GB-14 13-15	8/6/2015 12:59	51-28-5	2,4-Dinitrophenol			1.2	U
GB-14 13-15	8/6/2015 12:59	100-02-7	4-Nitrophenol			0.48	U
GB-14 13-15	8/6/2015 12:59	87-86-5	Pentachlorophenol			0.48	U
GB-14 13-15	8/6/2015 12:59	105-60-2	Caprolactam			0.097	U
GB-14 13-15	8/6/2015 12:59	100-52-7	Benzaldehyde			0.085	U
GB-14 13-15	8/6/2015 12:59	106-47-8	4-Chloroaniline			0.076	U
20 14 13-13	0,0,2013 12.33	100 1 7-0	- Chioroannine			0.070	J

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-14 13-15	8/6/2015 12:59	121-14-2	2,4-Dinitrotoluene			0.072	U
GB-14 13-15	8/6/2015 12:59	100-01-6	4-Nitroaniline			0.072	U
GB-14 13-15	8/6/2015 12:59	99-09-2	3-Nitroaniline			0.067	U
GB-14 13-15	8/6/2015 12:59	88-74-4	2-Nitroaniline			0.066	U
GB-14 13-15	8/6/2015 12:59	111-44-4	Bis(2-chloroethyl)ether			0.066	U
GB-14 13-15	8/6/2015 12:59	105-67-9	2,4-Dimethylphenol			0.064	U
GB-14 13-15	8/6/2015 12:59	7005-72-3	4-Chlorophenyl phenyl ether			0.064	U
GB-14 13-15	8/6/2015 12:59	15831-10-4	3 & 4 Methylphenol			0.063	U
GB-14 13-15	8/6/2015 12:59	606-20-2	2,6-Dinitrotoluene			0.061	U
GB-14 13-15	8/6/2015 12:59	88-75-5	2-Nitrophenol			0.06	U
GB-14 13-15	8/6/2015 12:59	77-47-4	Hexachlorocyclopentadiene			0.06	U
GB-14 13-15	8/6/2015 12:59	95-57-8	2-Chlorophenol			0.059	U
GB-14 13-15	8/6/2015 12:59	111-91-1	Bis(2-chloroethoxy)methane			0.057	U
GB-14 13-15	8/6/2015 12:59	118-74-1	Hexachlorobenzene			0.057	U
GB-14 13-15	8/6/2015 12:59	84-66-2	Diethyl phthalate			0.054	U
GB-14 13-15	8/6/2015 12:59	101-55-3	4-Bromophenyl phenyl ether			0.053	U
GB-14 13-15	8/6/2015 12:59	87-68-3	Hexachlorobutadiene			0.053	U
GB-14 13-15	8/6/2015 12:59	95-95-4	2,4,5-Trichlorophenol			0.051	U
GB-14 13-15	8/6/2015 12:59	120-83-2	2,4-Dichlorophenol			0.051	U
GB-14 13-15	8/6/2015 12:59	91-58-7	2-Chloronaphthalene			0.051	U
GB-14 13-15	8/6/2015 12:59	59-50-7	4-Chloro-3-methylphenol			0.051	U
GB-14 13-15	8/6/2015 12:59	131-11-3	Dimethyl phthalate			0.05	U
GB-14 13-15	8/6/2015 12:59	108-95-2	Phenol			0.05	U
GB-14 13-15	8/6/2015 12:59	78-59-1	Isophorone			0.048	U
GB-14 13-15	8/6/2015 12:59	86-30-6	N-Nitrosodiphenylamine			0.048	U
GB-14 13-15	8/6/2015 12:59	621-64-7	N-Nitrosodi-n-propylamine			0.047	U
GB-14 13-15	8/6/2015 12:59	108-60-1	bis (2-chloroisopropyl) ether			0.044	U
GB-14 13-15	8/6/2015 12:59	84-74-2	Di-n-butyl phthalate			0.044	U
GB-14 13-15	8/6/2015 12:59	88-06-2	2,4,6-Trichlorophenol			0.042	U
GB-14 13-15	8/6/2015 12:59	117-81-7	Bis(2-ethylhexyl) phthalate			0.042	U
GB-14 13-15	8/6/2015 12:59	117-84-0	Di-n-octyl phthalate			0.042	U
GB-14 13-15	8/6/2015 12:59	91-94-1	3,3'-Dichlorobenzidine			0.041	U
GB-14 13-15	8/6/2015 12:59	98-86-2	Acetophenone			0.041	U
GB-14 13-15	8/6/2015 12:59	67-72-1	Hexachloroethane			0.041	U
GB-14 13-15	8/6/2015 12:59	95-48-7	2-Methylphenol			0.04	U
GB-14 13-15	8/6/2015 12:59	85-68-7	Butyl benzyl phthalate			0.038	U
GB-14 13-15	8/6/2015 12:59	98-95-3	Nitrobenzene			0.038	U
GB-14 13-15	8/6/2015 12:59	1912-24-9	Atrazine			0.034	U
GB-14 13-15	8/6/2015 12:59	534-52-1	4,6-Dinitro-2-methylphenol			0.25	U*
GB-14 13-15	8/6/2015 12:59	321-60-8	2-Fluorobiphenyl	NL	NL	3.3	
GB-14 13-15	8/6/2015 12:59	206-44-0	Fluoranthene	500	3,130	1.9	
GB-14 13-15	8/6/2015 12:59	129-00-0	Pyrene	500	2,350	1.8	
GB-14 13-15	8/6/2015 12:59	205-99-2	Benzo[b]fluoranthene	5	12.5	1.3	

Client Sample				Type 1 RRS	Type 2 RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-14 13-15	8/6/2015 12:59	218-01-9	Chrysene	5	1,250	1.1	
GB-14 13-15	8/6/2015 12:59	56-55-3	Benzo[a]anthracene	5	12.5	0.97	
GB-14 13-15	8/6/2015 12:59	50-32-8	Benzo[a]pyrene	1.64	1.25	0.92	
GB-14 13-15	8/6/2015 12:59	85-01-8	Phenanthrene	110	2,350	0.89	
GB-14 13-15	8/6/2015 12:59	207-08-9	Benzo[k]fluoranthene	5	125	0.54	
GB-14 13-15	8/6/2015 12:59	191-24-2	Benzo[g,h,i]perylene	500	2,350	0.51	
GB-14 13-15	8/6/2015 12:59	193-39-5	Indeno[1,2,3-cd]pyrene	5	12.5	0.5	
GB-14 3-5	8/6/2015 12:47	321-60-8	2-Fluorobiphenyl			0	D
GB-14 3-5	8/6/2015 12:47	206-44-0	Fluoranthene			3.1	J
GB-14 3-5	8/6/2015 12:47	129-00-0	Pyrene			2.8	J
GB-14 3-5	8/6/2015 12:47	85-01-8	Phenanthrene			2.5	J
GB-14 3-5	8/6/2015 12:47	218-01-9	Chrysene			1.7	J
GB-14 3-5	8/6/2015 12:47	205-99-2	Benzo[b]fluoranthene			1.6	J
GB-14 3-5	8/6/2015 12:47	50-32-8	Benzo[a]pyrene			1.1	J
GB-14 3-5	8/6/2015 12:47	56-55-3	Benzo[a]anthracene			1	J
GB-14 3-5	8/6/2015 12:47	207-08-9	Benzo[k]fluoranthene			0.77	J
GB-14 3-5	8/6/2015 12:47	191-24-2	Benzo[g,h,i]perylene			0.68	J
GB-14 3-5	8/6/2015 12:47	193-39-5	Indeno[1,2,3-cd]pyrene			0.54	J
GB-14 3-5	8/6/2015 12:47	92-52-4	1,1'-Biphenyl			19	U
GB-14 3-5	8/6/2015 12:47	51-28-5	2,4-Dinitrophenol			9.4	U
GB-14 3-5	8/6/2015 12:47	100-02-7	4-Nitrophenol			3.7	U
GB-14 3-5	8/6/2015 12:47	87-86-5	Pentachlorophenol			3.7	U
GB-14 3-5	8/6/2015 12:47	105-60-2	Caprolactam			0.75	U
GB-14 3-5	8/6/2015 12:47	100-52-7	Benzaldehyde			0.66	U
GB-14 3-5	8/6/2015 12:47	106-47-8	4-Chloroaniline			0.59	U
GB-14 3-5	8/6/2015 12:47	121-14-2	2,4-Dinitrotoluene			0.55	U
GB-14 3-5	8/6/2015 12:47	100-01-6	4-Nitroaniline			0.55	U
GB-14 3-5	8/6/2015 12:47	99-09-2	3-Nitroaniline			0.52	U
GB-14 3-5	8/6/2015 12:47	88-74-4	2-Nitroaniline			0.51	U
GB-14 3-5	8/6/2015 12:47	111-44-4	Bis(2-chloroethyl)ether			0.51	U
GB-14 3-5	8/6/2015 12:47	105-67-9	2,4-Dimethylphenol			0.5	U
GB-14 3-5	8/6/2015 12:47	7005-72-3	4-Chlorophenyl phenyl ether			0.5	U
GB-14 3-5	8/6/2015 12:47	15831-10-4	3 & 4 Methylphenol			0.49	U
GB-14 3-5	8/6/2015 12:47	606-20-2	2,6-Dinitrotoluene			0.47	U
GB-14 3-5	8/6/2015 12:47	88-75-5	2-Nitrophenol			0.46	U
GB-14 3-5	8/6/2015 12:47	83-32-9	Acenaphthene			0.46	U
GB-14 3-5	8/6/2015 12:47	77-47-4	Hexachlorocyclopentadiene			0.46	U
GB-14 3-5	8/6/2015 12:47	95-57-8	2-Chlorophenol			0.45	U
GB-14 3-5	8/6/2015 12:47	111-91-1	Bis(2-chloroethoxy)methane			0.44	U
GB-14 3-5	8/6/2015 12:47	53-70-3	Dibenz(a,h)anthracene			0.44	U
GB-14 3-5	8/6/2015 12:47	118-74-1	Hexachlorobenzene			0.44	U
GB-14 3-5	8/6/2015 12:47	91-57-6	2-Methylnaphthalene			0.43	U
GB-14 3-5	8/6/2015 12:47	84-66-2	Diethyl phthalate			0.42	U

Client Sample	Callantian Data	CAS	Aurabata ha Maraba d 0270D	Type 1 RRS		Result	Floor
ID GB-14 3-5	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
	8/6/2015 12:47	101-55-3	4-Bromophenyl phenyl ether	-		0.41	U
GB-14 3-5	8/6/2015 12:47	208-96-8	Acenaphthylene			0.41	U
GB-14 3-5	8/6/2015 12:47	86-73-7	Fluorene			0.41	U
GB-14 3-5	8/6/2015 12:47	87-68-3	Hexachlorobutadiene			0.41	U
GB-14 3-5	8/6/2015 12:47	95-95-4	2,4,5-Trichlorophenol			0.4	U
GB-14 3-5	8/6/2015 12:47	120-83-2	2,4-Dichlorophenol			0.4	U
GB-14 3-5	8/6/2015 12:47	91-58-7	2-Chloronaphthalene			0.4	U
GB-14 3-5	8/6/2015 12:47	59-50-7	4-Chloro-3-methylphenol			0.4	U
GB-14 3-5	8/6/2015 12:47	131-11-3	Dimethyl phthalate			0.38	U
GB-14 3-5	8/6/2015 12:47	108-95-2	Phenol			0.38	U
GB-14 3-5	8/6/2015 12:47	132-64-9	Dibenzofuran			0.37	U
GB-14 3-5	8/6/2015 12:47	78-59-1	Isophorone			0.37	U
GB-14 3-5	8/6/2015 12:47	86-30-6	N-Nitrosodiphenylamine			0.37	U
GB-14 3-5	8/6/2015 12:47	621-64-7	N-Nitrosodi-n-propylamine			0.36	U
GB-14 3-5	8/6/2015 12:47	108-60-1	bis (2-chloroisopropyl) ether			0.34	U
GB-14 3-5	8/6/2015 12:47	86-74-8	Carbazole			0.34	U
GB-14 3-5	8/6/2015 12:47	84-74-2	Di-n-butyl phthalate			0.34	U
GB-14 3-5	8/6/2015 12:47	91-20-3	Naphthalene			0.34	U
GB-14 3-5	8/6/2015 12:47	88-06-2	2,4,6-Trichlorophenol			0.33	U
GB-14 3-5	8/6/2015 12:47	117-81-7	Bis(2-ethylhexyl) phthalate			0.33	U
GB-14 3-5	8/6/2015 12:47	117-84-0	Di-n-octyl phthalate			0.33	U
GB-14 3-5	8/6/2015 12:47	91-94-1	3,3'-Dichlorobenzidine			0.32	U
GB-14 3-5	8/6/2015 12:47	98-86-2	Acetophenone			0.32	U
GB-14 3-5	8/6/2015 12:47	67-72-1	Hexachloroethane			0.32	U
GB-14 3-5	8/6/2015 12:47	95-48-7	2-Methylphenol			0.31	U
GB-14 3-5	8/6/2015 12:47	85-68-7	Butyl benzyl phthalate			0.29	U
GB-14 3-5	8/6/2015 12:47	98-95-3	Nitrobenzene			0.29	U
GB-14 3-5	8/6/2015 12:47	120-12-7	Anthracene			0.28	U
GB-14 3-5	8/6/2015 12:47	1912-24-9	Atrazine			0.26	U
GB-14 3-5	8/6/2015 12:47	534-52-1	4,6-Dinitro-2-methylphenol			1.9	U*
GB-14 8-10	8/6/2015 12:54	321-60-8	2-Fluorobiphenyl			0	D
GB-14 8-10	8/6/2015 12:54	92-52-4	1,1'-Biphenyl			32	U
GB-14 8-10	8/6/2015 12:54	51-28-5	2,4-Dinitrophenol			15	U
GB-14 8-10	8/6/2015 12:54	100-02-7	4-Nitrophenol			6.1	U
GB-14 8-10	8/6/2015 12:54	87-86-5	Pentachlorophenol			6.1	U
GB-14 8-10	8/6/2015 12:54	207-08-9	Benzo[k]fluoranthene			1.2	U
GB-14 8-10	8/6/2015 12:54	105-60-2	Caprolactam			1.2	U
GB-14 8-10 GB-14 8-10	8/6/2015 12:54	100-52-7	Benzaldehyde			1.1	U
GB-14 8-10 GB-14 8-10	8/6/2015 12:54	106-32-7	4-Chloroaniline			0.97	U
GB-14 8-10 GB-14 8-10		-					
	8/6/2015 12:54	50-32-8	Benzo[a]pyrene			0.97	U
GB-14 8-10	8/6/2015 12:54	121-14-2	2,4-Dinitrotoluene			0.91	U
GB-14 8-10	8/6/2015 12:54	100-01-6	4-Nitroaniline			0.91	U
GB-14 8-10	8/6/2015 12:54	99-09-2	3-Nitroaniline			0.86	U

ID Collection Date CAS Analyte by Method 8270D (mg/kg) (mg/k	Result (mg/kg) 0.84 0.82 0.82 0.8 0.76 0.76 0.76 0.76 0.77 0.73 0.73	Flag U U U U U U U U U U U U U
GB-14 8-10 8/6/2015 12:54 88-74-4 2-Nitroaniline GB-14 8-10 8/6/2015 12:54 111-44-4 Bis(2-chloroethyl)ether GB-14 8-10 8/6/2015 12:54 105-67-9 2,4-Dimethylphenol GB-14 8-10 8/6/2015 12:54 7005-72-3 4-Chlorophenyl phenyl ether GB-14 8-10 8/6/2015 12:54 15831-10-4 3 & 4 Methylphenol GB-14 8-10 8/6/2015 12:54 606-20-2 2,6-Dinitrotoluene GB-14 8-10 8/6/2015 12:54 88-75-5 2-Nitrophenol GB-14 8-10 8/6/2015 12:54 83-32-9 Acenaphthene GB-14 8-10 8/6/2015 12:54 77-47-4 Hexachlorocyclopentadiene GB-14 8-10 8/6/2015 12:54 95-57-8 2-Chlorophenol GB-14 8-10 8/6/2015 12:54 111-91-1 Bis(2-chloroethoxy)methane GB-14 8-10 8/6/2015 12:54 118-74-1 Hexachlorobenzene GB-14 8-10 8/6/2015 12:54 91-57-6 2-Methylnaphthalene GB-14 8-10 8/6/2015 12:54 91-57-6 2-Methylnaphthalene GB-14 8-10 8/6/2015 12:54 205-99-2 Benzo[b]fluoranthene GB-14 8-10 8/6/2015 12:54 84-66-2 Diethyl phthalate GB-14 8-10 8/6/2015 12:54 101-55-3 4-Bromophenyl phenyl ether	0.84 0.82 0.82 0.8 0.78 0.76 0.76 0.76 0.74 0.73 0.73	U U U U U U U U
GB-14 8-10 8/6/2015 12:54 111-44-4 Bis(2-chloroethyl)ether GB-14 8-10 8/6/2015 12:54 105-67-9 2,4-Dimethylphenol GB-14 8-10 8/6/2015 12:54 7005-72-3 4-Chlorophenyl phenyl ether GB-14 8-10 8/6/2015 12:54 15831-10-4 3 & 4 Methylphenol GB-14 8-10 8/6/2015 12:54 606-20-2 2,6-Dinitrotoluene GB-14 8-10 8/6/2015 12:54 88-75-5 2-Nitrophenol GB-14 8-10 8/6/2015 12:54 83-32-9 Acenaphthene GB-14 8-10 8/6/2015 12:54 77-47-4 Hexachlorocyclopentadiene GB-14 8-10 8/6/2015 12:54 95-57-8 2-Chlorophenol GB-14 8-10 8/6/2015 12:54 111-91-1 Bis(2-chloroethoxy)methane GB-14 8-10 8/6/2015 12:54 118-74-1 Hexachlorobenzene GB-14 8-10 8/6/2015 12:54	0.84 0.82 0.82 0.8 0.78 0.76 0.76 0.76 0.74 0.73 0.73	U U U U U U U
GB-14 8-10 8/6/2015 12:54 105-67-9 2,4-Dimethylphenol GB-14 8-10 8/6/2015 12:54 7005-72-3 4-Chlorophenyl phenyl ether GB-14 8-10 8/6/2015 12:54 15831-10-4 3 & 4 Methylphenol GB-14 8-10 8/6/2015 12:54 606-20-2 2,6-Dinitrotoluene GB-14 8-10 8/6/2015 12:54 88-75-5 2-Nitrophenol GB-14 8-10 8/6/2015 12:54 83-32-9 Acenaphthene GB-14 8-10 8/6/2015 12:54 77-47-4 Hexachlorocyclopentadiene GB-14 8-10 8/6/2015 12:54 95-57-8 2-Chlorophenol GB-14 8-10 8/6/2015 12:54 111-91-1 Bis(2-chloroethoxy)methane GB-14 8-10 8/6/2015 12:54 53-70-3 Dibenz(a,h)anthracene GB-14 8-10 8/6/2015 12:54 118-74-1 Hexachlorobenzene GB-14 8-10 8/6/2015 12:54 91-57-6 2-Methylnaphthalene GB-14 8-10 8/6/2015 12:54 205-99-2 Benzo[b]fluoranthene GB-14 8-10 8/6/2015 12:54 84-66-2 Diethyl phthalate GB-14 8-10 8/6/2015 12:54 84-66-2 Diethyl phthalate	0.82 0.82 0.8 0.78 0.76 0.76 0.76 0.76 0.74 0.73	U U U U U U U
GB-14 8-10 8/6/2015 12:54 7005-72-3 4-Chlorophenyl phenyl ether GB-14 8-10 8/6/2015 12:54 15831-10-4 3 & 4 Methylphenol GB-14 8-10 8/6/2015 12:54 606-20-2 2,6-Dinitrotoluene GB-14 8-10 8/6/2015 12:54 88-75-5 2-Nitrophenol GB-14 8-10 8/6/2015 12:54 83-32-9 Acenaphthene GB-14 8-10 8/6/2015 12:54 77-47-4 Hexachlorocyclopentadiene GB-14 8-10 8/6/2015 12:54 95-57-8 2-Chlorophenol GB-14 8-10 8/6/2015 12:54 111-91-1 Bis(2-chloroethoxy)methane GB-14 8-10 8/6/2015 12:54 53-70-3 Dibenz(a,h)anthracene GB-14 8-10 8/6/2015 12:54 118-74-1 Hexachlorobenzene GB-14 8-10 8/6/2015 12:54 91-57-6 2-Methylnaphthalene GB-14 8-10 8/6/2015 12:54 205-99-2 Benzo[b]fluoranthene GB-14 8-10 8/6/2015 12:54 84-66-2 Diethyl phthalate GB-14 8-10 8/6/2015 12:54 101-55-3 4-Bromophenyl phenyl ether	0.82 0.8 0.78 0.76 0.76 0.76 0.74 0.73 0.73	U U U U U U U U U U U U U U U U U U U
GB-14 8-10 8/6/2015 12:54 15831-10-4 3 & 4 Methylphenol GB-14 8-10 8/6/2015 12:54 606-20-2 2,6-Dinitrotoluene GB-14 8-10 8/6/2015 12:54 88-75-5 2-Nitrophenol GB-14 8-10 8/6/2015 12:54 83-32-9 Acenaphthene GB-14 8-10 8/6/2015 12:54 77-47-4 Hexachlorocyclopentadiene GB-14 8-10 8/6/2015 12:54 95-57-8 2-Chlorophenol GB-14 8-10 8/6/2015 12:54 111-91-1 Bis(2-chloroethoxy)methane GB-14 8-10 8/6/2015 12:54 53-70-3 Dibenz(a,h)anthracene GB-14 8-10 8/6/2015 12:54 118-74-1 Hexachlorobenzene GB-14 8-10 8/6/2015 12:54 91-57-6 2-Methylnaphthalene GB-14 8-10 8/6/2015 12:54 205-99-2 Benzo[b]fluoranthene GB-14 8-10 8/6/2015 12:54 84-66-2 Diethyl phthalate GB-14 8-10 8/6/2015 12:54 101-55-3 4-Bromophenyl phenyl ether	0.8 0.78 0.76 0.76 0.76 0.74 0.73 0.73	U U U U U
GB-14 8-10 8/6/2015 12:54 606-20-2 2,6-Dinitrotoluene GB-14 8-10 8/6/2015 12:54 88-75-5 2-Nitrophenol GB-14 8-10 8/6/2015 12:54 83-32-9 Acenaphthene GB-14 8-10 8/6/2015 12:54 77-47-4 Hexachlorocyclopentadiene GB-14 8-10 8/6/2015 12:54 95-57-8 2-Chlorophenol GB-14 8-10 8/6/2015 12:54 111-91-1 Bis(2-chloroethoxy)methane GB-14 8-10 8/6/2015 12:54 53-70-3 Dibenz(a,h)anthracene GB-14 8-10 8/6/2015 12:54 118-74-1 Hexachlorobenzene GB-14 8-10 8/6/2015 12:54 91-57-6 2-Methylnaphthalene GB-14 8-10 8/6/2015 12:54 205-99-2 Benzo[b]fluoranthene GB-14 8-10 8/6/2015 12:54 84-66-2 Diethyl phthalate GB-14 8-10 8/6/2015 12:54 101-55-3 4-Bromophenyl phenyl ether	0.78 0.76 0.76 0.76 0.74 0.73 0.73	U U U U
GB-14 8-10 8/6/2015 12:54 88-75-5 2-Nitrophenol GB-14 8-10 8/6/2015 12:54 83-32-9 Acenaphthene GB-14 8-10 8/6/2015 12:54 77-47-4 Hexachlorocyclopentadiene GB-14 8-10 8/6/2015 12:54 95-57-8 2-Chlorophenol GB-14 8-10 8/6/2015 12:54 111-91-1 Bis(2-chloroethoxy)methane GB-14 8-10 8/6/2015 12:54 53-70-3 Dibenz(a,h)anthracene GB-14 8-10 8/6/2015 12:54 118-74-1 Hexachlorobenzene GB-14 8-10 8/6/2015 12:54 91-57-6 2-Methylnaphthalene GB-14 8-10 8/6/2015 12:54 205-99-2 Benzo[b]fluoranthene GB-14 8-10 8/6/2015 12:54 84-66-2 Diethyl phthalate GB-14 8-10 8/6/2015 12:54 101-55-3 4-Bromophenyl phenyl ether	0.76 0.76 0.76 0.74 0.73 0.73	U U U
GB-14 8-10 8/6/2015 12:54 83-32-9 Acenaphthene GB-14 8-10 8/6/2015 12:54 77-47-4 Hexachlorocyclopentadiene GB-14 8-10 8/6/2015 12:54 95-57-8 2-Chlorophenol GB-14 8-10 8/6/2015 12:54 111-91-1 Bis(2-chloroethoxy)methane GB-14 8-10 8/6/2015 12:54 53-70-3 Dibenz(a,h)anthracene GB-14 8-10 8/6/2015 12:54 118-74-1 Hexachlorobenzene GB-14 8-10 8/6/2015 12:54 91-57-6 2-Methylnaphthalene GB-14 8-10 8/6/2015 12:54 205-99-2 Benzo[b]fluoranthene GB-14 8-10 8/6/2015 12:54 84-66-2 Diethyl phthalate GB-14 8-10 8/6/2015 12:54 101-55-3 4-Bromophenyl phenyl ether	0.76 0.76 0.74 0.73 0.73	U U U
GB-14 8-10 8/6/2015 12:54 77-47-4 Hexachlorocyclopentadiene GB-14 8-10 8/6/2015 12:54 95-57-8 2-Chlorophenol GB-14 8-10 8/6/2015 12:54 111-91-1 Bis(2-chloroethoxy)methane GB-14 8-10 8/6/2015 12:54 53-70-3 Dibenz(a,h)anthracene GB-14 8-10 8/6/2015 12:54 118-74-1 Hexachlorobenzene GB-14 8-10 8/6/2015 12:54 91-57-6 2-Methylnaphthalene GB-14 8-10 8/6/2015 12:54 205-99-2 Benzo[b]fluoranthene GB-14 8-10 8/6/2015 12:54 84-66-2 Diethyl phthalate GB-14 8-10 8/6/2015 12:54 101-55-3 4-Bromophenyl phenyl ether	0.76 0.74 0.73 0.73	U U
GB-14 8-10 8/6/2015 12:54 95-57-8 2-Chlorophenol GB-14 8-10 8/6/2015 12:54 111-91-1 Bis(2-chloroethoxy)methane GB-14 8-10 8/6/2015 12:54 53-70-3 Dibenz(a,h)anthracene GB-14 8-10 8/6/2015 12:54 118-74-1 Hexachlorobenzene GB-14 8-10 8/6/2015 12:54 91-57-6 2-Methylnaphthalene GB-14 8-10 8/6/2015 12:54 205-99-2 Benzo[b]fluoranthene GB-14 8-10 8/6/2015 12:54 84-66-2 Diethyl phthalate GB-14 8-10 8/6/2015 12:54 101-55-3 4-Bromophenyl phenyl ether	0.74 0.73 0.73	U
GB-14 8-10 8/6/2015 12:54 111-91-1 Bis(2-chloroethoxy)methane GB-14 8-10 8/6/2015 12:54 53-70-3 Dibenz(a,h)anthracene GB-14 8-10 8/6/2015 12:54 118-74-1 Hexachlorobenzene GB-14 8-10 8/6/2015 12:54 91-57-6 2-Methylnaphthalene GB-14 8-10 8/6/2015 12:54 205-99-2 Benzo[b]fluoranthene GB-14 8-10 8/6/2015 12:54 84-66-2 Diethyl phthalate GB-14 8-10 8/6/2015 12:54 101-55-3 4-Bromophenyl phenyl ether	0.73 0.73	
GB-14 8-10 8/6/2015 12:54 53-70-3 Dibenz(a,h)anthracene GB-14 8-10 8/6/2015 12:54 118-74-1 Hexachlorobenzene GB-14 8-10 8/6/2015 12:54 91-57-6 2-Methylnaphthalene GB-14 8-10 8/6/2015 12:54 205-99-2 Benzo[b]fluoranthene GB-14 8-10 8/6/2015 12:54 84-66-2 Diethyl phthalate GB-14 8-10 8/6/2015 12:54 101-55-3 4-Bromophenyl phenyl ether	0.73	U
GB-14 8-10 8/6/2015 12:54 118-74-1 Hexachlorobenzene GB-14 8-10 8/6/2015 12:54 91-57-6 2-Methylnaphthalene GB-14 8-10 8/6/2015 12:54 205-99-2 Benzo[b]fluoranthene GB-14 8-10 8/6/2015 12:54 84-66-2 Diethyl phthalate GB-14 8-10 8/6/2015 12:54 101-55-3 4-Bromophenyl phenyl ether		
GB-14 8-10 8/6/2015 12:54 91-57-6 2-Methylnaphthalene GB-14 8-10 8/6/2015 12:54 205-99-2 Benzo[b]fluoranthene GB-14 8-10 8/6/2015 12:54 84-66-2 Diethyl phthalate GB-14 8-10 8/6/2015 12:54 101-55-3 4-Bromophenyl phenyl ether	0.73	U
GB-14 8-10 8/6/2015 12:54 205-99-2 Benzo[b]fluoranthene GB-14 8-10 8/6/2015 12:54 84-66-2 Diethyl phthalate GB-14 8-10 8/6/2015 12:54 101-55-3 4-Bromophenyl phenyl ether		U
GB-14 8-10 8/6/2015 12:54 84-66-2 Diethyl phthalate GB-14 8-10 8/6/2015 12:54 101-55-3 4-Bromophenyl phenyl ether	0.71	U
GB-14 8-10 8/6/2015 12:54 101-55-3 4-Bromophenyl phenyl ether	0.71	U
	0.69	U
	0.67	U
GB-14 8-10 8/6/2015 12:54 208-96-8 Acenaphthylene	0.67	U
	0.67	U
GB-14 8-10 8/6/2015 12:54 87-68-3 Hexachlorobutadiene	0.67	U
GB-14 8-10 8/6/2015 12:54 95-95-4 2,4,5-Trichlorophenol	0.65	U
	0.63	U
	0.63	U
	0.61	U
	0.61	U
	0.61	U
	0.6	U
GB-14 8-10 8/6/2015 12:54 621-64-7 N-Nitrosodi-n-propylamine	0.6	U
	0.56	U
	0.54	U
	0.54	U
	0.54	U
	0.52	U
GB-14 8-10 8/6/2015 12:54 95-48-7 2-Methylphenol	0.52	U

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-14 8-10	8/6/2015 12:54	56-55-3	Benzo[a]anthracene			0.5	U
GB-14 8-10	8/6/2015 12:54	85-01-8	Phenanthrene			0.5	U
GB-14 8-10	8/6/2015 12:54	129-00-0	Pyrene			0.5	U
GB-14 8-10	8/6/2015 12:54	85-68-7	Butyl benzyl phthalate			0.48	U
GB-14 8-10	8/6/2015 12:54	98-95-3	Nitrobenzene			0.48	U
GB-14 8-10	8/6/2015 12:54	120-12-7	Anthracene			0.47	U
GB-14 8-10	8/6/2015 12:54	1912-24-9	Atrazine			0.43	U
GB-14 8-10	8/6/2015 12:54	191-24-2	Benzo[g,h,i]perylene			0.41	U
GB-14 8-10	8/6/2015 12:54	218-01-9	Chrysene			0.39	J
GB-14 8-10	8/6/2015 12:54	534-52-1	4,6-Dinitro-2-methylphenol			3.2	U *
GB-16 2-4	8/6/2015 13:29	117-81-7	Bis(2-ethylhexyl) phthalate			0.3	JB
GB-16 2-4	8/6/2015 13:29	92-52-4	1,1'-Biphenyl			3.5	U
GB-16 2-4	8/6/2015 13:29	51-28-5	2,4-Dinitrophenol			1.7	U
GB-16 2-4	8/6/2015 13:29	100-02-7	4-Nitrophenol			0.69	U
GB-16 2-4	8/6/2015 13:29	87-86-5	Pentachlorophenol			0.69	U
GB-16 2-4	8/6/2015 13:29	207-08-9	Benzo[k]fluoranthene			0.14	U
GB-16 2-4	8/6/2015 13:29	105-60-2	Caprolactam			0.14	U
GB-16 2-4	8/6/2015 13:29	100-52-7	Benzaldehyde			0.12	U
GB-16 2-4	8/6/2015 13:29	106-47-8	4-Chloroaniline			0.11	U
GB-16 2-4	8/6/2015 13:29	50-32-8	Benzo[a]pyrene			0.11	U
GB-16 2-4	8/6/2015 13:29	121-14-2	2,4-Dinitrotoluene			0.1	U
GB-16 2-4	8/6/2015 13:29	100-01-6	4-Nitroaniline			0.1	U
GB-16 2-4	8/6/2015 13:29	99-09-2	3-Nitroaniline			0.096	U
GB-16 2-4	8/6/2015 13:29	88-74-4	2-Nitroaniline			0.094	U
GB-16 2-4	8/6/2015 13:29	111-44-4	Bis(2-chloroethyl)ether			0.094	U
GB-16 2-4	8/6/2015 13:29	105-67-9	2,4-Dimethylphenol			0.092	U
GB-16 2-4	8/6/2015 13:29	7005-72-3	4-Chlorophenyl phenyl ether			0.092	U
GB-16 2-4	8/6/2015 13:29	15831-10-4	3 & 4 Methylphenol			0.09	U
GB-16 2-4	8/6/2015 13:29	606-20-2	2,6-Dinitrotoluene			0.088	U
GB-16 2-4	8/6/2015 13:29	88-75-5	2-Nitrophenol			0.086	U
GB-16 2-4	8/6/2015 13:29	83-32-9	Acenaphthene			0.086	U
GB-16 2-4	8/6/2015 13:29	77-47-4	Hexachlorocyclopentadiene			0.086	U
GB-16 2-4	8/6/2015 13:29	95-57-8	2-Chlorophenol			0.084	U
GB-16 2-4	8/6/2015 13:29	111-91-1	Bis(2-chloroethoxy)methane			0.081	U
GB-16 2-4	8/6/2015 13:29	53-70-3	Dibenz(a,h)anthracene			0.081	U
GB-16 2-4	8/6/2015 13:29	118-74-1	Hexachlorobenzene			0.081	U
GB-16 2-4	8/6/2015 13:29	91-57-6	2-Methylnaphthalene			0.079	U
GB-16 2-4	8/6/2015 13:29	205-99-2	Benzo[b]fluoranthene			0.079	U
GB-16 2-4	8/6/2015 13:29	84-66-2	Diethyl phthalate			0.077	U
GB-16 2-4	8/6/2015 13:29	101-55-3	4-Bromophenyl phenyl ether			0.075	U
GB-16 2-4	8/6/2015 13:29	208-96-8	Acenaphthylene			0.075	U
GB-16 2-4	8/6/2015 13:29	86-73-7	Fluorene			0.075	U
GB-16 2-4	8/6/2015 13:29	87-68-3	Hexachlorobutadiene			0.075	U

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-16 2-4	8/6/2015 13:29	95-95-4	2,4,5-Trichlorophenol			0.073	U
GB-16 2-4	8/6/2015 13:29	120-83-2	2,4-Dichlorophenol			0.073	U
GB-16 2-4	8/6/2015 13:29	91-58-7	2-Chloronaphthalene			0.073	U
GB-16 2-4	8/6/2015 13:29	59-50-7	4-Chloro-3-methylphenol			0.073	U
GB-16 2-4	8/6/2015 13:29	131-11-3	Dimethyl phthalate			0.071	U
GB-16 2-4	8/6/2015 13:29	108-95-2	Phenol			0.071	U
GB-16 2-4	8/6/2015 13:29	132-64-9	Dibenzofuran			0.069	U
GB-16 2-4	8/6/2015 13:29	78-59-1	Isophorone			0.069	U
GB-16 2-4	8/6/2015 13:29	86-30-6	N-Nitrosodiphenylamine			0.069	U
GB-16 2-4	8/6/2015 13:29	206-44-0	Fluoranthene			0.067	U
GB-16 2-4	8/6/2015 13:29	621-64-7	N-Nitrosodi-n-propylamine			0.067	U
GB-16 2-4	8/6/2015 13:29	108-60-1	bis (2-chloroisopropyl) ether			0.063	U
GB-16 2-4	8/6/2015 13:29	86-74-8	Carbazole			0.063	U
GB-16 2-4	8/6/2015 13:29	84-74-2	Di-n-butyl phthalate			0.063	U
GB-16 2-4	8/6/2015 13:29	91-20-3	Naphthalene			0.063	U
GB-16 2-4	8/6/2015 13:29	88-06-2	2,4,6-Trichlorophenol			0.061	U
GB-16 2-4	8/6/2015 13:29	117-84-0	Di-n-octyl phthalate			0.061	U
GB-16 2-4	8/6/2015 13:29	91-94-1	3,3'-Dichlorobenzidine			0.058	U
GB-16 2-4	8/6/2015 13:29	98-86-2	Acetophenone			0.058	U
GB-16 2-4	8/6/2015 13:29	67-72-1	Hexachloroethane			0.058	U
GB-16 2-4	8/6/2015 13:29	193-39-5	Indeno[1,2,3-cd]pyrene			0.058	U
GB-16 2-4	8/6/2015 13:29	95-48-7	2-Methylphenol			0.056	U
GB-16 2-4	8/6/2015 13:29	56-55-3	Benzo[a]anthracene			0.056	U
GB-16 2-4	8/6/2015 13:29	85-01-8	Phenanthrene			0.056	U
GB-16 2-4	8/6/2015 13:29	129-00-0	Pyrene			0.056	U
GB-16 2-4	8/6/2015 13:29	85-68-7	Butyl benzyl phthalate			0.054	U
GB-16 2-4	8/6/2015 13:29	98-95-3	Nitrobenzene			0.054	U
GB-16 2-4	8/6/2015 13:29	120-12-7	Anthracene			0.052	U
GB-16 2-4	8/6/2015 13:29	1912-24-9	Atrazine			0.048	U
GB-16 2-4	8/6/2015 13:29	191-24-2	Benzo[g,h,i]perylene			0.046	U
GB-16 2-4	8/6/2015 13:29	218-01-9	Chrysene			0.044	U
GB-16 2-4	8/6/2015 13:29	534-52-1	4,6-Dinitro-2-methylphenol			0.35	U*
GB-16 2-4	8/6/2015 13:29	321-60-8	2-Fluorobiphenyl	NL	NL	5	
GB-16 4-6	8/6/2015 13:35	117-81-7	Bis(2-ethylhexyl) phthalate			0.24	J B
GB-16 4-6	8/6/2015 13:35	92-52-4	1,1'-Biphenyl			2.3	U
GB-16 4-6	8/6/2015 13:35	100-02-7	4-Nitrophenol			0.44	U
GB-16 4-6	8/6/2015 13:35	87-86-5	Pentachlorophenol			0.44	U
GB-16 4-6	8/6/2015 13:35	105-60-2	Caprolactam			0.088	U
GB-16 4-6	8/6/2015 13:35	207-08-9	Benzo[k]fluoranthene			0.087	U
GB-16 4-6	8/6/2015 13:35	100-52-7	Benzaldehyde			0.078	U
GB-16 4-6	8/6/2015 13:35	106-47-8	4-Chloroaniline			0.07	U
							_
			,				
GB-16 4-6 GB-16 4-6	8/6/2015 13:35 8/6/2015 13:35	50-32-8 121-14-2	Benzo[a]pyrene 2,4-Dinitrotoluene			0.07 0.066	U

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-16 4-6	8/6/2015 13:35	100-01-6	4-Nitroaniline			0.066	U
GB-16 4-6	8/6/2015 13:35	99-09-2	3-Nitroaniline			0.062	U
GB-16 4-6	8/6/2015 13:35	88-74-4	2-Nitroaniline			0.06	U
GB-16 4-6	8/6/2015 13:35	111-44-4	Bis(2-chloroethyl)ether			0.06	U
GB-16 4-6	8/6/2015 13:35	105-67-9	2,4-Dimethylphenol			0.059	U
GB-16 4-6	8/6/2015 13:35	7005-72-3	4-Chlorophenyl phenyl ether			0.059	U
GB-16 4-6	8/6/2015 13:35	15831-10-4	3 & 4 Methylphenol			0.058	U
GB-16 4-6	8/6/2015 13:35	606-20-2	2,6-Dinitrotoluene			0.056	U
GB-16 4-6	8/6/2015 13:35	88-75-5	2-Nitrophenol			0.055	J
GB-16 4-6	8/6/2015 13:35	83-32-9	Acenaphthene			0.055	U
GB-16 4-6	8/6/2015 13:35	77-47-4	Hexachlorocyclopentadiene			0.055	U
GB-16 4-6	8/6/2015 13:35	95-57-8	2-Chlorophenol			0.054	U
GB-16 4-6	8/6/2015 13:35	111-91-1	Bis(2-chloroethoxy)methane			0.052	U
GB-16 4-6	8/6/2015 13:35	53-70-3	Dibenz(a,h)anthracene			0.052	U
GB-16 4-6	8/6/2015 13:35	118-74-1	Hexachlorobenzene			0.052	U
GB-16 4-6	8/6/2015 13:35	91-57-6	2-Methylnaphthalene			0.051	U
GB-16 4-6	8/6/2015 13:35	205-99-2	Benzo[b]fluoranthene			0.051	U
GB-16 4-6	8/6/2015 13:35	84-66-2	Diethyl phthalate			0.049	U
GB-16 4-6	8/6/2015 13:35	101-55-3	4-Bromophenyl phenyl ether			0.048	U
GB-16 4-6	8/6/2015 13:35	208-96-8	Acenaphthylene			0.048	U
GB-16 4-6	8/6/2015 13:35	86-73-7	Fluorene			0.048	U
GB-16 4-6	8/6/2015 13:35	87-68-3	Hexachlorobutadiene			0.048	U
GB-16 4-6	8/6/2015 13:35	95-95-4	2,4,5-Trichlorophenol			0.047	U
GB-16 4-6	8/6/2015 13:35	120-83-2	2,4-Dichlorophenol			0.047	U
GB-16 4-6	8/6/2015 13:35	91-58-7	2-Chloronaphthalene			0.047	U
GB-16 4-6	8/6/2015 13:35	59-50-7	4-Chloro-3-methylphenol			0.047	U
GB-16 4-6	8/6/2015 13:35	131-11-3	Dimethyl phthalate			0.045	U
GB-16 4-6	8/6/2015 13:35	108-95-2	Phenol			0.045	U
GB-16 4-6	8/6/2015 13:35	132-64-9	Dibenzofuran			0.044	U
GB-16 4-6	8/6/2015 13:35	78-59-1	Isophorone			0.044	U
GB-16 4-6	8/6/2015 13:35	86-30-6	N-Nitrosodiphenylamine			0.044	U
GB-16 4-6	8/6/2015 13:35	206-44-0	Fluoranthene			0.043	U
GB-16 4-6	8/6/2015 13:35	621-64-7	N-Nitrosodi-n-propylamine			0.043	U
GB-16 4-6	8/6/2015 13:35	108-60-1	bis (2-chloroisopropyl) ether			0.04	U
GB-16 4-6	8/6/2015 13:35	86-74-8	Carbazole			0.04	U
GB-16 4-6	8/6/2015 13:35	84-74-2	Di-n-butyl phthalate			0.04	U
GB-16 4-6	8/6/2015 13:35	91-20-3	Naphthalene			0.04	U
GB-16 4-6	8/6/2015 13:35	88-06-2	2,4,6-Trichlorophenol			0.039	U
GB-16 4-6	8/6/2015 13:35	117-84-0	Di-n-octyl phthalate			0.039	U
GB-16 4-6	8/6/2015 13:35	98-86-2	Acetophenone			0.037	U
GB-16 4-6	8/6/2015 13:35	67-72-1	Hexachloroethane	1		0.037	U
GB-16 4-6	8/6/2015 13:35	193-39-5	Indeno[1,2,3-cd]pyrene	1		0.037	U
GB-16 4-6	8/6/2015 13:35	95-48-7	2-Methylphenol	1		0.036	U

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-16 4-6	8/6/2015 13:35	56-55-3	Benzo[a]anthracene			0.036	U
GB-16 4-6	8/6/2015 13:35	85-01-8	Phenanthrene			0.036	U
GB-16 4-6	8/6/2015 13:35	129-00-0	Pyrene			0.036	U
GB-16 4-6	8/6/2015 13:35	85-68-7	Butyl benzyl phthalate			0.035	U
GB-16 4-6	8/6/2015 13:35	98-95-3	Nitrobenzene			0.035	U
GB-16 4-6	8/6/2015 13:35	120-12-7	Anthracene			0.033	U
GB-16 4-6	8/6/2015 13:35	1912-24-9	Atrazine			0.031	U
GB-16 4-6	8/6/2015 13:35	191-24-2	Benzo[g,h,i]perylene			0.029	U
GB-16 4-6	8/6/2015 13:35	218-01-9	Chrysene			0.028	U
GB-16 4-6	8/6/2015 13:35	51-28-5	2,4-Dinitrophenol			1.1	U F1
GB-16 4-6	8/6/2015 13:35	91-94-1	3,3'-Dichlorobenzidine			0.037	U F1
			·				
GB-16 4-6	8/6/2015 13:35	534-52-1	4,6-Dinitro-2-methylphenol			0.23	U F2 *
GB-16 4-6	8/6/2015 13:35	321-60-8	2-Fluorobiphenyl	NL	NL	3.1	
GB-18 2-4	8/6/2015 15:05	321-60-8	2-Fluorobiphenyl			0	D
GB-18 2-4	8/6/2015 15:05	206-44-0	Fluoranthene			0.73	J
GB-18 2-4	8/6/2015 15:05	129-00-0	Pyrene			0.7	J
GB-18 2-4	8/6/2015 15:05	85-01-8	Phenanthrene			0.57	J
GB-18 2-4	8/6/2015 15:05	205-99-2	Benzo[b]fluoranthene			0.47	J
GB-18 2-4	8/6/2015 15:05	218-01-9	Chrysene			0.44	J
GB-18 2-4	8/6/2015 15:05	56-55-3	Benzo[a]anthracene			0.39	J
GB-18 2-4	8/6/2015 15:05	92-52-4	1,1'-Biphenyl			19	U
GB-18 2-4	8/6/2015 15:05	51-28-5	2,4-Dinitrophenol			9.2	U
GB-18 2-4	8/6/2015 15:05	100-02-7	4-Nitrophenol			3.6	U
GB-18 2-4	8/6/2015 15:05	87-86-5	Pentachlorophenol			3.6	U
GB-18 2-4	8/6/2015 15:05	105-60-2	Caprolactam			0.73	U
GB-18 2-4	8/6/2015 15:05	207-08-9	Benzo[k]fluoranthene			0.72	U
GB-18 2-4	8/6/2015 15:05	100-52-7	Benzaldehyde			0.64	U
GB-18 2-4	8/6/2015 15:05	106-47-8	4-Chloroaniline			0.57	U
GB-18 2-4	8/6/2015 15:05	50-32-8	Benzo[a]pyrene			0.57	U
GB-18 2-4	8/6/2015 15:05	121-14-2	2,4-Dinitrotoluene			0.54	U
GB-18 2-4	8/6/2015 15:05	100-01-6	4-Nitroaniline			0.54	U
GB-18 2-4	8/6/2015 15:05	99-09-2	3-Nitroaniline			0.51	U
GB-18 2-4	8/6/2015 15:05	88-74-4	2-Nitroaniline			0.5	U
GB-18 2-4	8/6/2015 15:05	111-44-4	Bis(2-chloroethyl)ether			0.5	U
GB-18 2-4	8/6/2015 15:05	105-67-9	2,4-Dimethylphenol			0.49	U
GB-18 2-4	8/6/2015 15:05	7005-72-3	4-Chlorophenyl phenyl ether			0.49	U
GB-18 2-4	8/6/2015 15:05	15831-10-4	3 & 4 Methylphenol			0.47	U
GB-18 2-4	8/6/2015 15:05	88-75-5	2-Nitrophenol			0.45	U
GB-18 2-4	8/6/2015 15:05	83-32-9	Acenaphthene			0.45	U
GB-18 2-4	8/6/2015 15:05	77-47-4	Hexachlorocyclopentadiene			0.45	U
GB-18 2-4	8/6/2015 15:05	95-57-8	2-Chlorophenol			0.44	U
GB-18 2-4 GB-18 2-4	8/6/2015 15:05	111-91-1	Bis(2-chloroethoxy)methane				_
GB-18 2-4	გ/6/2015 1 5:05	111-91-1	Bis(2-chioroethoxy)methane	1		0.43	U

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-18 2-4	8/6/2015 15:05	53-70-3	Dibenz(a,h)anthracene			0.43	U
GB-18 2-4	8/6/2015 15:05	118-74-1	Hexachlorobenzene			0.43	U
GB-18 2-4	8/6/2015 15:05	91-57-6	2-Methylnaphthalene			0.42	U
GB-18 2-4	8/6/2015 15:05	84-66-2	Diethyl phthalate			0.41	U
GB-18 2-4	8/6/2015 15:05	101-55-3	4-Bromophenyl phenyl ether			0.4	U
GB-18 2-4	8/6/2015 15:05	208-96-8	Acenaphthylene			0.4	U
GB-18 2-4	8/6/2015 15:05	86-73-7	Fluorene			0.4	U
GB-18 2-4	8/6/2015 15:05	87-68-3	Hexachlorobutadiene			0.4	U
GB-18 2-4	8/6/2015 15:05	95-95-4	2,4,5-Trichlorophenol			0.39	U
GB-18 2-4	8/6/2015 15:05	120-83-2	2,4-Dichlorophenol			0.39	U
GB-18 2-4	8/6/2015 15:05	91-58-7	2-Chloronaphthalene			0.39	U
GB-18 2-4	8/6/2015 15:05	59-50-7	4-Chloro-3-methylphenol			0.39	U
GB-18 2-4	8/6/2015 15:05	131-11-3	Dimethyl phthalate			0.38	U
GB-18 2-4	8/6/2015 15:05	108-95-2	Phenol			0.38	U
GB-18 2-4	8/6/2015 15:05	132-64-9	Dibenzofuran			0.36	U
GB-18 2-4	8/6/2015 15:05	78-59-1	Isophorone			0.36	U
GB-18 2-4	8/6/2015 15:05	86-30-6	N-Nitrosodiphenylamine			0.36	U
GB-18 2-4	8/6/2015 15:05	621-64-7	N-Nitrosodi-n-propylamine			0.35	U
GB-18 2-4	8/6/2015 15:05	108-60-1	bis (2-chloroisopropyl) ether			0.33	U
GB-18 2-4	8/6/2015 15:05	86-74-8	Carbazole			0.33	U
GB-18 2-4	8/6/2015 15:05	84-74-2	Di-n-butyl phthalate			0.33	U
GB-18 2-4	8/6/2015 15:05	91-20-3	Naphthalene			0.33	U
GB-18 2-4	8/6/2015 15:05	88-06-2	2,4,6-Trichlorophenol			0.32	U
GB-18 2-4	8/6/2015 15:05	117-81-7	Bis(2-ethylhexyl) phthalate			0.32	U
GB-18 2-4	8/6/2015 15:05	117-84-0	Di-n-octyl phthalate			0.32	U
GB-18 2-4	8/6/2015 15:05	91-94-1	3,3'-Dichlorobenzidine			0.31	U
GB-18 2-4	8/6/2015 15:05	98-86-2	Acetophenone			0.31	U
GB-18 2-4	8/6/2015 15:05	67-72-1	Hexachloroethane			0.31	U
GB-18 2-4	8/6/2015 15:05	193-39-5	Indeno[1,2,3-cd]pyrene			0.31	U
GB-18 2-4	8/6/2015 15:05	95-48-7	2-Methylphenol			0.3	U
GB-18 2-4	8/6/2015 15:05	85-68-7	Butyl benzyl phthalate			0.29	U
GB-18 2-4	8/6/2015 15:05	98-95-3	Nitrobenzene			0.29	U
GB-18 2-4	8/6/2015 15:05	120-12-7	Anthracene			0.28	U
GB-18 2-4	8/6/2015 15:05	1912-24-9	Atrazine			0.25	U
GB-18 2-4	8/6/2015 15:05	191-24-2	Benzo[g,h,i]perylene			0.24	U
GB-18 2-4	8/6/2015 15:05	534-52-1	4,6-Dinitro-2-methylphenol			1.9	U*
GB-18 2-4	8/6/2015 15:05	606-20-2	2,6-Dinitrotoluene	100		5.5	-
GB-18 4-6	8/6/2015 15:15	321-60-8	2-Fluorobiphenyl			0	D
GB-18 4-6	8/6/2015 15:15	117-81-7	Bis(2-ethylhexyl) phthalate			0.63	J B
GB-18 4-6	8/6/2015 15:15	92-52-4	1,1'-Biphenyl			19	U
GB-18 4-6	8/6/2015 15:15	51-28-5	2,4-Dinitrophenol			9.1	U
GB-18 4-6	8/6/2015 15:15	100-02-7	4-Nitrophenol			3.6	U
GB-18 4-6	8/6/2015 15:15	87-86-5	Pentachlorophenol			3.6	U

Collection Date CAS Analyte by Method 8270D Type 1 RRS RRS (mg/kg) (mg/k	(g) Flag
GB-18 4-6 8/6/2015 15:15 105-60-2 Caprolactam 0.72 GB-18 4-6 8/6/2015 15:15 207-08-9 Benzo[k]fluoranthene 0.71 GB-18 4-6 8/6/2015 15:15 100-52-7 Benzaldehyde 0.64 GB-18 4-6 8/6/2015 15:15 106-47-8 4-Chloroaniline 0.57 GB-18 4-6 8/6/2015 15:15 50-32-8 Benzo[a]pyrene 0.57 GB-18 4-6 8/6/2015 15:15 121-14-2 2,4-Dinitrotoluene 0.54 GB-18 4-6 8/6/2015 15:15 100-01-6 4-Nitroaniline 0.54 GB-18 4-6 8/6/2015 15:15 99-09-2 3-Nitroaniline 0.5 GB-18 4-6 8/6/2015 15:15 88-74-4 2-Nitroaniline 0.49 GB-18 4-6 8/6/2015 15:15 111-44-4 Bis(2-chloroethyl)ether 0.49 GB-18 4-6 8/6/2015 15:15 105-67-9 2,4-Dimethylphenol 0.48 GB-18 4-6 8/6/2015 15:15 105-67-9 2,4-Dimethylphenol 0.48 GB-18 4-6 8/6/2015 15:15 506-20-2 2,6-Dinitrotoluene	2
GB-18 4-6 8/6/2015 15:15 207-08-9 Benzo[k]fluoranthene 0.71 GB-18 4-6 8/6/2015 15:15 100-52-7 Benzaldehyde 0.64 GB-18 4-6 8/6/2015 15:15 106-47-8 4-Chloroaniline 0.57 GB-18 4-6 8/6/2015 15:15 50-32-8 Benzo[a]pyrene 0.57 GB-18 4-6 8/6/2015 15:15 121-14-2 2,4-Dinitrotoluene 0.54 GB-18 4-6 8/6/2015 15:15 100-01-6 4-Nitroaniline 0.54 GB-18 4-6 8/6/2015 15:15 99-09-2 3-Nitroaniline 0.5 GB-18 4-6 8/6/2015 15:15 88-74-4 2-Nitroaniline 0.49 GB-18 4-6 8/6/2015 15:15 111-44-4 Bis(2-chloroethyl)ether 0.49 GB-18 4-6 8/6/2015 15:15 105-67-9 2,4-Dimethylphenol 0.48 GB-18 4-6 8/6/2015 15:15 105-67-9 2,4-Dimethylphenol 0.48 GB-18 4-6 8/6/2015 15:15 15831-10-4 3 & 4 Methylphenol 0.47 GB-18 4-6 8/6/2015 15:15 88-75-5 2-Nitrophenol </th <th>. U</th>	. U
GB-18 4-6 8/6/2015 15:15 100-52-7 Benzaldehyde 0.64 GB-18 4-6 8/6/2015 15:15 106-47-8 4-Chloroaniline 0.57 GB-18 4-6 8/6/2015 15:15 50-32-8 Benzo[a]pyrene 0.57 GB-18 4-6 8/6/2015 15:15 121-14-2 2,4-Dinitrotoluene 0.54 GB-18 4-6 8/6/2015 15:15 100-01-6 4-Nitroaniline 0.54 GB-18 4-6 8/6/2015 15:15 99-09-2 3-Nitroaniline 0.5 GB-18 4-6 8/6/2015 15:15 88-74-4 2-Nitroaniline 0.49 GB-18 4-6 8/6/2015 15:15 111-44-4 Bis(2-chloroethyl)ether 0.49 GB-18 4-6 8/6/2015 15:15 105-67-9 2,4-Dimethylphenol 0.48 GB-18 4-6 8/6/2015 15:15 7005-72-3 4-Chlorophenyl phenyl ether 0.48 GB-18 4-6 8/6/2015 15:15 15831-10-4 3 & 4 Methylphenol 0.47 GB-18 4-6 8/6/2015 15:15 88-75-5 2-Nitrophenol 0.45 GB-18 4-6 8/6/2015 15:15 83-32-9 Acenaphthene<	U U
GB-18 4-6 8/6/2015 15:15 106-47-8 4-Chloroaniline 0.57 GB-18 4-6 8/6/2015 15:15 50-32-8 Benzo[a]pyrene 0.57 GB-18 4-6 8/6/2015 15:15 121-14-2 2,4-Dinitrotoluene 0.54 GB-18 4-6 8/6/2015 15:15 100-01-6 4-Nitroaniline 0.54 GB-18 4-6 8/6/2015 15:15 99-09-2 3-Nitroaniline 0.49 GB-18 4-6 8/6/2015 15:15 88-74-4 2-Nitroaniline 0.49 GB-18 4-6 8/6/2015 15:15 111-44-4 Bis(2-chloroethyl)ether 0.49 GB-18 4-6 8/6/2015 15:15 105-67-9 2,4-Dimethylphenol 0.48 GB-18 4-6 8/6/2015 15:15 7005-72-3 4-Chlorophenyl phenyl ether 0.48 GB-18 4-6 8/6/2015 15:15 15831-10-4 3 & 4 Methylphenol 0.47 GB-18 4-6 8/6/2015 15:15 8-75-5 2-Nitrophenol 0.45 GB-18 4-6 8/6/2015 15:15 83-32-9 Acenaphthene 0.45 GB-18 4-6 8/6/2015 15:15 77-47-4 Hexachlorocycl	' U
GB-18 4-6 8/6/2015 15:15 50-32-8 Benzo[a]pyrene 0.57 GB-18 4-6 8/6/2015 15:15 121-14-2 2,4-Dinitrotoluene 0.54 GB-18 4-6 8/6/2015 15:15 100-01-6 4-Nitroaniline 0.54 GB-18 4-6 8/6/2015 15:15 99-09-2 3-Nitroaniline 0.49 GB-18 4-6 8/6/2015 15:15 88-74-4 2-Nitroaniline 0.49 GB-18 4-6 8/6/2015 15:15 111-44-4 Bis(2-chloroethyl)ether 0.49 GB-18 4-6 8/6/2015 15:15 105-67-9 2,4-Dimethylphenol 0.48 GB-18 4-6 8/6/2015 15:15 7005-72-3 4-Chlorophenyl phenyl ether 0.48 GB-18 4-6 8/6/2015 15:15 15831-10-4 3 & 4 Methylphenol 0.47 GB-18 4-6 8/6/2015 15:15 606-20-2 2,6-Dinitrotoluene 0.46 GB-18 4-6 8/6/2015 15:15 83-32-9 Acenaphthene 0.45 GB-18 4-6 8/6/2015 15:15 77-47-4 Hexachlorocyclopentadiene 0.45 GB-18 4-6 8/6/2015 15:15 53-70-3 <t< td=""><td>' U</td></t<>	' U
GB-18 4-6 8/6/2015 15:15 121-14-2 2,4-Dinitrotoluene 0.54 GB-18 4-6 8/6/2015 15:15 100-01-6 4-Nitroaniline 0.54 GB-18 4-6 8/6/2015 15:15 99-09-2 3-Nitroaniline 0.5 GB-18 4-6 8/6/2015 15:15 88-74-4 2-Nitroaniline 0.49 GB-18 4-6 8/6/2015 15:15 111-44-4 Bis(2-chloroethyl)ether 0.49 GB-18 4-6 8/6/2015 15:15 105-67-9 2,4-Dimethylphenol 0.48 GB-18 4-6 8/6/2015 15:15 7005-72-3 4-Chlorophenyl phenyl ether 0.48 GB-18 4-6 8/6/2015 15:15 15831-10-4 3 & 4 Methylphenol 0.47 GB-18 4-6 8/6/2015 15:15 606-20-2 2,6-Dinitrotoluene 0.46 GB-18 4-6 8/6/2015 15:15 83-32-9 Acenaphthene 0.45 GB-18 4-6 8/6/2015 15:15 77-47-4 Hexachlorocyclopentadiene 0.45 GB-18 4-6 8/6/2015 15:15 95-57-8 2-Chlorophenol 0.44 GB-18 4-6 8/6/2015 15:15 111-91-1 <t< td=""><td></td></t<>	
GB-18 4-6 8/6/2015 15:15 100-01-6 4-Nitroaniline 0.54 GB-18 4-6 8/6/2015 15:15 99-09-2 3-Nitroaniline 0.5 GB-18 4-6 8/6/2015 15:15 88-74-4 2-Nitroaniline 0.49 GB-18 4-6 8/6/2015 15:15 111-44-4 Bis(2-chloroethyl)ether 0.49 GB-18 4-6 8/6/2015 15:15 105-67-9 2,4-Dimethylphenol 0.48 GB-18 4-6 8/6/2015 15:15 7005-72-3 4-Chlorophenyl phenyl ether 0.48 GB-18 4-6 8/6/2015 15:15 15831-10-4 3 & 4 Methylphenol 0.47 GB-18 4-6 8/6/2015 15:15 606-20-2 2,6-Dinitrotoluene 0.46 GB-18 4-6 8/6/2015 15:15 88-75-5 2-Nitrophenol 0.45 GB-18 4-6 8/6/2015 15:15 83-32-9 Acenaphthene 0.45 GB-18 4-6 8/6/2015 15:15 77-47-4 Hexachlorocyclopentadiene 0.45 GB-18 4-6 8/6/2015 15:15 111-91-1 Bis(2-chloroethoxy)methane 0.43 GB-18 4-6 8/6/2015 15:15 53-70-3	U
GB-18 4-6 8/6/2015 15:15 99-09-2 3-Nitroaniline 0.5 GB-18 4-6 8/6/2015 15:15 88-74-4 2-Nitroaniline 0.49 GB-18 4-6 8/6/2015 15:15 111-44-4 Bis(2-chloroethyl)ether 0.49 GB-18 4-6 8/6/2015 15:15 105-67-9 2,4-Dimethylphenol 0.48 GB-18 4-6 8/6/2015 15:15 7005-72-3 4-Chlorophenyl phenyl ether 0.48 GB-18 4-6 8/6/2015 15:15 15831-10-4 3 & 4 Methylphenol 0.47 GB-18 4-6 8/6/2015 15:15 606-20-2 2,6-Dinitrotoluene 0.46 GB-18 4-6 8/6/2015 15:15 88-75-5 2-Nitrophenol 0.45 GB-18 4-6 8/6/2015 15:15 83-32-9 Acenaphthene 0.45 GB-18 4-6 8/6/2015 15:15 77-47-4 Hexachlorocyclopentadiene 0.45 GB-18 4-6 8/6/2015 15:15 95-57-8 2-Chlorophenol 0.44 GB-18 4-6 8/6/2015 15:15 53-70-3 Dibenz(a,h)anthracene 0.43 GB-18 4-6 8/6/2015 15:15 118-74-1 <t< td=""><td></td></t<>	
GB-18 4-6 8/6/2015 15:15 88-74-4 2-Nitroaniline 0.49 GB-18 4-6 8/6/2015 15:15 111-44-4 Bis(2-chloroethyl)ether 0.49 GB-18 4-6 8/6/2015 15:15 105-67-9 2,4-Dimethylphenol 0.48 GB-18 4-6 8/6/2015 15:15 7005-72-3 4-Chlorophenyl phenyl ether 0.48 GB-18 4-6 8/6/2015 15:15 15831-10-4 3 & 4 Methylphenol 0.47 GB-18 4-6 8/6/2015 15:15 606-20-2 2,6-Dinitrotoluene 0.46 GB-18 4-6 8/6/2015 15:15 88-75-5 2-Nitrophenol 0.45 GB-18 4-6 8/6/2015 15:15 83-32-9 Acenaphthene 0.45 GB-18 4-6 8/6/2015 15:15 77-47-4 Hexachlorocyclopentadiene 0.45 GB-18 4-6 8/6/2015 15:15 95-57-8 2-Chlorophenol 0.44 GB-18 4-6 8/6/2015 15:15 111-91-1 Bis(2-chloroethoxy)methane 0.43 GB-18 4-6 8/6/2015 15:15 53-70-3 Dibenz(a,h)anthracene 0.43 GB-18 4-6 8/6/2015 15:15 118-74-1 </td <td></td>	
GB-18 4-6 8/6/2015 15:15 111-44-4 Bis(2-chloroethyl)ether 0.49 GB-18 4-6 8/6/2015 15:15 105-67-9 2,4-Dimethylphenol 0.48 GB-18 4-6 8/6/2015 15:15 7005-72-3 4-Chlorophenyl phenyl ether 0.48 GB-18 4-6 8/6/2015 15:15 15831-10-4 3 & 4 Methylphenol 0.47 GB-18 4-6 8/6/2015 15:15 606-20-2 2,6-Dinitrotoluene 0.46 GB-18 4-6 8/6/2015 15:15 88-75-5 2-Nitrophenol 0.45 GB-18 4-6 8/6/2015 15:15 83-32-9 Acenaphthene 0.45 GB-18 4-6 8/6/2015 15:15 77-47-4 Hexachlorocyclopentadiene 0.45 GB-18 4-6 8/6/2015 15:15 95-57-8 2-Chlorophenol 0.44 GB-18 4-6 8/6/2015 15:15 111-91-1 Bis(2-chloroethoxy)methane 0.43 GB-18 4-6 8/6/2015 15:15 53-70-3 Dibenz(a,h)anthracene 0.43 GB-18 4-6 8/6/2015 15:15 118-74-1 Hexachlorobenzene 0.43 GB-18 4-6 8/6/2015 15:15 91-57-	U
GB-18 4-6 8/6/2015 15:15 105-67-9 2,4-Dimethylphenol 0.48 GB-18 4-6 8/6/2015 15:15 7005-72-3 4-Chlorophenyl phenyl ether 0.48 GB-18 4-6 8/6/2015 15:15 15831-10-4 3 & 4 Methylphenol 0.47 GB-18 4-6 8/6/2015 15:15 606-20-2 2,6-Dinitrotoluene 0.46 GB-18 4-6 8/6/2015 15:15 88-75-5 2-Nitrophenol 0.45 GB-18 4-6 8/6/2015 15:15 83-32-9 Acenaphthene 0.45 GB-18 4-6 8/6/2015 15:15 77-47-4 Hexachlorocyclopentadiene 0.45 GB-18 4-6 8/6/2015 15:15 95-57-8 2-Chlorophenol 0.44 GB-18 4-6 8/6/2015 15:15 111-91-1 Bis(2-chloroethoxy)methane 0.43 GB-18 4-6 8/6/2015 15:15 53-70-3 Dibenz(a,h)anthracene 0.43 GB-18 4-6 8/6/2015 15:15 118-74-1 Hexachlorobenzene 0.43 GB-18 4-6 8/6/2015 15:15 91-57-6 2-Methylnaphthalene 0.42	U
GB-18 4-6 8/6/2015 15:15 7005-72-3 4-Chlorophenyl phenyl ether 0.48 GB-18 4-6 8/6/2015 15:15 15831-10-4 3 & 4 Methylphenol 0.47 GB-18 4-6 8/6/2015 15:15 606-20-2 2,6-Dinitrotoluene 0.46 GB-18 4-6 8/6/2015 15:15 88-75-5 2-Nitrophenol 0.45 GB-18 4-6 8/6/2015 15:15 83-32-9 Acenaphthene 0.45 GB-18 4-6 8/6/2015 15:15 77-47-4 Hexachlorocyclopentadiene 0.45 GB-18 4-6 8/6/2015 15:15 95-57-8 2-Chlorophenol 0.44 GB-18 4-6 8/6/2015 15:15 111-91-1 Bis(2-chloroethoxy)methane 0.43 GB-18 4-6 8/6/2015 15:15 53-70-3 Dibenz(a,h)anthracene 0.43 GB-18 4-6 8/6/2015 15:15 118-74-1 Hexachlorobenzene 0.43 GB-18 4-6 8/6/2015 15:15 91-57-6 2-Methylnaphthalene 0.42	U
GB-18 4-6 8/6/2015 15:15 15831-10-4 3 & 4 Methylphenol 0.47 GB-18 4-6 8/6/2015 15:15 606-20-2 2,6-Dinitrotoluene 0.46 GB-18 4-6 8/6/2015 15:15 88-75-5 2-Nitrophenol 0.45 GB-18 4-6 8/6/2015 15:15 83-32-9 Acenaphthene 0.45 GB-18 4-6 8/6/2015 15:15 77-47-4 Hexachlorocyclopentadiene 0.45 GB-18 4-6 8/6/2015 15:15 95-57-8 2-Chlorophenol 0.44 GB-18 4-6 8/6/2015 15:15 111-91-1 Bis(2-chloroethoxy)methane 0.43 GB-18 4-6 8/6/2015 15:15 53-70-3 Dibenz(a,h)anthracene 0.43 GB-18 4-6 8/6/2015 15:15 118-74-1 Hexachlorobenzene 0.43 GB-18 4-6 8/6/2015 15:15 91-57-6 2-Methylnaphthalene 0.42	B U
GB-18 4-6 8/6/2015 15:15 606-20-2 2,6-Dinitrotoluene 0.46 GB-18 4-6 8/6/2015 15:15 88-75-5 2-Nitrophenol 0.45 GB-18 4-6 8/6/2015 15:15 83-32-9 Acenaphthene 0.45 GB-18 4-6 8/6/2015 15:15 77-47-4 Hexachlorocyclopentadiene 0.45 GB-18 4-6 8/6/2015 15:15 95-57-8 2-Chlorophenol 0.44 GB-18 4-6 8/6/2015 15:15 111-91-1 Bis(2-chloroethoxy)methane 0.43 GB-18 4-6 8/6/2015 15:15 53-70-3 Dibenz(a,h)anthracene 0.43 GB-18 4-6 8/6/2015 15:15 118-74-1 Hexachlorobenzene 0.43 GB-18 4-6 8/6/2015 15:15 91-57-6 2-Methylnaphthalene 0.42	B U
GB-18 4-6 8/6/2015 15:15 88-75-5 2-Nitrophenol 0.45 GB-18 4-6 8/6/2015 15:15 83-32-9 Acenaphthene 0.45 GB-18 4-6 8/6/2015 15:15 77-47-4 Hexachlorocyclopentadiene 0.45 GB-18 4-6 8/6/2015 15:15 95-57-8 2-Chlorophenol 0.44 GB-18 4-6 8/6/2015 15:15 111-91-1 Bis(2-chloroethoxy)methane 0.43 GB-18 4-6 8/6/2015 15:15 53-70-3 Dibenz(a,h)anthracene 0.43 GB-18 4-6 8/6/2015 15:15 118-74-1 Hexachlorobenzene 0.43 GB-18 4-6 8/6/2015 15:15 91-57-6 2-Methylnaphthalene 0.42	' U
GB-18 4-6 8/6/2015 15:15 83-32-9 Acenaphthene 0.45 GB-18 4-6 8/6/2015 15:15 77-47-4 Hexachlorocyclopentadiene 0.45 GB-18 4-6 8/6/2015 15:15 95-57-8 2-Chlorophenol 0.44 GB-18 4-6 8/6/2015 15:15 111-91-1 Bis(2-chloroethoxy)methane 0.43 GB-18 4-6 8/6/2015 15:15 53-70-3 Dibenz(a,h)anthracene 0.43 GB-18 4-6 8/6/2015 15:15 118-74-1 Hexachlorobenzene 0.43 GB-18 4-6 8/6/2015 15:15 91-57-6 2-Methylnaphthalene 0.42	5 U
GB-18 4-6 8/6/2015 15:15 77-47-4 Hexachlorocyclopentadiene 0.45 GB-18 4-6 8/6/2015 15:15 95-57-8 2-Chlorophenol 0.44 GB-18 4-6 8/6/2015 15:15 111-91-1 Bis(2-chloroethoxy)methane 0.43 GB-18 4-6 8/6/2015 15:15 53-70-3 Dibenz(a,h)anthracene 0.43 GB-18 4-6 8/6/2015 15:15 118-74-1 Hexachlorobenzene 0.43 GB-18 4-6 8/6/2015 15:15 91-57-6 2-Methylnaphthalene 0.42	U
GB-18 4-6 8/6/2015 15:15 95-57-8 2-Chlorophenol 0.44 GB-18 4-6 8/6/2015 15:15 111-91-1 Bis(2-chloroethoxy)methane 0.43 GB-18 4-6 8/6/2015 15:15 53-70-3 Dibenz(a,h)anthracene 0.43 GB-18 4-6 8/6/2015 15:15 118-74-1 Hexachlorobenzene 0.43 GB-18 4-6 8/6/2015 15:15 91-57-6 2-Methylnaphthalene 0.42	5 U
GB-18 4-6 8/6/2015 15:15 111-91-1 Bis(2-chloroethoxy)methane 0.43 GB-18 4-6 8/6/2015 15:15 53-70-3 Dibenz(a,h)anthracene 0.43 GB-18 4-6 8/6/2015 15:15 118-74-1 Hexachlorobenzene 0.43 GB-18 4-6 8/6/2015 15:15 91-57-6 2-Methylnaphthalene 0.42	. U
GB-18 4-6 8/6/2015 15:15 53-70-3 Dibenz(a,h)anthracene 0.43 GB-18 4-6 8/6/2015 15:15 118-74-1 Hexachlorobenzene 0.43 GB-18 4-6 8/6/2015 15:15 91-57-6 2-Methylnaphthalene 0.42	U
GB-18 4-6 8/6/2015 15:15 118-74-1 Hexachlorobenzene 0.43 GB-18 4-6 8/6/2015 15:15 91-57-6 2-Methylnaphthalene 0.42	U
GB-18 4-6 8/6/2015 15:15 91-57-6 2-Methylnaphthalene 0.42	U
	U
	2 U
GB-18 4-6 8/6/2015 15:15 205-99-2 Benzo[b]fluoranthene 0.42	. U
GB-18 4-6 8/6/2015 15:15 84-66-2 Diethyl phthalate 0.41	. U
GB-18 4-6 8/6/2015 15:15 101-55-3 4-Bromophenyl phenyl ether 0.4	U
GB-18 4-6 8/6/2015 15:15 208-96-8 Acenaphthylene 0.4	U
GB-18 4-6 8/6/2015 15:15 86-73-7 Fluorene 0.4	U
GB-18 4-6 8/6/2015 15:15 87-68-3 Hexachlorobutadiene 0.4	U
GB-18 4-6 8/6/2015 15:15 95-95-4 2,4,5-Trichlorophenol 0.38	3 U
GB-18 4-6 8/6/2015 15:15 120-83-2 2,4-Dichlorophenol 0.38	
GB-18 4-6 8/6/2015 15:15 91-58-7 2-Chloronaphthalene 0.38	B U
GB-18 4-6 8/6/2015 15:15 59-50-7 4-Chloro-3-methylphenol 0.38	
GB-18 4-6 8/6/2015 15:15 131-11-3 Dimethyl phthalate 0.37	
GB-18 4-6 8/6/2015 15:15 108-95-2 Phenol 0.37	
GB-18 4-6 8/6/2015 15:15 132-64-9 Dibenzofuran 0.36	
GB-18 4-6 8/6/2015 15:15 78-59-1 Isophorone 0.36	
GB-18 4-6 8/6/2015 15:15 86-30-6 N-Nitrosodiphenylamine 0.36	
GB-18 4-6 8/6/2015 15:15 206-44-0 Fluoranthene 0.35	
GB-18 4-6 8/6/2015 15:15 621-64-7 N-Nitrosodi-n-propylamine 0.35	
GB-18 4-6 8/6/2015 15:15 108-60-1 bis (2-chloroisopropyl) ether 0.33	1 -
GB-18 4-6 8/6/2015 15:15 86-74-8 Carbazole 0.33	П
GB-18 4-6 8/6/2015 15:15 84-74-2 Di-n-butyl phthalate 0.33	
GB-18 4-6 8/6/2015 15:15 91-20-3 Naphthalene 0.33	U

				Type 2		
Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
8/6/2015 15:15	88-06-2	2,4,6-Trichlorophenol			0.32	U
8/6/2015 15:15	117-84-0	Di-n-octyl phthalate			0.32	U
8/6/2015 15:15	91-94-1	3,3'-Dichlorobenzidine			0.31	U
8/6/2015 15:15	98-86-2	Acetophenone			0.31	U
8/6/2015 15:15	67-72-1	Hexachloroethane			0.31	U
8/6/2015 15:15	193-39-5	Indeno[1,2,3-cd]pyrene			0.31	U
8/6/2015 15:15	95-48-7	2-Methylphenol			0.3	U
8/6/2015 15:15	56-55-3	Benzo[a]anthracene			0.3	J
8/6/2015 15:15	85-01-8	Phenanthrene			0.3	J
8/6/2015 15:15	129-00-0	Pyrene			0.3	U
8/6/2015 15:15	85-68-7	Butyl benzyl phthalate			0.29	U
8/6/2015 15:15	98-95-3	Nitrobenzene			0.29	U
8/6/2015 15:15	120-12-7	Anthracene			0.27	U
8/6/2015 15:15	1912-24-9	Atrazine			0.25	U
8/6/2015 15:15	191-24-2	Benzo[g,h,i]perylene			0.24	U
8/6/2015 15:15	218-01-9				0.23	U
8/6/2015 15:15	534-52-1	·			1.9	U *
8/6/2015 11:30	92-52-4				2.5	U
					1.2	U
		•				U
		•				U
		·				U
• •		•				U
						U
		·				U
						U
• •						U
						U
						U
						U
• •						U
• •		•				U
	-					U
		<u> </u>				U
						U
	ł	•				U
		•				U
		·				U
			+			U
	ł	•	+			U
		•	+			U
		<u> </u>	+			U
						U
	8/6/2015 15:15 8/6/2015 15:15	8/6/2015 15:15 88-06-2 8/6/2015 15:15 91-94-1 8/6/2015 15:15 98-86-2 8/6/2015 15:15 98-86-2 8/6/2015 15:15 193-39-5 8/6/2015 15:15 193-39-5 8/6/2015 15:15 95-48-7 8/6/2015 15:15 56-55-3 8/6/2015 15:15 85-01-8 8/6/2015 15:15 85-68-7 8/6/2015 15:15 129-00-0 8/6/2015 15:15 129-00-0 8/6/2015 15:15 129-00-0 8/6/2015 15:15 191-2-2-7 8/6/2015 15:15 191-2-2-7 8/6/2015 15:15 191-2-4-2 8/6/2015 15:15 191-2-4-2 8/6/2015 15:15 191-2-4-2 8/6/2015 15:15 534-52-1 8/6/2015 11:30 92-52-4 8/6/2015 11:30 100-02-7 8/6/2015 11:30 100-02-7 8/6/2015 11:30 105-60-2 8/6/2015 11:30 100-52-7 8/6/2015 11:30 100-52-7 8/6/2015 11:30 100-01-6 8/6/2015 11:30 100-01-6 8/6/2015 11:30 105-67-9	8/6/2015 15:15 88-06-2 2,4,6-Trichlorophenol 8/6/2015 15:15 117-84-0 Di-n-octyl phthalate 8/6/2015 15:15 91-94-1 3,3'-Dichlorobenzidine 8/6/2015 15:15 98-86-2 Acetophenone 8/6/2015 15:15 67-72-1 Hexachloroethane 8/6/2015 15:15 193-39-5 Indeno[1,2,3-cd]pyrene 8/6/2015 15:15 95-48-7 2-Methylphenol 8/6/2015 15:15 56-55-3 Benzo[a]anthracene 8/6/2015 15:15 85-01-8 Phenanthrene 8/6/2015 15:15 85-01-8 Phenanthrene 8/6/2015 15:15 129-00-0 Pyrene 8/6/2015 15:15 98-95-3 Nitrobenzene 8/6/2015 15:15 98-95-3 Nitrobenzene 8/6/2015 15:15 191-24-9 Atrazine 8/6/2015 15:15 191-24-9 Atrazine 8/6/2015 15:15 191-24-2 Benzo[g,h,i)perylene 8/6/2015 15:15 218-01-9 Chrysene 8/6/2015 11:30 92-52-4 1,1'-Biphenyl 8/6/2015 11:30 92-52-4 1,1'-Biphen	Collection Date CAS Analyte by Method 8270D (mg/kg) 8/6/2015 15:15 88-06-2 2,4,6-Trichlorophenol 18/6/2015 15:15 117-84-0 Di-n-octyl phthalate 8/6/2015 15:15 91-94-1 3,3'-Dichlorobenzidine 8/6/2015 15:15 91-94-1 3,3'-Dichlorobenzidine 8/6/2015 15:15 98-86-2 Acetophenone 8/6/2015 15:15 67-72-1 Hexachloroethane 8/6/2015 15:15 193-39-5 Indeno[1,2,3-cd]pyrene 8/6/2015 15:15 95-48-7 2-Methylphenol 8/6/2015 15:15 95-48-7 2-Methylphenol 9 9 8/6/2015 15:15 95-548-7 2-Methylphenol 9 9 8/6/2015 15:15 85-01-8 Bhyl benzyl phthalate 9 8 8/6/2015 15:15 191-24-2 9 Atrazine 9 8/6/2015 15:15 191-24-2 9 Atrazine 9 8/6/2015 15:15	Collection Date CAS Analyte by Method 8270D Type 1 RRS (mg/kg) (mg/kg) (mg/kg) (mg/kg) RRS (mg/kg) (mg/kg) (mg/kg) (mg/kg) 8/6/2015 15:15 117-84-0 Di-n-octyl phthalate	Collection Date CAS Analyte by Method 8270D Type 1 RRS (mg/kg) RRS (mg/kg) Result (mg/kg) 8/6/2015 15:15 88-06-2 2,4,6-Trichlorophenol 0.32 8/6/2015 15:15 91-94-1 3,3-Dichlorobenzidine 0.31 8/6/2015 15:15 98-86-2 Acetophenone 0.31 8/6/2015 15:15 67-72-1 Hexachloroethane 0.31 8/6/2015 15:15 193-39-5 Indeno[1,2,3-cd]pyrene 0.31 8/6/2015 15:15 193-39-5 Indeno[1,2,3-cd]pyrene 0.33 8/6/2015 15:15 56-55-3 Benzo[a]anthracene 0.3 8/6/2015 15:15 85-61-8 Phenanthrene 0.3 8/6/2015 15:15 88-68-7 Butyl benzyl phthalate 0.29 8/6/2015 15:15 98-95-3 Nitrobenzene 0.29 8/6/2015 15:15 191-24-2 Anthracene 0.27 8/6/2015 15:15 191-24-2 Benzo[g]h, jlperylene 0.24 8/6/2015 15:15 191-24-2 Benzo[g,h, jlperylene 0.23 8/6/2015 11:30 92-52-4 1,1'-Biphenyl<

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-19 8-10	8/6/2015 11:30	205-99-2	Benzo[b]fluoranthene			0.056	U
GB-19 8-10	8/6/2015 11:30	84-66-2	Diethyl phthalate			0.054	U
GB-19 8-10	8/6/2015 11:30	101-55-3	4-Bromophenyl phenyl ether			0.053	U
GB-19 8-10	8/6/2015 11:30	208-96-8	Acenaphthylene			0.053	U
GB-19 8-10	8/6/2015 11:30	86-73-7	Fluorene			0.053	U
GB-19 8-10	8/6/2015 11:30	87-68-3	Hexachlorobutadiene			0.053	U
GB-19 8-10	8/6/2015 11:30	95-95-4	2,4,5-Trichlorophenol			0.051	U
GB-19 8-10	8/6/2015 11:30	120-83-2	2,4-Dichlorophenol			0.051	U
GB-19 8-10	8/6/2015 11:30	91-58-7	2-Chloronaphthalene			0.051	U
GB-19 8-10	8/6/2015 11:30	59-50-7	4-Chloro-3-methylphenol			0.051	U
GB-19 8-10	8/6/2015 11:30	131-11-3	Dimethyl phthalate			0.05	U
GB-19 8-10	8/6/2015 11:30	108-95-2	Phenol			0.05	U
GB-19 8-10	8/6/2015 11:30	132-64-9	Dibenzofuran			0.049	U
GB-19 8-10	8/6/2015 11:30	78-59-1	Isophorone			0.049	U
GB-19 8-10	8/6/2015 11:30	86-30-6	N-Nitrosodiphenylamine			0.049	U
GB-19 8-10	8/6/2015 11:30	206-44-0	Fluoranthene			0.047	U
GB-19 8-10	8/6/2015 11:30	621-64-7	N-Nitrosodi-n-propylamine			0.047	U
GB-19 8-10	8/6/2015 11:30	108-60-1	bis (2-chloroisopropyl) ether			0.044	U
GB-19 8-10	8/6/2015 11:30	86-74-8	Carbazole			0.044	U
GB-19 8-10	8/6/2015 11:30	84-74-2	Di-n-butyl phthalate			0.044	U
GB-19 8-10	8/6/2015 11:30	91-20-3	Naphthalene Naphthalene			0.044	U
GB-19 8-10	8/6/2015 11:30	88-06-2	2,4,6-Trichlorophenol			0.043	U
GB-19 8-10	8/6/2015 11:30	117-81-7	Bis(2-ethylhexyl) phthalate			0.043	U
GB-19 8-10	8/6/2015 11:30	117-84-0	Di-n-octyl phthalate			0.043	U
GB-19 8-10	8/6/2015 11:30	91-94-1	3,3'-Dichlorobenzidine			0.041	U
GB-19 8-10	8/6/2015 11:30	98-86-2	Acetophenone			0.041	U
GB-19 8-10	8/6/2015 11:30	67-72-1	Hexachloroethane			0.041	U
GB-19 8-10	8/6/2015 11:30	193-39-5	Indeno[1,2,3-cd]pyrene			0.041	U
GB-19 8-10	8/6/2015 11:30	95-48-7	2-Methylphenol			0.04	U
GB-19 8-10	8/6/2015 11:30	56-55-3	Benzo[a]anthracene			0.04	U
GB-19 8-10	8/6/2015 11:30	85-01-8	Phenanthrene			0.04	U
GB-19 8-10	8/6/2015 11:30	129-00-0	Pyrene			0.04	U
GB-19 8-10	8/6/2015 11:30	85-68-7	Butyl benzyl phthalate			0.038	U
GB-19 8-10	8/6/2015 11:30	98-95-3	Nitrobenzene			0.038	U
GB-19 8-10	8/6/2015 11:30	120-12-7	Anthracene			0.037	U
GB-19 8-10	8/6/2015 11:30	1912-24-9	Atrazine			0.034	U
GB-19 8-10	8/6/2015 11:30	191-24-2	Benzo[g,h,i]perylene			0.032	U
GB-19 8-10	8/6/2015 11:30	218-01-9	Chrysene			0.031	U
GB-19 8-10	8/6/2015 11:30	534-52-1	4,6-Dinitro-2-methylphenol			0.25	U *
GB-19 8-10	8/6/2015 11:30	321-60-8	2-Fluorobiphenyl	NL	NL	3.1	
GB-19 13-15	8/25/2015 11:30	117-81-7	Bis(2-ethylhexyl) phthalate			0.089	J
GB-19 13-15	8/25/2015 11:30	92-52-4	1,1'-Biphenyl			1.9	U
GB-19 13-15	8/25/2015 11:30	51-28-5	2,4-Dinitrophenol			0.94	U

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-19 13-15	8/25/2015 11:30	100-02-7	4-Nitrophenol			0.37	U
GB-19 13-15	8/25/2015 11:30	87-86-5	Pentachlorophenol			0.37	U
GB-19 13-15	8/25/2015 11:30	534-52-1	4,6-Dinitro-2-methylphenol			0.19	U
GB-19 13-15	8/25/2015 11:30	105-60-2	Caprolactam			0.075	U
GB-19 13-15	8/25/2015 11:30	207-08-9	Benzo[k]fluoranthene			0.074	U
GB-19 13-15	8/25/2015 11:30	100-52-7	Benzaldehyde			0.066	U
GB-19 13-15	8/25/2015 11:30	50-32-8	Benzo[a]pyrene			0.059	U
GB-19 13-15	8/25/2015 11:30	121-14-2	2,4-Dinitrotoluene			0.056	U
GB-19 13-15	8/25/2015 11:30	100-01-6	4-Nitroaniline			0.056	U
GB-19 13-15	8/25/2015 11:30	99-09-2	3-Nitroaniline			0.052	U
GB-19 13-15	8/25/2015 11:30	88-74-4	2-Nitroaniline			0.051	U
GB-19 13-15	8/25/2015 11:30	111-44-4	Bis(2-chloroethyl)ether			0.051	U
GB-19 13-15	8/25/2015 11:30	105-67-9	2,4-Dimethylphenol			0.05	U
GB-19 13-15	8/25/2015 11:30	7005-72-3	4-Chlorophenyl phenyl ether			0.05	U
GB-19 13-15	8/25/2015 11:30	15831-10-4	3 & 4 Methylphenol			0.049	U
GB-19 13-15	8/25/2015 11:30	606-20-2	2,6-Dinitrotoluene			0.048	U
GB-19 13-15	8/25/2015 11:30	88-75-5	2-Nitrophenol			0.047	U
GB-19 13-15	8/25/2015 11:30	83-32-9	Acenaphthene			0.047	U
GB-19 13-15	8/25/2015 11:30	77-47-4	Hexachlorocyclopentadiene			0.047	U
GB-19 13-15	8/25/2015 11:30	95-57-8	2-Chlorophenol			0.045	U
GB-19 13-15	8/25/2015 11:30	111-91-1	Bis(2-chloroethoxy)methane			0.044	U
GB-19 13-15	8/25/2015 11:30	53-70-3	Dibenz(a,h)anthracene			0.044	U
GB-19 13-15	8/25/2015 11:30	118-74-1	Hexachlorobenzene			0.044	U
GB-19 13-15	8/25/2015 11:30	91-57-6	2-Methylnaphthalene			0.043	U
GB-19 13-15	8/25/2015 11:30	205-99-2	Benzo[b]fluoranthene			0.043	U
GB-19 13-15	8/25/2015 11:30	84-66-2	Diethyl phthalate			0.042	U
GB-19 13-15	8/25/2015 11:30	101-55-3	4-Bromophenyl phenyl ether			0.041	U
GB-19 13-15	8/25/2015 11:30	208-96-8	Acenaphthylene			0.041	U
GB-19 13-15	8/25/2015 11:30	86-73-7	Fluorene			0.041	U
GB-19 13-15	8/25/2015 11:30	87-68-3	Hexachlorobutadiene			0.041	U
GB-19 13-15	8/25/2015 11:30	95-95-4	2,4,5-Trichlorophenol			0.04	U
GB-19 13-15	8/25/2015 11:30	120-83-2	2,4-Dichlorophenol			0.04	U
GB-19 13-15	8/25/2015 11:30	91-58-7	2-Chloronaphthalene			0.04	U
GB-19 13-15	8/25/2015 11:30	59-50-7	4-Chloro-3-methylphenol			0.04	U
GB-19 13-15	8/25/2015 11:30	131-11-3	Dimethyl phthalate			0.039	U
GB-19 13-15	8/25/2015 11:30	108-95-2	Phenol			0.039	U
GB-19 13-15	8/25/2015 11:30	132-64-9	Dibenzofuran			0.037	U
GB-19 13-15	8/25/2015 11:30	78-59-1	Isophorone			0.037	U
GB-19 13-15	8/25/2015 11:30	86-30-6	N-Nitrosodiphenylamine			0.037	U
GB-19 13-15	8/25/2015 11:30	206-44-0	Fluoranthene			0.036	U
GB-19 13-15	8/25/2015 11:30	621-64-7	N-Nitrosodi-n-propylamine			0.036	U
GB-19 13-15	8/25/2015 11:30	108-60-1	bis (2-chloroisopropyl) ether			0.034	U
GB-19 13-15	8/25/2015 11:30	86-74-8	Carbazole			0.034	U

Collection Date CAS			Type 2					
GB-19 13-15 8/25/2015 11:30 84-74-2 Di-n-butyl phthalate 0.034 GB-19 13-15 8/25/2015 11:30 91-20-3 Naphthalene 0.034 GB-19 13-15 8/25/2015 11:30 117-84-0 Di-n-octyl phthalate 0.033 GB-19 13-15 8/25/2015 11:30 117-84-0 Di-n-octyl phthalate 0.032 GB-19 13-15 8/25/2015 11:30 98-86-2 Acetophenone 0.032 GB-19 13-15 8/25/2015 11:30 67-72-1 Hexachloroethane 0.032 GB-19 13-15 8/25/2015 11:30 193-39-5 Indeno[1,2,3-cd]pyrene 0.032 GB-19 13-15 8/25/2015 11:30 95-48-7 2-Methylphenol 0.031 GB-19 13-15 8/25/2015 11:30 56-55-3 Benzo[a]anthracene 0.031 GB-19 13-15 8/25/2015 11:30 85-01-8 Phenanthrene 0.031 GB-19 13-15 8/25/2015 11:30 85-68-7 Butyl benzyl phthalate 0.029 GB-19 13-15 8/25/2015 11:30 98-95-3 Nitrobenzene 0.029 GB-19 13-15 8/25/2015 11:30		Result	RRS	Type 1 RRS				Client Sample
GB-19 13-15	Flag	(mg/kg)	(mg/kg)	(mg/kg)	Analyte by Method 8270D	CAS	Collection Date	
GB-19 13-15 8/25/2015 11:30 88-06-2 2,4,6-Trichlorophenol 0.033 GB-19 13-15 8/25/2015 11:30 117-84-0 Di-n-octyl phthalate 0.033 GB-19 13-15 8/25/2015 11:30 98-86-2 Acetophenone 0.032 GB-19 13-15 8/25/2015 11:30 193-39-5 Indeno[1,2,3-cd]pyrene 0.032 GB-19 13-15 8/25/2015 11:30 193-39-5 Indeno[1,2,3-cd]pyrene 0.031 GB-19 13-15 8/25/2015 11:30 95-48-7 2-Methylphenol 0.031 GB-19 13-15 8/25/2015 11:30 56-55-3 Benzo[a]anthracene 0.031 GB-19 13-15 8/25/2015 11:30 85-01-8 Phenanthrene 0.031 GB-19 13-15 8/25/2015 11:30 85-68-7 Butyl benzyl phthalate 0.029 GB-19 13-15 8/25/2015 11:30 85-68-7 Butyl benzyl phthalate 0.029 GB-19 13-15 8/25/2015 11:30 191-2-2-9 Atrazine 0.026 GB-19 13-15 8/25/2015 11:30 191-2-2-9 Atrazine 0.026 GB-19 13-15 8/25/2015 11:30	U	0.034			Di-n-butyl phthalate	84-74-2	8/25/2015 11:30	GB-19 13-15
GB-19 13-15 8/25/2015 11:30 117-84-0 Di-n-octyl phthalate 0.033 GB-19 13-15 8/25/2015 11:30 98-86-2 Acetophenone 0.032 GB-19 13-15 8/25/2015 11:30 67-72-1 Hexachloroethane 0.032 GB-19 13-15 8/25/2015 11:30 193-39-5 Indeno[1,2,3-cd]pyrene 0.031 GB-19 13-15 8/25/2015 11:30 95-48-7 2-Methylphenol 0.031 GB-19 13-15 8/25/2015 11:30 56-55-3 Benzo[a]anthracene 0.031 GB-19 13-15 8/25/2015 11:30 85-01-8 Phenanthrene 0.031 GB-19 13-15 8/25/2015 11:30 129-00-0 Pyrene 0.031 GB-19 13-15 8/25/2015 11:30 85-68-7 Butyl benzyl phthalate 0.029 GB-19 13-15 8/25/2015 11:30 120-12-7 Anthracene 0.029 GB-19 13-15 8/25/2015 11:30 190-24-9 Atrazine 0.026 GB-19 13-15 8/25/2015 11:30 191-24-2 Benzo[g,h,i]perylene 0.025 GB-19 13-15 8/25/2015 11:30 191-24-2 <td>U</td> <td>0.034</td> <td></td> <td></td> <td>Naphthalene</td> <td>91-20-3</td> <td></td> <td>GB-19 13-15</td>	U	0.034			Naphthalene	91-20-3		GB-19 13-15
GB-19 13-15 8/25/2015 11:30 98-86-2 Acetophenone 0.032 GB-19 13-15 8/25/2015 11:30 67-72-1 Hexachloroethane 0.032 GB-19 13-15 8/25/2015 11:30 193-39-5 Indeno[1,2,3-cd]pyrene 0.031 GB-19 13-15 8/25/2015 11:30 95-48-7 2-Methylphenol 0.031 GB-19 13-15 8/25/2015 11:30 56-55-3 Benzo[a]anthracene 0.031 GB-19 13-15 8/25/2015 11:30 85-01-8 Phenanthrene 0.031 GB-19 13-15 8/25/2015 11:30 129-00-0 Pyrene 0.031 GB-19 13-15 8/25/2015 11:30 85-68-7 Butyl benzyl phthalate 0.029 GB-19 13-15 8/25/2015 11:30 120-12-7 Anthracene 0.028 GB-19 13-15 8/25/2015 11:30 1912-24-9 Atrazine 0.026 GB-19 13-15 8/25/2015 11:30 1912-24-9 Benzo[g,h,i]perylene 0.025 GB-19 13-15 8/25/2015 11:30 1912-24-9 Benzo[g,h,i]perylene 0.026 GB-19 13-15 8/25/2015 11:30 1912-24-	U	0.033			2,4,6-Trichlorophenol	88-06-2	8/25/2015 11:30	GB-19 13-15
GB-19 13-15 8/25/2015 11:30 67-72-1 Hexachloroethane 0.032 GB-19 13-15 8/25/2015 11:30 193-39-5 Indeno[1,2,3-cd]pyrene 0.032 GB-19 13-15 8/25/2015 11:30 95-48-7 2-Methylphenol 0.031 GB-19 13-15 8/25/2015 11:30 56-55-3 Benzo[a]anthracene 0.031 GB-19 13-15 8/25/2015 11:30 85-01-8 Phenanthrene 0.031 GB-19 13-15 8/25/2015 11:30 129-00-0 Pyrene 0.031 GB-19 13-15 8/25/2015 11:30 85-68-7 Butyl benzyl phthalate 0.029 GB-19 13-15 8/25/2015 11:30 98-95-3 Nitrobenzene 0.029 GB-19 13-15 8/25/2015 11:30 190-24-9 Atrazine 0.026 GB-19 13-15 8/25/2015 11:30 191-24-9 Atrazine 0.026 GB-19 13-15 8/25/2015 11:30 191-24-2 Benzo[g,h,i]perylene 0.025 GB-19 13-15 8/25/2015 11:30 106-47-8 4-Chloroaniline 0.059 GB-21 8-10 8/6/2015 10:45 92-52-4	U	0.033			Di-n-octyl phthalate	117-84-0	8/25/2015 11:30	GB-19 13-15
GB-19 13-15 8/25/2015 11:30 193-39-5 Indeno[1,2,3-cd]pyrene 0.032 GB-19 13-15 8/25/2015 11:30 95-48-7 2-Methylphenol 0.031 GB-19 13-15 8/25/2015 11:30 56-55-3 Benzo[a]anthracene 0.031 GB-19 13-15 8/25/2015 11:30 85-01-8 Phenanthrene 0.031 GB-19 13-15 8/25/2015 11:30 129-00-0 Pyrene 0.031 GB-19 13-15 8/25/2015 11:30 129-00-0 Pyrene 0.031 GB-19 13-15 8/25/2015 11:30 85-68-7 Butyl benzyl phthalate 0.029 GB-19 13-15 8/25/2015 11:30 98-95-3 Nitrobenzene 0.029 GB-19 13-15 8/25/2015 11:30 120-12-7 Anthracene 0.028 GB-19 13-15 8/25/2015 11:30 1912-24-9 Atrazine 0.026 GB-19 13-15 8/25/2015 11:30 191-24-2 Benzo[g,h,i]perylene 0.025 GB-19 13-15 8/25/2015 11:30 218-01-9 Chrysene 0.024 GB-19 13-15 8/25/2015 11:30 218-01-9 Chrys	U	0.032			Acetophenone	98-86-2	8/25/2015 11:30	GB-19 13-15
GB-19 13-15 8/25/2015 11:30 95-48-7 2-Methylphenol 0.031 GB-19 13-15 8/25/2015 11:30 56-55-3 Benzo[a]anthracene 0.031 GB-19 13-15 8/25/2015 11:30 85-01-8 Phenanthrene 0.031 GB-19 13-15 8/25/2015 11:30 129-00-0 Pyrene 0.031 GB-19 13-15 8/25/2015 11:30 85-68-7 Butyl benzyl phthalate 0.029 GB-19 13-15 8/25/2015 11:30 98-95-3 Nitrobenzene 0.029 GB-19 13-15 8/25/2015 11:30 120-12-7 Anthracene 0.028 GB-19 13-15 8/25/2015 11:30 1912-24-9 Atrazine 0.026 GB-19 13-15 8/25/2015 11:30 191-24-2 Benzo[g,h,i]perylene 0.025 GB-19 13-15 8/25/2015 11:30 218-01-9 Chrysene 0.024 GB-19 13-15 8/25/2015 11:30 218-01-9 Chrysene 0.032 GB-19 13-15 8/25/2015 11:30 321-60-8 2-Fluorobiphenyl NL NL 2.9 GB-21 8-10 8/6/2015 10:45 <td< td=""><td>U</td><td>0.032</td><td></td><td></td><td>Hexachloroethane</td><td>67-72-1</td><td>8/25/2015 11:30</td><td>GB-19 13-15</td></td<>	U	0.032			Hexachloroethane	67-72-1	8/25/2015 11:30	GB-19 13-15
GB-19 13-15 8/25/2015 11:30 56-55-3 Benzo[a]anthracene 0.031 GB-19 13-15 8/25/2015 11:30 85-01-8 Phenanthrene 0.031 GB-19 13-15 8/25/2015 11:30 129-00-0 Pyrene 0.031 GB-19 13-15 8/25/2015 11:30 85-68-7 Butyl benzyl phthalate 0.029 GB-19 13-15 8/25/2015 11:30 98-95-3 Nitrobenzene 0.029 GB-19 13-15 8/25/2015 11:30 120-12-7 Anthracene 0.028 GB-19 13-15 8/25/2015 11:30 1912-24-9 Atrazine 0.026 GB-19 13-15 8/25/2015 11:30 1912-24-9 Benzo[g,h,i]perylene 0.025 GB-19 13-15 8/25/2015 11:30 218-01-9 Chrysene 0.024 GB-19 13-15 8/25/2015 11:30 218-01-9 Chrysene 0.059 GB-19 13-15 8/25/2015 11:30 321-60-8 2-Fluorobiphenyl NL NL 2.9 GB-19 13-15 8/25/2015 11:30 321-60-8 2-Fluorobiphenyl NL NL 2.1 GB-21 8-10	U	0.032			Indeno[1,2,3-cd]pyrene	193-39-5	8/25/2015 11:30	GB-19 13-15
GB-19 13-15 8/25/2015 11:30 85-01-8 Phenanthrene 0.031 GB-19 13-15 8/25/2015 11:30 129-00-0 Pyrene 0.031 GB-19 13-15 8/25/2015 11:30 85-68-7 Butyl benzyl phthalate 0.029 GB-19 13-15 8/25/2015 11:30 98-95-3 Nitrobenzene 0.029 GB-19 13-15 8/25/2015 11:30 120-12-7 Anthracene 0.028 GB-19 13-15 8/25/2015 11:30 191-24-9 Atrazine 0.026 GB-19 13-15 8/25/2015 11:30 191-24-2 Benzo[g,h,i]perylene 0.025 GB-19 13-15 8/25/2015 11:30 218-01-9 Chrysene 0.024 GB-19 13-15 8/25/2015 11:30 106-47-8 4-Chloroaniline 0.059 GB-19 13-15 8/25/2015 11:30 106-47-8 4-Chloroaniline 0.032 GB-19 13-15 8/25/2015 11:30 321-60-8 2-Fluorobiphenyl NL NL NL 2.9 GB-21 8-10 8/6/2015 10:45 92-52-4 1,1'-Biphenyl 2.1 3.3'-Dichlorobenzidine 0.041	J	0.031			2-Methylphenol	95-48-7	8/25/2015 11:30	GB-19 13-15
GB-19 13-15 8/25/2015 11:30 129-00-0 Pyrene 0.031 GB-19 13-15 8/25/2015 11:30 85-68-7 Butyl benzyl phthalate 0.029 GB-19 13-15 8/25/2015 11:30 98-95-3 Nitrobenzene 0.029 GB-19 13-15 8/25/2015 11:30 120-12-7 Anthracene 0.028 GB-19 13-15 8/25/2015 11:30 1912-24-9 Atrazine 0.026 GB-19 13-15 8/25/2015 11:30 191-24-2 Benzo[g,h,i]perylene 0.025 GB-19 13-15 8/25/2015 11:30 218-01-9 Chrysene 0.024 GB-19 13-15 8/25/2015 11:30 106-47-8 4-Chloroaniline 0.059 GB-19 13-15 8/25/2015 11:30 321-60-8 2-Fluorobiphenyl NL NL 2.9 GB-21 8-10 8/6/2015 10:45 92-52-4 1,1'-Biphenyl 2.1 2.1 GB-21 8-10 8/6/2015 10:45 92-52-4 1,1'-Biphenyl 0.41 3.4 GB-21 8-10 8/6/2015 10:45 100-02-7 4-Nitrophenol 0.41 0.41 GB	J	0.031			Benzo[a]anthracene	56-55-3	8/25/2015 11:30	GB-19 13-15
GB-19 13-15 8/25/2015 11:30 85-68-7 Butyl benzyl phthalate 0.029 GB-19 13-15 8/25/2015 11:30 98-95-3 Nitrobenzene 0.029 GB-19 13-15 8/25/2015 11:30 120-12-7 Anthracene 0.028 GB-19 13-15 8/25/2015 11:30 1912-24-9 Atrazine 0.026 GB-19 13-15 8/25/2015 11:30 191-24-2 Benzo[g,h,i]perylene 0.025 GB-19 13-15 8/25/2015 11:30 218-01-9 Chrysene 0.024 GB-19 13-15 8/25/2015 11:30 106-47-8 4-Chloroaniline 0.032 GB-19 13-15 8/25/2015 11:30 91-94-1 3,3'-Dichlorobenzidine 0.032 GB-19 13-15 8/25/2015 11:30 321-60-8 2-Fluorobiphenyl NL NL 2.9 GB-21 8-10 8/6/2015 10:45 92-52-4 1,1'-Biphenyl 2.1 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 <td>U</td> <td>0.031</td> <td></td> <td></td> <td>Phenanthrene</td> <td>85-01-8</td> <td>8/25/2015 11:30</td> <td>GB-19 13-15</td>	U	0.031			Phenanthrene	85-01-8	8/25/2015 11:30	GB-19 13-15
GB-19 13-15 8/25/2015 11:30 98-95-3 Nitrobenzene 0.029 GB-19 13-15 8/25/2015 11:30 120-12-7 Anthracene 0.028 GB-19 13-15 8/25/2015 11:30 1912-24-9 Atrazine 0.026 GB-19 13-15 8/25/2015 11:30 191-24-2 Benzo[g,h,i]perylene 0.025 GB-19 13-15 8/25/2015 11:30 218-01-9 Chrysene 0.024 GB-19 13-15 8/25/2015 11:30 106-47-8 4-Chloroaniline 0.059 GB-19 13-15 8/25/2015 11:30 321-60-8 2-Fluorobiphenyl NL NL 2.9 GB-21 8-10 8/6/2015 10:45 92-52-4 1,1'-Biphenyl 2.1 2.1 GB-21 8-10 8/6/2015 10:45 51-28-5 2,4-Dinitrophenol 1 0.41 GB-21 8-10 8/6/2015 10:45 100-02-7 4-Nitrophenol 0.41 0.41 GB-21 8-10 8/6/2015 10:45 87-86-5 Pentachlorophenol 0.41 0.082 GB-21 8-10 8/6/2015 10:45 105-60-2 Caprolactam 0.082	U	0.031			Pyrene	129-00-0	8/25/2015 11:30	GB-19 13-15
GB-19 13-15 8/25/2015 11:30 120-12-7 Anthracene 0.028 GB-19 13-15 8/25/2015 11:30 1912-24-9 Atrazine 0.026 GB-19 13-15 8/25/2015 11:30 191-24-2 Benzo[g,h,i]perylene 0.025 GB-19 13-15 8/25/2015 11:30 218-01-9 Chrysene 0.024 GB-19 13-15 8/25/2015 11:30 106-47-8 4-Chloroaniline 0.059 GB-19 13-15 8/25/2015 11:30 91-94-1 3,3'-Dichlorobenzidine 0.032 GB-19 13-15 8/25/2015 11:30 321-60-8 2-Fluorobiphenyl NL NL 2.9 GB-21 8-10 8/6/2015 10:45 92-52-4 1,1'-Biphenyl 2.1 2.1 GB-21 8-10 8/6/2015 10:45 51-28-5 2,4-Dinitrophenol 1 1 GB-21 8-10 8/6/2015 10:45 100-02-7 4-Nitrophenol 0.41 0.41 GB-21 8-10 8/6/2015 10:45 105-60-2 Caprolactam 0.082 GB-21 8-10 8/6/2015 10:45 207-08-9 Benzo[k]fluoranthene 0.081	U	0.029			Butyl benzyl phthalate	85-68-7	8/25/2015 11:30	GB-19 13-15
GB-19 13-15 8/25/2015 11:30 1912-24-9 Atrazine 0.026 GB-19 13-15 8/25/2015 11:30 191-24-2 Benzo[g,h,i]perylene 0.025 GB-19 13-15 8/25/2015 11:30 218-01-9 Chrysene 0.024 GB-19 13-15 8/25/2015 11:30 106-47-8 4-Chloroaniline 0.059 GB-19 13-15 8/25/2015 11:30 91-94-1 3,3'-Dichlorobenzidine 0.032 GB-19 13-15 8/25/2015 11:30 321-60-8 2-Fluorobiphenyl NL NL 2.9 GB-21 8-10 8/6/2015 10:45 92-52-4 1,1'-Biphenyl 2.1 2.1 2.6 2.4-Dinitrophenol 1 1 3.4-Nitrophenol 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.082 <	U	0.029			Nitrobenzene	98-95-3	8/25/2015 11:30	GB-19 13-15
GB-19 13-15 8/25/2015 11:30 191-24-2 Benzo[g,h,i]perylene 0.025 GB-19 13-15 8/25/2015 11:30 218-01-9 Chrysene 0.024 GB-19 13-15 8/25/2015 11:30 106-47-8 4-Chloroaniline 0.059 GB-19 13-15 8/25/2015 11:30 91-94-1 3,3'-Dichlorobenzidine 0.032 GB-19 13-15 8/25/2015 11:30 321-60-8 2-Fluorobiphenyl NL NL 2.9 GB-21 8-10 8/6/2015 10:45 92-52-4 1,1'-Biphenyl 2.1 2.1 GB-21 8-10 8/6/2015 10:45 51-28-5 2,4-Dinitrophenol 1 0.41 GB-21 8-10 8/6/2015 10:45 100-02-7 4-Nitrophenol 0.41 0.41 GB-21 8-10 8/6/2015 10:45 87-86-5 Pentachlorophenol 0.41 0.082 GB-21 8-10 8/6/2015 10:45 105-60-2 Caprolactam 0.082 GB-21 8-10 8/6/2015 10:45 100-52-7 Benzaldehyde 0.072 GB-21 8-10 8/6/2015 10:45 100-52-7 Benzaldehyde 0.065	U	0.028			Anthracene	120-12-7	8/25/2015 11:30	GB-19 13-15
GB-19 13-15 8/25/2015 11:30 218-01-9 Chrysene 0.024 GB-19 13-15 8/25/2015 11:30 106-47-8 4-Chloroaniline 0.059 GB-19 13-15 8/25/2015 11:30 91-94-1 3,3'-Dichlorobenzidine 0.032 GB-19 13-15 8/25/2015 11:30 321-60-8 2-Fluorobiphenyl NL NL 2.9 GB-21 8-10 8/6/2015 10:45 92-52-4 1,1'-Biphenyl 2.1 2.1 2.1 2.1 2.2 2.4-Dinitrophenol 1 1 3.6 2.2 2.4-Dinitrophenol 1 0.41 3.6 2.2 2.4-Dinitrophenol 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.082<	U	0.026			Atrazine	1912-24-9	8/25/2015 11:30	GB-19 13-15
GB-19 13-15 8/25/2015 11:30 218-01-9 Chrysene 0.024 GB-19 13-15 8/25/2015 11:30 106-47-8 4-Chloroaniline 0.059 GB-19 13-15 8/25/2015 11:30 91-94-1 3,3'-Dichlorobenzidine 0.032 GB-19 13-15 8/25/2015 11:30 321-60-8 2-Fluorobiphenyl NL NL 2.9 GB-21 8-10 8/6/2015 10:45 92-52-4 1,1'-Biphenyl 2.1 2.1 2.1 2.1 2.2 2.4-Dinitrophenol 1 1 3.6 2.2 2.4-Dinitrophenol 1 0.41 3.6 2.2 2.4-Dinitrophenol 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.082<	U	0.025			Benzo[g,h,i]perylene	191-24-2	8/25/2015 11:30	GB-19 13-15
GB-19 13-15 8/25/2015 11:30 106-47-8 4-Chloroaniline 0.059 GB-19 13-15 8/25/2015 11:30 91-94-1 3,3'-Dichlorobenzidine 0.032 GB-19 13-15 8/25/2015 11:30 321-60-8 2-Fluorobiphenyl NL NL 2.9 GB-21 8-10 8/6/2015 10:45 92-52-4 1,1'-Biphenyl 2.1 2.1 GB-21 8-10 8/6/2015 10:45 51-28-5 2,4-Dinitrophenol 1 0.41 GB-21 8-10 8/6/2015 10:45 100-02-7 4-Nitrophenol 0.41 0.41 GB-21 8-10 8/6/2015 10:45 87-86-5 Pentachlorophenol 0.41 0.082 GB-21 8-10 8/6/2015 10:45 105-60-2 Caprolactam 0.082 0.082 GB-21 8-10 8/6/2015 10:45 207-08-9 Benzo[k]fluoranthene 0.081 0.072 GB-21 8-10 8/6/2015 10:45 100-52-7 Benzaldehyde 0.072 GB-21 8-10 8/6/2015 10:45 50-32-8 Benzo[a]pyrene 0.065 GB-21 8-10 8/6/2015 10:45 50-32-8 <	U	0.024				218-01-9	8/25/2015 11:30	GB-19 13-15
GB-19 13-15 8/25/2015 11:30 91-94-1 3,3'-Dichlorobenzidine 0.032 GB-19 13-15 8/25/2015 11:30 321-60-8 2-Fluorobiphenyl NL NL 2.9 GB-21 8-10 8/6/2015 10:45 92-52-4 1,1'-Biphenyl 2.1 GB-21 8-10 8/6/2015 10:45 51-28-5 2,4-Dinitrophenol 1 GB-21 8-10 8/6/2015 10:45 100-02-7 4-Nitrophenol 0.41 GB-21 8-10 8/6/2015 10:45 87-86-5 Pentachlorophenol 0.41 GB-21 8-10 8/6/2015 10:45 105-60-2 Caprolactam 0.082 GB-21 8-10 8/6/2015 10:45 207-08-9 Benzo[k]fluoranthene 0.081 GB-21 8-10 8/6/2015 10:45 100-52-7 Benzaldehyde 0.072 GB-21 8-10 8/6/2015 10:45 106-47-8 4-Chloroaniline 0.065 GB-21 8-10 8/6/2015 10:45 50-32-8 Benzo[a]pyrene 0.065 GB-21 8-10 8/6/2015 10:45 121-14-2 2,4-Dinitrotoluene 0.061 GB-21 8-10 8/6/2015 10:45	U F1	0.059			·	106-47-8	8/25/2015 11:30	GB-19 13-15
GB-19 13-15 8/25/2015 11:30 321-60-8 2-Fluorobiphenyl NL NL 2.9 GB-21 8-10 8/6/2015 10:45 92-52-4 1,1'-Biphenyl 2.1 GB-21 8-10 8/6/2015 10:45 51-28-5 2,4-Dinitrophenol 1 GB-21 8-10 8/6/2015 10:45 100-02-7 4-Nitrophenol 0.41 GB-21 8-10 8/6/2015 10:45 87-86-5 Pentachlorophenol 0.41 GB-21 8-10 8/6/2015 10:45 105-60-2 Caprolactam 0.082 GB-21 8-10 8/6/2015 10:45 207-08-9 Benzo[k]fluoranthene 0.081 GB-21 8-10 8/6/2015 10:45 100-52-7 Benzaldehyde 0.072 GB-21 8-10 8/6/2015 10:45 106-47-8 4-Chloroaniline 0.065 GB-21 8-10 8/6/2015 10:45 50-32-8 Benzo[a]pyrene 0.065 GB-21 8-10 8/6/2015 10:45 121-14-2 2,4-Dinitrotoluene 0.061 GB-21 8-10 8/6/2015 10:45 100-01-6 4-Nitroaniline 0.061	U F1							
GB-19 13-15 8/25/2015 11:30 321-60-8 2-Fluorobiphenyl NL NL 2.9 GB-21 8-10 8/6/2015 10:45 92-52-4 1,1'-Biphenyl 2.1 GB-21 8-10 8/6/2015 10:45 51-28-5 2,4-Dinitrophenol 1 GB-21 8-10 8/6/2015 10:45 100-02-7 4-Nitrophenol 0.41 GB-21 8-10 8/6/2015 10:45 87-86-5 Pentachlorophenol 0.41 GB-21 8-10 8/6/2015 10:45 105-60-2 Caprolactam 0.082 GB-21 8-10 8/6/2015 10:45 207-08-9 Benzo[k]fluoranthene 0.081 GB-21 8-10 8/6/2015 10:45 100-52-7 Benzaldehyde 0.072 GB-21 8-10 8/6/2015 10:45 106-47-8 4-Chloroaniline 0.065 GB-21 8-10 8/6/2015 10:45 50-32-8 Benzo[a]pyrene 0.065 GB-21 8-10 8/6/2015 10:45 121-14-2 2,4-Dinitrotoluene 0.061 GB-21 8-10 8/6/2015 10:45 100-01-6 4-Nitroaniline 0.061	F2	0.032			3,3'-Dichlorobenzidine	91-94-1	8/25/2015 11:30	GB-19 13-15
GB-21 8-10 8/6/2015 10:45 92-52-4 1,1'-Biphenyl 2.1 GB-21 8-10 8/6/2015 10:45 51-28-5 2,4-Dinitrophenol 1 GB-21 8-10 8/6/2015 10:45 100-02-7 4-Nitrophenol 0.41 GB-21 8-10 8/6/2015 10:45 87-86-5 Pentachlorophenol 0.41 GB-21 8-10 8/6/2015 10:45 105-60-2 Caprolactam 0.082 GB-21 8-10 8/6/2015 10:45 207-08-9 Benzo[k]fluoranthene 0.081 GB-21 8-10 8/6/2015 10:45 100-52-7 Benzaldehyde 0.072 GB-21 8-10 8/6/2015 10:45 106-47-8 4-Chloroaniline 0.065 GB-21 8-10 8/6/2015 10:45 50-32-8 Benzo[a]pyrene 0.065 GB-21 8-10 8/6/2015 10:45 121-14-2 2,4-Dinitrotoluene 0.061 GB-21 8-10 8/6/2015 10:45 100-01-6 4-Nitroaniline 0.061		2.9	NL	NL	· · · · · · · · · · · · · · · · · · ·	321-60-8		
GB-21 8-10 8/6/2015 10:45 51-28-5 2,4-Dinitrophenol 1 GB-21 8-10 8/6/2015 10:45 100-02-7 4-Nitrophenol 0.41 GB-21 8-10 8/6/2015 10:45 87-86-5 Pentachlorophenol 0.41 GB-21 8-10 8/6/2015 10:45 105-60-2 Caprolactam 0.082 GB-21 8-10 8/6/2015 10:45 207-08-9 Benzo[k]fluoranthene 0.081 GB-21 8-10 8/6/2015 10:45 100-52-7 Benzaldehyde 0.072 GB-21 8-10 8/6/2015 10:45 106-47-8 4-Chloroaniline 0.065 GB-21 8-10 8/6/2015 10:45 50-32-8 Benzo[a]pyrene 0.065 GB-21 8-10 8/6/2015 10:45 121-14-2 2,4-Dinitrotoluene 0.061 GB-21 8-10 8/6/2015 10:45 100-01-6 4-Nitroaniline 0.061	U				·			-
GB-21 8-10 8/6/2015 10:45 100-02-7 4-Nitrophenol 0.41 GB-21 8-10 8/6/2015 10:45 87-86-5 Pentachlorophenol 0.41 GB-21 8-10 8/6/2015 10:45 105-60-2 Caprolactam 0.082 GB-21 8-10 8/6/2015 10:45 207-08-9 Benzo[k]fluoranthene 0.081 GB-21 8-10 8/6/2015 10:45 100-52-7 Benzaldehyde 0.072 GB-21 8-10 8/6/2015 10:45 106-47-8 4-Chloroaniline 0.065 GB-21 8-10 8/6/2015 10:45 50-32-8 Benzo[a]pyrene 0.065 GB-21 8-10 8/6/2015 10:45 121-14-2 2,4-Dinitrotoluene 0.061 GB-21 8-10 8/6/2015 10:45 100-01-6 4-Nitroaniline 0.061	U							
GB-21 8-10 8/6/2015 10:45 87-86-5 Pentachlorophenol 0.41 GB-21 8-10 8/6/2015 10:45 105-60-2 Caprolactam 0.082 GB-21 8-10 8/6/2015 10:45 207-08-9 Benzo[k]fluoranthene 0.081 GB-21 8-10 8/6/2015 10:45 100-52-7 Benzaldehyde 0.072 GB-21 8-10 8/6/2015 10:45 106-47-8 4-Chloroaniline 0.065 GB-21 8-10 8/6/2015 10:45 50-32-8 Benzo[a]pyrene 0.065 GB-21 8-10 8/6/2015 10:45 121-14-2 2,4-Dinitrotoluene 0.061 GB-21 8-10 8/6/2015 10:45 100-01-6 4-Nitroaniline 0.061	U				•			
GB-21 8-10 8/6/2015 10:45 105-60-2 Caprolactam 0.082 GB-21 8-10 8/6/2015 10:45 207-08-9 Benzo[k]fluoranthene 0.081 GB-21 8-10 8/6/2015 10:45 100-52-7 Benzaldehyde 0.072 GB-21 8-10 8/6/2015 10:45 106-47-8 4-Chloroaniline 0.065 GB-21 8-10 8/6/2015 10:45 50-32-8 Benzo[a]pyrene 0.065 GB-21 8-10 8/6/2015 10:45 121-14-2 2,4-Dinitrotoluene 0.061 GB-21 8-10 8/6/2015 10:45 100-01-6 4-Nitroaniline 0.061	U				·		• •	
GB-21 8-10 8/6/2015 10:45 207-08-9 Benzo[k]fluoranthene 0.081 GB-21 8-10 8/6/2015 10:45 100-52-7 Benzaldehyde 0.072 GB-21 8-10 8/6/2015 10:45 106-47-8 4-Chloroaniline 0.065 GB-21 8-10 8/6/2015 10:45 50-32-8 Benzo[a]pyrene 0.065 GB-21 8-10 8/6/2015 10:45 121-14-2 2,4-Dinitrotoluene 0.061 GB-21 8-10 8/6/2015 10:45 100-01-6 4-Nitroaniline 0.061	U				•		• •	
GB-21 8-10 8/6/2015 10:45 100-52-7 Benzaldehyde 0.072 GB-21 8-10 8/6/2015 10:45 106-47-8 4-Chloroaniline 0.065 GB-21 8-10 8/6/2015 10:45 50-32-8 Benzo[a]pyrene 0.065 GB-21 8-10 8/6/2015 10:45 121-14-2 2,4-Dinitrotoluene 0.061 GB-21 8-10 8/6/2015 10:45 100-01-6 4-Nitroaniline 0.061	U				<u> </u>			
GB-21 8-10 8/6/2015 10:45 106-47-8 4-Chloroaniline 0.065 GB-21 8-10 8/6/2015 10:45 50-32-8 Benzo[a]pyrene 0.065 GB-21 8-10 8/6/2015 10:45 121-14-2 2,4-Dinitrotoluene 0.061 GB-21 8-10 8/6/2015 10:45 100-01-6 4-Nitroaniline 0.061	U							
GB-21 8-10 8/6/2015 10:45 50-32-8 Benzo[a]pyrene 0.065 GB-21 8-10 8/6/2015 10:45 121-14-2 2,4-Dinitrotoluene 0.061 GB-21 8-10 8/6/2015 10:45 100-01-6 4-Nitroaniline 0.061	U				•			
GB-21 8-10 8/6/2015 10:45 121-14-2 2,4-Dinitrotoluene 0.061 GB-21 8-10 8/6/2015 10:45 100-01-6 4-Nitroaniline 0.061	U							-
GB-21 8-10 8/6/2015 10:45 100-01-6 4-Nitroaniline 0.061	U				, ,			
	U	1			•			
- - -	U	1					• •	
GB-21 8-10 8/6/2015 10:45 88-74-4 2-Nitroaniline 0.056	U							
GB-21 8-10 8/6/2015 10:45 111-44-4 Bis(2-chloroethyl)ether 0.056	U							
GB-21 8-10 8/6/2015 10:45 105-67-9 2,4-Dimethylphenol 0.055	U				· ' '			
GB-21 8-10 8/6/2015 10:45 7005-72-3 4-Chlorophenyl phenyl ether 0.055	U						• •	-
GB-21 8-10 8/6/2015 10:45 15831-10-4 3 & 4 Methylphenol 0.054	U							
GB-21 8-10 8/6/2015 10:45 606-20-2 2,6-Dinitrotoluene 0.052	U				<u> </u>			
GB-21 8-10 8/6/2015 10:45 88-75-5 2-Nitrophenol 0.051	U	1			•			
GB-21 8-10 8/6/2015 10:45 83-32-9 Acenaphthene 0.051	U				·		• •	
GB-21 8-10 8/6/2015 10:45 77-47-4 Hexachlorocyclopentadiene 0.051	U				·			
GB-21 8-10 8/6/2015 10:45 95-57-8 2-Chlorophenol 0.05	U							

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-21 8-10	8/6/2015 10:45	111-91-1	Bis(2-chloroethoxy)methane			0.049	U
GB-21 8-10	8/6/2015 10:45	53-70-3	Dibenz(a,h)anthracene			0.049	U
GB-21 8-10	8/6/2015 10:45	118-74-1	Hexachlorobenzene			0.049	U
GB-21 8-10	8/6/2015 10:45	91-57-6	2-Methylnaphthalene			0.047	U
GB-21 8-10	8/6/2015 10:45	205-99-2	Benzo[b]fluoranthene			0.047	U
GB-21 8-10	8/6/2015 10:45	84-66-2	Diethyl phthalate			0.046	U
GB-21 8-10	8/6/2015 10:45	101-55-3	4-Bromophenyl phenyl ether			0.045	U
GB-21 8-10	8/6/2015 10:45	208-96-8	Acenaphthylene			0.045	U
GB-21 8-10	8/6/2015 10:45	86-73-7	Fluorene			0.045	U
GB-21 8-10	8/6/2015 10:45	87-68-3	Hexachlorobutadiene			0.045	U
GB-21 8-10	8/6/2015 10:45	95-95-4	2,4,5-Trichlorophenol			0.044	U
GB-21 8-10	8/6/2015 10:45	120-83-2	2,4-Dichlorophenol			0.044	U
GB-21 8-10	8/6/2015 10:45	91-58-7	2-Chloronaphthalene			0.044	U
GB-21 8-10	8/6/2015 10:45	59-50-7	4-Chloro-3-methylphenol			0.044	U
GB-21 8-10	8/6/2015 10:45	131-11-3	Dimethyl phthalate			0.042	U
GB-21 8-10	8/6/2015 10:45	108-95-2	Phenol			0.042	U
GB-21 8-10	8/6/2015 10:45	132-64-9	Dibenzofuran			0.041	U
GB-21 8-10	8/6/2015 10:45	78-59-1	Isophorone			0.041	U
GB-21 8-10	8/6/2015 10:45	86-30-6	N-Nitrosodiphenylamine			0.041	U
GB-21 8-10	8/6/2015 10:45	206-44-0	Fluoranthene			0.04	U
GB-21 8-10	8/6/2015 10:45	621-64-7	N-Nitrosodi-n-propylamine			0.04	U
GB-21 8-10	8/6/2015 10:45	108-60-1	bis (2-chloroisopropyl) ether			0.037	U
GB-21 8-10	8/6/2015 10:45	86-74-8	Carbazole			0.037	U
GB-21 8-10	8/6/2015 10:45	84-74-2	Di-n-butyl phthalate			0.037	U
GB-21 8-10	8/6/2015 10:45	91-20-3	Naphthalene			0.037	U
GB-21 8-10	8/6/2015 10:45	88-06-2	2,4,6-Trichlorophenol			0.036	U
GB-21 8-10	8/6/2015 10:45	117-81-7	Bis(2-ethylhexyl) phthalate			0.036	U
GB-21 8-10	8/6/2015 10:45	117-84-0	Di-n-octyl phthalate			0.036	U
GB-21 8-10	8/6/2015 10:45	91-94-1	3,3'-Dichlorobenzidine			0.035	U
GB-21 8-10	8/6/2015 10:45	98-86-2	Acetophenone			0.035	U
GB-21 8-10	8/6/2015 10:45	67-72-1	Hexachloroethane			0.035	U
GB-21 8-10	8/6/2015 10:45	193-39-5	Indeno[1,2,3-cd]pyrene			0.035	U
GB-21 8-10	8/6/2015 10:45	95-48-7	2-Methylphenol			0.034	U
GB-21 8-10	8/6/2015 10:45	56-55-3	Benzo[a]anthracene			0.034	U
GB-21 8-10	8/6/2015 10:45	85-01-8	Phenanthrene			0.034	U
GB-21 8-10	8/6/2015 10:45	129-00-0	Pyrene			0.034	U
GB-21 8-10	8/6/2015 10:45	85-68-7	Butyl benzyl phthalate			0.032	U
GB-21 8-10	8/6/2015 10:45	98-95-3	Nitrobenzene			0.032	U
GB-21 8-10	8/6/2015 10:45	120-12-7	Anthracene			0.031	U
GB-21 8-10	8/6/2015 10:45	1912-24-9	Atrazine			0.029	U
GB-21 8-10	8/6/2015 10:45	191-24-2	Benzo[g,h,i]perylene			0.027	U
GB-21 8-10	8/6/2015 10:45	218-01-9	Chrysene			0.026	U
GB-21 8-10	8/6/2015 10:45	534-52-1	4,6-Dinitro-2-methylphenol			0.21	U *

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-21 8-10	8/6/2015 10:45	321-60-8	2-Fluorobiphenyl	NL	NL	2.2	
GB-21 13-15	8/25/2015 11:50	117-81-7	Bis(2-ethylhexyl) phthalate			0.069	J
GB-21 13-15	8/25/2015 11:50	206-44-0	Fluoranthene			0.055	J
GB-21 13-15	8/25/2015 11:50	129-00-0	Pyrene			0.046	J
GB-21 13-15	8/25/2015 11:50	205-99-2	Benzo[b]fluoranthene			0.043	J
GB-21 13-15	8/25/2015 11:50	85-01-8	Phenanthrene			0.034	J
GB-21 13-15	8/25/2015 11:50	218-01-9	Chrysene			0.033	J
GB-21 13-15	8/25/2015 11:50	92-52-4	1,1'-Biphenyl			1.9	U
GB-21 13-15	8/25/2015 11:50	51-28-5	2,4-Dinitrophenol			0.93	U
GB-21 13-15	8/25/2015 11:50	100-02-7	4-Nitrophenol			0.37	U
GB-21 13-15	8/25/2015 11:50	87-86-5	Pentachlorophenol			0.37	U
GB-21 13-15	8/25/2015 11:50	534-52-1	4,6-Dinitro-2-methylphenol			0.19	U
GB-21 13-15	8/25/2015 11:50	105-60-2	Caprolactam			0.074	U
GB-21 13-15	8/25/2015 11:50	207-08-9	Benzo[k]fluoranthene			0.073	J
GB-21 13-15	8/25/2015 11:50	100-52-7	Benzaldehyde			0.065	U
GB-21 13-15	8/25/2015 11:50	106-47-8	4-Chloroaniline			0.058	U
GB-21 13-15	8/25/2015 11:50	50-32-8	Benzo[a]pyrene			0.058	U
GB-21 13-15	8/25/2015 11:50	121-14-2	2,4-Dinitrotoluene			0.055	U
GB-21 13-15	8/25/2015 11:50	100-01-6	4-Nitroaniline			0.055	U
GB-21 13-15	8/25/2015 11:50	99-09-2	3-Nitroaniline			0.052	U
GB-21 13-15	8/25/2015 11:50	88-74-4	2-Nitroaniline			0.051	U
GB-21 13-15	8/25/2015 11:50	111-44-4	Bis(2-chloroethyl)ether			0.051	U
GB-21 13-15	8/25/2015 11:50	105-67-9	2,4-Dimethylphenol			0.049	U
GB-21 13-15	8/25/2015 11:50	7005-72-3	4-Chlorophenyl phenyl ether			0.049	U
GB-21 13-15	8/25/2015 11:50	15831-10-4	3 & 4 Methylphenol			0.048	U
GB-21 13-15	8/25/2015 11:50	606-20-2	2,6-Dinitrotoluene			0.047	U
GB-21 13-15	8/25/2015 11:50	88-75-5	2-Nitrophenol			0.046	U
GB-21 13-15	8/25/2015 11:50	83-32-9	Acenaphthene			0.046	U
GB-21 13-15	8/25/2015 11:50	77-47-4	Hexachlorocyclopentadiene			0.046	U
GB-21 13-15	8/25/2015 11:50	95-57-8	2-Chlorophenol			0.045	U
GB-21 13-15	8/25/2015 11:50	111-91-1	Bis(2-chloroethoxy)methane			0.044	U
GB-21 13-15	8/25/2015 11:50	53-70-3	Dibenz(a,h)anthracene			0.044	U
GB-21 13-15	8/25/2015 11:50	118-74-1	Hexachlorobenzene			0.044	U
GB-21 13-15	8/25/2015 11:50	91-57-6	2-Methylnaphthalene			0.043	U
GB-21 13-15	8/25/2015 11:50	84-66-2	Diethyl phthalate			0.042	U
GB-21 13-15	8/25/2015 11:50	101-55-3	4-Bromophenyl phenyl ether			0.04	U
GB-21 13-15	8/25/2015 11:50	208-96-8	Acenaphthylene			0.04	U
GB-21 13-15	8/25/2015 11:50	86-73-7	Fluorene			0.04	U
GB-21 13-15	8/25/2015 11:50	87-68-3	Hexachlorobutadiene			0.04	U
GB-21 13-15	8/25/2015 11:50	95-95-4	2,4,5-Trichlorophenol			0.039	U
GB-21 13-15	8/25/2015 11:50	120-83-2	2,4-Dichlorophenol			0.039	U
GB-21 13-15	8/25/2015 11:50	91-58-7	2-Chloronaphthalene			0.039	U
GB-21 13-15	8/25/2015 11:50	59-50-7	4-Chloro-3-methylphenol	1		0.039	U

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-21 13-15	8/25/2015 11:50	131-11-3	Dimethyl phthalate			0.038	U
GB-21 13-15	8/25/2015 11:50	108-95-2	Phenol			0.038	U
GB-21 13-15	8/25/2015 11:50	132-64-9	Dibenzofuran			0.037	U
GB-21 13-15	8/25/2015 11:50	78-59-1	Isophorone			0.037	U
GB-21 13-15	8/25/2015 11:50	86-30-6	N-Nitrosodiphenylamine			0.037	U
GB-21 13-15	8/25/2015 11:50	621-64-7	N-Nitrosodi-n-propylamine			0.036	U
GB-21 13-15	8/25/2015 11:50	108-60-1	bis (2-chloroisopropyl) ether			0.034	U
GB-21 13-15	8/25/2015 11:50	86-74-8	Carbazole			0.034	U
GB-21 13-15	8/25/2015 11:50	84-74-2	Di-n-butyl phthalate			0.034	U
GB-21 13-15	8/25/2015 11:50	91-20-3	Naphthalene			0.034	U
GB-21 13-15	8/25/2015 11:50	88-06-2	2,4,6-Trichlorophenol			0.033	U
GB-21 13-15	8/25/2015 11:50	117-84-0	Di-n-octyl phthalate			0.033	U
GB-21 13-15	8/25/2015 11:50	91-94-1	3,3'-Dichlorobenzidine			0.031	U
GB-21 13-15	8/25/2015 11:50	98-86-2	Acetophenone			0.031	U
GB-21 13-15	8/25/2015 11:50	67-72-1	Hexachloroethane			0.031	U
GB-21 13-15	8/25/2015 11:50	193-39-5	Indeno[1,2,3-cd]pyrene			0.031	U
GB-21 13-15	8/25/2015 11:50	95-48-7	2-Methylphenol			0.03	U
GB-21 13-15	8/25/2015 11:50	56-55-3	Benzo[a]anthracene			0.03	U
GB-21 13-15	8/25/2015 11:50	85-68-7	Butyl benzyl phthalate			0.029	U
GB-21 13-15	8/25/2015 11:50	98-95-3	Nitrobenzene			0.029	U
GB-21 13-15	8/25/2015 11:50	120-12-7	Anthracene			0.028	U
GB-21 13-15	8/25/2015 11:50	1912-24-9	Atrazine			0.026	U
GB-21 13-15	8/25/2015 11:50	191-24-2	Benzo[g,h,i]perylene			0.025	U
GB-21 13-15	8/25/2015 11:50	321-60-8	2-Fluorobiphenyl	NL	NL	3.1	
GB-25 2-4	8/10/2015 11:39	92-52-4	1,1'-Biphenyl			1.9	U
GB-25 2-4	8/10/2015 11:39	51-28-5	2,4-Dinitrophenol			0.92	U
GB-25 2-4	8/10/2015 11:39	100-02-7	4-Nitrophenol			0.37	U
GB-25 2-4	8/10/2015 11:39	87-86-5	Pentachlorophenol			0.37	U
GB-25 2-4	8/10/2015 11:39	534-52-1	4,6-Dinitro-2-methylphenol			0.19	U
GB-25 2-4	8/10/2015 11:39	105-60-2	Caprolactam			0.073	U
GB-25 2-4	8/10/2015 11:39	207-08-9	Benzo[k]fluoranthene			0.072	U
GB-25 2-4	8/10/2015 11:39	100-52-7	Benzaldehyde			0.065	U
GB-25 2-4	8/10/2015 11:39	106-47-8	4-Chloroaniline			0.058	U
GB-25 2-4	8/10/2015 11:39	50-32-8	Benzo[a]pyrene			0.058	U
GB-25 2-4	8/10/2015 11:39	121-14-2	2,4-Dinitrotoluene			0.055	U
GB-25 2-4	8/10/2015 11:39	100-01-6	4-Nitroaniline			0.055	U
GB-25 2-4	8/10/2015 11:39	99-09-2	3-Nitroaniline			0.051	U
GB-25 2-4	8/10/2015 11:39	88-74-4	2-Nitroaniline			0.05	U
GB-25 2-4	8/10/2015 11:39	105-67-9	2,4-Dimethylphenol			0.049	U
GB-25 2-4	8/10/2015 11:39	7005-72-3	4-Chlorophenyl phenyl ether			0.049	U
GB-25 2-4	8/10/2015 11:39	15831-10-4	3 & 4 Methylphenol			0.048	U
GB-25 2-4	8/10/2015 11:39	606-20-2	2,6-Dinitrotoluene			0.047	U
GB-25 2-4	8/10/2015 11:39	88-75-5	2-Nitrophenol			0.046	U

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-25 2-4	8/10/2015 11:39	83-32-9	Acenaphthene			0.046	U
GB-25 2-4	8/10/2015 11:39	77-47-4	Hexachlorocyclopentadiene			0.046	U
GB-25 2-4	8/10/2015 11:39	95-57-8	2-Chlorophenol			0.045	U
GB-25 2-4	8/10/2015 11:39	111-91-1	Bis(2-chloroethoxy)methane			0.043	U
GB-25 2-4	8/10/2015 11:39	53-70-3	Dibenz(a,h)anthracene			0.043	U
GB-25 2-4	8/10/2015 11:39	118-74-1	Hexachlorobenzene			0.043	U
GB-25 2-4	8/10/2015 11:39	91-57-6	2-Methylnaphthalene			0.042	U
GB-25 2-4	8/10/2015 11:39	205-99-2	Benzo[b]fluoranthene			0.042	U
GB-25 2-4	8/10/2015 11:39	84-66-2	Diethyl phthalate			0.041	U
GB-25 2-4	8/10/2015 11:39	101-55-3	4-Bromophenyl phenyl ether			0.04	U
GB-25 2-4	8/10/2015 11:39	208-96-8	Acenaphthylene			0.04	U
GB-25 2-4	8/10/2015 11:39	86-73-7	Fluorene			0.04	U
GB-25 2-4	8/10/2015 11:39	87-68-3	Hexachlorobutadiene			0.04	U
GB-25 2-4	8/10/2015 11:39	95-95-4	2,4,5-Trichlorophenol			0.039	U
GB-25 2-4	8/10/2015 11:39	120-83-2	2,4-Dichlorophenol			0.039	U
GB-25 2-4	8/10/2015 11:39	91-58-7	2-Chloronaphthalene			0.039	U
GB-25 2-4	8/10/2015 11:39	59-50-7	4-Chloro-3-methylphenol			0.039	U
GB-25 2-4	8/10/2015 11:39	131-11-3	Dimethyl phthalate			0.038	U
GB-25 2-4	8/10/2015 11:39	108-95-2	Phenol			0.038	U
GB-25 2-4	8/10/2015 11:39	132-64-9	Dibenzofuran			0.037	U
GB-25 2-4	8/10/2015 11:39	78-59-1	Isophorone			0.037	U
GB-25 2-4	8/10/2015 11:39	86-30-6	N-Nitrosodiphenylamine			0.037	U
GB-25 2-4	8/10/2015 11:39	206-44-0	Fluoranthene			0.036	U
GB-25 2-4	8/10/2015 11:39	621-64-7	N-Nitrosodi-n-propylamine			0.036	U
GB-25 2-4	8/10/2015 11:39	108-60-1	bis (2-chloroisopropyl) ether			0.033	U
GB-25 2-4	8/10/2015 11:39	86-74-8	Carbazole			0.033	U
GB-25 2-4	8/10/2015 11:39	84-74-2	Di-n-butyl phthalate			0.033	U
GB-25 2-4	8/10/2015 11:39	91-20-3	Naphthalene			0.033	U
GB-25 2-4	8/10/2015 11:39	88-06-2	2,4,6-Trichlorophenol			0.032	U
GB-25 2-4	8/10/2015 11:39	117-81-7	Bis(2-ethylhexyl) phthalate			0.032	U
GB-25 2-4	8/10/2015 11:39	117-84-0	Di-n-octyl phthalate			0.032	U
GB-25 2-4	8/10/2015 11:39	91-94-1	3,3'-Dichlorobenzidine			0.031	U
GB-25 2-4	8/10/2015 11:39	98-86-2	Acetophenone			0.031	U
GB-25 2-4	8/10/2015 11:39	67-72-1	Hexachloroethane			0.031	U
GB-25 2-4	8/10/2015 11:39	193-39-5	Indeno[1,2,3-cd]pyrene			0.031	U
GB-25 2-4	8/10/2015 11:39	95-48-7	2-Methylphenol			0.03	U
GB-25 2-4	8/10/2015 11:39	56-55-3	Benzo[a]anthracene			0.03	U
GB-25 2-4	8/10/2015 11:39	85-01-8	Phenanthrene			0.03	U
GB-25 2-4	8/10/2015 11:39	129-00-0	Pyrene			0.03	U
GB-25 2-4	8/10/2015 11:39	85-68-7	Butyl benzyl phthalate			0.029	U
GB-25 2-4	8/10/2015 11:39	98-95-3	Nitrobenzene			0.029	U
GB-25 2-4	8/10/2015 11:39	120-12-7	Anthracene			0.028	U
GB-25 2-4	8/10/2015 11:39	1912-24-9	Atrazine			0.026	U

Client Comple				Turno 1 DDC	Type 2	Dagult	
Client Sample		CAS	Analysta by Mathad 9370D	Type 1 RRS		Result	Floor
ID GB-25 2-4	Collection Date 8/10/2015 11:39	CAS 191-24-2	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
	• •		Benzo[g,h,i]perylene			0.024	U
GB-25 2-4	8/10/2015 11:39 8/10/2015 11:39	218-01-9 111-44-4	Chrysene			0.023	U U *
GB-25 2-4 GB-25 2-4	8/10/2015 11:39	321-60-8	Bis(2-chloroethyl)ether	NII	NII	0.05	0 .
			2-Fluorobiphenyl	NL	NL	3.1	-
GB-25 4-6	8/10/2015 11:42	206-44-0	Fluoranthene			0.25	J
GB-25 4-6	8/10/2015 11:42	129-00-0	Pyrene	+		0.2	J
GB-25 4-6	8/10/2015 11:42	205-99-2	Benzo[b]fluoranthene			0.18	J
GB-25 4-6	8/10/2015 11:42	56-55-3	Benzo[a]anthracene			0.14	J
GB-25 4-6	8/10/2015 11:42	85-01-8	Phenanthrene	_		0.13	J
GB-25 4-6	8/10/2015 11:42	50-32-8	Benzo[a]pyrene			0.12	J
GB-25 4-6	8/10/2015 11:42	218-01-9	Chrysene			0.12	J
GB-25 4-6	8/10/2015 11:42	193-39-5	Indeno[1,2,3-cd]pyrene			0.08	J
GB-25 4-6	8/10/2015 11:42	207-08-9	Benzo[k]fluoranthene			0.076	J
GB-25 4-6	8/10/2015 11:42	117-81-7	Bis(2-ethylhexyl) phthalate			0.12	J B
GB-25 4-6	8/10/2015 11:42	92-52-4	1,1'-Biphenyl			1.9	U
GB-25 4-6	8/10/2015 11:42	51-28-5	2,4-Dinitrophenol			0.93	U
GB-25 4-6	8/10/2015 11:42	100-02-7	4-Nitrophenol			0.37	U
GB-25 4-6	8/10/2015 11:42	87-86-5	Pentachlorophenol			0.37	U
GB-25 4-6	8/10/2015 11:42	534-52-1	4,6-Dinitro-2-methylphenol			0.19	U
GB-25 4-6	8/10/2015 11:42	105-60-2	Caprolactam			0.074	U
GB-25 4-6	8/10/2015 11:42	100-52-7	Benzaldehyde			0.065	U
GB-25 4-6	8/10/2015 11:42	106-47-8	4-Chloroaniline			0.058	U
GB-25 4-6	8/10/2015 11:42	121-14-2	2,4-Dinitrotoluene			0.055	U
GB-25 4-6	8/10/2015 11:42	100-01-6	4-Nitroaniline			0.055	U
GB-25 4-6	8/10/2015 11:42	99-09-2	3-Nitroaniline			0.051	U
GB-25 4-6	8/10/2015 11:42	88-74-4	2-Nitroaniline			0.05	U
GB-25 4-6	8/10/2015 11:42	105-67-9	2,4-Dimethylphenol			0.049	J
GB-25 4-6	8/10/2015 11:42	7005-72-3	4-Chlorophenyl phenyl ether			0.049	J
GB-25 4-6	8/10/2015 11:42	15831-10-4	3 & 4 Methylphenol			0.048	U
GB-25 4-6	8/10/2015 11:42	606-20-2	2,6-Dinitrotoluene			0.047	U
GB-25 4-6	8/10/2015 11:42	88-75-5	2-Nitrophenol			0.046	U
GB-25 4-6	8/10/2015 11:42	83-32-9	Acenaphthene			0.046	U
GB-25 4-6	8/10/2015 11:42	77-47-4	Hexachlorocyclopentadiene			0.046	U
GB-25 4-6	8/10/2015 11:42	95-57-8	2-Chlorophenol			0.045	U
GB-25 4-6	8/10/2015 11:42	111-91-1	Bis(2-chloroethoxy)methane			0.044	U
GB-25 4-6	8/10/2015 11:42	53-70-3	Dibenz(a,h)anthracene			0.044	U
GB-25 4-6	8/10/2015 11:42	118-74-1	Hexachlorobenzene			0.044	U
GB-25 4-6	8/10/2015 11:42	91-57-6	2-Methylnaphthalene			0.042	U
GB-25 4-6	8/10/2015 11:42	84-66-2	Diethyl phthalate			0.041	U
GB-25 4-6	8/10/2015 11:42	101-55-3	4-Bromophenyl phenyl ether			0.04	U
GB-25 4-6	8/10/2015 11:42	208-96-8	Acenaphthylene			0.04	U
GB-25 4-6	8/10/2015 11:42	86-73-7	Fluorene			0.04	U
GB-25 4-6	8/10/2015 11:42	87-68-3	Hexachlorobutadiene			0.04	U

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-25 4-6	8/10/2015 11:42	95-95-4	2,4,5-Trichlorophenol			0.039	U
GB-25 4-6	8/10/2015 11:42	120-83-2	2,4-Dichlorophenol			0.039	U
GB-25 4-6	8/10/2015 11:42	91-58-7	2-Chloronaphthalene			0.039	U
GB-25 4-6	8/10/2015 11:42	59-50-7	4-Chloro-3-methylphenol			0.039	U
GB-25 4-6	8/10/2015 11:42	131-11-3	Dimethyl phthalate			0.038	U
GB-25 4-6	8/10/2015 11:42	108-95-2	Phenol			0.038	U
GB-25 4-6	8/10/2015 11:42	132-64-9	Dibenzofuran			0.037	U
GB-25 4-6	8/10/2015 11:42	78-59-1	Isophorone			0.037	U
GB-25 4-6	8/10/2015 11:42	86-30-6	N-Nitrosodiphenylamine			0.037	U
GB-25 4-6	8/10/2015 11:42	621-64-7	N-Nitrosodi-n-propylamine			0.036	U
GB-25 4-6	8/10/2015 11:42	108-60-1	bis (2-chloroisopropyl) ether			0.034	U
GB-25 4-6	8/10/2015 11:42	86-74-8	Carbazole			0.034	U
GB-25 4-6	8/10/2015 11:42	84-74-2	Di-n-butyl phthalate			0.034	U
GB-25 4-6	8/10/2015 11:42	91-20-3	Naphthalene			0.034	U
GB-25 4-6	8/10/2015 11:42	88-06-2	2,4,6-Trichlorophenol			0.032	U
GB-25 4-6	8/10/2015 11:42	117-84-0	Di-n-octyl phthalate			0.032	U
GB-25 4-6	8/10/2015 11:42	91-94-1	3,3'-Dichlorobenzidine			0.031	U
GB-25 4-6	8/10/2015 11:42	98-86-2	Acetophenone			0.031	U
GB-25 4-6	8/10/2015 11:42	67-72-1	Hexachloroethane			0.031	U
GB-25 4-6	8/10/2015 11:42	95-48-7	2-Methylphenol			0.03	U
GB-25 4-6	8/10/2015 11:42	85-68-7	Butyl benzyl phthalate			0.029	U
GB-25 4-6	8/10/2015 11:42	98-95-3	Nitrobenzene			0.029	U
GB-25 4-6	8/10/2015 11:42	120-12-7	Anthracene			0.028	U
GB-25 4-6	8/10/2015 11:42	1912-24-9	Atrazine			0.026	U
GB-25 4-6	8/10/2015 11:42	191-24-2	Benzo[g,h,i]perylene			0.025	U
GB-25 4-6	8/10/2015 11:42	111-44-4	Bis(2-chloroethyl)ether			0.05	U *
GB-25 4-6	8/10/2015 11:42	321-60-8	2-Fluorobiphenyl	NL	NL	3	
GB-26 2-4	8/10/2015 12:20	321-60-8	2-Fluorobiphenyl			0	D
GB-26 2-4	8/10/2015 12:20	129-00-0	Pyrene			0.37	J
GB-26 2-4	8/10/2015 12:20	218-01-9	Chrysene			0.26	J
GB-26 2-4	8/10/2015 12:20	92-52-4	1,1'-Biphenyl			18	U
GB-26 2-4	8/10/2015 12:20	51-28-5	2,4-Dinitrophenol			8.8	U
GB-26 2-4	8/10/2015 12:20	100-02-7	4-Nitrophenol			3.5	U
GB-26 2-4	8/10/2015 12:20	87-86-5	Pentachlorophenol			3.5	U
GB-26 2-4	8/10/2015 12:20	534-52-1	4,6-Dinitro-2-methylphenol			1.8	U
GB-26 2-4	8/10/2015 12:20	105-60-2	Caprolactam			0.7	U
GB-26 2-4	8/10/2015 12:20	207-08-9	Benzo[k]fluoranthene			0.69	U
GB-26 2-4	8/10/2015 12:20	100-52-7	Benzaldehyde			0.61	U
GB-26 2-4	8/10/2015 12:20	106-47-8	4-Chloroaniline			0.55	U
GB-26 2-4	8/10/2015 12:20	50-32-8	Benzo[a]pyrene			0.55	U
GB-26 2-4	8/10/2015 12:20	121-14-2	2,4-Dinitrotoluene			0.52	U
GB-26 2-4	8/10/2015 12:20	100-01-6	4-Nitroaniline			0.52	U
GB-26 2-4	8/10/2015 12:20	99-09-2	3-Nitroaniline			0.49	U

				Towns 4 DDC	Type 2	Danile	
Client Sample	Callastian Data	CAS	Analysia by Mathad 9270D	Type 1 RRS	RRS	Result	Flac
ID GB-26 2-4	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
	8/10/2015 12:20	88-74-4	2-Nitroaniline			0.47	U
GB-26 2-4	8/10/2015 12:20	111-44-4	Bis(2-chloroethyl)ether			0.47	U
GB-26 2-4	8/10/2015 12:20	105-67-9	2,4-Dimethylphenol			0.46	U
GB-26 2-4	8/10/2015 12:20	7005-72-3	4-Chlorophenyl phenyl ether			0.46	U
GB-26 2-4	8/10/2015 12:20	15831-10-4	3 & 4 Methylphenol			0.45	U
GB-26 2-4	8/10/2015 12:20	606-20-2	2,6-Dinitrotoluene			0.44	U
GB-26 2-4	8/10/2015 12:20	88-75-5	2-Nitrophenol			0.43	U
GB-26 2-4	8/10/2015 12:20	83-32-9	Acenaphthene			0.43	U
GB-26 2-4	8/10/2015 12:20	77-47-4	Hexachlorocyclopentadiene			0.43	U
GB-26 2-4	8/10/2015 12:20	95-57-8	2-Chlorophenol			0.42	U
GB-26 2-4	8/10/2015 12:20	111-91-1	Bis(2-chloroethoxy)methane			0.41	U
GB-26 2-4	8/10/2015 12:20	53-70-3	Dibenz(a,h)anthracene			0.41	U
GB-26 2-4	8/10/2015 12:20	118-74-1	Hexachlorobenzene			0.41	U
GB-26 2-4	8/10/2015 12:20	91-57-6	2-Methylnaphthalene			0.4	U
GB-26 2-4	8/10/2015 12:20	205-99-2	Benzo[b]fluoranthene			0.4	U
GB-26 2-4	8/10/2015 12:20	84-66-2	Diethyl phthalate			0.39	U
GB-26 2-4	8/10/2015 12:20	101-55-3	4-Bromophenyl phenyl ether			0.38	U
GB-26 2-4	8/10/2015 12:20	208-96-8	Acenaphthylene			0.38	U
GB-26 2-4	8/10/2015 12:20	86-73-7	Fluorene			0.38	U
GB-26 2-4	8/10/2015 12:20	87-68-3	Hexachlorobutadiene			0.38	U
GB-26 2-4	8/10/2015 12:20	95-95-4	2,4,5-Trichlorophenol			0.37	U
GB-26 2-4	8/10/2015 12:20	120-83-2	2,4-Dichlorophenol			0.37	U
GB-26 2-4	8/10/2015 12:20	91-58-7	2-Chloronaphthalene			0.37	U
GB-26 2-4	8/10/2015 12:20	59-50-7	4-Chloro-3-methylphenol			0.37	U
GB-26 2-4	8/10/2015 12:20	131-11-3	Dimethyl phthalate			0.36	U
GB-26 2-4	8/10/2015 12:20	108-95-2	Phenol			0.36	U
GB-26 2-4	8/10/2015 12:20	132-64-9	Dibenzofuran			0.35	U
GB-26 2-4	8/10/2015 12:20	78-59-1	Isophorone			0.35	U
GB-26 2-4	8/10/2015 12:20	86-30-6	N-Nitrosodiphenylamine			0.35	U
GB-26 2-4	8/10/2015 12:20	206-44-0	Fluoranthene			0.34	U
GB-26 2-4	8/10/2015 12:20	621-64-7	N-Nitrosodi-n-propylamine			0.34	U
GB-26 2-4	8/10/2015 12:20	108-60-1	bis (2-chloroisopropyl) ether			0.32	U
GB-26 2-4	8/10/2015 12:20	86-74-8	Carbazole			0.32	U
GB-26 2-4	8/10/2015 12:20	84-74-2	Di-n-butyl phthalate			0.32	U
GB-26 2-4	8/10/2015 12:20	91-20-3	Naphthalene			0.32	U
GB-26 2-4	8/10/2015 12:20	88-06-2	2,4,6-Trichlorophenol			0.31	U
GB-26 2-4	8/10/2015 12:20	117-81-7	Bis(2-ethylhexyl) phthalate			0.31	U
GB-26 2-4	8/10/2015 12:20	117-84-0	Di-n-octyl phthalate			0.31	U
GB-26 2-4	8/10/2015 12:20	91-94-1	3,3'-Dichlorobenzidine			0.3	U
GB-26 2-4	8/10/2015 12:20	98-86-2	Acetophenone			0.3	U
GB-26 2-4	8/10/2015 12:20	67-72-1	Hexachloroethane			0.3	U
GB-26 2-4	8/10/2015 12:20	193-39-5	Indeno[1,2,3-cd]pyrene			0.3	U
GB-26 2-4	8/10/2015 12:20	95-48-7	2-Methylphenol			0.28	U

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-26 2-4	8/10/2015 12:20	56-55-3	Benzo[a]anthracene			0.28	U
GB-26 2-4	8/10/2015 12:20	85-01-8	Phenanthrene			0.28	U
GB-26 2-4	8/10/2015 12:20	85-68-7	Butyl benzyl phthalate			0.27	U
GB-26 2-4	8/10/2015 12:20	98-95-3	Nitrobenzene			0.27	U
GB-26 2-4	8/10/2015 12:20	120-12-7	Anthracene			0.26	U
GB-26 2-4	8/10/2015 12:20	1912-24-9	Atrazine			0.24	U
GB-26 2-4	8/10/2015 12:20	191-24-2	Benzo[g,h,i]perylene			0.23	U
GB-26 4-6	8/10/2015 12:25	206-44-0	Fluoranthene			0.36	J
GB-26 4-6	8/10/2015 12:25	129-00-0	Pyrene			0.28	J
GB-26 4-6	8/10/2015 12:25	205-99-2	Benzo[b]fluoranthene			0.26	J
GB-26 4-6	8/10/2015 12:25	56-55-3	Benzo[a]anthracene			0.21	J
GB-26 4-6	8/10/2015 12:25	85-01-8	Phenanthrene			0.19	J
GB-26 4-6	8/10/2015 12:25	218-01-9	Chrysene			0.18	J
GB-26 4-6	8/10/2015 12:25	191-24-2	Benzo[g,h,i]perylene			0.15	J
GB-26 4-6	8/10/2015 12:25	92-52-4	1,1'-Biphenyl			9.6	U
GB-26 4-6	8/10/2015 12:25	51-28-5	2,4-Dinitrophenol			4.7	U
GB-26 4-6	8/10/2015 12:25	100-02-7	4-Nitrophenol			1.9	U
GB-26 4-6	8/10/2015 12:25	87-86-5	Pentachlorophenol			1.9	U
GB-26 4-6	8/10/2015 12:25	534-52-1	4,6-Dinitro-2-methylphenol			0.96	U
GB-26 4-6	8/10/2015 12:25	207-08-9	Benzo[k]fluoranthene			0.37	U
GB-26 4-6	8/10/2015 12:25	105-60-2	Caprolactam			0.37	U
GB-26 4-6	8/10/2015 12:25	100-52-7	Benzaldehyde			0.33	U
GB-26 4-6	8/10/2015 12:25	106-47-8	4-Chloroaniline			0.29	U
GB-26 4-6	8/10/2015 12:25	50-32-8	Benzo[a]pyrene			0.29	U
GB-26 4-6	8/10/2015 12:25	121-14-2	2,4-Dinitrotoluene			0.28	U
GB-26 4-6	8/10/2015 12:25	100-01-6	4-Nitroaniline			0.28	U
GB-26 4-6	8/10/2015 12:25	99-09-2	3-Nitroaniline			0.26	U
GB-26 4-6	8/10/2015 12:25	105-67-9	2,4-Dimethylphenol			0.25	U
GB-26 4-6	8/10/2015 12:25	88-74-4	2-Nitroaniline			0.25	U
GB-26 4-6	8/10/2015 12:25	7005-72-3	4-Chlorophenyl phenyl ether			0.25	U
GB-26 4-6	8/10/2015 12:25	606-20-2	2,6-Dinitrotoluene			0.24	U
GB-26 4-6	8/10/2015 12:25	15831-10-4	3 & 4 Methylphenol			0.24	U
GB-26 4-6	8/10/2015 12:25	88-75-5	2-Nitrophenol			0.23	U
GB-26 4-6	8/10/2015 12:25	83-32-9	Acenaphthene			0.23	U
GB-26 4-6	8/10/2015 12:25	77-47-4	Hexachlorocyclopentadiene			0.23	U
GB-26 4-6	8/10/2015 12:25	95-57-8	2-Chlorophenol			0.22	U
GB-26 4-6	8/10/2015 12:25	111-91-1	Bis(2-chloroethoxy)methane			0.22	U
GB-26 4-6	8/10/2015 12:25	53-70-3	Dibenz(a,h)anthracene			0.22	U
GB-26 4-6	8/10/2015 12:25	118-74-1	Hexachlorobenzene			0.22	U
GB-26 4-6	8/10/2015 12:25	91-57-6	2-Methylnaphthalene			0.21	U
GB-26 4-6	8/10/2015 12:25	84-66-2	Diethyl phthalate			0.21	U
GB-26 4-6	8/10/2015 12:25	95-95-4	2,4,5-Trichlorophenol			0.2	U
GB-26 4-6	8/10/2015 12:25	120-83-2	2,4-Dichlorophenol			0.2	U

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-26 4-6	8/10/2015 12:25	91-58-7	2-Chloronaphthalene			0.2	U
GB-26 4-6	8/10/2015 12:25	101-55-3	4-Bromophenyl phenyl ether			0.2	U
GB-26 4-6	8/10/2015 12:25	59-50-7	4-Chloro-3-methylphenol			0.2	U
GB-26 4-6	8/10/2015 12:25	208-96-8	Acenaphthylene			0.2	U
GB-26 4-6	8/10/2015 12:25	86-73-7	Fluorene			0.2	U
GB-26 4-6	8/10/2015 12:25	87-68-3	Hexachlorobutadiene			0.2	U
GB-26 4-6	8/10/2015 12:25	132-64-9	Dibenzofuran			0.19	U
GB-26 4-6	8/10/2015 12:25	131-11-3	Dimethyl phthalate			0.19	U
GB-26 4-6	8/10/2015 12:25	78-59-1	Isophorone			0.19	U
GB-26 4-6	8/10/2015 12:25	86-30-6	N-Nitrosodiphenylamine			0.19	U
GB-26 4-6	8/10/2015 12:25	108-95-2	Phenol			0.19	U
GB-26 4-6	8/10/2015 12:25	621-64-7	N-Nitrosodi-n-propylamine			0.18	U
GB-26 4-6	8/10/2015 12:25	108-60-1	bis (2-chloroisopropyl) ether			0.17	U
GB-26 4-6	8/10/2015 12:25	86-74-8	Carbazole			0.17	U
GB-26 4-6	8/10/2015 12:25	84-74-2	Di-n-butyl phthalate			0.17	U
GB-26 4-6	8/10/2015 12:25	91-20-3	Naphthalene			0.17	U
GB-26 4-6	8/10/2015 12:25	88-06-2	2,4,6-Trichlorophenol			0.16	U
GB-26 4-6	8/10/2015 12:25	91-94-1	3,3'-Dichlorobenzidine			0.16	U
GB-26 4-6	8/10/2015 12:25	98-86-2	Acetophenone			0.16	U
GB-26 4-6	8/10/2015 12:25	117-81-7	Bis(2-ethylhexyl) phthalate			0.16	U
GB-26 4-6	8/10/2015 12:25	117-84-0	Di-n-octyl phthalate			0.16	U
GB-26 4-6	8/10/2015 12:25	67-72-1	Hexachloroethane			0.16	U
GB-26 4-6	8/10/2015 12:25	193-39-5	Indeno[1,2,3-cd]pyrene			0.16	U
GB-26 4-6	8/10/2015 12:25	95-48-7	2-Methylphenol			0.15	U
GB-26 4-6	8/10/2015 12:25	85-68-7	Butyl benzyl phthalate			0.15	U
GB-26 4-6	8/10/2015 12:25	98-95-3	Nitrobenzene	1		0.15	U
GB-26 4-6	8/10/2015 12:25	120-12-7	Anthracene	1		0.14	U
GB-26 4-6	8/10/2015 12:25		Atrazine	1		0.13	U
GB-26 4-6	8/10/2015 12:25	111-44-4	Bis(2-chloroethyl)ether	1		0.25	U*
GB-26 4-6	8/10/2015 12:25	321-60-8	2-Fluorobiphenyl	NL	NL	2.8	
GB-27 13-15		321-60-8	2-Fluorobiphenyl	INE	INL	0	D
GB-27 13-15 GB-27 13-15		129-00-0	Pyrene			0.63	ı
GB-27 13-15 GB-27 13-15	8/10/2015 12:48	206-44-0	Fluoranthene			0.61	J
GB-27 13-15 GB-27 13-15	8/10/2015 12:48	205-99-2	Benzo[b]fluoranthene			0.46	J
GB-27 13-13 GB-27 13-15	8/10/2015 12:48	56-55-3	Benzo[a]anthracene			0.40	J
							J
GB-27 13-15		218-01-9	Chrysene			0.35	J
GB-27 13-15		85-01-8	Phenanthrene			0.34	J
GB-27 13-15		191-24-2	Benzo[g,h,i]perylene			0.32	J
GB-27 13-15	8/10/2015 12:48	92-52-4	1,1'-Biphenyl			20	U
GB-27 13-15	8/10/2015 12:48	51-28-5	2,4-Dinitrophenol			9.7	U
GB-27 13-15	8/10/2015 12:48	100-02-7	4-Nitrophenol			3.9	U
GB-27 13-15	8/10/2015 12:48	87-86-5	Pentachlorophenol			3.9	U
GB-27 13-15	8/10/2015 12:48	534-52-1	4,6-Dinitro-2-methylphenol			2	U

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-27 13-15 8	8/10/2015 12:48	105-60-2	Caprolactam			0.77	U
	8/10/2015 12:48	207-08-9	Benzo[k]fluoranthene			0.76	U
	8/10/2015 12:48	100-52-7	Benzaldehyde			0.68	U
GB-27 13-15 8	8/10/2015 12:48	106-47-8	4-Chloroaniline			0.61	U
GB-27 13-15 8	8/10/2015 12:48	50-32-8	Benzo[a]pyrene			0.61	U
GB-27 13-15 8	8/10/2015 12:48	121-14-2	2,4-Dinitrotoluene			0.57	U
GB-27 13-15 8	8/10/2015 12:48	100-01-6	4-Nitroaniline			0.57	U
GB-27 13-15 8	8/10/2015 12:48	99-09-2	3-Nitroaniline			0.54	U
GB-27 13-15 8	8/10/2015 12:48	88-74-4	2-Nitroaniline			0.53	U
GB-27 13-15 8	8/10/2015 12:48	105-67-9	2,4-Dimethylphenol			0.51	U
GB-27 13-15 8	8/10/2015 12:48	7005-72-3	4-Chlorophenyl phenyl ether			0.51	U
GB-27 13-15 8	8/10/2015 12:48	15831-10-4	3 & 4 Methylphenol			0.5	U
GB-27 13-15 8	8/10/2015 12:48	606-20-2	2,6-Dinitrotoluene			0.49	U
GB-27 13-15 8	8/10/2015 12:48	88-75-5	2-Nitrophenol			0.48	U
GB-27 13-15 8	8/10/2015 12:48	83-32-9	Acenaphthene			0.48	U
GB-27 13-15 8	8/10/2015 12:48	77-47-4	Hexachlorocyclopentadiene			0.48	U
GB-27 13-15 8	8/10/2015 12:48	95-57-8	2-Chlorophenol			0.47	U
GB-27 13-15 8	8/10/2015 12:48	111-91-1	Bis(2-chloroethoxy)methane			0.46	U
GB-27 13-15 8	8/10/2015 12:48	53-70-3	Dibenz(a,h)anthracene			0.46	U
GB-27 13-15 8	8/10/2015 12:48	118-74-1	Hexachlorobenzene			0.46	U
GB-27 13-15 8	8/10/2015 12:48	91-57-6	2-Methylnaphthalene			0.44	U
GB-27 13-15 8	8/10/2015 12:48	84-66-2	Diethyl phthalate			0.43	U
GB-27 13-15 8	8/10/2015 12:48	101-55-3	4-Bromophenyl phenyl ether			0.42	U
GB-27 13-15 8	8/10/2015 12:48	208-96-8	Acenaphthylene			0.42	U
GB-27 13-15 8	8/10/2015 12:48	86-73-7	Fluorene			0.42	U
GB-27 13-15 8	8/10/2015 12:48	87-68-3	Hexachlorobutadiene			0.42	U
GB-27 13-15 8	8/10/2015 12:48	95-95-4	2,4,5-Trichlorophenol			0.41	U
GB-27 13-15 8	8/10/2015 12:48	120-83-2	2,4-Dichlorophenol			0.41	U
GB-27 13-15 8	8/10/2015 12:48	91-58-7	2-Chloronaphthalene			0.41	U
	8/10/2015 12:48	59-50-7	4-Chloro-3-methylphenol			0.41	U
GB-27 13-15 8	8/10/2015 12:48	131-11-3	Dimethyl phthalate			0.4	U
GB-27 13-15 8	8/10/2015 12:48	108-95-2	Phenol			0.4	U
GB-27 13-15 8	8/10/2015 12:48	132-64-9	Dibenzofuran			0.39	U
GB-27 13-15 8	8/10/2015 12:48	78-59-1	Isophorone			0.39	U
GB-27 13-15 8	8/10/2015 12:48	86-30-6	N-Nitrosodiphenylamine			0.39	U
	8/10/2015 12:48	621-64-7	N-Nitrosodi-n-propylamine			0.37	U
	8/10/2015 12:48	108-60-1	bis (2-chloroisopropyl) ether			0.35	U
	8/10/2015 12:48	86-74-8	Carbazole			0.35	U
	8/10/2015 12:48	84-74-2	Di-n-butyl phthalate			0.35	U
	8/10/2015 12:48	91-20-3	Naphthalene			0.35	U
	8/10/2015 12:48	88-06-2	2,4,6-Trichlorophenol			0.34	U
	8/10/2015 12:48	117-81-7	Bis(2-ethylhexyl) phthalate			0.34	U
	8/10/2015 12:48	117-84-0	Di-n-octyl phthalate			0.34	U

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-27 13-15	8/10/2015 12:48	91-94-1	3,3'-Dichlorobenzidine			0.33	U
GB-27 13-15	8/10/2015 12:48	98-86-2	Acetophenone			0.33	U
GB-27 13-15	8/10/2015 12:48	67-72-1	Hexachloroethane			0.33	U
GB-27 13-15	8/10/2015 12:48	193-39-5	Indeno[1,2,3-cd]pyrene			0.33	U
GB-27 13-15	8/10/2015 12:48	95-48-7	2-Methylphenol			0.32	U
GB-27 13-15	8/10/2015 12:48	85-68-7	Butyl benzyl phthalate			0.3	U
GB-27 13-15	8/10/2015 12:48	98-95-3	Nitrobenzene			0.3	U
GB-27 13-15	8/10/2015 12:48	120-12-7	Anthracene			0.29	U
GB-27 13-15	8/10/2015 12:48	1912-24-9	Atrazine			0.27	U
GB-27 13-15	8/10/2015 12:48	111-44-4	Bis(2-chloroethyl)ether			0.53	U *
GB-27 3-5	8/10/2015 12:33	321-60-8	2-Fluorobiphenyl			0	D
GB-27 3-5	8/10/2015 12:33	205-99-2	Benzo[b]fluoranthene			3.8	J
GB-27 3-5	8/10/2015 12:33	56-55-3	Benzo[a]anthracene			3.4	J
GB-27 3-5	8/10/2015 12:33	218-01-9	Chrysene			3.4	J
GB-27 3-5	8/10/2015 12:33	50-32-8	Benzo[a]pyrene			2.9	J
GB-27 3-5	8/10/2015 12:33	191-24-2	Benzo[g,h,i]perylene			2.1	J
GB-27 3-5	8/10/2015 12:33	207-08-9	Benzo[k]fluoranthene			2	J
GB-27 3-5	8/10/2015 12:33	193-39-5	Indeno[1,2,3-cd]pyrene			1.8	J
GB-27 3-5	8/10/2015 12:33	120-12-7	Anthracene			1.4	J
GB-27 3-5	8/10/2015 12:33	86-74-8	Carbazole			1.2	J
GB-27 3-5	8/10/2015 12:33	86-73-7	Fluorene			0.69	J
GB-27 3-5	8/10/2015 12:33	53-70-3	Dibenz(a,h)anthracene			0.63	J
GB-27 3-5	8/10/2015 12:33	92-52-4	1,1'-Biphenyl			24	U
GB-27 3-5	8/10/2015 12:33	51-28-5	2,4-Dinitrophenol			12	U
GB-27 3-5	8/10/2015 12:33	100-02-7	4-Nitrophenol			4.7	U
GB-27 3-5	8/10/2015 12:33	87-86-5	Pentachlorophenol			4.7	U
GB-27 3-5	8/10/2015 12:33	534-52-1	4,6-Dinitro-2-methylphenol			2.4	U
GB-27 3-5	8/10/2015 12:33	105-60-2	Caprolactam			0.95	U
GB-27 3-5	8/10/2015 12:33	100-52-7	Benzaldehyde			0.83	U
GB-27 3-5	8/10/2015 12:33	106-47-8	4-Chloroaniline			0.75	U
GB-27 3-5	8/10/2015 12:33	121-14-2	2,4-Dinitrotoluene			0.7	U
GB-27 3-5	8/10/2015 12:33	100-01-6	4-Nitroaniline			0.7	U
GB-27 3-5	8/10/2015 12:33	99-09-2	3-Nitroaniline			0.66	U
GB-27 3-5	8/10/2015 12:33	88-74-4	2-Nitroaniline			0.65	U
GB-27 3-5	8/10/2015 12:33	111-44-4	Bis(2-chloroethyl)ether			0.65	U
GB-27 3-5	8/10/2015 12:33	105-67-9	2,4-Dimethylphenol			0.63	U
GB-27 3-5	8/10/2015 12:33	7005-72-3	4-Chlorophenyl phenyl ether			0.63	U
GB-27 3-5	8/10/2015 12:33	15831-10-4	3 & 4 Methylphenol			0.62	U
GB-27 3-5	8/10/2015 12:33	606-20-2	2,6-Dinitrotoluene			0.6	U
GB-27 3-5	8/10/2015 12:33	88-75-5	2-Nitrophenol			0.59	U
GB-27 3-5	8/10/2015 12:33	83-32-9	Acenaphthene			0.59	U
GB-27 3-5	8/10/2015 12:33	77-47-4	Hexachlorocyclopentadiene			0.59	U
GB-27 3-5	8/10/2015 12:33	95-57-8	2-Chlorophenol			0.57	U

Client Sample Collection Date CAS Analyte by Method 8270D Type 1 RRS RRS Result Image: Flag GB-27 3-5 8/10/2015 12:33 111-91-1 Bis[2-chloroethoxy/methane — 0.56 U GB-27 3-5 8/10/2015 12:33 118-74-1 Hexachlorobenzene — 0.55 U GB-27 3-5 8/10/2015 12:33 191-57-6 2-Methylmaphthalene — 0.55 U GB-27 3-5 8/10/2015 12:33 101-55-3 4-Bromophenyl phenyl ether — 0.52 U GB-27 3-5 8/10/2015 12:33 101-55-3 4-Bromophenyl phenyl ether — 0.52 U GB-27 3-5 8/10/2015 12:33 102-68-2 Acnaphthylene — 0.52 U GB-27 3-5 8/10/2015 12:33 108-8-2 2,4-5-Trichlorophenol — 0.5 U GB-27 3-5 8/10/2015 12:33 191-8-7 2-Chloronaphthalene — 0.5 U GB-27 3-5 8/10/2015 12:33 131-11-3 Dimethyl phthalate — 0.04 <th></th> <th></th> <th></th> <th>Macon, Ga</th> <th></th> <th>Type 2</th> <th></th> <th></th>				Macon, Ga		Type 2		
B	Client Sample				Type 1 PPS	Type 2	Pocult	
GB-27 3-5 8/10/2015 12:33 111-91-1 Bis(2-chloroethoxy)methane 0.56 U GB-27 3-5 8/10/2015 12:33 118-74-1 Hexachlorobenzene 0.56 U GB-27 3-5 8/10/2015 12:33 118-74-1 Hexachlorobenzene 0.55 U GB-27 3-5 8/10/2015 12:33 101-55-3 U - Hexachlorobenzene 0.55 U GB-27 3-5 8/10/2015 12:33 101-55-3 U - Hexachlorobenzene 0.52 U GB-27 3-5 8/10/2015 12:33 101-55-3 U - Hexachlorobenzene 0.52 U GB-27 3-5 8/10/2015 12:33 101-55-3 U - Hexachlorobenzene 0.52 U GB-27 3-5 8/10/2015 12:33 38-68-3 Hexachlorobutadiene 0.52 U GB-27 3-5 8/10/2015 12:33 39-59-54 Z.4,5-Trichlorophenol 0.5 U GB-27 3-5 8/10/2015 12:33 39-59-7 Z-Chloronaphthalene 0.5 U GB-27 3-5 8/10/2015 12:33 39-58-7 Z-Chloronaphthalene 0.5 U GB-27 3-5 8/10/2015 12:33 39-59-7 Z-Chloronaphthalene 0.5 U GB-27 3-5 8/10/2015 12:33 31-11-3 Dimethyl phthalate 0.49 U GB-27 3-5 8/10/2015 12:33 31-11-3 Dimethyl phthalate 0.49 U GB-27 3-5 8/10/2015 12:33 31-13-13 Dimethyl phthalate 0.49 U GB-27 3-5 8/10/2015 12:33 31-64-9 Dibenzofuran 0.47 U GB-27 3-5 8/10/2015 12:33 38-30-6 N-Nitrosodiphenylamine 0.47 U GB-27 3-5 8/10/2015 12:33 38-30-6 N-Nitrosodiphenylamine 0.47 U GB-27 3-5 8/10/2015 12:33 38-30-6 N-Nitrosodiphenylamine 0.44 U GB-27 3-5 8/10/2015 12:33 38-60-2 Z-4,6-Trichlorophenol 0.49 U GB-27 3-5 8/10/2015 12:33 38-60-2 Z-4,6-Trichlorophenol 0.40 U GB-27 3-5 8/10/2015 12:33 38-68-7 Butyl benzyl phthalate 0.42 U GB-27 3-5 8/10/2015 12:33 38-68-7 Butyl benzyl phthalate 0.42 U GB-27 3-5 8/10/2015 12:33 38-68-7 Butyl benzyl phthalate 0.42 U GB-27 3-5 8/10/2015 12:33 39-3-3	•	Callaction Data	CAS	Amaluta by Mathad 9370D	**			Floor
GB-27 3-5 8/10/2015 12:33 118-74-1 Hexachlorobenzene				• •	(mg/kg)	(mg/kg)		
GB-27 3-5 8/10/2015 12:33 91-57-6 2-Methylnaphthalene 0.55 U				·				_
GB-27 3-5 8/10/2015 12:33 84-66-2 Diethyl phthalate 0.53 U								
GB-27 3-5 8/10/2015 12:33 208-96-8 Acenaphthylene 0.52 U				·				
GB-27 3-5								
GB-27 3-5 8/10/2015 12:33 87-68-3 Hexachlorobutadiene 0.52 U								
GB-27 3-5 8/10/2015 12:33 95-95-4 2,4,5-Trichlorophenol 0.5 U				<u> </u>				
GB-27 3-5 8/10/2015 12:33 120-83-2 2,4-Dichlorophenol 0.5 U GB-27 3-5 8/10/2015 12:33 59-50-7 4-Chloro-A-methylphenol 0.5 U GB-27 3-5 8/10/2015 12:33 59-50-7 4-Chloro-A-methylphenol 0.5 U GB-27 3-5 8/10/2015 12:33 131-11-3 Dimethyl phthalate 0.49 U GB-27 3-5 8/10/2015 12:33 131-11-3 Dimethyl phthalate 0.49 U GB-27 3-5 8/10/2015 12:33 132-64-9 Dibenzofuran 0.47 U GB-27 3-5 8/10/2015 12:33 83-95-2 Phenol 0.49 U GB-27 3-5 8/10/2015 12:33 86-30-6 N-Nitrosodi-henylamine 0.47 U GB-27 3-5 8/10/2015 12:33 62-30-6 N-Nitrosodi-henylamine 0.47 U GB-27 3-5 8/10/2015 12:33 62-30-6 N-Nitrosodi-henylamine 0.46 U GB-27 3-5 8/10/2015 12:33 62-30-7 Dis-butyl phthalate 0.43 U GB-27 3-5 8/10/2015 12:33 84-74-2 Di-n-butyl phthalate 0.43 U GB-27 3-5 8/10/2015 12:33 91-20-3 Naphthalene 0.43 U GB-27 3-5 8/10/2015 12:33 117-81-7 Bis(2-ethylhexyl) phthalate 0.42 U GB-27 3-5 8/10/2015 12:33 117-81-7 Bis(2-ethylhexyl) phthalate 0.42 U GB-27 3-5 8/10/2015 12:33 91-94-1 3,3'-Dichlorobenzidine 0.4 U GB-27 3-5 8/10/2015 12:33 91-94-1 3,3'-Dichlorobenzidine 0.4 U GB-27 3-5 8/10/2015 12:33 98-86-2 Acetophenone 0.4 U GB-27 3-5 8/10/2015 12:33 98-86-2 Acetophenone 0.4 U GB-27 3-5 8/10/2015 12:33 98-86-2 Acetophenone 0.4 U GB-27 3-5 8/10/2015 12:33 98-95-3 Nitrobenzidine 0.2 0.3 U GB-27 3-5 8/10/2015 12:45 0.0 0.0 0.0 0.0 0.								
GB-27 3-5 8/10/2015 12:33 91-58-7 2-Chloronaphthalene 0.5 U GB-27 3-5 8/10/2015 12:33 59-50-7 4-Chloro-3-methylphenol 0.5 U GB-27 3-5 8/10/2015 12:33 131-11-3 Dimethyl phthalate 0.49 U GB-27 3-5 8/10/2015 12:33 132-64-9 Dibenzofuran 0.47 U GB-27 3-5 8/10/2015 12:33 78-59-1 Isophorone 0.47 U GB-27 3-5 8/10/2015 12:33 86-30-6 N-Nitrosodiphenylamine 0.47 U GB-27 3-5 8/10/2015 12:33 86-30-6 N-Nitrosodiphenylamine 0.46 U GB-27 3-5 8/10/2015 12:33 108-60-1 bis (2-chloroisopropyl) ether 0.43 U GB-27 3-5 8/10/2015 12:33 108-60-1 bis (2-chloroisopropyl) ether 0.43 U GB-27 3-5 8/10/2015 12:33 19-20-3 Naphthalene 0.43 U GB-27 3-5 8/10/2015 12:33 17-81-7 Bis(2-ethylhexyl) phthalate 0.42 U GB-27				•				
GB-27 3-5				•				
GB-27 3-5				<u>-</u>				
GB-27 3-5 8/10/2015 12:33 108-95-2 Phenol 0.49 U								
GB-27 3-5				• •			0.49	U
GB-27 3-5 8/10/2015 12:33 78-59-1 Isophorone 0.47 U								U
GB-27 3-5 8/10/2015 12:33 86-30-6 N-Nitrosodiphenylamine 0.47 U	GB-27 3-5	8/10/2015 12:33	132-64-9	Dibenzofuran			0.47	U
GB-27 3-5	GB-27 3-5	8/10/2015 12:33	78-59-1	Isophorone			0.47	U
GB-27 3-5 8/10/2015 12:33 108-60-1 bis (2-chloroisopropyl) ether 0.43 U	GB-27 3-5	8/10/2015 12:33	86-30-6	N-Nitrosodiphenylamine			0.47	U
GB-27 3-5 8/10/2015 12:33 84-74-2 Di-n-butyl phthalate 0.43 U	GB-27 3-5	8/10/2015 12:33	621-64-7	N-Nitrosodi-n-propylamine			0.46	U
GB-27 3-5 8/10/2015 12:33 91-20-3 Naphthalene 0.43 U GB-27 3-5 8/10/2015 12:33 88-06-2 2,4,6-Trichlorophenol 0.42 U GB-27 3-5 8/10/2015 12:33 117-81-7 Bis(2-ethylhexyl) phthalate 0.42 U GB-27 3-5 8/10/2015 12:33 117-84-0 Di-n-octyl phthalate 0.42 U GB-27 3-5 8/10/2015 12:33 91-94-1 3,3'-Dichlorobenzidine 0.4 U GB-27 3-5 8/10/2015 12:33 98-86-2 Acetophenone 0.4 U GB-27 3-5 8/10/2015 12:33 67-72-1 Hexachloroethane 0.4 U GB-27 3-5 8/10/2015 12:33 95-48-7 2-Methylphenol 0.39 U GB-27 3-5 8/10/2015 12:33 85-68-7 Butyl benzyl phthalate 0.37 U GB-27 3-5 8/10/2015 12:33 98-95-3 Nitrobenzene 0.37 U GB-27 3-5 8/10/2015 12:33 98-95-3 Nitrobenzene 0.37 U GB-27 3-5 8/10/2015 12:33	GB-27 3-5	8/10/2015 12:33	108-60-1	bis (2-chloroisopropyl) ether			0.43	U
GB-27 3-5 8/10/2015 12:33 88-06-2 2,4,6-Trichlorophenol 0.42 U GB-27 3-5 8/10/2015 12:33 117-81-7 Bis(2-ethylhexyl) phthalate 0.42 U GB-27 3-5 8/10/2015 12:33 117-84-0 Di-n-octyl phthalate 0.42 U GB-27 3-5 8/10/2015 12:33 91-94-1 3,3'-Dichlorobenzidine 0.4 U GB-27 3-5 8/10/2015 12:33 98-86-2 Acetophenone 0.4 U GB-27 3-5 8/10/2015 12:33 95-48-7 1 Hexachloroethane 0.4 U GB-27 3-5 8/10/2015 12:33 95-48-7 2-Methylphenol 0.39 U GB-27 3-5 8/10/2015 12:33 95-48-7 2-Methylphenol 0.39 U GB-27 3-5 8/10/2015 12:33 95-95-3 Nitrobenzene 0.37 U GB-27 3-5 8/10/2015 12:33 98-95-3 Nitrobenzene 0.33 U GB-27 3-5 8/10/2015 12:33 912-24-9 Atrazine 0.33 U GB-27 3-5 8/10/2015 12:33	GB-27 3-5	8/10/2015 12:33	84-74-2	Di-n-butyl phthalate			0.43	U
GB-27 3-5 8/10/2015 12:33 117-81-7 Bis(2-ethylhexyl) phthalate 0.42 U GB-27 3-5 8/10/2015 12:33 117-84-0 Di-n-octyl phthalate 0.42 U GB-27 3-5 8/10/2015 12:33 91-94-1 3,3'-Dichlorobenzidine 0.4 U GB-27 3-5 8/10/2015 12:33 98-86-2 Acetophenone 0.4 U GB-27 3-5 8/10/2015 12:33 67-72-1 Hexachloroethane 0.39 U GB-27 3-5 8/10/2015 12:33 95-48-7 2-Methylphenol 0.39 U GB-27 3-5 8/10/2015 12:33 98-95-3 Nitrobenzene 0.37 U GB-27 3-5 8/10/2015 12:33 98-95-3 Nitrobenzene 0.37 U GB-27 3-5 8/10/2015 12:33 1912-24-9 Atrazine 0.33 U GB-27 3-5 8/10/2015 12:33 206-44-0 Fluoranthene 500 3,130 7.3 GB-27 3-5 8/10/2015 12:33 321-60-8 2-Fluorobiphenyl 0 0 D GB-27 8-10	GB-27 3-5	8/10/2015 12:33	91-20-3	Naphthalene			0.43	U
GB-27 3-5 8/10/2015 12:33 117-84-0 Di-n-octyl phthalate 0.42 U GB-27 3-5 8/10/2015 12:33 91-94-1 3,3'-Dichlorobenzidine 0.4 U GB-27 3-5 8/10/2015 12:33 98-86-2 Acetophenone 0.4 U GB-27 3-5 8/10/2015 12:33 67-72-1 Hexachloroethane 0.4 U GB-27 3-5 8/10/2015 12:33 95-48-7 2-Methylphenol 0.39 U GB-27 3-5 8/10/2015 12:33 85-68-7 Butyl benzyl phthalate 0.37 U GB-27 3-5 8/10/2015 12:33 98-95-3 Nitrobenzene 0.37 U GB-27 3-5 8/10/2015 12:33 1912-24-9 Atrazine 0.33 U GB-27 3-5 8/10/2015 12:33 206-44-0 Fluoranthene 500 3,130 7.3 GB-27 3-5 8/10/2015 12:33 85-01-8 Phenanthrene 110 2,350 5.5 GB-27 8-10 8/10/2015 12:45 321-60-8 2-Fluorobiphenyl 0 D GB-27 8-10	GB-27 3-5	8/10/2015 12:33	88-06-2	2,4,6-Trichlorophenol			0.42	U
GB-27 3-5 8/10/2015 12:33 91-94-1 3,3'-Dichlorobenzidine 0.4 U GB-27 3-5 8/10/2015 12:33 98-86-2 Acetophenone 0.4 U GB-27 3-5 8/10/2015 12:33 67-72-1 Hexachloroethane 0.4 U GB-27 3-5 8/10/2015 12:33 95-48-7 2-Methylphenol 0.39 U GB-27 3-5 8/10/2015 12:33 85-68-7 Butyl benzyl phthalate 0.37 U GB-27 3-5 8/10/2015 12:33 98-95-3 Nitrobenzene 0.37 U GB-27 3-5 8/10/2015 12:33 1912-24-9 Atrazine 0.33 U GB-27 3-5 8/10/2015 12:33 1912-24-9 Atrazine 500 3,130 7.3 GB-27 3-5 8/10/2015 12:33 206-44-0 Fluoranthene 500 3,130 7.3 GB-27 3-5 8/10/2015 12:33 129-00-0 Pyrene 500 2,350 5.5 GB-27 8-10 8/10/2015 12:45 321-60-8 2-Fluorobiphenyl 0 D GB-27 8-	GB-27 3-5	8/10/2015 12:33	117-81-7	Bis(2-ethylhexyl) phthalate			0.42	U
GB-27 3-5 8/10/2015 12:33 98-86-2 Acetophenone 0.4 U GB-27 3-5 8/10/2015 12:33 67-72-1 Hexachloroethane 0.4 U GB-27 3-5 8/10/2015 12:33 95-48-7 2-Methylphenol 0.39 U GB-27 3-5 8/10/2015 12:33 85-68-7 Butyl benzyl phthalate 0.37 U GB-27 3-5 8/10/2015 12:33 98-95-3 Nitrobenzene 0.33 U GB-27 3-5 8/10/2015 12:33 1912-24-9 Atrazine 0.33 U GB-27 3-5 8/10/2015 12:33 206-44-0 Fluoranthene 500 3,130 7.3 GB-27 3-5 8/10/2015 12:33 85-01-8 Phenanthrene 110 2,350 5.5 GB-27 3-5 8/10/2015 12:33 129-00-0 Pyrene 500 2,350 5.5 GB-27 8-10 8/10/2015 12:45 321-60-8 2-Fluorobiphenyl 0 D GB-27 8-10 8/10/2015 12:45 85-01-8 Phenanthrene 0.42 J GB-27 8-10 <td>GB-27 3-5</td> <td>8/10/2015 12:33</td> <td>117-84-0</td> <td>Di-n-octyl phthalate</td> <td></td> <td></td> <td>0.42</td> <td>U</td>	GB-27 3-5	8/10/2015 12:33	117-84-0	Di-n-octyl phthalate			0.42	U
GB-27 3-5 8/10/2015 12:33 67-72-1 Hexachloroethane 0.4 U GB-27 3-5 8/10/2015 12:33 95-48-7 2-Methylphenol 0.39 U GB-27 3-5 8/10/2015 12:33 85-68-7 Butyl benzyl phthalate 0.37 U GB-27 3-5 8/10/2015 12:33 98-95-3 Nitrobenzene 0.33 U GB-27 3-5 8/10/2015 12:33 1912-24-9 Atrazine 0.33 U GB-27 3-5 8/10/2015 12:33 206-44-0 Fluoranthene 500 3,130 7.3 GB-27 3-5 8/10/2015 12:33 85-01-8 Phenanthrene 110 2,350 5.5 GB-27 3-5 8/10/2015 12:33 129-00-0 Pyrene 500 2,350 5.3 GB-27 8-10 8/10/2015 12:45 321-60-8 2-Fluorobiphenyl 0 D GB-27 8-10 8/10/2015 12:45 326-44-0 Fluoranthene 0.53 J GB-27 8-10 8/10/2015 12:45 85-01-8 Phenanthrene 0.42 J GB-27 8-10<	GB-27 3-5	8/10/2015 12:33	91-94-1	3,3'-Dichlorobenzidine			0.4	U
GB-27 3-5 8/10/2015 12:33 95-48-7 2-Methylphenol 0.39 U GB-27 3-5 8/10/2015 12:33 85-68-7 Butyl benzyl phthalate 0.37 U GB-27 3-5 8/10/2015 12:33 98-95-3 Nitrobenzene 0.37 U GB-27 3-5 8/10/2015 12:33 1912-24-9 Atrazine 0.33 U GB-27 3-5 8/10/2015 12:33 206-44-0 Fluoranthene 500 3,130 7.3 GB-27 3-5 8/10/2015 12:33 85-01-8 Phenanthrene 110 2,350 5.5 GB-27 3-5 8/10/2015 12:33 129-00-0 Pyrene 500 2,350 5.5 GB-27 3-5 8/10/2015 12:33 129-00-0 Pyrene 500 2,350 5.5 GB-27 8-10 8/10/2015 12:45 321-60-8 2-Fluorobiphenyl 0 0 D GB-27 8-10 8/10/2015 12:45 320-64-0 Fluoranthene 0.53 J GB-27 8-10 8/10/2015 12:45 85-01-8 Phenanthrene 0.42 J <td>GB-27 3-5</td> <td>8/10/2015 12:33</td> <td>98-86-2</td> <td>Acetophenone</td> <td></td> <td></td> <td>0.4</td> <td>U</td>	GB-27 3-5	8/10/2015 12:33	98-86-2	Acetophenone			0.4	U
GB-27 3-5 8/10/2015 12:33 85-68-7 Butyl benzyl phthalate 0.37 U GB-27 3-5 8/10/2015 12:33 98-95-3 Nitrobenzene 0.37 U GB-27 3-5 8/10/2015 12:33 1912-24-9 Atrazine 0.33 U GB-27 3-5 8/10/2015 12:33 206-44-0 Fluoranthene 500 3,130 7.3 GB-27 3-5 8/10/2015 12:33 85-01-8 Phenanthrene 110 2,350 5.5 GB-27 3-5 8/10/2015 12:33 129-00-0 Pyrene 500 2,350 5.5 GB-27 8-10 8/10/2015 12:45 321-60-8 2-Fluorobiphenyl 0 D GB-27 8-10 8/10/2015 12:45 321-60-8 2-Fluoranthene 0.53 J GB-27 8-10 8/10/2015 12:45 85-01-8 Phenanthrene 0.42 J GB-27 8-10 8/10/2015 12:45 85-01-8 Phenanthrene 0.42 J GB-27 8-10 8/10/2015 12:45 218-01-9 Chrysene 0.23 J GB-27 8-10	GB-27 3-5	8/10/2015 12:33	67-72-1	Hexachloroethane			0.4	U
GB-27 3-5 8/10/2015 12:33 98-95-3 Nitrobenzene 0.37 U GB-27 3-5 8/10/2015 12:33 1912-24-9 Atrazine 0.33 U GB-27 3-5 8/10/2015 12:33 206-44-0 Fluoranthene 500 3,130 7.3 GB-27 3-5 8/10/2015 12:33 85-01-8 Phenanthrene 110 2,350 5.5 GB-27 3-5 8/10/2015 12:33 129-00-0 Pyrene 500 2,350 5.3 GB-27 8-10 8/10/2015 12:45 321-60-8 2-Fluorobiphenyl 0 D GB-27 8-10 8/10/2015 12:45 321-60-8 2-Fluoranthene 0.53 J GB-27 8-10 8/10/2015 12:45 85-01-8 Phenanthrene 0.42 J GB-27 8-10 8/10/2015 12:45 129-00-0 Pyrene 0.41 J GB-27 8-10 8/10/2015 12:45 129-00-0 Pyrene 0.23 J GB-27 8-10 8/10/2015 12:45 218-01-9 Chrysene 0.23 J GB-27 8-10 8/10/2	GB-27 3-5	8/10/2015 12:33	95-48-7	2-Methylphenol			0.39	U
GB-27 3-5 8/10/2015 12:33 1912-24-9 Atrazine 0.33 U GB-27 3-5 8/10/2015 12:33 206-44-0 Fluoranthene 500 3,130 7.3 GB-27 3-5 8/10/2015 12:33 85-01-8 Phenanthrene 110 2,350 5.5 GB-27 3-5 8/10/2015 12:33 129-00-0 Pyrene 500 2,350 5.3 GB-27 8-10 8/10/2015 12:45 321-60-8 2-Fluorobiphenyl 0 D GB-27 8-10 8/10/2015 12:45 321-60-8 2-Fluoranthene 0.53 J GB-27 8-10 8/10/2015 12:45 206-44-0 Fluoranthene 0.53 J GB-27 8-10 8/10/2015 12:45 85-01-8 Phenanthrene 0.42 J GB-27 8-10 8/10/2015 12:45 129-00-0 Pyrene 0.41 J GB-27 8-10 8/10/2015 12:45 218-01-9 Chrysene 0.23 J GB-27 8-10 8/10/2015 12:45 92-52-4 1,1'-Biphenyl 19 U GB-27 8-10	GB-27 3-5	8/10/2015 12:33	85-68-7	Butyl benzyl phthalate			0.37	U
GB-27 3-5 8/10/2015 12:33 206-44-0 Fluoranthene 500 3,130 7.3 GB-27 3-5 8/10/2015 12:33 85-01-8 Phenanthrene 110 2,350 5.5 GB-27 3-5 8/10/2015 12:33 129-00-0 Pyrene 500 2,350 5.3 GB-27 8-10 8/10/2015 12:45 321-60-8 2-Fluorobiphenyl 0 D GB-27 8-10 8/10/2015 12:45 206-44-0 Fluoranthene 0.53 J GB-27 8-10 8/10/2015 12:45 85-01-8 Phenanthrene 0.42 J GB-27 8-10 8/10/2015 12:45 129-00-0 Pyrene 0.41 J GB-27 8-10 8/10/2015 12:45 218-01-9 Chrysene 0.23 J GB-27 8-10 8/10/2015 12:45 92-52-4 1,1'-Biphenyl 19 U GB-27 8-10 8/10/2015 12:45 51-28-5 2,4-Dinitrophenol 9.1 U GB-27 8-10 8/10/2015 12:45 100-02-7 4-Nitrophenol 3.6 U GB-27 8-10	GB-27 3-5	8/10/2015 12:33	98-95-3	Nitrobenzene			0.37	U
GB-27 3-5 8/10/2015 12:33 85-01-8 Phenanthrene 110 2,350 5.5 GB-27 3-5 8/10/2015 12:33 129-00-0 Pyrene 500 2,350 5.3 GB-27 8-10 8/10/2015 12:45 321-60-8 2-Fluorobiphenyl 0 D GB-27 8-10 8/10/2015 12:45 206-44-0 Fluoranthene 0.53 J GB-27 8-10 8/10/2015 12:45 85-01-8 Phenanthrene 0.42 J GB-27 8-10 8/10/2015 12:45 129-00-0 Pyrene 0.41 J GB-27 8-10 8/10/2015 12:45 218-01-9 Chrysene 0.23 J GB-27 8-10 8/10/2015 12:45 92-52-4 1,1'-Biphenyl 19 U GB-27 8-10 8/10/2015 12:45 51-28-5 2,4-Dinitrophenol 9.1 U GB-27 8-10 8/10/2015 12:45 100-02-7 4-Nitrophenol 3.6 U GB-27 8-10 8/10/2015 12:45 87-86-5 Pentachlorophenol 3.6 U	GB-27 3-5	8/10/2015 12:33	1912-24-9	Atrazine			0.33	U
GB-27 3-5 8/10/2015 12:33 129-00-0 Pyrene 500 2,350 5.3 GB-27 8-10 8/10/2015 12:45 321-60-8 2-Fluorobiphenyl 0 D GB-27 8-10 8/10/2015 12:45 206-44-0 Fluoranthene 0.53 J GB-27 8-10 8/10/2015 12:45 85-01-8 Phenanthrene 0.42 J GB-27 8-10 8/10/2015 12:45 129-00-0 Pyrene 0.41 J GB-27 8-10 8/10/2015 12:45 218-01-9 Chrysene 0.23 J GB-27 8-10 8/10/2015 12:45 92-52-4 1,1'-Biphenyl 19 U GB-27 8-10 8/10/2015 12:45 51-28-5 2,4-Dinitrophenol 9.1 U GB-27 8-10 8/10/2015 12:45 100-02-7 4-Nitrophenol 3.6 U GB-27 8-10 8/10/2015 12:45 87-86-5 Pentachlorophenol 3.6 U	GB-27 3-5	8/10/2015 12:33	206-44-0	Fluoranthene	500	3,130	7.3	
GB-27 8-10 8/10/2015 12:45 321-60-8 2-Fluorobiphenyl 0 D GB-27 8-10 8/10/2015 12:45 206-44-0 Fluoranthene 0.53 J GB-27 8-10 8/10/2015 12:45 85-01-8 Phenanthrene 0.42 J GB-27 8-10 8/10/2015 12:45 129-00-0 Pyrene 0.41 J GB-27 8-10 8/10/2015 12:45 218-01-9 Chrysene 0.23 J GB-27 8-10 8/10/2015 12:45 92-52-4 1,1'-Biphenyl 19 U GB-27 8-10 8/10/2015 12:45 51-28-5 2,4-Dinitrophenol 9.1 U GB-27 8-10 8/10/2015 12:45 100-02-7 4-Nitrophenol 3.6 U GB-27 8-10 8/10/2015 12:45 87-86-5 Pentachlorophenol 3.6 U	GB-27 3-5	8/10/2015 12:33	85-01-8	Phenanthrene	110	2,350	5.5	
GB-27 8-10 8/10/2015 12:45 206-44-0 Fluoranthene 0.53 J GB-27 8-10 8/10/2015 12:45 85-01-8 Phenanthrene 0.42 J GB-27 8-10 8/10/2015 12:45 129-00-0 Pyrene 0.41 J GB-27 8-10 8/10/2015 12:45 218-01-9 Chrysene 0.23 J GB-27 8-10 8/10/2015 12:45 92-52-4 1,1'-Biphenyl 19 U GB-27 8-10 8/10/2015 12:45 51-28-5 2,4-Dinitrophenol 9.1 U GB-27 8-10 8/10/2015 12:45 100-02-7 4-Nitrophenol 3.6 U GB-27 8-10 8/10/2015 12:45 87-86-5 Pentachlorophenol 3.6 U	GB-27 3-5	8/10/2015 12:33	129-00-0	Pyrene	500	2,350	5.3	
GB-27 8-10 8/10/2015 12:45 85-01-8 Phenanthrene 0.42 J GB-27 8-10 8/10/2015 12:45 129-00-0 Pyrene 0.41 J GB-27 8-10 8/10/2015 12:45 218-01-9 Chrysene 0.23 J GB-27 8-10 8/10/2015 12:45 92-52-4 1,1'-Biphenyl 19 U GB-27 8-10 8/10/2015 12:45 51-28-5 2,4-Dinitrophenol 9.1 U GB-27 8-10 8/10/2015 12:45 100-02-7 4-Nitrophenol 3.6 U GB-27 8-10 8/10/2015 12:45 87-86-5 Pentachlorophenol 3.6 U	GB-27 8-10	8/10/2015 12:45	321-60-8	2-Fluorobiphenyl			0	D
GB-27 8-10 8/10/2015 12:45 85-01-8 Phenanthrene 0.42 J GB-27 8-10 8/10/2015 12:45 129-00-0 Pyrene 0.41 J GB-27 8-10 8/10/2015 12:45 218-01-9 Chrysene 0.23 J GB-27 8-10 8/10/2015 12:45 92-52-4 1,1'-Biphenyl 19 U GB-27 8-10 8/10/2015 12:45 51-28-5 2,4-Dinitrophenol 9.1 U GB-27 8-10 8/10/2015 12:45 100-02-7 4-Nitrophenol 3.6 U GB-27 8-10 8/10/2015 12:45 87-86-5 Pentachlorophenol 3.6 U	GB-27 8-10	8/10/2015 12:45	206-44-0				0.53	J
GB-27 8-10 8/10/2015 12:45 129-00-0 Pyrene 0.41 J GB-27 8-10 8/10/2015 12:45 218-01-9 Chrysene 0.23 J GB-27 8-10 8/10/2015 12:45 92-52-4 1,1'-Biphenyl 19 U GB-27 8-10 8/10/2015 12:45 51-28-5 2,4-Dinitrophenol 9.1 U GB-27 8-10 8/10/2015 12:45 100-02-7 4-Nitrophenol 3.6 U GB-27 8-10 8/10/2015 12:45 87-86-5 Pentachlorophenol 3.6 U	GB-27 8-10			Phenanthrene				J
GB-27 8-10 8/10/2015 12:45 218-01-9 Chrysene 0.23 J GB-27 8-10 8/10/2015 12:45 92-52-4 1,1'-Biphenyl 19 U GB-27 8-10 8/10/2015 12:45 51-28-5 2,4-Dinitrophenol 9.1 U GB-27 8-10 8/10/2015 12:45 100-02-7 4-Nitrophenol 3.6 U GB-27 8-10 8/10/2015 12:45 87-86-5 Pentachlorophenol 3.6 U	GB-27 8-10	8/10/2015 12:45	129-00-0					J
GB-27 8-10 8/10/2015 12:45 92-52-4 1,1'-Biphenyl 19 U GB-27 8-10 8/10/2015 12:45 51-28-5 2,4-Dinitrophenol 9.1 U GB-27 8-10 8/10/2015 12:45 100-02-7 4-Nitrophenol 3.6 U GB-27 8-10 8/10/2015 12:45 87-86-5 Pentachlorophenol 3.6 U				<u>'</u>				J
GB-27 8-10 8/10/2015 12:45 51-28-5 2,4-Dinitrophenol 9.1 U GB-27 8-10 8/10/2015 12:45 100-02-7 4-Nitrophenol 3.6 U GB-27 8-10 8/10/2015 12:45 87-86-5 Pentachlorophenol 3.6 U								U
GB-27 8-10 8/10/2015 12:45 100-02-7 4-Nitrophenol 3.6 U GB-27 8-10 8/10/2015 12:45 87-86-5 Pentachlorophenol 3.6 U								U
GB-27 8-10 8/10/2015 12:45 87-86-5 Pentachlorophenol 3.6 U				•				U
	GB-27 8-10	8/10/2015 12:45	534-52-1	4,6-Dinitro-2-methylphenol			1.9	U

			iviacon, da				
					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-27 8-10	8/10/2015 12:45	105-60-2	Caprolactam			0.72	U
GB-27 8-10	8/10/2015 12:45	207-08-9	Benzo[k]fluoranthene			0.71	U
GB-27 8-10	8/10/2015 12:45	100-52-7	Benzaldehyde			0.64	U
GB-27 8-10	8/10/2015 12:45	106-47-8	4-Chloroaniline			0.57	U
GB-27 8-10	8/10/2015 12:45	50-32-8	Benzo[a]pyrene			0.57	U
GB-27 8-10	8/10/2015 12:45	121-14-2	2,4-Dinitrotoluene			0.54	U
GB-27 8-10	8/10/2015 12:45	100-01-6	4-Nitroaniline			0.54	U
GB-27 8-10	8/10/2015 12:45	99-09-2	3-Nitroaniline			0.5	U
GB-27 8-10	8/10/2015 12:45	88-74-4	2-Nitroaniline			0.49	U
GB-27 8-10	8/10/2015 12:45	105-67-9	2,4-Dimethylphenol			0.48	U
GB-27 8-10	8/10/2015 12:45	7005-72-3	4-Chlorophenyl phenyl ether			0.48	U
GB-27 8-10	8/10/2015 12:45	15831-10-4	3 & 4 Methylphenol			0.47	U
GB-27 8-10	8/10/2015 12:45	606-20-2	2,6-Dinitrotoluene			0.46	U
GB-27 8-10	8/10/2015 12:45	88-75-5	2-Nitrophenol			0.45	U
GB-27 8-10	8/10/2015 12:45	83-32-9	Acenaphthene			0.45	U
GB-27 8-10	8/10/2015 12:45	77-47-4	Hexachlorocyclopentadiene			0.45	U
GB-27 8-10	8/10/2015 12:45	95-57-8	2-Chlorophenol			0.44	U
GB-27 8-10	8/10/2015 12:45	111-91-1	Bis(2-chloroethoxy)methane			0.43	U
GB-27 8-10	8/10/2015 12:45	53-70-3	Dibenz(a,h)anthracene			0.43	U
GB-27 8-10	8/10/2015 12:45	118-74-1	Hexachlorobenzene			0.43	U
GB-27 8-10	8/10/2015 12:45	91-57-6	2-Methylnaphthalene			0.42	U
GB-27 8-10	8/10/2015 12:45	205-99-2	Benzo[b]fluoranthene			0.42	U
GB-27 8-10	8/10/2015 12:45	84-66-2	Diethyl phthalate			0.41	U
GB-27 8-10	8/10/2015 12:45	101-55-3	4-Bromophenyl phenyl ether			0.39	U
GB-27 8-10	8/10/2015 12:45	208-96-8	Acenaphthylene			0.39	U
GB-27 8-10	8/10/2015 12:45	86-73-7	Fluorene			0.39	U
GB-27 8-10	8/10/2015 12:45	87-68-3	Hexachlorobutadiene			0.39	U
GB-27 8-10	8/10/2015 12:45	95-95-4	2,4,5-Trichlorophenol			0.38	U
GB-27 8-10	8/10/2015 12:45	120-83-2	2,4-Dichlorophenol			0.38	U
GB-27 8-10	8/10/2015 12:45	91-58-7	2-Chloronaphthalene			0.38	U
GB-27 8-10	8/10/2015 12:45	59-50-7	4-Chloro-3-methylphenol			0.38	U
GB-27 8-10	8/10/2015 12:45	131-11-3	Dimethyl phthalate			0.37	U
GB-27 8-10	8/10/2015 12:45	108-95-2	Phenol			0.37	U
GB-27 8-10	8/10/2015 12:45	132-64-9	Dibenzofuran			0.36	U
GB-27 8-10	8/10/2015 12:45	78-59-1	Isophorone			0.36	U
GB-27 8-10	8/10/2015 12:45	86-30-6	N-Nitrosodiphenylamine			0.36	U
GB-27 8-10	8/10/2015 12:45	621-64-7	N-Nitrosodi-n-propylamine			0.35	U
GB-27 8-10	8/10/2015 12:45	108-60-1	bis (2-chloroisopropyl) ether			0.33	U
GB-27 8-10	8/10/2015 12:45	86-74-8	Carbazole	1		0.33	U
GB-27 8-10	8/10/2015 12:45	84-74-2	Di-n-butyl phthalate	1		0.33	U
GB-27 8-10	8/10/2015 12:45	91-20-3	Naphthalene	1		0.33	U
GB-27 8-10	8/10/2015 12:45	88-06-2	2,4,6-Trichlorophenol	1		0.32	U
GB-27 8-10	8/10/2015 12:45	117-81-7	Bis(2-ethylhexyl) phthalate	1		0.32	U
			, , , , , , , , , , , , , , , , , , , ,	1			

Client Sample				Type 1 RRS		Result	_
ID OR 37 9 10	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-27 8-10	8/10/2015 12:45	117-84-0	Di-n-octyl phthalate	1		0.32	U
GB-27 8-10	8/10/2015 12:45	91-94-1	3,3'-Dichlorobenzidine	1		0.31	U
GB-27 8-10	8/10/2015 12:45	98-86-2	Acetophenone			0.31	U
GB-27 8-10	8/10/2015 12:45	67-72-1	Hexachloroethane	-		0.31	U
GB-27 8-10	8/10/2015 12:45	193-39-5	Indeno[1,2,3-cd]pyrene			0.31	U
GB-27 8-10	8/10/2015 12:45	95-48-7	2-Methylphenol			0.3	U
GB-27 8-10	8/10/2015 12:45	56-55-3	Benzo[a]anthracene			0.3	U
GB-27 8-10	8/10/2015 12:45	85-68-7	Butyl benzyl phthalate			0.28	U
GB-27 8-10	8/10/2015 12:45	98-95-3	Nitrobenzene			0.28	U
GB-27 8-10	8/10/2015 12:45	120-12-7	Anthracene			0.27	U
GB-27 8-10	8/10/2015 12:45	1912-24-9	Atrazine			0.25	U
GB-27 8-10	8/10/2015 12:45	191-24-2	Benzo[g,h,i]perylene			0.24	U
GB-27 8-10	8/10/2015 12:45	111-44-4	Bis(2-chloroethyl)ether			0.49	U *
GB-28 13-15	8/6/2015 14:30	218-01-9	Chrysene			0.37	J
GB-28 13-15	8/6/2015 14:30	85-01-8	Phenanthrene			0.37	J
GB-28 13-15	8/6/2015 14:30	56-55-3	Benzo[a]anthracene			0.28	J
GB-28 13-15	8/6/2015 14:30	50-32-8	Benzo[a]pyrene			0.25	J
GB-28 13-15	8/6/2015 14:30	191-24-2	Benzo[g,h,i]perylene			0.2	J
GB-28 13-15	8/6/2015 14:30	207-08-9	Benzo[k]fluoranthene			0.2	J
GB-28 13-15	8/6/2015 14:30	91-20-3	Naphthalene			0.19	J
GB-28 13-15	8/6/2015 14:30	91-57-6	2-Methylnaphthalene			0.18	J
GB-28 13-15	8/6/2015 14:30	193-39-5	Indeno[1,2,3-cd]pyrene			0.18	J
GB-28 13-15	8/6/2015 14:30	83-32-9	Acenaphthene			0.09	J
GB-28 13-15	8/6/2015 14:30	132-64-9	Dibenzofuran			0.073	J
GB-28 13-15	8/6/2015 14:30	120-12-7	Anthracene			0.067	J
GB-28 13-15	8/6/2015 14:30	86-73-7	Fluorene			0.066	J
GB-28 13-15	8/6/2015 14:30	86-74-8	Carbazole			0.047	J
GB-28 13-15	8/6/2015 14:30	117-81-7	Bis(2-ethylhexyl) phthalate			0.26	JB
GB-28 13-15	8/6/2015 14:30	92-52-4	1,1'-Biphenyl			2.1	U
GB-28 13-15	8/6/2015 14:30	51-28-5	2,4-Dinitrophenol			1	U
GB-28 13-15	8/6/2015 14:30	100-02-7	4-Nitrophenol			0.4	U
GB-28 13-15	8/6/2015 14:30	87-86-5	Pentachlorophenol			0.4	U
GB-28 13-15	8/6/2015 14:30	105-60-2	Caprolactam			0.08	U
GB-28 13-15	8/6/2015 14:30	100-52-7	Benzaldehyde			0.071	U
GB-28 13-15	8/6/2015 14:30	106-47-8	4-Chloroaniline			0.063	U
GB-28 13-15	8/6/2015 14:30	121-14-2	2,4-Dinitrotoluene			0.06	U
GB-28 13-15	8/6/2015 14:30	100-01-6	4-Nitroaniline			0.06	U
GB-28 13-15	8/6/2015 14:30	99-09-2	3-Nitroaniline			0.056	U
GB-28 13-15	8/6/2015 14:30	88-74-4	2-Nitroaniline			0.055	U
GB-28 13-15	8/6/2015 14:30	111-44-4	Bis(2-chloroethyl)ether			0.055	U
GB-28 13-15	8/6/2015 14:30	105-67-9	2,4-Dimethylphenol			0.054	U
GB-28 13-15	8/6/2015 14:30	7005-72-3	4-Chlorophenyl phenyl ether			0.054	U
GB-28 13-15	8/6/2015 14:30	15831-10-4	3 & 4 Methylphenol			0.052	U

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-28 13-15	8/6/2015 14:30	606-20-2	2,6-Dinitrotoluene			0.051	U
GB-28 13-15	8/6/2015 14:30	88-75-5	2-Nitrophenol			0.05	U
GB-28 13-15	8/6/2015 14:30	77-47-4	Hexachlorocyclopentadiene			0.05	U
GB-28 13-15	8/6/2015 14:30	95-57-8	2-Chlorophenol			0.049	U
GB-28 13-15	8/6/2015 14:30	111-91-1	Bis(2-chloroethoxy)methane			0.048	U
GB-28 13-15	8/6/2015 14:30	53-70-3	Dibenz(a,h)anthracene			0.048	U
GB-28 13-15	8/6/2015 14:30	118-74-1	Hexachlorobenzene			0.048	U
GB-28 13-15	8/6/2015 14:30	84-66-2	Diethyl phthalate			0.045	U
GB-28 13-15	8/6/2015 14:30	101-55-3	4-Bromophenyl phenyl ether			0.044	U
GB-28 13-15	8/6/2015 14:30	208-96-8	Acenaphthylene			0.044	U
GB-28 13-15	8/6/2015 14:30	87-68-3	Hexachlorobutadiene			0.044	U
GB-28 13-15	8/6/2015 14:30	95-95-4	2,4,5-Trichlorophenol			0.043	U
GB-28 13-15	8/6/2015 14:30	120-83-2	2,4-Dichlorophenol			0.043	U
GB-28 13-15	8/6/2015 14:30	91-58-7	2-Chloronaphthalene			0.043	U
GB-28 13-15	8/6/2015 14:30	59-50-7	4-Chloro-3-methylphenol			0.043	U
GB-28 13-15	8/6/2015 14:30	131-11-3	Dimethyl phthalate			0.041	U
GB-28 13-15	8/6/2015 14:30	108-95-2	Phenol			0.041	U
GB-28 13-15	8/6/2015 14:30	78-59-1	Isophorone			0.04	U
GB-28 13-15	8/6/2015 14:30	86-30-6	N-Nitrosodiphenylamine			0.04	U
GB-28 13-15	8/6/2015 14:30	621-64-7	N-Nitrosodi-n-propylamine			0.039	U
GB-28 13-15	8/6/2015 14:30	108-60-1	bis (2-chloroisopropyl) ether			0.037	U
GB-28 13-15	8/6/2015 14:30	84-74-2	Di-n-butyl phthalate			0.037	U
GB-28 13-15	8/6/2015 14:30	88-06-2	2,4,6-Trichlorophenol			0.035	U
GB-28 13-15	8/6/2015 14:30	117-84-0	Di-n-octyl phthalate			0.035	U
GB-28 13-15	8/6/2015 14:30	91-94-1	3,3'-Dichlorobenzidine			0.034	U
GB-28 13-15	8/6/2015 14:30	98-86-2	Acetophenone			0.034	U
GB-28 13-15	8/6/2015 14:30	67-72-1	Hexachloroethane			0.034	U
GB-28 13-15		95-48-7	2-Methylphenol			0.033	U
GB-28 13-15	8/6/2015 14:30	85-68-7	Butyl benzyl phthalate			0.032	U
GB-28 13-15	8/6/2015 14:30	98-95-3	Nitrobenzene			0.032	U
GB-28 13-15	8/6/2015 14:30	1912-24-9	Atrazine			0.028	U
GB-28 13-15	8/6/2015 14:30	534-52-1	4,6-Dinitro-2-methylphenol			0.21	U *
GB-28 13-15	8/6/2015 14:30	321-60-8	2-Fluorobiphenyl	NL	NL	3	_
GB-28 13-15	8/6/2015 14:30	129-00-0	Pyrene	500	2,350	0.5	
GB-28 13-15	8/6/2015 14:30	206-44-0	Fluoranthene	500	3,130	0.46	
GB-28 13-15	8/6/2015 14:30	205-99-2	Benzo[b]fluoranthene	5	12.5	0.43	
GB-28 2-4	8/6/2015 14:00	92-52-4	1,1'-Biphenyl			2.4	U
GB-28 2-4	8/6/2015 14:00	51-28-5	2,4-Dinitrophenol			1.2	U
GB-28 2-4	8/6/2015 14:00	100-02-7	4-Nitrophenol			0.47	U
GB-28 2-4	8/6/2015 14:00	87-86-5	Pentachlorophenol			0.47	U
GB-28 2-4	8/6/2015 14:00	105-60-2	Caprolactam			0.093	U
GB-28 2-4	8/6/2015 14:00	207-08-9	Benzo[k]fluoranthene			0.092	U
GB-28 2-4 GB-28 2-4	8/6/2015 14:00	100-52-7	Benzaldehyde			0.032	U
UD-28 2-4	0/0/2013 14:00	100-22-/	benzaluenyde			0.082	U

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-28 2-4	8/6/2015 14:00	106-47-8	4-Chloroaniline			0.074	U
GB-28 2-4	8/6/2015 14:00	50-32-8	Benzo[a]pyrene			0.074	U
GB-28 2-4	8/6/2015 14:00	121-14-2	2,4-Dinitrotoluene			0.069	U
GB-28 2-4	8/6/2015 14:00	100-01-6	4-Nitroaniline			0.069	U
GB-28 2-4	8/6/2015 14:00	99-09-2	3-Nitroaniline			0.065	U
GB-28 2-4	8/6/2015 14:00	88-74-4	2-Nitroaniline			0.064	U
GB-28 2-4	8/6/2015 14:00	111-44-4	Bis(2-chloroethyl)ether			0.064	U
GB-28 2-4	8/6/2015 14:00	105-67-9	2,4-Dimethylphenol			0.062	U
GB-28 2-4	8/6/2015 14:00	7005-72-3	4-Chlorophenyl phenyl ether			0.062	U
GB-28 2-4	8/6/2015 14:00	15831-10-4	3 & 4 Methylphenol			0.061	U
GB-28 2-4	8/6/2015 14:00	606-20-2	2,6-Dinitrotoluene			0.059	U
GB-28 2-4	8/6/2015 14:00	88-75-5	2-Nitrophenol			0.058	U
GB-28 2-4	8/6/2015 14:00	83-32-9	Acenaphthene			0.058	U
GB-28 2-4	8/6/2015 14:00	77-47-4	Hexachlorocyclopentadiene			0.058	U
GB-28 2-4	8/6/2015 14:00	95-57-8	2-Chlorophenol			0.057	U
GB-28 2-4	8/6/2015 14:00	111-91-1	Bis(2-chloroethoxy)methane			0.055	U
GB-28 2-4	8/6/2015 14:00	53-70-3	Dibenz(a,h)anthracene			0.055	U
GB-28 2-4	8/6/2015 14:00	118-74-1	Hexachlorobenzene			0.055	U
GB-28 2-4	8/6/2015 14:00	91-57-6	2-Methylnaphthalene			0.054	U
GB-28 2-4	8/6/2015 14:00	205-99-2	Benzo[b]fluoranthene			0.054	U
GB-28 2-4	8/6/2015 14:00	84-66-2	Diethyl phthalate			0.052	U
GB-28 2-4	8/6/2015 14:00	101-55-3	4-Bromophenyl phenyl ether			0.051	U
GB-28 2-4	8/6/2015 14:00	208-96-8	Acenaphthylene			0.051	U
GB-28 2-4	8/6/2015 14:00	86-73-7	Fluorene			0.051	U
GB-28 2-4	8/6/2015 14:00	87-68-3	Hexachlorobutadiene			0.051	U
GB-28 2-4	8/6/2015 14:00	95-95-4	2,4,5-Trichlorophenol			0.05	U
GB-28 2-4	8/6/2015 14:00	120-83-2	2,4-Dichlorophenol			0.05	U
GB-28 2-4	8/6/2015 14:00	91-58-7	2-Chloronaphthalene			0.05	U
GB-28 2-4	8/6/2015 14:00	59-50-7	4-Chloro-3-methylphenol			0.05	U
GB-28 2-4	8/6/2015 14:00	131-11-3	Dimethyl phthalate			0.048	U
GB-28 2-4	8/6/2015 14:00	108-95-2	Phenol			0.048	U
GB-28 2-4	8/6/2015 14:00	132-64-9	Dibenzofuran			0.047	U
GB-28 2-4	8/6/2015 14:00	78-59-1	Isophorone			0.047	U
GB-28 2-4	8/6/2015 14:00	86-30-6	N-Nitrosodiphenylamine			0.047	U
GB-28 2-4	8/6/2015 14:00	206-44-0	Fluoranthene			0.045	U
GB-28 2-4	8/6/2015 14:00	621-64-7	N-Nitrosodi-n-propylamine			0.045	U
GB-28 2-4	8/6/2015 14:00	108-60-1	bis (2-chloroisopropyl) ether			0.042	U
GB-28 2-4	8/6/2015 14:00	86-74-8	Carbazole	1		0.042	U
GB-28 2-4	8/6/2015 14:00	84-74-2	Di-n-butyl phthalate	1		0.042	U
GB-28 2-4	8/6/2015 14:00	91-20-3	Naphthalene	1		0.042	U
GB-28 2-4	8/6/2015 14:00	88-06-2	2,4,6-Trichlorophenol	1		0.041	U
GB-28 2-4	8/6/2015 14:00	117-81-7	Bis(2-ethylhexyl) phthalate	1		0.041	U
GB-28 2-4	8/6/2015 14:00	117-84-0	Di-n-octyl phthalate	1		0.041	U

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-28 2-4	8/6/2015 14:00	91-94-1	3,3'-Dichlorobenzidine			0.04	U
GB-28 2-4	8/6/2015 14:00	98-86-2	Acetophenone			0.04	U
GB-28 2-4	8/6/2015 14:00	67-72-1	Hexachloroethane			0.04	U
GB-28 2-4	8/6/2015 14:00	193-39-5	Indeno[1,2,3-cd]pyrene			0.04	U
GB-28 2-4	8/6/2015 14:00	95-48-7	2-Methylphenol			0.038	U
GB-28 2-4	8/6/2015 14:00	56-55-3	Benzo[a]anthracene			0.038	U
GB-28 2-4	8/6/2015 14:00	85-01-8	Phenanthrene			0.038	U
GB-28 2-4	8/6/2015 14:00	129-00-0	Pyrene			0.038	U
GB-28 2-4	8/6/2015 14:00	85-68-7	Butyl benzyl phthalate			0.037	U
GB-28 2-4	8/6/2015 14:00	98-95-3	Nitrobenzene			0.037	U
GB-28 2-4	8/6/2015 14:00	120-12-7	Anthracene			0.035	U
GB-28 2-4	8/6/2015 14:00	1912-24-9	Atrazine			0.033	U
GB-28 2-4	8/6/2015 14:00	191-24-2	Benzo[g,h,i]perylene			0.031	U
GB-28 2-4	8/6/2015 14:00	218-01-9	Chrysene			0.03	U
GB-28 2-4	8/6/2015 14:00	534-52-1	4,6-Dinitro-2-methylphenol			0.24	U *
GB-28 2-4	8/6/2015 14:00	321-60-8	2-Fluorobiphenyl	NL	NL	3.5	
GB-28 8-10	8/6/2015 14:20	117-81-7	Bis(2-ethylhexyl) phthalate			0.19	JB
GB-28 8-10	8/6/2015 14:20	92-52-4	1,1'-Biphenyl			2	U
GB-28 8-10	8/6/2015 14:20	51-28-5	2,4-Dinitrophenol			0.95	U
GB-28 8-10	8/6/2015 14:20	100-02-7	4-Nitrophenol			0.38	U
GB-28 8-10	8/6/2015 14:20	87-86-5	Pentachlorophenol			0.38	U
GB-28 8-10	8/6/2015 14:20	105-60-2	Caprolactam			0.076	U
GB-28 8-10	8/6/2015 14:20	207-08-9	Benzo[k]fluoranthene			0.075	U
GB-28 8-10	8/6/2015 14:20	100-52-7	Benzaldehyde			0.067	U
GB-28 8-10	8/6/2015 14:20	106-47-8	4-Chloroaniline			0.06	U
GB-28 8-10	8/6/2015 14:20	50-32-8	Benzo[a]pyrene			0.06	U
GB-28 8-10	8/6/2015 14:20	121-14-2	2,4-Dinitrotoluene			0.056	U
GB-28 8-10	8/6/2015 14:20	100-01-6	4-Nitroaniline			0.056	U
GB-28 8-10	8/6/2015 14:20	99-09-2	3-Nitroaniline			0.053	U
GB-28 8-10	8/6/2015 14:20	88-74-4	2-Nitroaniline			0.052	U
GB-28 8-10	8/6/2015 14:20	111-44-4	Bis(2-chloroethyl)ether			0.052	U
GB-28 8-10	8/6/2015 14:20	105-67-9	2,4-Dimethylphenol			0.051	U
GB-28 8-10	8/6/2015 14:20	7005-72-3	4-Chlorophenyl phenyl ether			0.051	U
GB-28 8-10	8/6/2015 14:20	15831-10-4	3 & 4 Methylphenol			0.049	U
GB-28 8-10	8/6/2015 14:20	606-20-2	2,6-Dinitrotoluene			0.048	U
GB-28 8-10	8/6/2015 14:20	88-75-5	2-Nitrophenol	1		0.047	U
GB-28 8-10	8/6/2015 14:20	83-32-9	Acenaphthene	1		0.047	U
GB-28 8-10	8/6/2015 14:20	77-47-4	Hexachlorocyclopentadiene	1		0.047	U
GB-28 8-10	8/6/2015 14:20	95-57-8	2-Chlorophenol			0.046	U
GB-28 8-10	8/6/2015 14:20	111-91-1	Bis(2-chloroethoxy)methane			0.045	U
GB-28 8-10	8/6/2015 14:20	53-70-3	Dibenz(a,h)anthracene			0.045	U
GB-28 8-10	8/6/2015 14:20	118-74-1	Hexachlorobenzene			0.045	U
GB-28 8-10	8/6/2015 14:20	91-57-6	2-Methylnaphthalene			0.044	U

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-28 8-10	8/6/2015 14:20	205-99-2	Benzo[b]fluoranthene			0.044	U
GB-28 8-10	8/6/2015 14:20	84-66-2	Diethyl phthalate			0.042	U
GB-28 8-10	8/6/2015 14:20	101-55-3	4-Bromophenyl phenyl ether			0.041	U
GB-28 8-10	8/6/2015 14:20	208-96-8	Acenaphthylene			0.041	U
GB-28 8-10	8/6/2015 14:20	86-73-7	Fluorene			0.041	U
GB-28 8-10	8/6/2015 14:20	87-68-3	Hexachlorobutadiene			0.041	U
GB-28 8-10	8/6/2015 14:20	95-95-4	2,4,5-Trichlorophenol			0.04	U
GB-28 8-10	8/6/2015 14:20	120-83-2	2,4-Dichlorophenol			0.04	U
GB-28 8-10	8/6/2015 14:20	91-58-7	2-Chloronaphthalene			0.04	U
GB-28 8-10	8/6/2015 14:20	59-50-7	4-Chloro-3-methylphenol			0.04	U
GB-28 8-10	8/6/2015 14:20	131-11-3	Dimethyl phthalate			0.039	U
GB-28 8-10	8/6/2015 14:20	108-95-2	Phenol			0.039	U
GB-28 8-10	8/6/2015 14:20	132-64-9	Dibenzofuran			0.038	U
GB-28 8-10	8/6/2015 14:20	78-59-1	Isophorone			0.038	U
GB-28 8-10	8/6/2015 14:20	86-30-6	N-Nitrosodiphenylamine			0.038	U
GB-28 8-10	8/6/2015 14:20	206-44-0	Fluoranthene			0.037	U
GB-28 8-10	8/6/2015 14:20	621-64-7	N-Nitrosodi-n-propylamine			0.037	U
GB-28 8-10	8/6/2015 14:20	108-60-1	bis (2-chloroisopropyl) ether			0.034	U
GB-28 8-10	8/6/2015 14:20	86-74-8	Carbazole			0.034	U
GB-28 8-10	8/6/2015 14:20	84-74-2	Di-n-butyl phthalate			0.034	U
GB-28 8-10	8/6/2015 14:20	91-20-3	Naphthalene			0.034	U
GB-28 8-10	8/6/2015 14:20	88-06-2	2,4,6-Trichlorophenol			0.033	U
GB-28 8-10	8/6/2015 14:20	117-84-0	Di-n-octyl phthalate			0.033	U
GB-28 8-10	8/6/2015 14:20	91-94-1	3,3'-Dichlorobenzidine			0.032	U
GB-28 8-10	8/6/2015 14:20	98-86-2	Acetophenone			0.032	U
GB-28 8-10	8/6/2015 14:20	67-72-1	Hexachloroethane			0.032	U
GB-28 8-10	8/6/2015 14:20	193-39-5	Indeno[1,2,3-cd]pyrene			0.032	U
GB-28 8-10	8/6/2015 14:20	95-48-7	2-Methylphenol			0.031	U
GB-28 8-10	8/6/2015 14:20	56-55-3	Benzo[a]anthracene			0.031	U
GB-28 8-10	8/6/2015 14:20	85-01-8	Phenanthrene			0.031	U
GB-28 8-10	8/6/2015 14:20	129-00-0	Pyrene			0.031	U
GB-28 8-10	8/6/2015 14:20	85-68-7	Butyl benzyl phthalate			0.03	U
GB-28 8-10	8/6/2015 14:20	98-95-3	Nitrobenzene			0.03	U
GB-28 8-10	8/6/2015 14:20	120-12-7	Anthracene			0.029	U
GB-28 8-10	8/6/2015 14:20	1912-24-9	Atrazine			0.026	U
GB-28 8-10	8/6/2015 14:20	191-24-2	Benzo[g,h,i]perylene			0.025	U
GB-28 8-10	8/6/2015 14:20	218-01-9	Chrysene			0.024	U
GB-28 8-10	8/6/2015 14:20	534-52-1	4,6-Dinitro-2-methylphenol			0.2	U *
GB-28 8-10	8/6/2015 14:20	321-60-8	2-Fluorobiphenyl	NL	NL	2.4	
GB-3 13-15	8/7/2015 15:42	85-01-8	Phenanthrene			0.075	J
GB-3 13-15	8/7/2015 15:42	206-44-0	Fluoranthene			0.045	J
GB-3 13-15	8/7/2015 15:42	129-00-0	Pyrene			0.035	J
GB-3 13-15	8/7/2015 15:42	117-81-7	Bis(2-ethylhexyl) phthalate			0.29	JΒ

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-3 13-15	8/7/2015 15:42	92-52-4	1,1'-Biphenyl			2.1	U
GB-3 13-15	8/7/2015 15:42	51-28-5	2,4-Dinitrophenol			1	U
GB-3 13-15	8/7/2015 15:42	100-02-7	4-Nitrophenol			0.41	U
GB-3 13-15	8/7/2015 15:42	105-60-2	Caprolactam			0.082	U
GB-3 13-15	8/7/2015 15:42	207-08-9	Benzo[k]fluoranthene			0.081	U
GB-3 13-15	8/7/2015 15:42	100-52-7	Benzaldehyde			0.072	U
GB-3 13-15	8/7/2015 15:42	106-47-8	4-Chloroaniline			0.065	U
GB-3 13-15	8/7/2015 15:42	50-32-8	Benzo[a]pyrene			0.065	U
GB-3 13-15	8/7/2015 15:42	121-14-2	2,4-Dinitrotoluene			0.061	U
GB-3 13-15	8/7/2015 15:42	100-01-6	4-Nitroaniline			0.061	U
GB-3 13-15	8/7/2015 15:42	99-09-2	3-Nitroaniline			0.057	U
GB-3 13-15	8/7/2015 15:42	88-74-4	2-Nitroaniline			0.056	U
GB-3 13-15	8/7/2015 15:42	111-44-4	Bis(2-chloroethyl)ether			0.056	U
GB-3 13-15	8/7/2015 15:42	105-67-9	2,4-Dimethylphenol			0.055	U
GB-3 13-15	8/7/2015 15:42	7005-72-3	4-Chlorophenyl phenyl ether			0.055	U
GB-3 13-15	8/7/2015 15:42	15831-10-4	3 & 4 Methylphenol			0.053	U
GB-3 13-15	8/7/2015 15:42	606-20-2	2,6-Dinitrotoluene			0.052	U
GB-3 13-15	8/7/2015 15:42	88-75-5	2-Nitrophenol			0.051	U
GB-3 13-15	8/7/2015 15:42	83-32-9	Acenaphthene			0.051	U
GB-3 13-15	8/7/2015 15:42	77-47-4	Hexachlorocyclopentadiene			0.051	U
GB-3 13-15	8/7/2015 15:42	95-57-8	2-Chlorophenol			0.05	U
GB-3 13-15	8/7/2015 15:42	111-91-1	Bis(2-chloroethoxy)methane			0.048	U
GB-3 13-15	8/7/2015 15:42	53-70-3	Dibenz(a,h)anthracene			0.048	U
GB-3 13-15	8/7/2015 15:42	118-74-1	Hexachlorobenzene			0.048	U
GB-3 13-15	8/7/2015 15:42	91-57-6	2-Methylnaphthalene			0.047	U
GB-3 13-15	8/7/2015 15:42	205-99-2	Benzo[b]fluoranthene			0.047	U
GB-3 13-15	8/7/2015 15:42	84-66-2	Diethyl phthalate			0.046	U
GB-3 13-15	8/7/2015 15:42	101-55-3	4-Bromophenyl phenyl ether			0.045	U
GB-3 13-15	8/7/2015 15:42	208-96-8	Acenaphthylene			0.045	U
GB-3 13-15	8/7/2015 15:42	86-73-7	Fluorene			0.045	U
GB-3 13-15	8/7/2015 15:42	87-68-3	Hexachlorobutadiene			0.045	U
GB-3 13-15	8/7/2015 15:42	95-95-4	2,4,5-Trichlorophenol			0.043	U
GB-3 13-15	8/7/2015 15:42	120-83-2	2,4-Dichlorophenol			0.043	U
GB-3 13-15	8/7/2015 15:42	91-58-7	2-Chloronaphthalene			0.043	U
GB-3 13-15	8/7/2015 15:42	59-50-7	4-Chloro-3-methylphenol			0.043	U
GB-3 13-15	8/7/2015 15:42	131-11-3	Dimethyl phthalate			0.042	U
GB-3 13-15	8/7/2015 15:42	108-95-2	Phenol	1		0.042	U
GB-3 13-15	8/7/2015 15:42	132-64-9	Dibenzofuran	1		0.041	U
GB-3 13-15	8/7/2015 15:42	78-59-1	Isophorone			0.041	U
GB-3 13-15	8/7/2015 15:42	86-30-6	N-Nitrosodiphenylamine			0.041	U
GB-3 13-15	8/7/2015 15:42	621-64-7	N-Nitrosodi-n-propylamine			0.04	U
GB-3 13-15	8/7/2015 15:42	108-60-1	bis (2-chloroisopropyl) ether			0.037	U
GB-3 13-15	8/7/2015 15:42	86-74-8	Carbazole			0.037	U
	-, -, =================================	· · •		I			_

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-3 13-15	8/7/2015 15:42	84-74-2	Di-n-butyl phthalate			0.037	U
GB-3 13-15	8/7/2015 15:42	91-20-3	Naphthalene			0.037	U
GB-3 13-15	8/7/2015 15:42	88-06-2	2,4,6-Trichlorophenol			0.036	U
GB-3 13-15	8/7/2015 15:42	117-84-0	Di-n-octyl phthalate			0.036	U
GB-3 13-15	8/7/2015 15:42	91-94-1	3,3'-Dichlorobenzidine			0.035	U
GB-3 13-15	8/7/2015 15:42	98-86-2	Acetophenone			0.035	U
GB-3 13-15	8/7/2015 15:42	67-72-1	Hexachloroethane			0.035	U
GB-3 13-15	8/7/2015 15:42	193-39-5	Indeno[1,2,3-cd]pyrene			0.035	U
GB-3 13-15	8/7/2015 15:42	95-48-7	2-Methylphenol			0.034	J
GB-3 13-15	8/7/2015 15:42	56-55-3	Benzo[a]anthracene			0.034	U
GB-3 13-15	8/7/2015 15:42	85-68-7	Butyl benzyl phthalate			0.032	U
GB-3 13-15	8/7/2015 15:42	98-95-3	Nitrobenzene			0.032	U
GB-3 13-15	8/7/2015 15:42	120-12-7	Anthracene			0.031	U
GB-3 13-15	8/7/2015 15:42	1912-24-9	Atrazine			0.029	U
GB-3 13-15	8/7/2015 15:42	191-24-2	Benzo[g,h,i]perylene			0.027	U
GB-3 13-15	8/7/2015 15:42	218-01-9	Chrysene			0.026	U
GB-3 13-15	8/7/2015 15:42	87-86-5	Pentachlorophenol			0.41	U *
GB-3 13-15	8/7/2015 15:42	534-52-1	4,6-Dinitro-2-methylphenol			0.21	U *
GB-3 13-15	8/7/2015 15:42	321-60-8	2-Fluorobiphenyl	NL	NL	3.5	
GB-3 8-10	8/7/2015 15:36	205-99-2	Benzo[b]fluoranthene			0.27	J
GB-3 8-10	8/7/2015 15:36	218-01-9	Chrysene			0.24	J
GB-3 8-10	8/7/2015 15:36	56-55-3	Benzo[a]anthracene			0.15	J
GB-3 8-10	8/7/2015 15:36	207-08-9	Benzo[k]fluoranthene			0.13	J
GB-3 8-10	8/7/2015 15:36	50-32-8	Benzo[a]pyrene			0.12	J
GB-3 8-10	8/7/2015 15:36	206-44-0	Fluoranthene			0.067	J
GB-3 8-10	8/7/2015 15:36	129-00-0	Pyrene			0.065	J
GB-3 8-10	8/7/2015 15:36	191-24-2	Benzo[g,h,i]perylene			0.064	J
GB-3 8-10	8/7/2015 15:36	193-39-5	Indeno[1,2,3-cd]pyrene			0.06	J
GB-3 8-10	8/7/2015 15:36	117-81-7	Bis(2-ethylhexyl) phthalate			0.42	J B
GB-3 8-10	8/7/2015 15:36	92-52-4	1,1'-Biphenyl			2.7	U
GB-3 8-10	8/7/2015 15:36	51-28-5	2,4-Dinitrophenol			1.3	U
GB-3 8-10	8/7/2015 15:36	100-02-7	4-Nitrophenol			0.52	U
GB-3 8-10	8/7/2015 15:36	105-60-2	Caprolactam			0.1	U
GB-3 8-10	8/7/2015 15:36	100-52-7	Benzaldehyde			0.091	U
GB-3 8-10	8/7/2015 15:36	106-47-8	4-Chloroaniline			0.081	U
GB-3 8-10	8/7/2015 15:36	121-14-2	2,4-Dinitrotoluene			0.076	U
GB-3 8-10	8/7/2015 15:36	100-01-6	4-Nitroaniline			0.076	U
GB-3 8-10	8/7/2015 15:36	99-09-2	3-Nitroaniline			0.070	U
GB-3 8-10	8/7/2015 15:36	88-74-4	2-Nitroaniline			0.072	U
GB-3 8-10	8/7/2015 15:36	111-44-4	Bis(2-chloroethyl)ether			0.07	U
GB-3 8-10	8/7/2015 15:36	105-67-9	2,4-Dimethylphenol			0.069	U
GB-3 8-10	8/7/2015 15:36	7005-72-3	4-Chlorophenyl phenyl ether			0.069	U
		15831-10-4					U
GB-3 8-10	8/7/2015 15:36	12021-10-4	3 & 4 Methylphenol			0.067	U

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-3 8-10	8/7/2015 15:36	606-20-2	2,6-Dinitrotoluene	1		0.066	U
GB-3 8-10	8/7/2015 15:36	88-75-5	2-Nitrophenol			0.064	U
GB-3 8-10	8/7/2015 15:36	83-32-9	Acenaphthene			0.064	U
GB-3 8-10	8/7/2015 15:36	77-47-4	Hexachlorocyclopentadiene			0.064	U
GB-3 8-10	8/7/2015 15:36	95-57-8	2-Chlorophenol			0.062	U
GB-3 8-10	8/7/2015 15:36	111-91-1	Bis(2-chloroethoxy)methane			0.061	U
GB-3 8-10	8/7/2015 15:36	53-70-3	Dibenz(a,h)anthracene			0.061	U
GB-3 8-10	8/7/2015 15:36	118-74-1	Hexachlorobenzene			0.061	U
GB-3 8-10	8/7/2015 15:36	91-57-6	2-Methylnaphthalene			0.059	U
GB-3 8-10	8/7/2015 15:36	84-66-2	Diethyl phthalate			0.058	U
GB-3 8-10	8/7/2015 15:36	101-55-3	4-Bromophenyl phenyl ether			0.056	U
GB-3 8-10	8/7/2015 15:36	208-96-8	Acenaphthylene			0.056	U
GB-3 8-10	8/7/2015 15:36	86-73-7	Fluorene			0.056	U
GB-3 8-10	8/7/2015 15:36	87-68-3	Hexachlorobutadiene			0.056	U
GB-3 8-10	8/7/2015 15:36	95-95-4	2,4,5-Trichlorophenol			0.055	U
GB-3 8-10	8/7/2015 15:36	120-83-2	2,4-Dichlorophenol			0.055	U
GB-3 8-10	8/7/2015 15:36	91-58-7	2-Chloronaphthalene			0.055	U
GB-3 8-10	8/7/2015 15:36	59-50-7	4-Chloro-3-methylphenol			0.055	U
GB-3 8-10	8/7/2015 15:36	131-11-3	Dimethyl phthalate			0.053	U
GB-3 8-10	8/7/2015 15:36	108-95-2	Phenol			0.053	U
GB-3 8-10	8/7/2015 15:36	132-64-9	Dibenzofuran			0.052	U
GB-3 8-10	8/7/2015 15:36	78-59-1	Isophorone			0.052	U
GB-3 8-10	8/7/2015 15:36	86-30-6	N-Nitrosodiphenylamine			0.052	U
GB-3 8-10	8/7/2015 15:36	621-64-7	N-Nitrosodi-n-propylamine			0.05	U
GB-3 8-10	8/7/2015 15:36	108-60-1	bis (2-chloroisopropyl) ether			0.047	U
GB-3 8-10	8/7/2015 15:36	86-74-8	Carbazole			0.047	U
GB-3 8-10	8/7/2015 15:36	84-74-2	Di-n-butyl phthalate			0.047	U
GB-3 8-10	8/7/2015 15:36	91-20-3	Naphthalene			0.047	U
GB-3 8-10	8/7/2015 15:36	88-06-2	2,4,6-Trichlorophenol			0.045	U
GB-3 8-10	8/7/2015 15:36	117-84-0	Di-n-octyl phthalate			0.045	U
GB-3 8-10	8/7/2015 15:36	91-94-1	3,3'-Dichlorobenzidine			0.044	U
GB-3 8-10	8/7/2015 15:36	98-86-2	Acetophenone			0.044	U
GB-3 8-10	8/7/2015 15:36	67-72-1	Hexachloroethane			0.044	U
GB-3 8-10	8/7/2015 15:36	95-48-7	2-Methylphenol			0.042	U
GB-3 8-10	8/7/2015 15:36	85-01-8	Phenanthrene			0.042	U
GB-3 8-10	8/7/2015 15:36	85-68-7	Butyl benzyl phthalate			0.041	U
GB-3 8-10	8/7/2015 15:36	98-95-3	Nitrobenzene			0.041	U
GB-3 8-10	8/7/2015 15:36	120-12-7	Anthracene	+		0.039	U
GB-3 8-10	8/7/2015 15:36	1912-24-9	Atrazine	+		0.036	U
GB-3 8-10	8/7/2015 15:36	87-86-5	Pentachlorophenol	+		0.52	U *
GB-3 8-10 GB-3 8-10	8/7/2015 15:36	534-52-1	4,6-Dinitro-2-methylphenol	1		0.32	U *
GB-3 8-10 GB-3 8-10	8/7/2015 15:36	321-60-8	2-Fluorobiphenyl	NL	NL	4	5
GB-5 8-10	8/7/2015 13:45	117-81-7	Bis(2-ethylhexyl) phthalate	INL	INL	0.5	В

Client Sample	Callestian Date	CAS	Aurabata bu Maraba d 0270D	Type 1 RRS		Result	Flor
(D F 0 10	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-5 8-10	8/7/2015 13:45	85-01-8	Phenanthrene			0.069	J
GB-5 8-10	8/7/2015 13:45	206-44-0	Fluoranthene	+		0.054	J
GB-5 8-10	8/7/2015 13:45	129-00-0	Pyrene			0.044	J
GB-5 8-10	8/7/2015 13:45	218-01-9	Chrysene	+		0.029	J
GB-5 8-10	8/7/2015 13:45	92-52-4	1,1'-Biphenyl			2.2	U
GB-5 8-10	8/7/2015 13:45	51-28-5	2,4-Dinitrophenol			1.1	U
GB-5 8-10	8/7/2015 13:45	100-02-7	4-Nitrophenol			0.43	U
GB-5 8-10	8/7/2015 13:45	105-60-2	Caprolactam	-		0.086	U
GB-5 8-10	8/7/2015 13:45	207-08-9	Benzo[k]fluoranthene			0.085	U
GB-5 8-10	8/7/2015 13:45	100-52-7	Benzaldehyde			0.076	U
GB-5 8-10	8/7/2015 13:45	106-47-8	4-Chloroaniline			0.068	U
GB-5 8-10	8/7/2015 13:45	50-32-8	Benzo[a]pyrene			0.068	U
GB-5 8-10	8/7/2015 13:45	121-14-2	2,4-Dinitrotoluene			0.064	U
GB-5 8-10	8/7/2015 13:45	100-01-6	4-Nitroaniline			0.064	U
GB-5 8-10	8/7/2015 13:45	99-09-2	3-Nitroaniline			0.06	U
GB-5 8-10	8/7/2015 13:45	88-74-4	2-Nitroaniline			0.059	U
GB-5 8-10	8/7/2015 13:45	111-44-4	Bis(2-chloroethyl)ether			0.059	U
GB-5 8-10	8/7/2015 13:45	105-67-9	2,4-Dimethylphenol			0.058	U
GB-5 8-10	8/7/2015 13:45	7005-72-3	4-Chlorophenyl phenyl ether			0.058	U
GB-5 8-10	8/7/2015 13:45	15831-10-4	3 & 4 Methylphenol			0.056	U
GB-5 8-10	8/7/2015 13:45	606-20-2	2,6-Dinitrotoluene			0.055	U
GB-5 8-10	8/7/2015 13:45	88-75-5	2-Nitrophenol			0.054	U
GB-5 8-10	8/7/2015 13:45	83-32-9	Acenaphthene			0.054	U
GB-5 8-10	8/7/2015 13:45	77-47-4	Hexachlorocyclopentadiene			0.054	U
GB-5 8-10	8/7/2015 13:45	95-57-8	2-Chlorophenol			0.052	U
GB-5 8-10	8/7/2015 13:45	111-91-1	Bis(2-chloroethoxy)methane			0.051	U
GB-5 8-10	8/7/2015 13:45	53-70-3	Dibenz(a,h)anthracene			0.051	U
GB-5 8-10	8/7/2015 13:45	118-74-1	Hexachlorobenzene			0.051	U
GB-5 8-10	8/7/2015 13:45	91-57-6	2-Methylnaphthalene			0.05	U
GB-5 8-10	8/7/2015 13:45	205-99-2	Benzo[b]fluoranthene			0.05	U
GB-5 8-10	8/7/2015 13:45	84-66-2	Diethyl phthalate			0.048	U
GB-5 8-10	8/7/2015 13:45	101-55-3	4-Bromophenyl phenyl ether			0.047	U
GB-5 8-10	8/7/2015 13:45	208-96-8	Acenaphthylene			0.047	U
GB-5 8-10	8/7/2015 13:45	86-73-7	Fluorene			0.047	U
GB-5 8-10	8/7/2015 13:45	87-68-3	Hexachlorobutadiene			0.047	U
GB-5 8-10	8/7/2015 13:45	95-95-4	2,4,5-Trichlorophenol			0.046	U
GB-5 8-10	8/7/2015 13:45	120-83-2	2,4-Dichlorophenol			0.046	U
GB-5 8-10	8/7/2015 13:45	91-58-7	2-Chloronaphthalene			0.046	U
GB-5 8-10	8/7/2015 13:45	59-50-7	4-Chloro-3-methylphenol			0.046	U
GB-5 8-10	8/7/2015 13:45	131-11-3	Dimethyl phthalate	1		0.045	U
GB-5 8-10	8/7/2015 13:45	108-95-2	Phenol	1		0.045	U
GB-5 8-10	8/7/2015 13:45	132-64-9	Dibenzofuran	1		0.043	U
GB-5 8-10	8/7/2015 13:45	78-59-1	Isophorone	1		0.043	U

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-5 8-10	8/7/2015 13:45	86-30-6	N-Nitrosodiphenylamine			0.043	U
GB-5 8-10	8/7/2015 13:45	621-64-7	N-Nitrosodi-n-propylamine			0.042	U
GB-5 8-10	8/7/2015 13:45	108-60-1	bis (2-chloroisopropyl) ether			0.039	U
GB-5 8-10	8/7/2015 13:45	86-74-8	Carbazole			0.039	U
GB-5 8-10	8/7/2015 13:45	84-74-2	Di-n-butyl phthalate			0.039	U
GB-5 8-10	8/7/2015 13:45	91-20-3	Naphthalene			0.039	U
GB-5 8-10	8/7/2015 13:45	88-06-2	2,4,6-Trichlorophenol			0.038	U
GB-5 8-10	8/7/2015 13:45	117-84-0	Di-n-octyl phthalate			0.038	U
GB-5 8-10	8/7/2015 13:45	91-94-1	3,3'-Dichlorobenzidine			0.037	U
GB-5 8-10	8/7/2015 13:45	98-86-2	Acetophenone			0.037	U
GB-5 8-10	8/7/2015 13:45	67-72-1	Hexachloroethane			0.037	U
GB-5 8-10	8/7/2015 13:45	193-39-5	Indeno[1,2,3-cd]pyrene			0.037	U
GB-5 8-10	8/7/2015 13:45	95-48-7	2-Methylphenol			0.035	U
GB-5 8-10	8/7/2015 13:45	56-55-3	Benzo[a]anthracene			0.035	U
GB-5 8-10	8/7/2015 13:45	85-68-7	Butyl benzyl phthalate			0.034	U
GB-5 8-10	8/7/2015 13:45	98-95-3	Nitrobenzene			0.034	U
GB-5 8-10	8/7/2015 13:45	120-12-7	Anthracene			0.033	U
GB-5 8-10	8/7/2015 13:45	1912-24-9	Atrazine			0.03	U
GB-5 8-10	8/7/2015 13:45	191-24-2	Benzo[g,h,i]perylene			0.029	U
GB-5 8-10	8/7/2015 13:45	87-86-5	Pentachlorophenol			0.43	U *
GB-5 8-10	8/7/2015 13:45	534-52-1	4,6-Dinitro-2-methylphenol			0.22	U *
GB-5 8-10	8/7/2015 13:45	321-60-8	2-Fluorobiphenyl	NL	NL	2.9	
GB-5 13-15	8/24/2015 15:08	117-81-7	Bis(2-ethylhexyl) phthalate			0.25	J
GB-5 13-15	8/24/2015 15:08	85-01-8	Phenanthrene			0.034	J
GB-5 13-15	8/24/2015 15:08	92-52-4	1,1'-Biphenyl			2	U
GB-5 13-15	8/24/2015 15:08	51-28-5	2,4-Dinitrophenol			0.96	U
GB-5 13-15	8/24/2015 15:08	100-02-7	4-Nitrophenol			0.38	U
GB-5 13-15	8/24/2015 15:08	87-86-5	Pentachlorophenol			0.38	U
GB-5 13-15	8/24/2015 15:08	534-52-1	4,6-Dinitro-2-methylphenol			0.2	U
GB-5 13-15	8/24/2015 15:08	105-60-2	Caprolactam			0.077	U
GB-5 13-15	8/24/2015 15:08	207-08-9	Benzo[k]fluoranthene			0.075	U
GB-5 13-15	8/24/2015 15:08	100-52-7	Benzaldehyde			0.067	U
GB-5 13-15	8/24/2015 15:08	106-47-8	4-Chloroaniline			0.06	U
GB-5 13-15	8/24/2015 15:08	50-32-8	Benzo[a]pyrene			0.06	U
GB-5 13-15	8/24/2015 15:08	121-14-2	2,4-Dinitrotoluene			0.057	U
GB-5 13-15	8/24/2015 15:08	100-01-6	4-Nitroaniline			0.057	U
GB-5 13-15	8/24/2015 15:08	99-09-2	3-Nitroaniline			0.053	U
GB-5 13-15	8/24/2015 15:08	88-74-4	2-Nitroaniline			0.052	U
GB-5 13-15	8/24/2015 15:08	111-44-4	Bis(2-chloroethyl)ether			0.052	U
GB-5 13-15	8/24/2015 15:08	105-67-9	2,4-Dimethylphenol			0.051	U
GB-5 13-15	8/24/2015 15:08	7005-72-3	4-Chlorophenyl phenyl ether			0.051	U
GB-5 13-15	8/24/2015 15:08	15831-10-4	3 & 4 Methylphenol			0.05	U
GB-5 13-15	8/24/2015 15:08	606-20-2	2,6-Dinitrotoluene			0.049	U

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-5 13-15	8/24/2015 15:08	88-75-5	2-Nitrophenol			0.048	U
GB-5 13-15	8/24/2015 15:08	83-32-9	Acenaphthene			0.048	U
GB-5 13-15	8/24/2015 15:08	77-47-4	Hexachlorocyclopentadiene			0.048	U
GB-5 13-15	8/24/2015 15:08	95-57-8	2-Chlorophenol			0.046	U
GB-5 13-15	8/24/2015 15:08	111-91-1	Bis(2-chloroethoxy)methane			0.045	U
GB-5 13-15	8/24/2015 15:08	53-70-3	Dibenz(a,h)anthracene			0.045	U
GB-5 13-15	8/24/2015 15:08	118-74-1	Hexachlorobenzene			0.045	U
GB-5 13-15	8/24/2015 15:08	91-57-6	2-Methylnaphthalene			0.044	U
GB-5 13-15	8/24/2015 15:08	205-99-2	Benzo[b]fluoranthene			0.044	U
GB-5 13-15	8/24/2015 15:08	84-66-2	Diethyl phthalate			0.043	U
GB-5 13-15	8/24/2015 15:08	101-55-3	4-Bromophenyl phenyl ether			0.042	U
GB-5 13-15	8/24/2015 15:08	208-96-8	Acenaphthylene			0.042	U
GB-5 13-15	8/24/2015 15:08	86-73-7	Fluorene			0.042	U
GB-5 13-15	8/24/2015 15:08	87-68-3	Hexachlorobutadiene			0.042	U
GB-5 13-15	8/24/2015 15:08	95-95-4	2,4,5-Trichlorophenol			0.041	U
GB-5 13-15	8/24/2015 15:08	120-83-2	2,4-Dichlorophenol			0.041	U
GB-5 13-15	8/24/2015 15:08	91-58-7	2-Chloronaphthalene			0.041	U
GB-5 13-15	8/24/2015 15:08	59-50-7	4-Chloro-3-methylphenol			0.041	U
GB-5 13-15	8/24/2015 15:08	131-11-3	Dimethyl phthalate			0.039	U
GB-5 13-15	8/24/2015 15:08	108-95-2	Phenol			0.039	U
GB-5 13-15	8/24/2015 15:08	132-64-9	Dibenzofuran			0.038	U
GB-5 13-15	8/24/2015 15:08	78-59-1	Isophorone			0.038	U
GB-5 13-15	8/24/2015 15:08	86-30-6	N-Nitrosodiphenylamine			0.038	U
GB-5 13-15	8/24/2015 15:08	206-44-0	Fluoranthene			0.037	U
GB-5 13-15	8/24/2015 15:08	621-64-7	N-Nitrosodi-n-propylamine			0.037	U
GB-5 13-15	8/24/2015 15:08	108-60-1	bis (2-chloroisopropyl) ether			0.035	U
GB-5 13-15	8/24/2015 15:08	86-74-8	Carbazole			0.035	U
GB-5 13-15	8/24/2015 15:08	84-74-2	Di-n-butyl phthalate			0.035	U
GB-5 13-15	8/24/2015 15:08	91-20-3	Naphthalene			0.035	U
GB-5 13-15	8/24/2015 15:08	88-06-2	2,4,6-Trichlorophenol			0.034	U
GB-5 13-15	8/24/2015 15:08	117-84-0	Di-n-octyl phthalate			0.034	U
GB-5 13-15	8/24/2015 15:08	91-94-1	3,3'-Dichlorobenzidine			0.032	U
GB-5 13-15	8/24/2015 15:08	98-86-2	Acetophenone			0.032	U
GB-5 13-15	8/24/2015 15:08	67-72-1	Hexachloroethane			0.032	U
GB-5 13-15	8/24/2015 15:08	193-39-5	Indeno[1,2,3-cd]pyrene			0.032	U
GB-5 13-15	8/24/2015 15:08	95-48-7	2-Methylphenol			0.031	U
GB-5 13-15	8/24/2015 15:08	56-55-3	Benzo[a]anthracene			0.031	U
GB-5 13-15	8/24/2015 15:08	129-00-0	Pyrene			0.031	U
GB-5 13-15	8/24/2015 15:08	85-68-7	Butyl benzyl phthalate			0.03	U
GB-5 13-15	8/24/2015 15:08	98-95-3	Nitrobenzene			0.03	U
GB-5 13-15	8/24/2015 15:08	120-12-7	Anthracene			0.029	U
GB-5 13-15	8/24/2015 15:08	1912-24-9	Atrazine			0.027	U
GB-5 13-15	8/24/2015 15:08	191-24-2	Benzo[g,h,i]perylene			0.026	U

Client Sample				Type 1 RRS	Type 2 RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-5 13-15	8/24/2015 15:08	218-01-9	Chrysene			0.024	U
GB-5 13-15	8/24/2015 15:08	321-60-8	2-Fluorobiphenyl	NL	NL	3	
GB-5 18	8/24/2015 15:17	92-52-4	1,1'-Biphenyl			2	U
GB-5 18	8/24/2015 15:17	51-28-5	2,4-Dinitrophenol			0.97	U
GB-5 18	8/24/2015 15:17	100-02-7	4-Nitrophenol			0.39	U
GB-5 18	8/24/2015 15:17	87-86-5	Pentachlorophenol			0.39	U
GB-5 18	8/24/2015 15:17	534-52-1	4,6-Dinitro-2-methylphenol			0.2	U
GB-5 18	8/24/2015 15:17	105-60-2	Caprolactam			0.077	U
GB-5 18	8/24/2015 15:17	207-08-9	Benzo[k]fluoranthene			0.076	U
GB-5 18	8/24/2015 15:17	100-52-7	Benzaldehyde			0.068	U
GB-5 18	8/24/2015 15:17	106-47-8	4-Chloroaniline			0.061	U
GB-5 18	8/24/2015 15:17	50-32-8	Benzo[a]pyrene			0.061	U
GB-5 18	8/24/2015 15:17	121-14-2	2,4-Dinitrotoluene			0.057	U
GB-5 18	8/24/2015 15:17	100-01-6	4-Nitroaniline			0.057	U
GB-5 18	8/24/2015 15:17	99-09-2	3-Nitroaniline			0.054	U
GB-5 18	8/24/2015 15:17	88-74-4	2-Nitroaniline			0.053	U
GB-5 18	8/24/2015 15:17	111-44-4	Bis(2-chloroethyl)ether			0.053	U
GB-5 18	8/24/2015 15:17	105-67-9	2,4-Dimethylphenol			0.051	U
GB-5 18	8/24/2015 15:17	7005-72-3	4-Chlorophenyl phenyl ether			0.051	U
GB-5 18	8/24/2015 15:17	15831-10-4	3 & 4 Methylphenol			0.05	U
GB-5 18	8/24/2015 15:17	606-20-2	2,6-Dinitrotoluene			0.049	U
GB-5 18	8/24/2015 15:17	88-75-5	2-Nitrophenol			0.048	U
GB-5 18	8/24/2015 15:17	83-32-9	Acenaphthene			0.048	U
GB-5 18	8/24/2015 15:17	77-47-4	Hexachlorocyclopentadiene			0.048	U
GB-5 18	8/24/2015 15:17	95-57-8	2-Chlorophenol			0.047	U
GB-5 18	8/24/2015 15:17	111-91-1	Bis(2-chloroethoxy)methane			0.046	U
GB-5 18	8/24/2015 15:17	53-70-3	Dibenz(a,h)anthracene			0.046	U
GB-5 18	8/24/2015 15:17	118-74-1	Hexachlorobenzene			0.046	U
GB-5 18	8/24/2015 15:17	91-57-6	2-Methylnaphthalene			0.044	U
GB-5 18	8/24/2015 15:17	205-99-2	Benzo[b]fluoranthene			0.044	U
GB-5 18	8/24/2015 15:17	84-66-2	Diethyl phthalate			0.043	U
GB-5 18	8/24/2015 15:17	101-55-3	4-Bromophenyl phenyl ether			0.042	U
GB-5 18	8/24/2015 15:17	208-96-8	Acenaphthylene			0.042	U
GB-5 18	8/24/2015 15:17	86-73-7	Fluorene			0.042	U
GB-5 18	8/24/2015 15:17	87-68-3	Hexachlorobutadiene			0.042	U
GB-5 18	8/24/2015 15:17	95-95-4	2,4,5-Trichlorophenol			0.041	U
GB-5 18	8/24/2015 15:17	120-83-2	2,4-Dichlorophenol			0.041	U
GB-5 18	8/24/2015 15:17	91-58-7	2-Chloronaphthalene			0.041	U
GB-5 18	8/24/2015 15:17	59-50-7	4-Chloro-3-methylphenol			0.041	U
GB-5 18	8/24/2015 15:17	131-11-3	Dimethyl phthalate			0.04	U
GB-5 18	8/24/2015 15:17	108-95-2	Phenol			0.04	U
GB-5 18	8/24/2015 15:17	132-64-9	Dibenzofuran			0.039	U
GB-5 18	8/24/2015 15:17	78-59-1	Isophorone			0.039	U

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-5 18	8/24/2015 15:17	86-30-6	N-Nitrosodiphenylamine			0.039	U
	8/24/2015 15:17	206-44-0	Fluoranthene			0.037	U
GB-5 18	8/24/2015 15:17	621-64-7	N-Nitrosodi-n-propylamine			0.037	U
GB-5 18	8/24/2015 15:17	108-60-1	bis (2-chloroisopropyl) ether			0.035	U
GB-5 18	8/24/2015 15:17	86-74-8	Carbazole			0.035	U
GB-5 18	8/24/2015 15:17	84-74-2	Di-n-butyl phthalate			0.035	U
GB-5 18	8/24/2015 15:17	91-20-3	Naphthalene			0.035	U
GB-5 18	8/24/2015 15:17	88-06-2	2,4,6-Trichlorophenol			0.034	U
GB-5 18	8/24/2015 15:17	117-81-7	Bis(2-ethylhexyl) phthalate			0.034	U
GB-5 18	8/24/2015 15:17	117-84-0	Di-n-octyl phthalate			0.034	U
GB-5 18	8/24/2015 15:17	91-94-1	3,3'-Dichlorobenzidine			0.033	U
GB-5 18	8/24/2015 15:17	98-86-2	Acetophenone			0.033	U
GB-5 18	8/24/2015 15:17	67-72-1	Hexachloroethane			0.033	U
GB-5 18	8/24/2015 15:17	193-39-5	Indeno[1,2,3-cd]pyrene			0.033	U
GB-5 18	8/24/2015 15:17	95-48-7	2-Methylphenol			0.032	U
GB-5 18	8/24/2015 15:17	56-55-3	Benzo[a]anthracene			0.032	U
GB-5 18	8/24/2015 15:17	85-01-8	Phenanthrene			0.032	U
GB-5 18	8/24/2015 15:17	129-00-0	Pyrene			0.032	U
GB-5 18	8/24/2015 15:17	85-68-7	Butyl benzyl phthalate			0.03	U
	8/24/2015 15:17	98-95-3	Nitrobenzene			0.03	U
GB-5 18	8/24/2015 15:17	120-12-7	Anthracene			0.029	U
	8/24/2015 15:17	1912-24-9	Atrazine			0.027	U
	8/24/2015 15:17	191-24-2	Benzo[g,h,i]perylene			0.026	U
	8/24/2015 15:17	218-01-9	Chrysene			0.025	U
	8/24/2015 15:17	321-60-8	2-Fluorobiphenyl	NL	NL	2.7	
GB-7 13-15	8/7/2015 10:00	206-44-0	Fluoranthene			0.19	J
GB-7 13-15	8/7/2015 10:00	129-00-0	Pyrene			0.17	J
GB-7 13-15	8/7/2015 10:00	205-99-2	Benzo[b]fluoranthene			0.13	J
GB-7 13-15	8/7/2015 10:00	85-01-8	Phenanthrene			0.12	J
GB-7 13-15	8/7/2015 10:00	56-55-3	Benzo[a]anthracene			0.099	J
GB-7 13-15	8/7/2015 10:00	218-01-9	Chrysene			0.096	J
GB-7 13-15	8/7/2015 10:00	50-32-8	Benzo[a]pyrene			0.083	J
GB-7 13-15	8/7/2015 10:00	191-24-2	Benzo[g,h,i]perylene			0.056	J
GB-7 13-15	8/7/2015 10:00	193-39-5	Indeno[1,2,3-cd]pyrene			0.046	J
GB-7 13-15	8/7/2015 10:00	117-81-7	Bis(2-ethylhexyl) phthalate			0.32	J B
GB-7 13-15	8/7/2015 10:00	92-52-4	1,1'-Biphenyl			2	U
GB-7 13-15	8/7/2015 10:00	51-28-5	2,4-Dinitrophenol			0.96	U
GB-7 13-15	8/7/2015 10:00	100-02-7	4-Nitrophenol			0.38	U
GB-7 13-15	8/7/2015 10:00	105-60-2	Caprolactam			0.076	U
GB-7 13-15	8/7/2015 10:00	207-08-9	Benzo[k]fluoranthene			0.075	U
GB-7 13-15	8/7/2015 10:00	100-52-7	Benzaldehyde	1		0.067	U
GB-7 13-15	8/7/2015 10:00	106-47-8	4-Chloroaniline			0.06	U
GB-7 13-15	8/7/2015 10:00	121-14-2	2,4-Dinitrotoluene			0.057	U

					Tuma 2		
Client Commis				Turne 1 DDC	Type 2	Dogula	
Client Sample	Callestian Data	CAS	Analysia by Mathad 9370D	Type 1 RRS	RRS	Result	- Floor
ID CD 7 12 15	Collection Date	CAS 100.01.6	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-7 13-15	8/7/2015 10:00	100-01-6	4-Nitroaniline			0.057	U
GB-7 13-15	8/7/2015 10:00	99-09-2	3-Nitroaniline			0.053	U
GB-7 13-15	8/7/2015 10:00	88-74-4	2-Nitroaniline			0.052	U
GB-7 13-15	8/7/2015 10:00	111-44-4	Bis(2-chloroethyl)ether			0.052	U
GB-7 13-15	8/7/2015 10:00	105-67-9	2,4-Dimethylphenol			0.051	U
GB-7 13-15	8/7/2015 10:00	7005-72-3	4-Chlorophenyl phenyl ether			0.051	U
GB-7 13-15	8/7/2015 10:00	15831-10-4	3 & 4 Methylphenol			0.05	U
GB-7 13-15	8/7/2015 10:00	606-20-2	2,6-Dinitrotoluene			0.049	U
GB-7 13-15	8/7/2015 10:00	88-75-5	2-Nitrophenol			0.047	U
GB-7 13-15	8/7/2015 10:00	83-32-9	Acenaphthene			0.047	U
GB-7 13-15	8/7/2015 10:00	77-47-4	Hexachlorocyclopentadiene			0.047	U
GB-7 13-15	8/7/2015 10:00	95-57-8	2-Chlorophenol			0.046	U
GB-7 13-15	8/7/2015 10:00	111-91-1	Bis(2-chloroethoxy)methane			0.045	U
GB-7 13-15	8/7/2015 10:00	53-70-3	Dibenz(a,h)anthracene			0.045	U
GB-7 13-15	8/7/2015 10:00	118-74-1	Hexachlorobenzene			0.045	J
GB-7 13-15	8/7/2015 10:00	91-57-6	2-Methylnaphthalene			0.044	U
GB-7 13-15	8/7/2015 10:00	84-66-2	Diethyl phthalate			0.043	U
GB-7 13-15	8/7/2015 10:00	101-55-3	4-Bromophenyl phenyl ether			0.042	U
GB-7 13-15	8/7/2015 10:00	208-96-8	Acenaphthylene			0.042	U
GB-7 13-15	8/7/2015 10:00	86-73-7	Fluorene			0.042	U
GB-7 13-15	8/7/2015 10:00	87-68-3	Hexachlorobutadiene			0.042	U
GB-7 13-15	8/7/2015 10:00	95-95-4	2,4,5-Trichlorophenol			0.041	U
GB-7 13-15	8/7/2015 10:00	120-83-2	2,4-Dichlorophenol			0.041	U
GB-7 13-15	8/7/2015 10:00	91-58-7	2-Chloronaphthalene			0.041	U
GB-7 13-15	8/7/2015 10:00	59-50-7	4-Chloro-3-methylphenol			0.041	U
GB-7 13-15	8/7/2015 10:00	131-11-3	Dimethyl phthalate			0.039	U
GB-7 13-15	8/7/2015 10:00	108-95-2	Phenol			0.039	U
GB-7 13-15	8/7/2015 10:00	132-64-9	Dibenzofuran			0.038	U
GB-7 13-15	8/7/2015 10:00	78-59-1	Isophorone			0.038	U
GB-7 13-15	8/7/2015 10:00	86-30-6	N-Nitrosodiphenylamine			0.038	U
GB-7 13-15	8/7/2015 10:00	621-64-7	N-Nitrosodi-n-propylamine			0.037	U
GB-7 13-15	8/7/2015 10:00	108-60-1	bis (2-chloroisopropyl) ether			0.035	U
GB-7 13-15	8/7/2015 10:00	86-74-8	Carbazole			0.035	U
GB-7 13-15	8/7/2015 10:00	84-74-2	Di-n-butyl phthalate			0.035	U
GB-7 13-15	8/7/2015 10:00	91-20-3	Naphthalene			0.035	U
GB-7 13-15	8/7/2015 10:00	88-06-2	2,4,6-Trichlorophenol			0.034	U
GB-7 13-15	8/7/2015 10:00	117-84-0	Di-n-octyl phthalate			0.034	U
GB-7 13-15	8/7/2015 10:00	91-94-1	3,3'-Dichlorobenzidine			0.032	U
GB-7 13-15	8/7/2015 10:00	98-86-2	Acetophenone			0.032	U
GB-7 13-15	8/7/2015 10:00	67-72-1	Hexachloroethane			0.032	U
GB-7 13-15	8/7/2015 10:00	95-48-7	2-Methylphenol			0.031	U
GB-7 13-15	8/7/2015 10:00	85-68-7	Butyl benzyl phthalate			0.03	U
GB-7 13-15	8/7/2015 10:00	98-95-3	Nitrobenzene			0.03	U
3 +3	J, J, 2020 20.00			<u>I</u>		3.00	

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-7 13-15	8/7/2015 10:00	120-12-7	Anthracene			0.029	U
GB-7 13-15	8/7/2015 10:00	1912-24-9	Atrazine			0.027	U
GB-7 13-15	8/7/2015 10:00	87-86-5	Pentachlorophenol			0.38	U *
GB-7 13-15	8/7/2015 10:00	534-52-1	4,6-Dinitro-2-methylphenol			0.2	U *
GB-7 13-15	8/7/2015 10:00	321-60-8	2-Fluorobiphenyl	NL	NL	2.6	
GB-7 18	8/7/2015 10:06	206-44-0	Fluoranthene			0.1	J
GB-7 18	8/7/2015 10:06	129-00-0	Pyrene			0.083	J
GB-7 18	8/7/2015 10:06	205-99-2	Benzo[b]fluoranthene			0.071	J
GB-7 18	8/7/2015 10:06	85-01-8	Phenanthrene			0.065	J
GB-7 18	8/7/2015 10:06	56-55-3	Benzo[a]anthracene			0.053	J
GB-7 18	8/7/2015 10:06	218-01-9	Chrysene			0.052	J
GB-7 18	8/7/2015 10:06	191-24-2	Benzo[g,h,i]perylene			0.037	J
GB-7 18	8/7/2015 10:06	117-81-7	Bis(2-ethylhexyl) phthalate			0.26	JB
GB-7 18	8/7/2015 10:06	92-52-4	1,1'-Biphenyl			2	U
GB-7 18	8/7/2015 10:06	51-28-5	2,4-Dinitrophenol			0.99	U
GB-7 18	8/7/2015 10:06	100-02-7	4-Nitrophenol			0.39	U
GB-7 18	8/7/2015 10:06	105-60-2	Caprolactam			0.079	U
GB-7 18	8/7/2015 10:06	207-08-9	Benzo[k]fluoranthene			0.077	U
GB-7 18	8/7/2015 10:06	100-52-7	Benzaldehyde			0.069	U
GB-7 18	8/7/2015 10:06	106-47-8	4-Chloroaniline			0.062	U
GB-7 18	8/7/2015 10:06	50-32-8	Benzo[a]pyrene			0.062	U
GB-7 18	8/7/2015 10:06	121-14-2	2,4-Dinitrotoluene			0.058	U
GB-7 18	8/7/2015 10:06	100-01-6	4-Nitroaniline			0.058	U
GB-7 18	8/7/2015 10:06	99-09-2	3-Nitroaniline			0.055	U
GB-7 18	8/7/2015 10:06	88-74-4	2-Nitroaniline			0.054	U
GB-7 18	8/7/2015 10:06	111-44-4	Bis(2-chloroethyl)ether			0.054	U
GB-7 18	8/7/2015 10:06	105-67-9	2,4-Dimethylphenol			0.052	U
GB-7 18	8/7/2015 10:06	7005-72-3	4-Chlorophenyl phenyl ether			0.052	U
GB-7 18	8/7/2015 10:06	15831-10-4	3 & 4 Methylphenol			0.051	U
GB-7 18	8/7/2015 10:06	606-20-2	2,6-Dinitrotoluene			0.05	U
GB-7 18	8/7/2015 10:06	88-75-5	2-Nitrophenol			0.049	U
GB-7 18	8/7/2015 10:06	83-32-9	Acenaphthene			0.049	U
GB-7 18	8/7/2015 10:06	77-47-4	Hexachlorocyclopentadiene			0.049	U
GB-7 18	8/7/2015 10:06	95-57-8	2-Chlorophenol			0.048	U
GB-7 18	8/7/2015 10:06	111-91-1	Bis(2-chloroethoxy)methane			0.046	U
GB-7 18	8/7/2015 10:06	53-70-3	Dibenz(a,h)anthracene			0.046	U
GB-7 18	8/7/2015 10:06	118-74-1	Hexachlorobenzene			0.046	U
GB-7 18	8/7/2015 10:06	91-57-6	2-Methylnaphthalene			0.045	U
GB-7 18	8/7/2015 10:06	84-66-2	Diethyl phthalate			0.044	U
GB-7 18	8/7/2015 10:06	101-55-3	4-Bromophenyl phenyl ether			0.043	U
GB-7 18	8/7/2015 10:06	208-96-8	Acenaphthylene			0.043	U
GB-7 18	8/7/2015 10:06	86-73-7	Fluorene			0.043	U
GB-7 18	8/7/2015 10:06	87-68-3	Hexachlorobutadiene			0.043	U

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-7 18	8/7/2015 10:06	95-95-4	2,4,5-Trichlorophenol			0.042	U
GB-7 18	8/7/2015 10:06	120-83-2	2,4-Dichlorophenol			0.042	U
GB-7 18	8/7/2015 10:06	91-58-7	2-Chloronaphthalene			0.042	U
GB-7 18	8/7/2015 10:06	59-50-7	4-Chloro-3-methylphenol			0.042	U
GB-7 18	8/7/2015 10:06	131-11-3	Dimethyl phthalate			0.04	U
GB-7 18	8/7/2015 10:06	108-95-2	Phenol			0.04	U
GB-7 18	8/7/2015 10:06	132-64-9	Dibenzofuran			0.039	U
GB-7 18	8/7/2015 10:06	78-59-1	Isophorone			0.039	U
GB-7 18	8/7/2015 10:06	86-30-6	N-Nitrosodiphenylamine			0.039	U
GB-7 18	8/7/2015 10:06	621-64-7	N-Nitrosodi-n-propylamine			0.038	U
GB-7 18	8/7/2015 10:06	108-60-1	bis (2-chloroisopropyl) ether			0.036	U
GB-7 18	8/7/2015 10:06	86-74-8	Carbazole			0.036	U
GB-7 18	8/7/2015 10:06	84-74-2	Di-n-butyl phthalate			0.036	U
GB-7 18	8/7/2015 10:06	91-20-3	Naphthalene			0.036	U
GB-7 18	8/7/2015 10:06	88-06-2	2,4,6-Trichlorophenol			0.035	U
GB-7 18	8/7/2015 10:06	117-84-0	Di-n-octyl phthalate			0.035	U
GB-7 18	8/7/2015 10:06	91-94-1	3,3'-Dichlorobenzidine			0.033	U
GB-7 18	8/7/2015 10:06	98-86-2	Acetophenone			0.033	U
GB-7 18	8/7/2015 10:06	67-72-1	Hexachloroethane			0.033	U
GB-7 18	8/7/2015 10:06	193-39-5	Indeno[1,2,3-cd]pyrene			0.033	U
GB-7 18	8/7/2015 10:06	95-48-7	2-Methylphenol			0.032	U
GB-7 18	8/7/2015 10:06	85-68-7	Butyl benzyl phthalate			0.031	U
GB-7 18	8/7/2015 10:06	98-95-3	Nitrobenzene			0.031	U
GB-7 18	8/7/2015 10:06	120-12-7	Anthracene			0.03	U
GB-7 18	8/7/2015 10:06	1912-24-9	Atrazine			0.027	U
GB-7 18	8/7/2015 10:06	87-86-5	Pentachlorophenol			0.39	U *
GB-7 18	8/7/2015 10:06	534-52-1	4,6-Dinitro-2-methylphenol			0.2	U *
GB-7 18	8/7/2015 10:06	321-60-8	2-Fluorobiphenyl	NL	NL	2.5	
GB-7 8-10	8/7/2015 9:54	117-81-7	Bis(2-ethylhexyl) phthalate			0.46	В
GB-7 8-10	8/7/2015 9:54	206-44-0	Fluoranthene			0.047	J
GB-7 8-10	8/7/2015 9:54	129-00-0	Pyrene			0.039	J
GB-7 8-10	8/7/2015 9:54	92-52-4	1,1'-Biphenyl			2.1	U
GB-7 8-10	8/7/2015 9:54	51-28-5	2,4-Dinitrophenol			1	U
GB-7 8-10	8/7/2015 9:54	100-02-7	4-Nitrophenol			0.41	U
GB-7 8-10	8/7/2015 9:54	105-60-2	Caprolactam			0.082	U
GB-7 8-10	8/7/2015 9:54	207-08-9	Benzo[k]fluoranthene			0.081	U
GB-7 8-10	8/7/2015 9:54	100-52-7	Benzaldehyde			0.072	U
GB-7 8-10	8/7/2015 9:54	106-47-8	4-Chloroaniline			0.065	U
GB-7 8-10	8/7/2015 9:54	50-32-8	Benzo[a]pyrene			0.065	U
GB-7 8-10	8/7/2015 9:54	121-14-2	2,4-Dinitrotoluene			0.061	U
GB-7 8-10	8/7/2015 9:54	100-01-6	4-Nitroaniline			0.061	U
GB-7 8-10	8/7/2015 9:54	99-09-2	3-Nitroaniline			0.057	U
GB-7 8-10	8/7/2015 9:54	88-74-4	2-Nitroaniline			0.056	U

Client Sample ID Collection E GB-7 8-10 8/7/2015 9 GB-7 8-10 8/7/2015 9 GB-7 8-10 8/7/2015 9 GB-7 8-10 8/7/2015 9 GB-7 8-10 8/7/2015 9	:54 111-44-4 :54 105-67-9 :54 7005-72-3 :54 15831-10-4 :54 606-20-2	Analyte by Method 8270D Bis(2-chloroethyl)ether 2,4-Dimethylphenol 4-Chlorophenyl phenyl ether 3 & 4 Methylphenol	Type 1 RRS (mg/kg)	RRS (mg/kg)	Result (mg/kg) 0.056	Flag U
GB-7 8-10 8/7/2015 9 GB-7 8-10 8/7/2015 9 GB-7 8-10 8/7/2015 9 GB-7 8-10 8/7/2015 9	:54 111-44-4 :54 105-67-9 :54 7005-72-3 :54 15831-10-4 :54 606-20-2	Bis(2-chloroethyl)ether 2,4-Dimethylphenol 4-Chlorophenyl phenyl ether	(mg/kg)	(mg/kg)		
GB-7 8-10 8/7/2015 9 GB-7 8-10 8/7/2015 9 GB-7 8-10 8/7/2015 9	:54 105-67-9 :54 7005-72-3 :54 15831-10-4 :54 606-20-2	2,4-Dimethylphenol 4-Chlorophenyl phenyl ether			0.056	U
GB-7 8-10 8/7/2015 9 GB-7 8-10 8/7/2015 9	:54 7005-72-3 :54 15831-10-4 :54 606-20-2	4-Chlorophenyl phenyl ether				-
GB-7 8-10 8/7/2015 9	:54 15831-10-4 :54 606-20-2				0.055	U
	:54 606-20-2	3 & 4 Methylphenol			0.055	U
GB-7 8-10 8/7/2015 9		5 & Tivically priction			0.054	U
		2,6-Dinitrotoluene			0.052	U
GB-7 8-10 8/7/2015 9	:54 88-75-5	2-Nitrophenol			0.051	U
GB-7 8-10 8/7/2015 9	:54 83-32-9	Acenaphthene			0.051	U
GB-7 8-10 8/7/2015 9	:54 77-47-4	Hexachlorocyclopentadiene			0.051	U
GB-7 8-10 8/7/2015 9	:54 95-57-8	2-Chlorophenol			0.05	U
GB-7 8-10 8/7/2015 9	:54 111-91-1	Bis(2-chloroethoxy)methane			0.049	U
GB-7 8-10 8/7/2015 9	:54 53-70-3	Dibenz(a,h)anthracene			0.049	U
GB-7 8-10 8/7/2015 9	:54 118-74-1	Hexachlorobenzene			0.049	U
GB-7 8-10 8/7/2015 9	:54 91-57-6	2-Methylnaphthalene			0.047	U
GB-7 8-10 8/7/2015 9	:54 205-99-2	Benzo[b]fluoranthene			0.047	U
GB-7 8-10 8/7/2015 9	:54 84-66-2	Diethyl phthalate			0.046	U
GB-7 8-10 8/7/2015 9	:54 101-55-3	4-Bromophenyl phenyl ether			0.045	U
GB-7 8-10 8/7/2015 9	:54 208-96-8	Acenaphthylene			0.045	U
GB-7 8-10 8/7/2015 9		Fluorene			0.045	U
GB-7 8-10 8/7/2015 9		Hexachlorobutadiene			0.045	U
GB-7 8-10 8/7/2015 9		2,4,5-Trichlorophenol			0.044	U
GB-7 8-10 8/7/2015 9		2,4-Dichlorophenol			0.044	U
GB-7 8-10 8/7/2015 9		2-Chloronaphthalene			0.044	U
GB-7 8-10 8/7/2015 9		4-Chloro-3-methylphenol			0.044	U
GB-7 8-10 8/7/2015 9		Dimethyl phthalate			0.042	U
GB-7 8-10 8/7/2015 9		Phenol			0.042	U
GB-7 8-10 8/7/2015 9		Dibenzofuran			0.041	U
GB-7 8-10 8/7/2015 9	:54 78-59-1	Isophorone			0.041	U
GB-7 8-10 8/7/2015 9		N-Nitrosodiphenylamine			0.041	U
GB-7 8-10 8/7/2015 9		N-Nitrosodi-n-propylamine			0.04	U
GB-7 8-10 8/7/2015 9	:54 108-60-1	bis (2-chloroisopropyl) ether			0.037	U
GB-7 8-10 8/7/2015 9	:54 86-74-8	Carbazole			0.037	U
GB-7 8-10 8/7/2015 9	:54 84-74-2	Di-n-butyl phthalate			0.037	U
GB-7 8-10 8/7/2015 9		Naphthalene			0.037	U
GB-7 8-10 8/7/2015 9		2,4,6-Trichlorophenol			0.036	U
GB-7 8-10 8/7/2015 9		Di-n-octyl phthalate			0.036	U
GB-7 8-10 8/7/2015 9		3,3'-Dichlorobenzidine			0.035	U
GB-7 8-10 8/7/2015 9		Acetophenone			0.035	U
GB-7 8-10 8/7/2015 9		Hexachloroethane			0.035	U
GB-7 8-10 8/7/2015 9		Indeno[1,2,3-cd]pyrene			0.035	U
GB-7 8-10 8/7/2015 9		2-Methylphenol			0.034	U
GB-7 8-10 8/7/2015 9		Benzo[a]anthracene			0.034	U
GB-7 8-10 8/7/2015 9		Phenanthrene			0.034	U
GB-7 8-10 8/7/2015 9		Butyl benzyl phthalate			0.032	U

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-7 8-10	8/7/2015 9:54	98-95-3	Nitrobenzene			0.032	U
GB-7 8-10	8/7/2015 9:54	120-12-7	Anthracene			0.031	U
GB-7 8-10	8/7/2015 9:54	1912-24-9	Atrazine			0.029	U
GB-7 8-10	8/7/2015 9:54	191-24-2	Benzo[g,h,i]perylene			0.027	U
GB-7 8-10	8/7/2015 9:54	218-01-9	Chrysene			0.026	U
GB-7 8-10	8/7/2015 9:54	87-86-5	Pentachlorophenol			0.41	U *
GB-7 8-10	8/7/2015 9:54	534-52-1	4,6-Dinitro-2-methylphenol			0.21	U *
GB-7 8-10	8/7/2015 9:54	321-60-8	2-Fluorobiphenyl	NL	NL	3.5	
GB-9 8-10	8/10/2015 9:57	117-81-7	Bis(2-ethylhexyl) phthalate			0.037	J B
GB-9 8-10	8/10/2015 9:57	92-52-4	1,1'-Biphenyl			1.9	U
GB-9 8-10	8/10/2015 9:57	51-28-5	2,4-Dinitrophenol			0.94	U
GB-9 8-10	8/10/2015 9:57	100-02-7	4-Nitrophenol			0.37	U
GB-9 8-10	8/10/2015 9:57	87-86-5	Pentachlorophenol			0.37	U
GB-9 8-10	8/10/2015 9:57	534-52-1	4,6-Dinitro-2-methylphenol			0.19	U
GB-9 8-10	8/10/2015 9:57	105-60-2	Caprolactam			0.075	U
GB-9 8-10	8/10/2015 9:57	207-08-9	Benzo[k]fluoranthene			0.074	U
GB-9 8-10	8/10/2015 9:57	100-52-7	Benzaldehyde			0.066	U
GB-9 8-10	8/10/2015 9:57	106-47-8	4-Chloroaniline			0.059	U
GB-9 8-10	8/10/2015 9:57	50-32-8	Benzo[a]pyrene			0.059	U
GB-9 8-10	8/10/2015 9:57	121-14-2	2,4-Dinitrotoluene			0.055	U
GB-9 8-10	8/10/2015 9:57	100-01-6	4-Nitroaniline			0.055	U
GB-9 8-10	8/10/2015 9:57	99-09-2	3-Nitroaniline			0.052	U
GB-9 8-10	8/10/2015 9:57	88-74-4	2-Nitroaniline			0.051	U
GB-9 8-10	8/10/2015 9:57	105-67-9	2,4-Dimethylphenol			0.05	U
GB-9 8-10	8/10/2015 9:57	7005-72-3	4-Chlorophenyl phenyl ether			0.05	U
GB-9 8-10	8/10/2015 9:57	15831-10-4	3 & 4 Methylphenol			0.049	U
GB-9 8-10	8/10/2015 9:57	606-20-2	2,6-Dinitrotoluene			0.048	U
GB-9 8-10	8/10/2015 9:57	88-75-5	2-Nitrophenol			0.046	U
GB-9 8-10	8/10/2015 9:57	83-32-9	Acenaphthene			0.046	U
GB-9 8-10	8/10/2015 9:57	77-47-4	Hexachlorocyclopentadiene			0.046	U
GB-9 8-10	8/10/2015 9:57	95-57-8	2-Chlorophenol			0.045	U
GB-9 8-10	8/10/2015 9:57	111-91-1	Bis(2-chloroethoxy)methane			0.044	U
GB-9 8-10	8/10/2015 9:57	53-70-3	Dibenz(a,h)anthracene			0.044	U
GB-9 8-10	8/10/2015 9:57	118-74-1	Hexachlorobenzene			0.044	U
GB-9 8-10	8/10/2015 9:57	91-57-6	2-Methylnaphthalene			0.043	U
GB-9 8-10	8/10/2015 9:57	205-99-2	Benzo[b]fluoranthene			0.043	U
GB-9 8-10	8/10/2015 9:57	84-66-2	Diethyl phthalate			0.042	U
GB-9 8-10	8/10/2015 9:57	101-55-3	4-Bromophenyl phenyl ether			0.041	U
GB-9 8-10	8/10/2015 9:57	208-96-8	Acenaphthylene	1		0.041	U
GB-9 8-10	8/10/2015 9:57	86-73-7	Fluorene	1		0.041	U
GB-9 8-10	8/10/2015 9:57	87-68-3	Hexachlorobutadiene	1		0.041	U
GB-9 8-10	8/10/2015 9:57	95-95-4	2,4,5-Trichlorophenol	1		0.04	U
GB-9 8-10	8/10/2015 9:57	120-83-2	2,4-Dichlorophenol	1		0.04	U

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-9 8-10	8/10/2015 9:57	91-58-7	2-Chloronaphthalene			0.04	U
GB-9 8-10	8/10/2015 9:57	59-50-7	4-Chloro-3-methylphenol			0.04	U
GB-9 8-10	8/10/2015 9:57	131-11-3	Dimethyl phthalate			0.038	U
GB-9 8-10	8/10/2015 9:57	108-95-2	Phenol			0.038	U
GB-9 8-10	8/10/2015 9:57	132-64-9	Dibenzofuran			0.037	U
GB-9 8-10	8/10/2015 9:57	78-59-1	Isophorone			0.037	U
GB-9 8-10	8/10/2015 9:57	86-30-6	N-Nitrosodiphenylamine			0.037	U
GB-9 8-10	8/10/2015 9:57	206-44-0	Fluoranthene			0.036	U
GB-9 8-10	8/10/2015 9:57	621-64-7	N-Nitrosodi-n-propylamine			0.036	U
GB-9 8-10	8/10/2015 9:57	108-60-1	bis (2-chloroisopropyl) ether			0.034	U
GB-9 8-10	8/10/2015 9:57	86-74-8	Carbazole			0.034	U
GB-9 8-10	8/10/2015 9:57	84-74-2	Di-n-butyl phthalate			0.034	U
GB-9 8-10	8/10/2015 9:57	91-20-3	Naphthalene			0.034	U
GB-9 8-10	8/10/2015 9:57	88-06-2	2,4,6-Trichlorophenol			0.033	U
GB-9 8-10	8/10/2015 9:57	117-84-0	Di-n-octyl phthalate			0.033	U
GB-9 8-10	8/10/2015 9:57	91-94-1	3,3'-Dichlorobenzidine			0.032	U
GB-9 8-10	8/10/2015 9:57	98-86-2	Acetophenone			0.032	U
GB-9 8-10	8/10/2015 9:57	67-72-1	Hexachloroethane			0.032	U
GB-9 8-10	8/10/2015 9:57	193-39-5	Indeno[1,2,3-cd]pyrene			0.032	U
GB-9 8-10	8/10/2015 9:57	95-48-7	2-Methylphenol			0.031	U
GB-9 8-10	8/10/2015 9:57	56-55-3	Benzo[a]anthracene			0.031	U
GB-9 8-10	8/10/2015 9:57	85-01-8	Phenanthrene			0.031	U
GB-9 8-10	8/10/2015 9:57	129-00-0	Pyrene			0.031	U
GB-9 8-10	8/10/2015 9:57	85-68-7	Butyl benzyl phthalate			0.029	U
GB-9 8-10	8/10/2015 9:57	98-95-3	Nitrobenzene			0.029	U
GB-9 8-10	8/10/2015 9:57	120-12-7	Anthracene			0.028	U
GB-9 8-10	8/10/2015 9:57	1912-24-9	Atrazine			0.026	U
GB-9 8-10	8/10/2015 9:57	191-24-2	Benzo[g,h,i]perylene			0.025	U
GB-9 8-10	8/10/2015 9:57	218-01-9	Chrysene			0.024	U
GB-9 8-10	8/10/2015 9:57	111-44-4	Bis(2-chloroethyl)ether			0.051	U *
GB-9 8-10	8/10/2015 9:57	321-60-8	2-Fluorobiphenyl	NL	NL	3.2	
GB-9 13-15	8/10/2015 10:06	117-81-7	Bis(2-ethylhexyl) phthalate			0.07	JB
GB-9 13-15	8/10/2015 10:06	92-52-4	1,1'-Biphenyl			2.1	U
GB-9 13-15	8/10/2015 10:06	51-28-5	2,4-Dinitrophenol			1	U
GB-9 13-15	8/10/2015 10:06	100-02-7	4-Nitrophenol			0.41	U
GB-9 13-15	8/10/2015 10:06	87-86-5	Pentachlorophenol			0.41	U
GB-9 13-15	8/10/2015 10:06	534-52-1	4,6-Dinitro-2-methylphenol			0.21	U
GB-9 13-15	8/10/2015 10:06	105-60-2	Caprolactam			0.083	U
GB-9 13-15	8/10/2015 10:06	207-08-9	Benzo[k]fluoranthene			0.082	U
GB-9 13-15	8/10/2015 10:06	100-52-7	Benzaldehyde			0.073	U
GB-9 13-15	8/10/2015 10:06	106-47-8	4-Chloroaniline			0.065	U
GB-9 13-15	8/10/2015 10:06	50-32-8	Benzo[a]pyrene			0.065	U
GB-9 13-15	8/10/2015 10:06	121-14-2	2,4-Dinitrotoluene			0.062	U

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-9 13-15	8/10/2015 10:06	100-01-6	4-Nitroaniline	(8/8/	(1116/116/11	0.062	U
GB-9 13-15	8/10/2015 10:06	99-09-2	3-Nitroaniline			0.058	U
GB-9 13-15	8/10/2015 10:06	88-74-4	2-Nitroaniline			0.057	U
GB-9 13-15	8/10/2015 10:06	105-67-9	2,4-Dimethylphenol	<u> </u>		0.055	U
GB-9 13-15	8/10/2015 10:06	7005-72-3	4-Chlorophenyl phenyl ether	<u> </u>		0.055	U
GB-9 13-15	8/10/2015 10:06	15831-10-4	3 & 4 Methylphenol	<u> </u>		0.054	U
GB-9 13-15	8/10/2015 10:06	606-20-2	2,6-Dinitrotoluene			0.053	U
GB-9 13-15	8/10/2015 10:06	88-75-5	2-Nitrophenol			0.053	U
GB-9 13-15 GB-9 13-15	8/10/2015 10:06	83-32-9	Acenaphthene			0.051	U
GB-9 13-15 GB-9 13-15	8/10/2015 10:06	77-47-4	·	+		0.051	U
			Hexachlorocyclopentadiene				
GB-9 13-15	8/10/2015 10:06	95-57-8	2-Chlorophenol	+		0.05	U
GB-9 13-15	8/10/2015 10:06	111-91-1	Bis(2-chloroethoxy)methane			0.049	U
GB-9 13-15	8/10/2015 10:06	53-70-3	Dibenz(a,h)anthracene	1		0.049	U
GB-9 13-15	8/10/2015 10:06	118-74-1	Hexachlorobenzene			0.049	U
GB-9 13-15	8/10/2015 10:06	91-57-6	2-Methylnaphthalene			0.048	U
GB-9 13-15	8/10/2015 10:06	205-99-2	Benzo[b]fluoranthene			0.048	U
GB-9 13-15	8/10/2015 10:06	84-66-2	Diethyl phthalate			0.046	U
GB-9 13-15	8/10/2015 10:06	101-55-3	4-Bromophenyl phenyl ether			0.045	U
GB-9 13-15	8/10/2015 10:06	208-96-8	Acenaphthylene			0.045	U
GB-9 13-15	8/10/2015 10:06	86-73-7	Fluorene			0.045	U
GB-9 13-15	8/10/2015 10:06	87-68-3	Hexachlorobutadiene			0.045	U
GB-9 13-15	8/10/2015 10:06	95-95-4	2,4,5-Trichlorophenol			0.044	U
GB-9 13-15	8/10/2015 10:06	120-83-2	2,4-Dichlorophenol			0.044	U
GB-9 13-15	8/10/2015 10:06	91-58-7	2-Chloronaphthalene			0.044	U
GB-9 13-15	8/10/2015 10:06	59-50-7	4-Chloro-3-methylphenol			0.044	U
GB-9 13-15	8/10/2015 10:06	131-11-3	Dimethyl phthalate			0.043	U
GB-9 13-15	8/10/2015 10:06	108-95-2	Phenol			0.043	U
GB-9 13-15	8/10/2015 10:06	132-64-9	Dibenzofuran			0.041	U
GB-9 13-15	8/10/2015 10:06	78-59-1	Isophorone			0.041	U
GB-9 13-15	8/10/2015 10:06	86-30-6	N-Nitrosodiphenylamine			0.041	U
GB-9 13-15	8/10/2015 10:06	206-44-0	Fluoranthene			0.04	U
GB-9 13-15	8/10/2015 10:06	621-64-7	N-Nitrosodi-n-propylamine			0.04	U
GB-9 13-15	8/10/2015 10:06	108-60-1	bis (2-chloroisopropyl) ether			0.038	U
GB-9 13-15	8/10/2015 10:06	86-74-8	Carbazole			0.038	U
GB-9 13-15	8/10/2015 10:06	84-74-2	Di-n-butyl phthalate			0.038	U
GB-9 13-15	8/10/2015 10:06	91-20-3	Naphthalene			0.038	U
GB-9 13-15	8/10/2015 10:06	88-06-2	2,4,6-Trichlorophenol			0.036	U
GB-9 13-15	8/10/2015 10:06	117-84-0	Di-n-octyl phthalate			0.036	U
GB-9 13-15	8/10/2015 10:06	91-94-1	3,3'-Dichlorobenzidine			0.035	U
GB-9 13-15	8/10/2015 10:06	98-86-2	Acetophenone			0.035	U
GB-9 13-15	8/10/2015 10:06	67-72-1	Hexachloroethane			0.035	U
GB-9 13-15	8/10/2015 10:06	193-39-5	Indeno[1,2,3-cd]pyrene			0.035	U
GB-9 13-15	8/10/2015 10:06	95-48-7	2-Methylphenol			0.033	U
20-3 13-13	0/ 10/ 2013 10:00	33- 4 0-7	Z-ivietriyipiieiloi			0.034	J

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
GB-9 13-15	8/10/2015 10:06	56-55-3	Benzo[a]anthracene			0.034	U
GB-9 13-15	8/10/2015 10:06	85-01-8	Phenanthrene			0.034	U
GB-9 13-15	8/10/2015 10:06	129-00-0	Pyrene			0.034	U
GB-9 13-15	8/10/2015 10:06	85-68-7	Butyl benzyl phthalate			0.033	U
GB-9 13-15	8/10/2015 10:06	98-95-3	Nitrobenzene			0.033	U
GB-9 13-15	8/10/2015 10:06	120-12-7	Anthracene			0.031	U
GB-9 13-15	8/10/2015 10:06	1912-24-9	Atrazine			0.029	U
GB-9 13-15	8/10/2015 10:06	191-24-2	Benzo[g,h,i]perylene			0.028	U
GB-9 13-15	8/10/2015 10:06	218-01-9	Chrysene			0.026	U
GB-9 13-15	8/10/2015 10:06	111-44-4	Bis(2-chloroethyl)ether			0.057	U *
GB-9 13-15	8/10/2015 10:06	321-60-8	2-Fluorobiphenyl	NL	NL	3.6	
SB-17 13-15	8/7/2015 14:56	321-60-8	2-Fluorobiphenyl			0	D
SB-17 13-15	8/7/2015 14:56	86-74-8	Carbazole			3.3	J
SB-17 13-15	8/7/2015 14:56	53-70-3	Dibenz(a,h)anthracene			2	J
SB-17 13-15	8/7/2015 14:56	132-64-9	Dibenzofuran			1.3	J
SB-17 13-15	8/7/2015 14:56	91-20-3	Naphthalene			0.94	J
SB-17 13-15	8/7/2015 14:56	92-52-4	1,1'-Biphenyl			20	U
SB-17 13-15	8/7/2015 14:56	51-28-5	2,4-Dinitrophenol			9.7	U
SB-17 13-15	8/7/2015 14:56	100-02-7	4-Nitrophenol			3.9	U
SB-17 13-15	8/7/2015 14:56	105-60-2	Caprolactam			0.77	U
SB-17 13-15	8/7/2015 14:56	100-52-7	Benzaldehyde			0.68	U
SB-17 13-15	8/7/2015 14:56	106-47-8	4-Chloroaniline			0.61	U
SB-17 13-15	8/7/2015 14:56	121-14-2	2,4-Dinitrotoluene			0.57	U
SB-17 13-15	8/7/2015 14:56	100-01-6	4-Nitroaniline			0.57	U
SB-17 13-15	8/7/2015 14:56	99-09-2	3-Nitroaniline			0.54	U
SB-17 13-15	8/7/2015 14:56	88-74-4	2-Nitroaniline			0.53	U
SB-17 13-15	8/7/2015 14:56	111-44-4	Bis(2-chloroethyl)ether			0.53	U
SB-17 13-15	, ,	105-67-9	2,4-Dimethylphenol			0.51	U
SB-17 13-15	8/7/2015 14:56	7005-72-3	4-Chlorophenyl phenyl ether			0.51	U
SB-17 13-15	8/7/2015 14:56	15831-10-4	3 & 4 Methylphenol			0.5	U
SB-17 13-15	8/7/2015 14:56	606-20-2	2,6-Dinitrotoluene			0.49	U
SB-17 13-15	8/7/2015 14:56	88-75-5	2-Nitrophenol			0.48	U
SB-17 13-15	8/7/2015 14:56	77-47-4	Hexachlorocyclopentadiene			0.48	U
SB-17 13-15	8/7/2015 14:56	95-57-8	2-Chlorophenol			0.47	U
SB-17 13-15	8/7/2015 14:56	111-91-1	Bis(2-chloroethoxy)methane			0.46	U
SB-17 13-15	8/7/2015 14:56	118-74-1	Hexachlorobenzene			0.46	U
SB-17 13-15	8/7/2015 14:56	91-57-6	2-Methylnaphthalene			0.44	U
SB-17 13-15	8/7/2015 14:56	84-66-2	Diethyl phthalate			0.43	U
SB-17 13-15	8/7/2015 14:56	101-55-3	4-Bromophenyl phenyl ether			0.42	U
SB-17 13-15	8/7/2015 14:56	208-96-8	Acenaphthylene			0.42	U
SB-17 13-15	8/7/2015 14:56	87-68-3	Hexachlorobutadiene			0.42	U
SB-17 13-15	8/7/2015 14:56	95-95-4	2,4,5-Trichlorophenol			0.42	U
SB-17 13-15	8/7/2015 14:56	120-83-2	2,4-Dichlorophenol			0.41	U
2D-T\ T2-T2	0/ // 2013 14.30	120-03-2	2,4-كاندانانا opileiiui			0.41	U

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-17 13-15	8/7/2015 14:56	91-58-7	2-Chloronaphthalene			0.41	U
SB-17 13-15	8/7/2015 14:56	59-50-7	4-Chloro-3-methylphenol			0.41	U
SB-17 13-15	8/7/2015 14:56	131-11-3	Dimethyl phthalate			0.4	U
SB-17 13-15	8/7/2015 14:56	108-95-2	Phenol			0.4	U
SB-17 13-15	8/7/2015 14:56	78-59-1	Isophorone			0.39	U
SB-17 13-15	8/7/2015 14:56	86-30-6	N-Nitrosodiphenylamine			0.39	U
SB-17 13-15	8/7/2015 14:56	621-64-7	N-Nitrosodi-n-propylamine			0.37	U
SB-17 13-15	8/7/2015 14:56	108-60-1	bis (2-chloroisopropyl) ether			0.35	U
SB-17 13-15	8/7/2015 14:56	84-74-2	Di-n-butyl phthalate			0.35	U
SB-17 13-15	8/7/2015 14:56	88-06-2	2,4,6-Trichlorophenol			0.34	U
SB-17 13-15	8/7/2015 14:56	117-81-7	Bis(2-ethylhexyl) phthalate			0.34	U
SB-17 13-15	8/7/2015 14:56	117-84-0	Di-n-octyl phthalate			0.34	U
SB-17 13-15	8/7/2015 14:56	91-94-1	3,3'-Dichlorobenzidine			0.33	U
SB-17 13-15	8/7/2015 14:56	98-86-2	Acetophenone			0.33	U
SB-17 13-15	8/7/2015 14:56	67-72-1	Hexachloroethane			0.33	U
SB-17 13-15	8/7/2015 14:56	95-48-7	2-Methylphenol			0.32	U
SB-17 13-15	8/7/2015 14:56	85-68-7	Butyl benzyl phthalate			0.3	U
SB-17 13-15	8/7/2015 14:56	98-95-3	Nitrobenzene			0.3	U
SB-17 13-15	8/7/2015 14:56	1912-24-9	Atrazine			0.27	U
SB-17 13-15	8/7/2015 14:56	87-86-5	Pentachlorophenol			3.9	U *
SB-17 13-15	8/7/2015 14:56	534-52-1	4,6-Dinitro-2-methylphenol			2	U *
SB-17 13-15	8/7/2015 14:56	206-44-0	Fluoranthene	500	3,130	28	
SB-17 13-15	8/7/2015 14:56	85-01-8	Phenanthrene	110	2,350	20	
SB-17 13-15	8/7/2015 14:56	129-00-0	Pyrene	500	2,350	20	
SB-17 13-15	8/7/2015 14:56	56-55-3	Benzo[a]anthracene	5	12.5	13	
SB-17 13-15	8/7/2015 14:56	205-99-2	Benzo[b]fluoranthene	5	12.5	13	
SB-17 13-15	8/7/2015 14:56	50-32-8	Benzo[a]pyrene	1.64	1.25	10	
SB-17 13-15	8/7/2015 14:56	218-01-9	Chrysene	5	1,250	10	
SB-17 13-15	8/7/2015 14:56	191-24-2	Benzo[g,h,i]perylene	500	2,350	6.9	
SB-17 13-15	8/7/2015 14:56	207-08-9	Benzo[k]fluoranthene	5	125	6.3	
SB-17 13-15	8/7/2015 14:56	120-12-7	Anthracene	500	23,500	6.2	
SB-17 13-15	8/7/2015 14:56	193-39-5	Indeno[1,2,3-cd]pyrene	5	12.5	6.1	
SB-17 13-15	8/7/2015 14:56	83-32-9	Acenaphthene	300	2,350	5.5	
SB-17 13-15	8/7/2015 14:56	86-73-7	Fluorene	360	3,130	4.1	
SB-17 8-10	8/7/2015 14:50	206-44-0	Fluoranthene			0.78	F1
SB-17 8-10	8/7/2015 14:50	85-01-8	Phenanthrene			0.63	F1
SB-17 8-10	8/7/2015 14:50	129-00-0	Pyrene			0.56	F1
SB-17 8-10	8/7/2015 14:50	120-12-7	Anthracene			0.19	J
SB-17 8-10	8/7/2015 14:50	191-24-2	Benzo[g,h,i]perylene			0.19	J
SB-17 8-10	8/7/2015 14:50	207-08-9	Benzo[k]fluoranthene			0.18	J
SB-17 8-10	8/7/2015 14:50	193-39-5	Indeno[1,2,3-cd]pyrene			0.17	J
SB-17 8-10	8/7/2015 14:50	86-73-7	Fluorene			0.13	J
SB-17 8-10	8/7/2015 14:50	53-70-3	Dibenz(a,h)anthracene	1	——	0.061	-

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-17 8-10	8/7/2015 14:50	132-64-9	Dibenzofuran			0.052	J
SB-17 8-10	8/7/2015 14:50	117-81-7	Bis(2-ethylhexyl) phthalate			0.18	J B
SB-17 8-10	8/7/2015 14:50	218-01-9	Chrysene			0.33	J F1
SB-17 8-10	8/7/2015 14:50	50-32-8	Benzo[a]pyrene			0.32	J F1
SB-17 8-10	8/7/2015 14:50	83-32-9	Acenaphthene			0.12	J F1
SB-17 8-10	8/7/2015 14:50	86-74-8	Carbazole			0.12	JF1
SB-17 8-10	8/7/2015 14:50	92-52-4	1,1'-Biphenyl			1.9	U
SB-17 8-10	8/7/2015 14:50	100-02-7	4-Nitrophenol			0.37	U
SB-17 8-10	8/7/2015 14:50	105-60-2	Caprolactam			0.075	U
SB-17 8-10	8/7/2015 14:50	100-52-7	Benzaldehyde			0.066	U
SB-17 8-10	8/7/2015 14:50	106-47-8	4-Chloroaniline			0.059	U
SB-17 8-10	8/7/2015 14:50	121-14-2	2,4-Dinitrotoluene			0.056	U
SB-17 8-10	8/7/2015 14:50	100-01-6	4-Nitroaniline			0.056	U
SB-17 8-10	8/7/2015 14:50	99-09-2	3-Nitroaniline			0.052	U
SB-17 8-10	8/7/2015 14:50	88-74-4	2-Nitroaniline			0.051	U
SB-17 8-10	8/7/2015 14:50	111-44-4	Bis(2-chloroethyl)ether			0.051	U
SB-17 8-10	8/7/2015 14:50	105-67-9	2,4-Dimethylphenol			0.05	U
SB-17 8-10	8/7/2015 14:50	7005-72-3	4-Chlorophenyl phenyl ether			0.05	U
SB-17 8-10	8/7/2015 14:50	15831-10-4	3 & 4 Methylphenol			0.049	U
SB-17 8-10	8/7/2015 14:50	606-20-2	2,6-Dinitrotoluene			0.048	U
SB-17 8-10	8/7/2015 14:50	88-75-5	2-Nitrophenol			0.047	U
SB-17 8-10	8/7/2015 14:50	77-47-4	Hexachlorocyclopentadiene			0.047	U
SB-17 8-10	8/7/2015 14:50	95-57-8	2-Chlorophenol			0.045	U
SB-17 8-10	8/7/2015 14:50	118-74-1	Hexachlorobenzene			0.044	U
SB-17 8-10	8/7/2015 14:50	91-57-6	2-Methylnaphthalene			0.043	U
SB-17 8-10	8/7/2015 14:50	84-66-2	Diethyl phthalate			0.042	U
SB-17 8-10	8/7/2015 14:50	101-55-3	4-Bromophenyl phenyl ether			0.041	U
SB-17 8-10	8/7/2015 14:50	87-68-3	Hexachlorobutadiene			0.041	U
SB-17 8-10	8/7/2015 14:50	95-95-4	2,4,5-Trichlorophenol			0.04	U
SB-17 8-10	8/7/2015 14:50	120-83-2	2,4-Dichlorophenol			0.04	U
SB-17 8-10	8/7/2015 14:50	91-58-7	2-Chloronaphthalene			0.04	U
SB-17 8-10	8/7/2015 14:50	59-50-7	4-Chloro-3-methylphenol			0.04	U
SB-17 8-10	8/7/2015 14:50	108-95-2	Phenol			0.039	U
SB-17 8-10	8/7/2015 14:50	78-59-1	Isophorone			0.037	U
SB-17 8-10	8/7/2015 14:50	86-30-6	N-Nitrosodiphenylamine			0.037	U
SB-17 8-10	8/7/2015 14:50	621-64-7	N-Nitrosodi-n-propylamine			0.036	U
SB-17 8-10	8/7/2015 14:50	108-60-1	bis (2-chloroisopropyl) ether			0.034	U
SB-17 8-10	8/7/2015 14:50	91-20-3	Naphthalene			0.034	U
SB-17 8-10	8/7/2015 14:50	88-06-2	2,4,6-Trichlorophenol			0.033	U
SB-17 8-10	8/7/2015 14:50	117-84-0	Di-n-octyl phthalate			0.033	U
SB-17 8-10	8/7/2015 14:50	91-94-1	3,3'-Dichlorobenzidine	1		0.032	U
SB-17 8-10	8/7/2015 14:50	98-86-2	Acetophenone	1		0.032	U
SB-17 8-10	8/7/2015 14:50	67-72-1	Hexachloroethane	1		0.032	U

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-17 8-10	8/7/2015 14:50	95-48-7	2-Methylphenol			0.031	U
SB-17 8-10	8/7/2015 14:50	85-68-7	Butyl benzyl phthalate			0.03	U
SB-17 8-10	8/7/2015 14:50	98-95-3	Nitrobenzene			0.03	U
SB-17 8-10	8/7/2015 14:50	1912-24-9	Atrazine			0.026	U
SB-17 8-10	8/7/2015 14:50	87-86-5	Pentachlorophenol			0.37	U *
SB-17 8-10	8/7/2015 14:50	51-28-5	2,4-Dinitrophenol			0.94	U F1
SB-17 8-10	8/7/2015 14:50	111-91-1	Bis(2-chloroethoxy)methane			0.044	U F1
SB-17 8-10	8/7/2015 14:50	208-96-8	Acenaphthylene			0.041	U F1
SB-17 8-10	8/7/2015 14:50	131-11-3	Dimethyl phthalate			0.039	U F1
SB-17 8-10	8/7/2015 14:50	84-74-2	Di-n-butyl phthalate			0.034	U F1
SB-17 8-10	8/7/2015 14:50	534-52-1	4,6-Dinitro-2-methylphenol			0.19	U F2 *
SB-17 8-10	8/7/2015 14:50	321-60-8	2-Fluorobiphenyl	NL	NL	2	0.2
SB-17 8-10	8/7/2015 14:50	205-99-2	Benzo[b]fluoranthene	5	12.5	0.45	
SB-17 8-10	8/7/2015 14:50	56-55-3	Benzo[a]anthracene	5	12.5	0.39	
SB-20 0-2	8/7/2015 15:04	191-24-2	Benzo[g,h,i]perylene		12.5	0.04	J
SB-20 0-2	8/7/2015 15:04	117-81-7	Bis(2-ethylhexyl) phthalate			0.04	J B
SB-20 0-2	8/7/2015 15:04	92-52-4	1,1'-Biphenyl			2	U J B
SB-20 0-2	8/7/2015 15:04	51-28-5	2,4-Dinitrophenol			0.96	U
		100-02-7	<u> </u>				U
SB-20 0-2	8/7/2015 15:04		4-Nitrophenol			0.38	
SB-20 0-2	8/7/2015 15:04	105-60-2	Caprolactam			0.076	U
SB-20 0-2	8/7/2015 15:04	207-08-9	Benzo[k]fluoranthene			0.075	U
SB-20 0-2	8/7/2015 15:04	100-52-7	Benzaldehyde			0.067	U
SB-20 0-2	8/7/2015 15:04	106-47-8	4-Chloroaniline			0.06	U
SB-20 0-2	8/7/2015 15:04	50-32-8	Benzo[a]pyrene			0.06	U
SB-20 0-2	8/7/2015 15:04	121-14-2	2,4-Dinitrotoluene			0.057	U
SB-20 0-2	8/7/2015 15:04	100-01-6	4-Nitroaniline			0.057	U
SB-20 0-2	8/7/2015 15:04	99-09-2	3-Nitroaniline			0.053	U
SB-20 0-2	8/7/2015 15:04	88-74-4	2-Nitroaniline			0.052	U
SB-20 0-2	8/7/2015 15:04	111-44-4	Bis(2-chloroethyl)ether			0.052	U
SB-20 0-2	8/7/2015 15:04	105-67-9	2,4-Dimethylphenol			0.051	U
SB-20 0-2	8/7/2015 15:04	7005-72-3	4-Chlorophenyl phenyl ether			0.051	U
SB-20 0-2	8/7/2015 15:04	15831-10-4	3 & 4 Methylphenol			0.05	U
SB-20 0-2	8/7/2015 15:04	606-20-2	2,6-Dinitrotoluene			0.048	U
SB-20 0-2	8/7/2015 15:04	88-75-5	2-Nitrophenol			0.047	U
SB-20 0-2	8/7/2015 15:04	83-32-9	Acenaphthene			0.047	U
SB-20 0-2	8/7/2015 15:04	77-47-4	Hexachlorocyclopentadiene			0.047	U
SB-20 0-2	8/7/2015 15:04	95-57-8	2-Chlorophenol			0.046	U
SB-20 0-2	8/7/2015 15:04	111-91-1	Bis(2-chloroethoxy)methane			0.045	U
SB-20 0-2	8/7/2015 15:04	53-70-3	Dibenz(a,h)anthracene			0.045	U
SB-20 0-2	8/7/2015 15:04	118-74-1	Hexachlorobenzene			0.045	U
SB-20 0-2	8/7/2015 15:04	91-57-6	2-Methylnaphthalene			0.044	U
SB-20 0-2	8/7/2015 15:04	205-99-2	Benzo[b]fluoranthene			0.044	U

Cilent Sample CAS	Flag U U U U U
SB-20 0-2	U U U
SB-20 0-2 8/7/2015 15:04 101-55-3 4-Bromophenyl phenyl ether 0.042 SB-20 0-2 8/7/2015 15:04 208-96-8 Acenaphthylene 0.042 SB-20 0-2 8/7/2015 15:04 86-73-7 Fluorene 0.042 SB-20 0-2 8/7/2015 15:04 87-68-3 Hexachlorobutadiene 0.042 SB-20 0-2 8/7/2015 15:04 95-95-4 2,4,5-Trichlorophenol 0.04 SB-20 0-2 8/7/2015 15:04 120-83-2 2,4-Dichlorophenol 0.04 SB-20 0-2 8/7/2015 15:04 91-58-7 2-Chloronaphthalene 0.04 SB-20 0-2 8/7/2015 15:04 91-58-7 2-Chloro-3-methylphenol 0.04 SB-20 0-2 8/7/2015 15:04 131-11-3 Dimethyl phthalate 0.039 SB-20 0-2 8/7/2015 15:04 132-64-9 Dibenzofuran 0.038 SB-20 0-2 8/7/2015 15:04 132-64-9 Dibenzofuran 0.038 SB-20 0-2 8/7/2015 15:04 86-30-6 N-Nitrosodiphenylamine 0.038 SB-20 0-2 8/7/2015 15:04 86-30-6 <	U
SB-20 0-2 8/7/2015 15:04 208-96-8 Acenaphthylene 0.042 SB-20 0-2 8/7/2015 15:04 86-73-7 Fluorene 0.042 SB-20 0-2 8/7/2015 15:04 87-68-3 Hexachlorobutadiene 0.042 SB-20 0-2 8/7/2015 15:04 95-95-4 2,4,5-Trichlorophenol 0.04 SB-20 0-2 8/7/2015 15:04 91-58-7 2-Chloronaphthalene 0.04 SB-20 0-2 8/7/2015 15:04 131-11-3 Dimethyl phthalate 0.039 SB-20 0-2 8/7/2015 15:04 108-95-2 Phenol 0.039 SB-20 0-2 8/7/2015 15:04 132-64-9 Dibenzofuran 0.038 SB-20 0-2 8/7/2015 15:04 86-30-6 N-Nitrosodiphenylamine 0.038 SB-20 0-2 8/7/2015 15:04 206-44-0 Fluoranthene <td>U</td>	U
SB-20 0-2 8/7/2015 15:04 86-73-7 Fluorene	
SB-20 0-2 8/7/2015 15:04 87-68-3 Hexachlorobutadiene 0.042 SB-20 0-2 8/7/2015 15:04 95-95-4 2,4,5-Trichlorophenol 0.04 SB-20 0-2 8/7/2015 15:04 120-83-2 2,4-Dichlorophenol 0.04 SB-20 0-2 8/7/2015 15:04 91-58-7 2-Chloronaphthalene 0.04 SB-20 0-2 8/7/2015 15:04 59-50-7 4-Chloro-3-methylphenol 0.03 SB-20 0-2 8/7/2015 15:04 131-11-3 Dimethyl phthalate 0.039 SB-20 0-2 8/7/2015 15:04 132-64-9 Dibenzofuran 0.038 SB-20 0-2 8/7/2015 15:04 78-59-1 Isophorone 0.038 SB-20 0-2 8/7/2015 15:04 86-30-6 N-Nitrosodiphenylamine 0.038 SB-20 0-2 8/7/2015 15:04 206-44-0 Fluoranthene 0.037 SB-20 0-2 8/7/2015 15:04 21-64-7 N-Nitrosodi-n-propylamine 0.035 SB-20 0-2 8/7/2015 15:04 86-74-8 Carbazole 0.035 SB-20 0-2 8/7/2015 15:04 86-74-8 Car	U
SB-20 0-2 8/7/2015 15:04 95-95-4 2,4,5-Trichlorophenol 0.04	
SB-20 0-2 8/7/2015 15:04 120-83-2 2,4-Dichlorophenol 0.04 SB-20 0-2 8/7/2015 15:04 91-58-7 2-Chloronaphthalene 0.04 SB-20 0-2 8/7/2015 15:04 59-50-7 4-Chloro-3-methylphenol 0.04 SB-20 0-2 8/7/2015 15:04 131-11-3 Dimethyl phthalate 0.039 SB-20 0-2 8/7/2015 15:04 108-95-2 Phenol 0.039 SB-20 0-2 8/7/2015 15:04 132-64-9 Dibenzofuran 0.038 SB-20 0-2 8/7/2015 15:04 78-59-1 Isophorone 0.038 SB-20 0-2 8/7/2015 15:04 86-30-6 N-Nitrosodiphenylamine 0.038 SB-20 0-2 8/7/2015 15:04 86-30-6 N-Nitrosodiphenylamine 0.037 SB-20 0-2 8/7/2015 15:04 621-64-7	U
SB-20 0-2 8/7/2015 15:04 91-58-7 2-Chloronaphthalene 0.04 SB-20 0-2 8/7/2015 15:04 59-50-7 4-Chloro-3-methylphenol 0.04 SB-20 0-2 8/7/2015 15:04 131-11-3 Dimethyl phthalate 0.039 SB-20 0-2 8/7/2015 15:04 108-95-2 Phenol 0.039 SB-20 0-2 8/7/2015 15:04 132-64-9 Dibenzofuran 0.038 SB-20 0-2 8/7/2015 15:04 78-59-1 Isophorone 0.038 SB-20 0-2 8/7/2015 15:04 86-30-6 N-Nitrosodiphenylamine 0.038 SB-20 0-2 8/7/2015 15:04 86-30-6 N-Nitrosodi-n-propylamine 0.037 SB-20 0-2 8/7/2015 15:04 621-64-7 N-Nitrosodi-n-propylamine 0.037 SB-20 0-2 8/7/2015 15:04 108-60-1 bis (2-chloroisopropyl) ether 0.035 SB-20 0-2 8/7/2015 15:04 86-74-8 Carbazole 0.035 SB-20 0-2 8/7/2015 15:04 84-74-2 Di-n-butyl phthalate 0.035 SB-20 0-2 8/7/2015 15:04 91-20-3	U
SB-20 0-2 8/7/2015 15:04 59-50-7 4-Chloro-3-methylphenol 0.04 SB-20 0-2 8/7/2015 15:04 131-11-3 Dimethyl phthalate 0.039 SB-20 0-2 8/7/2015 15:04 108-95-2 Phenol 0.039 SB-20 0-2 8/7/2015 15:04 132-64-9 Dibenzofuran 0.038 SB-20 0-2 8/7/2015 15:04 78-59-1 Isophorone 0.038 SB-20 0-2 8/7/2015 15:04 86-30-6 N-Nitrosodiphenylamine 0.038 SB-20 0-2 8/7/2015 15:04 206-44-0 Fluoranthene 0.037 SB-20 0-2 8/7/2015 15:04 621-64-7 N-Nitrosodi-n-propylamine 0.037 SB-20 0-2 8/7/2015 15:04 621-64-7 N-Nitrosodi-n-propylamine 0.035 SB-20 0-2 8/7/2015 15:04 86-74-8 Carbazole 0.035 SB-20 0-2 8/7/2015 15:04 86-74-8 Carbazole 0.035 SB-20 0-2 8/7/2015 15:04 84-74-2 Di-n-butyl phthalate 0.035 SB-20 0-2 8/7/2015 15:04 91-20-3 Naphthalene <td>U</td>	U
SB-20 0-2 8/7/2015 15:04 131-11-3 Dimethyl phthalate 0.039 SB-20 0-2 8/7/2015 15:04 108-95-2 Phenol 0.039 SB-20 0-2 8/7/2015 15:04 132-64-9 Dibenzofuran 0.038 SB-20 0-2 8/7/2015 15:04 78-59-1 Isophorone 0.038 SB-20 0-2 8/7/2015 15:04 86-30-6 N-Nitrosodiphenylamine 0.037 SB-20 0-2 8/7/2015 15:04 206-44-0 Fluoranthene 0.037 SB-20 0-2 8/7/2015 15:04 621-64-7 N-Nitrosodi-n-propylamine 0.037 SB-20 0-2 8/7/2015 15:04 108-60-1 bis (2-chloroisopropyl) ether 0.035 SB-20 0-2 8/7/2015 15:04 86-74-8 Carbazole 0.035 SB-20 0-2 8/7/2015 15:04 84-74-2 Di-n-butyl phthalate 0.035 SB-20 0-2 8/7/2015 15:04 84-74-2 Di-n-butyl phthalate 0.035 SB-20 0-2 8/7/2015 15:04 91-20-3 Naphthalene 0.035 SB-20 0-2 8/7/2015 15:04 91-94-1 3,3'-Dichlo	U
SB-20 0-2 8/7/2015 15:04 108-95-2 Phenol 0.039 SB-20 0-2 8/7/2015 15:04 132-64-9 Dibenzofuran 0.038 SB-20 0-2 8/7/2015 15:04 78-59-1 Isophorone 0.038 SB-20 0-2 8/7/2015 15:04 86-30-6 N-Nitrosodiphenylamine 0.037 SB-20 0-2 8/7/2015 15:04 206-44-0 Fluoranthene 0.037 SB-20 0-2 8/7/2015 15:04 621-64-7 N-Nitrosodi-n-propylamine 0.037 SB-20 0-2 8/7/2015 15:04 621-64-7 N-Nitrosodi-n-propylamine 0.035 SB-20 0-2 8/7/2015 15:04 108-60-1 bis (2-chloroisopropyl) ether 0.035 SB-20 0-2 8/7/2015 15:04 86-74-8 Carbazole 0.035 SB-20 0-2 8/7/2015 15:04 84-74-2 Di-n-butyl phthalate 0.035 SB-20 0-2 8/7/2015 15:04 91-20-3 Naphthalene 0.033 SB-20 0-2 8/7/2015 15:04	U
SB-20 0-2 8/7/2015 15:04 132-64-9 Dibenzofuran 0.038 SB-20 0-2 8/7/2015 15:04 78-59-1 Isophorone 0.038 SB-20 0-2 8/7/2015 15:04 86-30-6 N-Nitrosodiphenylamine 0.037 SB-20 0-2 8/7/2015 15:04 206-44-0 Fluoranthene 0.037 SB-20 0-2 8/7/2015 15:04 621-64-7 N-Nitrosodi-n-propylamine 0.037 SB-20 0-2 8/7/2015 15:04 108-60-1 bis (2-chloroisopropyl) ether 0.035 SB-20 0-2 8/7/2015 15:04 86-74-8 Carbazole 0.035 SB-20 0-2 8/7/2015 15:04 84-74-2 Di-n-butyl phthalate 0.035 SB-20 0-2 8/7/2015 15:04 91-20-3 Naphthalene 0.035 SB-20 0-2 8/7/2015 15:04 88-06-2 2,4,6-Trichlorophenol 0.033 SB-20 0-2 8/7/2015 15:04 91-94-1 3,3'-Dichlorobenzidine 0.032 SB-20 0-2 8/7/2015 15:04 98-86-2 Acetophenone 0.032 SB-20 0-2 8/7/2015 15:04 67-72-1 He	U
SB-20 0-2 8/7/2015 15:04 78-59-1 Isophorone 0.038 SB-20 0-2 8/7/2015 15:04 86-30-6 N-Nitrosodiphenylamine 0.037 SB-20 0-2 8/7/2015 15:04 206-44-0 Fluoranthene 0.037 SB-20 0-2 8/7/2015 15:04 621-64-7 N-Nitrosodi-n-propylamine 0.037 SB-20 0-2 8/7/2015 15:04 108-60-1 bis (2-chloroisopropyl) ether 0.035 SB-20 0-2 8/7/2015 15:04 86-74-8 Carbazole 0.035 SB-20 0-2 8/7/2015 15:04 84-74-2 Di-n-butyl phthalate 0.035 SB-20 0-2 8/7/2015 15:04 91-20-3 Naphthalene 0.035 SB-20 0-2 8/7/2015 15:04 88-06-2 2,4,6-Trichlorophenol 0.033 SB-20 0-2 8/7/2015 15:04 117-84-0 Di-n-octyl phthalate 0.033 SB-20 0-2 8/7/2015 15:04 91-94-1 3,3'-Dichlorobenzidine 0.032 SB-20 0-2 8/7/2015 15:04 98-86-2 Acetophenone 0.032 SB-20 0-2 8/7/2015 15:04 193-39-5	U
SB-20 0-2 8/7/2015 15:04 86-30-6 N-Nitrosodiphenylamine 0.038 SB-20 0-2 8/7/2015 15:04 206-44-0 Fluoranthene 0.037 SB-20 0-2 8/7/2015 15:04 621-64-7 N-Nitrosodi-n-propylamine 0.037 SB-20 0-2 8/7/2015 15:04 108-60-1 bis (2-chloroisopropyl) ether 0.035 SB-20 0-2 8/7/2015 15:04 86-74-8 Carbazole 0.035 SB-20 0-2 8/7/2015 15:04 84-74-2 Di-n-butyl phthalate 0.035 SB-20 0-2 8/7/2015 15:04 91-20-3 Naphthalene 0.035 SB-20 0-2 8/7/2015 15:04 88-06-2 2,4,6-Trichlorophenol 0.033 SB-20 0-2 8/7/2015 15:04 117-84-0 Di-n-octyl phthalate 0.033 SB-20 0-2 8/7/2015 15:04 91-94-1 3,3'-Dichlorobenzidine 0.032 SB-20 0-2 8/7/2015 15:04 98-86-2 Acetophenone 0.032 SB-20 0-2 8/7/2015 15:04 193-39-5 Indeno[1,2,3-cd]pyrene 0.032 SB-20 0-2 8/7/2015 15:04 95-48-	U
SB-20 0-2 8/7/2015 15:04 206-44-0 Fluoranthene 0.037 SB-20 0-2 8/7/2015 15:04 621-64-7 N-Nitrosodi-n-propylamine 0.037 SB-20 0-2 8/7/2015 15:04 108-60-1 bis (2-chloroisopropyl) ether 0.035 SB-20 0-2 8/7/2015 15:04 86-74-8 Carbazole 0.035 SB-20 0-2 8/7/2015 15:04 84-74-2 Di-n-butyl phthalate 0.035 SB-20 0-2 8/7/2015 15:04 91-20-3 Naphthalene 0.035 SB-20 0-2 8/7/2015 15:04 91-20-3 Naphthalene 0.035 SB-20 0-2 8/7/2015 15:04 88-06-2 2,4,6-Trichlorophenol 0.033 SB-20 0-2 8/7/2015 15:04 91-94-1 3,3'-Dichlorobenzidine 0.032 SB-20 0-2 8/7/2015 15:04 98-86-2 Acetophenone 0.032 SB-20 0-2 8/7/2015 <t< td=""><td>U</td></t<>	U
SB-20 0-2 8/7/2015 15:04 621-64-7 N-Nitrosodi-n-propylamine 0.037 SB-20 0-2 8/7/2015 15:04 108-60-1 bis (2-chloroisopropyl) ether 0.035 SB-20 0-2 8/7/2015 15:04 86-74-8 Carbazole 0.035 SB-20 0-2 8/7/2015 15:04 84-74-2 Di-n-butyl phthalate 0.035 SB-20 0-2 8/7/2015 15:04 91-20-3 Naphthalene 0.035 SB-20 0-2 8/7/2015 15:04 88-06-2 2,4,6-Trichlorophenol 0.033 SB-20 0-2 8/7/2015 15:04 117-84-0 Di-n-octyl phthalate 0.033 SB-20 0-2 8/7/2015 15:04 91-94-1 3,3'-Dichlorobenzidine 0.032 SB-20 0-2 8/7/2015 15:04 98-86-2 Acetophenone 0.032 SB-20 0-2 8/7/2015 15:04 67-72-1 Hexachloroethane 0.032 SB-20 0-2 8/7/2015 15:04 193-39-5 Indeno[1,2,3-cd]pyrene 0.031 SB-20 0-2 8/7/2015 15:04 56-55-3 Benzo[a]anthracene 0.031 SB-20 0-2 8/7/2015 15:04 85-01-8	U
SB-20 0-2 8/7/2015 15:04 108-60-1 bis (2-chloroisopropyl) ether 0.035 SB-20 0-2 8/7/2015 15:04 86-74-8 Carbazole 0.035 SB-20 0-2 8/7/2015 15:04 84-74-2 Di-n-butyl phthalate 0.035 SB-20 0-2 8/7/2015 15:04 91-20-3 Naphthalene 0.035 SB-20 0-2 8/7/2015 15:04 88-06-2 2,4,6-Trichlorophenol 0.033 SB-20 0-2 8/7/2015 15:04 117-84-0 Di-n-octyl phthalate 0.033 SB-20 0-2 8/7/2015 15:04 91-94-1 3,3'-Dichlorobenzidine 0.032 SB-20 0-2 8/7/2015 15:04 98-86-2 Acetophenone 0.032 SB-20 0-2 8/7/2015 15:04 67-72-1 Hexachloroethane 0.032 SB-20 0-2 8/7/2015 15:04 193-39-5 Indeno[1,2,3-cd]pyrene 0.032 SB-20 0-2 8/7/2015 15:04 95-48-7 2-Methylphenol 0.031 SB-20 0-2 8/7/2015 15:04 56-55-3 Benzo[a]anthracene 0.031 SB-20 0-2 8/7/2015 15:04 85-01-8	U
SB-20 0-2 8/7/2015 15:04 108-60-1 bis (2-chloroisopropyl) ether 0.035 SB-20 0-2 8/7/2015 15:04 86-74-8 Carbazole 0.035 SB-20 0-2 8/7/2015 15:04 84-74-2 Di-n-butyl phthalate 0.035 SB-20 0-2 8/7/2015 15:04 91-20-3 Naphthalene 0.035 SB-20 0-2 8/7/2015 15:04 88-06-2 2,4,6-Trichlorophenol 0.033 SB-20 0-2 8/7/2015 15:04 117-84-0 Di-n-octyl phthalate 0.033 SB-20 0-2 8/7/2015 15:04 91-94-1 3,3'-Dichlorobenzidine 0.032 SB-20 0-2 8/7/2015 15:04 98-86-2 Acetophenone 0.032 SB-20 0-2 8/7/2015 15:04 67-72-1 Hexachloroethane 0.032 SB-20 0-2 8/7/2015 15:04 193-39-5 Indeno[1,2,3-cd]pyrene 0.032 SB-20 0-2 8/7/2015 15:04 95-48-7 2-Methylphenol 0.031 SB-20 0-2 8/7/2015 15:04 56-55-3 Benzo[a]anthracene 0.031 SB-20 0-2 8/7/2015 15:04 85-01-8	U
SB-20 0-2 8/7/2015 15:04 86-74-8 Carbazole 0.035 SB-20 0-2 8/7/2015 15:04 84-74-2 Di-n-butyl phthalate 0.035 SB-20 0-2 8/7/2015 15:04 91-20-3 Naphthalene 0.035 SB-20 0-2 8/7/2015 15:04 88-06-2 2,4,6-Trichlorophenol 0.033 SB-20 0-2 8/7/2015 15:04 117-84-0 Di-n-octyl phthalate 0.033 SB-20 0-2 8/7/2015 15:04 91-94-1 3,3'-Dichlorobenzidine 0.032 SB-20 0-2 8/7/2015 15:04 98-86-2 Acetophenone 0.032 SB-20 0-2 8/7/2015 15:04 67-72-1 Hexachloroethane 0.032 SB-20 0-2 8/7/2015 15:04 193-39-5 Indeno[1,2,3-cd]pyrene 0.032 SB-20 0-2 8/7/2015 15:04 95-48-7 2-Methylphenol 0.031 SB-20 0-2 8/7/2015 15:04 56-55-3 Benzo[a]anthracene 0.031 SB-20 0-2 8/7/2015 15:04 85-01-8 Phenanthrene 0.031 SB-20 0-2 8/7/2015 15:04 129-00-0 Pyrene	U
SB-20 0-2 8/7/2015 15:04 84-74-2 Di-n-butyl phthalate 0.035 SB-20 0-2 8/7/2015 15:04 91-20-3 Naphthalene 0.035 SB-20 0-2 8/7/2015 15:04 88-06-2 2,4,6-Trichlorophenol 0.033 SB-20 0-2 8/7/2015 15:04 117-84-0 Di-n-octyl phthalate 0.033 SB-20 0-2 8/7/2015 15:04 91-94-1 3,3'-Dichlorobenzidine 0.032 SB-20 0-2 8/7/2015 15:04 98-86-2 Acetophenone 0.032 SB-20 0-2 8/7/2015 15:04 67-72-1 Hexachloroethane 0.032 SB-20 0-2 8/7/2015 15:04 193-39-5 Indeno[1,2,3-cd]pyrene 0.032 SB-20 0-2 8/7/2015 15:04 95-48-7 2-Methylphenol 0.031 SB-20 0-2 8/7/2015 15:04 56-55-3 Benzo[a]anthracene 0.031 SB-20 0-2 8/7/2015 15:04 85-01-8 Phenanthrene 0.031 SB-20 0-2 8/7/2015 15:04 129-00-0 Pyrene 0.031	U
SB-20 0-2 8/7/2015 15:04 91-20-3 Naphthalene 0.035 SB-20 0-2 8/7/2015 15:04 88-06-2 2,4,6-Trichlorophenol 0.033 SB-20 0-2 8/7/2015 15:04 117-84-0 Di-n-octyl phthalate 0.033 SB-20 0-2 8/7/2015 15:04 91-94-1 3,3'-Dichlorobenzidine 0.032 SB-20 0-2 8/7/2015 15:04 98-86-2 Acetophenone 0.032 SB-20 0-2 8/7/2015 15:04 67-72-1 Hexachloroethane 0.032 SB-20 0-2 8/7/2015 15:04 193-39-5 Indeno[1,2,3-cd]pyrene 0.032 SB-20 0-2 8/7/2015 15:04 95-48-7 2-Methylphenol 0.031 SB-20 0-2 8/7/2015 15:04 56-55-3 Benzo[a]anthracene 0.031 SB-20 0-2 8/7/2015 15:04 85-01-8 Phenanthrene 0.031 SB-20 0-2 8/7/2015 15:04 129-00-0 Pyrene 0.031	U
SB-20 0-2 8/7/2015 15:04 88-06-2 2,4,6-Trichlorophenol 0.033 SB-20 0-2 8/7/2015 15:04 117-84-0 Di-n-octyl phthalate 0.033 SB-20 0-2 8/7/2015 15:04 91-94-1 3,3'-Dichlorobenzidine 0.032 SB-20 0-2 8/7/2015 15:04 98-86-2 Acetophenone 0.032 SB-20 0-2 8/7/2015 15:04 67-72-1 Hexachloroethane 0.032 SB-20 0-2 8/7/2015 15:04 193-39-5 Indeno[1,2,3-cd]pyrene 0.032 SB-20 0-2 8/7/2015 15:04 95-48-7 2-Methylphenol 0.031 SB-20 0-2 8/7/2015 15:04 56-55-3 Benzo[a]anthracene 0.031 SB-20 0-2 8/7/2015 15:04 85-01-8 Phenanthrene 0.031 SB-20 0-2 8/7/2015 15:04 129-00-0 Pyrene 0.031	U
SB-20 0-2 8/7/2015 15:04 117-84-0 Di-n-octyl phthalate 0.033 SB-20 0-2 8/7/2015 15:04 91-94-1 3,3'-Dichlorobenzidine 0.032 SB-20 0-2 8/7/2015 15:04 98-86-2 Acetophenone 0.032 SB-20 0-2 8/7/2015 15:04 67-72-1 Hexachloroethane 0.032 SB-20 0-2 8/7/2015 15:04 193-39-5 Indeno[1,2,3-cd]pyrene 0.032 SB-20 0-2 8/7/2015 15:04 95-48-7 2-Methylphenol 0.031 SB-20 0-2 8/7/2015 15:04 56-55-3 Benzo[a]anthracene 0.031 SB-20 0-2 8/7/2015 15:04 85-01-8 Phenanthrene 0.031 SB-20 0-2 8/7/2015 15:04 129-00-0 Pyrene 0.031	U
SB-20 0-2 8/7/2015 15:04 91-94-1 3,3'-Dichlorobenzidine 0.032 SB-20 0-2 8/7/2015 15:04 98-86-2 Acetophenone 0.032 SB-20 0-2 8/7/2015 15:04 67-72-1 Hexachloroethane 0.032 SB-20 0-2 8/7/2015 15:04 193-39-5 Indeno[1,2,3-cd]pyrene 0.032 SB-20 0-2 8/7/2015 15:04 95-48-7 2-Methylphenol 0.031 SB-20 0-2 8/7/2015 15:04 56-55-3 Benzo[a]anthracene 0.031 SB-20 0-2 8/7/2015 15:04 85-01-8 Phenanthrene 0.031 SB-20 0-2 8/7/2015 15:04 129-00-0 Pyrene 0.031	U
SB-20 0-2 8/7/2015 15:04 98-86-2 Acetophenone 0.032 SB-20 0-2 8/7/2015 15:04 67-72-1 Hexachloroethane 0.032 SB-20 0-2 8/7/2015 15:04 193-39-5 Indeno[1,2,3-cd]pyrene 0.032 SB-20 0-2 8/7/2015 15:04 95-48-7 2-Methylphenol 0.031 SB-20 0-2 8/7/2015 15:04 56-55-3 Benzo[a]anthracene 0.031 SB-20 0-2 8/7/2015 15:04 85-01-8 Phenanthrene 0.031 SB-20 0-2 8/7/2015 15:04 129-00-0 Pyrene 0.031	U
SB-20 0-2 8/7/2015 15:04 67-72-1 Hexachloroethane 0.032 SB-20 0-2 8/7/2015 15:04 193-39-5 Indeno[1,2,3-cd]pyrene 0.032 SB-20 0-2 8/7/2015 15:04 95-48-7 2-Methylphenol 0.031 SB-20 0-2 8/7/2015 15:04 56-55-3 Benzo[a]anthracene 0.031 SB-20 0-2 8/7/2015 15:04 85-01-8 Phenanthrene 0.031 SB-20 0-2 8/7/2015 15:04 129-00-0 Pyrene 0.031	U
SB-20 0-2 8/7/2015 15:04 193-39-5 Indeno[1,2,3-cd]pyrene 0.032 SB-20 0-2 8/7/2015 15:04 95-48-7 2-Methylphenol 0.031 SB-20 0-2 8/7/2015 15:04 56-55-3 Benzo[a]anthracene 0.031 SB-20 0-2 8/7/2015 15:04 85-01-8 Phenanthrene 0.031 SB-20 0-2 8/7/2015 15:04 129-00-0 Pyrene 0.031	U
SB-20 0-2 8/7/2015 15:04 95-48-7 2-Methylphenol 0.031 SB-20 0-2 8/7/2015 15:04 56-55-3 Benzo[a]anthracene 0.031 SB-20 0-2 8/7/2015 15:04 85-01-8 Phenanthrene 0.031 SB-20 0-2 8/7/2015 15:04 129-00-0 Pyrene 0.031	U
SB-20 0-2 8/7/2015 15:04 56-55-3 Benzo[a]anthracene 0.031 SB-20 0-2 8/7/2015 15:04 85-01-8 Phenanthrene 0.031 SB-20 0-2 8/7/2015 15:04 129-00-0 Pyrene 0.031	U
SB-20 0-2 8/7/2015 15:04 85-01-8 Phenanthrene 0.031 SB-20 0-2 8/7/2015 15:04 129-00-0 Pyrene 0.031	U
SB-20 0-2 8/7/2015 15:04 129-00-0 Pyrene 0.031	U
	U
SB-20 0-2 8/7/2015 15:04 85-68-7 Butyl benzyl phthalate 0.03	U
SB-20 0-2 8/7/2015 15:04 98-95-3 Nitrobenzene 0.03	U
SB-20 0-2 8/7/2015 15:04 120-12-7 Anthracene 0.029	U
SB-20 0-2 8/7/2015 15:04 1912-24-9 Atrazine 0.027	U
SB-20 0-2 8/7/2015 15:04 218-01-9 Chrysene 0.024	U
SB-20 0-2 8/7/2015 15:04 87-86-5 Pentachlorophenol 0.38	U *
SB-20 0-2 8/7/2015 15:04 534-52-1 4,6-Dinitro-2-methylphenol 0.2	U *
SB-20 0-2 8/7/2015 15:04 321-60-8 2-Fluorobiphenyl NL NL 2.6	+ -
SB-20 2-4 8/7/2015 15:04 117-81-7 Bis(2-ethylhexyl) phthalate 0.26	J B
SB-20 2-4 8/7/2015 15:04 92-52-4 1,1'-Biphenyl 2	U
SB-20 2-4 8/7/2015 15:04 51-28-5 1,1-bipHenyl 2 SB-20 2-4 8/7/2015 15:04 51-28-5 2,4-Dinitrophenol 0.98	U
SB-20 2-4 8/7/2015 15:04 100-02-7 4-Nitrophenol 0.39	U
SB-20 2-4 8/7/2015 15:04 105-60-2 Caprolactam 0.078	U

Client Sample				Type 1 RRS	Type 2 RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-20 2-4	8/7/2015 15:04	207-08-9	Benzo[k]fluoranthene	(1116/116)	(1116/116/	0.077	U
SB-20 2-4	8/7/2015 15:04	100-52-7	Benzaldehyde			0.068	U
SB-20 2-4	8/7/2015 15:04	106-47-8	4-Chloroaniline			0.061	U
SB-20 2-4	8/7/2015 15:04	50-32-8	Benzo[a]pyrene			0.061	U
SB-20 2-4	8/7/2015 15:04	121-14-2	2,4-Dinitrotoluene			0.058	U
SB-20 2-4	8/7/2015 15:04	100-01-6	4-Nitroaniline	1		0.058	U
SB-20 2-4	8/7/2015 15:04	99-09-2	3-Nitroaniline			0.054	U
SB-20 2-4	8/7/2015 15:04	88-74-4	2-Nitroaniline			0.053	U
SB-20 2-4	8/7/2015 15:04	111-44-4	Bis(2-chloroethyl)ether			0.053	U
SB-20 2-4	8/7/2015 15:04	105-67-9	2,4-Dimethylphenol			0.053	U
SB-20 2-4	8/7/2015 15:04	7005-72-3	4-Chlorophenyl phenyl ether			0.052	U
SB-20 2-4 SB-20 2-4	8/7/2015 15:04	15831-10-4	3 & 4 Methylphenol			0.052	U
SB-20 2-4 SB-20 2-4	8/7/2015 15:04	606-20-2	• •			0.031	U
SB-20 2-4 SB-20 2-4		88-75-5	2,6-Dinitrotoluene				U
	8/7/2015 15:04	<u> </u>	2-Nitrophenol			0.048	_
SB-20 2-4	8/7/2015 15:04	83-32-9	Acenaphthene			0.048	U
SB-20 2-4	8/7/2015 15:04	77-47-4	Hexachlorocyclopentadiene			0.048	U
SB-20 2-4	8/7/2015 15:04	95-57-8	2-Chlorophenol			0.047	U
SB-20 2-4	8/7/2015 15:04	111-91-1	Bis(2-chloroethoxy)methane			0.046	U
SB-20 2-4	8/7/2015 15:04	53-70-3	Dibenz(a,h)anthracene			0.046	U
SB-20 2-4	8/7/2015 15:04	118-74-1	Hexachlorobenzene			0.046	U
SB-20 2-4	8/7/2015 15:04	91-57-6	2-Methylnaphthalene			0.045	U
SB-20 2-4	8/7/2015 15:04	205-99-2	Benzo[b]fluoranthene			0.045	U
SB-20 2-4	8/7/2015 15:04	84-66-2	Diethyl phthalate			0.044	U
SB-20 2-4	8/7/2015 15:04	101-55-3	4-Bromophenyl phenyl ether			0.042	U
SB-20 2-4	8/7/2015 15:04	208-96-8	Acenaphthylene			0.042	U
SB-20 2-4	8/7/2015 15:04	86-73-7	Fluorene			0.042	U
SB-20 2-4	8/7/2015 15:04	87-68-3	Hexachlorobutadiene			0.042	U
SB-20 2-4	8/7/2015 15:04	95-95-4	2,4,5-Trichlorophenol			0.041	U
SB-20 2-4	8/7/2015 15:04	120-83-2	2,4-Dichlorophenol			0.041	U
SB-20 2-4	8/7/2015 15:04	91-58-7	2-Chloronaphthalene			0.041	U
SB-20 2-4	8/7/2015 15:04	59-50-7	4-Chloro-3-methylphenol			0.041	U
SB-20 2-4	8/7/2015 15:04	131-11-3	Dimethyl phthalate			0.04	U
SB-20 2-4	8/7/2015 15:04	108-95-2	Phenol			0.04	U
SB-20 2-4	8/7/2015 15:04	132-64-9	Dibenzofuran			0.039	U
SB-20 2-4	8/7/2015 15:04	78-59-1	Isophorone			0.039	U
SB-20 2-4	8/7/2015 15:04	86-30-6	N-Nitrosodiphenylamine			0.039	U
SB-20 2-4	8/7/2015 15:04	206-44-0	Fluoranthene			0.038	U
SB-20 2-4	8/7/2015 15:04	621-64-7	N-Nitrosodi-n-propylamine			0.038	U
SB-20 2-4	8/7/2015 15:04	108-60-1	bis (2-chloroisopropyl) ether			0.035	U
SB-20 2-4	8/7/2015 15:04	86-74-8	Carbazole			0.035	U
SB-20 2-4	8/7/2015 15:04	84-74-2	Di-n-butyl phthalate			0.035	U
SB-20 2-4	8/7/2015 15:04	91-20-3	Naphthalene			0.035	U
SB-20 2-4	8/7/2015 15:04	88-06-2	2,4,6-Trichlorophenol			0.034	U

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-20 2-4	8/7/2015 15:04	117-84-0	Di-n-octyl phthalate			0.034	U
SB-20 2-4	8/7/2015 15:04	91-94-1	3,3'-Dichlorobenzidine			0.033	U
SB-20 2-4	8/7/2015 15:04	98-86-2	Acetophenone			0.033	U
SB-20 2-4	8/7/2015 15:04	67-72-1	Hexachloroethane			0.033	U
SB-20 2-4	8/7/2015 15:04	193-39-5	Indeno[1,2,3-cd]pyrene			0.033	U
SB-20 2-4	8/7/2015 15:04	95-48-7	2-Methylphenol			0.032	U
SB-20 2-4	8/7/2015 15:04	56-55-3	Benzo[a]anthracene			0.032	U
SB-20 2-4	8/7/2015 15:04	85-01-8	Phenanthrene			0.032	U
SB-20 2-4	8/7/2015 15:04	129-00-0	Pyrene			0.032	U
SB-20 2-4	8/7/2015 15:04	85-68-7	Butyl benzyl phthalate			0.031	U
SB-20 2-4	8/7/2015 15:04	98-95-3	Nitrobenzene			0.031	U
SB-20 2-4	8/7/2015 15:04	120-12-7	Anthracene			0.029	U
SB-20 2-4	8/7/2015 15:04	1912-24-9	Atrazine			0.027	U
SB-20 2-4	8/7/2015 15:04	191-24-2	Benzo[g,h,i]perylene			0.026	U
SB-20 2-4	8/7/2015 15:04	218-01-9	Chrysene			0.025	U
SB-20 2-4	8/7/2015 15:04	87-86-5	Pentachlorophenol			0.39	U *
SB-20 2-4	8/7/2015 15:04	534-52-1	4,6-Dinitro-2-methylphenol			0.2	U *
SB-20 2-4	8/7/2015 15:04	321-60-8	2-Fluorobiphenyl	NL	NL	2.6	
SB-24 13-15	8/6/2015 15:50	206-44-0	Fluoranthene			0.33	J
SB-24 13-15	8/6/2015 15:50	129-00-0	Pyrene			0.3	J
SB-24 13-15	8/6/2015 15:50	100-52-7	Benzaldehyde			0.22	J
SB-24 13-15	8/6/2015 15:50	205-99-2	Benzo[b]fluoranthene			0.22	J
SB-24 13-15	8/6/2015 15:50	218-01-9	Chrysene			0.19	J
SB-24 13-15	8/6/2015 15:50	85-01-8	Phenanthrene			0.18	J
SB-24 13-15	8/6/2015 15:50	56-55-3	Benzo[a]anthracene			0.17	J
SB-24 13-15	8/6/2015 15:50	50-32-8	Benzo[a]pyrene			0.14	J
SB-24 13-15	8/6/2015 15:50	207-08-9	Benzo[k]fluoranthene			0.11	J
SB-24 13-15	8/6/2015 15:50	191-24-2	Benzo[g,h,i]perylene			0.098	J
SB-24 13-15	8/6/2015 15:50	193-39-5	Indeno[1,2,3-cd]pyrene			0.074	J
SB-24 13-15	8/6/2015 15:50	15831-10-4	3 & 4 Methylphenol			0.061	J
SB-24 13-15	8/6/2015 15:50	91-57-6	2-Methylnaphthalene			0.051	J
SB-24 13-15	8/6/2015 15:50	91-20-3	Naphthalene			0.05	J
SB-24 13-15	8/6/2015 15:50	120-12-7	Anthracene			0.034	J
SB-24 13-15	8/6/2015 15:50	98-86-2	Acetophenone			0.032	J
SB-24 13-15	8/6/2015 15:50	92-52-4	1,1'-Biphenyl			1.9	U
SB-24 13-15	8/6/2015 15:50	51-28-5	2,4-Dinitrophenol			0.95	U
SB-24 13-15	8/6/2015 15:50	100-02-7	4-Nitrophenol			0.38	U
SB-24 13-15	8/6/2015 15:50	87-86-5	Pentachlorophenol			0.38	U
SB-24 13-15	8/6/2015 15:50	105-60-2	Caprolactam			0.076	U
SB-24 13-15	8/6/2015 15:50	106-47-8	4-Chloroaniline			0.059	U
SB-24 13-15	8/6/2015 15:50	121-14-2	2,4-Dinitrotoluene			0.056	U
SB-24 13-15	8/6/2015 15:50	100-01-6	4-Nitroaniline			0.056	U
SB-24 13-15	8/6/2015 15:50	99-09-2	3-Nitroaniline			0.053	U

Client Sample	Callantian Data	CAS	Analysis by Mask ad 0270D	Type 1 RRS		Result	Floor
ID SB-24 13-15	Collection Date	CAS	Analyte by Method 8270D 2-Nitroaniline	(mg/kg)	(mg/kg)	(mg/kg)	Flag
	8/6/2015 15:50	88-74-4				0.051	U
SB-24 13-15	8/6/2015 15:50	111-44-4	Bis(2-chloroethyl)ether	+		0.051	U
SB-24 13-15	8/6/2015 15:50	105-67-9	2,4-Dimethylphenol	1		0.05	U
SB-24 13-15	8/6/2015 15:50	7005-72-3	4-Chlorophenyl phenyl ether			0.05	U
SB-24 13-15	8/6/2015 15:50	606-20-2	2,6-Dinitrotoluene	1		0.048	U
SB-24 13-15	8/6/2015 15:50	88-75-5	2-Nitrophenol	1		0.047	U
SB-24 13-15	8/6/2015 15:50	83-32-9	Acenaphthene	+		0.047	U
SB-24 13-15	8/6/2015 15:50	77-47-4	Hexachlorocyclopentadiene	+		0.047	U
SB-24 13-15	8/6/2015 15:50	95-57-8	2-Chlorophenol			0.046	U
SB-24 13-15	8/6/2015 15:50	111-91-1	Bis(2-chloroethoxy)methane			0.045	U
SB-24 13-15	8/6/2015 15:50	53-70-3	Dibenz(a,h)anthracene			0.045	U
SB-24 13-15	8/6/2015 15:50	118-74-1	Hexachlorobenzene			0.045	U
SB-24 13-15	8/6/2015 15:50	84-66-2	Diethyl phthalate			0.042	U
SB-24 13-15	8/6/2015 15:50	101-55-3	4-Bromophenyl phenyl ether			0.041	U
SB-24 13-15	8/6/2015 15:50	208-96-8	Acenaphthylene			0.041	U
SB-24 13-15	8/6/2015 15:50	86-73-7	Fluorene			0.041	U
SB-24 13-15	8/6/2015 15:50	87-68-3	Hexachlorobutadiene			0.041	U
SB-24 13-15	8/6/2015 15:50	95-95-4	2,4,5-Trichlorophenol			0.04	U
SB-24 13-15	8/6/2015 15:50	120-83-2	2,4-Dichlorophenol			0.04	U
SB-24 13-15	8/6/2015 15:50	91-58-7	2-Chloronaphthalene			0.04	U
SB-24 13-15	8/6/2015 15:50	59-50-7	4-Chloro-3-methylphenol			0.04	U
SB-24 13-15	8/6/2015 15:50	131-11-3	Dimethyl phthalate			0.039	U
SB-24 13-15	8/6/2015 15:50	108-95-2	Phenol			0.039	U
SB-24 13-15	8/6/2015 15:50	132-64-9	Dibenzofuran			0.038	U
SB-24 13-15	8/6/2015 15:50	78-59-1	Isophorone			0.038	U
SB-24 13-15	8/6/2015 15:50	86-30-6	N-Nitrosodiphenylamine			0.038	U
SB-24 13-15	8/6/2015 15:50	621-64-7	N-Nitrosodi-n-propylamine			0.037	U
SB-24 13-15	8/6/2015 15:50	108-60-1	bis (2-chloroisopropyl) ether			0.034	U
SB-24 13-15	8/6/2015 15:50	86-74-8	Carbazole			0.034	U
SB-24 13-15	8/6/2015 15:50	84-74-2	Di-n-butyl phthalate			0.034	U
SB-24 13-15	8/6/2015 15:50	88-06-2	2,4,6-Trichlorophenol			0.033	U
SB-24 13-15	8/6/2015 15:50	117-81-7	Bis(2-ethylhexyl) phthalate			0.033	U
SB-24 13-15	8/6/2015 15:50	117-84-0	Di-n-octyl phthalate			0.033	U
SB-24 13-15	8/6/2015 15:50	91-94-1	3,3'-Dichlorobenzidine			0.032	U
SB-24 13-15	8/6/2015 15:50	67-72-1	Hexachloroethane			0.032	U
SB-24 13-15	8/6/2015 15:50	95-48-7	2-Methylphenol			0.031	U
SB-24 13-15	8/6/2015 15:50	85-68-7	Butyl benzyl phthalate			0.03	U
SB-24 13-15	8/6/2015 15:50	98-95-3	Nitrobenzene			0.03	U
SB-24 13-15	8/6/2015 15:50	1912-24-9	Atrazine	1		0.026	U
SB-24 13-15	8/6/2015 15:50	534-52-1	4,6-Dinitro-2-methylphenol	1		0.19	U*
SB-24 13-15	8/6/2015 15:50	321-60-8	2-Fluorobiphenyl	NL	NL	2.9	_
SB-24 2-4	8/6/2015 15:25	321-60-8	2-Fluorobiphenyl	 		0	D
SB-24 2-4	8/6/2015 15:25	206-44-0	Fluoranthene	1		1	J

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-24 2-4	8/6/2015 15:25	129-00-0	Pyrene			0.87	J
SB-24 2-4	8/6/2015 15:25	205-99-2	Benzo[b]fluoranthene			0.57	J
SB-24 2-4	8/6/2015 15:25	218-01-9	Chrysene			0.57	J
SB-24 2-4	8/6/2015 15:25	85-01-8	Phenanthrene			0.52	J
SB-24 2-4	8/6/2015 15:25	56-55-3	Benzo[a]anthracene			0.47	J
SB-24 2-4	8/6/2015 15:25	92-52-4	1,1'-Biphenyl			21	U
SB-24 2-4	8/6/2015 15:25	51-28-5	2,4-Dinitrophenol			10	U
SB-24 2-4	8/6/2015 15:25	100-02-7	4-Nitrophenol			4.1	U
SB-24 2-4	8/6/2015 15:25	87-86-5	Pentachlorophenol			4.1	U
SB-24 2-4	8/6/2015 15:25	105-60-2	Caprolactam			0.82	U
SB-24 2-4	8/6/2015 15:25	207-08-9	Benzo[k]fluoranthene			0.81	U
SB-24 2-4	8/6/2015 15:25	100-52-7	Benzaldehyde			0.72	U
SB-24 2-4	8/6/2015 15:25	106-47-8	4-Chloroaniline			0.65	U
SB-24 2-4	8/6/2015 15:25	50-32-8	Benzo[a]pyrene			0.65	U
SB-24 2-4	8/6/2015 15:25	121-14-2	2,4-Dinitrotoluene			0.61	U
SB-24 2-4	8/6/2015 15:25	100-01-6	4-Nitroaniline			0.61	U
SB-24 2-4	8/6/2015 15:25	99-09-2	3-Nitroaniline			0.57	U
SB-24 2-4	8/6/2015 15:25	88-74-4	2-Nitroaniline			0.56	U
SB-24 2-4	8/6/2015 15:25	111-44-4	Bis(2-chloroethyl)ether			0.56	U
SB-24 2-4	8/6/2015 15:25	105-67-9	2,4-Dimethylphenol			0.55	U
SB-24 2-4	8/6/2015 15:25	7005-72-3	4-Chlorophenyl phenyl ether			0.55	U
SB-24 2-4	8/6/2015 15:25	15831-10-4	3 & 4 Methylphenol			0.53	U
SB-24 2-4	8/6/2015 15:25	88-75-5	2-Nitrophenol			0.51	U
SB-24 2-4	8/6/2015 15:25	83-32-9	Acenaphthene			0.51	U
SB-24 2-4	8/6/2015 15:25	77-47-4	Hexachlorocyclopentadiene			0.51	U
SB-24 2-4	8/6/2015 15:25	95-57-8	2-Chlorophenol			0.5	U
SB-24 2-4	8/6/2015 15:25	111-91-1	Bis(2-chloroethoxy)methane			0.48	U
SB-24 2-4	8/6/2015 15:25	53-70-3	Dibenz(a,h)anthracene			0.48	U
SB-24 2-4	8/6/2015 15:25	118-74-1	Hexachlorobenzene			0.48	U
SB-24 2-4	8/6/2015 15:25	91-57-6	2-Methylnaphthalene			0.47	U
SB-24 2-4	8/6/2015 15:25	84-66-2	Diethyl phthalate			0.46	U
SB-24 2-4	8/6/2015 15:25	101-55-3	4-Bromophenyl phenyl ether			0.45	U
SB-24 2-4	8/6/2015 15:25	208-96-8	Acenaphthylene			0.45	U
SB-24 2-4	8/6/2015 15:25	86-73-7	Fluorene			0.45	U
SB-24 2-4	8/6/2015 15:25	87-68-3	Hexachlorobutadiene			0.45	U
SB-24 2-4	8/6/2015 15:25	95-95-4	2,4,5-Trichlorophenol			0.43	U
SB-24 2-4	8/6/2015 15:25	120-83-2	2,4-Dichlorophenol			0.43	U
SB-24 2-4	8/6/2015 15:25	91-58-7	2-Chloronaphthalene			0.43	U
SB-24 2-4	8/6/2015 15:25	59-50-7	4-Chloro-3-methylphenol			0.43	U
SB-24 2-4	8/6/2015 15:25	131-11-3	Dimethyl phthalate			0.42	U
SB-24 2-4	8/6/2015 15:25	108-95-2	Phenol	1		0.42	U
SB-24 2-4	8/6/2015 15:25	132-64-9	Dibenzofuran	+		0.42	U
SB-24 2-4	8/6/2015 15:25	78-59-1	Isophorone	+		0.41	U
JU-24 2-4	0/0/2013 13.23	10-33-1	ізорногоне			0.41	U

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-24 2-4	8/6/2015 15:25	86-30-6	N-Nitrosodiphenylamine			0.41	U
SB-24 2-4	8/6/2015 15:25	621-64-7	N-Nitrosodi-n-propylamine			0.4	U
SB-24 2-4	8/6/2015 15:25	108-60-1	bis (2-chloroisopropyl) ether			0.37	U
SB-24 2-4	8/6/2015 15:25	86-74-8	Carbazole			0.37	U
SB-24 2-4	8/6/2015 15:25	84-74-2	Di-n-butyl phthalate			0.37	U
SB-24 2-4	8/6/2015 15:25	91-20-3	Naphthalene			0.37	U
SB-24 2-4	8/6/2015 15:25	88-06-2	2,4,6-Trichlorophenol			0.36	U
SB-24 2-4	8/6/2015 15:25	117-81-7	Bis(2-ethylhexyl) phthalate			0.36	U
SB-24 2-4	8/6/2015 15:25	117-84-0	Di-n-octyl phthalate			0.36	U
SB-24 2-4	8/6/2015 15:25	91-94-1	3,3'-Dichlorobenzidine			0.35	J
SB-24 2-4	8/6/2015 15:25	98-86-2	Acetophenone			0.35	J
SB-24 2-4	8/6/2015 15:25	67-72-1	Hexachloroethane			0.35	U
SB-24 2-4	8/6/2015 15:25	193-39-5	Indeno[1,2,3-cd]pyrene			0.35	U
SB-24 2-4	8/6/2015 15:25	95-48-7	2-Methylphenol			0.34	U
SB-24 2-4	8/6/2015 15:25	85-68-7	Butyl benzyl phthalate			0.32	U
SB-24 2-4	8/6/2015 15:25	98-95-3	Nitrobenzene			0.32	U
SB-24 2-4	8/6/2015 15:25	120-12-7	Anthracene			0.31	U
SB-24 2-4	8/6/2015 15:25	1912-24-9	Atrazine			0.29	U
SB-24 2-4	8/6/2015 15:25	191-24-2	Benzo[g,h,i]perylene			0.27	U
SB-24 2-4	8/6/2015 15:25	534-52-1	4,6-Dinitro-2-methylphenol			2.1	U *
SB-24 2-4	8/6/2015 15:25	606-20-2	2,6-Dinitrotoluene	0.76		6.1	
SB-24 4-6	8/6/2015 15:32	321-60-8	2-Fluorobiphenyl			0	D
SB-24 4-6	8/6/2015 15:32	56-55-3	Benzo[a]anthracene			2.7	J
SB-24 4-6	8/6/2015 15:32	218-01-9	Chrysene			2.7	J
SB-24 4-6	8/6/2015 15:32	205-99-2	Benzo[b]fluoranthene			2.4	J
SB-24 4-6	8/6/2015 15:32	50-32-8	Benzo[a]pyrene			1.9	J
SB-24 4-6	8/6/2015 15:32	120-12-7	Anthracene			1.6	J
SB-24 4-6	8/6/2015 15:32	207-08-9	Benzo[k]fluoranthene			1.2	J
SB-24 4-6	8/6/2015 15:32	132-64-9	Dibenzofuran			0.8	J
SB-24 4-6	8/6/2015 15:32	86-73-7	Fluorene			0.76	J
SB-24 4-6	8/6/2015 15:32	193-39-5	Indeno[1,2,3-cd]pyrene			0.72	J
SB-24 4-6	8/6/2015 15:32	91-57-6	2-Methylnaphthalene			0.67	J
SB-24 4-6	8/6/2015 15:32	191-24-2	Benzo[g,h,i]perylene			0.67	J
SB-24 4-6	8/6/2015 15:32	86-74-8	Carbazole			0.61	J
SB-24 4-6	8/6/2015 15:32	208-96-8	Acenaphthylene			0.51	J
SB-24 4-6	8/6/2015 15:32	91-20-3	Naphthalene			0.5	J
SB-24 4-6	8/6/2015 15:32	92-52-4	1,1'-Biphenyl			22	U
SB-24 4-6	8/6/2015 15:32	51-28-5	2,4-Dinitrophenol	+		11	U
SB-24 4-6	8/6/2015 15:32	100-02-7	4-Nitrophenol			4.3	U
SB-24 4-6	8/6/2015 15:32	87-86-5	Pentachlorophenol			4.3	U
SB-24 4-6	8/6/2015 15:32	105-60-2	Caprolactam			0.86	U
							_
			<u> </u>				
SB-24 4-6 SB-24 4-6	8/6/2015 15:32 8/6/2015 15:32	100-52-7 106-47-8	Benzaldehyde 4-Chloroaniline			0.76 0.68	U

					Type 2	_	
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-24 4-6	8/6/2015 15:32	121-14-2	2,4-Dinitrotoluene			0.64	U
SB-24 4-6	8/6/2015 15:32	100-01-6	4-Nitroaniline			0.64	U
SB-24 4-6	8/6/2015 15:32	99-09-2	3-Nitroaniline			0.6	U
SB-24 4-6	8/6/2015 15:32	88-74-4	2-Nitroaniline			0.59	U
SB-24 4-6	8/6/2015 15:32	111-44-4	Bis(2-chloroethyl)ether			0.59	U
SB-24 4-6	8/6/2015 15:32	105-67-9	2,4-Dimethylphenol			0.58	U
SB-24 4-6	8/6/2015 15:32	7005-72-3	4-Chlorophenyl phenyl ether			0.58	U
SB-24 4-6	8/6/2015 15:32	15831-10-4	3 & 4 Methylphenol			0.56	U
SB-24 4-6	8/6/2015 15:32	606-20-2	2,6-Dinitrotoluene			0.55	U
SB-24 4-6	8/6/2015 15:32	88-75-5	2-Nitrophenol			0.54	U
SB-24 4-6	8/6/2015 15:32	83-32-9	Acenaphthene			0.54	U
SB-24 4-6	8/6/2015 15:32	77-47-4	Hexachlorocyclopentadiene			0.54	U
SB-24 4-6	8/6/2015 15:32	95-57-8	2-Chlorophenol			0.52	J
SB-24 4-6	8/6/2015 15:32	111-91-1	Bis(2-chloroethoxy)methane			0.51	U
SB-24 4-6	8/6/2015 15:32	53-70-3	Dibenz(a,h)anthracene			0.51	U
SB-24 4-6	8/6/2015 15:32	118-74-1	Hexachlorobenzene			0.51	U
SB-24 4-6	8/6/2015 15:32	84-66-2	Diethyl phthalate			0.48	U
SB-24 4-6	8/6/2015 15:32	101-55-3	4-Bromophenyl phenyl ether			0.47	U
SB-24 4-6	8/6/2015 15:32	87-68-3	Hexachlorobutadiene			0.47	U
SB-24 4-6	8/6/2015 15:32	95-95-4	2,4,5-Trichlorophenol			0.46	U
SB-24 4-6	8/6/2015 15:32	120-83-2	2,4-Dichlorophenol			0.46	U
SB-24 4-6	8/6/2015 15:32	91-58-7	2-Chloronaphthalene			0.46	U
SB-24 4-6	8/6/2015 15:32	59-50-7	4-Chloro-3-methylphenol			0.46	U
SB-24 4-6	8/6/2015 15:32	131-11-3	Dimethyl phthalate			0.45	U
SB-24 4-6	8/6/2015 15:32	108-95-2	Phenol			0.45	U
SB-24 4-6	8/6/2015 15:32	78-59-1	Isophorone			0.43	U
SB-24 4-6	8/6/2015 15:32	86-30-6	N-Nitrosodiphenylamine			0.43	U
SB-24 4-6	8/6/2015 15:32	621-64-7	N-Nitrosodi-n-propylamine			0.42	U
SB-24 4-6	8/6/2015 15:32	108-60-1	bis (2-chloroisopropyl) ether			0.39	U
SB-24 4-6	8/6/2015 15:32	84-74-2	Di-n-butyl phthalate			0.39	U
SB-24 4-6	8/6/2015 15:32	88-06-2	2,4,6-Trichlorophenol			0.38	U
SB-24 4-6	8/6/2015 15:32	117-81-7	Bis(2-ethylhexyl) phthalate			0.38	U
SB-24 4-6	8/6/2015 15:32	117-84-0	Di-n-octyl phthalate	1		0.38	U
SB-24 4-6	8/6/2015 15:32	91-94-1	3,3'-Dichlorobenzidine	1		0.37	U
SB-24 4-6	8/6/2015 15:32	98-86-2	Acetophenone	1		0.37	U
SB-24 4-6	8/6/2015 15:32	67-72-1	Hexachloroethane	1		0.37	U
SB-24 4-6	8/6/2015 15:32	95-48-7	2-Methylphenol			0.35	U
SB-24 4-6	8/6/2015 15:32	85-68-7	Butyl benzyl phthalate			0.34	U
SB-24 4-6	8/6/2015 15:32	98-95-3	Nitrobenzene	1		0.34	U
SB-24 4-6	8/6/2015 15:32	1912-24-9	Atrazine	1		0.3	U
SB-24 4-6	8/6/2015 15:32	534-52-1	4,6-Dinitro-2-methylphenol			2.2	U *
SB-24 4-6	8/6/2015 15:32	85-01-8	Phenanthrene	110	2,350	7.1	
SB-24 4-6	8/6/2015 15:32	129-00-0	Pyrene	500	2,350	5.3	

			·		Tuna 2		
Client Sample				Tuno 1 DDS	Type 2 RRS	Result	
Client Sample	Callantian Data	CAC	A	Type 1 RRS			Ela-
ID CD 24 4 C	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-24 4-6	8/6/2015 15:32	206-44-0	Fluoranthene	500	3,130	4.9	
SB-24 8-10	8/6/2015 15:38	321-60-8	2-Fluorobiphenyl			0	D
SB-24 8-10	8/6/2015 15:38	206-44-0	Fluoranthene			0.48	J
SB-24 8-10	8/6/2015 15:38	129-00-0	Pyrene			0.43	J
SB-24 8-10	8/6/2015 15:38	117-81-7	Bis(2-ethylhexyl) phthalate			0.54	J B
SB-24 8-10	8/6/2015 15:38	92-52-4	1,1'-Biphenyl			24	U
SB-24 8-10	8/6/2015 15:38	51-28-5	2,4-Dinitrophenol			12	U
SB-24 8-10	8/6/2015 15:38	100-02-7	4-Nitrophenol			4.7	U
SB-24 8-10	8/6/2015 15:38	87-86-5	Pentachlorophenol			4.7	U
SB-24 8-10	8/6/2015 15:38	105-60-2	Caprolactam			0.94	U
SB-24 8-10	8/6/2015 15:38	207-08-9	Benzo[k]fluoranthene			0.93	U
SB-24 8-10	8/6/2015 15:38	100-52-7	Benzaldehyde			0.83	U
SB-24 8-10	8/6/2015 15:38	106-47-8	4-Chloroaniline			0.74	U
SB-24 8-10	8/6/2015 15:38	50-32-8	Benzo[a]pyrene			0.74	U
SB-24 8-10	8/6/2015 15:38	121-14-2	2,4-Dinitrotoluene			0.7	U
SB-24 8-10	8/6/2015 15:38	100-01-6	4-Nitroaniline			0.7	U
SB-24 8-10	8/6/2015 15:38	99-09-2	3-Nitroaniline			0.66	U
SB-24 8-10	8/6/2015 15:38	88-74-4	2-Nitroaniline			0.64	U
SB-24 8-10	8/6/2015 15:38	111-44-4	Bis(2-chloroethyl)ether			0.64	U
SB-24 8-10	8/6/2015 15:38	105-67-9	2,4-Dimethylphenol			0.63	U
SB-24 8-10	8/6/2015 15:38	7005-72-3	4-Chlorophenyl phenyl ether			0.63	U
SB-24 8-10	8/6/2015 15:38	15831-10-4	3 & 4 Methylphenol			0.61	U
SB-24 8-10	8/6/2015 15:38	606-20-2	2,6-Dinitrotoluene			0.6	U
SB-24 8-10	8/6/2015 15:38	88-75-5	2-Nitrophenol			0.59	U
SB-24 8-10	8/6/2015 15:38	83-32-9	Acenaphthene			0.59	U
SB-24 8-10	8/6/2015 15:38	77-47-4	Hexachlorocyclopentadiene			0.59	U
SB-24 8-10	8/6/2015 15:38	95-57-8	2-Chlorophenol			0.57	U
SB-24 8-10	8/6/2015 15:38	111-91-1	Bis(2-chloroethoxy)methane			0.56	U
SB-24 8-10	8/6/2015 15:38	53-70-3	Dibenz(a,h)anthracene			0.56	U
SB-24 8-10	8/6/2015 15:38	118-74-1	Hexachlorobenzene			0.56	U
SB-24 8-10	8/6/2015 15:38	91-57-6	2-Methylnaphthalene			0.54	U
SB-24 8-10	8/6/2015 15:38	205-99-2	Benzo[b]fluoranthene			0.54	U
SB-24 8-10	8/6/2015 15:38	84-66-2	Diethyl phthalate			0.53	U
SB-24 8-10	8/6/2015 15:38	101-55-3	4-Bromophenyl phenyl ether			0.51	U
SB-24 8-10	8/6/2015 15:38	208-96-8	Acenaphthylene	1		0.51	U
SB-24 8-10	8/6/2015 15:38	86-73-7	Fluorene			0.51	U
SB-24 8-10	8/6/2015 15:38	87-68-3	Hexachlorobutadiene	+		0.51	U
SB-24 8-10	8/6/2015 15:38	95-95-4	2,4,5-Trichlorophenol			0.5	U
SB-24 8-10	8/6/2015 15:38	120-83-2	2,4-Dichlorophenol	1		0.5	U
SB-24 8-10	8/6/2015 15:38	91-58-7	2-Chloronaphthalene			0.5	U
SB-24 8-10	8/6/2015 15:38	59-50-7	4-Chloro-3-methylphenol	+		0.5	U
SB-24 8-10	8/6/2015 15:38	131-11-3	Dimethyl phthalate			0.49	U
SB-24 8-10	8/6/2015 15:38	108-95-2	Phenol	+		0.49	U
3D-24 6-10	0/0/2015 15:38	100-33-7	riieliui			0.49	U

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-24 8-10	8/6/2015 15:38	132-64-9	Dibenzofuran			0.47	U
SB-24 8-10	8/6/2015 15:38	78-59-1	Isophorone			0.47	U
SB-24 8-10	8/6/2015 15:38	86-30-6	N-Nitrosodiphenylamine			0.47	U
SB-24 8-10	8/6/2015 15:38	621-64-7	N-Nitrosodi-n-propylamine			0.46	U
SB-24 8-10	8/6/2015 15:38	108-60-1	bis (2-chloroisopropyl) ether			0.43	U
SB-24 8-10	8/6/2015 15:38	86-74-8	Carbazole			0.43	U
SB-24 8-10	8/6/2015 15:38	84-74-2	Di-n-butyl phthalate			0.43	U
SB-24 8-10	8/6/2015 15:38	91-20-3	Naphthalene			0.43	U
SB-24 8-10	8/6/2015 15:38	88-06-2	2,4,6-Trichlorophenol			0.41	U
SB-24 8-10	8/6/2015 15:38	117-84-0	Di-n-octyl phthalate			0.41	U
SB-24 8-10	8/6/2015 15:38	91-94-1	3,3'-Dichlorobenzidine			0.4	U
SB-24 8-10	8/6/2015 15:38	98-86-2	Acetophenone			0.4	U
SB-24 8-10	8/6/2015 15:38	67-72-1	Hexachloroethane			0.4	U
SB-24 8-10	8/6/2015 15:38	193-39-5	Indeno[1,2,3-cd]pyrene			0.4	U
SB-24 8-10	8/6/2015 15:38	95-48-7	2-Methylphenol			0.39	U
SB-24 8-10	8/6/2015 15:38	56-55-3	Benzo[a]anthracene			0.39	U
SB-24 8-10	8/6/2015 15:38	85-01-8	Phenanthrene			0.39	U
SB-24 8-10	8/6/2015 15:38	85-68-7	Butyl benzyl phthalate			0.37	U
SB-24 8-10	8/6/2015 15:38	98-95-3	Nitrobenzene			0.37	U
SB-24 8-10	8/6/2015 15:38	120-12-7	Anthracene			0.36	U
SB-24 8-10	8/6/2015 15:38	1912-24-9	Atrazine			0.33	U
SB-24 8-10	8/6/2015 15:38	191-24-2	Benzo[g,h,i]perylene			0.31	U
SB-24 8-10	8/6/2015 15:38	218-01-9	Chrysene			0.3	U
SB-24 8-10	8/6/2015 15:38	534-52-1	4,6-Dinitro-2-methylphenol			2.4	U *
SB-25 0-2	8/10/2015 10:56	321-60-8	2-Fluorobiphenyl			0	D
SB-25 0-2	8/10/2015 10:56	92-52-4	1,1'-Biphenyl			19	U
SB-25 0-2	8/10/2015 10:56	51-28-5	2,4-Dinitrophenol			9.5	U
SB-25 0-2	8/10/2015 10:56	100-02-7	4-Nitrophenol			3.8	U
SB-25 0-2	8/10/2015 10:56	87-86-5	Pentachlorophenol			3.8	U
SB-25 0-2	8/10/2015 10:56	534-52-1	4,6-Dinitro-2-methylphenol			1.9	U
SB-25 0-2	8/10/2015 10:56	105-60-2	Caprolactam			0.75	U
SB-25 0-2	8/10/2015 10:56	207-08-9	Benzo[k]fluoranthene			0.74	U
SB-25 0-2	8/10/2015 10:56	100-52-7	Benzaldehyde			0.66	U
SB-25 0-2	8/10/2015 10:56	106-47-8	4-Chloroaniline			0.59	U
SB-25 0-2	8/10/2015 10:56	50-32-8	Benzo[a]pyrene			0.59	U
SB-25 0-2	8/10/2015 10:56	121-14-2	2,4-Dinitrotoluene			0.56	U
SB-25 0-2	8/10/2015 10:56	100-01-6	4-Nitroaniline			0.56	U
SB-25 0-2	8/10/2015 10:56	99-09-2	3-Nitroaniline			0.52	U
SB-25 0-2	8/10/2015 10:56	88-74-4	2-Nitroaniline	1		0.51	U
SB-25 0-2	8/10/2015 10:56	105-67-9	2,4-Dimethylphenol	1		0.5	U
SB-25 0-2	8/10/2015 10:56	7005-72-3	4-Chlorophenyl phenyl ether	1		0.5	U
SB-25 0-2	8/10/2015 10:56	15831-10-4	3 & 4 Methylphenol	1		0.49	U
SB-25 0-2	8/10/2015 10:56	606-20-2	2,6-Dinitrotoluene	1		0.48	U

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-25 0-2	8/10/2015 10:56	88-75-5	2-Nitrophenol			0.47	U
SB-25 0-2	8/10/2015 10:56	83-32-9	Acenaphthene			0.47	U
SB-25 0-2	8/10/2015 10:56	77-47-4	Hexachlorocyclopentadiene			0.47	U
SB-25 0-2	8/10/2015 10:56	95-57-8	2-Chlorophenol			0.46	U
SB-25 0-2	8/10/2015 10:56	111-91-1	Bis(2-chloroethoxy)methane			0.44	U
SB-25 0-2	8/10/2015 10:56	53-70-3	Dibenz(a,h)anthracene			0.44	U
SB-25 0-2	8/10/2015 10:56	118-74-1	Hexachlorobenzene			0.44	U
SB-25 0-2	8/10/2015 10:56	91-57-6	2-Methylnaphthalene			0.43	U
SB-25 0-2	8/10/2015 10:56	205-99-2	Benzo[b]fluoranthene			0.43	U
SB-25 0-2	8/10/2015 10:56	84-66-2	Diethyl phthalate			0.42	U
SB-25 0-2	8/10/2015 10:56	101-55-3	4-Bromophenyl phenyl ether			0.41	U
SB-25 0-2	8/10/2015 10:56	208-96-8	Acenaphthylene			0.41	U
SB-25 0-2	8/10/2015 10:56	86-73-7	Fluorene			0.41	U
SB-25 0-2	8/10/2015 10:56	87-68-3	Hexachlorobutadiene			0.41	U
SB-25 0-2	8/10/2015 10:56	95-95-4	2,4,5-Trichlorophenol			0.4	U
SB-25 0-2	8/10/2015 10:56	120-83-2	2,4-Dichlorophenol			0.4	U
SB-25 0-2	8/10/2015 10:56	91-58-7	2-Chloronaphthalene			0.4	U
SB-25 0-2	8/10/2015 10:56	59-50-7	4-Chloro-3-methylphenol			0.4	U
SB-25 0-2	8/10/2015 10:56	131-11-3	Dimethyl phthalate			0.39	U
SB-25 0-2	8/10/2015 10:56	108-95-2	Phenol			0.39	U
SB-25 0-2	8/10/2015 10:56	132-64-9	Dibenzofuran			0.38	U
SB-25 0-2	8/10/2015 10:56	78-59-1	Isophorone			0.38	U
SB-25 0-2	8/10/2015 10:56	86-30-6	N-Nitrosodiphenylamine			0.38	U
SB-25 0-2	8/10/2015 10:56	206-44-0	Fluoranthene			0.37	U
SB-25 0-2	8/10/2015 10:56	621-64-7	N-Nitrosodi-n-propylamine			0.37	U
SB-25 0-2	8/10/2015 10:56	108-60-1	bis (2-chloroisopropyl) ether			0.34	U
SB-25 0-2	8/10/2015 10:56	86-74-8	Carbazole			0.34	U
SB-25 0-2	8/10/2015 10:56	84-74-2	Di-n-butyl phthalate			0.34	U
SB-25 0-2	8/10/2015 10:56	91-20-3	Naphthalene			0.34	U
SB-25 0-2	8/10/2015 10:56	88-06-2	2,4,6-Trichlorophenol			0.33	U
SB-25 0-2	8/10/2015 10:56	117-81-7	Bis(2-ethylhexyl) phthalate			0.33	U
SB-25 0-2	8/10/2015 10:56	117-84-0	Di-n-octyl phthalate			0.33	U
SB-25 0-2	8/10/2015 10:56	91-94-1	3,3'-Dichlorobenzidine			0.32	U
SB-25 0-2	8/10/2015 10:56	98-86-2	Acetophenone			0.32	U
SB-25 0-2	8/10/2015 10:56	67-72-1	Hexachloroethane			0.32	U
SB-25 0-2	8/10/2015 10:56	193-39-5	Indeno[1,2,3-cd]pyrene			0.32	U
SB-25 0-2	8/10/2015 10:56	95-48-7	2-Methylphenol			0.31	U
SB-25 0-2	8/10/2015 10:56	56-55-3	Benzo[a]anthracene			0.31	U
SB-25 0-2	8/10/2015 10:56	85-01-8	Phenanthrene			0.31	U
SB-25 0-2	8/10/2015 10:56	129-00-0	Pyrene			0.31	U
SB-25 0-2	8/10/2015 10:56	85-68-7	Butyl benzyl phthalate			0.3	U
SB-25 0-2	8/10/2015 10:56	98-95-3	Nitrobenzene			0.3	U
SB-25 0-2	8/10/2015 10:56	120-12-7	Anthracene			0.29	U

			Macon, Ga				
					Type 2		
Client Sample				Type 1 RRS	RRS	Result	_
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-25 0-2	8/10/2015 10:56	1912-24-9	Atrazine			0.26	U
SB-25 0-2	8/10/2015 10:56	191-24-2	Benzo[g,h,i]perylene			0.25	U
SB-25 0-2	8/10/2015 10:56	218-01-9	Chrysene			0.24	U
SB-25 0-2	8/10/2015 10:56	111-44-4	Bis(2-chloroethyl)ether			0.51	U *
SB-25 13-15	8/10/2015 11:21	206-44-0	Fluoranthene			0.27	J
SB-25 13-15	8/10/2015 11:21	129-00-0	Pyrene			0.2	J
SB-25 13-15	8/10/2015 11:21	85-01-8	Phenanthrene			0.17	J
SB-25 13-15	8/10/2015 11:21	205-99-2	Benzo[b]fluoranthene			0.16	J
SB-25 13-15	8/10/2015 11:21	56-55-3	Benzo[a]anthracene			0.14	J
SB-25 13-15	8/10/2015 11:21	50-32-8	Benzo[a]pyrene			0.12	J
SB-25 13-15	8/10/2015 11:21	218-01-9	Chrysene			0.11	J
SB-25 13-15	8/10/2015 11:21	191-24-2	Benzo[g,h,i]perylene			0.094	J
SB-25 13-15	8/10/2015 11:21	193-39-5	Indeno[1,2,3-cd]pyrene			0.077	J
SB-25 13-15	8/10/2015 11:21	91-57-6	2-Methylnaphthalene			0.045	J
SB-25 13-15	8/10/2015 11:21	120-12-7	Anthracene			0.04	J
SB-25 13-15	8/10/2015 11:21	92-52-4	1,1'-Biphenyl			2	U
SB-25 13-15	8/10/2015 11:21	51-28-5	2,4-Dinitrophenol			0.95	U
SB-25 13-15	8/10/2015 11:21	100-02-7	4-Nitrophenol			0.38	U
SB-25 13-15	8/10/2015 11:21	87-86-5	Pentachlorophenol			0.38	U
SB-25 13-15	8/10/2015 11:21	534-52-1	4,6-Dinitro-2-methylphenol			0.2	U
SB-25 13-15	8/10/2015 11:21	105-60-2	Caprolactam			0.076	U
SB-25 13-15	8/10/2015 11:21	207-08-9	Benzo[k]fluoranthene			0.075	U
SB-25 13-15	8/10/2015 11:21	100-52-7	Benzaldehyde			0.067	U
SB-25 13-15	8/10/2015 11:21	106-47-8	4-Chloroaniline			0.06	U
SB-25 13-15	8/10/2015 11:21	121-14-2	2,4-Dinitrotoluene			0.056	U
SB-25 13-15	8/10/2015 11:21	100-01-6	4-Nitroaniline			0.056	U
SB-25 13-15	8/10/2015 11:21	99-09-2	3-Nitroaniline			0.053	U
SB-25 13-15	8/10/2015 11:21	88-74-4	2-Nitroaniline			0.052	U
SB-25 13-15	8/10/2015 11:21	105-67-9	2,4-Dimethylphenol			0.05	U
SB-25 13-15	8/10/2015 11:21	7005-72-3	4-Chlorophenyl phenyl ether			0.05	U
SB-25 13-15	8/10/2015 11:21	15831-10-4	3 & 4 Methylphenol			0.049	U
SB-25 13-15	8/10/2015 11:21	606-20-2	2,6-Dinitrotoluene			0.048	U
SB-25 13-15	8/10/2015 11:21	88-75-5	2-Nitrophenol			0.047	U
SB-25 13-15	8/10/2015 11:21	83-32-9	Acenaphthene			0.047	U
SB-25 13-15	8/10/2015 11:21	77-47-4	Hexachlorocyclopentadiene			0.047	U
SB-25 13-15	8/10/2015 11:21	95-57-8	2-Chlorophenol			0.046	U
SB-25 13-15	8/10/2015 11:21	111-91-1	Bis(2-chloroethoxy)methane			0.045	U
SB-25 13-15	8/10/2015 11:21	53-70-3	Dibenz(a,h)anthracene			0.045	U
SB-25 13-15	8/10/2015 11:21	118-74-1	Hexachlorobenzene			0.045	U
SB-25 13-15	8/10/2015 11:21	84-66-2	Diethyl phthalate			0.042	U
SB-25 13-15	8/10/2015 11:21	101-55-3	4-Bromophenyl phenyl ether			0.041	U
SB-25 13-15	8/10/2015 11:21	208-96-8	Acenaphthylene			0.041	U
SB-25 13-15	8/10/2015 11:21	86-73-7	Fluorene			0.041	U
J= =0 =0 ±0	-, =-, ==== =====	· • ·		1			

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-25 13-15	8/10/2015 11:21	87-68-3	Hexachlorobutadiene			0.041	U
SB-25 13-15	8/10/2015 11:21	95-95-4	2,4,5-Trichlorophenol			0.04	U
SB-25 13-15	8/10/2015 11:21	120-83-2	2,4-Dichlorophenol			0.04	U
SB-25 13-15	8/10/2015 11:21	91-58-7	2-Chloronaphthalene			0.04	U
SB-25 13-15	8/10/2015 11:21	59-50-7	4-Chloro-3-methylphenol			0.04	U
SB-25 13-15	8/10/2015 11:21	131-11-3	Dimethyl phthalate			0.039	U
SB-25 13-15	8/10/2015 11:21	108-95-2	Phenol			0.039	U
SB-25 13-15	8/10/2015 11:21	132-64-9	Dibenzofuran			0.038	U
SB-25 13-15	8/10/2015 11:21	78-59-1	Isophorone			0.038	U
SB-25 13-15	8/10/2015 11:21	86-30-6	N-Nitrosodiphenylamine			0.038	U
SB-25 13-15	8/10/2015 11:21	621-64-7	N-Nitrosodi-n-propylamine			0.037	U
SB-25 13-15	8/10/2015 11:21	108-60-1	bis (2-chloroisopropyl) ether			0.034	U
SB-25 13-15	8/10/2015 11:21	86-74-8	Carbazole			0.034	U
SB-25 13-15	8/10/2015 11:21	84-74-2	Di-n-butyl phthalate			0.034	U
SB-25 13-15	8/10/2015 11:21	91-20-3	Naphthalene			0.034	U
SB-25 13-15	8/10/2015 11:21	88-06-2	2,4,6-Trichlorophenol			0.033	U
SB-25 13-15	8/10/2015 11:21	117-81-7	Bis(2-ethylhexyl) phthalate			0.033	U
SB-25 13-15	8/10/2015 11:21	117-84-0	Di-n-octyl phthalate			0.033	U
SB-25 13-15	8/10/2015 11:21	91-94-1	3,3'-Dichlorobenzidine			0.032	U
SB-25 13-15	8/10/2015 11:21	98-86-2	Acetophenone			0.032	U
SB-25 13-15	8/10/2015 11:21	67-72-1	Hexachloroethane			0.032	U
SB-25 13-15	8/10/2015 11:21	95-48-7	2-Methylphenol			0.031	U
SB-25 13-15	8/10/2015 11:21	85-68-7	Butyl benzyl phthalate			0.03	U
SB-25 13-15	8/10/2015 11:21	98-95-3	Nitrobenzene			0.03	U
SB-25 13-15	8/10/2015 11:21	1912-24-9	Atrazine			0.026	U
SB-25 13-15	8/10/2015 11:21	111-44-4	Bis(2-chloroethyl)ether			0.052	U *
SB-25 13-15	8/10/2015 11:21	321-60-8	2-Fluorobiphenyl	NL	NL	2.9	
SB-25 2-4	8/10/2015 10:56	207-08-9	Benzo[k]fluoranthene			0.33	J
SB-25 2-4	8/10/2015 10:56	85-01-8	Phenanthrene			0.21	J
SB-25 2-4	8/10/2015 10:56	53-70-3	Dibenz(a,h)anthracene			0.15	J
SB-25 2-4	8/10/2015 10:56	120-12-7	Anthracene			0.071	J
SB-25 2-4	8/10/2015 10:56	91-20-3	Naphthalene			0.046	J
SB-25 2-4	8/10/2015 10:56	92-52-4	1,1'-Biphenyl			1.9	U
SB-25 2-4	8/10/2015 10:56	51-28-5	2,4-Dinitrophenol			0.94	U
SB-25 2-4	8/10/2015 10:56	100-02-7	4-Nitrophenol			0.37	U
SB-25 2-4	8/10/2015 10:56	87-86-5	Pentachlorophenol			0.37	U
SB-25 2-4	8/10/2015 10:56	534-52-1	4,6-Dinitro-2-methylphenol			0.19	U
SB-25 2-4	8/10/2015 10:56	105-60-2	Caprolactam			0.075	U
SB-25 2-4	8/10/2015 10:56	100-52-7	Benzaldehyde			0.066	U
SB-25 2-4	8/10/2015 10:56	106-47-8	4-Chloroaniline			0.059	U
SB-25 2-4	8/10/2015 10:56	121-14-2	2,4-Dinitrotoluene			0.056	U
SB-25 2-4	8/10/2015 10:56	100-01-6	4-Nitroaniline			0.056	U
							_
SB-25 2-4	8/10/2015 10:56	99-09-2	3-Nitroaniline			0.052	U

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-25 2-4	8/10/2015 10:56	88-74-4	2-Nitroaniline			0.051	U
SB-25 2-4	8/10/2015 10:56	105-67-9	2,4-Dimethylphenol			0.05	U
SB-25 2-4	8/10/2015 10:56	7005-72-3	4-Chlorophenyl phenyl ether			0.05	U
SB-25 2-4	8/10/2015 10:56	15831-10-4	3 & 4 Methylphenol			0.049	U
SB-25 2-4	8/10/2015 10:56	606-20-2	2,6-Dinitrotoluene			0.048	U
SB-25 2-4	8/10/2015 10:56	88-75-5	2-Nitrophenol	1		0.047	U
SB-25 2-4	8/10/2015 10:56	83-32-9	Acenaphthene	1		0.047	U
SB-25 2-4	8/10/2015 10:56	77-47-4	Hexachlorocyclopentadiene	1		0.047	U
SB-25 2-4	8/10/2015 10:56	95-57-8	2-Chlorophenol			0.045	U
SB-25 2-4	8/10/2015 10:56	111-91-1	Bis(2-chloroethoxy)methane			0.044	U
SB-25 2-4	8/10/2015 10:56	118-74-1	Hexachlorobenzene			0.044	U
SB-25 2-4	8/10/2015 10:56	91-57-6	2-Methylnaphthalene			0.043	U
SB-25 2-4	8/10/2015 10:56	84-66-2	Diethyl phthalate			0.042	U
SB-25 2-4	8/10/2015 10:56	101-55-3	4-Bromophenyl phenyl ether			0.041	U
SB-25 2-4	8/10/2015 10:56	208-96-8	Acenaphthylene			0.041	U
SB-25 2-4	8/10/2015 10:56	86-73-7	Fluorene			0.041	U
SB-25 2-4	8/10/2015 10:56	87-68-3	Hexachlorobutadiene			0.041	U
SB-25 2-4	8/10/2015 10:56	95-95-4	2,4,5-Trichlorophenol			0.04	U
SB-25 2-4	8/10/2015 10:56	120-83-2	2,4-Dichlorophenol			0.04	U
SB-25 2-4	8/10/2015 10:56	91-58-7	2-Chloronaphthalene			0.04	U
SB-25 2-4	8/10/2015 10:56	59-50-7	4-Chloro-3-methylphenol			0.04	U
SB-25 2-4	8/10/2015 10:56	131-11-3	Dimethyl phthalate			0.039	U
SB-25 2-4	8/10/2015 10:56	108-95-2	Phenol			0.039	U
SB-25 2-4	8/10/2015 10:56	132-64-9	Dibenzofuran			0.037	U
SB-25 2-4	8/10/2015 10:56	78-59-1	Isophorone			0.037	U
SB-25 2-4	8/10/2015 10:56	86-30-6	N-Nitrosodiphenylamine			0.037	U
SB-25 2-4	8/10/2015 10:56	621-64-7	N-Nitrosodi-n-propylamine			0.036	U
SB-25 2-4	8/10/2015 10:56	108-60-1	bis (2-chloroisopropyl) ether			0.034	U
SB-25 2-4	8/10/2015 10:56	86-74-8	Carbazole			0.034	U
SB-25 2-4	8/10/2015 10:56	84-74-2	Di-n-butyl phthalate			0.034	U
SB-25 2-4	8/10/2015 10:56	88-06-2	2,4,6-Trichlorophenol			0.033	U
SB-25 2-4	8/10/2015 10:56	117-81-7	Bis(2-ethylhexyl) phthalate			0.033	U
SB-25 2-4	8/10/2015 10:56	117-84-0	Di-n-octyl phthalate			0.033	U
SB-25 2-4	8/10/2015 10:56	91-94-1	3,3'-Dichlorobenzidine			0.032	U
SB-25 2-4	8/10/2015 10:56	98-86-2	Acetophenone			0.032	U
SB-25 2-4	8/10/2015 10:56	67-72-1	Hexachloroethane			0.032	U
SB-25 2-4	8/10/2015 10:56	95-48-7	2-Methylphenol			0.031	U
SB-25 2-4	8/10/2015 10:56	85-68-7	Butyl benzyl phthalate			0.03	U
SB-25 2-4	8/10/2015 10:56	98-95-3	Nitrobenzene			0.03	U
SB-25 2-4	8/10/2015 10:56	1912-24-9	Atrazine			0.026	U
SB-25 2-4	8/10/2015 10:56	111-44-4	Bis(2-chloroethyl)ether			0.051	U*
SB-25 2-4	8/10/2015 10:56	321-60-8	2-Fluorobiphenyl	NL	NL	2.3	
SB-25 2-4	8/10/2015 10:56	205-99-2	Benzo[b]fluoranthene	5	12.5	0.95	

			iviacon, da		Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D				Elag
SB-25 2-4		129-00-0	•	(mg/kg)	(mg/kg)	(mg/kg)	Flag
-	8/10/2015 10:56		Pyrene	500	2,350	0.81	,
SB-25 2-4	8/10/2015 10:56	206-44-0	Fluoranthene	500	3,130	0.77	
SB-25 2-4	8/10/2015 10:56	50-32-8	Benzo[a]pyrene	1.64	1.25	0.76	<u> </u>
SB-25 2-4	8/10/2015 10:56	191-24-2	Benzo[g,h,i]perylene	500	2,350	0.64	
SB-25 2-4	8/10/2015 10:56	56-55-3	Benzo[a]anthracene	5	12.5	0.6	
SB-25 2-4	8/10/2015 10:56	218-01-9	Chrysene	5	1,250	0.5	
SB-25 2-4	8/10/2015 10:56	193-39-5	Indeno[1,2,3-cd]pyrene	5	12.5	0.49	<u> </u>
SB-25 4-6	8/10/2015 11:11	92-52-4	1,1'-Biphenyl	1		2.1	U
SB-25 4-6	8/10/2015 11:11	51-28-5	2,4-Dinitrophenol			1	U
SB-25 4-6	8/10/2015 11:11	100-02-7	4-Nitrophenol			0.41	U
SB-25 4-6	8/10/2015 11:11	87-86-5	Pentachlorophenol			0.41	U
SB-25 4-6	8/10/2015 11:11	534-52-1	4,6-Dinitro-2-methylphenol			0.21	U
SB-25 4-6	8/10/2015 11:11	105-60-2	Caprolactam			0.082	U
SB-25 4-6	8/10/2015 11:11	207-08-9	Benzo[k]fluoranthene			0.081	U
SB-25 4-6	8/10/2015 11:11	100-52-7	Benzaldehyde			0.072	U
SB-25 4-6	8/10/2015 11:11	106-47-8	4-Chloroaniline			0.064	U
SB-25 4-6	8/10/2015 11:11	50-32-8	Benzo[a]pyrene			0.064	U
SB-25 4-6	8/10/2015 11:11	121-14-2	2,4-Dinitrotoluene			0.061	U
SB-25 4-6	8/10/2015 11:11	100-01-6	4-Nitroaniline			0.061	U
SB-25 4-6	8/10/2015 11:11	99-09-2	3-Nitroaniline			0.057	U
SB-25 4-6	8/10/2015 11:11	88-74-4	2-Nitroaniline			0.056	U
SB-25 4-6	8/10/2015 11:11	105-67-9	2,4-Dimethylphenol			0.055	U
SB-25 4-6	8/10/2015 11:11	7005-72-3	4-Chlorophenyl phenyl ether			0.055	U
SB-25 4-6	8/10/2015 11:11	15831-10-4	3 & 4 Methylphenol			0.053	U
SB-25 4-6	8/10/2015 11:11	606-20-2	2,6-Dinitrotoluene			0.052	U
SB-25 4-6	8/10/2015 11:11	88-75-5	2-Nitrophenol			0.051	U
SB-25 4-6	8/10/2015 11:11	83-32-9	Acenaphthene			0.051	U
SB-25 4-6	8/10/2015 11:11	77-47-4	Hexachlorocyclopentadiene			0.051	U
SB-25 4-6	8/10/2015 11:11	95-57-8	2-Chlorophenol	†		0.05	U
SB-25 4-6	8/10/2015 11:11	111-91-1	Bis(2-chloroethoxy)methane			0.048	U
SB-25 4-6	8/10/2015 11:11	53-70-3	Dibenz(a,h)anthracene	†		0.048	U
SB-25 4-6	8/10/2015 11:11	118-74-1	Hexachlorobenzene	†		0.048	U
SB-25 4-6	8/10/2015 11:11	91-57-6	2-Methylnaphthalene	†		0.047	U
SB-25 4-6	8/10/2015 11:11	205-99-2	Benzo[b]fluoranthene	+		0.047	U
SB-25 4-6	8/10/2015 11:11	84-66-2	Diethyl phthalate	+		0.047	U
SB-25 4-6	8/10/2015 11:11	101-55-3	4-Bromophenyl phenyl ether	1		0.045	U
SB-25 4-6	8/10/2015 11:11	208-96-8	Acenaphthylene	1		0.045	U
SB-25 4-6	8/10/2015 11:11	86-73-7	Fluorene	1		0.045	U
SB-25 4-6	8/10/2015 11:11	87-68-3	Hexachlorobutadiene	+		0.045	U
		.		1			
SB-25 4-6	8/10/2015 11:11	95-95-4	2,4,5-Trichlorophenol	1		0.043	U
SB-25 4-6	8/10/2015 11:11	120-83-2	2,4-Dichlorophenol	1		0.043	U
SB-25 4-6	8/10/2015 11:11	91-58-7	2-Chloronaphthalene	1		0.043	U
SB-25 4-6	8/10/2015 11:11	59-50-7	4-Chloro-3-methylphenol			0.043	U

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-25 4-6	8/10/2015 11:11	131-11-3	Dimethyl phthalate			0.042	U
SB-25 4-6	8/10/2015 11:11	108-95-2	Phenol			0.042	U
SB-25 4-6	8/10/2015 11:11	132-64-9	Dibenzofuran			0.041	U
SB-25 4-6	8/10/2015 11:11	78-59-1	Isophorone			0.041	U
SB-25 4-6	8/10/2015 11:11	86-30-6	N-Nitrosodiphenylamine			0.041	U
SB-25 4-6	8/10/2015 11:11	206-44-0	Fluoranthene			0.04	U
SB-25 4-6	8/10/2015 11:11	621-64-7	N-Nitrosodi-n-propylamine			0.04	U
SB-25 4-6	8/10/2015 11:11	108-60-1	bis (2-chloroisopropyl) ether			0.037	U
SB-25 4-6	8/10/2015 11:11	86-74-8	Carbazole			0.037	U
SB-25 4-6	8/10/2015 11:11	84-74-2	Di-n-butyl phthalate			0.037	U
SB-25 4-6	8/10/2015 11:11	91-20-3	Naphthalene			0.037	U
SB-25 4-6	8/10/2015 11:11	88-06-2	2,4,6-Trichlorophenol			0.036	U
SB-25 4-6	8/10/2015 11:11	117-81-7	Bis(2-ethylhexyl) phthalate			0.036	U
SB-25 4-6	8/10/2015 11:11	117-84-0	Di-n-octyl phthalate			0.036	U
SB-25 4-6	8/10/2015 11:11	91-94-1	3,3'-Dichlorobenzidine			0.035	U
SB-25 4-6	8/10/2015 11:11	98-86-2	Acetophenone			0.035	U
SB-25 4-6	8/10/2015 11:11	67-72-1	Hexachloroethane			0.035	U
SB-25 4-6	8/10/2015 11:11	193-39-5	Indeno[1,2,3-cd]pyrene			0.035	U
SB-25 4-6	8/10/2015 11:11	95-48-7	2-Methylphenol			0.033	U
SB-25 4-6	8/10/2015 11:11	56-55-3	Benzo[a]anthracene			0.033	U
SB-25 4-6	8/10/2015 11:11	85-01-8	Phenanthrene			0.033	U
SB-25 4-6	8/10/2015 11:11	129-00-0	Pyrene			0.033	U
SB-25 4-6	8/10/2015 11:11	85-68-7	Butyl benzyl phthalate			0.032	U
SB-25 4-6	8/10/2015 11:11	98-95-3	Nitrobenzene			0.032	U
SB-25 4-6	8/10/2015 11:11	120-12-7	Anthracene			0.031	U
SB-25 4-6	8/10/2015 11:11	1912-24-9	Atrazine			0.029	U
SB-25 4-6	8/10/2015 11:11	191-24-2	Benzo[g,h,i]perylene			0.027	U
SB-25 4-6	8/10/2015 11:11	218-01-9	Chrysene			0.026	U
			,				
SB-25 4-6	8/10/2015 11:11	111-44-4	Bis(2-chloroethyl)ether			0.056	U F1 *
SB-25 4-6	8/10/2015 11:11	321-60-8	2-Fluorobiphenyl	NL	NL	3.5	
SB-25 8-10	8/10/2015 11:17	321-60-8	2-Fluorobiphenyl			0	D
SB-25 8-10	8/10/2015 11:17	92-52-4	1,1'-Biphenyl			20	U
SB-25 8-10	8/10/2015 11:17	51-28-5	2,4-Dinitrophenol			9.8	U
SB-25 8-10	8/10/2015 11:17	100-02-7	4-Nitrophenol			3.9	U
SB-25 8-10	8/10/2015 11:17	87-86-5	Pentachlorophenol			3.9	U
SB-25 8-10	8/10/2015 11:17	534-52-1	4,6-Dinitro-2-methylphenol			2	U
SB-25 8-10	8/10/2015 11:17	105-60-2	Caprolactam			0.78	U
SB-25 8-10	8/10/2015 11:17	207-08-9	Benzo[k]fluoranthene			0.76	U
SB-25 8-10	8/10/2015 11:17	100-52-7	Benzaldehyde			0.68	U
SB-25 8-10	8/10/2015 11:17	106-47-8	4-Chloroaniline			0.61	U
SB-25 8-10	8/10/2015 11:17	50-32-8	Benzo[a]pyrene			0.61	U
SB-25 8-10	8/10/2015 11:17	121-14-2	2,4-Dinitrotoluene			0.58	U

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-25 8-10	8/10/2015 11:17	100-01-6	4-Nitroaniline			0.58	U
SB-25 8-10	8/10/2015 11:17	99-09-2	3-Nitroaniline			0.54	U
SB-25 8-10	8/10/2015 11:17	88-74-4	2-Nitroaniline			0.53	U
SB-25 8-10	8/10/2015 11:17	105-67-9	2,4-Dimethylphenol			0.52	U
SB-25 8-10	8/10/2015 11:17	7005-72-3	4-Chlorophenyl phenyl ether			0.52	U
SB-25 8-10	8/10/2015 11:17	15831-10-4	3 & 4 Methylphenol			0.51	U
SB-25 8-10	8/10/2015 11:17	606-20-2	2,6-Dinitrotoluene			0.49	U
SB-25 8-10	8/10/2015 11:17	88-75-5	2-Nitrophenol			0.48	U
SB-25 8-10	8/10/2015 11:17	83-32-9	Acenaphthene			0.48	U
SB-25 8-10	8/10/2015 11:17	77-47-4	Hexachlorocyclopentadiene			0.48	U
SB-25 8-10	8/10/2015 11:17	95-57-8	2-Chlorophenol			0.47	U
SB-25 8-10	8/10/2015 11:17	111-91-1	Bis(2-chloroethoxy)methane			0.46	U
SB-25 8-10	8/10/2015 11:17	53-70-3	Dibenz(a,h)anthracene			0.46	U
SB-25 8-10	8/10/2015 11:17	118-74-1	Hexachlorobenzene			0.46	U
SB-25 8-10	8/10/2015 11:17	91-57-6	2-Methylnaphthalene			0.45	U
SB-25 8-10	8/10/2015 11:17	205-99-2	Benzo[b]fluoranthene			0.45	U
SB-25 8-10	8/10/2015 11:17	84-66-2	Diethyl phthalate			0.43	U
SB-25 8-10	8/10/2015 11:17	101-55-3	4-Bromophenyl phenyl ether			0.42	U
SB-25 8-10	8/10/2015 11:17	208-96-8	Acenaphthylene			0.42	U
SB-25 8-10	8/10/2015 11:17	86-73-7	Fluorene			0.42	U
SB-25 8-10	8/10/2015 11:17	87-68-3	Hexachlorobutadiene			0.42	U
SB-25 8-10	8/10/2015 11:17	95-95-4	2,4,5-Trichlorophenol			0.41	U
SB-25 8-10	8/10/2015 11:17	120-83-2	2,4-Dichlorophenol			0.41	U
SB-25 8-10	8/10/2015 11:17	91-58-7	2-Chloronaphthalene			0.41	U
SB-25 8-10	8/10/2015 11:17	59-50-7	4-Chloro-3-methylphenol			0.41	U
SB-25 8-10	8/10/2015 11:17	131-11-3	Dimethyl phthalate			0.4	U
SB-25 8-10	8/10/2015 11:17	108-95-2	Phenol			0.4	U
SB-25 8-10	8/10/2015 11:17	132-64-9	Dibenzofuran			0.39	U
SB-25 8-10	8/10/2015 11:17	78-59-1	Isophorone			0.39	U
SB-25 8-10	8/10/2015 11:17	86-30-6	N-Nitrosodiphenylamine			0.39	U
SB-25 8-10	8/10/2015 11:17	206-44-0	Fluoranthene			0.38	U
SB-25 8-10	8/10/2015 11:17	621-64-7	N-Nitrosodi-n-propylamine			0.38	U
SB-25 8-10	8/10/2015 11:17	108-60-1	bis (2-chloroisopropyl) ether			0.35	U
SB-25 8-10	8/10/2015 11:17	86-74-8	Carbazole			0.35	U
SB-25 8-10	8/10/2015 11:17	84-74-2	Di-n-butyl phthalate			0.35	U
SB-25 8-10	8/10/2015 11:17	91-20-3	Naphthalene			0.35	U
SB-25 8-10	8/10/2015 11:17	88-06-2	2,4,6-Trichlorophenol			0.34	U
SB-25 8-10	8/10/2015 11:17	117-81-7	Bis(2-ethylhexyl) phthalate			0.34	U
SB-25 8-10	8/10/2015 11:17	117-84-0	Di-n-octyl phthalate			0.34	U
SB-25 8-10	8/10/2015 11:17	91-94-1	3,3'-Dichlorobenzidine			0.33	U
SB-25 8-10	8/10/2015 11:17	98-86-2	Acetophenone			0.33	U
SB-25 8-10	8/10/2015 11:17	67-72-1	Hexachloroethane			0.33	U
SB-25 8-10	8/10/2015 11:17	193-39-5	Indeno[1,2,3-cd]pyrene			0.33	U

				_ 4.550	Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-25 8-10	8/10/2015 11:17	95-48-7	2-Methylphenol	1		0.32	U
SB-25 8-10	8/10/2015 11:17	56-55-3	Benzo[a]anthracene	1		0.32	U
SB-25 8-10	8/10/2015 11:17	85-01-8	Phenanthrene			0.32	U
SB-25 8-10	8/10/2015 11:17	129-00-0	Pyrene			0.32	U
SB-25 8-10	8/10/2015 11:17	85-68-7	Butyl benzyl phthalate			0.31	U
SB-25 8-10	8/10/2015 11:17	98-95-3	Nitrobenzene			0.31	U
SB-25 8-10	8/10/2015 11:17	120-12-7	Anthracene			0.29	U
SB-25 8-10	8/10/2015 11:17	1912-24-9	Atrazine			0.27	U
SB-25 8-10	8/10/2015 11:17	191-24-2	Benzo[g,h,i]perylene			0.26	U
SB-25 8-10	8/10/2015 11:17	218-01-9	Chrysene			0.25	U
SB-25 8-10	8/10/2015 11:17	111-44-4	Bis(2-chloroethyl)ether			0.53	U *
SB-41 13-15	8/10/2015 9:28	206-44-0	Fluoranthene			0.29	J
SB-41 13-15	8/10/2015 9:28	85-01-8	Phenanthrene			0.25	J
SB-41 13-15	8/10/2015 9:28	129-00-0	Pyrene			0.23	J
SB-41 13-15	8/10/2015 9:28	218-01-9	Chrysene			0.14	J
SB-41 13-15	8/10/2015 9:28	92-52-4	1,1'-Biphenyl			9.6	U
SB-41 13-15	8/10/2015 9:28	51-28-5	2,4-Dinitrophenol			4.7	U
SB-41 13-15	8/10/2015 9:28	100-02-7	4-Nitrophenol			1.9	U
SB-41 13-15	8/10/2015 9:28	87-86-5	Pentachlorophenol			1.9	U
SB-41 13-15	8/10/2015 9:28	534-52-1	4,6-Dinitro-2-methylphenol			0.96	U
SB-41 13-15	8/10/2015 9:28	207-08-9	Benzo[k]fluoranthene			0.37	U
SB-41 13-15	8/10/2015 9:28	105-60-2	Caprolactam			0.37	U
SB-41 13-15	8/10/2015 9:28	100-52-7	Benzaldehyde			0.33	U
SB-41 13-15	8/10/2015 9:28	106-47-8	4-Chloroaniline			0.29	U
SB-41 13-15	8/10/2015 9:28	50-32-8	Benzo[a]pyrene			0.29	U
SB-41 13-15	8/10/2015 9:28	121-14-2	2,4-Dinitrotoluene			0.28	U
SB-41 13-15	8/10/2015 9:28	100-01-6	4-Nitroaniline			0.28	U
SB-41 13-15	8/10/2015 9:28	99-09-2	3-Nitroaniline			0.26	U
SB-41 13-15	8/10/2015 9:28	105-67-9	2,4-Dimethylphenol			0.25	U
SB-41 13-15	8/10/2015 9:28	88-74-4	2-Nitroaniline			0.25	U
SB-41 13-15	8/10/2015 9:28	7005-72-3	4-Chlorophenyl phenyl ether			0.25	U
SB-41 13-15	8/10/2015 9:28	606-20-2	2,6-Dinitrotoluene			0.24	U
SB-41 13-15	8/10/2015 9:28	15831-10-4	3 & 4 Methylphenol			0.24	U
SB-41 13-15	8/10/2015 9:28	88-75-5	2-Nitrophenol			0.23	U
SB-41 13-15	8/10/2015 9:28	83-32-9	Acenaphthene			0.23	U
SB-41 13-15	8/10/2015 9:28	77-47-4	Hexachlorocyclopentadiene			0.23	U
SB-41 13-15	8/10/2015 9:28	95-57-8	2-Chlorophenol			0.22	U
SB-41 13-15	8/10/2015 9:28	111-91-1	Bis(2-chloroethoxy)methane			0.22	U
SB-41 13-15	8/10/2015 9:28	53-70-3	Dibenz(a,h)anthracene			0.22	U
SB-41 13-15	8/10/2015 9:28	118-74-1	Hexachlorobenzene			0.22	U
SB-41 13-15	8/10/2015 9:28	91-57-6	2-Methylnaphthalene			0.21	U
SB-41 13-15	8/10/2015 9:28	205-99-2	Benzo[b]fluoranthene			0.21	U
SB-41 13-15	8/10/2015 9:28	84-66-2	Diethyl phthalate			0.21	U
20 41 12-13	0/ 10/ 2013 3.28	U T UU-Z	Dictilyi piltilalate			0.41	

					Type 2	_	
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-41 13-15	8/10/2015 9:28	95-95-4	2,4,5-Trichlorophenol			0.2	U
SB-41 13-15	8/10/2015 9:28	120-83-2	2,4-Dichlorophenol			0.2	U
SB-41 13-15	8/10/2015 9:28	91-58-7	2-Chloronaphthalene			0.2	U
SB-41 13-15	8/10/2015 9:28	101-55-3	4-Bromophenyl phenyl ether			0.2	U
SB-41 13-15	8/10/2015 9:28	59-50-7	4-Chloro-3-methylphenol			0.2	U
SB-41 13-15	8/10/2015 9:28	208-96-8	Acenaphthylene			0.2	U
SB-41 13-15	8/10/2015 9:28	86-73-7	Fluorene			0.2	U
SB-41 13-15	8/10/2015 9:28	87-68-3	Hexachlorobutadiene			0.2	U
SB-41 13-15	8/10/2015 9:28	132-64-9	Dibenzofuran			0.19	U
SB-41 13-15	8/10/2015 9:28	131-11-3	Dimethyl phthalate			0.19	U
SB-41 13-15	8/10/2015 9:28	78-59-1	Isophorone			0.19	U
SB-41 13-15	8/10/2015 9:28	86-30-6	N-Nitrosodiphenylamine			0.19	J
SB-41 13-15	8/10/2015 9:28	108-95-2	Phenol			0.19	J
SB-41 13-15	8/10/2015 9:28	621-64-7	N-Nitrosodi-n-propylamine			0.18	U
SB-41 13-15	8/10/2015 9:28	108-60-1	bis (2-chloroisopropyl) ether			0.17	U
SB-41 13-15	8/10/2015 9:28	86-74-8	Carbazole			0.17	U
SB-41 13-15	8/10/2015 9:28	84-74-2	Di-n-butyl phthalate			0.17	U
SB-41 13-15	8/10/2015 9:28	91-20-3	Naphthalene			0.17	U
SB-41 13-15	8/10/2015 9:28	88-06-2	2,4,6-Trichlorophenol			0.16	U
SB-41 13-15	8/10/2015 9:28	91-94-1	3,3'-Dichlorobenzidine			0.16	U
SB-41 13-15	8/10/2015 9:28	98-86-2	Acetophenone			0.16	U
SB-41 13-15	8/10/2015 9:28	117-81-7	Bis(2-ethylhexyl) phthalate			0.16	U
SB-41 13-15	8/10/2015 9:28	117-84-0	Di-n-octyl phthalate			0.16	U
SB-41 13-15	8/10/2015 9:28	67-72-1	Hexachloroethane			0.16	U
SB-41 13-15	8/10/2015 9:28	193-39-5	Indeno[1,2,3-cd]pyrene			0.16	U
SB-41 13-15	8/10/2015 9:28	95-48-7	2-Methylphenol			0.15	U
SB-41 13-15	8/10/2015 9:28	56-55-3	Benzo[a]anthracene			0.15	U
SB-41 13-15	8/10/2015 9:28	85-68-7	Butyl benzyl phthalate			0.15	U
SB-41 13-15	8/10/2015 9:28	98-95-3	Nitrobenzene			0.15	U
SB-41 13-15	8/10/2015 9:28	120-12-7	Anthracene			0.14	U
SB-41 13-15	8/10/2015 9:28	1912-24-9	Atrazine			0.13	U
SB-41 13-15	8/10/2015 9:28	191-24-2	Benzo[g,h,i]perylene			0.12	U
SB-41 13-15	8/10/2015 9:28	111-44-4	Bis(2-chloroethyl)ether			0.25	U *
SB-41 13-15	8/10/2015 9:28	321-60-8	2-Fluorobiphenyl	NL	NL	2.4	
SB-41 4-6	8/10/2015 9:20	206-44-0	Fluoranthene			0.19	J
SB-41 4-6	8/10/2015 9:20	92-52-4	1,1'-Biphenyl			9.5	U
SB-41 4-6	8/10/2015 9:20	51-28-5	2,4-Dinitrophenol			4.6	U
SB-41 4-6	8/10/2015 9:20	100-02-7	4-Nitrophenol			1.8	U
SB-41 4-6	8/10/2015 9:20	87-86-5	Pentachlorophenol			1.8	U
SB-41 4-6	8/10/2015 9:20	534-52-1	4,6-Dinitro-2-methylphenol			0.95	U
SB-41 4-6	8/10/2015 9:20	105-60-2	Caprolactam			0.37	U
SB-41 4-6	8/10/2015 9:20	207-08-9	Benzo[k]fluoranthene			0.36	U
SB-41 4-6	8/10/2015 9:20	100-52-7	Benzaldehyde			0.32	U

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-41 4-6	8/10/2015 9:20	106-47-8	4-Chloroaniline			0.29	U
SB-41 4-6	8/10/2015 9:20	50-32-8	Benzo[a]pyrene			0.29	U
SB-41 4-6	8/10/2015 9:20	121-14-2	2,4-Dinitrotoluene			0.27	U
SB-41 4-6	8/10/2015 9:20	100-01-6	4-Nitroaniline			0.27	U
SB-41 4-6	8/10/2015 9:20	99-09-2	3-Nitroaniline			0.26	U
SB-41 4-6	8/10/2015 9:20	88-74-4	2-Nitroaniline			0.25	U
SB-41 4-6	8/10/2015 9:20	105-67-9	2,4-Dimethylphenol			0.24	U
SB-41 4-6	8/10/2015 9:20	15831-10-4	3 & 4 Methylphenol			0.24	U
SB-41 4-6	8/10/2015 9:20	7005-72-3	4-Chlorophenyl phenyl ether			0.24	U
SB-41 4-6	8/10/2015 9:20	606-20-2	2,6-Dinitrotoluene			0.23	U
SB-41 4-6	8/10/2015 9:20	88-75-5	2-Nitrophenol			0.23	U
SB-41 4-6	8/10/2015 9:20	83-32-9	Acenaphthene			0.23	U
SB-41 4-6	8/10/2015 9:20	77-47-4	Hexachlorocyclopentadiene			0.23	U
SB-41 4-6	8/10/2015 9:20	95-57-8	2-Chlorophenol			0.22	U
SB-41 4-6	8/10/2015 9:20	111-91-1	Bis(2-chloroethoxy)methane			0.22	U
SB-41 4-6	8/10/2015 9:20	53-70-3	Dibenz(a,h)anthracene			0.22	U
SB-41 4-6	8/10/2015 9:20	118-74-1	Hexachlorobenzene			0.22	U
SB-41 4-6	8/10/2015 9:20	91-57-6	2-Methylnaphthalene			0.21	U
SB-41 4-6	8/10/2015 9:20	205-99-2	Benzo[b]fluoranthene			0.21	U
SB-41 4-6	8/10/2015 9:20	84-66-2	Diethyl phthalate			0.21	U
SB-41 4-6	8/10/2015 9:20	101-55-3	4-Bromophenyl phenyl ether			0.2	U
SB-41 4-6	8/10/2015 9:20	208-96-8	Acenaphthylene			0.2	U
SB-41 4-6	8/10/2015 9:20	86-73-7	Fluorene			0.2	U
SB-41 4-6	8/10/2015 9:20	87-68-3	Hexachlorobutadiene			0.2	U
SB-41 4-6	8/10/2015 9:20	95-95-4	2,4,5-Trichlorophenol			0.19	U
SB-41 4-6	8/10/2015 9:20	120-83-2	2,4-Dichlorophenol			0.19	U
SB-41 4-6	8/10/2015 9:20	91-58-7	2-Chloronaphthalene			0.19	U
SB-41 4-6	8/10/2015 9:20	59-50-7	4-Chloro-3-methylphenol			0.19	U
SB-41 4-6	8/10/2015 9:20	131-11-3	Dimethyl phthalate			0.19	U
SB-41 4-6	8/10/2015 9:20	108-95-2	Phenol			0.19	U
SB-41 4-6	8/10/2015 9:20	132-64-9	Dibenzofuran			0.18	U
SB-41 4-6	8/10/2015 9:20	78-59-1	Isophorone			0.18	U
SB-41 4-6	8/10/2015 9:20	621-64-7	N-Nitrosodi-n-propylamine			0.18	U
SB-41 4-6	8/10/2015 9:20	86-30-6	N-Nitrosodiphenylamine			0.18	U
SB-41 4-6	8/10/2015 9:20	108-60-1	bis (2-chloroisopropyl) ether	1		0.17	U
SB-41 4-6	8/10/2015 9:20	86-74-8	Carbazole	1		0.17	U
SB-41 4-6	8/10/2015 9:20	84-74-2	Di-n-butyl phthalate			0.17	U
SB-41 4-6	8/10/2015 9:20	91-20-3	Naphthalene			0.17	U
SB-41 4-6	8/10/2015 9:20	88-06-2	2,4,6-Trichlorophenol	+		0.16	U
SB-41 4-6	8/10/2015 9:20	91-94-1	3,3'-Dichlorobenzidine	+		0.16	U
SB-41 4-6	8/10/2015 9:20	98-86-2	Acetophenone			0.16	U
SB-41 4-6	8/10/2015 9:20	117-81-7	Bis(2-ethylhexyl) phthalate			0.16	U
SB-41 4-6	8/10/2015 9:20	117-84-0	Di-n-octyl phthalate	1		0.16	U

					Type 2		
Client Sample				Type 1 RRS	RRS	Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-41 4-6	8/10/2015 9:20	67-72-1	Hexachloroethane			0.16	U
SB-41 4-6	8/10/2015 9:20	193-39-5	Indeno[1,2,3-cd]pyrene			0.16	U
SB-41 4-6	8/10/2015 9:20	95-48-7	2-Methylphenol			0.15	U
SB-41 4-6	8/10/2015 9:20	56-55-3	Benzo[a]anthracene			0.15	U
SB-41 4-6	8/10/2015 9:20	85-01-8	Phenanthrene			0.15	U
SB-41 4-6	8/10/2015 9:20	129-00-0	Pyrene			0.15	U
SB-41 4-6	8/10/2015 9:20	120-12-7	Anthracene			0.14	U
SB-41 4-6	8/10/2015 9:20	85-68-7	Butyl benzyl phthalate			0.14	U
SB-41 4-6	8/10/2015 9:20	98-95-3	Nitrobenzene			0.14	U
SB-41 4-6	8/10/2015 9:20	1912-24-9	Atrazine			0.13	U
SB-41 4-6	8/10/2015 9:20	191-24-2	Benzo[g,h,i]perylene			0.12	U
SB-41 4-6	8/10/2015 9:20	218-01-9	Chrysene			0.12	U
SB-41 4-6	8/10/2015 9:20	111-44-4	Bis(2-chloroethyl)ether			0.25	U *
SB-41 4-6	8/10/2015 9:20	321-60-8	2-Fluorobiphenyl	NL	NL	2.8	
SB-41 8-10	8/10/2015 9:24	92-52-4	1,1'-Biphenyl			9.4	U
SB-41 8-10	8/10/2015 9:24	51-28-5	2,4-Dinitrophenol			4.6	U
SB-41 8-10	8/10/2015 9:24	100-02-7	4-Nitrophenol			1.8	U
SB-41 8-10	8/10/2015 9:24	87-86-5	Pentachlorophenol			1.8	U
SB-41 8-10	8/10/2015 9:24	534-52-1	4,6-Dinitro-2-methylphenol			0.94	U
SB-41 8-10	8/10/2015 9:24	105-60-2	Caprolactam			0.37	U
SB-41 8-10	8/10/2015 9:24	207-08-9	Benzo[k]fluoranthene			0.36	U
SB-41 8-10	8/10/2015 9:24	100-52-7	Benzaldehyde			0.32	U
SB-41 8-10	8/10/2015 9:24	106-47-8	4-Chloroaniline			0.29	U
SB-41 8-10	8/10/2015 9:24	50-32-8	Benzo[a]pyrene			0.29	U
SB-41 8-10	8/10/2015 9:24	121-14-2	2,4-Dinitrotoluene			0.27	U
SB-41 8-10	8/10/2015 9:24	100-01-6	4-Nitroaniline			0.27	U
SB-41 8-10	8/10/2015 9:24	99-09-2	3-Nitroaniline			0.26	U
SB-41 8-10	8/10/2015 9:24	88-74-4	2-Nitroaniline			0.25	U
SB-41 8-10	8/10/2015 9:24	105-67-9	2,4-Dimethylphenol			0.24	U
SB-41 8-10	8/10/2015 9:24	15831-10-4	3 & 4 Methylphenol			0.24	U
SB-41 8-10	8/10/2015 9:24	7005-72-3	4-Chlorophenyl phenyl ether			0.24	U
SB-41 8-10	8/10/2015 9:24	606-20-2	2,6-Dinitrotoluene			0.23	U
SB-41 8-10	8/10/2015 9:24	88-75-5	2-Nitrophenol			0.23	U
SB-41 8-10	8/10/2015 9:24	83-32-9	Acenaphthene			0.23	U
SB-41 8-10	8/10/2015 9:24	77-47-4	Hexachlorocyclopentadiene			0.23	U
SB-41 8-10	8/10/2015 9:24	95-57-8	2-Chlorophenol			0.22	U
SB-41 8-10	8/10/2015 9:24	111-91-1	Bis(2-chloroethoxy)methane			0.22	U
SB-41 8-10	8/10/2015 9:24	53-70-3	Dibenz(a,h)anthracene			0.22	U
SB-41 8-10	8/10/2015 9:24	118-74-1	Hexachlorobenzene			0.22	U
SB-41 8-10	8/10/2015 9:24	91-57-6	2-Methylnaphthalene			0.21	U
SB-41 8-10	8/10/2015 9:24	205-99-2	Benzo[b]fluoranthene			0.21	U
SB-41 8-10	8/10/2015 9:24	84-66-2	Diethyl phthalate			0.21	U
	0/10/2013 3.27	07 00 2	Dictify pritrialate			0.21	

				Type 1 RRS	Type 2		
Client Sample					Result		
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	Flag	
SB-41 8-10	8/10/2015 9:24	208-96-8	Acenaphthylene		0.2	U	
SB-41 8-10	8/10/2015 9:24	86-73-7	Fluorene		0.2	U	
SB-41 8-10	8/10/2015 9:24	87-68-3	Hexachlorobutadiene			0.2	U
SB-41 8-10	8/10/2015 9:24	95-95-4	2,4,5-Trichlorophenol			0.19	U
SB-41 8-10	8/10/2015 9:24	120-83-2	2,4-Dichlorophenol			0.19	U
SB-41 8-10	8/10/2015 9:24	91-58-7	2-Chloronaphthalene			0.19	U
SB-41 8-10	8/10/2015 9:24	59-50-7	4-Chloro-3-methylphenol			0.19	U
SB-41 8-10	8/10/2015 9:24	131-11-3	Dimethyl phthalate			0.19	U
SB-41 8-10	8/10/2015 9:24	108-95-2	Phenol			0.19	U
SB-41 8-10	8/10/2015 9:24	132-64-9	Dibenzofuran			0.18	U
SB-41 8-10	8/10/2015 9:24	206-44-0	Fluoranthene			0.18	U
SB-41 8-10	8/10/2015 9:24	78-59-1	Isophorone			0.18	U
SB-41 8-10	8/10/2015 9:24	621-64-7	N-Nitrosodi-n-propylamine			0.18	U
SB-41 8-10	8/10/2015 9:24	86-30-6	N-Nitrosodiphenylamine			0.18	U
SB-41 8-10	8/10/2015 9:24	108-60-1	bis (2-chloroisopropyl) ether			0.17	U
SB-41 8-10	8/10/2015 9:24	86-74-8	Carbazole			0.17	U
SB-41 8-10	8/10/2015 9:24	84-74-2	Di-n-butyl phthalate			0.17	U
SB-41 8-10	8/10/2015 9:24	91-20-3	Naphthalene			0.17	U
SB-41 8-10	8/10/2015 9:24	88-06-2	2,4,6-Trichlorophenol			0.16	U
SB-41 8-10	8/10/2015 9:24	91-94-1	3,3'-Dichlorobenzidine			0.16	U
SB-41 8-10	8/10/2015 9:24	98-86-2	Acetophenone			0.16	U
SB-41 8-10	8/10/2015 9:24	117-81-7	Bis(2-ethylhexyl) phthalate			0.16	U
SB-41 8-10	8/10/2015 9:24	117-84-0	Di-n-octyl phthalate			0.16	U
SB-41 8-10	8/10/2015 9:24	67-72-1	Hexachloroethane			0.16	U
SB-41 8-10	8/10/2015 9:24	193-39-5	Indeno[1,2,3-cd]pyrene			0.16	U
SB-41 8-10	8/10/2015 9:24	95-48-7	2-Methylphenol			0.15	U
SB-41 8-10	8/10/2015 9:24	56-55-3	Benzo[a]anthracene			0.15	U
SB-41 8-10	8/10/2015 9:24	85-01-8	Phenanthrene			0.15	U
SB-41 8-10	8/10/2015 9:24	129-00-0	Pyrene			0.15	U
SB-41 8-10	8/10/2015 9:24	120-12-7	Anthracene			0.14	U
SB-41 8-10	8/10/2015 9:24	85-68-7	Butyl benzyl phthalate			0.14	U
SB-41 8-10	8/10/2015 9:24	98-95-3	Nitrobenzene			0.14	U
SB-41 8-10	8/10/2015 9:24	1912-24-9	Atrazine			0.13	U
SB-41 8-10	8/10/2015 9:24	191-24-2	Benzo[g,h,i]perylene			0.12	U
SB-41 8-10	8/10/2015 9:24	218-01-9	Chrysene			0.12	U
SB-41 8-10	8/10/2015 9:24	111-44-4	Bis(2-chloroethyl)ether			0.25	U *
SB-41 8-10	8/10/2015 9:24	321-60-8	2-Fluorobiphenyl	NL	NL	2.8	
SB-42 13-15	8/6/2015 16:15	129-00-0	Pyrene			0.044	J
SB-42 13-15	8/6/2015 16:15	206-44-0	Fluoranthene			0.038	J
SB-42 13-15	8/6/2015 16:15	85-01-8	Phenanthrene			0.037	J
SB-42 13-15	8/6/2015 16:15	91-20-3	Naphthalene			0.034	J
SB-42 13-15	8/6/2015 16:15	218-01-9	Chrysene			0.033	J
SB-42 13-15	8/6/2015 16:15	117-81-7	Bis(2-ethylhexyl) phthalate			0.21	J B

					Type 2 RRS			
Client Sample				Type 1 RRS Analyte by Method 8270D (mg/kg) (
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag	
SB-42 13-15	8/6/2015 16:15	92-52-4	1,1'-Biphenyl			1.9	U	
SB-42 13-15	8/6/2015 16:15	51-28-5	2,4-Dinitrophenol			0.93	U	
SB-42 13-15	8/6/2015 16:15	100-02-7	4-Nitrophenol			0.37	U	
SB-42 13-15	8/6/2015 16:15	87-86-5	Pentachlorophenol			0.37	U	
SB-42 13-15	8/6/2015 16:15	105-60-2	Caprolactam			0.074	U	
SB-42 13-15	8/6/2015 16:15	207-08-9	Benzo[k]fluoranthene			0.073	U	
SB-42 13-15	8/6/2015 16:15	100-52-7	Benzaldehyde			0.065	U	
SB-42 13-15	8/6/2015 16:15	106-47-8	4-Chloroaniline			0.058	U	
SB-42 13-15	8/6/2015 16:15	50-32-8	Benzo[a]pyrene			0.058	U	
SB-42 13-15	8/6/2015 16:15	121-14-2	2,4-Dinitrotoluene			0.055	U	
SB-42 13-15	8/6/2015 16:15	100-01-6	4-Nitroaniline			0.055	U	
SB-42 13-15	8/6/2015 16:15	99-09-2	3-Nitroaniline			0.052	U	
SB-42 13-15	8/6/2015 16:15	88-74-4	2-Nitroaniline			0.05	U	
SB-42 13-15	8/6/2015 16:15	111-44-4	Bis(2-chloroethyl)ether			0.05	U	
SB-42 13-15	8/6/2015 16:15	105-67-9	2,4-Dimethylphenol			0.049	U	
SB-42 13-15	8/6/2015 16:15	7005-72-3	4-Chlorophenyl phenyl ether			0.049	U	
SB-42 13-15	8/6/2015 16:15	15831-10-4	3 & 4 Methylphenol			0.048	U	
SB-42 13-15	8/6/2015 16:15	606-20-2	2,6-Dinitrotoluene			0.047	U	
SB-42 13-15	8/6/2015 16:15	88-75-5	2-Nitrophenol			0.046	U	
SB-42 13-15	8/6/2015 16:15	83-32-9	Acenaphthene			0.046	U	
SB-42 13-15	8/6/2015 16:15	77-47-4	Hexachlorocyclopentadiene			0.046	U	
SB-42 13-15	8/6/2015 16:15	95-57-8	2-Chlorophenol			0.045	U	
SB-42 13-15	8/6/2015 16:15	111-91-1	Bis(2-chloroethoxy)methane			0.044	U	
SB-42 13-15	8/6/2015 16:15	53-70-3	Dibenz(a,h)anthracene			0.044	U	
SB-42 13-15	8/6/2015 16:15	118-74-1	Hexachlorobenzene			0.044	U	
SB-42 13-15	8/6/2015 16:15	91-57-6	2-Methylnaphthalene			0.043	U	
SB-42 13-15	8/6/2015 16:15	205-99-2	Benzo[b]fluoranthene			0.043	U	
SB-42 13-15		84-66-2	Diethyl phthalate			0.041	U	
SB-42 13-15	8/6/2015 16:15	101-55-3	4-Bromophenyl phenyl ether			0.04	U	
SB-42 13-15	8/6/2015 16:15	208-96-8	Acenaphthylene			0.04	U	
SB-42 13-15	8/6/2015 16:15	86-73-7	Fluorene			0.04	U	
SB-42 13-15	8/6/2015 16:15	87-68-3	Hexachlorobutadiene			0.04	U	
SB-42 13-15	8/6/2015 16:15	95-95-4	2,4,5-Trichlorophenol			0.039	U	
SB-42 13-15	8/6/2015 16:15	120-83-2	2,4-Dichlorophenol			0.039	U	
SB-42 13-15	8/6/2015 16:15	91-58-7	2-Chloronaphthalene			0.039	U	
SB-42 13-15	8/6/2015 16:15	59-50-7	4-Chloro-3-methylphenol			0.039	U	
SB-42 13-15	8/6/2015 16:15	131-11-3	Dimethyl phthalate			0.038	U	
SB-42 13-15	8/6/2015 16:15	108-95-2	Phenol			0.038	U	
SB-42 13-15	8/6/2015 16:15	132-64-9	Dibenzofuran			0.037	U	
SB-42 13-15	8/6/2015 16:15	78-59-1				0.037	U	
SB-42 13-15	8/6/2015 16:15	86-30-6	N-Nitrosodiphenylamine			0.037	U	
SB-42 13-15	8/6/2015 16:15	621-64-7	N-Nitrosodi-n-propylamine			0.036	U	
SB-42 13-15	8/6/2015 16:15	108-60-1	bis (2-chloroisopropyl) ether			0.034	U	
20 45 13-13	0,0,2013 10.13	100 00-1	Dia (2 ciliorolaupi upyi) etilei	1		0.034	J	

		1					
					Type 2 RRS	Result	
Client Sample				Analyte by Method 8270D Type 1 RRS (mg/kg) (n			
ID	Collection Date	CAS		(mg/kg)	(mg/kg)	(mg/kg)	Flag
SB-42 13-15	8/6/2015 16:15	86-74-8	Carbazole		0.034 0.034	U	
SB-42 13-15	8/6/2015 16:15	84-74-2		Di-n-butyl phthalate			
SB-42 13-15	8/6/2015 16:15	88-06-2	2,4,6-Trichlorophenol			0.033	U
SB-42 13-15	8/6/2015 16:15	117-84-0	Di-n-octyl phthalate			0.033	U
SB-42 13-15	8/6/2015 16:15	91-94-1	3,3'-Dichlorobenzidine			0.031	U
SB-42 13-15	8/6/2015 16:15	98-86-2	Acetophenone			0.031	U
SB-42 13-15	8/6/2015 16:15	67-72-1	Hexachloroethane			0.031	U
SB-42 13-15	8/6/2015 16:15	193-39-5	Indeno[1,2,3-cd]pyrene			0.031	U
SB-42 13-15	8/6/2015 16:15	95-48-7	2-Methylphenol			0.03	J
SB-42 13-15	8/6/2015 16:15	56-55-3	Benzo[a]anthracene			0.03	U
SB-42 13-15	8/6/2015 16:15	85-68-7	Butyl benzyl phthalate			0.029	U
SB-42 13-15	8/6/2015 16:15	98-95-3	Nitrobenzene			0.029	U
SB-42 13-15	8/6/2015 16:15	120-12-7	Anthracene			0.028	U
SB-42 13-15	8/6/2015 16:15	1912-24-9	Atrazine			0.026	U
SB-42 13-15	8/6/2015 16:15	191-24-2	Benzo[g,h,i]perylene			0.025	U
SB-42 13-15	8/6/2015 16:15	534-52-1	4,6-Dinitro-2-methylphenol			0.19	U *
SB-42 13-15	8/6/2015 16:15	321-60-8	2-Fluorobiphenyl	NL	NL	2.5	
SB-42 2-4	8/6/2015 16:02	206-44-0	Fluoranthene			0.27	J
SB-42 2-4	8/6/2015 16:02	129-00-0	Pyrene			0.22	J
SB-42 2-4	8/6/2015 16:02	205-99-2	Benzo[b]fluoranthene			0.16	J
SB-42 2-4	8/6/2015 16:02	85-01-8	Phenanthrene			0.16	J
SB-42 2-4	8/6/2015 16:02	218-01-9	Chrysene			0.12	J
SB-42 2-4	8/6/2015 16:02	56-55-3	Benzo[a]anthracene			0.11	J
SB-42 2-4	8/6/2015 16:02	50-32-8	Benzo[a]pyrene			0.11	J
SB-42 2-4	8/6/2015 16:02	191-24-2	Benzo[g,h,i]perylene			0.074	J
SB-42 2-4	8/6/2015 16:02	207-08-9	Benzo[k]fluoranthene			0.074	J
SB-42 2-4	8/6/2015 16:02	193-39-5	Indeno[1,2,3-cd]pyrene			0.06	J
SB-42 2-4	8/6/2015 16:02	120-12-7	Anthracene			0.042	J
SB-42 2-4	8/6/2015 16:02	92-52-4	1,1'-Biphenyl			1.8	U
SB-42 2-4	8/6/2015 16:02	51-28-5	2,4-Dinitrophenol			0.9	U
SB-42 2-4	8/6/2015 16:02	100-02-7	4-Nitrophenol			0.36	U
SB-42 2-4	8/6/2015 16:02	87-86-5	Pentachlorophenol			0.36	U
SB-42 2-4	8/6/2015 16:02	105-60-2	Caprolactam			0.071	U
SB-42 2-4	8/6/2015 16:02	100-52-7	Benzaldehyde			0.063	U
SB-42 2-4	8/6/2015 16:02	106-47-8	4-Chloroaniline	1		0.056	U
SB-42 2-4	8/6/2015 16:02	121-14-2	2,4-Dinitrotoluene	1		0.053	U
SB-42 2-4	8/6/2015 16:02	100-01-6	4-Nitroaniline	1		0.053	U
SB-42 2-4	8/6/2015 16:02	99-09-2	3-Nitroaniline	1		0.05	U
SB-42 2-4	8/6/2015 16:02	88-74-4	2-Nitroaniline			0.049	U
SB-42 2-4	8/6/2015 16:02	111-44-4	Bis(2-chloroethyl)ether		0.049	U	
SB-42 2-4	8/6/2015 16:02	105-67-9	2,4-Dimethylphenol		0.048	U	
SB-42 2-4	8/6/2015 16:02	7005-72-3	4-Chlorophenyl phenyl ether			0.048	U
SB-42 2-4	8/6/2015 16:02	15831-10-4	3 & 4 Methylphenol			0.046	U
35 12 Z T	5/ 5/ 2013 10.02	12001 10 4	J & THEETINIPHETION	1		0.070	

					Type 2		
Client Sample				Type 1 RRS		Result	
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	Flag	
SB-42 2-4	8/6/2015 16:02	606-20-2	2,6-Dinitrotoluene				
SB-42 2-4	8/6/2015 16:02	88-75-5	•	2-Nitrophenol			
SB-42 2-4	8/6/2015 16:02	83-32-9	Acenaphthene			0.044 0.044	U
SB-42 2-4	8/6/2015 16:02	77-47-4	Hexachlorocyclopentadiene			0.044	U
SB-42 2-4	8/6/2015 16:02	95-57-8	2-Chlorophenol			0.043	U
SB-42 2-4	8/6/2015 16:02	111-91-1	Bis(2-chloroethoxy)methane			0.043	U
SB-42 2-4	8/6/2015 16:02	53-70-3	Dibenz(a,h)anthracene			0.042	U
SB-42 2-4	8/6/2015 16:02	118-74-1	Hexachlorobenzene			0.042	U
SB-42 2-4	8/6/2015 16:02	91-57-6	2-Methylnaphthalene			0.042	U
SB-42 2-4 SB-42 2-4	8/6/2015 16:02	84-66-2					U
			Diethyl phthalate			0.04	
SB-42 2-4	8/6/2015 16:02	101-55-3	4-Bromophenyl phenyl ether			0.039	U
SB-42 2-4	8/6/2015 16:02	208-96-8	Acenaphthylene			0.039	U
SB-42 2-4	8/6/2015 16:02	86-73-7	Fluorene			0.039	U
SB-42 2-4	8/6/2015 16:02	87-68-3	Hexachlorobutadiene			0.039	U
SB-42 2-4	8/6/2015 16:02	95-95-4	2,4,5-Trichlorophenol			0.038	U
SB-42 2-4	8/6/2015 16:02	120-83-2	2,4-Dichlorophenol			0.038	U
SB-42 2-4	8/6/2015 16:02	91-58-7	2-Chloronaphthalene			0.038	U
SB-42 2-4	8/6/2015 16:02	59-50-7	4-Chloro-3-methylphenol			0.038	U
SB-42 2-4	8/6/2015 16:02	131-11-3	Dimethyl phthalate			0.037	U
SB-42 2-4	8/6/2015 16:02	108-95-2	Phenol			0.037	U
SB-42 2-4	8/6/2015 16:02	132-64-9	Dibenzofuran			0.036	U
SB-42 2-4	8/6/2015 16:02	78-59-1	Isophorone			0.036	U
SB-42 2-4	8/6/2015 16:02	86-30-6	N-Nitrosodiphenylamine			0.036	U
SB-42 2-4	8/6/2015 16:02	621-64-7	N-Nitrosodi-n-propylamine			0.035	U
SB-42 2-4	8/6/2015 16:02	108-60-1	bis (2-chloroisopropyl) ether			0.032	U
SB-42 2-4	8/6/2015 16:02	86-74-8	Carbazole			0.032	U
SB-42 2-4	8/6/2015 16:02	84-74-2	Di-n-butyl phthalate			0.032	U
SB-42 2-4	8/6/2015 16:02	91-20-3	Naphthalene			0.032	U
SB-42 2-4	8/6/2015 16:02	88-06-2	2,4,6-Trichlorophenol			0.031	U
SB-42 2-4	8/6/2015 16:02	117-81-7	Bis(2-ethylhexyl) phthalate			0.031	U
SB-42 2-4	8/6/2015 16:02	117-84-0	Di-n-octyl phthalate			0.031	U
SB-42 2-4	8/6/2015 16:02	91-94-1	3,3'-Dichlorobenzidine			0.03	U
SB-42 2-4	8/6/2015 16:02	98-86-2	Acetophenone			0.03	U
SB-42 2-4	8/6/2015 16:02	67-72-1	Hexachloroethane			0.03	U
SB-42 2-4	8/6/2015 16:02	95-48-7	2-Methylphenol			0.029	U
SB-42 2-4	8/6/2015 16:02	85-68-7	Butyl benzyl phthalate			0.028	U
SB-42 2-4	8/6/2015 16:02	98-95-3	Nitrobenzene			0.028	U
SB-42 2-4	8/6/2015 16:02	1912-24-9	Atrazine			0.025	U
SB-42 2-4	8/6/2015 16:02	534-52-1	4,6-Dinitro-2-methylphenol			0.18	U*
SB-42 2-4	8/6/2015 16:02	321-60-8	2-Fluorobiphenyl NL NL		NI	2.8	
SB-42 4-6	8/6/2015 16:05	117-81-7	Bis(2-ethylhexyl) phthalate		0.2	J B	
SB-42 4-6	8/6/2015 16:05	92-52-4	1,1'-Biphenyl		1.8	U	
SB-42 4-6	8/6/2015 16:05	51-28-5	2,4-Dinitrophenol			0.9	U
JU-42 4-0	0/0/2013 10.03	21-50-2	2,4-كااااالا (priello)	<u> </u>		0.5	U

		Type 2					
	Result	RRS	Type 1 RRS				Client Sample
Flag	(mg/kg)	(mg/kg)	(mg/kg)	Analyte by Method 8270D	CAS	Collection Date	ID
U	0.36			4-Nitrophenol	100-02-7	8/6/2015 16:05	SB-42 4-6
U	0.36			Pentachlorophenol	87-86-5	8/6/2015 16:05	SB-42 4-6
U	0.072			Caprolactam	105-60-2	8/6/2015 16:05	SB-42 4-6
U	0.071			Benzo[k]fluoranthene	207-08-9	8/6/2015 16:05	SB-42 4-6
U	0.063			Benzaldehyde	100-52-7	8/6/2015 16:05	SB-42 4-6
U	0.056			4-Chloroaniline	106-47-8	8/6/2015 16:05	SB-42 4-6
U	0.056			Benzo[a]pyrene	50-32-8	8/6/2015 16:05	SB-42 4-6
U	0.053			2,4-Dinitrotoluene	121-14-2	8/6/2015 16:05	SB-42 4-6
U	0.053			4-Nitroaniline	100-01-6	8/6/2015 16:05	SB-42 4-6
U	0.05			3-Nitroaniline	99-09-2	8/6/2015 16:05	SB-42 4-6
U	0.049			2-Nitroaniline	88-74-4	8/6/2015 16:05	SB-42 4-6
U	0.049			Bis(2-chloroethyl)ether	111-44-4	8/6/2015 16:05	SB-42 4-6
U	0.048			2,4-Dimethylphenol	105-67-9	8/6/2015 16:05	SB-42 4-6
U	0.048			4-Chlorophenyl phenyl ether	7005-72-3	8/6/2015 16:05	SB-42 4-6
U	0.047			3 & 4 Methylphenol	15831-10-4	8/6/2015 16:05	SB-42 4-6
U	0.046			2,6-Dinitrotoluene	606-20-2	8/6/2015 16:05	SB-42 4-6
U	0.045			2-Nitrophenol	88-75-5	8/6/2015 16:05	SB-42 4-6
U	0.045			Acenaphthene	83-32-9	8/6/2015 16:05	SB-42 4-6
U	0.045			Hexachlorocyclopentadiene	77-47-4	8/6/2015 16:05	SB-42 4-6
U	0.043			2-Chlorophenol	95-57-8	8/6/2015 16:05	SB-42 4-6
U	0.042			Bis(2-chloroethoxy)methane	111-91-1	8/6/2015 16:05	SB-42 4-6
U	0.042			Dibenz(a,h)anthracene	53-70-3	8/6/2015 16:05	SB-42 4-6
U	0.042			Hexachlorobenzene	118-74-1	8/6/2015 16:05	SB-42 4-6
U	0.041			2-Methylnaphthalene	91-57-6	8/6/2015 16:05	SB-42 4-6
U	0.041			Benzo[b]fluoranthene	205-99-2	8/6/2015 16:05	SB-42 4-6
U	0.04			Diethyl phthalate	84-66-2	8/6/2015 16:05	SB-42 4-6
U	0.039			4-Bromophenyl phenyl ether	101-55-3	8/6/2015 16:05	SB-42 4-6
U	0.039			Acenaphthylene	208-96-8	8/6/2015 16:05	SB-42 4-6
U	0.039			Fluorene	86-73-7	8/6/2015 16:05	SB-42 4-6
U	0.039			Hexachlorobutadiene	87-68-3	8/6/2015 16:05	SB-42 4-6
U	0.038			2,4,5-Trichlorophenol	95-95-4	8/6/2015 16:05	SB-42 4-6
U	0.038			2,4-Dichlorophenol	120-83-2	8/6/2015 16:05	SB-42 4-6
U	0.038			2-Chloronaphthalene	91-58-7	8/6/2015 16:05	SB-42 4-6
U	0.038		<u> </u>	4-Chloro-3-methylphenol	59-50-7	8/6/2015 16:05	SB-42 4-6
U	0.037			Dimethyl phthalate	131-11-3	8/6/2015 16:05	SB-42 4-6
U	0.037			Phenol	108-95-2	8/6/2015 16:05	SB-42 4-6
U						<u> </u>	
U							
U				·			
U							
U							
U				<u> </u>			
U				• • • • • • • • • • • • • • • • • • • •			
	0.036 0.036 0.036 0.035 0.035 0.033			Dibenzofuran Isophorone N-Nitrosodiphenylamine Fluoranthene N-Nitrosodi-n-propylamine bis (2-chloroisopropyl) ether Carbazole	132-64-9 78-59-1 86-30-6 206-44-0 621-64-7 108-60-1 86-74-8	8/6/2015 16:05 8/6/2015 16:05 8/6/2015 16:05 8/6/2015 16:05 8/6/2015 16:05 8/6/2015 16:05 8/6/2015 16:05	SB-42 4-6 SB-42 4-6 SB-42 4-6 SB-42 4-6 SB-42 4-6 SB-42 4-6 SB-42 4-6

					Type 2		
Client Sample				RRS	Result		
ID	Collection Date	CAS	Analyte by Method 8270D			(mg/kg)	Flag
SB-42 4-6	8/6/2015 16:05	84-74-2	Di-n-butyl phthalate	· · · · · · · · · · · · · · · · · · ·		0.033	U
SB-42 4-6	8/6/2015 16:05	91-20-3	Naphthalene	Naphthalene		0.033	U
SB-42 4-6	8/6/2015 16:05	88-06-2	2,4,6-Trichlorophenol			0.031	U
SB-42 4-6	8/6/2015 16:05	117-84-0	Di-n-octyl phthalate			0.031	U
SB-42 4-6	8/6/2015 16:05	91-94-1	3,3'-Dichlorobenzidine			0.03	U
SB-42 4-6	8/6/2015 16:05	98-86-2	Acetophenone			0.03	U
SB-42 4-6	8/6/2015 16:05	67-72-1	Hexachloroethane			0.03	U
SB-42 4-6	8/6/2015 16:05	193-39-5	Indeno[1,2,3-cd]pyrene			0.03	U
SB-42 4-6	8/6/2015 16:05	95-48-7	2-Methylphenol			0.029	U
SB-42 4-6	8/6/2015 16:05	56-55-3	Benzo[a]anthracene			0.029	U
SB-42 4-6	8/6/2015 16:05	85-01-8	Phenanthrene			0.029	U
SB-42 4-6	8/6/2015 16:05	129-00-0	Pyrene			0.029	U
SB-42 4-6	8/6/2015 16:05	85-68-7	Butyl benzyl phthalate			0.028	U
SB-42 4-6	8/6/2015 16:05	98-95-3	Nitrobenzene			0.028	U
SB-42 4-6	8/6/2015 16:05	120-12-7	Anthracene			0.027	U
SB-42 4-6	8/6/2015 16:05	1912-24-9	Atrazine			0.025	U
SB-42 4-6	8/6/2015 16:05	191-24-2	Benzo[g,h,i]perylene			0.024	U
SB-42 4-6	8/6/2015 16:05	218-01-9	Chrysene			0.023	U
SB-42 4-6	8/6/2015 16:05	534-52-1	4,6-Dinitro-2-methylphenol			0.18	U *
SB-42 4-6	8/6/2015 16:05	321-60-8	2-Fluorobiphenyl	NL	NL	2	
SB-42 8-10	8/6/2015 16:10	321-60-8	2-Fluorobiphenyl			0	D
SB-42 8-10	8/6/2015 16:10	205-99-2	Benzo[b]fluoranthene			0.94	J
SB-42 8-10	8/6/2015 16:10	206-44-0	Fluoranthene			0.9	J
SB-42 8-10	8/6/2015 16:10	129-00-0	Pyrene			0.81	J
SB-42 8-10	8/6/2015 16:10	218-01-9	Chrysene			0.75	J
SB-42 8-10	8/6/2015 16:10	50-32-8	Benzo[a]pyrene			0.71	J
SB-42 8-10	8/6/2015 16:10	56-55-3	Benzo[a]anthracene			0.62	J
SB-42 8-10	8/6/2015 16:10	85-01-8	Phenanthrene			0.5	J
SB-42 8-10	8/6/2015 16:10	191-24-2	Benzo[g,h,i]perylene			0.45	J
SB-42 8-10	8/6/2015 16:10	193-39-5	Indeno[1,2,3-cd]pyrene			0.4	J
SB-42 8-10	8/6/2015 16:10	92-52-4	1,1'-Biphenyl			19	U
SB-42 8-10	8/6/2015 16:10	51-28-5	2,4-Dinitrophenol			9.3	U
SB-42 8-10	8/6/2015 16:10	100-02-7	4-Nitrophenol			3.7	U
SB-42 8-10	8/6/2015 16:10	87-86-5	Pentachlorophenol			3.7	U
SB-42 8-10	8/6/2015 16:10	105-60-2	Caprolactam			0.74	U
SB-42 8-10	8/6/2015 16:10	207-08-9	Benzo[k]fluoranthene			0.73	U
SB-42 8-10	8/6/2015 16:10	100-52-7	Benzaldehyde			0.65	U
SB-42 8-10	8/6/2015 16:10	106-47-8	4-Chloroaniline			0.58	U
SB-42 8-10	8/6/2015 16:10	121-14-2	2,4-Dinitrotoluene	1		0.55	U
SB-42 8-10	8/6/2015 16:10	100-01-6	4-Nitroaniline	1		0.55	U
SB-42 8-10	8/6/2015 16:10	99-09-2	3-Nitroaniline			0.53	U
SB-42 8-10	8/6/2015 16:10	88-74-4	2-Nitroaniline			0.5	U
SB-42 8-10	8/6/2015 16:10	111-44-4	Bis(2-chloroethyl)ether			0.5	U
20-45 0-10	0/0/2013 10.10	TTT-44-4	טואנב-נוווטוטבנוואו)פנוופו			0.5	J

Cliant Canada				Towns 4 DDC	Type 2	Daniela	
Client Sample	Callantian Data	CAS	A	Type 1 RRS	RRS (mg/kg)	Result	51
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	Flag	
SB-42 8-10	8/6/2015 16:10	105-67-9	2,4-Dimethylphenol		0.49 0.49	U	
SB-42 8-10	8/6/2015 16:10	7005-72-3		orophenyl phenyl ether			
SB-42 8-10	8/6/2015 16:10	15831-10-4	3 & 4 Methylphenol			0.48	U
SB-42 8-10	8/6/2015 16:10	606-20-2	2,6-Dinitrotoluene			0.47	U
SB-42 8-10	8/6/2015 16:10	88-75-5	2-Nitrophenol			0.46	U
SB-42 8-10	8/6/2015 16:10	83-32-9	Acenaphthene			0.46	U
SB-42 8-10	8/6/2015 16:10	77-47-4	Hexachlorocyclopentadiene			0.46	U
SB-42 8-10	8/6/2015 16:10	95-57-8	2-Chlorophenol			0.45	U
SB-42 8-10	8/6/2015 16:10	111-91-1	Bis(2-chloroethoxy)methane			0.44	U
SB-42 8-10	8/6/2015 16:10	53-70-3	Dibenz(a,h)anthracene			0.44	U
SB-42 8-10	8/6/2015 16:10	118-74-1	Hexachlorobenzene			0.44	U
SB-42 8-10	8/6/2015 16:10	91-57-6	2-Methylnaphthalene			0.43	U
SB-42 8-10	8/6/2015 16:10	84-66-2	Diethyl phthalate			0.41	U
SB-42 8-10	8/6/2015 16:10	101-55-3	4-Bromophenyl phenyl ether			0.4	U
SB-42 8-10	8/6/2015 16:10	208-96-8	Acenaphthylene			0.4	U
SB-42 8-10	8/6/2015 16:10	86-73-7	Fluorene			0.4	U
SB-42 8-10	8/6/2015 16:10	87-68-3	Hexachlorobutadiene			0.4	U
SB-42 8-10	8/6/2015 16:10	95-95-4	2,4,5-Trichlorophenol			0.39	U
SB-42 8-10	8/6/2015 16:10	120-83-2	2,4-Dichlorophenol			0.39	U
SB-42 8-10	8/6/2015 16:10	91-58-7	2-Chloronaphthalene			0.39	U
SB-42 8-10	8/6/2015 16:10	59-50-7	4-Chloro-3-methylphenol			0.39	U
SB-42 8-10	8/6/2015 16:10	131-11-3	Dimethyl phthalate			0.38	U
SB-42 8-10	8/6/2015 16:10	108-95-2	Phenol			0.38	U
SB-42 8-10	8/6/2015 16:10	132-64-9	Dibenzofuran			0.37	U
SB-42 8-10	8/6/2015 16:10	78-59-1	Isophorone			0.37	U
SB-42 8-10	8/6/2015 16:10	86-30-6	N-Nitrosodiphenylamine			0.37	U
SB-42 8-10	8/6/2015 16:10	621-64-7	N-Nitrosodi-n-propylamine			0.36	U
SB-42 8-10	8/6/2015 16:10	108-60-1	bis (2-chloroisopropyl) ether			0.34	U
SB-42 8-10	8/6/2015 16:10	86-74-8	Carbazole			0.34	U
SB-42 8-10	8/6/2015 16:10	84-74-2	Di-n-butyl phthalate	1		0.34	U
SB-42 8-10	8/6/2015 16:10	91-20-3	Naphthalene	1		0.34	U
SB-42 8-10	8/6/2015 16:10	88-06-2	2,4,6-Trichlorophenol	1		0.32	U
SB-42 8-10	8/6/2015 16:10	117-81-7	Bis(2-ethylhexyl) phthalate			0.32	U
SB-42 8-10	8/6/2015 16:10	117-84-0	Di-n-octyl phthalate			0.32	U
SB-42 8-10	8/6/2015 16:10	91-94-1	3,3'-Dichlorobenzidine			0.32	U
SB-42 8-10 SB-42 8-10	8/6/2015 16:10	98-86-2	Acetophenone			0.31	U
SB-42 8-10 SB-42 8-10	8/6/2015 16:10	 	Hexachloroethane			0.31	U
SB-42 8-10 SB-42 8-10	8/6/2015 16:10	67-72-1					U
		95-48-7	2-Methylphenol			0.3	
SB-42 8-10	8/6/2015 16:10	85-68-7	, , ,		0.29	U	
SB-42 8-10	8/6/2015 16:10			0.29	U		
SB-42 8-10	8/6/2015 16:10			0.28	U		
SB-42 8-10	8/6/2015 16:10	1912-24-9	Atrazine			0.26	U
SB-42 8-10	8/6/2015 16:10	534-52-1	4,6-Dinitro-2-methylphenol			1.9	U *

					Type 2			l
Client Sample				Type 1 RRS	RRS	Result		l
ID	Collection Date	CAS	Analyte by Method 8270D	(mg/kg)	(mg/kg)	(mg/kg)	Flag	

Notes:

Red = Analytical result exceeds the respective Typ 1 RRS

[&]quot;B" Flag = Compound was found in the blank and sample.

[&]quot;U" Flag = Indicates the analyte was analyzed for but not detected.

[&]quot;F1" Flag = MS and/or MSD Recovery is outside acceptance limits.

[&]quot;F2" Flag = MS/MSD RPD exceeds control limits.

[&]quot;J" Flag = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

[&]quot;D" = Surrogate or matrix spike recxoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.

^{*}LCS or LCSD is outside acceptance limits.

Draft COC Decision Matrix MGP #2, Macon, Georgia

соі	Boring ID	Maximum Depth (feet)	Analytical Result	Type 1 RRS (mg/kg)	Source	Type 2 RRS (mg/kg)	Source	UBL (mg/kg)	UCL (mg/kg)	EPC < Critical PCL?	Proposed Action
Arsenic	GB-27	0-0.5	74.9	20.0	С	6.06	D	7.05	6.044	Yes	NFA Required - However recommend excavation of soil to 0.5-feet in this area
	GB-14	8-10	25	20.0	С	6.06	D	7.05	6.044	Yes	NFA - EPC measures below Type 1 & 2 RRS and UBL
	GB-14	0.5-2	425	75	С	400	**	204	94.09	Yes	NFA Required - However recommend excavation of soil to 2-feet in this area
	GB-11	0.5-2	465	75	С	400	**	204	94.09	Yes	NFA Required - However recommend excavation of soil to 2-feet in this area
	GB-14	3-5	720	75	С	400	**	204	314.5	Yes	NFA Required - However recommend excavation of soil to 5-feet in this area
Lead	SB-25	2-4	1800	75	С	400	**	204	314.5	Yes	NFA Required - However recommend excavation of soil to 4-feet in this area
	SB-45	10-12	425	75	С	400	**	204	314.5	Yes	NFA - EPC measures below Type 2 RRS. Recommend preparation of a Soil Management Plan and construction worker oversight/air monitoring if soils in this area will be disturbed during construction.
	SB-45	15-17	1070	75	С	400	**	204	Not Calculated	Not Applicable	NFA - Soils greater than 15-ft
Lead	SB-27	8-12	634	75	С	400	**	204	314.5	Yes	NFA - EPC measures below Type 2 RRS. Recommend preparation of a Soil Management Plan and construction worker oversight/air monitoring if soils in this area will be disturbed during construction.

Draft COC Decision Matrix MGP #2, Macon, Georgia

соі	Boring ID	Maximum Depth (feet)	Analytical Result	Type 1 RRS (mg/kg)	Source	Type 2 RRS (mg/kg)	Source	UBL (mg/kg)	UCL (mg/kg)	EPC < Critical PCL?	Proposed Action
Lead	GB-28	13-15	950	75	С	400	**	204	314.5	Yes	NFA - EPC measures below Type 2 RRS. Recommend preparation of a Soil Management Plan and construction worker oversight/air monitoring if soils in this area will be disturbed during construction.
	SB-41	24-29	484	75	С	400	**	204	Not Calculated	Not Applicable	NFA - Soils greater than 15-ft
Benzo(a)anthracene	SB-17	13-15	13	1.25	A	1.65	D	0.56	1.375	Yes	NFA - Potential exposure to COC measures below Type 2 RRS
	SB-17	13-15	10	1.64	A	1.25	D	0.69	1.277	Yes	NFA - EPC measures below Type 1 RRS
	SB-17	16-20	5.0	1.64	A	1.25	D	0.69	Not Calculated	Not Applicable	NFA - Soils greater than 15-ft
	SB-41	19-24	2.2	1.64	A	1.25	D	0.69	Not Calculated	Not Applicable	NFA - Soils greater than 15-ft
Benzo(a)pyrene	SB-14	16-20	6.8	1.64	A	1.25	D	0.69	Not Calculated	Not Applicable	NFA - Soils greater than 15-ft
Delizo(a)pyrelie	SB-14	24-28	10.0	1.64	A	1.25	D	0.69	Not Calculated	Not Applicable	NFA - Soils greater than 15-ft
	SB-24	2-4	2.9	1.64	A	1.25	D	0.69	1.277	Yes	NFA - EPC measures below Type 1 RRS
	SB-24	4-6	1.9	1.64	A	1.25	D	0.69	1.277	Yes	NFA - EPC measures below Type 1 RRS
	SB-25	2-4	11.0	1.64	A	1.25	D	0.69	1.277	Yes	NFA - EPC measures below Type 1 RRS
Benzo(a)pyrene	SB-42	2-4	5.6	1.64	A	1.25	D	0.69	1.277	Yes	NFA - EPC measures below Type 1 RRS
Benzo(b)fluoranthene	SB-17	13-15	13	5	A	12.5	D	0.61	1.511	Yes	NFA - EPC measures below Type 1 & 2 RRS
Dibenzo(a,h)anthracene	SB-17	16-20	2.3	2	D	1.25	D	*0.35	Not Calculated	Not Applicable	NFA - Soils greater than 15-ft
Dioenzo(a,ii)anuiracene	SB-14	16-20	3.5	2	D	1.25	D	*0.35	Not Calculated	Not Applicable	NFA - Soils greater than 15-ft

Draft COC Decision Matrix MGP #2, Macon, Georgia

COI	Boring ID	Maximum Depth (feet)	Analytical Result	Type 1 RRS (mg/kg)	Source	Type 2 RRS (mg/kg)	Source	UBL (mg/kg)	UCL (mg/kg)	EPC < Critical PCL?	Proposed Action
Dibenzo(a,h)anthracene	SB-14	24-28	4.2	2	D	1.25	D	*0.35	Not Calculated	Not Applicable	NFA - Soils greater than 15-ft

Notes:

UBL: Upper Background Limit calculated presented in the Compliance Status Investigation Report (dated September 2003) approved by EPD.

UCL: Upper Confidence Limit

EPC: Exposure Point Concentration PCL: Protective Concentration Level

NFA: No Further Action

RRS: Risk Reduction Standards

* Detection Limit

** Derived based on the EPA Integrated Exposure Biokinetic Model

A: Appendix 1 Notification Requirement

C: Appendix III Table 2

D: Upperbound excess cancer risk

APPENDIX D Laboratory Analytical Results

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-115409-1

Client Project/Site: Macon MGP

Revision: 1

For:

Geotechnical & Environmental Consultants 514 Hillcrest Industrial Blvd. Macon, Georgia 31204

Attn: Carrie Holderfield

Sisw Morey

Authorized for release by: 9/17/2015 4:31:25 PM

Lisa Harvey, Project Manager II (912)354-7858 e.3221

lisa.harvey@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Definitions/Glossary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Qualifiers

GC/MS VOA

Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
D *	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D. LCS or LCSD is outside acceptance limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.
X	Surrogate is outside control limits
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
Metals	

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.

General Chemistry

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TestAmerica Savannah

Page 2 of 127

Sample Summary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-115409-1	GB-14 3-5	Solid	08/06/15 12:47	08/08/15 10:00
680-115409-2	GB-14 8-10	Solid	08/06/15 12:54	08/08/15 10:00
680-115409-3	GB-14 13-15	Solid	08/06/15 12:59	08/08/15 10:00
680-115409-4	GB-19 8-10	Solid	08/06/15 11:30	08/08/15 10:00
680-115409-5	GB-21 8-10	Solid	08/06/15 10:45	08/08/15 10:00
680-115409-6	GB-28 2-4	Solid	08/06/15 14:00	08/08/15 10:00
680-115409-7	GB-28 8-10	Solid	08/06/15 14:20	08/08/15 10:00
680-115409-8	GB-28 13-15	Solid	08/06/15 14:30	08/08/15 10:00
680-115409-9	SB-24 2-4	Solid	08/06/15 15:25	08/08/15 10:00
680-115409-10	SB-24 4-6	Solid	08/06/15 15:32	08/08/15 10:00
680-115409-11	SB-24 8-10	Solid	08/06/15 15:38	08/08/15 10:00
680-115409-12	SB-24 13-15	Solid	08/06/15 15:50	08/08/15 10:00
680-115409-13	SB-42 2-4	Solid	08/06/15 16:02	08/08/15 10:00
680-115409-14	SB-42 4-6	Solid	08/06/15 16:05	08/08/15 10:00
680-115409-15	SB-42 8-10	Solid	08/06/15 16:10	08/08/15 10:00
680-115409-16	SB-42 13-15	Solid	08/06/15 16:15	08/08/15 10:00
680-115409-17	GB-16 2-4	Solid	08/06/15 13:29	08/08/15 10:00
680-115409-18	GB-16 4-6	Solid	08/06/15 13:35	08/08/15 10:00
680-115409-19	GB-18 2-4	Solid	08/06/15 15:05	08/08/15 10:00
680-115409-20	GB-18 4-6	Solid	08/06/15 15:15	08/08/15 10:00
680-115409-21	GB-3 8-10	Solid	08/07/15 15:36	08/08/15 10:00
680-115409-22	GB-3 13-15	Solid	08/07/15 15:42	08/08/15 10:00
680-115409-23	GB-5 8-10	Solid	08/07/15 13:45	08/08/15 10:00
680-115409-24	GB-7 8-10	Solid	08/07/15 09:54	08/08/15 10:00
680-115409-25	GB-7 13-15	Solid	08/07/15 10:00	08/08/15 10:00
680-115409-26	GB-7 18	Solid	08/07/15 10:06	08/08/15 10:00
680-115409-27	SB-17 8-10	Solid	08/07/15 14:50	08/08/15 10:00
680-115409-28	SB-17 13-15	Solid	08/07/15 14:56	08/08/15 10:00
680-115409-29	SB-20 0-2	Solid	08/07/15 15:04	08/08/15 10:00
680-115409-30	SB-20 2-4	Solid	08/07/15 15:04	08/08/15 10:00
680-115409-31	Trip Blank lot ATL156	Water	08/07/15 00:00	08/08/15 10:00

Case Narrative

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Job ID: 680-115409-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE

Client: Geotechnical & Environmental Consultants
Project: Macon MGP
Report Number: 680-115409-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

09/17/2015: This report has been revised. The report formatter has been changed so that non-detects would be reported at the Method Detection Limit (MDL) rather than the Reporting Limit (RL).

RECEIPT

The samples were received on 8/8/2015 10:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 3.6° C and 4.0° C.

Samples numbered -21 to -31 were received without a COC. A COC was created by lab staff using the pre-printed labels on containers and Logged accordingly. The COC was later emailed by the client and is included in the report.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples GB-5 8-10 (680-115409-23), GB-7 8-10 (680-115409-24), GB-7 13-15 (680-115409-25) and GB-7 18 (680-115409-26) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were prepared on 08/10/2015 and analyzed on 08/11/2015.

Method(s) 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 680-395276 and analytical batch 680-395460.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Sample Trip Blank lot ATL156 (680-115409-31) was analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 08/18/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

SEMIVOLATILE ORGANIC COMPOUNDS (SOLID)

Samples GB-14 3-5 (680-115409-1), GB-14 8-10 (680-115409-2), GB-14 13-15 (680-115409-3), GB-19 8-10 (680-115409-4), GB-21 8-10 (680-115409-5), GB-28 2-4 (680-115409-6), GB-28 8-10 (680-115409-7), GB-28 13-15 (680-115409-8), SB-24 2-4 (680-115409-10), SB-24 8-10 (680-115409-11), SB-24 13-15 (680-115409-12), SB-42 2-4 (680-115409-13), SB-42 4-6 (680-115409-14), SB-42 8-10 (680-115409-15), SB-42 13-15 (680-115409-16), GB-16 2-4 (680-115409-17), GB-16 4-6 (680-115409-18), GB-18 2-4 (680-115409-19), GB-18 4-6 (680-115409-20), GB-3 8-10 (680-115409-21), GB-3 13-15 (680-115409-22), GB-5 8-10 (680-115409-23), GB-7 8-10 (680-115409-24), GB-7 13-15 (680-115409-25), GB-7 18 (680-115409-26), SB-17 8-10 (680-115409-27), SB-17 13-15 (680-115409-28), SB-20 0-2 (680-115409-29) and SB-20 2-4 (680-115409-30) were analyzed for Semivolatile Organic Compounds (Solid) in accordance with EPA SW-846 Method 8270D. The samples were prepared on 08/10/2015 and analyzed on 08/11/2015 and 08/12/2015.

Method(s) 8270D: The continuing calibration verification (CCV) analyzed in batch 680-395487 was outside the method criteria for the following analyte(s): 4,6-Dinitro-2-methylphenol. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method(s) 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one of these surrogates to be outside

TestAmerica Savannah 9/17/2015 Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Job ID: 680-115409-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: SB-42 2-4 (680-115409-13). These results have been reported and qualified.

Method(s) 8270D: The following samples was diluted due to the nature of the sample matrix: GB-14 3-5 (680-115409-1), GB-14 8-10 (680-115409-2), SB-24 2-4 (680-115409-9), SB-24 4-6 (680-115409-10), SB-24 8-10 (680-115409-11), SB-42 8-10 (680-115409-15), GB-18 2-4 (680-115409-19) and GB-18 4-6 (680-115409-20). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

Method(s) 8270D: The following analytes have been identified, in the reference method and/or via historical data, to be poor and/or erratic performers: Famphur, 1,4-Napthaguinone, Methane sulfonate, 1-naphthylamine, 2-naphthylamine, p-Dimethylamino azobenzene, p-phenylenediamine, a,a-dimethylphenethylamine, Methapyriline, 2-picoline (2-methylpyridine), 3,3'-dimethylbenzidine, 3,3'-dichlorobenzidine, Benzidine, Benzaldehyde, Benzoic acid, Dinoseb, Hexachlorophene, Hexachlorocyclopentadiene, o,o,o-triethylphosphorothioate. These analytes may have a %D >60% if the average %D of all the analytes in the continuing calibration verification (CCV) is 30%.

Method(s) 8270D: The continuing calibration verification (CCV) analyzed in batch 680-395880 was outside the method criteria for the following analytes: 2,4-Dimethylphenol . A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method(s) 8270D: The method blank for 680-395880 contained Bis(2-ethylhexyl) phthalate above the method detection limit (MDL). Associated samples were not re-analyzed because results were less than the reporting limit (RL) OR practical quantitation limit (PQL).

Method(s) 8270D: The following analytes recovered outside control limits for the LCS associated with 680-395714: 4,6-Dinitro-2-methylphenol and Pentachlorophenol. This is not indicative of a systematic control problem because these were random marginal exceedances. Qualified results have been reported.

Method(s) 8270D: The following sample was diluted due to the nature of the sample matrix: SB-17 13-15 (680-115409-28). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

- 2,4-Dinitrophenol and 3,3'-Dichlorobenzidine recoveries are outside criteria low for the MS of sample GB-16 4-6 (680-115409-18) in batch 680-395487.
- 3,3'-Dichlorobenzidine recovery is outside criteria low for the MSD of sample GB-16 4-6 (680-115409-18) in batch 680-395487. 4,6-Dinitro-2-methylphenol exceeded the RPD limit.

Several analytes have recoveries outside criteria low for the MSD of sample SB-17 8-10 (680-115409-27) in batch 680-395714. 4,6-Dinitro-2-methylphenol exceeded the RPD limit.

Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP)

Samples GB-14 3-5 (680-115409-1), GB-14 8-10 (680-115409-2), GB-14 13-15 (680-115409-3), GB-19 8-10 (680-115409-4), GB-21 8-10 (680-115409-5), GB-28 2-4 (680-115409-6), GB-28 8-10 (680-115409-7), GB-28 13-15 (680-115409-8), SB-24 2-4 (680-115409-9), SB-24 4-6 (680-115409-10), SB-24 8-10 (680-115409-11), SB-24 13-15 (680-115409-12), SB-42 2-4 (680-115409-13), SB-42 4-6 (680-115409-14), SB-42 8-10 (680-115409-15), SB-42 13-15 (680-115409-16), GB-16 2-4 (680-115409-17), GB-16 4-6 (680-115409-18), GB-18 2-4 (680-115409-19), GB-18 4-6 (680-115409-20), GB-3 8-10 (680-115409-21), GB-3 13-15 (680-115409-22), GB-5 8-10 (680-115409-23), GB-7 8-10 (680-115409-24), GB-7 13-15 (680-115409-25), GB-7 18 (680-115409-26), SB-17 8-10 (680-115409-27), SB-17 13-15 (680-115409-28), SB-20 0-2 (680-115409-29) and SB-20 2-4 (680-115409-30) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 08/11/2015 and analyzed on 08/11/2015, 08/15/2015 and 08/17/2015.

Several analytes have recoveries outside criteria low for the MS and MSD of sample SB-42 4-6 (680-115409-14) in batch 680-395634.

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Job ID: 680-115409-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

Several analytes have recoveries outside criteria low for the MS and MSD of sample GB-18 4-6 (680-115409-20) in batch 680-396333. Barium, Lead and Zinc failed the recovery criteria high. Chromium exceeded the RPD limit.

Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL MERCURY

Samples GB-14 3-5 (680-115409-1), GB-14 8-10 (680-115409-2), GB-14 13-15 (680-115409-3), GB-19 8-10 (680-115409-4), GB-21 8-10 (680-115409-5), GB-28 2-4 (680-115409-6), GB-28 8-10 (680-115409-7), GB-28 13-15 (680-115409-8), SB-24 2-4 (680-115409-10), SB-24 8-10 (680-115409-11), SB-24 13-15 (680-115409-12), SB-42 2-4 (680-115409-13), SB-42 4-6 (680-115409-14), SB-42 8-10 (680-115409-15), SB-42 13-15 (680-115409-16), GB-16 2-4 (680-115409-17), GB-16 4-6 (680-115409-18), GB-18 2-4 (680-115409-19), GB-18 4-6 (680-115409-20), GB-3 8-10 (680-115409-21), GB-3 13-15 (680-115409-22), GB-5 8-10 (680-115409-23), GB-7 8-10 (680-115409-24), GB-7 13-15 (680-115409-25), GB-7 18 (680-115409-26), SB-17 8-10 (680-115409-27), SB-17 13-15 (680-115409-28), SB-20 0-2 (680-115409-29) and SB-20 2-4 (680-115409-30) were analyzed for total mercury in accordance with EPA SW-846 Method 7471B. The samples were prepared on 08/13/2015, 08/16/2015 and 08/17/2015 and analyzed on 08/13/2015 and 08/17/2015.

Mercury recovery is outside criteria low for the MS of sample SB-24 4-6 (680-115409-10) in batch 680-396738.

Mercury exceeded the RPD limit for the MSD of sample SB-24 4-6 (680-115409-10) in batch 680-396738.

Mercury recovery is outside criteria low for the MS of sample GB-7 13-15 (680-115409-25) in batch 680-396738.

Mercury recovery is outside criteria low for the MSD of sample GB-7 13-15 (680-115409-25) in batch 680-396738. Mercury exceeded the RPD limit.

Refer to the QC report for details.

Samples GB-14 8-10 (680-115409-2)[5X], GB-14 13-15 (680-115409-3)[5X] and GB-28 13-15 (680-115409-8)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL CYANIDE

Samples GB-14 3-5 (680-115409-1), GB-14 8-10 (680-115409-2), GB-14 13-15 (680-115409-3), GB-19 8-10 (680-115409-4), GB-21 8-10 (680-115409-5), GB-28 2-4 (680-115409-6), GB-28 8-10 (680-115409-7), GB-28 13-15 (680-115409-8), SB-24 2-4 (680-115409-10), SB-24 8-10 (680-115409-11), SB-24 13-15 (680-115409-12), SB-42 2-4 (680-115409-13), SB-42 4-6 (680-115409-14), SB-42 8-10 (680-115409-15), SB-42 13-15 (680-115409-16), GB-16 2-4 (680-115409-17), GB-16 4-6 (680-115409-18), GB-18 2-4 (680-115409-19), GB-18 4-6 (680-115409-20), GB-3 8-10 (680-115409-21), GB-3 13-15 (680-115409-22), GB-5 8-10 (680-115409-23), GB-7 8-10 (680-115409-24), GB-7 13-15 (680-115409-25), GB-7 18 (680-115409-26), SB-17 8-10 (680-115409-27), SB-17 13-15 (680-115409-28), SB-20 0-2 (680-115409-29) and SB-20 2-4 (680-115409-30) were analyzed for total cyanide in accordance with EPA SW-846 Method 9012B. The samples were prepared and analyzed on 08/17/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

PERCENT SOLIDS/MOISTURE

Samples GB-14 3-5 (680-115409-1), GB-14 8-10 (680-115409-2), GB-14 13-15 (680-115409-3), GB-19 8-10 (680-115409-4), GB-21 8-10 (680-115409-5), GB-28 2-4 (680-115409-6), GB-28 8-10 (680-115409-7), GB-28 13-15 (680-115409-8), SB-24 2-4 (680-115409-10), SB-24 8-10 (680-115409-11), SB-24 13-15 (680-115409-12), SB-42 2-4 (680-115409-13), SB-42 4-6 (680-115409-14), SB-42 8-10 (680-115409-15), SB-42 13-15 (680-115409-16), GB-16 2-4 (680-115409-17), GB-16 4-6 (680-115409-18), GB-18 2-4 (680-115409-19), GB-18 4-6 (680-115409-20), GB-3 8-10 (680-115409-21), GB-3 13-15 (680-115409-22), GB-5 8-10 (680-115409-23), GB-7 8-10 (680-115409-24), GB-7 13-15 (680-115409-25), GB-7 18 (680-115409-26), SB-17 8-10 (680-115409-27), SB-17 13-15 (680-115409-28), SB-20 0-2 (680-115409-29) and SB-20 2-4 (680-115409-30) were analyzed for Percent

4

5

6

0

10

Case Narrative

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Job ID: 680-115409-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

Solids/Moisture in accordance with TestAmerica SOP. The samples were analyzed on 08/10/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

J

8

9

10

11

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Dibenz(a,h)anthracene

Fluoranthene

Hexachlorobenzene

Hexachlorobutadiene

Hexachloroethane

2-Methylnaphthalene

Isophorone

2-Methylphenol

Hexachlorocyclopentadiene

Indeno[1,2,3-cd]pyrene

Fluorene

Client Sample ID: GB-14 3-5

Date Collected: 08/06/15 12:47

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-1

08/10/15 14:33 08/11/15 15:23

08/10/15 14:33 08/11/15 15:23

08/10/15 14:33 08/11/15 15:23

08/10/15 14:33 08/11/15 15:23

08/10/15 14:33 08/11/15 15:23

08/10/15 14:33 08/11/15 15:23

08/10/15 14:33 08/11/15 15:23

08/10/15 14:33 08/11/15 15:23

08/11/15 15:23

08/11/15 15:23

08/11/15 15:23

08/10/15 14:33

08/10/15 14:33

08/10/15 14:33

₩

Matrix: Solid Percent Solids: 87.7

Date Received: 08/08/15 10:00 Method: 8270D - Semivolatile Organic Compounds (GC/MS) **MDL** Unit Dil Fac Result Qualifier D Prepared Analyzed Analyte RL ₩ 0.46 U 3.7 0.46 mg/Kg 08/10/15 14:33 08/11/15 15:23 10 Acenaphthene 0.41 U Acenaphthylene 37 0.41 mg/Kg 08/10/15 14:33 08/11/15 15:23 10 Acetophenone 0.32 U 3.7 0.32 mg/Kg 08/10/15 14:33 08/11/15 15:23 10 0.28 U Anthracene 3.7 0.28 mg/Kg 08/10/15 14:33 08/11/15 15:23 10 Atrazine 0.26 U 3.7 0.26 mg/Kg 08/10/15 14:33 08/11/15 15:23 10 Benzaldehyde 0.66 U 3.7 0.66 mg/Kg 08/10/15 14:33 08/11/15 15:23 10 Benzo[a]anthracene 1.0 J 3.7 0.31 mg/Kg 08/10/15 14:33 08/11/15 15:23 10 3.7 0.59 mg/Kg 08/10/15 14:33 08/11/15 15:23 10 Benzo[a]pyrene 1.1 J 10 Benzo[b]fluoranthene 1.6 J 3.7 0.43 mg/Kg 08/10/15 14:33 08/11/15 15:23 Benzo[g,h,i]perylene 0.68 J 3.7 0.25 mg/Kg 08/10/15 14:33 08/11/15 15:23 10 08/10/15 14:33 08/11/15 15:23 3.7 Benzo[k]fluoranthene 0.77 J 0.73 mg/Kg 10 1,1'-Biphenyl 19 19 19 mg/Kg 08/10/15 14:33 08/11/15 15:23 10 Bis(2-chloroethoxy)methane 0.44 U 3.7 mg/Kg 08/10/15 14:33 08/11/15 15:23 10 0.44 08/10/15 14:33 08/11/15 15:23 10 Bis(2-chloroethyl)ether 0.51 U 3.7 0.51 mg/Kg bis (2-chloroisopropyl) ether 0.34 U 3 7 0.34 08/10/15 14:33 08/11/15 15:23 10 mg/Kg Bis(2-ethylhexyl) phthalate 0.33 U 3.7 08/10/15 14:33 08/11/15 15:23 10 0.33 mg/Kg 0.41 4-Bromophenyl phenyl ether 041 U 37 mg/Kg 08/10/15 14:33 08/11/15 15:23 10 Butyl benzyl phthalate 0.29 U 3.7 0.29 mg/Kg 08/10/15 14:33 08/11/15 15:23 10 Caprolactam 0.75 U 3.7 0.75 08/10/15 14:33 08/11/15 15:23 10 mg/Kg Carbazole 0.34 U 3.7 0.34 mg/Kg 08/10/15 14:33 08/11/15 15:23 10 4-Chloroaniline 0.59 U 7.5 0.59 mg/Kg 08/10/15 14:33 08/11/15 15:23 10 3.7 08/10/15 14:33 08/11/15 15:23 4-Chloro-3-methylphenol 0.40 U 0.40 mg/Kg 10 2-Chloronaphthalene 0.40 U 3.7 0.40 ma/Ka 08/10/15 14:33 08/11/15 15:23 10 0.45 2-Chlorophenol 0.45 U 3.7 mg/Kg 08/10/15 14:33 08/11/15 15:23 10 4-Chlorophenyl phenyl ether 0.50 U 3.7 0.50 mg/Kg 08/10/15 14:33 08/11/15 15:23 10 10 3.7 08/10/15 14:33 08/11/15 15:23 Chrysene 1.7 J 0.24 mg/Kg

ш						0 0				
l	Dibenzofuran	0.37	U	3.7	0.37	mg/Kg	₩	08/10/15 14:33	08/11/15 15:23	
	3,3'-Dichlorobenzidine	0.32	U	7.5	0.32	mg/Kg	₩	08/10/15 14:33	08/11/15 15:23	
	2,4-Dichlorophenol	0.40	U	3.7	0.40	mg/Kg	₩	08/10/15 14:33	08/11/15 15:23	
	Diethyl phthalate	0.42	U	3.7	0.42	mg/Kg	Ď.	08/10/15 14:33	08/11/15 15:23	
	2,4-Dimethylphenol	0.50	U	3.7	0.50	mg/Kg	₩	08/10/15 14:33	08/11/15 15:23	
	Dimethyl phthalate	0.38	U	3.7	0.38	mg/Kg	₩	08/10/15 14:33	08/11/15 15:23	
	Di-n-butyl phthalate	0.34	U	3.7	0.34	mg/Kg	\$	08/10/15 14:33	08/11/15 15:23	
	4,6-Dinitro-2-methylphenol	1.9	U *	19	1.9	mg/Kg	₩	08/10/15 14:33	08/11/15 15:23	
	2,4-Dinitrophenol	9.4	U	19	9.4	mg/Kg	₩	08/10/15 14:33	08/11/15 15:23	
	2,4-Dinitrotoluene	0.55	U	3.7	0.55	mg/Kg	Ċ.	08/10/15 14:33	08/11/15 15:23	
	2,6-Dinitrotoluene	0.47	U	3.7	0.47	mg/Kg	₩	08/10/15 14:33	08/11/15 15:23	
	Di-n-octyl phthalate	0.33	U	3.7	0.33	mg/Kg	₩	08/10/15 14:33	08/11/15 15:23	

3.7

3.7

3.7

3.7

3.7

3.7

3.7

3.7

3.7

3.7

3.7

0.44 mg/Kg

0.36

0.41

0.44

0.41

0.46

0.32

0.37

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

0.32 mg/Kg

0.43 mg/Kg

0.31 mg/Kg

0.44 U

3.1 J

041 U

0.44 U

041 U

0.46 U

0.32 U

0.37 U

0.43 U

0.31 U

0.54

TestAmerica Savannah

Page 8 of 127

9/17/2015

3

5

9

IU

10

10

10

10

10

10

10

10

10

Project/Site: Macon MGP

Client: Geotechnical & Environmental Consultants

Lab Sample ID: 680-115409-1

Matrix: Solid

Percent Solids: 87.7

Client Sample ID: GB-14 3-5
Date Collected: 08/06/15 12:47

Date Received: 08/08/15 10:00			
Method: 8270D - Semivolatile	Organic Compounds (GC	C/MS) (Co	ntinued)
A a li 4 a	D 14 O 1161		MADE III

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.49	U	3.7	0.49	mg/Kg	<u></u>	08/10/15 14:33	08/11/15 15:23	10
Naphthalene	0.34	U	3.7	0.34	mg/Kg	₩	08/10/15 14:33	08/11/15 15:23	10
2-Nitroaniline	0.51	U	19	0.51	mg/Kg	₽	08/10/15 14:33	08/11/15 15:23	10
3-Nitroaniline	0.52	U	19	0.52	mg/Kg	₩	08/10/15 14:33	08/11/15 15:23	10
4-Nitroaniline	0.55	U	19	0.55	mg/Kg	₩	08/10/15 14:33	08/11/15 15:23	10
Nitrobenzene	0.29	U	3.7	0.29	mg/Kg	☆	08/10/15 14:33	08/11/15 15:23	10
2-Nitrophenol	0.46	U	3.7	0.46	mg/Kg	₩	08/10/15 14:33	08/11/15 15:23	10
4-Nitrophenol	3.7	U	19	3.7	mg/Kg	☼	08/10/15 14:33	08/11/15 15:23	10
N-Nitrosodi-n-propylamine	0.36	U	3.7	0.36	mg/Kg	₽	08/10/15 14:33	08/11/15 15:23	10
N-Nitrosodiphenylamine	0.37	U	3.7	0.37	mg/Kg	☼	08/10/15 14:33	08/11/15 15:23	10
Pentachlorophenol	3.7	U	19	3.7	mg/Kg	₩	08/10/15 14:33	08/11/15 15:23	10
Phenanthrene	2.5	J	3.7	0.31	mg/Kg	₩	08/10/15 14:33	08/11/15 15:23	10
Phenol	0.38	U	3.7	0.38	mg/Kg	☼	08/10/15 14:33	08/11/15 15:23	10
Pyrene	2.8	J	3.7	0.31	mg/Kg	₩	08/10/15 14:33	08/11/15 15:23	10
2,4,5-Trichlorophenol	0.40	U	3.7	0.40	mg/Kg	₽	08/10/15 14:33	08/11/15 15:23	10
2,4,6-Trichlorophenol	0.33	U	3.7	0.33	mg/Kg	☼	08/10/15 14:33	08/11/15 15:23	10

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	0	D	41 - 116	<u>08/10/15 14:33</u>	08/11/15 15:23	10
2-Fluorophenol (Surr)	0	D	39 - 114	08/10/15 14:33	08/11/15 15:23	10
Nitrobenzene-d5 (Surr)	0	D	37 - 115	08/10/15 14:33	08/11/15 15:23	10
Phenol-d5 (Surr)	0	D	38 - 122	08/10/15 14:33	08/11/15 15:23	10
Terphenyl-d14 (Surr)	0	D	46 - 126	08/10/15 14:33	08/11/15 15:23	10
2,4,6-Tribromophenol (Surr)	0	D	45 - 129	08/10/15 14:33	08/11/15 15:23	10

Method:	6010C -	Metals ((ICP)
	••••		····

Analyte	Pocult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier							Dil Fac
Arsenic	3.9		1.9	0.78	mg/Kg	₩	08/11/15 07:36	08/11/15 20:25	1
Barium	100		0.97	0.16	mg/Kg	₩	08/11/15 07:36	08/11/15 20:25	1
Beryllium	0.34	J	0.39	0.0097	mg/Kg	☼	08/11/15 07:36	08/11/15 20:25	1
Cadmium	0.097	U	0.49	0.097	mg/Kg	₽	08/11/15 07:36	08/11/15 20:25	1
Chromium	12		0.97	0.20	mg/Kg	≎	08/11/15 07:36	08/11/15 20:25	1
Copper	18		2.4	0.17	mg/Kg	≎	08/11/15 07:36	08/11/15 20:25	1
Lead	720		0.97	0.33	mg/Kg	₽	08/11/15 07:36	08/11/15 20:25	1
Nickel	7.5		3.9	0.37	mg/Kg	≎	08/11/15 07:36	08/11/15 20:25	1
Selenium	0.95	U	2.4	0.95	mg/Kg	☼	08/11/15 07:36	08/11/15 20:25	1
Silver	0.48	J	0.97	0.058	mg/Kg	₽	08/11/15 07:36	08/11/15 20:25	1
Vanadium	21		0.97	0.097	mg/Kg	☼	08/11/15 07:36	08/11/15 20:25	1
Zinc	98		1.9	0.68	mg/Kg	₩	08/11/15 07:36	08/11/15 20:25	1

Method: 7471B - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
Mercury	0.49		0.022	0.0089		<u> </u>	08/13/15 09:48		1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.23	U	0.55	0.23	mg/Kg	-	08/17/15 06:30	08/17/15 11:33	1

Client: Geotechnical & Environmental Consultants

Client Sample ID: GB-14 8-10

Date Collected: 08/06/15 12:54

Date Received: 08/08/15 10:00

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-2

Matrix: Solid Percent Solids: 53.6

	н

Method: 8270D - Semivolatil Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.76	U –	6.1	0.76	mg/Kg	<u> </u>	08/10/15 14:33	08/11/15 15:48	10
Acenaphthylene	0.67	U	6.1	0.67	mg/Kg	☼	08/10/15 14:33	08/11/15 15:48	10
Acetophenone	0.52	U	6.1	0.52	mg/Kg	☼	08/10/15 14:33	08/11/15 15:48	10
Anthracene	0.47	U	6.1	0.47	mg/Kg	₽	08/10/15 14:33	08/11/15 15:48	10
Atrazine	0.43	U	6.1	0.43	mg/Kg	☼	08/10/15 14:33	08/11/15 15:48	10
Benzaldehyde	1.1	U	6.1	1.1	mg/Kg	☼	08/10/15 14:33	08/11/15 15:48	10
Benzo[a]anthracene	0.50	Ü	6.1	0.50	mg/Kg		08/10/15 14:33	08/11/15 15:48	10
Benzo[a]pyrene	0.97	U	6.1	0.97	mg/Kg	☼	08/10/15 14:33	08/11/15 15:48	10
Benzo[b]fluoranthene	0.71	U	6.1	0.71	mg/Kg	☼	08/10/15 14:33	08/11/15 15:48	10
Benzo[g,h,i]perylene	0.41	U	6.1	0.41	mg/Kg	₽	08/10/15 14:33	08/11/15 15:48	10
Benzo[k]fluoranthene	1.2	U	6.1	1.2	mg/Kg	☼	08/10/15 14:33	08/11/15 15:48	10
1,1'-Biphenyl	32	U	32	32	mg/Kg	☼	08/10/15 14:33	08/11/15 15:48	10
Bis(2-chloroethoxy)methane	0.73	Ü	6.1	0.73	mg/Kg		08/10/15 14:33	08/11/15 15:48	10
Bis(2-chloroethyl)ether	0.84	U	6.1	0.84	mg/Kg	☼	08/10/15 14:33	08/11/15 15:48	10
bis (2-chloroisopropyl) ether	0.56	U	6.1	0.56	ma/Ka	₩	08/10/15 14:33	08/11/15 15:48	10

0.76	U	6.1	0.76	mg/Kg	₩	08/10/15 14:33	08/11/15 15:48	10
~ ~ ~ -				0 0				10
0.67	U	6.1	0.67	mg/Kg	₩	08/10/15 14:33	08/11/15 15:48	10
0.52	U	6.1	0.52	mg/Kg	₩	08/10/15 14:33	08/11/15 15:48	10
0.47	U	6.1	0.47	mg/Kg	₩	08/10/15 14:33	08/11/15 15:48	10
0.43	U	6.1	0.43	mg/Kg	₩	08/10/15 14:33	08/11/15 15:48	10
1.1	U	6.1	1.1	mg/Kg	₩	08/10/15 14:33	08/11/15 15:48	10
0.50	U	6.1	0.50	mg/Kg	₽	08/10/15 14:33	08/11/15 15:48	10
0.97	U	6.1	0.97	mg/Kg	₩	08/10/15 14:33	08/11/15 15:48	10
0.71	U	6.1	0.71	mg/Kg	₩	08/10/15 14:33	08/11/15 15:48	10
0.41	U	6.1	0.41	mg/Kg	₩.	08/10/15 14:33	08/11/15 15:48	10
1.2	U	6.1	1.2	mg/Kg	₩	08/10/15 14:33	08/11/15 15:48	10
32	U	32	32	mg/Kg	₩	08/10/15 14:33	08/11/15 15:48	10
0.73	U	6.1	0.73	mg/Kg	₽	08/10/15 14:33	08/11/15 15:48	10
0.84	U	6.1	0.84	mg/Kg	₩	08/10/15 14:33	08/11/15 15:48	10
0.56	U	6.1	0.56	mg/Kg	₩	08/10/15 14:33	08/11/15 15:48	10
0.54	U	6.1	0.54	mg/Kg	₩	08/10/15 14:33	08/11/15 15:48	10
0.67	U	6.1			₩	08/10/15 14:33	08/11/15 15:48	10
0.48	U	6.1			₩	08/10/15 14:33	08/11/15 15:48	10
1.2	U	6.1				08/10/15 14:33	08/11/15 15:48	10
0.56	U	6.1			₩	08/10/15 14:33	08/11/15 15:48	10
0.97	U	12			₩	08/10/15 14:33	08/11/15 15:48	10
								10
0.65	U	6.1			₩	08/10/15 14:33	08/11/15 15:48	10
0.74	U			0 0	₩			10
								10
					₩			10
					₩			10
								10
					₩			10
					₩			10
								10
								10
								10
				0 0				10
								10
								10
								10
								10
								10
								10
								10
								10
					~ -?/-			10
					**			10 10
								10
					74. 74.			10
								10
	0.47 0.43 1.1 0.50 0.97 0.71 0.41 1.2 32 0.73 0.84 0.56 0.54 0.67 0.48 1.2 0.56 0.97 0.65 0.65 0.74 0.82 0.39 0.73 0.61 0.52 0.65 0.69 0.82 0.63 0.56 3.2 15 0.91 0.78 0.54 0.60 0.67 0.73 0.67 0.73 0.67 0.73 0.67 0.73 0.67 0.75 0.76 0.52 0.65	0.47 U 0.43 U 1.1 U 0.50 U 0.97 U 0.71 U 0.41 U 1.2 U 32 U 0.73 U 0.84 U 0.56 U 0.54 U 0.67 U 0.48 U 1.2 U 0.56 U 0.97 U 0.65 U 0.97 U 0.65 U 0.74 U 0.82 U 0.73 U 0.82 U 0.73 U 0.65 U 0.74 U 0.82 U 0.39 U 0.73 U 0.61 U 0.52 U 0.65 U 0.65 U 0.67 U 0.69 U 0.82 U 0.63 U 0.69 U 0.82 U 0.63 U 0.60 U 0.61 U 0.71 U 0.71 U 0.72 U 0.73 U 0.73 U 0.74 U 0.75 U 0.75 U 0.75 U 0.77 U 0.78 U 0.79 U	0.47 U 6.1 0.43 U 6.1 1.1 U 6.1 0.50 U 6.1 0.97 U 6.1 0.71 U 6.1 1.2 U 6.1 32 U 32 0.73 U 6.1 0.56 U 6.1 0.56 U 6.1 0.48 U 6.1 1.2 U 6.1 0.56 U 6.1 0.97 U 12 0.65 U 6.1 0.74 U 6.1 0.73 U 6.1 0.82 U 6.1 0.73 U 6.1 0.82 U 6.1 0.65 U 6.1 0.65 U 6.1 0.73 U 6.1 0.65 U 6.1 0.74 U 6.1 0.82 U 6.1 0.73 U 6.1 0.65 U 6.1 0.73 U 6.1 0.65 U 6.1 0.73 U 6.1 0.65 U 6.1 0.73 U 6.1 0.61 U 6.1 0.52 U 12 0.65 U 6.1 0.69 U 6.1 0.69 U 6.1 0.69 U 6.1 0.60 U 6.1 0.56 U 6.1 0.56 U 6.1 0.67 U 6.1 0.50 U 6.1 0.69 U 6.1 0.69 U 6.1 0.60 U 6.1 0.50 U 6.1	0.47 U 6.1 0.47 0.43 U 6.1 0.43 1.1 U 6.1 1.1 0.50 U 6.1 0.50 0.97 U 6.1 0.71 0.41 U 6.1 1.2 32 U 32 32 0.73 U 6.1 0.56 0.56 U 6.1 0.56 0.54 U 6.1 0.56 0.97 U 6.1 0.67 0.48 U 6.1 0.67 0.48 U 6.1 0.56 0.97 U 12 0.97 0.65 U 6.1 0.56 0.97 U 12 0.97 0.65 U 6.1 0.65 0.65 U 6.1 0.66 0.74 U 6.1 0.67 0.82 U 6.1 0.65 0.65 U 6.1 0.65 0.69 U 6.1 0.61 0.52 U 12 0.52 0.65 U 6.1 0.65 0.69 U 6.1 0.65 0.60 U 6.1 0.56 0.50 U 6.1 0.59 0.50 U 6.1 0.59 0.50 U 6.1 0.50	0.47 U 6.1 0.47 mg/Kg 0.43 U 6.1 0.43 mg/Kg 1.1 U 6.1 1.1 mg/Kg 0.50 U 6.1 0.50 mg/Kg 0.97 U 6.1 0.97 mg/Kg 0.71 U 6.1 0.71 mg/Kg 0.41 U 6.1 0.41 mg/Kg 1.2 U 6.1 1.2 mg/Kg 32 U 32 32 mg/Kg 0.73 U 6.1 0.73 mg/Kg 0.56 U 6.1 0.56 mg/Kg 0.56 U 6.1 0.54 mg/Kg 0.56 U 6.1 0.54 mg/Kg 0.48 U 6.1 0.48 mg/Kg 0.56 U 6.1 0.56 mg/Kg 0.57 U 6.1 0.56 mg/Kg 0.59 U 6.1 0.56 mg/Kg 0.65 U 6.1 0.56 mg/Kg 0.65 U 6.1 0.65 mg/Kg 0.60 U 6.1 0.82 mg/Kg 0.39 U 6.1 0.82 mg/Kg 0.39 U 6.1 0.82 mg/Kg 0.39 U 6.1 0.63 mg/Kg 0.60 U 6.1 0.64 mg/Kg 0.65 U 6.1 0.65 mg/Kg 0.60 U 6.1 0.60 mg/Kg	0.47 U 6.1 0.47 mg/Kg 34 0.43 U 6.1 0.43 mg/Kg 4 0.43 U 6.1 0.43 mg/Kg 5 0.43 U 6.1 0.43 mg/Kg 5 0.50 U 6.1 0.50 mg/Kg 5 0.97 U 6.1 0.97 mg/Kg 5 0.97 U 6.1 0.97 mg/Kg 5 0.71 U 6.1 0.71 mg/Kg 5 0.41 U 6.1 0.41 mg/Kg 5 0.41 U 6.1 0.41 mg/Kg 5 0.41 U 6.1 0.41 mg/Kg 5 0.43 U 6.1 0.73 mg/Kg 5 0.73 U 6.1 0.73 mg/Kg 5 0.56 U 6.1 0.56 mg/Kg 5 0.56 U 6.1 0.65 mg/Kg 5 0.56 U 6.1 0.65 mg/Kg 5 0.56 U 6.1 0.65 mg/Kg 5 0.55 U 6.1 0.67 mg/Kg 5 0.55 U 6.1 0.67 mg/Kg 5 0.55 U 6.1 0.55 mg/Kg 5 0.55	0.47 U 6.1 0.47 mg/kg 0.08/10/15 14:33 0.43 U 6.1 0.43 mg/kg 0.08/10/15 14:33 1.1 U 6.1 1.1 mg/kg 0.08/10/15 14:33 0.50 U 6.1 0.50 mg/kg 0.08/10/15 14:33 0.97 U 6.1 0.97 mg/kg 0.08/10/15 14:33 0.71 U 6.1 0.71 mg/kg 0.08/10/15 14:33 0.71 U 6.1 0.71 mg/kg 0.08/10/15 14:33 1.2 U 6.1 1.2 mg/kg 0.08/10/15 14:33 32 U 32 32 mg/kg 0.08/10/15 14:33 32 U 32 32 mg/kg 0.08/10/15 14:33 0.73 U 6.1 0.73 mg/kg 0.08/10/15 14:33 0.56 U 6.1 0.56 mg/kg 0.08/10/15 14:33 0.56 U 6.1 0.56 mg/kg 0.08/10/15 14:33 0.57 U 6.1 0.56 mg/kg 0.08/10/15 14:33 0.58 U 6.1 0.56 mg/kg 0.08/10/15 14:33 0.59 U 6.1 0.56 mg/kg 0.08/10/15 14:33 0.50 U 6.1 0.65 mg/kg 0.08/10/15 14:33 0.60 U 6.1 0.60 mg/kg 0.08/10/15	0.47 U 6.1 0.47 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.43 U 6.1 0.43 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.50 U 6.1 0.50 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.50 U 6.1 0.50 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.50 U 6.1 0.97 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.50 U 6.1 0.97 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.50 U 6.1 0.97 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.41 U 6.1 0.71 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.41 U 6.1 0.41 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.41 U 6.1 0.41 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.42 U 6.1 1.2 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.42 U 6.1 0.73 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.42 U 6.1 0.73 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.42 U 6.1 0.54 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.56 U 6.1 0.54 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.56 U 6.1 0.54 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.56 U 6.1 0.54 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.56 U 6.1 0.54 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.56 U 6.1 0.54 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.56 U 6.1 0.54 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.56 U 6.1 0.56 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.56 U 6.1 0.56 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.56 U 6.1 0.56 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.56 U 6.1 0.56 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.56 U 6.1 0.56 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.56 U 6.1 0.56 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.56 U 6.1 0.65 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.56 U 6.1 0.65 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.56 U 6.1 0.65 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.65 U 6.1 0.65 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.65 U 6.1 0.65 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.65 U 6.1 0.65 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.65 U 6.1 0.65 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.65 U 6.1 0.65 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.65 U 6.1 0.65 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.65 U 6.1 0.65 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.65 U 6.1 0.65 mg/Kg 0 08/10/15 14:33 08/11/15 15:48 0.65 U 6.1 0.65 mg/Kg 0 08/10/15 14:33 08/11/15 1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: GB-14 8-10

Method: 7471B - Mercury (CVAA)

Analyte

Mercury

Analyte

Cyanide, Total

General Chemistry

Date Received: 08/08/15 10:00

Date Collected: 08/06/15 12:54

Lab Sample ID: 680-115409-2

Matrix: Solid

Percent Solids: 53.6

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.80	U	6.1	0.80	mg/Kg	<u>₩</u>	08/10/15 14:33	08/11/15 15:48	10
Naphthalene	0.56	U	6.1	0.56	mg/Kg	₩	08/10/15 14:33	08/11/15 15:48	10
2-Nitroaniline	0.84	U	32	0.84	mg/Kg	₽	08/10/15 14:33	08/11/15 15:48	10
3-Nitroaniline	0.86	U	32	0.86	mg/Kg	₩	08/10/15 14:33	08/11/15 15:48	10
4-Nitroaniline	0.91	U	32	0.91	mg/Kg	₩	08/10/15 14:33	08/11/15 15:48	10
Nitrobenzene	0.48	U	6.1	0.48	mg/Kg		08/10/15 14:33	08/11/15 15:48	10
2-Nitrophenol	0.76	U	6.1	0.76	mg/Kg	₩	08/10/15 14:33	08/11/15 15:48	10
4-Nitrophenol	6.1	U	32	6.1	mg/Kg	₩	08/10/15 14:33	08/11/15 15:48	10
N-Nitrosodi-n-propylamine	0.60	U	6.1	0.60	mg/Kg	φ.	08/10/15 14:33	08/11/15 15:48	10
N-Nitrosodiphenylamine	0.61	U	6.1	0.61	mg/Kg	☼	08/10/15 14:33	08/11/15 15:48	10
Pentachlorophenol	6.1	U	32	6.1	mg/Kg	☼	08/10/15 14:33	08/11/15 15:48	10
Phenanthrene	0.50	U	6.1	0.50	mg/Kg		08/10/15 14:33	08/11/15 15:48	10
Phenol	0.63	U	6.1	0.63	mg/Kg	☼	08/10/15 14:33	08/11/15 15:48	10
Pyrene	0.50	U	6.1	0.50	mg/Kg	☼	08/10/15 14:33	08/11/15 15:48	10
2,4,5-Trichlorophenol	0.65	U	6.1	0.65	mg/Kg		08/10/15 14:33	08/11/15 15:48	10
2,4,6-Trichlorophenol	0.54	U	6.1	0.54	mg/Kg	₩	08/10/15 14:33	08/11/15 15:48	10
Surrogate	%Recovery	•	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl		D	41 - 116				08/10/15 14:33	08/11/15 15:48	10
2-Fluorophenol (Surr)	0	D	39 - 114				08/10/15 14:33	08/11/15 15:48	10
Nitrobenzene-d5 (Surr)	0	D	37 - 115				08/10/15 14:33	08/11/15 15:48	10
Phenol-d5 (Surr)	0	D	38 - 122				08/10/15 14:33	08/11/15 15:48	10
Terphenyl-d14 (Surr)	0	D	46 - 126				08/10/15 14:33	08/11/15 15:48	10
2,4,6-Tribromophenol (Surr)	0	D	45 - 129				08/10/15 14:33	08/11/15 15:48	10
Method: 6010C - Metals (ICP)									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Arsenic	25		3.2		mg/Kg	*		08/11/15 19:17	1
Barium	490		1.6		mg/Kg	☼		08/11/15 19:17	1
Beryllium	1.9		0.64		mg/Kg	₩	08/11/15 07:36	08/11/15 19:17	1
Cadmium	1.1		0.80	0.16	mg/Kg	₩	08/11/15 07:36	08/11/15 19:17	1
Chromium	15		1.6	0.33	mg/Kg	₩	08/11/15 07:36	08/11/15 19:17	1
Copper	71		4.0	0.27	mg/Kg	₩	08/11/15 07:36	08/11/15 19:17	1
Lead	360		1.6	0.54	mg/Kg		08/11/15 07:36	08/11/15 19:17	1
Nickel	13		6.4	0.61	mg/Kg	₩	08/11/15 07:36	08/11/15 19:17	•
Selenium	1.5	U	4.0	1.5	mg/Kg	₩	08/11/15 07:36	08/11/15 19:17	
Silver	0.25	J	1.6	0.096	mg/Kg		08/11/15 07:36	08/11/15 19:17	· · · · · · · ·
Vanadium	23		1.6	0.16	mg/Kg	☼	08/11/15 07:36	08/11/15 19:17	1

Analyzed

Analyzed

Dil Fac

Dil Fac

Prepared

Prepared

D

□ 08/17/15 06:30 □ 08/17/15 11:36

RL

0.18

RL

0.90

Result Qualifier

Result Qualifier

0.86 J

1.4

MDL Unit

0.073 mg/Kg

MDL Unit

0.38 mg/Kg

Client: Geotechnical & Environmental Consultants

Client Sample ID: GB-14 13-15

Date Collected: 08/06/15 12:59

Date Received: 08/08/15 10:00

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-3

Matrix: Solid
Percent Solids: 68.2

C	
1	
1	
1	
1	
1	
1	8
1	
1	
1	
1	
1	

Method: 8270D - Semivolatile Analyte	Result	Qualifier	ŘL	MDL		D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.074		0.48		mg/Kg	₽	08/10/15 14:33		
Acenaphthylene	0.12		0.48		mg/Kg	₽.		08/11/15 16:12	
Acetophenone	0.041		0.48		mg/Kg	, .		08/11/15 16:12	
Anthracene	0.19		0.48		mg/Kg	₽.		08/11/15 16:12	
Atrazine	0.034		0.48		mg/Kg	₽.		08/11/15 16:12	
Benzaldehyde	0.085	U	0.48		mg/Kg			08/11/15 16:12	
Benzo[a]anthracene	0.97		0.48		mg/Kg	₩.		08/11/15 16:12	
Benzo[a]pyrene	0.92		0.48		mg/Kg	₩	08/10/15 14:33	08/11/15 16:12	
Benzo[b]fluoranthene	1.3		0.48		mg/Kg			08/11/15 16:12	
Benzo[g,h,i]perylene	0.51		0.48	0.032	mg/Kg	☼	08/10/15 14:33	08/11/15 16:12	
Benzo[k]fluoranthene	0.54		0.48		mg/Kg	₩	08/10/15 14:33	08/11/15 16:12	
1,1'-Biphenyl	2.5	U	2.5	2.5	mg/Kg	₩	08/10/15 14:33	08/11/15 16:12	
Bis(2-chloroethoxy)methane	0.057		0.48	0.057	mg/Kg	☼	08/10/15 14:33	08/11/15 16:12	
Bis(2-chloroethyl)ether	0.066		0.48		mg/Kg	≎	08/10/15 14:33	08/11/15 16:12	
bis (2-chloroisopropyl) ether	0.044	U	0.48		mg/Kg	₩	08/10/15 14:33	08/11/15 16:12	
Bis(2-ethylhexyl) phthalate	0.042	U	0.48	0.042	mg/Kg	₩	08/10/15 14:33	08/11/15 16:12	
4-Bromophenyl phenyl ether	0.053	U	0.48		mg/Kg	≎	08/10/15 14:33	08/11/15 16:12	
Butyl benzyl phthalate	0.038	U	0.48	0.038	mg/Kg	₩	08/10/15 14:33	08/11/15 16:12	
Caprolactam	0.097	U	0.48	0.097	mg/Kg	₩	08/10/15 14:33	08/11/15 16:12	
Carbazole	0.071	J	0.48	0.044	mg/Kg	₩	08/10/15 14:33	08/11/15 16:12	
4-Chloroaniline	0.076	U	0.97	0.076	mg/Kg	☼	08/10/15 14:33	08/11/15 16:12	
4-Chloro-3-methylphenol	0.051	U	0.48	0.051	mg/Kg	☆	08/10/15 14:33	08/11/15 16:12	
2-Chloronaphthalene	0.051	U	0.48	0.051	mg/Kg	≎	08/10/15 14:33	08/11/15 16:12	
2-Chlorophenol	0.059	U	0.48	0.059	mg/Kg	☼	08/10/15 14:33	08/11/15 16:12	
4-Chlorophenyl phenyl ether	0.064	U	0.48	0.064	mg/Kg	₽	08/10/15 14:33	08/11/15 16:12	
Chrysene	1.1		0.48	0.031	mg/Kg	≎	08/10/15 14:33	08/11/15 16:12	
Dibenz(a,h)anthracene	0.14	J	0.48	0.057	mg/Kg	≎	08/10/15 14:33	08/11/15 16:12	
Dibenzofuran	0.052	J	0.48	0.048	mg/Kg	₩	08/10/15 14:33	08/11/15 16:12	
3,3'-Dichlorobenzidine	0.041	U	0.97	0.041	mg/Kg	≎	08/10/15 14:33	08/11/15 16:12	
2,4-Dichlorophenol	0.051	U	0.48	0.051	mg/Kg	≎	08/10/15 14:33	08/11/15 16:12	
Diethyl phthalate	0.054	U	0.48	0.054	mg/Kg	₩	08/10/15 14:33	08/11/15 16:12	
2,4-Dimethylphenol	0.064	U	0.48	0.064	mg/Kg	☼	08/10/15 14:33	08/11/15 16:12	
Dimethyl phthalate	0.050	U	0.48	0.050	mg/Kg	☼	08/10/15 14:33	08/11/15 16:12	
Di-n-butyl phthalate	0.044	U	0.48	0.044	mg/Kg	₽	08/10/15 14:33	08/11/15 16:12	
4,6-Dinitro-2-methylphenol	0.25	U *	2.5	0.25	mg/Kg	☼	08/10/15 14:33	08/11/15 16:12	
2,4-Dinitrophenol	1.2	U	2.5	1.2	mg/Kg	☼	08/10/15 14:33	08/11/15 16:12	
2,4-Dinitrotoluene	0.072	U	0.48	0.072	mg/Kg		08/10/15 14:33	08/11/15 16:12	
2,6-Dinitrotoluene	0.061	U	0.48	0.061	mg/Kg	☼	08/10/15 14:33	08/11/15 16:12	
Di-n-octyl phthalate	0.042	U	0.48	0.042	mg/Kg	≎	08/10/15 14:33	08/11/15 16:12	
Fluoranthene	1.9		0.48	0.047	mg/Kg	₽	08/10/15 14:33	08/11/15 16:12	
Fluorene	0.075	J	0.48	0.053	mg/Kg	≎	08/10/15 14:33	08/11/15 16:12	
Hexachlorobenzene	0.057		0.48		mg/Kg	≎	08/10/15 14:33	08/11/15 16:12	
Hexachlorobutadiene	0.053	U	0.48	0.053	mg/Kg		08/10/15 14:33	08/11/15 16:12	
Hexachlorocyclopentadiene	0.060		0.48		mg/Kg	₽	08/10/15 14:33	08/11/15 16:12	
Hexachloroethane	0.041		0.48		mg/Kg	≎		08/11/15 16:12	
Indeno[1,2,3-cd]pyrene	0.50		0.48		mg/Kg			08/11/15 16:12	
Isophorone	0.048	U	0.48		mg/Kg	≎		08/11/15 16:12	
2-Methylnaphthalene	0.13		0.48		mg/Kg	≎		08/11/15 16:12	
2-Methylphenol	0.040		0.48		mg/Kg			08/11/15 16:12	

TestAmerica Savannah

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

Client Sample ID: GB-14 13-15

Date Received: 08/08/15 10:00

Date Collected: 08/06/15 12:59

Lab Sample ID: 680-115409-3

Matrix: Solid

Percent Solids: 68.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.063	U	0.48	0.063	mg/Kg	<u>₩</u>	08/10/15 14:33	08/11/15 16:12	1
Naphthalene	0.13	J	0.48	0.044	mg/Kg	₩	08/10/15 14:33	08/11/15 16:12	1
2-Nitroaniline	0.066	U	2.5	0.066	mg/Kg	₽	08/10/15 14:33	08/11/15 16:12	1
3-Nitroaniline	0.067	U	2.5	0.067	mg/Kg	₩	08/10/15 14:33	08/11/15 16:12	1
4-Nitroaniline	0.072	U	2.5	0.072	mg/Kg	₩	08/10/15 14:33	08/11/15 16:12	1
Nitrobenzene	0.038	U	0.48	0.038	mg/Kg	₩.	08/10/15 14:33	08/11/15 16:12	1
2-Nitrophenol	0.060	U	0.48	0.060	mg/Kg	₩	08/10/15 14:33	08/11/15 16:12	1
4-Nitrophenol	0.48	U	2.5	0.48	mg/Kg	₩	08/10/15 14:33	08/11/15 16:12	1
N-Nitrosodi-n-propylamine	0.047	U	0.48	0.047	mg/Kg	₩.	08/10/15 14:33	08/11/15 16:12	1
N-Nitrosodiphenylamine	0.048	U	0.48	0.048	mg/Kg	₩	08/10/15 14:33	08/11/15 16:12	1
Pentachlorophenol	0.48	U	2.5	0.48	mg/Kg	☼	08/10/15 14:33	08/11/15 16:12	1
Phenanthrene	0.89		0.48	0.040	mg/Kg	₩.	08/10/15 14:33	08/11/15 16:12	1
Phenol	0.050	U	0.48	0.050	mg/Kg	☼	08/10/15 14:33	08/11/15 16:12	1
Pyrene	1.8		0.48	0.040	mg/Kg	₩	08/10/15 14:33	08/11/15 16:12	1
2,4,5-Trichlorophenol	0.051	U	0.48	0.051	mg/Kg	₽	08/10/15 14:33	08/11/15 16:12	1
2,4,6-Trichlorophenol	0.042	U	0.48	0.042	mg/Kg	₽	08/10/15 14:33	08/11/15 16:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	68		41 - 116				08/10/15 14:33	08/11/15 16:12	1
2-Fluorophenol (Surr)	60		39 114				08/10/15 14:33	08/11/15 16:12	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl		41 - 116	08/10/15 14:33	08/11/15 16:12	1
2-Fluorophenol (Surr)	60	39 - 114	08/10/15 14:33	08/11/15 16:12	1
Nitrobenzene-d5 (Surr)	59	37 - 115	08/10/15 14:33	08/11/15 16:12	1
Phenol-d5 (Surr)	62	38 - 122	08/10/15 14:33	08/11/15 16:12	1
Terphenyl-d14 (Surr)	62	46 - 126	08/10/15 14:33	08/11/15 16:12	1
2,4,6-Tribromophenol (Surr)	66	45 - 129	08/10/15 14:33	08/11/15 16:12	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	6.3		2.8	1.1	mg/Kg	<u> </u>	08/11/15 07:36	08/11/15 19:21	1
Barium	42		1.4	0.23	mg/Kg	₩	08/11/15 07:36	08/11/15 19:21	1
Beryllium	0.25 J	J	0.56	0.014	mg/Kg	₩	08/11/15 07:36	08/11/15 19:21	1
Cadmium	0.14 J	J	0.70	0.14	mg/Kg	₩.	08/11/15 07:36	08/11/15 19:21	1
Chromium	7.8		1.4	0.30	mg/Kg	₩	08/11/15 07:36	08/11/15 19:21	1
Copper	38		3.5	0.24	mg/Kg	₩	08/11/15 07:36	08/11/15 19:21	1
Lead	97		1.4	0.48	mg/Kg	₩.	08/11/15 07:36	08/11/15 19:21	1
Nickel	3.0 J	J	5.6	0.54	mg/Kg	₩	08/11/15 07:36	08/11/15 19:21	1
Selenium	1.4 L	U	3.5	1.4	mg/Kg	☼	08/11/15 07:36	08/11/15 19:21	1
Silver	0.086 J	J	1.4	0.085	mg/Kg	₩.	08/11/15 07:36	08/11/15 19:21	1
Vanadium	11		1.4	0.14	mg/Kg	₩	08/11/15 07:36	08/11/15 19:21	1
Zinc	99		2.8	0.99	mg/Kg	₩	08/11/15 07:36	08/11/15 19:21	1

Method: 7471B - Mercury (CVAA) Analyte Mercury	Result	Qualifier	RL 0.14	MDL 0.055	Unit mg/Kg	D 变	Prepared 08/13/15 09:48	Analyzed 08/13/15 17:32	Dil Fac
General Chemistry	Dogult	Qualifier	DI	MDL	l lmit	D	Dropored	Anglyzad	Dil Egg
Analyte Cyanide, Total	0.30				mg/Kg	— ¨	Prepared 08/17/15 06:30	Analyzed 08/17/15 11:38	Dil Fac

4

6

R

9

10

11

1/2

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: GB-19 8-10 Date Collected: 08/06/15 11:30 Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-4

Matrix: Solid	
Percent Solids: 67.4	

Analyte	Result Qu	ıalifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.060 U	0.49	0.060	mg/Kg	☼	08/10/15 14:33	08/11/15 16:36	1
Acenaphthylene	0.053 U	0.49	0.053	mg/Kg	≎	08/10/15 14:33	08/11/15 16:36	1
Acetophenone	0.041 U	0.49	0.041	mg/Kg	≎	08/10/15 14:33	08/11/15 16:36	1
Anthracene	0.037 U	0.49	0.037	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Atrazine	0.034 U	0.49	0.034	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Benzaldehyde	0.085 U	0.49	0.085	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Benzo[a]anthracene	0.040 U	0.49	0.040	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Benzo[a]pyrene	0.077 U	0.49	0.077	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Benzo[b]fluoranthene	0.056 U	0.49	0.056	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Benzo[g,h,i]perylene	0.032 U	0.49	0.032	mg/Kg	₽	08/10/15 14:33	08/11/15 16:36	1
Benzo[k]fluoranthene	0.096 U	0.49	0.096	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
1,1'-Biphenyl	2.5 U	2.5	2.5	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Bis(2-chloroethoxy)methane	0.057 U	0.49	0.057	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Bis(2-chloroethyl)ether	0.066 U	0.49	0.066	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
bis (2-chloroisopropyl) ether	0.044 U	0.49	0.044	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Bis(2-ethylhexyl) phthalate	0.043 U	0.49	0.043	mg/Kg	₽	08/10/15 14:33	08/11/15 16:36	1
4-Bromophenyl phenyl ether	0.053 U	0.49	0.053	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Butyl benzyl phthalate	0.038 U	0.49	0.038	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Caprolactam	0.097 U	0.49	0.097	mg/Kg	₽	08/10/15 14:33	08/11/15 16:36	1
Carbazole	0.044 U	0.49	0.044	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
4-Chloroaniline	0.077 U	0.97	0.077	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
4-Chloro-3-methylphenol	0.051 U	0.49	0.051	mg/Kg	φ.	08/10/15 14:33	08/11/15 16:36	1
2-Chloronaphthalene	0.051 U	0.49	0.051	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
2-Chlorophenol	0.059 U	0.49	0.059	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
4-Chlorophenyl phenyl ether	0.065 U	0.49	0.065	mg/Kg	₩.	08/10/15 14:33	08/11/15 16:36	1
Chrysene	0.031 U	0.49	0.031	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Dibenz(a,h)anthracene	0.057 U	0.49	0.057	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Dibenzofuran	0.049 U	0.49	0.049	mg/Kg	₩.	08/10/15 14:33	08/11/15 16:36	1
3,3'-Dichlorobenzidine	0.041 U	0.97	0.041	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
2,4-Dichlorophenol	0.051 U	0.49	0.051	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Diethyl phthalate	0.054 U	0.49	0.054	mg/Kg	₩.	08/10/15 14:33	08/11/15 16:36	1
2,4-Dimethylphenol	0.065 U	0.49	0.065	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Dimethyl phthalate	0.050 U	0.49	0.050	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Di-n-butyl phthalate	0.044 U	0.49	0.044	mg/Kg		08/10/15 14:33	08/11/15 16:36	1
4,6-Dinitro-2-methylphenol	0.25 U *	* 2.5	0.25	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
2,4-Dinitrophenol	1.2 U	2.5	1.2	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
2,4-Dinitrotoluene	0.072 U	0.49	0.072			08/10/15 14:33	08/11/15 16:36	1
2,6-Dinitrotoluene	0.062 U	0.49	0.062	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Di-n-octyl phthalate	0.043 U	0.49	0.043	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Fluoranthene	0.047 U	0.49	0.047	mg/Kg		08/10/15 14:33	08/11/15 16:36	1
Fluorene	0.053 U	0.49	0.053	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Hexachlorobenzene	0.057 U	0.49	0.057	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Hexachlorobutadiene	0.053 U	0.49	0.053	mg/Kg		08/10/15 14:33	08/11/15 16:36	1
Hexachlorocyclopentadiene	0.060 U	0.49	0.060		≎	08/10/15 14:33	08/11/15 16:36	1
Hexachloroethane	0.041 U	0.49	0.041		₩	08/10/15 14:33	08/11/15 16:36	1
Indeno[1,2,3-cd]pyrene	0.041 U	0.49	0.041			08/10/15 14:33	08/11/15 16:36	1
Isophorone	0.049 U	0.49	0.049		₩		08/11/15 16:36	1
2-Methylnaphthalene	0.056 U	0.49	0.056		₩		08/11/15 16:36	1
2-Methylphenol	0.040 U	0.49	0.040		· · · · · · · · · · · · · · · · · · ·		08/11/15 16:36	1

TestAmerica Savannah

Project/Site: Macon MGP

Client Sample ID: GB-19 8-10

Client: Geotechnical & Environmental Consultants

Date Collected: 08/06/15 11:30
Date Received: 08/08/15 10:00

Lab Sample ID: 680-115409-4 Matrix: Solid

Percent Solids: 67.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.063	U	0.49	0.063	mg/Kg	₩	08/10/15 14:33	08/11/15 16:36	1
Naphthalene	0.044	U	0.49	0.044	mg/Kg	☼	08/10/15 14:33	08/11/15 16:36	1
2-Nitroaniline	0.066	U	2.5	0.066	mg/Kg	₽	08/10/15 14:33	08/11/15 16:36	1
3-Nitroaniline	0.068	U	2.5	0.068	mg/Kg	☼	08/10/15 14:33	08/11/15 16:36	1
4-Nitroaniline	0.072	U	2.5	0.072	mg/Kg	☼	08/10/15 14:33	08/11/15 16:36	1
Nitrobenzene	0.038	U	0.49	0.038	mg/Kg		08/10/15 14:33	08/11/15 16:36	1
2-Nitrophenol	0.060	U	0.49	0.060	mg/Kg	☼	08/10/15 14:33	08/11/15 16:36	1
4-Nitrophenol	0.49	U	2.5	0.49	mg/Kg	☼	08/10/15 14:33	08/11/15 16:36	1
N-Nitrosodi-n-propylamine	0.047	U	0.49	0.047	mg/Kg	φ.	08/10/15 14:33	08/11/15 16:36	1
N-Nitrosodiphenylamine	0.049	U	0.49	0.049	mg/Kg	☼	08/10/15 14:33	08/11/15 16:36	1
Pentachlorophenol	0.49	U	2.5	0.49	mg/Kg	☼	08/10/15 14:33	08/11/15 16:36	1
Phenanthrene	0.040	U	0.49	0.040	mg/Kg	\$	08/10/15 14:33	08/11/15 16:36	1
Phenol	0.050	U	0.49	0.050	mg/Kg	☼	08/10/15 14:33	08/11/15 16:36	1
Pyrene	0.040	U	0.49	0.040	mg/Kg	☼	08/10/15 14:33	08/11/15 16:36	1
2,4,5-Trichlorophenol	0.051	U	0.49	0.051	mg/Kg	₽	08/10/15 14:33	08/11/15 16:36	1
2,4,6-Trichlorophenol	0.043	U	0.49	0.043	mg/Kg	≎	08/10/15 14:33	08/11/15 16:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	63		41 - 116				08/10/15 14:33	08/11/15 16:36	1
2-Fluorophenol (Surr)	59		39 - 114				08/10/15 14:33	08/11/15 16:36	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	63	41 - 116	08/10/15 14:33	08/11/15 16:36	1
2-Fluorophenol (Surr)	59	39 - 114	08/10/15 14:33	08/11/15 16:36	1
Nitrobenzene-d5 (Surr)	55	37 - 115	08/10/15 14:33	08/11/15 16:36	1
Phenol-d5 (Surr)	60	38 - 122	08/10/15 14:33	08/11/15 16:36	1
Terphenyl-d14 (Surr)	70	46 - 126	08/10/15 14:33	08/11/15 16:36	1
2,4,6-Tribromophenol (Surr)	63	45 - 129	08/10/15 14:33	08/11/15 16:36	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.6	J	2.6	1.0	mg/Kg	<u> </u>	08/11/15 07:36	08/11/15 19:26	1
Barium	0.21	U	1.3	0.21	mg/Kg	₩	08/11/15 07:36	08/11/15 19:26	1
Beryllium	0.22	J	0.52	0.013	mg/Kg	☆	08/11/15 07:36	08/11/15 19:26	1
Cadmium	0.13	U	0.65	0.13	mg/Kg	₩	08/11/15 07:36	08/11/15 19:26	1
Chromium	3.5		1.3	0.27	mg/Kg	₩	08/11/15 07:36	08/11/15 19:26	1
Copper	0.29	J	3.3	0.22	mg/Kg	☆	08/11/15 07:36	08/11/15 19:26	1
Lead	2.5		1.3	0.44	mg/Kg	₩	08/11/15 07:36	08/11/15 19:26	1
Nickel	4.6	J	5.2	0.49	mg/Kg	☆	08/11/15 07:36	08/11/15 19:26	1
Selenium	1.3	U	3.3	1.3	mg/Kg	≎	08/11/15 07:36	08/11/15 19:26	1
Silver	0.078	U	1.3	0.078	mg/Kg		08/11/15 07:36	08/11/15 19:26	1
Vanadium	4.1		1.3	0.13	mg/Kg	☼	08/11/15 07:36	08/11/15 19:26	1
Zinc	9.2		2.6	0.91	mg/Kg	☼	08/11/15 07:36	08/11/15 19:26	1

Method: 7471B - Mercury (CVAA) Analyte Mercury	Result	Qualifier	RL 0.026	MDL 0.010	Unit mg/Kg	D 壶	Prepared 08/13/15 09:48	Analyzed 08/13/15 16:15	Dil Fac
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.30	U	0.71	0.30	mg/Kg	<u>₩</u>	08/17/15 06:30	08/17/15 11:39	1

4

6

8

46

10

10

1/2

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: GB-21 8-10

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-5

Matrix: Solid Percent Solids: 80.3

Date Collected: 08/06/15 10:45 Date Received: 08/08/15 10:00

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.051 U	0.41	0.051	mg/Kg	₩	08/10/15 14:33	08/11/15 17:00	1
Acenaphthylene	0.045 U	0.41	0.045	mg/Kg	☼	08/10/15 14:33	08/11/15 17:00	1
Acetophenone	0.035 U	0.41	0.035	mg/Kg	₩	08/10/15 14:33	08/11/15 17:00	1
Anthracene	0.031 U	0.41	0.031	mg/Kg	₽	08/10/15 14:33	08/11/15 17:00	1
Atrazine	0.029 U	0.41	0.029	mg/Kg	₩	08/10/15 14:33	08/11/15 17:00	1
Benzaldehyde	0.072 U	0.41	0.072	mg/Kg	₩	08/10/15 14:33	08/11/15 17:00	1
Benzo[a]anthracene	0.034 U	0.41	0.034	mg/Kg	\$	08/10/15 14:33	08/11/15 17:00	1
Benzo[a]pyrene	0.065 U	0.41	0.065	mg/Kg	₩	08/10/15 14:33	08/11/15 17:00	1
Benzo[b]fluoranthene	0.047 U	0.41	0.047	mg/Kg	₩	08/10/15 14:33	08/11/15 17:00	1
Benzo[g,h,i]perylene	0.027 U	0.41	0.027	mg/Kg	₽	08/10/15 14:33	08/11/15 17:00	1
Benzo[k]fluoranthene	0.081 U	0.41	0.081	mg/Kg	₩	08/10/15 14:33	08/11/15 17:00	1
1,1'-Biphenyl	2.1 U	2.1	2.1	mg/Kg	₩	08/10/15 14:33	08/11/15 17:00	1
Bis(2-chloroethoxy)methane	0.049 U	0.41	0.049	mg/Kg	₽	08/10/15 14:33	08/11/15 17:00	1
Bis(2-chloroethyl)ether	0.056 U	0.41	0.056	mg/Kg	₩	08/10/15 14:33	08/11/15 17:00	1
bis (2-chloroisopropyl) ether	0.037 U	0.41	0.037	mg/Kg	₩	08/10/15 14:33	08/11/15 17:00	1
Bis(2-ethylhexyl) phthalate	0.036 U	0.41	0.036	mg/Kg		08/10/15 14:33	08/11/15 17:00	1
4-Bromophenyl phenyl ether	0.045 U	0.41	0.045	mg/Kg	☼	08/10/15 14:33	08/11/15 17:00	1
Butyl benzyl phthalate	0.032 U	0.41	0.032	mg/Kg	☼	08/10/15 14:33	08/11/15 17:00	1
Caprolactam	0.082 U	0.41	0.082	mg/Kg	ф	08/10/15 14:33	08/11/15 17:00	1
Carbazole	0.037 U	0.41	0.037	mg/Kg	☼	08/10/15 14:33	08/11/15 17:00	1
4-Chloroaniline	0.065 U	0.82	0.065	mg/Kg	₩	08/10/15 14:33	08/11/15 17:00	1
4-Chloro-3-methylphenol	0.044 U	0.41	0.044	mg/Kg	ф.	08/10/15 14:33	08/11/15 17:00	1
2-Chloronaphthalene	0.044 U	0.41	0.044		☼	08/10/15 14:33	08/11/15 17:00	1
2-Chlorophenol	0.050 U	0.41	0.050	mg/Kg	☼	08/10/15 14:33	08/11/15 17:00	1
4-Chlorophenyl phenyl ether	0.055 U	0.41	0.055	mg/Kg	ф.	08/10/15 14:33	08/11/15 17:00	1
Chrysene	0.026 U	0.41	0.026		☼	08/10/15 14:33	08/11/15 17:00	1
Dibenz(a,h)anthracene	0.049 U	0.41	0.049	mg/Kg	☼	08/10/15 14:33	08/11/15 17:00	1
Dibenzofuran	0.041 U	0.41	0.041			08/10/15 14:33	08/11/15 17:00	1
3,3'-Dichlorobenzidine	0.035 U	0.82		mg/Kg	☼	08/10/15 14:33	08/11/15 17:00	1
2,4-Dichlorophenol	0.044 U	0.41	0.044		☼	08/10/15 14:33	08/11/15 17:00	1
Diethyl phthalate	0.046 U	0.41	0.046			08/10/15 14:33	08/11/15 17:00	1
2,4-Dimethylphenol	0.055 U	0.41	0.055		☼	08/10/15 14:33	08/11/15 17:00	1
Dimethyl phthalate	0.042 U	0.41	0.042		≎		08/11/15 17:00	1
Di-n-butyl phthalate	0.037 U	0.41	0.037				08/11/15 17:00	1
4,6-Dinitro-2-methylphenol	0.21 U*	2.1		mg/Kg	₩		08/11/15 17:00	1
2,4-Dinitrophenol	1.0 U	2.1		mg/Kg	₩		08/11/15 17:00	1
2,4-Dinitrotoluene	0.061 U	0.41		mg/Kg	 ☆		08/11/15 17:00	1
2,6-Dinitrotoluene	0.052 U	0.41		mg/Kg	₽		08/11/15 17:00	1
Di-n-octyl phthalate	0.036 U	0.41		mg/Kg	₽		08/11/15 17:00	1
Fluoranthene	0.040 U	0.41		mg/Kg			08/11/15 17:00	1
Fluorene	0.045 U	0.41		mg/Kg	☼		08/11/15 17:00	1
Hexachlorobenzene	0.049 U	0.41		mg/Kg	₽		08/11/15 17:00	1
Hexachlorobutadiene	0.045 U	0.41		mg/Kg	 ☆		08/11/15 17:00	· · · · · · · · · · · · · · · · · · ·
Hexachlorocyclopentadiene	0.051 U	0.41		mg/Kg	₩		08/11/15 17:00	. 1
Hexachloroethane	0.035 U	0.41		mg/Kg	₩		08/11/15 17:00	1
Indeno[1,2,3-cd]pyrene	0.035 U	0.41		mg/Kg			08/11/15 17:00	· · · · · · · · · · · · · · · · · · ·
Isophorone	0.041 U	0.41		mg/Kg	☼		08/11/15 17:00	1
2-Methylnaphthalene	0.047 U	0.41	0.041		☼		08/11/15 17:00	1
2-Methylphenol	0.047 U	0.41		mg/Kg	· · · · · · · · · · · · · · · · · · ·		08/11/15 17:00	' 1

TestAmerica Savannah

3

_

6

8

3

11

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

Phenol-d5 (Surr)

Terphenyl-d14 (Surr)

2,4,6-Tribromophenol (Surr)

Client Sample ID: GB-21 8-10

Lab Sample ID: 680-115409-5

08/10/15 14:33 08/11/15 17:00

08/10/15 14:33 08/11/15 17:00

08/10/15 14:33 08/11/15 17:00

Date Collected: 08/06/15 10:45 Date Received: 08/08/15 10:00 Matrix: Solid Percent Solids: 80.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.054	U	0.41	0.054	mg/Kg	<u></u>	08/10/15 14:33	08/11/15 17:00	1
Naphthalene	0.037	U	0.41	0.037	mg/Kg	☼	08/10/15 14:33	08/11/15 17:00	1
2-Nitroaniline	0.056	U	2.1	0.056	mg/Kg	\$	08/10/15 14:33	08/11/15 17:00	1
3-Nitroaniline	0.057	U	2.1	0.057	mg/Kg	☼	08/10/15 14:33	08/11/15 17:00	1
4-Nitroaniline	0.061	U	2.1	0.061	mg/Kg	₽	08/10/15 14:33	08/11/15 17:00	1
Nitrobenzene	0.032	U	0.41	0.032	mg/Kg	₽	08/10/15 14:33	08/11/15 17:00	1
2-Nitrophenol	0.051	U	0.41	0.051	mg/Kg	☼	08/10/15 14:33	08/11/15 17:00	1
4-Nitrophenol	0.41	U	2.1	0.41	mg/Kg	☼	08/10/15 14:33	08/11/15 17:00	1
N-Nitrosodi-n-propylamine	0.040	U	0.41	0.040	mg/Kg	₽	08/10/15 14:33	08/11/15 17:00	1
N-Nitrosodiphenylamine	0.041	U	0.41	0.041	mg/Kg	☼	08/10/15 14:33	08/11/15 17:00	1
Pentachlorophenol	0.41	U	2.1	0.41	mg/Kg	☼	08/10/15 14:33	08/11/15 17:00	1
Phenanthrene	0.034	U	0.41	0.034	mg/Kg	₽	08/10/15 14:33	08/11/15 17:00	1
Phenol	0.042	U	0.41	0.042	mg/Kg	☼	08/10/15 14:33	08/11/15 17:00	1
Pyrene	0.034	U	0.41	0.034	mg/Kg	☼	08/10/15 14:33	08/11/15 17:00	1
2,4,5-Trichlorophenol	0.044	U	0.41	0.044	mg/Kg	φ.	08/10/15 14:33	08/11/15 17:00	1
2,4,6-Trichlorophenol	0.036	U	0.41	0.036	mg/Kg	☼	08/10/15 14:33	08/11/15 17:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	53		41 - 116				08/10/15 14:33	08/11/15 17:00	1
2-Fluorophenol (Surr)	59		39 - 114				08/10/15 14:33	08/11/15 17:00	1
Nitrobenzene-d5 (Surr)	47		37 - 115				08/10/15 14:33	08/11/15 17:00	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.5		2.1	0.86	mg/Kg	<u> </u>	08/11/15 07:36	08/11/15 19:30	1
Barium	7.8		1.1	0.17	mg/Kg	₩	08/11/15 07:36	08/11/15 19:30	1
Beryllium	1.0		0.43	0.011	mg/Kg	₩	08/11/15 07:36	08/11/15 19:30	1
Cadmium	0.11	U	0.54	0.11	mg/Kg	₩.	08/11/15 07:36	08/11/15 19:30	1
Chromium	5.3		1.1	0.23	mg/Kg	₩	08/11/15 07:36	08/11/15 19:30	1
Copper	1.4	J	2.7	0.18	mg/Kg	☼	08/11/15 07:36	08/11/15 19:30	1
Lead	4.9		1.1	0.37	mg/Kg	₩.	08/11/15 07:36	08/11/15 19:30	1
Nickel	15		4.3	0.41	mg/Kg	₩	08/11/15 07:36	08/11/15 19:30	1
Selenium	1.0	U	2.7	1.0	mg/Kg	₩	08/11/15 07:36	08/11/15 19:30	1
Silver	0.064	Ü	1.1	0.064	mg/Kg		08/11/15 07:36	08/11/15 19:30	1
Vanadium	5.1		1.1	0.11	mg/Kg	₩	08/11/15 07:36	08/11/15 19:30	1
Zinc	49		2.1	0.75	mg/Kg	≎	08/11/15 07:36	08/11/15 19:30	1

38 - 122

46 - 126

45 - 129

48

66

A	Method: 7471B - Mercury (CVAA) nalyte lercury	Result 0.0086	Qualifier U	RL 0.021	MDL 0.0086		D	Prepared 08/13/15 09:48	Analyzed 08/13/15 16:18	Dil Fac
A	General Chemistry nalyte yanide, Total	Result 0.25	Qualifier U	RL 0.60	MDL 0.25	Unit mg/Kg	D	Prepared 08/17/15 06:30	Analyzed 08/17/15 11:42	Dil Fac

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-6

Matrix: Solid Percent Solids: 70.7

Client Sample ID: GB-28 2-4 Lab Sample ID
Date Collected: 08/06/15 14:00

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.058		0.47		mg/Kg	₩		08/11/15 17:24	
Acenaphthylene	0.051		0.47	0.051	mg/Kg	‡		08/11/15 17:24	
Acetophenone	0.040		0.47		mg/Kg			08/11/15 17:24	
Anthracene	0.035		0.47		mg/Kg	₽		08/11/15 17:24	
Atrazine	0.033		0.47		mg/Kg	‡		08/11/15 17:24	
Benzaldehyde	0.082		0.47		mg/Kg	, .		08/11/15 17:24	
Benzo[a]anthracene	0.038		0.47		mg/Kg	\$		08/11/15 17:24	
Benzo[a]pyrene	0.074		0.47	0.074	mg/Kg	\$	08/10/15 14:33	08/11/15 17:24	
Benzo[b]fluoranthene	0.054		0.47		mg/Kg			08/11/15 17:24	
Benzo[g,h,i]perylene	0.031		0.47		mg/Kg	\$	08/10/15 14:33	08/11/15 17:24	
Benzo[k]fluoranthene	0.092	U	0.47	0.092	mg/Kg	☼		08/11/15 17:24	
1,1'-Biphenyl	2.4	U	2.4		mg/Kg		08/10/15 14:33	08/11/15 17:24	
Bis(2-chloroethoxy)methane	0.055	U	0.47	0.055	mg/Kg	☆	08/10/15 14:33	08/11/15 17:24	
Bis(2-chloroethyl)ether	0.064	U	0.47	0.064	mg/Kg	☆	08/10/15 14:33	08/11/15 17:24	
bis (2-chloroisopropyl) ether	0.042	U	0.47	0.042	mg/Kg	☆	08/10/15 14:33	08/11/15 17:24	
Bis(2-ethylhexyl) phthalate	0.041	U	0.47	0.041	mg/Kg	₩	08/10/15 14:33	08/11/15 17:24	
4-Bromophenyl phenyl ether	0.051	U	0.47	0.051	mg/Kg	☼	08/10/15 14:33	08/11/15 17:24	
Butyl benzyl phthalate	0.037	U	0.47	0.037	mg/Kg	₩	08/10/15 14:33	08/11/15 17:24	
Caprolactam	0.093	U	0.47	0.093	mg/Kg	₽	08/10/15 14:33	08/11/15 17:24	
Carbazole	0.042	U	0.47	0.042	mg/Kg	₩	08/10/15 14:33	08/11/15 17:24	
4-Chloroaniline	0.074	U	0.93	0.074	mg/Kg	₩	08/10/15 14:33	08/11/15 17:24	
4-Chloro-3-methylphenol	0.050	U	0.47	0.050	mg/Kg	φ.	08/10/15 14:33	08/11/15 17:24	
2-Chloronaphthalene	0.050	U	0.47	0.050	mg/Kg	☼	08/10/15 14:33	08/11/15 17:24	
2-Chlorophenol	0.057	U	0.47	0.057	mg/Kg	☼	08/10/15 14:33	08/11/15 17:24	
4-Chlorophenyl phenyl ether	0.062	U	0.47	0.062	mg/Kg		08/10/15 14:33	08/11/15 17:24	
Chrysene	0.030	U	0.47	0.030	mg/Kg	☼	08/10/15 14:33	08/11/15 17:24	
Dibenz(a,h)anthracene	0.055	U	0.47	0.055	mg/Kg	₩	08/10/15 14:33	08/11/15 17:24	
Dibenzofuran	0.047		0.47	0.047	mg/Kg		08/10/15 14:33	08/11/15 17:24	
3,3'-Dichlorobenzidine	0.040	U	0.93	0.040	mg/Kg	₩	08/10/15 14:33	08/11/15 17:24	
2,4-Dichlorophenol	0.050	U	0.47	0.050	mg/Kg	₩	08/10/15 14:33	08/11/15 17:24	
Diethyl phthalate	0.052	U	0.47	0.052	mg/Kg		08/10/15 14:33	08/11/15 17:24	
2,4-Dimethylphenol	0.062	U	0.47	0.062	mg/Kg	₩	08/10/15 14:33	08/11/15 17:24	
Dimethyl phthalate	0.048		0.47		mg/Kg	₩	08/10/15 14:33	08/11/15 17:24	
Di-n-butyl phthalate	0.042		0.47		mg/Kg		08/10/15 14:33	08/11/15 17:24	
4,6-Dinitro-2-methylphenol	0.24		2.4		mg/Kg	₩	08/10/15 14:33	08/11/15 17:24	
2,4-Dinitrophenol	1.2	U	2.4		mg/Kg	₩	08/10/15 14:33	08/11/15 17:24	
2,4-Dinitrotoluene	0.069		0.47		mg/Kg			08/11/15 17:24	
2,6-Dinitrotoluene	0.059		0.47		mg/Kg	₽		08/11/15 17:24	
Di-n-octyl phthalate	0.041		0.47		mg/Kg	₩		08/11/15 17:24	
Fluoranthene	0.045		0.47		mg/Kg			08/11/15 17:24	
Fluorene	0.051		0.47		mg/Kg	₩		08/11/15 17:24	
Hexachlorobenzene	0.055		0.47		mg/Kg	₩		08/11/15 17:24	
Hexachlorobutadiene	0.051		0.47		mg/Kg			08/11/15 17:24	
Hexachlorocyclopentadiene	0.058		0.47		mg/Kg	₩		08/11/15 17:24	
Hexachloroethane	0.040		0.47		mg/Kg	.☆		08/11/15 17:24	
Indeno[1,2,3-cd]pyrene	0.040		0.47		mg/Kg	······································		08/11/15 17:24	
Isophorone	0.047		0.47		mg/Kg	т Ф		08/11/15 17:24	
·	0.047		0.47			₽		08/11/15 17:24	
2-Methylnaphthalene 2-Methylphenol	0.034		0.47		mg/Kg mg/Kg			08/11/15 17:24	

TestAmerica Savannah

3

7

g

08/10/15 14:33 08/11/15 17:24

08/10/15 14:33 08/11/15 17:24

□ 08/13/15 09:48 □ 08/13/15 16:27

Client: Geotechnical & Environmental Consultants

Terphenyl-d14 (Surr)

Mercury

2,4,6-Tribromophenol (Surr)

Project/Site: Macon MGP

Client Sample ID: GB-28 2-4 Lab Sample ID: 680-115409-6

Date Collected: 08/06/15 14:00 **Matrix: Solid** Date Received: 08/08/15 10:00 Percent Solids: 70.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.061	U	0.47	0.061	mg/Kg	<u> </u>	08/10/15 14:33	08/11/15 17:24	1
Naphthalene	0.042	U	0.47	0.042	mg/Kg	₩	08/10/15 14:33	08/11/15 17:24	1
2-Nitroaniline	0.064	U	2.4	0.064	mg/Kg	₽	08/10/15 14:33	08/11/15 17:24	1
3-Nitroaniline	0.065	U	2.4	0.065	mg/Kg	₩	08/10/15 14:33	08/11/15 17:24	1
4-Nitroaniline	0.069	U	2.4	0.069	mg/Kg	₩	08/10/15 14:33	08/11/15 17:24	1
Nitrobenzene	0.037	U	0.47	0.037	mg/Kg	₽	08/10/15 14:33	08/11/15 17:24	1
2-Nitrophenol	0.058	U	0.47	0.058	mg/Kg	₩	08/10/15 14:33	08/11/15 17:24	1
4-Nitrophenol	0.47	U	2.4	0.47	mg/Kg	☼	08/10/15 14:33	08/11/15 17:24	1
N-Nitrosodi-n-propylamine	0.045	U	0.47	0.045	mg/Kg	φ.	08/10/15 14:33	08/11/15 17:24	1
N-Nitrosodiphenylamine	0.047	U	0.47	0.047	mg/Kg	☼	08/10/15 14:33	08/11/15 17:24	1
Pentachlorophenol	0.47	U	2.4	0.47	mg/Kg	☼	08/10/15 14:33	08/11/15 17:24	1
Phenanthrene	0.038	U	0.47	0.038	mg/Kg		08/10/15 14:33	08/11/15 17:24	1
Phenol	0.048	U	0.47	0.048	mg/Kg	☼	08/10/15 14:33	08/11/15 17:24	1
Pyrene	0.038	U	0.47	0.038	mg/Kg	☼	08/10/15 14:33	08/11/15 17:24	1
2,4,5-Trichlorophenol	0.050	U	0.47	0.050	mg/Kg	₽	08/10/15 14:33	08/11/15 17:24	1
2,4,6-Trichlorophenol	0.041	U	0.47	0.041	mg/Kg	☼	08/10/15 14:33	08/11/15 17:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	74		41 - 116				08/10/15 14:33	08/11/15 17:24	1
2-Fluorophenol (Surr)	72		39 - 114				08/10/15 14:33	08/11/15 17:24	1
Nitrobenzene-d5 (Surr)	79		37 - 115				08/10/15 14:33	08/11/15 17:24	1
Phenol-d5 (Surr)	83		38 - 122				08/10/15 14:33	08/11/15 17:24	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.6		2.5	0.98	mg/Kg	<u> </u>	08/11/15 07:36	08/11/15 19:35	1
Barium	17		1.2	0.20	mg/Kg	₩	08/11/15 07:36	08/11/15 19:35	1
Beryllium	0.31	J	0.49	0.012	mg/Kg	₩	08/11/15 07:36	08/11/15 19:35	1
Cadmium	0.12	U	0.61	0.12	mg/Kg	₩.	08/11/15 07:36	08/11/15 19:35	1
Chromium	7.1		1.2	0.26	mg/Kg	₩	08/11/15 07:36	08/11/15 19:35	1
Copper	2.2	J	3.1	0.21	mg/Kg	₩	08/11/15 07:36	08/11/15 19:35	1
Lead	5.9		1.2	0.42	mg/Kg	₩.	08/11/15 07:36	08/11/15 19:35	1
Nickel	3.2	J	4.9	0.47	mg/Kg	₩	08/11/15 07:36	08/11/15 19:35	1
Selenium	1.2	U	3.1	1.2	mg/Kg	₩	08/11/15 07:36	08/11/15 19:35	1
Silver	0.074	U	1.2	0.074	mg/Kg	₩.	08/11/15 07:36	08/11/15 19:35	1
Vanadium	14		1.2	0.12	mg/Kg	₩	08/11/15 07:36	08/11/15 19:35	1
Zinc	12		2.5	0.86	mg/Kg	₩	08/11/15 07:36	08/11/15 19:35	1
Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

46 - 126

45 - 129

90

75

0.011 U

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.29	U	0.69	0.29	mg/Kg	₩	08/17/15 06:30	08/17/15 11:43	1

0.028

0.011 mg/Kg

TestAmerica Savannah

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Indeno[1,2,3-cd]pyrene

2-Methylnaphthalene

Isophorone

2-Methylphenol

Client Sample ID: GB-28 8-10

Date Collected: 08/06/15 14:20

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-7

Matrix: Solid
Percent Solids: 86.5

Method: 8270D - Semivolatile Analyte	_	Qualifier	ŔL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.047	U -	0.38	0.047	mg/Kg	₩	08/10/15 14:33	08/11/15 17:48	1
Acenaphthylene	0.041	U	0.38	0.041	mg/Kg	₩	08/10/15 14:33	08/11/15 17:48	1
Acetophenone	0.032	U	0.38	0.032	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
Anthracene	0.029	U	0.38	0.029	mg/Kg	₩	08/10/15 14:33	08/11/15 17:48	1
Atrazine	0.026	U	0.38	0.026	mg/Kg	₩	08/10/15 14:33	08/11/15 17:48	1
Benzaldehyde	0.067	U	0.38	0.067	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
Benzo[a]anthracene	0.031	U	0.38	0.031	mg/Kg	₩	08/10/15 14:33	08/11/15 17:48	1
Benzo[a]pyrene	0.060	U	0.38	0.060	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
Benzo[b]fluoranthene	0.044	U	0.38	0.044	mg/Kg	₩	08/10/15 14:33	08/11/15 17:48	1
Benzo[g,h,i]perylene	0.025	U	0.38	0.025	mg/Kg	₩	08/10/15 14:33	08/11/15 17:48	1
Benzo[k]fluoranthene	0.075	U	0.38	0.075	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
1,1'-Biphenyl	2.0	U	2.0	2.0	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
Bis(2-chloroethoxy)methane	0.045	U	0.38	0.045	mg/Kg		08/10/15 14:33	08/11/15 17:48	1
Bis(2-chloroethyl)ether	0.052	U	0.38	0.052	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
bis (2-chloroisopropyl) ether	0.034	U	0.38	0.034	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
Bis(2-ethylhexyl) phthalate	0.19	JB	0.38	0.033	mg/Kg		08/10/15 14:33	08/11/15 17:48	1
4-Bromophenyl phenyl ether	0.041	U	0.38	0.041	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
Butyl benzyl phthalate	0.030	U	0.38	0.030	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
Caprolactam	0.076	U	0.38	0.076	mg/Kg	₽	08/10/15 14:33	08/11/15 17:48	1
Carbazole	0.034	U	0.38	0.034	mg/Kg	₩	08/10/15 14:33	08/11/15 17:48	1
4-Chloroaniline	0.060	U	0.76	0.060	mg/Kg	₩	08/10/15 14:33	08/11/15 17:48	1
4-Chloro-3-methylphenol	0.040	U	0.38	0.040	mg/Kg		08/10/15 14:33	08/11/15 17:48	1
2-Chloronaphthalene	0.040	U	0.38	0.040	mg/Kg	₩	08/10/15 14:33	08/11/15 17:48	1
2-Chlorophenol	0.046	U	0.38	0.046	mg/Kg	₩	08/10/15 14:33	08/11/15 17:48	1
4-Chlorophenyl phenyl ether	0.051	U	0.38	0.051	mg/Kg	₽	08/10/15 14:33	08/11/15 17:48	1
Chrysene	0.024	U	0.38	0.024	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
Dibenz(a,h)anthracene	0.045	U	0.38	0.045	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
Dibenzofuran	0.038	U	0.38	0.038	mg/Kg	≎	08/10/15 14:33	08/11/15 17:48	1
3,3'-Dichlorobenzidine	0.032	U	0.76	0.032	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
2,4-Dichlorophenol	0.040	U	0.38	0.040	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
Diethyl phthalate	0.042	U	0.38	0.042	mg/Kg	₽	08/10/15 14:33	08/11/15 17:48	1
2,4-Dimethylphenol	0.051	U	0.38	0.051	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
Dimethyl phthalate	0.039	U	0.38	0.039	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
Di-n-butyl phthalate	0.034	U	0.38	0.034	mg/Kg	₽	08/10/15 14:33	08/11/15 17:48	1
4,6-Dinitro-2-methylphenol	0.20	U *	2.0	0.20	mg/Kg	₩	08/10/15 14:33	08/11/15 17:48	1
2,4-Dinitrophenol	0.95	U	2.0	0.95	mg/Kg	₩	08/10/15 14:33	08/11/15 17:48	1
2,4-Dinitrotoluene	0.056	U	0.38		mg/Kg	ф.	08/10/15 14:33	08/11/15 17:48	1
2,6-Dinitrotoluene	0.048	U	0.38		mg/Kg	₩	08/10/15 14:33	08/11/15 17:48	1
Di-n-octyl phthalate	0.033	U	0.38	0.033	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
Fluoranthene	0.037	U	0.38	0.037	mg/Kg		08/10/15 14:33	08/11/15 17:48	1
Fluorene	0.041		0.38		mg/Kg	₩	08/10/15 14:33	08/11/15 17:48	1
Hexachlorobenzene	0.045	U	0.38		mg/Kg	₩	08/10/15 14:33	08/11/15 17:48	1
Hexachlorobutadiene	0.041		0.38		mg/Kg			08/11/15 17:48	1
Hexachlorocyclopentadiene	0.047		0.38		mg/Kg	₩	08/10/15 14:33	08/11/15 17:48	1
r icxaciliorocycloperitadiene	0.0	-							

TestAmerica Savannah

© 08/10/15 14:33 08/11/15 17:48

© 08/10/15 14:33 08/11/15 17:48

© 08/10/15 14:33 08/11/15 17:48

© 08/10/15 14:33 08/11/15 17:48

0.38

0.38

0.38

0.38

0.032 mg/Kg

0.038 mg/Kg

0.044 mg/Kg

0.031 mg/Kg

0.032 U

0.038 U

0.044 U

0.031 U

3

6

8

4.6

11

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: GB-28 8-10

Date Collected: 08/06/15 14:20

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-7

Matrix: Solid

Percent Solids: 86.5

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
0.049	U	0.38	0.049	mg/Kg	<u> </u>	08/10/15 14:33	08/11/15 17:48	1
0.034	U	0.38	0.034	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
0.052	U	2.0	0.052	mg/Kg	₩	08/10/15 14:33	08/11/15 17:48	1
0.053	U	2.0	0.053	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
0.056	U	2.0	0.056	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
0.030	U	0.38	0.030	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
0.047	U	0.38	0.047	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
0.38	U	2.0	0.38	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
0.037	U	0.38	0.037	mg/Kg	₩	08/10/15 14:33	08/11/15 17:48	1
0.038	U	0.38	0.038	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
0.38	U	2.0	0.38	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
0.031	Ü	0.38	0.031	mg/Kg	.	08/10/15 14:33	08/11/15 17:48	1
0.039	U	0.38	0.039	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
0.031	U	0.38	0.031	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
0.040	U	0.38	0.040	mg/Kg	φ.	08/10/15 14:33	08/11/15 17:48	1
0.033	U	0.38	0.033	mg/Kg	☼	08/10/15 14:33	08/11/15 17:48	1
	0.049 0.034 0.052 0.053 0.056 0.030 0.047 0.38 0.037 0.038 0.38 0.031 0.039	Result Qualifier 0.049 0.034 0.052 0.053 0.056 0.030 0.047 0.38 0.037 0.038 0.038 0.031 0.039 0.031 0.039 0.031 0.039 0.031 0.033 U 0.033	0.049 U 0.38 0.034 U 0.38 0.052 U 2.0 0.053 U 2.0 0.056 U 2.0 0.030 U 0.38 0.047 U 0.38 0.38 U 2.0 0.037 U 0.38 0.038 U 0.38 0.038 U 0.38 0.038 U 2.0 0.031 U 0.38 0.039 U 0.38 0.039 U 0.38 0.031 U 0.38 0.031 U 0.38 0.031 U 0.38	0.049 U 0.38 0.049 0.034 U 0.38 0.034 0.052 U 2.0 0.052 0.053 U 2.0 0.056 0.030 U 0.38 0.030 0.047 U 0.38 0.047 0.38 U 2.0 0.38 0.037 U 0.38 0.037 0.038 U 0.38 0.038 0.38 U 2.0 0.38 0.031 U 0.38 0.031 0.031 U 0.38 0.031 0.031 U 0.38 0.031 0.040 U 0.38 0.040	0.049 U 0.38 0.049 mg/Kg 0.034 U 0.38 0.034 mg/Kg 0.052 U 2.0 0.052 mg/Kg 0.053 U 2.0 0.053 mg/Kg 0.056 U 2.0 0.056 mg/Kg 0.030 U 0.38 0.030 mg/Kg 0.047 U 0.38 0.047 mg/Kg 0.38 U 2.0 0.38 mg/Kg 0.037 U 0.38 0.037 mg/Kg 0.38 U 0.38 0.038 mg/Kg 0.031 U 0.38 0.031 mg/Kg 0.039 U 0.38 0.031 mg/Kg 0.031 U 0.38 0.031 mg/Kg 0.040 U 0.38 0.040 mg/Kg	0.049 U 0.38 0.049 mg/Kg \$\text{	0.049 U 0.38 0.049 mg/Kg © 08/10/15 14:33 0.034 U 0.38 0.034 mg/Kg © 08/10/15 14:33 0.052 U 2.0 0.052 mg/Kg © 08/10/15 14:33 0.053 U 2.0 0.053 mg/Kg © 08/10/15 14:33 0.056 U 2.0 0.056 mg/Kg © 08/10/15 14:33 0.030 U 0.38 0.030 mg/Kg © 08/10/15 14:33 0.047 U 0.38 0.047 mg/Kg © 08/10/15 14:33 0.38 U 2.0 0.38 mg/Kg © 08/10/15 14:33 0.037 U 0.38 0.037 mg/Kg © 08/10/15 14:33 0.038 U 0.38 0.038 mg/Kg © 08/10/15 14:33 0.031 U 0.38 0.031 mg/Kg © 08/10/15 14:33 0.039 U 0.38 0.031 mg/Kg © 08/10/15 14:33 0.031 U 0.38 0.031 <td>0.049 U 0.38 0.049 mg/Kg © 08/10/15 14:33 08/11/15 17:48 0.034 U 0.38 0.034 mg/Kg © 08/10/15 14:33 08/11/15 17:48 0.052 U 2.0 0.052 mg/Kg © 08/10/15 14:33 08/11/15 17:48 0.053 U 2.0 0.053 mg/Kg © 08/10/15 14:33 08/11/15 17:48 0.056 U 2.0 0.056 mg/Kg © 08/10/15 14:33 08/11/15 17:48 0.030 U 0.38 0.030 mg/Kg © 08/10/15 14:33 08/11/15 17:48 0.047 U 0.38 0.030 mg/Kg © 08/10/15 14:33 08/11/15 17:48 0.031 U 0.38 0.047 mg/Kg © 08/10/15 14:33 08/11/15 17:48 0.037 U 0.38 0.037 mg/Kg © 08/10/15 14:33 08/11/15 17:48 0.038 U 0.38 0.038 mg/Kg © 08/10/15 14:33 08/11/15 17:48 0.031 U 0.38 0.031</td>	0.049 U 0.38 0.049 mg/Kg © 08/10/15 14:33 08/11/15 17:48 0.034 U 0.38 0.034 mg/Kg © 08/10/15 14:33 08/11/15 17:48 0.052 U 2.0 0.052 mg/Kg © 08/10/15 14:33 08/11/15 17:48 0.053 U 2.0 0.053 mg/Kg © 08/10/15 14:33 08/11/15 17:48 0.056 U 2.0 0.056 mg/Kg © 08/10/15 14:33 08/11/15 17:48 0.030 U 0.38 0.030 mg/Kg © 08/10/15 14:33 08/11/15 17:48 0.047 U 0.38 0.030 mg/Kg © 08/10/15 14:33 08/11/15 17:48 0.031 U 0.38 0.047 mg/Kg © 08/10/15 14:33 08/11/15 17:48 0.037 U 0.38 0.037 mg/Kg © 08/10/15 14:33 08/11/15 17:48 0.038 U 0.38 0.038 mg/Kg © 08/10/15 14:33 08/11/15 17:48 0.031 U 0.38 0.031

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	63	41 - 116	08/10/15 14:33	08/11/15 17:48	1
2-Fluorophenol (Surr)	46	39 - 114	08/10/15 14:33	08/11/15 17:48	1
Nitrobenzene-d5 (Surr)	55	37 - 115	08/10/15 14:33	08/11/15 17:48	1
Phenol-d5 (Surr)	51	38 - 122	08/10/15 14:33	08/11/15 17:48	1
Terphenyl-d14 (Surr)	59	46 - 126	08/10/15 14:33	08/11/15 17:48	1
2,4,6-Tribromophenol (Surr)	52	45 - 129	08/10/15 14:33	08/11/15 17:48	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.8	J	2.0	0.80	mg/Kg	<u> </u>	08/11/15 07:36	08/11/15 19:49	1
Barium	2.3		1.0	0.16	mg/Kg	₩	08/11/15 07:36	08/11/15 19:49	1
Beryllium	0.092	J	0.40	0.010	mg/Kg	☼	08/11/15 07:36	08/11/15 19:49	1
Cadmium	0.10	U	0.50	0.10	mg/Kg	₩.	08/11/15 07:36	08/11/15 19:49	1
Chromium	2.3		1.0	0.21	mg/Kg	₩	08/11/15 07:36	08/11/15 19:49	1
Copper	0.76	J	2.5	0.17	mg/Kg	₩	08/11/15 07:36	08/11/15 19:49	1
Lead	2.6		1.0	0.34	mg/Kg		08/11/15 07:36	08/11/15 19:49	1
Nickel	0.82	J	4.0	0.38	mg/Kg	₩	08/11/15 07:36	08/11/15 19:49	1
Selenium	0.97	U	2.5	0.97	mg/Kg	₩	08/11/15 07:36	08/11/15 19:49	1
Silver	0.060	Ü	1.0	0.060	mg/Kg		08/11/15 07:36	08/11/15 19:49	1
Vanadium	4.4		1.0	0.10	mg/Kg	₩	08/11/15 07:36	08/11/15 19:49	1
Zinc	3.6		2.0	0.70	mg/Kg	₩	08/11/15 07:36	08/11/15 19:49	1

Method: 7471B - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.061		0.022	0.0087	mg/Kg	<u> </u>	08/13/15 09:48	08/13/15 16:31	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.24	U	0.57	0.24	mg/Kg	₩	08/17/15 06:30	08/17/15 11:44	1

TestAmerica Savannah

3

5

7

8

10

11

Client: Geotechnical & Environmental Consultants

Client Sample ID: GB-28 13-15 Date Collected: 08/06/15 14:30

Date Received: 08/08/15 10:00

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-8

Matrix: Solid Percent Solids: 82.0

Method: 8270D - Semivolatile Organistic	Result	Qualifier	ŘL	MDL		D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.090		0.40	0.050	mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	1
Acenaphthylene	0.044		0.40		mg/Kg	₽.	08/10/15 14:33	08/11/15 18:12	1
Acetophenone	0.034		0.40		mg/Kg	, .	08/10/15 14:33	08/11/15 18:12	1
Anthracene	0.067		0.40		mg/Kg	*	08/10/15 14:33	08/11/15 18:12	1
Atrazine	0.028		0.40		mg/Kg	**	08/10/15 14:33	08/11/15 18:12	1
Benzaldehyde	0.071		0.40	0.071	0 0		08/10/15 14:33	08/11/15 18:12	
Benzo[a]anthracene	0.28		0.40		mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	1
Benzo[a]pyrene	0.25	J	0.40	0.063	mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	1
Benzo[b]fluoranthene	0.43		0.40		mg/Kg	*	08/10/15 14:33	08/11/15 18:12	1
Benzo[g,h,i]perylene	0.20	J	0.40	0.027	mg/Kg	☼	08/10/15 14:33	08/11/15 18:12	1
Benzo[k]fluoranthene	0.20	J	0.40	0.079	mg/Kg	☼	08/10/15 14:33	08/11/15 18:12	1
1,1'-Biphenyl	2.1	U	2.1	2.1	mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	1
Bis(2-chloroethoxy)methane	0.048	U	0.40	0.048	mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	1
Bis(2-chloroethyl)ether	0.055	U	0.40	0.055	mg/Kg	☼	08/10/15 14:33	08/11/15 18:12	1
bis (2-chloroisopropyl) ether	0.037	U	0.40	0.037	mg/Kg	☼	08/10/15 14:33	08/11/15 18:12	1
Bis(2-ethylhexyl) phthalate	0.26	JB	0.40	0.035	mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	1
4-Bromophenyl phenyl ether	0.044	U	0.40	0.044	mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	1
Butyl benzyl phthalate	0.032	U	0.40	0.032	mg/Kg	☼	08/10/15 14:33	08/11/15 18:12	1
Caprolactam	0.080	U	0.40	0.080	mg/Kg		08/10/15 14:33	08/11/15 18:12	1
Carbazole	0.047	J	0.40	0.037	mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	1
4-Chloroaniline	0.063	U	0.80	0.063	mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	1
4-Chloro-3-methylphenol	0.043	U	0.40		mg/Kg	 	08/10/15 14:33	08/11/15 18:12	1
2-Chloronaphthalene	0.043	U	0.40		mg/Kg	☼	08/10/15 14:33	08/11/15 18:12	1
2-Chlorophenol	0.049	U	0.40	0.049	0 0	☼	08/10/15 14:33	08/11/15 18:12	1
4-Chlorophenyl phenyl ether	0.054		0.40	0.054	mg/Kg		08/10/15 14:33	08/11/15 18:12	1
Chrysene	0.37		0.40		mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	1
Dibenz(a,h)anthracene	0.048		0.40		mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	1
Dibenzofuran	0.073		0.40				08/10/15 14:33	08/11/15 18:12	1
3,3'-Dichlorobenzidine	0.034		0.80		mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	
2,4-Dichlorophenol	0.043		0.40		mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	
Diethyl phthalate	0.045		0.40		mg/Kg		08/10/15 14:33	08/11/15 18:12	1
2,4-Dimethylphenol	0.054		0.40		mg/Kg	₩			1
Dimethyl phthalate	0.041		0.40	0.041		₽		08/11/15 18:12	1
Di-n-butyl phthalate	0.037		0.40		mg/Kg				
4,6-Dinitro-2-methylphenol	0.037		2.1		mg/Kg	₽		08/11/15 18:12	1
2,4-Dinitrophenol	1.0		2.1		mg/Kg	₽		08/11/15 18:12	
2,4-Dinitrotoluene	0.060		0.40		mg/Kg			08/11/15 18:12	· · · · · · · · · · · · · · · · · · ·
	0.051		0.40		mg/Kg	₽			
2,6-Dinitrotoluene Di-n-octyl phthalate	0.031		0.40		mg/Kg	≎		08/11/15 18:12 08/11/15 18:12	1
									1
Fluoranthene	0.46		0.40		mg/Kg	☆		08/11/15 18:12	1
Fluorene	0.066		0.40		mg/Kg	₩ ₩		08/11/15 18:12	1
Hexachlorobenzene	0.048		0.40		mg/Kg	.		08/11/15 18:12	1
Hexachlorobutadiene	0.044		0.40		mg/Kg	‡		08/11/15 18:12	1
Hexachlorocyclopentadiene	0.050		0.40		mg/Kg	ψ.		08/11/15 18:12	1
Hexachloroethane	0.034		0.40		mg/Kg			08/11/15 18:12	1
Indeno[1,2,3-cd]pyrene	0.18		0.40		mg/Kg	Δ.		08/11/15 18:12	1
Isophorone	0.040		0.40		mg/Kg	₩		08/11/15 18:12	1
O Mathedaga hitalaga	0.18	1	0.40	0.046	mg/Kg	34.	00/40/45 44:22	08/11/15 18:12	1
2-Methylnaphthalene	0.033		0.40		mg/Kg	: .		08/11/15 18:12	

TestAmerica Savannah

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

Cyanide, Total

Client Sample ID: GB-28 13-15

Date Collected: 08/06/15 14:30

Lab Sample ID: 680-115409-8

Matrix: Solid

Date Received: 08/08/15 10:00 Percent Solids: 82.0

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
3 & 4 Methylphenol	0.052	U	0.40	0.052	mg/Kg	-	08/10/15 14:33	08/11/15 18:12	
Naphthalene	0.19	J	0.40	0.037	mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	•
2-Nitroaniline	0.055	U	2.1		mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	
3-Nitroaniline	0.056	U	2.1	0.056	mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	•
4-Nitroaniline	0.060	U	2.1	0.060	mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	•
Nitrobenzene	0.032	U	0.40	0.032	mg/Kg	₽	08/10/15 14:33	08/11/15 18:12	
2-Nitrophenol	0.050	U	0.40	0.050	mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	
4-Nitrophenol	0.40	U	2.1	0.40	mg/Kg	☼	08/10/15 14:33	08/11/15 18:12	•
N-Nitrosodi-n-propylamine	0.039	U	0.40	0.039	mg/Kg	φ.	08/10/15 14:33	08/11/15 18:12	1
N-Nitrosodiphenylamine	0.040	U	0.40	0.040	mg/Kg	☼	08/10/15 14:33	08/11/15 18:12	1
Pentachlorophenol	0.40	U	2.1	0.40	mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	1
Phenanthrene	0.37	J	0.40	0.033	mg/Kg		08/10/15 14:33	08/11/15 18:12	1
Phenol	0.041	U	0.40	0.041	mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	1
Pyrene	0.50		0.40		mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	1
2,4,5-Trichlorophenol	0.043	U	0.40		mg/Kg		08/10/15 14:33	08/11/15 18:12	1
2,4,6-Trichlorophenol	0.035	U	0.40		mg/Kg	₩	08/10/15 14:33	08/11/15 18:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	74		41 - 116				08/10/15 14:33	08/11/15 18:12	1
2-Fluorophenol (Surr)	54		39 - 114				08/10/15 14:33	08/11/15 18:12	1
Nitrobenzene-d5 (Surr)	71		37 - 115				08/10/15 14:33	08/11/15 18:12	1
Phenol-d5 (Surr)	62		38 - 122				08/10/15 14:33	08/11/15 18:12	1
Terphenyl-d14 (Surr)	82		46 - 126				08/10/15 14:33	08/11/15 18:12	1
2,4,6-Tribromophenol (Surr)	72		45 - 129				08/10/15 14:33	08/11/15 18:12	1
Method: 6010C - Metals (IC	(P)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	5.2		2.2	0.86	mg/Kg	<u>₩</u>	08/11/15 07:36	08/11/15 19:53	1
Barium	150		1.1	0.17	mg/Kg	₩	08/11/15 07:36	08/11/15 19:53	1
Beryllium	0.22	J	0.43	0.011	mg/Kg	₩	08/11/15 07:36	08/11/15 19:53	1
Cadmium	0.15	J	0.54	0.11	mg/Kg	₩	08/11/15 07:36	08/11/15 19:53	1
Chromium	16		1.1	0.23	mg/Kg	☼	08/11/15 07:36	08/11/15 19:53	1
Copper	31		2.7	0.18	mg/Kg	☼	08/11/15 07:36	08/11/15 19:53	1
Lead	950		1.1	0.37	mg/Kg		08/11/15 07:36	08/11/15 19:53	1
Nickel	3.4	J	4.3	0.41	mg/Kg	₩	08/11/15 07:36	08/11/15 19:53	1
Selenium	1.0	U	2.7		mg/Kg	₩	08/11/15 07:36	08/11/15 19:53	1
Silver	0.067	J	1.1	0.065	mg/Kg	φ.	08/11/15 07:36	08/11/15 19:53	1
Vanadium	23		1.1		mg/Kg	₩	08/11/15 07:36	08/11/15 19:53	1
Zinc	210		2.2		mg/Kg	₩	08/11/15 07:36	08/11/15 19:53	1
Method: 7471B - Mercury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.56		0.11	0.045	mg/Kg	<u></u>	08/13/15 09:48	08/13/15 17:35	5
General Chemistry									
						_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

 ☼
 08/17/15 06:30
 08/17/15 11:45

0.58

0.24 mg/Kg

0.24 U

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-9

Percent Solids: 80.4

Client Sample ID: SB-24 2-4 Date Collected: 08/06/15 15:25 **Matrix: Solid**

Method: 8270D - Semivolatil							_		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.51		4.1		mg/Kg	*		08/11/15 18:35	•
Acenaphthylene	0.45		4.1		mg/Kg	₩		08/11/15 18:35	•
Acetophenone	0.35	U	4.1		mg/Kg	₩	08/10/15 14:33	08/11/15 18:35	
anthracene	0.31	U	4.1	0.31	mg/Kg	₩	08/10/15 14:33	08/11/15 18:35	•
atrazine	0.29	U	4.1	0.29	mg/Kg	☆	08/10/15 14:33	08/11/15 18:35	•
Benzaldehyde	0.72	U	4.1		mg/Kg	₩	08/10/15 14:33	08/11/15 18:35	•
Benzo[a]anthracene	0.47	J	4.1		mg/Kg	₩	08/10/15 14:33	08/11/15 18:35	
Benzo[a]pyrene	0.65	U	4.1	0.65	mg/Kg	☆	08/10/15 14:33	08/11/15 18:35	•
Benzo[b]fluoranthene	0.57	J	4.1	0.47	mg/Kg	☆	08/10/15 14:33	08/11/15 18:35	
lenzo[g,h,i]perylene	0.27	U	4.1	0.27	mg/Kg	₩	08/10/15 14:33	08/11/15 18:35	
Benzo[k]fluoranthene	0.81	U	4.1	0.81	mg/Kg	₽	08/10/15 14:33	08/11/15 18:35	•
,1'-Biphenyl	21	U	21	21	mg/Kg	☆	08/10/15 14:33	08/11/15 18:35	
Bis(2-chloroethoxy)methane	0.48	Ü	4.1	0.48	mg/Kg	₽	08/10/15 14:33	08/11/15 18:35	
Bis(2-chloroethyl)ether	0.56	U	4.1	0.56	mg/Kg	₩	08/10/15 14:33	08/11/15 18:35	
is (2-chloroisopropyl) ether	0.37	U	4.1		mg/Kg	₩	08/10/15 14:33	08/11/15 18:35	
sis(2-ethylhexyl) phthalate	0.36	U	4.1		mg/Kg		08/10/15 14:33	08/11/15 18:35	;
-Bromophenyl phenyl ether	0.45	U	4.1		mg/Kg	≎	08/10/15 14:33	08/11/15 18:35	
utyl benzyl phthalate	0.32	U	4.1		mg/Kg	☆	08/10/15 14:33	08/11/15 18:35	
aprolactam	0.82	Ü	4.1		mg/Kg	 -	08/10/15 14:33	08/11/15 18:35	
carbazole	0.37		4.1		mg/Kg	≎		08/11/15 18:35	
-Chloroaniline	0.65		8.2		mg/Kg	₩		08/11/15 18:35	
Chloro-3-methylphenol	0.43		4.1		mg/Kg	 \$		08/11/15 18:35	
-Chloronaphthalene	0.43		4.1		mg/Kg	₩		08/11/15 18:35	
-Chlorophenol	0.50		4.1		mg/Kg	₩		08/11/15 18:35	
-Chlorophenyl phenyl ether	0.55		4.1		mg/Kg			08/11/15 18:35	
hrysene	0.57		4.1		mg/Kg	₩		08/11/15 18:35	
ibenz(a,h)anthracene	0.48		4.1		mg/Kg	☆		08/11/15 18:35	
ibenzofuran	0.40		4.1		mg/Kg			08/11/15 18:35	
,3'-Dichlorobenzidine	0.35		8.2		mg/Kg	☆		08/11/15 18:35	
•	0.43		4.1		mg/Kg	☆		08/11/15 18:35	
,4-Dichlorophenol									
liethyl phthalate	0.46		4.1		mg/Kg	₩		08/11/15 18:35	
4-Dimethylphenol	0.55		4.1		mg/Kg			08/11/15 18:35	
imethyl phthalate	0.42		4.1		mg/Kg	* 		08/11/15 18:35	
i-n-butyl phthalate	0.37		4.1		mg/Kg	ψ.		08/11/15 18:35	
6-Dinitro-2-methylphenol		U *	21		mg/Kg	ψ.		08/11/15 18:35	
4-Dinitrophenol	10		21		mg/Kg	<u>.</u> .		08/11/15 18:35	
4-Dinitrotoluene	0.61	U	4.1		mg/Kg	:Q:		08/11/15 18:35	
,6-Dinitrotoluene	6.1		4.1		mg/Kg	₩.		08/11/15 18:35	
i-n-octyl phthalate	0.36		4.1		mg/Kg			08/11/15 18:35	
luoranthene	1.0	J	4.1		mg/Kg	☆		08/11/15 18:35	
luorene	0.45	U	4.1	0.45	mg/Kg	☆	08/10/15 14:33	08/11/15 18:35	
exachlorobenzene	0.48	U	4.1	0.48	mg/Kg	₩	08/10/15 14:33	08/11/15 18:35	
exachlorobutadiene	0.45	U	4.1	0.45	mg/Kg	₩	08/10/15 14:33	08/11/15 18:35	
exachlorocyclopentadiene	0.51	U	4.1	0.51	mg/Kg	≎	08/10/15 14:33	08/11/15 18:35	
exachloroethane	0.35	U	4.1	0.35	mg/Kg	☼	08/10/15 14:33	08/11/15 18:35	
ndeno[1,2,3-cd]pyrene	0.35	Ú	4.1	0.35	mg/Kg		08/10/15 14:33	08/11/15 18:35	
sophorone	0.41	U	4.1		mg/Kg	₩	08/10/15 14:33	08/11/15 18:35	
-Methylnaphthalene	0.47	U	4.1		mg/Kg	₩		08/11/15 18:35	
-Methylphenol	0.34		4.1		mg/Kg	 		08/11/15 18:35	

TestAmerica Savannah

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: SB-24 2-4

Date Collected: 08/06/15 15:25 Date Received: 08/08/15 10:00 Lab Sample ID: 680-115409-9

Matrix: Solid Percent Solids: 80.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.53	U	4.1	0.53	mg/Kg	<u> </u>	08/10/15 14:33	08/11/15 18:35	10
Naphthalene	0.37	U	4.1	0.37	mg/Kg	₩	08/10/15 14:33	08/11/15 18:35	10
2-Nitroaniline	0.56	U	21	0.56	mg/Kg	₽	08/10/15 14:33	08/11/15 18:35	10
3-Nitroaniline	0.57	U	21	0.57	mg/Kg	₩	08/10/15 14:33	08/11/15 18:35	10
4-Nitroaniline	0.61	U	21	0.61	mg/Kg	₩	08/10/15 14:33	08/11/15 18:35	10
Nitrobenzene	0.32	U	4.1	0.32	mg/Kg	₩.	08/10/15 14:33	08/11/15 18:35	10
2-Nitrophenol	0.51	U	4.1	0.51	mg/Kg	₩	08/10/15 14:33	08/11/15 18:35	10
4-Nitrophenol	4.1	U	21	4.1	mg/Kg	☼	08/10/15 14:33	08/11/15 18:35	10
N-Nitrosodi-n-propylamine	0.40	U	4.1	0.40	mg/Kg	₩.	08/10/15 14:33	08/11/15 18:35	10
N-Nitrosodiphenylamine	0.41	U	4.1	0.41	mg/Kg	₩	08/10/15 14:33	08/11/15 18:35	10
Pentachlorophenol	4.1	U	21	4.1	mg/Kg	₩	08/10/15 14:33	08/11/15 18:35	10
Phenanthrene	0.52	J	4.1	0.34	mg/Kg	₩.	08/10/15 14:33	08/11/15 18:35	10
Phenol	0.42	U	4.1	0.42	mg/Kg	☼	08/10/15 14:33	08/11/15 18:35	10
Pyrene	0.87	J	4.1	0.34	mg/Kg	₩	08/10/15 14:33	08/11/15 18:35	10
2,4,5-Trichlorophenol	0.43	U	4.1	0.43	mg/Kg	₽	08/10/15 14:33	08/11/15 18:35	10
2,4,6-Trichlorophenol	0.36	U	4.1	0.36	mg/Kg	₽	08/10/15 14:33	08/11/15 18:35	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl		D	41 - 116	08/10/15 14:33	08/11/15 18:35	10
2-Fluorophenol (Surr)	0	D	39 - 114	08/10/15 14:33	08/11/15 18:35	10
Nitrobenzene-d5 (Surr)	0	D	37 - 115	08/10/15 14:33	08/11/15 18:35	10
Phenol-d5 (Surr)	0	D	38 - 122	08/10/15 14:33	08/11/15 18:35	10
Terphenyl-d14 (Surr)	0	D	46 - 126	08/10/15 14:33	08/11/15 18:35	10
2,4,6-Tribromophenol (Surr)	0	D	45 - 129	08/10/15 14:33	08/11/15 18:35	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.7		2.3	0.90	mg/Kg	<u> </u>	08/11/15 07:36	08/11/15 19:58	1
Barium	49		1.1	0.18	mg/Kg	₩	08/11/15 07:36	08/11/15 19:58	1
Beryllium	0.18	J	0.45	0.011	mg/Kg	≎	08/11/15 07:36	08/11/15 19:58	1
Cadmium	0.11	U	0.57	0.11	mg/Kg	₩	08/11/15 07:36	08/11/15 19:58	1
Chromium	12		1.1	0.24	mg/Kg	₩	08/11/15 07:36	08/11/15 19:58	1
Copper	10		2.8	0.19	mg/Kg	☆	08/11/15 07:36	08/11/15 19:58	1
Lead	75		1.1	0.38	mg/Kg		08/11/15 07:36	08/11/15 19:58	1
Nickel	2.7	J	4.5	0.43	mg/Kg	☼	08/11/15 07:36	08/11/15 19:58	1
Selenium	1.1	U	2.8	1.1	mg/Kg	≎	08/11/15 07:36	08/11/15 19:58	1
Silver	0.068	U	1.1	0.068	mg/Kg		08/11/15 07:36	08/11/15 19:58	1
Vanadium	25		1.1	0.11	mg/Kg	☼	08/11/15 07:36	08/11/15 19:58	1
Zinc	53		2.3	0.79	mg/Kg	₩	08/11/15 07:36	08/11/15 19:58	1

Method: 7471B - Mercury (CVAA) Analyte Mercury	Result	Qualifier	RL 0.021	MDL 0.0084	Unit mg/Kg	D 京	Prepared 08/13/15 09:48	Analyzed 08/13/15 16:37	Dil Fac
General Chemistry						_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.25	U	0.59	0.25	ma/Ka		08/17/15 06:30	08/17/15 11:46	

Client: Geotechnical & Environmental Consultants

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Result Qualifier

Project/Site: Macon MGP

Hexachlorocyclopentadiene

Indeno[1,2,3-cd]pyrene

2-Methylnaphthalene

Hexachloroethane

Isophorone

2-Methylphenol

Analyte

Client Sample ID: SB-24 4-6

Date Collected: 08/06/15 15:32

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-10

D

Prepared

MDL Unit

Matrix: Solid Percent Solids: 76.0

Analyzed

Dil Fac	5
10	
10	
10	
10	
10	
10	8
10	
10	Q
10	
10	
40	

Analyte	Result	Qualifier	KL	MDL Unit	ט	Prepared	Analyzea	DII Fac
Acenaphthene	0.54	U	4.3	0.54 mg/Kg	\tilde{\	08/10/15 14:33	08/11/15 18:59	10
Acenaphthylene	0.51	J	4.3	0.47 mg/Kg	₩	08/10/15 14:33	08/11/15 18:59	10
Acetophenone	0.37	U	4.3	0.37 mg/Kg	₩	08/10/15 14:33	08/11/15 18:59	10
Anthracene	1.6	J	4.3	0.33 mg/Kg	☼	08/10/15 14:33	08/11/15 18:59	10
Atrazine	0.30	U	4.3	0.30 mg/Kg	₩	08/10/15 14:33	08/11/15 18:59	10
Benzaldehyde	0.76	U	4.3	0.76 mg/Kg	₩	08/10/15 14:33	08/11/15 18:59	10
Benzo[a]anthracene	2.7	J	4.3	0.35 mg/Kg	≎	08/10/15 14:33	08/11/15 18:59	10
Benzo[a]pyrene	1.9	J	4.3	0.68 mg/Kg	≎	08/10/15 14:33	08/11/15 18:59	10
Benzo[b]fluoranthene	2.4	J	4.3	0.50 mg/Kg	≎	08/10/15 14:33	08/11/15 18:59	10
Benzo[g,h,i]perylene	0.67	J	4.3	0.29 mg/Kg	₽	08/10/15 14:33	08/11/15 18:59	10
Benzo[k]fluoranthene	1.2	J	4.3	0.85 mg/Kg	≎	08/10/15 14:33	08/11/15 18:59	10
1,1'-Biphenyl	22	U	22	22 mg/Kg	≎	08/10/15 14:33	08/11/15 18:59	10
Bis(2-chloroethoxy)methane	0.51	U	4.3	0.51 mg/Kg	₽	08/10/15 14:33	08/11/15 18:59	10
Bis(2-chloroethyl)ether	0.59	U	4.3	0.59 mg/Kg	₽	08/10/15 14:33	08/11/15 18:59	10
bis (2-chloroisopropyl) ether	0.39	U	4.3	0.39 mg/Kg	₩	08/10/15 14:33	08/11/15 18:59	10
Bis(2-ethylhexyl) phthalate	0.38	U	4.3	0.38 mg/Kg	₽	08/10/15 14:33	08/11/15 18:59	10
4-Bromophenyl phenyl ether	0.47	U	4.3	0.47 mg/Kg	₽	08/10/15 14:33	08/11/15 18:59	10
Butyl benzyl phthalate	0.34	U	4.3	0.34 mg/Kg	₩	08/10/15 14:33	08/11/15 18:59	10
Caprolactam	0.86		4.3	0.86 mg/Kg		08/10/15 14:33	08/11/15 18:59	10
Carbazole	0.61	J	4.3	0.39 mg/Kg	₩	08/10/15 14:33	08/11/15 18:59	10
4-Chloroaniline	0.68	U	8.6	0.68 mg/Kg	☼	08/10/15 14:33	08/11/15 18:59	10
4-Chloro-3-methylphenol	0.46		4.3	0.46 mg/Kg		08/10/15 14:33	08/11/15 18:59	10
2-Chloronaphthalene	0.46	U	4.3	0.46 mg/Kg	☼	08/10/15 14:33	08/11/15 18:59	10
2-Chlorophenol	0.52	U	4.3	0.52 mg/Kg	≎	08/10/15 14:33	08/11/15 18:59	10
4-Chlorophenyl phenyl ether	0.58	U	4.3	0.58 mg/Kg	\$	08/10/15 14:33	08/11/15 18:59	10
Chrysene	2.7	J	4.3	0.28 mg/Kg	☼	08/10/15 14:33	08/11/15 18:59	10
Dibenz(a,h)anthracene	0.51	U	4.3	0.51 mg/Kg	₩	08/10/15 14:33	08/11/15 18:59	10
Dibenzofuran	0.80	J	4.3	0.43 mg/Kg		08/10/15 14:33	08/11/15 18:59	10
3,3'-Dichlorobenzidine	0.37	U	8.6	0.37 mg/Kg	≎	08/10/15 14:33	08/11/15 18:59	10
2,4-Dichlorophenol	0.46	U	4.3	0.46 mg/Kg	≎	08/10/15 14:33	08/11/15 18:59	10
Diethyl phthalate	0.48		4.3	0.48 mg/Kg	ф.	08/10/15 14:33	08/11/15 18:59	10
2,4-Dimethylphenol	0.58	U	4.3	0.58 mg/Kg	₩	08/10/15 14:33	08/11/15 18:59	10
Dimethyl phthalate	0.45	U	4.3	0.45 mg/Kg	₽	08/10/15 14:33	08/11/15 18:59	10
Di-n-butyl phthalate	0.39		4.3	0.39 mg/Kg	ф.	08/10/15 14:33	08/11/15 18:59	10
4,6-Dinitro-2-methylphenol	2.2	U *	22	2.2 mg/Kg	₩	08/10/15 14:33	08/11/15 18:59	10
2,4-Dinitrophenol	11	U	22	11 mg/Kg	₩	08/10/15 14:33	08/11/15 18:59	10
2,4-Dinitrotoluene	0.64		4.3	0.64 mg/Kg		08/10/15 14:33	08/11/15 18:59	10
2,6-Dinitrotoluene	0.55	U	4.3	0.55 mg/Kg	₩	08/10/15 14:33	08/11/15 18:59	10
Di-n-octyl phthalate	0.38	U	4.3	0.38 mg/Kg	₩	08/10/15 14:33	08/11/15 18:59	10
Fluoranthene	4.9		4.3	0.42 mg/Kg	ф.	08/10/15 14:33	08/11/15 18:59	10
Fluorene	0.76	J	4.3	0.47 mg/Kg	₩	08/10/15 14:33	08/11/15 18:59	10
Hexachlorobenzene	0.51		4.3	0.51 mg/Kg	₩		08/11/15 18:59	10
Hexachlorobutadiene	0.47		4.3	0.47 mg/Kg	·		08/11/15 18:59	10
		-						

TestAmerica Savannah

© 08/10/15 14:33 08/11/15 18:59

☼ 08/10/15 14:33 08/11/15 18:59

© 08/10/15 14:33 08/11/15 18:59

© 08/10/15 14:33 08/11/15 18:59

© 08/10/15 14:33 08/11/15 18:59

© 08/10/15 14:33 08/11/15 18:59

4.3

4.3

4.3

4.3

4.3

4.3

0.54 mg/Kg

0.37 mg/Kg

0.37 mg/Kg

0.43 mg/Kg

0.50 mg/Kg

0.35 mg/Kg

0.54 U

0.37 U

0.72 J

0.43 U

0.67 J

0.35 U

10

10

10

10

10

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: SB-24 4-6

Date Collected: 08/06/15 15:32 Date Received: 08/08/15 10:00 Lab Sample ID: 680-115409-10

Matrix: Solid

Percent Solids: 76.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.56	U	4.3	0.56	mg/Kg	<u></u>	08/10/15 14:33	08/11/15 18:59	10
Naphthalene	0.50	J	4.3	0.39	mg/Kg	☼	08/10/15 14:33	08/11/15 18:59	10
2-Nitroaniline	0.59	U	22	0.59	mg/Kg	\$	08/10/15 14:33	08/11/15 18:59	10
3-Nitroaniline	0.60	U	22	0.60	mg/Kg	☼	08/10/15 14:33	08/11/15 18:59	10
4-Nitroaniline	0.64	U	22	0.64	mg/Kg	☼	08/10/15 14:33	08/11/15 18:59	10
Nitrobenzene	0.34	U	4.3	0.34	mg/Kg	₽	08/10/15 14:33	08/11/15 18:59	10
2-Nitrophenol	0.54	U	4.3	0.54	mg/Kg	☼	08/10/15 14:33	08/11/15 18:59	10
4-Nitrophenol	4.3	U	22	4.3	mg/Kg	☼	08/10/15 14:33	08/11/15 18:59	10
N-Nitrosodi-n-propylamine	0.42	U	4.3	0.42	mg/Kg	₽	08/10/15 14:33	08/11/15 18:59	10
N-Nitrosodiphenylamine	0.43	U	4.3	0.43	mg/Kg	☼	08/10/15 14:33	08/11/15 18:59	10
Pentachlorophenol	4.3	U	22	4.3	mg/Kg	☼	08/10/15 14:33	08/11/15 18:59	10
Phenanthrene	7.1		4.3	0.35	mg/Kg	₽	08/10/15 14:33	08/11/15 18:59	10
Phenol	0.45	U	4.3	0.45	mg/Kg	☼	08/10/15 14:33	08/11/15 18:59	10
Pyrene	5.3		4.3	0.35	mg/Kg	☼	08/10/15 14:33	08/11/15 18:59	10
2,4,5-Trichlorophenol	0.46	U	4.3	0.46	mg/Kg	₽	08/10/15 14:33	08/11/15 18:59	10
2,4,6-Trichlorophenol	0.38	U	4.3	0.38	mg/Kg	₩	08/10/15 14:33	08/11/15 18:59	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	0	D	41 - 116	08/10/15 14:33	08/11/15 18:59	10
2-Fluorophenol (Surr)	0	D	39 - 114	08/10/15 14:33	08/11/15 18:59	10
Nitrobenzene-d5 (Surr)	0	D	37 - 115	08/10/15 14:33	08/11/15 18:59	10
Phenol-d5 (Surr)	0	D	38 - 122	08/10/15 14:33	08/11/15 18:59	10
Terphenyl-d14 (Surr)	0	D	46 - 126	08/10/15 14:33	08/11/15 18:59	10
2,4,6-Tribromophenol (Surr)	0	D	45 - 129	08/10/15 14:33	08/11/15 18:59	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.7		2.5	0.99	mg/Kg	<u> </u>	08/11/15 07:36	08/11/15 20:02	1
Barium	88		1.2	0.20	mg/Kg	₩	08/11/15 07:36	08/11/15 20:02	1
Beryllium	0.34	J	0.50	0.012	mg/Kg	₩	08/11/15 07:36	08/11/15 20:02	1
Cadmium	0.27	J	0.62	0.12	mg/Kg	₩.	08/11/15 07:36	08/11/15 20:02	1
Chromium	14		1.2	0.26	mg/Kg	₩	08/11/15 07:36	08/11/15 20:02	1
Copper	25		3.1	0.21	mg/Kg	₩	08/11/15 07:36	08/11/15 20:02	1
Lead	260		1.2	0.42	mg/Kg	₩.	08/11/15 07:36	08/11/15 20:02	1
Nickel	3.1	J	5.0	0.47	mg/Kg	₩	08/11/15 07:36	08/11/15 20:02	1
Selenium	1.2	U	3.1	1.2	mg/Kg	₩	08/11/15 07:36	08/11/15 20:02	1
Silver	0.074	U	1.2	0.074	mg/Kg		08/11/15 07:36	08/11/15 20:02	1
Vanadium	29		1.2	0.12	mg/Kg	₩	08/11/15 07:36	08/11/15 20:02	1
Zinc	120		2.5	0.87	mg/Kg	₩	08/11/15 07:36	08/11/15 20:02	1

Method: 7471B - Mercury (CVAA) Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.43	F1 F2	0.024	0.0097	mg/Kg	 \	08/16/15 13:43	08/17/15 21:11	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.26	U	0.63	0.26	mg/Kg	<u> </u>	08/17/15 06:30	08/17/15 11:47	1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: SB-24 8-10

Date Collected: 08/06/15 15:38

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-11

		Matrix Percent Solid	:: Solid s: 69.7	
D	Prepared	Analyzed	Dil Fac	
₩	08/10/15 14:33	08/11/15 19:23	10	
₩	08/10/15 14:33	08/11/15 19:23	10	
₽	08/10/15 14:33	08/11/15 19:23	10	
₩	08/10/15 14:33	08/11/15 19:23	10	
₩	08/10/15 14:33	08/11/15 19:23	10	
₽	08/10/15 14:33	08/11/15 19:23	10	
ά	08/10/15 14:33	08/11/15 10:23	10	

Method: 8270D - Semivolatile	•		C/MS)						
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Acenaphthene	0.59	U	4.7		mg/Kg	₽	08/10/15 14:33	08/11/15 19:23	
Acenaphthylene	0.51		4.7		mg/Kg	₽	08/10/15 14:33		
Acetophenone	0.40	U	4.7		mg/Kg		08/10/15 14:33	08/11/15 19:23	
Anthracene	0.36		4.7		mg/Kg	*	08/10/15 14:33		
Atrazine	0.33		4.7		mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	
Benzaldehyde	0.83		4.7		mg/Kg			08/11/15 19:23	
Benzo[a]anthracene	0.39		4.7		mg/Kg	☼		08/11/15 19:23	
Benzo[a]pyrene	0.74	U	4.7		mg/Kg	₩	08/10/15 14:33	08/11/15 19:23	
Benzo[b]fluoranthene	0.54		4.7		mg/Kg	₩	08/10/15 14:33	08/11/15 19:23	
Benzo[g,h,i]perylene	0.31	U	4.7	0.31	mg/Kg	₽	08/10/15 14:33	08/11/15 19:23	
Benzo[k]fluoranthene	0.93		4.7		mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	
1,1'-Biphenyl	24	U	24	24	mg/Kg	₩	08/10/15 14:33	08/11/15 19:23	
Bis(2-chloroethoxy)methane	0.56	U	4.7		mg/Kg	₽	08/10/15 14:33	08/11/15 19:23	
Bis(2-chloroethyl)ether	0.64	U	4.7		mg/Kg	₩	08/10/15 14:33	08/11/15 19:23	
ois (2-chloroisopropyl) ether	0.43	U	4.7	0.43	mg/Kg	₩	08/10/15 14:33	08/11/15 19:23	
Bis(2-ethylhexyl) phthalate	0.54	JB	4.7	0.41	mg/Kg	₽	08/10/15 14:33	08/11/15 19:23	
4-Bromophenyl phenyl ether	0.51	U	4.7	0.51	mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	
Butyl benzyl phthalate	0.37	U	4.7	0.37	mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	
Caprolactam	0.94	U	4.7	0.94	mg/Kg	₽	08/10/15 14:33	08/11/15 19:23	
Carbazole	0.43	U	4.7	0.43	mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	
1-Chloroaniline	0.74	U	9.4	0.74	mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	
1-Chloro-3-methylphenol	0.50	Ü	4.7	0.50	mg/Kg		08/10/15 14:33	08/11/15 19:23	
2-Chloronaphthalene	0.50	U	4.7	0.50	mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	
2-Chlorophenol	0.57	U	4.7	0.57	mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	
1-Chlorophenyl phenyl ether	0.63	U	4.7	0.63	mg/Kg	₽	08/10/15 14:33	08/11/15 19:23	
Chrysene	0.30	U	4.7	0.30	mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	
Dibenz(a,h)anthracene	0.56	U	4.7	0.56	mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	
Dibenzofuran	0.47	U	4.7	0.47	mg/Kg	φ.	08/10/15 14:33	08/11/15 19:23	
3,3'-Dichlorobenzidine	0.40	U	9.4	0.40	mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	
2,4-Dichlorophenol	0.50	U	4.7	0.50	mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	
Diethyl phthalate	0.53	Ü	4.7		mg/Kg	₩.	08/10/15 14:33	08/11/15 19:23	
2,4-Dimethylphenol	0.63	U	4.7		mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	
Dimethyl phthalate	0.49	U	4.7	0.49	mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	
Di-n-butyl phthalate	0.43	U	4.7		mg/Kg		08/10/15 14:33	08/11/15 19:23	
1,6-Dinitro-2-methylphenol	2.4	U *	24	2.4	mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	
2,4-Dinitrophenol	12	U	24		mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	
2,4-Dinitrotoluene	0.70		4.7		mg/Kg		08/10/15 14:33	08/11/15 19:23	
2,6-Dinitrotoluene	0.60	U	4.7		mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	
Di-n-octyl phthalate	0.41		4.7		mg/Kg	☼		08/11/15 19:23	
Fluoranthene	0.48		4.7		mg/Kg	φ.		08/11/15 19:23	
Fluorene	0.51		4.7		mg/Kg	₩		08/11/15 19:23	
Hexachlorobenzene	0.56		4.7		mg/Kg	☼		08/11/15 19:23	
Hexachlorobutadiene	0.51		4.7		mg/Kg			08/11/15 19:23	
Hexachlorocyclopentadiene	0.59		4.7		mg/Kg	☆		08/11/15 19:23	
Hexachloroethane	0.40		4.7		mg/Kg	☼		08/11/15 19:23	
ndeno[1,2,3-cd]pyrene	0.40		4.7		mg/Kg			08/11/15 19:23	
sophorone	0.47		4.7		mg/Kg	☼		08/11/15 19:23	
2-Methylnaphthalene	0.54		4.7		mg/Kg	₩		08/11/15 19:23	
2-Methylphenol	0.39		4.7		mg/Kg			08/11/15 19:23	

Client: Geotechnical & Environmental Consultants

Selenium

Vanadium

Silver

Zinc

Project/Site: Macon MGP

Client Sample ID: SB-24 8-10

Date Collected: 08/06/15 15:38 Date Received: 08/08/15 10:00

Lab Sample ID: 680-115409-11

Matrix: Solid

Percent Solids: 69.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.61	U	4.7	0.61	mg/Kg	<u> </u>	08/10/15 14:33	08/11/15 19:23	10
Naphthalene	0.43	U	4.7	0.43	mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	10
2-Nitroaniline	0.64	U	24	0.64	mg/Kg	₽	08/10/15 14:33	08/11/15 19:23	10
3-Nitroaniline	0.66	U	24	0.66	mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	10
4-Nitroaniline	0.70	U	24	0.70	mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	10
Nitrobenzene	0.37	U	4.7	0.37	mg/Kg	\$	08/10/15 14:33	08/11/15 19:23	10
2-Nitrophenol	0.59	U	4.7	0.59	mg/Kg	₽	08/10/15 14:33	08/11/15 19:23	10
4-Nitrophenol	4.7	U	24	4.7	mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	10
N-Nitrosodi-n-propylamine	0.46	U	4.7	0.46	mg/Kg	\$	08/10/15 14:33	08/11/15 19:23	10
N-Nitrosodiphenylamine	0.47	U	4.7	0.47	mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	10
Pentachlorophenol	4.7	U	24	4.7	mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	10
Phenanthrene	0.39	Ü	4.7	0.39	mg/Kg	φ.	08/10/15 14:33	08/11/15 19:23	10
Phenol	0.49	U	4.7	0.49	mg/Kg	☼	08/10/15 14:33	08/11/15 19:23	10
Pyrene	0.43	J	4.7	0.39	mg/Kg	≎	08/10/15 14:33	08/11/15 19:23	10
2,4,5-Trichlorophenol	0.50	U	4.7	0.50	mg/Kg	φ.	08/10/15 14:33	08/11/15 19:23	10
2,4,6-Trichlorophenol	0.41	U	4.7	0.41	mg/Kg	₩	08/10/15 14:33	08/11/15 19:23	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl		D	41 - 116				08/10/15 14:33	08/11/15 19:23	10
2-Fluorophenol (Surr)	0	D	39 - 114				08/10/15 14:33	08/11/15 19:23	10
Nitrobenzene-d5 (Surr)	0	D	37 - 115				08/10/15 14:33	08/11/15 19:23	10
Phenol-d5 (Surr)	0	D	38 - 122				08/10/15 14:33	08/11/15 19:23	10
Terphenyl-d14 (Surr)	0	D	46 - 126				08/10/15 14:33	08/11/15 19:23	10
2,4,6-Tribromophenol (Surr)	0	D	45 - 129				08/10/15 14:33	08/11/15 19:23	10
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.4		2.7	1.1	mg/Kg	<u></u>	08/11/15 07:36	08/11/15 20:07	1
Barium	73		1.4	0.22	mg/Kg	☼	08/11/15 07:36	08/11/15 20:07	1
Beryllium	0.29	J	0.54	0.014	mg/Kg	☼	08/11/15 07:36	08/11/15 20:07	1
Cadmium	0.14	U	0.68	0.14	mg/Kg	₽	08/11/15 07:36	08/11/15 20:07	1
Chromium	24		1.4	0.28	mg/Kg	☼	08/11/15 07:36	08/11/15 20:07	1
Copper	20		3.4	0.23	mg/Kg	≎	08/11/15 07:36	08/11/15 20:07	1
Lead	82		1.4	0.46	mg/Kg	φ.	08/11/15 07:36	08/11/15 20:07	1

Method: 7471B - Mercury (CVAA) Analyte Mercury	Result	Qualifier	RL 0.028	MDL 0.011	Unit mg/Kg	D <u>⇔</u>	Prepared 08/16/15 13:43	Analyzed 08/17/15 21:20	Dil Fac
General Chemistry Analyte Cyanide, Total	Result 0.29	Qualifier	RL 0.69	MDL 0.29	Unit mg/Kg	D \overline{\overline{\pi}}	Prepared 08/17/15 06:30	Analyzed 08/17/15 11:48	Dil Fac

3.4

1.4

1.4

2.7

1.3 mg/Kg

0.081 mg/Kg

0.14 mg/Kg

0.95 mg/Kg

1.3 U

0.081 U

22

160

© 08/11/15 07:36 08/11/15 20:07

© 08/11/15 07:36 08/11/15 20:07

☼ 08/11/15 07:36 08/11/15 20:07

© 08/11/15 07:36 08/11/15 20:07

1

Client: Geotechnical & Environmental Consultants

Client Sample ID: SB-24 13-15

Date Collected: 08/06/15 15:50

Date Received: 08/08/15 10:00

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-12

Matrix: Solid
Percent Solids: 86.8

Method: 8270D - Semivolatile Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.047		0.38		mg/Kg	<u>₩</u>	08/10/15 14:33	08/11/15 19:47	•
Acenaphthylene	0.041		0.38		mg/Kg			08/11/15 19:47	•
Acetophenone	0.032	. J	0.38		mg/Kg	, .		08/11/15 19:47	
Anthracene	0.034		0.38		mg/Kg	₽.	08/10/15 14:33	08/11/15 19:47	•
Atrazine	0.026		0.38		mg/Kg	**	08/10/15 14:33		•
Benzaldehyde	0.22	J	0.38		mg/Kg			08/11/15 19:47	
Benzo[a]anthracene	0.17	J	0.38		0 0	**		08/11/15 19:47	•
Benzo[a]pyrene	0.14	J	0.38			☼	08/10/15 14:33	08/11/15 19:47	
Benzo[b]fluoranthene	0.22		0.38		mg/Kg			08/11/15 19:47	
Benzo[g,h,i]perylene	0.098	J	0.38		mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	
Benzo[k]fluoranthene	0.11	J	0.38	0.074	0 0	☼	08/10/15 14:33	08/11/15 19:47	•
1,1'-Biphenyl	1.9		1.9	1.9	mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	
Bis(2-chloroethoxy)methane	0.045	U	0.38	0.045	mg/Kg	₩	08/10/15 14:33	08/11/15 19:47	•
Bis(2-chloroethyl)ether	0.051	U	0.38	0.051	mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	•
bis (2-chloroisopropyl) ether	0.034	U	0.38	0.034	mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	
Bis(2-ethylhexyl) phthalate	0.033	U	0.38	0.033	mg/Kg	₽	08/10/15 14:33	08/11/15 19:47	
4-Bromophenyl phenyl ether	0.041	U	0.38	0.041	mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	
Butyl benzyl phthalate	0.030	U	0.38	0.030	mg/Kg	≎	08/10/15 14:33	08/11/15 19:47	
Caprolactam	0.076	U	0.38	0.076	mg/Kg	₽	08/10/15 14:33	08/11/15 19:47	
Carbazole	0.034	U	0.38	0.034	mg/Kg	≎	08/10/15 14:33	08/11/15 19:47	
4-Chloroaniline	0.059	U	0.76	0.059	mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	
4-Chloro-3-methylphenol	0.040	U	0.38	0.040	mg/Kg	φ.	08/10/15 14:33	08/11/15 19:47	
2-Chloronaphthalene	0.040	U	0.38	0.040	mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	
2-Chlorophenol	0.046	U	0.38	0.046	mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	
1-Chlorophenyl phenyl ether	0.050	U	0.38	0.050	mg/Kg	₽	08/10/15 14:33	08/11/15 19:47	
Chrysene	0.19	J	0.38	0.024	mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	
Dibenz(a,h)anthracene	0.045	U	0.38	0.045	mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	
Dibenzofuran	0.038	U	0.38	0.038	mg/Kg	₽	08/10/15 14:33	08/11/15 19:47	
3,3'-Dichlorobenzidine	0.032	U	0.76	0.032	mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	
2,4-Dichlorophenol	0.040	U	0.38	0.040	mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	
Diethyl phthalate	0.042	U	0.38	0.042	mg/Kg	₽	08/10/15 14:33	08/11/15 19:47	
2,4-Dimethylphenol	0.050	U	0.38	0.050	mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	
Dimethyl phthalate	0.039	U	0.38	0.039	mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	
Di-n-butyl phthalate	0.034	U	0.38	0.034	mg/Kg		08/10/15 14:33	08/11/15 19:47	
4,6-Dinitro-2-methylphenol	0.19	U *	1.9	0.19	mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	
2,4-Dinitrophenol	0.95	U	1.9	0.95	mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	
2,4-Dinitrotoluene	0.056		0.38		mg/Kg	φ.		08/11/15 19:47	
2,6-Dinitrotoluene	0.048		0.38		mg/Kg	₽	08/10/15 14:33	08/11/15 19:47	
Di-n-octyl phthalate	0.033	U	0.38		mg/Kg	₽	08/10/15 14:33	08/11/15 19:47	
Fluoranthene	0.33		0.38		mg/Kg	Ф	08/10/15 14:33	08/11/15 19:47	
-luorene	0.041		0.38		mg/Kg	₽	08/10/15 14:33	08/11/15 19:47	
Hexachlorobenzene	0.045	U	0.38		mg/Kg	₽	08/10/15 14:33	08/11/15 19:47	
Hexachlorobutadiene	0.041		0.38		mg/Kg	 ф		08/11/15 19:47	
Hexachlorocyclopentadiene	0.047		0.38		mg/Kg	₽		08/11/15 19:47	
Hexachloroethane	0.032		0.38		mg/Kg	₽		08/11/15 19:47	
Indeno[1,2,3-cd]pyrene	0.074		0.38		mg/Kg			08/11/15 19:47	
sophorone	0.038		0.38		mg/Kg	☆		08/11/15 19:47	
2-Methylnaphthalene	0.051		0.38		mg/Kg	☼		08/11/15 19:47	
2-Methylphenol	0.031		0.38		mg/Kg	· · · · · · ·		08/11/15 19:47	· · · · · · ,

TestAmerica Savannah

3

_

6

8

J

4 4

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

Silver

Vanadium Zinc

Client Sample ID: SB-24 13-15

Date Collected: 08/06/15 15:50 Date Received: 08/08/15 10:00

Lab Sample ID: 680-115409-12

Matrix: Solid

Percent Solids: 86.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.061	J	0.38	0.049	mg/Kg	₩	08/10/15 14:33	08/11/15 19:47	1
Naphthalene	0.050	J	0.38	0.034	mg/Kg	≎	08/10/15 14:33	08/11/15 19:47	1
2-Nitroaniline	0.051	U	1.9	0.051	mg/Kg	₽	08/10/15 14:33	08/11/15 19:47	1
3-Nitroaniline	0.053	U	1.9	0.053	mg/Kg	≎	08/10/15 14:33	08/11/15 19:47	1
4-Nitroaniline	0.056	U	1.9	0.056	mg/Kg	≎	08/10/15 14:33	08/11/15 19:47	1
Nitrobenzene	0.030	U	0.38	0.030	mg/Kg	₽	08/10/15 14:33	08/11/15 19:47	1
2-Nitrophenol	0.047	U	0.38	0.047	mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	1
4-Nitrophenol	0.38	U	1.9	0.38	mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	1
N-Nitrosodi-n-propylamine	0.037	U	0.38	0.037	mg/Kg	₽	08/10/15 14:33	08/11/15 19:47	1
N-Nitrosodiphenylamine	0.038	U	0.38	0.038	mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	1
Pentachlorophenol	0.38	U	1.9	0.38	mg/Kg	₽	08/10/15 14:33	08/11/15 19:47	1
Phenanthrene	0.18	J	0.38	0.031	mg/Kg	₽	08/10/15 14:33	08/11/15 19:47	1
Phenol	0.039	U	0.38	0.039	mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	1
Pyrene	0.30	J	0.38	0.031	mg/Kg	☼	08/10/15 14:33	08/11/15 19:47	1
2,4,5-Trichlorophenol	0.040	U	0.38	0.040	mg/Kg	₽	08/10/15 14:33	08/11/15 19:47	1
2,4,6-Trichlorophenol	0.033	U	0.38	0.033	mg/Kg	₩	08/10/15 14:33	08/11/15 19:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	76		41 - 116				08/10/15 14:33	08/11/15 19:47	1
2-Fluorophenol (Surr)	70		39 - 114				08/10/15 14:33	08/11/15 19:47	1
Nitrobenzene-d5 (Surr)	70		37 - 115				08/10/15 14:33	08/11/15 19:47	1
Phenol-d5 (Surr)	65		38 - 122				08/10/15 14:33	08/11/15 19:47	1
Terphenyl-d14 (Surr)	91		46 - 126				08/10/15 14:33	08/11/15 19:47	1
2,4,6-Tribromophenol (Surr)	75		45 - 129				08/10/15 14:33	08/11/15 19:47	1
Method: 6010C - Metals (ICP)									
Amalusta	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte					- 0.4	<u></u>	09/11/15 07:36	08/11/15 20:11	1
Arsenic	1.7	J	2.0	0.79	mg/Kg	74	06/11/15 07.50	00/11/13 20:11	
		J	2.0 0.98		mg/Kg mg/Kg	*		08/11/15 20:11	1
Arsenic Barium	1.7				mg/Kg		08/11/15 07:36		1 1
Arsenic Barium	1.7 37	J	0.98	0.16 0.0098	mg/Kg	₩	08/11/15 07:36 08/11/15 07:36	08/11/15 20:11	-
Arsenic Barium Beryllium	1.7 37 0.13	J	0.98 0.39	0.16 0.0098	mg/Kg mg/Kg	‡	08/11/15 07:36 08/11/15 07:36 08/11/15 07:36	08/11/15 20:11 08/11/15 20:11	1
Arsenic Barium Beryllium Cadmium Chromium	1.7 37 0.13 0.14	J	0.98 0.39 0.49	0.16 0.0098 0.098 0.21	mg/Kg mg/Kg mg/Kg	\$ \$	08/11/15 07:36 08/11/15 07:36 08/11/15 07:36 08/11/15 07:36	08/11/15 20:11 08/11/15 20:11 08/11/15 20:11	1
Arsenic Barium Beryllium Cadmium Chromium Copper	1.7 37 0.13 0.14 11	J	0.98 0.39 0.49 0.98	0.16 0.0098 0.098 0.21 0.17	mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$	08/11/15 07:36 08/11/15 07:36 08/11/15 07:36 08/11/15 07:36 08/11/15 07:36	08/11/15 20:11 08/11/15 20:11 08/11/15 20:11 08/11/15 20:11	1 1 1 1
Arsenic Barium Beryllium Cadmium	1.7 37 0.13 0.14 11 8.2	J	0.98 0.39 0.49 0.98 2.5	0.16 0.0098 0.098 0.21 0.17 0.33	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$	08/11/15 07:36 08/11/15 07:36 08/11/15 07:36 08/11/15 07:36 08/11/15 07:36	08/11/15 20:11 08/11/15 20:11 08/11/15 20:11 08/11/15 20:11 08/11/15 20:11	1 1 1 1

Method: 7471B - Mercury (CVAA) Analyte Mercury	Result	Qualifier	RL 0.023	MDL 0.0092	Unit mg/Kg	D	Prepared 08/16/15 13:43	Analyzed 08/17/15 21:29	Dil Fac
General Chemistry	Decult	Overlities.	DI	MDI	11-14		Durananad	Amahamad	D:: F
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.24	U	0.56	0.24	mg/Kg	₩	08/17/15 06:30	08/17/15 11:50	1

0.98

0.98

2.0

0.059 U

21

60

0.059 mg/Kg

0.098 mg/Kg

0.69 mg/Kg

© 08/11/15 07:36 08/11/15 20:11

☼ 08/11/15 07:36 08/11/15 20:11

© 08/11/15 07:36 08/11/15 20:11

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: SB-42 2-4

Date Collected: 08/06/15 16:02

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-13

Matrix: Solid

Percent Solids: 92.3	

Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.044		0.36		mg/Kg	<u> </u>		08/11/15 20:10	
Acenaphthylene	0.039		0.36		mg/Kg	₩.		08/11/15 20:10	
Acetophenone	0.030		0.36		mg/Kg	<u>"</u> .		08/11/15 20:10	
Anthracene	0.042		0.36		mg/Kg	φ. 		08/11/15 20:10	
Atrazine	0.025		0.36		mg/Kg	₩.		08/11/15 20:10	
Benzaldehyde	0.063		0.36		mg/Kg			08/11/15 20:10	
Benzo[a]anthracene	0.11		0.36		mg/Kg	₽		08/11/15 20:10	
Benzo[a]pyrene	0.11		0.36		mg/Kg	₩		08/11/15 20:10	
Benzo[b]fluoranthene	0.16		0.36	0.041	mg/Kg			08/11/15 20:10	
Benzo[g,h,i]perylene	0.074		0.36		mg/Kg	:D:		08/11/15 20:10	
Benzo[k]fluoranthene	0.074		0.36		mg/Kg	.		08/11/15 20:10	
1,1'-Biphenyl	1.8		1.8		mg/Kg	, .		08/11/15 20:10	
Bis(2-chloroethoxy)methane	0.042		0.36		mg/Kg	:		08/11/15 20:10	
Bis(2-chloroethyl)ether	0.049		0.36		mg/Kg	:	08/10/15 14:33	08/11/15 20:10	
bis (2-chloroisopropyl) ether	0.032	U	0.36		mg/Kg		08/10/15 14:33	08/11/15 20:10	
Bis(2-ethylhexyl) phthalate	0.031	U	0.36	0.031	mg/Kg	☼	08/10/15 14:33	08/11/15 20:10	
4-Bromophenyl phenyl ether	0.039	U	0.36		mg/Kg	☼	08/10/15 14:33	08/11/15 20:10	
Butyl benzyl phthalate	0.028	U	0.36	0.028	mg/Kg	₽	08/10/15 14:33	08/11/15 20:10	
Caprolactam	0.071	U	0.36	0.071	mg/Kg	₽	08/10/15 14:33	08/11/15 20:10	
Carbazole	0.032	U	0.36	0.032	mg/Kg	₽	08/10/15 14:33	08/11/15 20:10	
4-Chloroaniline	0.056	U	0.71	0.056	mg/Kg	₩	08/10/15 14:33	08/11/15 20:10	
4-Chloro-3-methylphenol	0.038	U	0.36	0.038	mg/Kg		08/10/15 14:33	08/11/15 20:10	
2-Chloronaphthalene	0.038	U	0.36	0.038	mg/Kg	₩	08/10/15 14:33	08/11/15 20:10	
2-Chlorophenol	0.043	U	0.36	0.043	mg/Kg	₩	08/10/15 14:33	08/11/15 20:10	
4-Chlorophenyl phenyl ether	0.048	U	0.36	0.048	mg/Kg	≎	08/10/15 14:33	08/11/15 20:10	
Chrysene	0.12	J	0.36	0.023	mg/Kg	₩	08/10/15 14:33	08/11/15 20:10	
Dibenz(a,h)anthracene	0.042	U	0.36	0.042	mg/Kg	₩	08/10/15 14:33	08/11/15 20:10	
Dibenzofuran	0.036	U	0.36	0.036	mg/Kg	₽	08/10/15 14:33	08/11/15 20:10	
3,3'-Dichlorobenzidine	0.030	U	0.71	0.030	mg/Kg	₽	08/10/15 14:33	08/11/15 20:10	
2,4-Dichlorophenol	0.038	U	0.36	0.038	mg/Kg	₩	08/10/15 14:33	08/11/15 20:10	
Diethyl phthalate	0.040	U	0.36	0.040	mg/Kg	₽	08/10/15 14:33	08/11/15 20:10	
2,4-Dimethylphenol	0.048	U	0.36	0.048	mg/Kg	₽	08/10/15 14:33	08/11/15 20:10	
Dimethyl phthalate	0.037	U	0.36	0.037	mg/Kg	₽	08/10/15 14:33	08/11/15 20:10	
Di-n-butyl phthalate	0.032	U	0.36	0.032	mg/Kg		08/10/15 14:33	08/11/15 20:10	
4,6-Dinitro-2-methylphenol	0.18	U *	1.8	0.18	mg/Kg	₩	08/10/15 14:33	08/11/15 20:10	
2,4-Dinitrophenol	0.90	U	1.8	0.90	mg/Kg	₩	08/10/15 14:33	08/11/15 20:10	
2,4-Dinitrotoluene	0.053	U	0.36	0.053	mg/Kg		08/10/15 14:33	08/11/15 20:10	
2,6-Dinitrotoluene	0.045	U	0.36	0.045	mg/Kg	₩	08/10/15 14:33	08/11/15 20:10	
Di-n-octyl phthalate	0.031	U	0.36	0.031	mg/Kg	₩	08/10/15 14:33	08/11/15 20:10	
Fluoranthene	0.27	J	0.36	0.035	mg/Kg	φ.	08/10/15 14:33	08/11/15 20:10	
Fluorene	0.039	U	0.36	0.039	mg/Kg	₩	08/10/15 14:33	08/11/15 20:10	
Hexachlorobenzene	0.042	U	0.36	0.042	mg/Kg	₩	08/10/15 14:33	08/11/15 20:10	
Hexachlorobutadiene	0.039	Ü	0.36	0.039	mg/Kg	φ.	08/10/15 14:33	08/11/15 20:10	
Hexachlorocyclopentadiene	0.044		0.36		mg/Kg	₽	08/10/15 14:33	08/11/15 20:10	
Hexachloroethane	0.030	U	0.36		mg/Kg	≎		08/11/15 20:10	
Indeno[1,2,3-cd]pyrene	0.060		0.36		mg/Kg			08/11/15 20:10	
Isophorone	0.036		0.36		mg/Kg	₽		08/11/15 20:10	
2-Methylnaphthalene	0.041		0.36		mg/Kg	₽		08/11/15 20:10	
2-Methylphenol	0.029		0.36		mg/Kg			08/11/15 20:10	

TestAmerica Savannah

3

5

7

9

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

Client Sample ID: SB-42 2-4

Date Collected: 08/06/15 16:02

Date Received: 08/08/15 10:00

Lab Sample ID: 680-115409-13

Matrix: Solid

Percent Solids: 92.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.046	U	0.36	0.046	mg/Kg	<u> </u>	08/10/15 14:33	08/11/15 20:10	1
Naphthalene	0.032	U	0.36	0.032	mg/Kg	☼	08/10/15 14:33	08/11/15 20:10	1
2-Nitroaniline	0.049	U	1.8	0.049	mg/Kg	₩	08/10/15 14:33	08/11/15 20:10	1
3-Nitroaniline	0.050	U	1.8	0.050	mg/Kg	☼	08/10/15 14:33	08/11/15 20:10	1
4-Nitroaniline	0.053	U	1.8	0.053	mg/Kg	☼	08/10/15 14:33	08/11/15 20:10	1
Nitrobenzene	0.028	U	0.36	0.028	mg/Kg	₩	08/10/15 14:33	08/11/15 20:10	1
2-Nitrophenol	0.044	U	0.36	0.044	mg/Kg	☼	08/10/15 14:33	08/11/15 20:10	1
4-Nitrophenol	0.36	U	1.8	0.36	mg/Kg	☼	08/10/15 14:33	08/11/15 20:10	1
N-Nitrosodi-n-propylamine	0.035	U	0.36	0.035	mg/Kg	₩	08/10/15 14:33	08/11/15 20:10	1
N-Nitrosodiphenylamine	0.036	U	0.36	0.036	mg/Kg	☼	08/10/15 14:33	08/11/15 20:10	1
Pentachlorophenol	0.36	U	1.8	0.36	mg/Kg	☼	08/10/15 14:33	08/11/15 20:10	1
Phenanthrene	0.16	J	0.36	0.029	mg/Kg	₩	08/10/15 14:33	08/11/15 20:10	1
Phenol	0.037	U	0.36	0.037	mg/Kg	☼	08/10/15 14:33	08/11/15 20:10	1
Pyrene	0.22	J	0.36	0.029	mg/Kg	☼	08/10/15 14:33	08/11/15 20:10	1
2,4,5-Trichlorophenol	0.038	U	0.36	0.038	mg/Kg	₽	08/10/15 14:33	08/11/15 20:10	1
2,4,6-Trichlorophenol	0.031	U	0.36	0.031	mg/Kg	₽	08/10/15 14:33	08/11/15 20:10	1
Surrogato	% Books	Qualifier	Limita				Branarad	Analyzod	Dil Eco

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	77	41 - 116	08/10/15 14:33	08/11/15 20:10	1
2-Fluorophenol (Surr)	62	39 - 114	08/10/15 14:33	08/11/15 20:10	1
Nitrobenzene-d5 (Surr)	79	37 - 115	08/10/15 14:33	08/11/15 20:10	1
Phenol-d5 (Surr)	72	38 - 122	08/10/15 14:33	08/11/15 20:10	1
Terphenyl-d14 (Surr)	80	46 - 126	08/10/15 14:33	08/11/15 20:10	1
2,4,6-Tribromophenol (Surr)	42 X	45 - 129	08/10/15 14:33	08/11/15 20:10	1

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.3		2.0	0.79	mg/Kg	<u> </u>	08/11/15 07:36	08/11/15 20:16	1
Barium	240		0.98	0.16	mg/Kg	₩	08/11/15 07:36	08/11/15 20:16	1
Beryllium	2.3		0.39	0.0098	mg/Kg	☆	08/11/15 07:36	08/11/15 20:16	1
Cadmium	0.12 J	j	0.49	0.098	mg/Kg	₩	08/11/15 07:36	08/11/15 20:16	1
Chromium	18		0.98	0.21	mg/Kg	₩	08/11/15 07:36	08/11/15 20:16	1
Copper	26		2.5	0.17	mg/Kg	☆	08/11/15 07:36	08/11/15 20:16	1
Lead	39		0.98	0.33	mg/Kg	₩	08/11/15 07:36	08/11/15 20:16	1
Nickel	12		3.9	0.37	mg/Kg	≎	08/11/15 07:36	08/11/15 20:16	1
Selenium	0.96 U	J	2.5	0.96	mg/Kg	≎	08/11/15 07:36	08/11/15 20:16	1
Silver	0.059 U	j	0.98	0.059	mg/Kg		08/11/15 07:36	08/11/15 20:16	1
Vanadium	54		0.98	0.098	mg/Kg	≎	08/11/15 07:36	08/11/15 20:16	1
Zinc	130		2.0	0.69	mg/Kg	₩	08/11/15 07:36	08/11/15 20:16	1

Method: 7471B - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.057		0.021	0.0083	mg/Kg	 \$	08/16/15 13:43	08/17/15 21:32	1
_ General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.22	U	0.52	0.22	mg/Kg	₩	08/17/15 06:30	08/17/15 11:51	1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: SB-42 4-6

Date Collected: 08/06/15 16:05 Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-14

Matrix: Solid	
Percent Solids: 92.3	

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.045		0.36		mg/Kg	<u> </u>		08/11/15 20:34	
Acenaphthylene	0.039		0.36		mg/Kg	₩.		08/11/15 20:34	
Acetophenone	0.030		0.36		mg/Kg	<u>"</u> .		08/11/15 20:34	
Anthracene	0.027		0.36		mg/Kg	φ. 		08/11/15 20:34	
Atrazine	0.025		0.36		mg/Kg	₩.		08/11/15 20:34	
Benzaldehyde	0.063		0.36		mg/Kg			08/11/15 20:34	
Benzo[a]anthracene	0.029		0.36		mg/Kg	₽		08/11/15 20:34	
Benzo[a]pyrene	0.056		0.36		mg/Kg	₩		08/11/15 20:34	
Benzo[b]fluoranthene	0.041		0.36	0.041	mg/Kg			08/11/15 20:34	
Benzo[g,h,i]perylene	0.024		0.36		mg/Kg	:D:		08/11/15 20:34	
Benzo[k]fluoranthene	0.071		0.36	0.071	mg/Kg	.		08/11/15 20:34	
1,1'-Biphenyl	1.8		1.8		mg/Kg			08/11/15 20:34	
Bis(2-chloroethoxy)methane	0.042		0.36		mg/Kg	:		08/11/15 20:34	
Bis(2-chloroethyl)ether	0.049		0.36	0.049	mg/Kg	₽		08/11/15 20:34	
bis (2-chloroisopropyl) ether	0.033	U	0.36		mg/Kg		08/10/15 14:33	08/11/15 20:34	
Bis(2-ethylhexyl) phthalate	0.20		0.36	0.031	mg/Kg	☼	08/10/15 14:33	08/11/15 20:34	
4-Bromophenyl phenyl ether	0.039	U	0.36		mg/Kg	☼	08/10/15 14:33	08/11/15 20:34	
Butyl benzyl phthalate	0.028	U	0.36	0.028	mg/Kg	₩	08/10/15 14:33	08/11/15 20:34	
Caprolactam	0.072	U	0.36		mg/Kg	₽	08/10/15 14:33	08/11/15 20:34	
Carbazole	0.033	U	0.36	0.033	mg/Kg	₽	08/10/15 14:33	08/11/15 20:34	
4-Chloroaniline	0.056	U	0.72	0.056	mg/Kg	₩	08/10/15 14:33	08/11/15 20:34	
4-Chloro-3-methylphenol	0.038	U	0.36	0.038	mg/Kg	₽	08/10/15 14:33	08/11/15 20:34	
2-Chloronaphthalene	0.038	U	0.36	0.038	mg/Kg	₩	08/10/15 14:33	08/11/15 20:34	
2-Chlorophenol	0.043	U	0.36	0.043	mg/Kg	₩	08/10/15 14:33	08/11/15 20:34	
4-Chlorophenyl phenyl ether	0.048	U	0.36	0.048	mg/Kg	≎	08/10/15 14:33	08/11/15 20:34	
Chrysene	0.023	U	0.36	0.023	mg/Kg	₩	08/10/15 14:33	08/11/15 20:34	
Dibenz(a,h)anthracene	0.042	U	0.36	0.042	mg/Kg	₩	08/10/15 14:33	08/11/15 20:34	
Dibenzofuran	0.036	U	0.36	0.036	mg/Kg	₽	08/10/15 14:33	08/11/15 20:34	
3,3'-Dichlorobenzidine	0.030	U	0.72	0.030	mg/Kg	₽	08/10/15 14:33	08/11/15 20:34	
2,4-Dichlorophenol	0.038	U	0.36	0.038	mg/Kg	₩	08/10/15 14:33	08/11/15 20:34	
Diethyl phthalate	0.040	U	0.36	0.040	mg/Kg	₽	08/10/15 14:33	08/11/15 20:34	
2,4-Dimethylphenol	0.048	U	0.36	0.048	mg/Kg	₽	08/10/15 14:33	08/11/15 20:34	
Dimethyl phthalate	0.037	U	0.36	0.037	mg/Kg	₽	08/10/15 14:33	08/11/15 20:34	
Di-n-butyl phthalate	0.033	U	0.36	0.033	mg/Kg		08/10/15 14:33	08/11/15 20:34	
4,6-Dinitro-2-methylphenol	0.18	U *	1.8	0.18	mg/Kg	₩	08/10/15 14:33	08/11/15 20:34	
2,4-Dinitrophenol	0.90	U	1.8	0.90	mg/Kg	₩	08/10/15 14:33	08/11/15 20:34	
2,4-Dinitrotoluene	0.053	U	0.36	0.053	mg/Kg		08/10/15 14:33	08/11/15 20:34	
2,6-Dinitrotoluene	0.046	U	0.36	0.046	mg/Kg	₩	08/10/15 14:33	08/11/15 20:34	
Di-n-octyl phthalate	0.031	U	0.36	0.031	mg/Kg	₩	08/10/15 14:33	08/11/15 20:34	
Fluoranthene	0.035	U	0.36	0.035	mg/Kg		08/10/15 14:33	08/11/15 20:34	
Fluorene	0.039	U	0.36	0.039	mg/Kg	₩	08/10/15 14:33	08/11/15 20:34	
Hexachlorobenzene	0.042	U	0.36		mg/Kg	₽	08/10/15 14:33	08/11/15 20:34	
Hexachlorobutadiene	0.039	Ü	0.36		mg/Kg	φ.	08/10/15 14:33	08/11/15 20:34	
Hexachlorocyclopentadiene	0.045		0.36		mg/Kg	₽	08/10/15 14:33	08/11/15 20:34	
Hexachloroethane	0.030		0.36		mg/Kg	≎		08/11/15 20:34	
Indeno[1,2,3-cd]pyrene	0.030		0.36		mg/Kg			08/11/15 20:34	
Isophorone	0.036		0.36		mg/Kg	₽		08/11/15 20:34	
2-Methylnaphthalene	0.041		0.36		mg/Kg	₽		08/11/15 20:34	
2-Methylphenol	0.029		0.36		mg/Kg			08/11/15 20:34	

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

General Chemistry

Analyte

Cyanide, Total

Client Sample ID: SB-42 4-6

Lab Sample ID: 680-115409-14

Matrix: Solid

Date Collected: 08/06/15 16:05 Date Received: 08/08/15 10:00

Percent Solids: 92.3

Method: 8270D - Semivolatile (Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
3 & 4 Methylphenol	0.047	U	0.36	0.047	mg/Kg	<u></u>	08/10/15 14:33	08/11/15 20:34	
Naphthalene	0.033	U	0.36		mg/Kg	₩	08/10/15 14:33	08/11/15 20:34	
2-Nitroaniline	0.049	U	1.8	0.049	mg/Kg		08/10/15 14:33	08/11/15 20:34	
3-Nitroaniline	0.050	U	1.8		mg/Kg	☆	08/10/15 14:33	08/11/15 20:34	
4-Nitroaniline	0.053	U	1.8		mg/Kg	₩	08/10/15 14:33	08/11/15 20:34	
Nitrobenzene	0.028	U	0.36		mg/Kg		08/10/15 14:33	08/11/15 20:34	
2-Nitrophenol	0.045	U	0.36		mg/Kg	☆	08/10/15 14:33	08/11/15 20:34	
4-Nitrophenol	0.36	U	1.8	0.36	mg/Kg	≎	08/10/15 14:33	08/11/15 20:34	
N-Nitrosodi-n-propylamine	0.035	U	0.36	0.035	mg/Kg		08/10/15 14:33	08/11/15 20:34	
N-Nitrosodiphenylamine	0.036	U	0.36		mg/Kg	≎	08/10/15 14:33	08/11/15 20:34	
Pentachlorophenol	0.36	U	1.8		mg/Kg	≎	08/10/15 14:33	08/11/15 20:34	
Phenanthrene	0.029	U	0.36		mg/Kg		08/10/15 14:33	08/11/15 20:34	
Phenol	0.037	U	0.36		mg/Kg	≎	08/10/15 14:33	08/11/15 20:34	
Pyrene	0.029		0.36	0.029		≎	08/10/15 14:33	08/11/15 20:34	
2,4,5-Trichlorophenol	0.038	. U	0.36	0.038		 ф	08/10/15 14:33	08/11/15 20:34	
2,4,6-Trichlorophenol	0.031	U	0.36	0.031	mg/Kg	₩	08/10/15 14:33	08/11/15 20:34	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	56		41 - 116				08/10/15 14:33	08/11/15 20:34	
2-Fluorophenol (Surr)	50		39 - 114				08/10/15 14:33	08/11/15 20:34	
Nitrobenzene-d5 (Surr)	58		37 - 115				08/10/15 14:33	08/11/15 20:34	
Phenol-d5 (Surr)	52		38 - 122				08/10/15 14:33	08/11/15 20:34	
Terphenyl-d14 (Surr)	64		46 - 126				08/10/15 14:33	08/11/15 20:34	
2,4,6-Tribromophenol (Surr)	54		45 - 129				08/10/15 14:33	08/11/15 20:34	
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	2.1		1.9		mg/Kg	₩	08/11/15 07:36	08/11/15 18:47	
Barium	220		0.95	0.15	mg/Kg	₩	08/11/15 07:36	08/11/15 18:47	
Beryllium	1.6		0.38	0.0095	mg/Kg	₩	08/11/15 07:36	08/11/15 18:47	
Cadmium	0.095	U	0.47	0.095	mg/Kg	₩	08/11/15 07:36	08/11/15 18:47	
Chromium	26	F1	0.95	0.20	mg/Kg	₩	08/11/15 07:36	08/11/15 18:47	
Copper	13		2.4	0.16	mg/Kg	☆	08/11/15 07:36	08/11/15 18:47	
Lead	22		0.95	0.32	mg/Kg	₽	08/11/15 07:36	08/11/15 18:47	
Nickel	11	F1	3.8	0.36	mg/Kg	₩	08/11/15 07:36	08/11/15 18:47	
Selenium	0.92	U	2.4	0.92	mg/Kg	₩	08/11/15 07:36	08/11/15 18:47	
Silver	0.057	U	0.95		mg/Kg	₽	08/11/15 07:36	08/11/15 18:47	
Vanadium	50		0.95	0.095	mg/Kg	≎	08/11/15 07:36	08/11/15 18:47	
Zinc	100		1.9		mg/Kg	₩	08/11/15 07:36	08/11/15 18:47	
Method: 7471B - Mercury (CVA	A)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Analyzed

Prepared

□ 08/17/15 06:30 □ 08/17/15 11:55

RL

0.54

MDL Unit

0.23 mg/Kg

Result Qualifier

0.23 U

Dil Fac

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

2-Methylphenol

Client Sample ID: SB-42 8-10

Date Collected: 08/06/15 16:10

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-15

Matrix: Solid Percent Solids: 88.4

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cenaphthene	0.46	U	3.7	0.46	mg/Kg	₩	08/10/15 14:33	08/11/15 20:57	10
cenaphthylene	0.40	U	3.7	0.40	mg/Kg	☼	08/10/15 14:33	08/11/15 20:57	10
cetophenone	0.31	U	3.7	0.31	mg/Kg	☼	08/10/15 14:33	08/11/15 20:57	10
nthracene	0.28	U	3.7	0.28	mg/Kg		08/10/15 14:33	08/11/15 20:57	10
trazine	0.26	U	3.7	0.26	mg/Kg	☼	08/10/15 14:33	08/11/15 20:57	10
enzaldehyde	0.65	U	3.7	0.65	mg/Kg	☼	08/10/15 14:33	08/11/15 20:57	10
enzo[a]anthracene	0.62	J	3.7	0.30	mg/Kg		08/10/15 14:33	08/11/15 20:57	10
enzo[a]pyrene	0.71	J	3.7	0.58	mg/Kg	☼	08/10/15 14:33	08/11/15 20:57	10
enzo[b]fluoranthene	0.94	J	3.7	0.43	mg/Kg	☼	08/10/15 14:33	08/11/15 20:57	10
enzo[g,h,i]perylene	0.45	J	3.7	0.25	mg/Kg	₽	08/10/15 14:33	08/11/15 20:57	10
enzo[k]fluoranthene	0.73	U	3.7	0.73	mg/Kg	☼	08/10/15 14:33	08/11/15 20:57	10
1'-Biphenyl	19	U	19	19	mg/Kg	☼	08/10/15 14:33	08/11/15 20:57	10
s(2-chloroethoxy)methane	0.44	U	3.7	0.44	mg/Kg	₽	08/10/15 14:33	08/11/15 20:57	10
s(2-chloroethyl)ether	0.50	U	3.7	0.50	mg/Kg	☼	08/10/15 14:33	08/11/15 20:57	1
s (2-chloroisopropyl) ether	0.34	U	3.7	0.34	mg/Kg	☼	08/10/15 14:33	08/11/15 20:57	10
s(2-ethylhexyl) phthalate	0.32	U	3.7	0.32	mg/Kg	₽	08/10/15 14:33	08/11/15 20:57	10
Bromophenyl phenyl ether	0.40	U	3.7	0.40	mg/Kg	☼	08/10/15 14:33	08/11/15 20:57	10
ıtyl benzyl phthalate	0.29	U	3.7	0.29	mg/Kg	☼	08/10/15 14:33	08/11/15 20:57	10
aprolactam	0.74	U	3.7	0.74	mg/Kg	☼	08/10/15 14:33	08/11/15 20:57	10
arbazole	0.34	U	3.7	0.34	mg/Kg	☼	08/10/15 14:33	08/11/15 20:57	10
-Chloroaniline	0.58	U	7.4	0.58	mg/Kg	☼	08/10/15 14:33	08/11/15 20:57	10

7.00.00	0.01	· · · ·	0.0g/g	
Anthracene	0.28 U	3.7	0.28 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Atrazine	0.26 U	3.7	0.26 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Benzaldehyde	0.65 U	3.7	0.65 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Benzo[a]anthracene	0.62 J	3.7	0.30 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Benzo[a]pyrene	0.71 J	3.7	0.58 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Benzo[b]fluoranthene	0.94 J	3.7	0.43 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Benzo[g,h,i]perylene	0.45 J	3.7	0.25 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Benzo[k]fluoranthene	0.73 U	3.7	0.73 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
1,1'-Biphenyl	19 U	19	19 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Bis(2-chloroethoxy)methane	0.44 U	3.7	0.44 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Bis(2-chloroethyl)ether	0.50 U	3.7	0.50 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
bis (2-chloroisopropyl) ether	0.34 U	3.7	0.34 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Bis(2-ethylhexyl) phthalate	0.32 U	3.7	0.32 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
4-Bromophenyl phenyl ether	0.40 U	3.7	0.40 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Butyl benzyl phthalate	0.29 U	3.7	0.29 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Caprolactam	0.74 U	3.7	0.74 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Carbazole	0.34 U	3.7	0.34 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
4-Chloroaniline	0.58 U	7.4	0.58 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
4-Chloro-3-methylphenol	0.39 U	3.7	0.39 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
2-Chloronaphthalene	0.39 U	3.7	0.39 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
2-Chlorophenol	0.45 U	3.7	0.45 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
4-Chlorophenyl phenyl ether	0.49 U	3.7	0.49 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Chrysene	0.75 J	3.7	0.23 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Dibenz(a,h)anthracene	0.44 U	3.7	0.44 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Dibenzofuran	0.37 U	3.7	0.37 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
3,3'-Dichlorobenzidine	0.31 U	7.4	0.31 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
2,4-Dichlorophenol	0.39 U	3.7	0.39 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Diethyl phthalate	0.41 U	3.7	0.41 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
2,4-Dimethylphenol	0.49 U	3.7	0.49 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Dimethyl phthalate	0.38 U	3.7	0.38 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Di-n-butyl phthalate	0.34 U	3.7	0.34 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
4,6-Dinitro-2-methylphenol	1.9 U*	19	1.9 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
2,4-Dinitrophenol	9.3 U	19	9.3 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
2,4-Dinitrotoluene	0.55 U	3.7	0.55 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
2,6-Dinitrotoluene	0.47 U	3.7	0.47 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Di-n-octyl phthalate	0.32 U	3.7	0.32 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Fluoranthene	0.90 J	3.7	0.36 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Fluorene	0.40 U	3.7	0.40 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Hexachlorobenzene	0.44 U	3.7	0.44 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Hexachlorobutadiene	0.40 U	3.7	0.40 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Hexachlorocyclopentadiene	0.46 U	3.7	0.46 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Hexachloroethane	0.31 U	3.7	0.31 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Indeno[1,2,3-cd]pyrene	0.40 J	3.7	0.31 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
Isophorone	0.37 U	3.7	0.37 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
2-Methylnaphthalene	0.43 U	3.7	0.43 mg/Kg	© 08/10/15 14:33 08/11/15 20:57 10
A MARIE AND A STATE OF THE STAT				

TestAmerica Savannah

© 08/10/15 14:33 08/11/15 20:57

3.7

0.30 mg/Kg

0.30 U

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

Analyte

Mercury

Analyte

Cyanide, Total

General Chemistry

Client Sample ID: SB-42 8-10

Lab Sample ID: 680-115409-15

Date Collected: 08/06/15 16:10 Date Received: 08/08/15 10:00 Matrix: Solid Percent Solids: 88.4

Analyte		Qualifier	(GC/MS) (Co	MDL		D	Prepared	Analyzed	Dil Fa
3 & 4 Methylphenol	0.48	U	3.7	0.48	mg/Kg	<u>₩</u>		08/11/15 20:57	1
Naphthalene	0.34	U	3.7		mg/Kg	₩	08/10/15 14:33	08/11/15 20:57	1
2-Nitroaniline	0.50	U	19	0.50	mg/Kg		08/10/15 14:33	08/11/15 20:57	10
3-Nitroaniline	0.51	U	19	0.51	mg/Kg	₩	08/10/15 14:33	08/11/15 20:57	1
4-Nitroaniline	0.55	U	19		mg/Kg	₩	08/10/15 14:33	08/11/15 20:57	1
Nitrobenzene	0.29	U	3.7	0.29	mg/Kg		08/10/15 14:33	08/11/15 20:57	1
2-Nitrophenol	0.46	U	3.7		mg/Kg	₩		08/11/15 20:57	1
4-Nitrophenol	3.7	U	19		mg/Kg	₩		08/11/15 20:57	1
N-Nitrosodi-n-propylamine	0.36		3.7		mg/Kg		08/10/15 14:33	08/11/15 20:57	1
N-Nitrosodiphenylamine	0.37	U	3.7		mg/Kg	₩	08/10/15 14:33	08/11/15 20:57	1
Pentachlorophenol	3.7	U	19		mg/Kg	₩	08/10/15 14:33	08/11/15 20:57	1
Phenanthrene	0.50		3.7		mg/Kg		08/10/15 14:33	08/11/15 20:57	<u>.</u> 1
Phenol	0.38		3.7		mg/Kg	₩	08/10/15 14:33	08/11/15 20:57	1
Pyrene	0.81	J	3.7		mg/Kg	₩		08/11/15 20:57	1
2,4,5-Trichlorophenol	0.39		3.7		mg/Kg		08/10/15 14:33	08/11/15 20:57	1
2,4,6-Trichlorophenol	0.32		3.7		mg/Kg	₽	08/10/15 14:33	08/11/15 20:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl		D	41 - 116				08/10/15 14:33	08/11/15 20:57	1
2-Fluorophenol (Surr)	0	D	39 - 114				08/10/15 14:33	08/11/15 20:57	1
Nitrobenzene-d5 (Surr)	0	D	37 - 115				08/10/15 14:33	08/11/15 20:57	1
Phenol-d5 (Surr)	0	D	38 - 122				08/10/15 14:33	08/11/15 20:57	1
Terphenyl-d14 (Surr)	0	D	46 - 126				08/10/15 14:33	08/11/15 20:57	1
2,4,6-Tribromophenol (Surr)	0	D	45 - 129				08/10/15 14:33	08/11/15 20:57	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	3.0		1.9	0.77	mg/Kg	<u>₩</u>	08/11/15 07:36	08/11/15 20:21	
Barium	94		0.97		mg/Kg	₩	08/11/15 07:36	08/11/15 20:21	
Beryllium	0.65		0.39	0.0097	mg/Kg	₩	08/11/15 07:36	08/11/15 20:21	
Cadmium	0.22	J	0.48	0.097	mg/Kg	≎	08/11/15 07:36	08/11/15 20:21	
Chromium	14		0.97	0.20	mg/Kg	₩	08/11/15 07:36	08/11/15 20:21	
Copper	12		2.4	0.16	mg/Kg	₩	08/11/15 07:36	08/11/15 20:21	
Lead	160		0.97	0.33	mg/Kg	ф.	08/11/15 07:36	08/11/15 20:21	
Nickel	3.5	J	3.9	0.37	mg/Kg	₩	08/11/15 07:36	08/11/15 20:21	
Selenium	0.94	U	2.4	0.94	mg/Kg	₩	08/11/15 07:36	08/11/15 20:21	
	0.058	Ü	0.97	0.058	mg/Kg	₩.	08/11/15 07:36	08/11/15 20:21	
Silver	0.000								
Silver Vanadium	22		0.97	0.097	mg/Kg	☼	08/11/15 07:36	08/11/15 20:21	

Analyzed

Analyzed

Dil Fac

Dil Fac

Prepared

Prepared

D

□ 08/17/15 06:30 □ 08/17/15 11:56

RL

RL

0.54

0.021

Result Qualifier

Result Qualifier

0.23 U

0.13

MDL Unit

0.0082 mg/Kg

MDL Unit

0.23 mg/Kg

Client: Geotechnical & Environmental Consultants

Client Sample ID: SB-42 13-15

Date Collected: 08/06/15 16:15

Date Received: 08/08/15 10:00

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-16

Matrix: Solid
Percent Solids: 88.9

	г.

Method: 8270D - Semivolatile				MADA	l lmi4	_	Duamanad	A mal:	Di E-
Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.046		0.37		mg/Kg	₩ ₩		08/11/15 21:21	
Acenaphthylene	0.040		0.37		mg/Kg	☼		08/11/15 21:21	
Acetophenone	0.031		0.37	0.031	mg/Kg	<u>.</u> .		08/11/15 21:21	
Anthracene	0.028		0.37		mg/Kg			08/11/15 21:21	
Atrazine	0.026		0.37		mg/Kg	φ.		08/11/15 21:21	
Benzaldehyde	0.065		0.37		mg/Kg	T.		08/11/15 21:21	
Benzo[a]anthracene	0.030		0.37	0.030	mg/Kg	☆		08/11/15 21:21	
Benzo[a]pyrene	0.058		0.37		mg/Kg	*		08/11/15 21:21	
Benzo[b]fluoranthene	0.043		0.37		mg/Kg			08/11/15 21:21	
Benzo[g,h,i]perylene	0.025	U	0.37		mg/Kg	☼	08/10/15 14:33	08/11/15 21:21	
Benzo[k]fluoranthene	0.073	U	0.37	0.073	mg/Kg	₩	08/10/15 14:33	08/11/15 21:21	
1,1'-Biphenyl	1.9	U	1.9	1.9	mg/Kg	₩	08/10/15 14:33	08/11/15 21:21	
Bis(2-chloroethoxy)methane	0.044	U	0.37	0.044	mg/Kg	₽	08/10/15 14:33	08/11/15 21:21	
Bis(2-chloroethyl)ether	0.050		0.37	0.050	mg/Kg	₩	08/10/15 14:33	08/11/15 21:21	
ois (2-chloroisopropyl) ether	0.034	U	0.37	0.034	mg/Kg	₩	08/10/15 14:33	08/11/15 21:21	
Bis(2-ethylhexyl) phthalate	0.21	JB	0.37	0.033	mg/Kg	₽	08/10/15 14:33	08/11/15 21:21	
4-Bromophenyl phenyl ether	0.040	U	0.37	0.040	mg/Kg	☼	08/10/15 14:33	08/11/15 21:21	
Butyl benzyl phthalate	0.029	U	0.37	0.029	mg/Kg	☼	08/10/15 14:33	08/11/15 21:21	
Caprolactam	0.074	U	0.37	0.074	mg/Kg	₩	08/10/15 14:33	08/11/15 21:21	
Carbazole	0.034	U	0.37	0.034	mg/Kg	☼	08/10/15 14:33	08/11/15 21:21	
l-Chloroaniline	0.058	U	0.74	0.058	mg/Kg	☼	08/10/15 14:33	08/11/15 21:21	
-Chloro-3-methylphenol	0.039	U	0.37		mg/Kg		08/10/15 14:33	08/11/15 21:21	
2-Chloronaphthalene	0.039	U	0.37	0.039	mg/Kg	₩	08/10/15 14:33	08/11/15 21:21	
2-Chlorophenol	0.045	U	0.37	0.045	mg/Kg	₩	08/10/15 14:33	08/11/15 21:21	
1-Chlorophenyl phenyl ether	0.049	U	0.37		mg/Kg	 ф	08/10/15 14:33	08/11/15 21:21	
Chrysene	0.033	J	0.37		mg/Kg	☼	08/10/15 14:33	08/11/15 21:21	
Dibenz(a,h)anthracene	0.044		0.37		mg/Kg	☼	08/10/15 14:33	08/11/15 21:21	
Dibenzofuran	0.037		0.37		mg/Kg			08/11/15 21:21	
3,3'-Dichlorobenzidine	0.031		0.74	0.031	mg/Kg	₩		08/11/15 21:21	
2,4-Dichlorophenol	0.039		0.37		mg/Kg	☆		08/11/15 21:21	
Diethyl phthalate	0.041		0.37	0.041	mg/Kg			08/11/15 21:21	
2,4-Dimethylphenol	0.049		0.37	0.049	mg/Kg	₩		08/11/15 21:21	
Dimethyl phthalate	0.038		0.37		mg/Kg	₽		08/11/15 21:21	
Di-n-butyl phthalate	0.034		0.37		mg/Kg			08/11/15 21:21	
4,6-Dinitro-2-methylphenol	0.19		1.9		mg/Kg	₩		08/11/15 21:21	
2,4-Dinitrophenol	0.19		1.9		mg/Kg	≎		08/11/15 21:21	
						····		08/11/15 21:21	
2,4-Dinitrotoluene	0.055		0.37		mg/Kg	×			
2,6-Dinitrotoluene	0.047		0.37		mg/Kg	₩ ₩		08/11/15 21:21	
Di-n-octyl phthalate	0.033		0.37		mg/Kg			08/11/15 21:21	
	0.038		0.37		mg/Kg	☆		08/11/15 21:21	
Fluorene	0.040		0.37		mg/Kg	₩		08/11/15 21:21	
Hexachlorobenzene	0.044		0.37		mg/Kg			08/11/15 21:21	
Hexachlorobutadiene	0.040		0.37		mg/Kg	₩		08/11/15 21:21	
Hexachlorocyclopentadiene	0.046		0.37		mg/Kg	φ.		08/11/15 21:21	
-lexachloroethane	0.031		0.37		mg/Kg	<u>.</u> .		08/11/15 21:21	
ndeno[1,2,3-cd]pyrene	0.031		0.37		mg/Kg	Þ		08/11/15 21:21	
sophorone	0.037		0.37		mg/Kg	☼		08/11/15 21:21	
2-Methylnaphthalene	0.043	U	0.37	0.043	mg/Kg	₩	08/10/15 14:33	08/11/15 21:21	
2-Methylphenol	0.030	U	0.37	0.030	mg/Kg	₽	08/10/15 14:33	08/11/15 21:21	

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

Client Sample ID: SB-42 13-15

Lab Sample ID: 680-115409-16 Date Collected: 08/06/15 16:15 Date Received: 08/08/15 10:00

Matrix: Solid Percent Solids: 88.9

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) MDL Unit **Analyte** Result Qualifier RL D Prepared Analyzed Dil Fac 3 & 4 Methylphenol 0.048 U 0.37 0.048 mg/Kg 08/10/15 14:33 08/11/15 21:21 0.37 0.034 mg/Kg 08/10/15 14:33 08/11/15 21:21 **Naphthalene** 0.034 J 1 2-Nitroaniline 0.050 U 1.9 0.050 mg/Kg 08/10/15 14:33 08/11/15 21:21 3-Nitroaniline 0.052 U 1.9 0.052 mg/Kg 08/10/15 14:33 08/11/15 21:21 4-Nitroaniline 0.055 mg/Kg 08/10/15 14:33 08/11/15 21:21 1 0.055 U 1.9 Nitrobenzene 0.029 U 0.37 0.029 mg/Kg 08/10/15 14:33 08/11/15 21:21 2-Nitrophenol 0.046 U 0.37 0.046 mg/Kg 08/10/15 14:33 08/11/15 21:21 4-Nitrophenol 0.37 U 1.9 0.37 mg/Kg 08/10/15 14:33 08/11/15 21:21 N-Nitrosodi-n-propylamine 0.37 0.036 mg/Kg 08/10/15 14:33 08/11/15 21:21 0.036 U N-Nitrosodiphenylamine 0.037 U 0.37 0.037 08/10/15 14:33 08/11/15 21:21 mg/Kg Pentachlorophenol 0.37 U 0.37 mg/Kg 08/10/15 14:33 08/11/15 21:21 1.9 **Phenanthrene** 0.37 0.030 mg/Kg 08/10/15 14:33 08/11/15 21:21 0.037 J Phenol 0.37 0.038 mg/Kg 08/10/15 14:33 08/11/15 21:21 0.038 U **Pyrene** 0.044 J 0.37 0.030 mg/Kg 08/10/15 14:33 08/11/15 21:21 2,4,5-Trichlorophenol 0.039 U 0.37 0.039 mg/Kg 08/10/15 14:33 08/11/15 21:21 2,4,6-Trichlorophenol 0.033 U 0.37 0.033 mg/Kg 08/10/15 14:33 08/11/15 21:21

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	67	41 - 116	08/10/15 14:33	08/11/15 21:21	1
2-Fluorophenol (Surr)	60	39 - 114	08/10/15 14:33	08/11/15 21:21	1
Nitrobenzene-d5 (Surr)	69	37 - 115	08/10/15 14:33	08/11/15 21:21	1
Phenol-d5 (Surr)	68	38 - 122	08/10/15 14:33	08/11/15 21:21	1
Terphenyl-d14 (Surr)	90	46 - 126	08/10/15 14:33	08/11/15 21:21	1
2,4,6-Tribromophenol (Surr)	64	45 - 129	08/10/15 14:33	08/11/15 21:21	1
<u></u>					

Method: 6010C - Metals (ICP) Result Qualifier RL Dil Fac Analyte **MDL** Unit Prepared Analyzed ₩ 2.0 0.82 mg/Kg 08/11/15 08:25 08/15/15 04:01 **Arsenic** 13 08/11/15 08:25 08/15/15 04:01 **Barium 50** 1.0 0.16 mg/Kg **Beryllium** 0.28 0.41 0.010 mg/Kg 08/11/15 08:25 08/15/15 04:01 Cadmium 0.10 0.51 0.10 mg/Kg 08/11/15 08:25 08/15/15 04:01 **Chromium** 1.0 0.21 mg/Kg 08/11/15 08:25 08/15/15 04:01 12 08/11/15 08:25 08/15/15 04:01 15 26 0.17 mg/Kg Copper ₩ Lead 67 1.0 0.35 mg/Kg 08/11/15 08:25 08/15/15 04:01 **Nickel** 4.1 0.39 mg/Kg 08/11/15 08:25 08/15/15 04:01 3.6 J Selenium 0.99 U 2.6 0.99 mg/Kg 08/11/15 08:25 08/15/15 04:01 Silver 0.061 U 1.0 0.061 mg/Kg 08/11/15 08:25 08/15/15 04:01 0.10 mg/Kg 08/11/15 08:25 08/15/15 04:01 Vanadium 25 1.0 1 2.0 08/11/15 08:25 08/15/15 04:01 **Zinc** 38 0.72 mg/Kg

Method: 7471B - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.12		0.022	0.0088	mg/Kg		08/16/15 13:43	08/17/15 21:41	1
_									

General Chemistry	- "					_			
Analyte	Result	Qualifier	RL	MDL	Unit	U	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.23	U	0.55	0.23	mg/Kg	\$	08/17/15 06:30	08/17/15 11:57	1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: GB-16 2-4

Date Collected: 08/06/15 13:29

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-17

Matrix: Solid
Percent Solids: 47.6

	-
	-

Method: 8270D - Semivolatile			•				_		
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.086		0.69	0.086	mg/Kg	<u>₩</u>	08/10/15 14:33	08/11/15 21:45	
Acenaphthylene	0.075		0.69		mg/Kg	*	08/10/15 14:33	08/11/15 21:45	
Acetophenone	0.058		0.69		mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	
Anthracene	0.052	U	0.69	0.052	mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	
Atrazine	0.048	U	0.69	0.048	mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	
Benzaldehyde	0.12		0.69		mg/Kg	₩	08/10/15 14:33	08/11/15 21:45	
Benzo[a]anthracene	0.056	U	0.69	0.056	mg/Kg	₩	08/10/15 14:33	08/11/15 21:45	
Benzo[a]pyrene	0.11	U	0.69	0.11	mg/Kg	₩	08/10/15 14:33	08/11/15 21:45	
Benzo[b]fluoranthene	0.079	U	0.69	0.079	mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	
Benzo[g,h,i]perylene	0.046	U	0.69	0.046	mg/Kg	₽	08/10/15 14:33	08/11/15 21:45	
Benzo[k]fluoranthene	0.14	U	0.69	0.14	mg/Kg	₩	08/10/15 14:33	08/11/15 21:45	
,1'-Biphenyl	3.5	U	3.5	3.5	mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	
Bis(2-chloroethoxy)methane	0.081	U	0.69	0.081	mg/Kg	₽	08/10/15 14:33	08/11/15 21:45	
Bis(2-chloroethyl)ether	0.094	U	0.69	0.094	mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	
ois (2-chloroisopropyl) ether	0.063	U	0.69	0.063	mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	
Bis(2-ethylhexyl) phthalate	0.30	JB	0.69	0.061	mg/Kg		08/10/15 14:33	08/11/15 21:45	
-Bromophenyl phenyl ether	0.075	U	0.69		mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	
Butyl benzyl phthalate	0.054	U	0.69	0.054		☆	08/10/15 14:33	08/11/15 21:45	
Caprolactam	0.14	U	0.69	0.14	mg/Kg	· · · · · · · · · · · · · · · · · · ·	08/10/15 14:33	08/11/15 21:45	
: Carbazole	0.063	U	0.69		mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	
-Chloroaniline	0.11		1.4	0.11	mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	
-Chloro-3-methylphenol	0.073		0.69		mg/Kg		08/10/15 14:33	08/11/15 21:45	
-Chloronaphthalene	0.073		0.69	0.073		☆	08/10/15 14:33	08/11/15 21:45	
-Chlorophenol	0.084		0.69	0.084	mg/Kg	☆	08/10/15 14:33	08/11/15 21:45	
-Chlorophenyl phenyl ether	0.092		0.69		mg/Kg		08/10/15 14:33	08/11/15 21:45	
Chrysene	0.044		0.69		mg/Kg	₩	08/10/15 14:33	08/11/15 21:45	
Dibenz(a,h)anthracene	0.044		0.69	0.081	0 0	₽	08/10/15 14:33	08/11/15 21:45	
Dibenzofuran	0.069		0.69		mg/Kg		08/10/15 14:33	08/11/15 21:45	
,3'-Dichlorobenzidine	0.009		1.4		mg/Kg		08/10/15 14:33	08/11/15 21:45	
•	0.038		0.69	0.038			08/10/15 14:33	08/11/15 21:45	
4,4-Dichlorophenol									
Diethyl phthalate	0.077		0.69	0.077	mg/Kg	₩	08/10/15 14:33	08/11/15 21:45	
t,4-Dimethylphenol	0.092		0.69		mg/Kg		08/10/15 14:33	08/11/15 21:45	
Dimethyl phthalate	0.071		0.69	0.071	mg/Kg		08/10/15 14:33	08/11/15 21:45	
Di-n-butyl phthalate	0.063		0.69	0.063	mg/Kg	φ.	08/10/15 14:33	08/11/15 21:45	
,6-Dinitro-2-methylphenol	0.35		3.5		mg/Kg		08/10/15 14:33		
,4-Dinitrophenol	1.7		3.5		mg/Kg		08/10/15 14:33	08/11/15 21:45	
,4-Dinitrotoluene	0.10		0.69		mg/Kg	:Q:	08/10/15 14:33	08/11/15 21:45	
,6-Dinitrotoluene	0.088		0.69		mg/Kg	: *	08/10/15 14:33	08/11/15 21:45	
i-n-octyl phthalate	0.061		0.69		mg/Kg		08/10/15 14:33		
luoranthene	0.067		0.69		mg/Kg	☼		08/11/15 21:45	
luorene	0.075	U	0.69	0.075	mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	
lexachlorobenzene	0.081	U	0.69	0.081	mg/Kg	\	08/10/15 14:33	08/11/15 21:45	
lexachlorobutadiene	0.075	U	0.69		mg/Kg	₽	08/10/15 14:33	08/11/15 21:45	
lexachlorocyclopentadiene	0.086	U	0.69	0.086	mg/Kg	₩	08/10/15 14:33	08/11/15 21:45	
lexachloroethane	0.058	U	0.69	0.058	mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	
ndeno[1,2,3-cd]pyrene	0.058	U	0.69	0.058	mg/Kg	⊅	08/10/15 14:33	08/11/15 21:45	
sophorone	0.069	U	0.69	0.069	mg/Kg	₩	08/10/15 14:33	08/11/15 21:45	
2-Methylnaphthalene	0.079	U	0.69	0.079	mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	
2-Methylphenol	0.056		0.69	0.056	mg/Kg		08/10/15 14:33	08/11/15 21:45	

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

Client Sample ID: GB-16 2-4

Lab Sample ID: 680-115409-17 Date Collected: 08/06/15 13:29 **Matrix: Solid**

Percent Solids: 47.6

Date Received: 08/08/15 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.090	U	0.69	0.090	mg/Kg	<u> </u>	08/10/15 14:33	08/11/15 21:45	1
Naphthalene	0.063	U	0.69	0.063	mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	1
2-Nitroaniline	0.094	U	3.5	0.094	mg/Kg	₽	08/10/15 14:33	08/11/15 21:45	1
3-Nitroaniline	0.096	U	3.5	0.096	mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	1
4-Nitroaniline	0.10	U	3.5	0.10	mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	1
Nitrobenzene	0.054	U	0.69	0.054	mg/Kg		08/10/15 14:33	08/11/15 21:45	1
2-Nitrophenol	0.086	U	0.69	0.086	mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	1
4-Nitrophenol	0.69	U	3.5	0.69	mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	1
N-Nitrosodi-n-propylamine	0.067	U	0.69	0.067	mg/Kg	φ.	08/10/15 14:33	08/11/15 21:45	1
N-Nitrosodiphenylamine	0.069	U	0.69	0.069	mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	1
Pentachlorophenol	0.69	U	3.5	0.69	mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	1
Phenanthrene	0.056	U	0.69	0.056	mg/Kg	φ.	08/10/15 14:33	08/11/15 21:45	1
Phenol	0.071	U	0.69	0.071	mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	1
Pyrene	0.056	U	0.69	0.056	mg/Kg	☼	08/10/15 14:33	08/11/15 21:45	1
2,4,5-Trichlorophenol	0.073	U	0.69	0.073	mg/Kg	₽	08/10/15 14:33	08/11/15 21:45	1
2,4,6-Trichlorophenol	0.061	U	0.69	0.061	mg/Kg	≎	08/10/15 14:33	08/11/15 21:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	72		41 - 116				08/10/15 14:33	08/11/15 21:45	1

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	72	41 - 116	<u>08/10/15 14:33</u>	08/11/15 21:45	1
2-Fluorophenol (Surr)	53	39 ₋ 114	08/10/15 14:33	08/11/15 21:45	1
Nitrobenzene-d5 (Surr)	68	37 - 115	08/10/15 14:33	08/11/15 21:45	1
Phenol-d5 (Surr)	61	38 - 122	08/10/15 14:33	08/11/15 21:45	1
Terphenyl-d14 (Surr)	68	46 - 126	08/10/15 14:33	08/11/15 21:45	1
2,4,6-Tribromophenol (Surr)	59	45 - 129	08/10/15 14:33	08/11/15 21:45	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.1	J	3.8	1.5	mg/Kg	<u> </u>	08/11/15 08:25	08/15/15 04:15	1
Barium	38		1.9	0.30	mg/Kg	☼	08/11/15 08:25	08/15/15 04:15	1
Beryllium	0.33	J	0.75	0.019	mg/Kg	☼	08/11/15 08:25	08/15/15 04:15	1
Cadmium	0.19	U	0.94	0.19	mg/Kg	₩	08/11/15 08:25	08/15/15 04:15	1
Chromium	5.0		1.9	0.39	mg/Kg	☼	08/11/15 08:25	08/15/15 04:15	1
Copper	4.1	J	4.7	0.32	mg/Kg	☼	08/11/15 08:25	08/15/15 04:15	1
Lead	55		1.9	0.64	mg/Kg	₩.	08/11/15 08:25	08/15/15 04:15	1
Nickel	3.1	J	7.5	0.71	mg/Kg	☼	08/11/15 08:25	08/15/15 04:15	1
Selenium	1.8	U	4.7	1.8	mg/Kg	☼	08/11/15 08:25	08/15/15 04:15	1
Silver	0.11	U	1.9	0.11	mg/Kg		08/11/15 08:25	08/15/15 04:15	1
Vanadium	10		1.9	0.19	mg/Kg	☼	08/11/15 08:25	08/15/15 04:15	1
Zinc	36		3.8	1.3	mg/Kg	≎	08/11/15 08:25	08/15/15 04:15	1

Method: 7471B - Mercury (CVAA) Analyte Mercury	Result	Qualifier	RL 0.039	MDL 0.016	Unit mg/Kg	D <u>⇔</u>	Prepared 08/16/15 13:43	Analyzed 08/17/15 21:44	Dil Fac
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.42	U	1.0	0.42	mg/Kg	<u>₩</u>	08/17/15 06:30	08/17/15 11:58	1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: GB-16 4-6

Date Collected: 08/06/15 13:35

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-18

Matrix: Solid
Percent Solids: 74.8

	-
	•

Method: 8270D - Semivolatile			•						
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.055		0.44	0.055	mg/Kg	₩	08/10/15 14:33	08/11/15 22:08	
Acenaphthylene	0.048		0.44	0.048	mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	
Acetophenone	0.037	U	0.44	0.037	0 0	₩	08/10/15 14:33	08/11/15 22:08	
Anthracene	0.033	U	0.44	0.033	mg/Kg	₩	08/10/15 14:33	08/11/15 22:08	
Atrazine	0.031	U	0.44	0.031	mg/Kg	₩	08/10/15 14:33	08/11/15 22:08	
Benzaldehyde	0.078	U	0.44	0.078	mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	
Benzo[a]anthracene	0.036	U	0.44	0.036	mg/Kg	₩	08/10/15 14:33	08/11/15 22:08	
Benzo[a]pyrene	0.070	U	0.44	0.070	mg/Kg	₩	08/10/15 14:33	08/11/15 22:08	
Benzo[b]fluoranthene	0.051	U	0.44	0.051	mg/Kg	₩	08/10/15 14:33	08/11/15 22:08	
Benzo[g,h,i]perylene	0.029	U	0.44	0.029	mg/Kg	₽	08/10/15 14:33	08/11/15 22:08	
Benzo[k]fluoranthene	0.087	U	0.44	0.087	mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	
1,1'-Biphenyl	2.3	U	2.3	2.3	mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	
Bis(2-chloroethoxy)methane	0.052	U	0.44	0.052	mg/Kg		08/10/15 14:33	08/11/15 22:08	
Bis(2-chloroethyl)ether	0.060	U	0.44		mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	
bis (2-chloroisopropyl) ether	0.040	U	0.44	0.040	mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	
Bis(2-ethylhexyl) phthalate	0.24	JB	0.44	0.039	mg/Kg	 \$	08/10/15 14:33	08/11/15 22:08	
4-Bromophenyl phenyl ether	0.048		0.44	0.048	mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	
Butyl benzyl phthalate	0.035		0.44		mg/Kg	₩	08/10/15 14:33	08/11/15 22:08	
Caprolactam	0.088		0.44		mg/Kg		08/10/15 14:33	08/11/15 22:08	
Carbazole	0.040		0.44	0.040	mg/Kg	☆	08/10/15 14:33	08/11/15 22:08	
4-Chloroaniline	0.070		0.88	0.070	mg/Kg	☆	08/10/15 14:33	08/11/15 22:08	
4-Chloro-3-methylphenol	0.047		0.44	0.047			08/10/15 14:33	08/11/15 22:08	
2-Chloronaphthalene	0.047		0.44	0.047	0 0	₩	08/10/15 14:33	08/11/15 22:08	
2-Chlorophenol	0.054		0.44	0.054	0 0	₽	08/10/15 14:33	08/11/15 22:08	
4-Chlorophenyl phenyl ether	0.059		0.44	0.059	mg/Kg		08/10/15 14:33	08/11/15 22:08	
Chrysene	0.039		0.44	0.039	mg/Kg		08/10/15 14:33	08/11/15 22:08	
Dibenz(a,h)anthracene	0.028		0.44		mg/Kg		08/10/15 14:33	08/11/15 22:08	
	0.032								
Dibenzofuran			0.44		mg/Kg	₩	08/10/15 14:33	08/11/15 22:08	
3,3'-Dichlorobenzidine	0.037		0.88	0.037	0 0	₩	08/10/15 14:33	08/11/15 22:08	
2,4-Dichlorophenol	0.047		0.44	0.047	mg/Kg		08/10/15 14:33	08/11/15 22:08	
Diethyl phthalate	0.049		0.44	0.049	mg/Kg	₩	08/10/15 14:33	08/11/15 22:08	
2,4-Dimethylphenol	0.059		0.44	0.059	mg/Kg		08/10/15 14:33	08/11/15 22:08	
Dimethyl phthalate	0.045		0.44	0.045			08/10/15 14:33	08/11/15 22:08	
Di-n-butyl phthalate	0.040		0.44	0.040	mg/Kg		08/10/15 14:33	08/11/15 22:08	
4,6-Dinitro-2-methylphenol		U F2 *	2.3		mg/Kg	*	08/10/15 14:33	08/11/15 22:08	
2,4-Dinitrophenol		U F1	2.3		mg/Kg		08/10/15 14:33	08/11/15 22:08	
2,4-Dinitrotoluene	0.066		0.44		mg/Kg	₽	08/10/15 14:33	08/11/15 22:08	
2,6-Dinitrotoluene	0.056		0.44		mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	
Di-n-octyl phthalate	0.039		0.44		mg/Kg	\	08/10/15 14:33		
Fluoranthene	0.043	U	0.44	0.043	mg/Kg	₩	08/10/15 14:33	08/11/15 22:08	
Fluorene	0.048	U	0.44	0.048	mg/Kg	₩	08/10/15 14:33	08/11/15 22:08	
Hexachlorobenzene	0.052	U	0.44	0.052	mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	
Hexachlorobutadiene	0.048	U	0.44	0.048	mg/Kg	₩	08/10/15 14:33	08/11/15 22:08	
Hexachlorocyclopentadiene	0.055	U	0.44	0.055	mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	
Hexachloroethane	0.037	U	0.44	0.037	mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	
Indeno[1,2,3-cd]pyrene	0.037	U	0.44	0.037	mg/Kg	₽	08/10/15 14:33	08/11/15 22:08	
Isophorone	0.044	U	0.44	0.044	mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	
2-Methylnaphthalene	0.051	U	0.44	0.051	mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	
2-Methylphenol	0.036		0.44		mg/Kg		08/10/15 14:33	08/11/15 22:08	

Project/Site: Macon MGP

Client Sample ID: GB-16 4-6

Client: Geotechnical & Environmental Consultants

Lab Sample ID: 680-115409-18

Matrix: Solid Percent Solids: 74.8

Date Collected: 08/06/15 13:35 Date Received: 08/08/15 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.058	U	0.44	0.058	mg/Kg	<u> </u>	08/10/15 14:33	08/11/15 22:08	1
Naphthalene	0.040	U	0.44	0.040	mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	1
2-Nitroaniline	0.060	U	2.3	0.060	mg/Kg	₩	08/10/15 14:33	08/11/15 22:08	1
3-Nitroaniline	0.062	U	2.3	0.062	mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	1
4-Nitroaniline	0.066	U	2.3	0.066	mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	1
Nitrobenzene	0.035	U	0.44	0.035	mg/Kg	₩	08/10/15 14:33	08/11/15 22:08	1
2-Nitrophenol	0.055	U	0.44	0.055	mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	1
4-Nitrophenol	0.44	U	2.3	0.44	mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	1
N-Nitrosodi-n-propylamine	0.043	U	0.44	0.043	mg/Kg	.	08/10/15 14:33	08/11/15 22:08	1
N-Nitrosodiphenylamine	0.044	U	0.44	0.044	mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	1
Pentachlorophenol	0.44	U	2.3	0.44	mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	1
Phenanthrene	0.036	Ü	0.44	0.036	mg/Kg	.	08/10/15 14:33	08/11/15 22:08	1
Phenol	0.045	U	0.44	0.045	mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	1
Pyrene	0.036	U	0.44	0.036	mg/Kg	☼	08/10/15 14:33	08/11/15 22:08	1
2,4,5-Trichlorophenol	0.047	U	0.44	0.047	mg/Kg	φ.	08/10/15 14:33	08/11/15 22:08	1
2,4,6-Trichlorophenol	0.039	U	0.44	0.039	mg/Kg	₩	08/10/15 14:33	08/11/15 22:08	1

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 2-Fluorobiphenyl 70 41 - 116 08/10/15 14:33 08/11/15 22:08 2-Fluorophenol (Surr) 76 08/10/15 14:33 08/11/15 22:08 39 - 114 Nitrobenzene-d5 (Surr) 68 37 - 115 08/10/15 14:33 08/11/15 22:08 Phenol-d5 (Surr) 67 38 - 122 08/10/15 14:33 08/11/15 22:08 Terphenyl-d14 (Surr) 93 46 - 126 08/10/15 14:33 08/11/15 22:08 2,4,6-Tribromophenol (Surr) 70 45 - 129 08/10/15 14:33 08/11/15 22:08

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.4		2.5	0.99	mg/Kg	<u> </u>	08/11/15 08:25	08/15/15 04:20	1
Barium	6.8		1.2	0.20	mg/Kg	☼	08/11/15 08:25	08/15/15 04:20	1
Beryllium	0.13	J	0.49	0.012	mg/Kg	☼	08/11/15 08:25	08/15/15 04:20	1
Cadmium	0.12	U	0.62	0.12	mg/Kg	₽	08/11/15 08:25	08/15/15 04:20	1
Chromium	15		1.2	0.26	mg/Kg	☼	08/11/15 08:25	08/15/15 04:20	1
Copper	3.9		3.1	0.21	mg/Kg	☼	08/11/15 08:25	08/15/15 04:20	1
Lead	5.2		1.2	0.42	mg/Kg		08/11/15 08:25	08/15/15 04:20	1
Nickel	1.3	J	4.9	0.47	mg/Kg	₩	08/11/15 08:25	08/15/15 04:20	1
Selenium	1.2	U	3.1	1.2	mg/Kg	₩	08/11/15 08:25	08/15/15 04:20	1
Silver	0.074	U	1.2	0.074	mg/Kg		08/11/15 08:25	08/15/15 04:20	1
Vanadium	31		1.2	0.12	mg/Kg	₩	08/11/15 08:25	08/15/15 04:20	1
Zinc	6.2		2.5	0.87	mg/Kg	≎	08/11/15 08:25	08/15/15 04:20	1

Method: 7471B - Mercury (CVAA) RL Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac □ 08/16/15 13:43 □ 08/17/15 21:47 Mercury 0.0095 U 0.024 0.0095 mg/Kg

General Chemistry Analyte

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac □ 08/17/15 06:30 □ 08/17/15 11:59 0.64 0.27 mg/Kg Cyanide, Total 0.27 U

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: GB-18 2-4

Date Collected: 08/06/15 15:05

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-19

Matrix: Solid

Date Received: 08/08/15 10:0	0							Percent Solid	ls: 90.7
_ Method: 8270D - Semivolati	le Organic Co	ompounds (G	iC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.45	U	3.6	0.45	mg/Kg	<u> </u>	08/10/15 14:33	08/11/15 22:32	10
Acenaphthylene	0.40	U	3.6	0.40	mg/Kg	₩	08/10/15 14:33	08/11/15 22:32	10
Acetophenone	0.31	U	3.6	0.31	mg/Kg	☼	08/10/15 14:33	08/11/15 22:32	10
Anthracene	0.28	U	3.6	0.28	mg/Kg	φ.	08/10/15 14:33	08/11/15 22:32	10
Atrazine	0.25	U	3.6	0.25	mg/Kg	☼	08/10/15 14:33	08/11/15 22:32	10
Benzaldehyde	0.64	U	3.6	0.64	mg/Kg	☼	08/10/15 14:33	08/11/15 22:32	10
Benzo[a]anthracene	0.39	J	3.6	0.30	mg/Kg	₩.	08/10/15 14:33	08/11/15 22:32	10
Benzo[a]pyrene	0.57	U	3.6	0.57	mg/Kg	☼	08/10/15 14:33	08/11/15 22:32	10
Benzo[b]fluoranthene	0.47	J	3.6	0.42	mg/Kg	☼	08/10/15 14:33	08/11/15 22:32	10
Benzo[g,h,i]perylene	0.24	U	3.6	0.24	mg/Kg	₽	08/10/15 14:33	08/11/15 22:32	10
Benzo[k]fluoranthene	0.72	U	3.6	0.72	mg/Kg	☼	08/10/15 14:33	08/11/15 22:32	10
1,1'-Biphenyl	19	U	19	19	mg/Kg	☼	08/10/15 14:33	08/11/15 22:32	10
Bis(2-chloroethoxy)methane	0.43	U	3.6	0.43	mg/Kg	₽	08/10/15 14:33	08/11/15 22:32	10
Bis(2-chloroethyl)ether	0.50	U	3.6	0.50	mg/Kg	☼	08/10/15 14:33	08/11/15 22:32	10
bis (2-chloroisopropyl) ether	0.33	U	3.6	0.33	mg/Kg	☼	08/10/15 14:33	08/11/15 22:32	10
Bis(2-ethylhexyl) phthalate	0.32	U	3.6	0.32	mg/Kg		08/10/15 14:33	08/11/15 22:32	10
4-Bromophenyl phenyl ether	0.40	U	3.6		mg/Kg	₩	08/10/15 14:33	08/11/15 22:32	10
Butyl benzyl phthalate	0.29	U	3.6	0.29	mg/Kg	₩	08/10/15 14:33	08/11/15 22:32	10
Caprolactam	0.73	U	3.6		mg/Kg		08/10/15 14:33	08/11/15 22:32	10

3.6	40 r r 29 r r 73 r r 73 r r 733 r r 757 r r 339 r r 444 r r 449 r r 23 r r 443 r r 336 r r 339 r r 449 r r 338 r r 339 r r 339 r r 338 r r 738 r r r 738 r r r 738 r r r 738 r r r r 738 r r r r r r r r r r r r r r r r r r r	mg/Kg		08/10/15 14:33 08/10/15 14:33	08/11/15 22:32 08/11/15 22:32	10 10 10 10 10 10 10 10 10 10 10 10 10	
3.6 0.3 3.6 0.3 3.6 0.3 3.6 0.3 3.6 0.3 3.6 0.4 3.6 0.4 3.6 0.3 3.6 0.4 3.6 0.5 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6	29 r r r r r r r r r r r r r r r r r r r	mg/Kg		08/10/15 14:33 08/10/15 14:33	08/11/15 22:32 08/11/15 22:32	10 10 10 10 10 10 10 10 10 10 10 10	
3.6 0.3 3.6 0.3 3.6 0.3 3.6 0.3 3.6 0.4 3.6 0.4 3.6 0.4 3.6 0.5 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6	73 r 33 r 757 r 339 r 744 r 749 r 743 r 749 r 74	mg/Kg		08/10/15 14:33 08/10/15 14:33	08/11/15 22:32 08/11/15 22:32	10 10 10 10 10 10 10 10 10 10 10	
3.6	33 r r 757 r 339 r 7339 r 744 r 743 r 733 r 733 r 744 r 749 r 738 r 748 r 748 r 738 r 748	mg/Kg	* * * * * * * * * * * * * * * * * * * *	08/10/15 14:33 08/10/15 14:33	08/11/15 22:32 08/11/15 22:32	10 10 10 10 10 10 10 10 10 10	
7.3 0.4 3.6 0.3 3.6 0.4 3.6 0.4 3.6 0.4 3.6 0.4 3.6 0.5 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6	.57 r .39 r .39 r .44 r .49 r .36 r .39 r .41 r .49 r .49 r .49 r .49 r .38 r .	mg/Kg	* * * * * * * * * * * * * * * * * * * *	08/10/15 14:33 08/10/15 14:33	08/11/15 22:32 08/11/15 22:32	100 100 100 100 100 100 100 100 100 100	
3.6 0.3 3.6 0.4 3.6 0.4 3.6 0.4 3.6 0.3 3.6 0.4 3.6 0.3 3.6 0.3 3.6 0.3 3.6 0.3 3.6 0.3 3.6 0.3 3.6 0.3 3.6 0.3 3.6 0.3 3.6 0.3	39 r 39 r 44 r 49 r 23 r 43 r 36 r 31 r 39 r 41 r 49 r	mg/Kg	* * * * * * * * *	08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33	08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32	10 10 10 10 10 10 10 10 10	
3.6 0.3 3.6 0.4 3.6 0.4 3.6 0.5 3.6 0.5 3.6 0.5 3.6 0.5 3.6 0.5 3.6 0.5 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6 3.6 0.6	39 r 44 r 49 r 23 r 43 r 36 r 31 r 39 r 41 r 49 r	mg/Kg	* * * * * * * * *	08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33	08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32	10 10 10 10 10 10 10 10	
3.6 0.4 3.6 0.4 3.6 0.3 3.6 0.4 3.6 0.3 3.6 0.3 3.6 0.3 3.6 0.4 3.6 0.4 3.6 0.5 3.6 0.6 3.6 0.6	.44 r .49 r .23 r .43 r .36 r .31 r .39 r .41 r .49 r .38 r	mg/Kg	* * * * * * * * *	08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33	08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32	10 10 10 10 10 10 10	
3.6 0.4 3.6 0.2 3.6 0.3 3.6 0.3 3.6 0.3 3.6 0.3 3.6 0.4 3.6 0.4 3.6 0.5 3.6 0.6 3.6 0.6	.49 r .23 r .43 r .36 r .31 r .39 r .41 r .49 r .38 r	mg/Kg	* * * * * * * * * * * * * * * * * * * *	08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33	08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32	10 10 10 10 10 10 10	
3.6 0.4 3.6 0.4 3.6 0.3 3.6 0.3 3.6 0.4 3.6 0.4 3.6 0.4 3.6 0.5 3.6 0.5	.23 r .43 r .36 r .31 r .39 r .41 r .49 r .38 r	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * *	08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33	08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32	10 10 10 10 10	
3.6 0.4 3.6 0.3 7.3 0.3 3.6 0.4 3.6 0.4 3.6 0.4 3.6 0.5	.43 r .36 r .31 r .39 r .41 r .49 r .38 r	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * *	08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33	08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32	10 10 10 10 10	
3.6 0.3 7.3 0.3 3.6 0.3 3.6 0.4 3.6 0.4 3.6 0.3	36 r 31 r 39 r 41 r 49 r	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	***	08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33	08/11/15 22:32 08/11/15 22:32 08/11/15 22:32 08/11/15 22:32	10 10 10 10	
7.3 0.3 3.6 0.3 3.6 0.4 3.6 0.4 3.6 0.3 3.6 0.3	.31 r .39 r .41 r .49 r .38 r	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	# # # #	08/10/15 14:33 08/10/15 14:33 08/10/15 14:33 08/10/15 14:33	08/11/15 22:32 08/11/15 22:32 08/11/15 22:32	10 10 10	
3.6 0.3 3.6 0.4 3.6 0.4 3.6 0.3 3.6 0.3	.39 r .41 r .49 r .38 r	mg/Kg mg/Kg mg/Kg mg/Kg	₩ ₩ ₩	08/10/15 14:33 08/10/15 14:33 08/10/15 14:33	08/11/15 22:32 08/11/15 22:32	10 10	
3.6 0.4 3.6 0.3 3.6 0.3 3.6 0.3	.41 r .49 r .38 r	mg/Kg mg/Kg mg/Kg	☼	08/10/15 14:33 08/10/15 14:33	08/11/15 22:32	10	
3.6 0.4 3.6 0.3 3.6 0.3	.49 r .38 r	mg/Kg mg/Kg		08/10/15 14:33			
3.6 0.3 3.6 0.3	.38 r	mg/Kg			08/11/15 22:32	40	
3.6 0.3			₩			10	
	.33 r	ma/Ka		08/10/15 14:33	08/11/15 22:32	10	
40		1119/119	Þ	08/10/15 14:33	08/11/15 22:32	10	
19 1	1.9 r	mg/Kg	₩	08/10/15 14:33	08/11/15 22:32	10	
19 9	9.2 r	mg/Kg	₩	08/10/15 14:33	08/11/15 22:32	10	
3.6 0.5	54 r	mg/Kg	₽	08/10/15 14:33	08/11/15 22:32	10	
3.6 0.4	.46 r	mg/Kg	₩	08/10/15 14:33	08/11/15 22:32	10	
3.6 0.3	.32 r	mg/Kg	₩	08/10/15 14:33	08/11/15 22:32	10	
3.6 0.3	.35 r	mg/Kg	₽	08/10/15 14:33	08/11/15 22:32	10	
3.6 0.4	.40 r	mg/Kg	₩	08/10/15 14:33	08/11/15 22:32	10	
3.6 0.4	.43 r	mg/Kg	₩	08/10/15 14:33	08/11/15 22:32	10	
3.6 0.4	40 r	mg/Kg	₩	08/10/15 14:33	08/11/15 22:32	10	
3.6 0.4	.45 r	mg/Kg	₩	08/10/15 14:33	08/11/15 22:32	10	
3.6 0.3	.31 r	mg/Kg	₩	08/10/15 14:33	08/11/15 22:32	10	
0.0	.31 r	mg/Kg	₩	08/10/15 14:33	08/11/15 22:32	10	
	.36 r	mg/Kg	₩	08/10/15 14:33	08/11/15 22:32	10	
3.6 0.3	.42 r		₩	08/10/15 14:33	08/11/15 22:32	10	
3.6 0.3 3.6 0.4		mg/Kg	*	08/10/15 14:33	08/11/15 22:32	10	
	3.6 0 3.6 0 3.6 0	3.6 0.31 3.6 0.31 3.6 0.36 3.6 0.42	3.6 0.31 mg/Kg 3.6 0.31 mg/Kg 3.6 0.36 mg/Kg 3.6 0.42 mg/Kg	3.6 0.31 mg/Kg \$\frac{\pi}{2}\$ 3.6 0.31 mg/Kg \$\frac{\pi}{2}\$ 3.6 0.36 mg/Kg \$\frac{\pi}{2}\$ 3.6 0.42 mg/Kg \$\frac{\pi}{2}\$	3.6 0.31 mg/Kg	3.6 0.31 mg/Kg	3.6 0.31 mg/Kg

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: GB-18 2-4

Date Collected: 08/06/15 15:05 Date Received: 08/08/15 10:00 Lab Sample ID: 680-115409-19

Matrix: Solid Percent Solids: 90.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.47	U	3.6	0.47	mg/Kg	<u> </u>	08/10/15 14:33	08/11/15 22:32	10
Naphthalene	0.33	U	3.6	0.33	mg/Kg	☼	08/10/15 14:33	08/11/15 22:32	10
2-Nitroaniline	0.50	U	19	0.50	mg/Kg	₩	08/10/15 14:33	08/11/15 22:32	10
3-Nitroaniline	0.51	U	19	0.51	mg/Kg	☼	08/10/15 14:33	08/11/15 22:32	10
4-Nitroaniline	0.54	U	19	0.54	mg/Kg	☼	08/10/15 14:33	08/11/15 22:32	10
Nitrobenzene	0.29	U	3.6	0.29	mg/Kg	₩	08/10/15 14:33	08/11/15 22:32	10
2-Nitrophenol	0.45	U	3.6	0.45	mg/Kg	☼	08/10/15 14:33	08/11/15 22:32	10
4-Nitrophenol	3.6	U	19	3.6	mg/Kg	☼	08/10/15 14:33	08/11/15 22:32	10
N-Nitrosodi-n-propylamine	0.35	U	3.6	0.35	mg/Kg	φ.	08/10/15 14:33	08/11/15 22:32	10
N-Nitrosodiphenylamine	0.36	U	3.6	0.36	mg/Kg	☼	08/10/15 14:33	08/11/15 22:32	10
Pentachlorophenol	3.6	U	19	3.6	mg/Kg	☼	08/10/15 14:33	08/11/15 22:32	10
Phenanthrene	0.57	J	3.6	0.30	mg/Kg		08/10/15 14:33	08/11/15 22:32	10
Phenol	0.38	U	3.6	0.38	mg/Kg	☼	08/10/15 14:33	08/11/15 22:32	10
Pyrene	0.70	J	3.6	0.30	mg/Kg	☼	08/10/15 14:33	08/11/15 22:32	10
2,4,5-Trichlorophenol	0.39	U	3.6	0.39	mg/Kg	₩	08/10/15 14:33	08/11/15 22:32	10
2,4,6-Trichlorophenol	0.32	U	3.6	0.32	mg/Kg	₽	08/10/15 14:33	08/11/15 22:32	10

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl		D	41 - 116	08/10/15 14:33	08/11/15 22:32	10
2-Fluorophenol (Surr)	0	D	39 - 114	08/10/15 14:33	08/11/15 22:32	10
Nitrobenzene-d5 (Surr)	0	D	37 - 115	08/10/15 14:33	08/11/15 22:32	10
Phenol-d5 (Surr)	0	D	38 - 122	08/10/15 14:33	08/11/15 22:32	10
Terphenyl-d14 (Surr)	0	D	46 - 126	08/10/15 14:33	08/11/15 22:32	10
2,4,6-Tribromophenol (Surr)	0	D	45 - 129	08/10/15 14:33	08/11/15 22:32	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	6.5		2.0	0.80	mg/Kg	<u> </u>	08/11/15 08:25	08/15/15 04:24	1
Barium	100		1.0	0.16	mg/Kg	₩	08/11/15 08:25	08/15/15 04:24	1
Beryllium	0.32	J	0.40	0.010	mg/Kg	☆	08/11/15 08:25	08/15/15 04:24	1
Cadmium	0.36	J	0.50	0.10	mg/Kg	₩	08/11/15 08:25	08/15/15 04:24	1
Chromium	12		1.0	0.21	mg/Kg	₩	08/11/15 08:25	08/15/15 04:24	1
Copper	57		2.5	0.17	mg/Kg	☆	08/11/15 08:25	08/15/15 04:24	1
Lead	200		1.0	0.34	mg/Kg	₩	08/11/15 08:25	08/15/15 04:24	1
Nickel	4.7		4.0	0.38	mg/Kg	☆	08/11/15 08:25	08/15/15 04:24	1
Selenium	0.97	U	2.5	0.97	mg/Kg	☆	08/11/15 08:25	08/15/15 04:24	1
Silver	0.094	J	1.0	0.060	mg/Kg		08/11/15 08:25	08/15/15 04:24	1
Vanadium	18		1.0	0.10	mg/Kg	≎	08/11/15 08:25	08/15/15 04:24	1
Zinc	110		2.0	0.70	mg/Kg	₩	08/11/15 08:25	08/15/15 04:24	1

Method: 7471B - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.27		0.018	0.0074	mg/Kg		08/16/15 13:43	08/17/15 21:50	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.30	J	0.53	0.22	mg/Kg	<u> </u>	08/17/15 06:30	08/17/15 12:01	1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: GB-18 4-6

Date Collected: 08/06/15 15:15

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-20

Matrix: Solid
Percent Solids: 90.8

Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil F
Acenaphthene	0.45		3.6		mg/Kg	₩		08/11/15 22:55	
Acenaphthylene	0.40		3.6		mg/Kg	Ψ.		08/11/15 22:55	
Acetophenone	0.31		3.6		mg/Kg	<u>.</u> .		08/11/15 22:55	
Anthracene	0.27		3.6		mg/Kg	φ.		08/11/15 22:55	
Atrazine	0.25		3.6		mg/Kg	Ψ.		08/11/15 22:55	
Benzaldehyde	0.64		3.6		mg/Kg			08/11/15 22:55	
Benzo[a]anthracene	0.30		3.6		mg/Kg	∵		08/11/15 22:55	
Benzo[a]pyrene	0.57		3.6		mg/Kg	*		08/11/15 22:55	
Benzo[b]fluoranthene	0.42		3.6		mg/Kg			08/11/15 22:55	
Benzo[g,h,i]perylene	0.24		3.6		mg/Kg	₽.		08/11/15 22:55	
Benzo[k]fluoranthene	0.71		3.6		mg/Kg	₽.		08/11/15 22:55	
1,1'-Biphenyl	19		19		mg/Kg			08/11/15 22:55	
Bis(2-chloroethoxy)methane	0.43		3.6		mg/Kg	:		08/11/15 22:55	
Bis(2-chloroethyl)ether	0.49		3.6		mg/Kg	:		08/11/15 22:55	
ois (2-chloroisopropyl) ether	0.33	U	3.6		mg/Kg		08/10/15 14:33	08/11/15 22:55	
Bis(2-ethylhexyl) phthalate	0.63	JB	3.6	0.32	mg/Kg	≎	08/10/15 14:33	08/11/15 22:55	
4-Bromophenyl phenyl ether	0.40	U	3.6	0.40	mg/Kg	₽	08/10/15 14:33	08/11/15 22:55	
Butyl benzyl phthalate	0.29	U	3.6	0.29	mg/Kg	₩	08/10/15 14:33	08/11/15 22:55	
Caprolactam	0.72	U	3.6	0.72	mg/Kg	₩	08/10/15 14:33	08/11/15 22:55	
Carbazole	0.33	U	3.6	0.33	mg/Kg	₩	08/10/15 14:33	08/11/15 22:55	
l-Chloroaniline	0.57	U	7.2	0.57	mg/Kg	₩	08/10/15 14:33	08/11/15 22:55	
l-Chloro-3-methylphenol	0.38	U	3.6	0.38	mg/Kg	₽	08/10/15 14:33	08/11/15 22:55	
2-Chloronaphthalene	0.38	U	3.6	0.38	mg/Kg	≎	08/10/15 14:33	08/11/15 22:55	
2-Chlorophenol	0.44	U	3.6	0.44	mg/Kg	≎	08/10/15 14:33	08/11/15 22:55	
1-Chlorophenyl phenyl ether	0.48	U	3.6	0.48	mg/Kg	₽	08/10/15 14:33	08/11/15 22:55	
Chrysene	0.23	U	3.6	0.23	mg/Kg	₩	08/10/15 14:33	08/11/15 22:55	
Dibenz(a,h)anthracene	0.43	U	3.6	0.43	mg/Kg	₩	08/10/15 14:33	08/11/15 22:55	
Dibenzofuran	0.36	U	3.6	0.36	mg/Kg		08/10/15 14:33	08/11/15 22:55	
3,3'-Dichlorobenzidine	0.31	U	7.2	0.31	mg/Kg	₩	08/10/15 14:33	08/11/15 22:55	
2,4-Dichlorophenol	0.38	U	3.6	0.38	mg/Kg	₩	08/10/15 14:33	08/11/15 22:55	
Diethyl phthalate	0.41	Ü	3.6	0.41	mg/Kg		08/10/15 14:33	08/11/15 22:55	
2,4-Dimethylphenol	0.48	U	3.6	0.48	mg/Kg	≎	08/10/15 14:33	08/11/15 22:55	
Dimethyl phthalate	0.37	U	3.6	0.37	mg/Kg	₽	08/10/15 14:33	08/11/15 22:55	
Di-n-butyl phthalate	0.33	Ü	3.6		mg/Kg		08/10/15 14:33	08/11/15 22:55	
1,6-Dinitro-2-methylphenol	1.9	U *	19	1.9	mg/Kg	₽	08/10/15 14:33	08/11/15 22:55	
2,4-Dinitrophenol	9.1	U	19		mg/Kg	₩	08/10/15 14:33	08/11/15 22:55	
2,4-Dinitrotoluene	0.54	U	3.6		mg/Kg			08/11/15 22:55	
2,6-Dinitrotoluene	0.46	U	3.6		mg/Kg	₩	08/10/15 14:33	08/11/15 22:55	
Di-n-octyl phthalate	0.32		3.6		mg/Kg	≎		08/11/15 22:55	
Fluoranthene	0.35		3.6		mg/Kg			08/11/15 22:55	
Fluorene	0.40		3.6		mg/Kg	☆		08/11/15 22:55	
Hexachlorobenzene	0.43		3.6		mg/Kg	₩		08/11/15 22:55	
Hexachlorobutadiene	0.40		3.6		mg/Kg			08/11/15 22:55	
Hexachlorocyclopentadiene	0.45		3.6		mg/Kg	☼		08/11/15 22:55	
Hexachloroethane	0.43		3.6		mg/Kg	₩		08/11/15 22:55	
ndeno[1,2,3-cd]pyrene	0.31		3.6		mg/Kg			08/11/15 22:55	
sophorone	0.31		3.6		mg/Kg	₽		08/11/15 22:55	
•	0.30		3.6			**		08/11/15 22:55	
2-Methylnaphthalene 2-Methylphenol	0.42		3.6		mg/Kg mg/Kg			08/11/15 22:55	

TestAmerica Savannah

2

5

9

11

Project/Site: Macon MGP

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

Client Sample ID: GB-18 4-6

Client: Geotechnical & Environmental Consultants

Lab Sample ID: 680-115409-20

© 08/10/15 14:33 08/11/15 22:55

☼ 08/10/15 14:33 08/11/15 22:55

Matrix: Solid Percent Solids: 90.8

Date Collected: 08/06/15 15:15 Date Received: 08/08/15 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.47	U	3.6	0.47	mg/Kg	<u> </u>	08/10/15 14:33	08/11/15 22:55	10
Naphthalene	0.33	U	3.6	0.33	mg/Kg	₩	08/10/15 14:33	08/11/15 22:55	10
2-Nitroaniline	0.49	U	19	0.49	mg/Kg	₽	08/10/15 14:33	08/11/15 22:55	10
3-Nitroaniline	0.50	U	19	0.50	mg/Kg	₩	08/10/15 14:33	08/11/15 22:55	10
4-Nitroaniline	0.54	U	19	0.54	mg/Kg	₩	08/10/15 14:33	08/11/15 22:55	10
Nitrobenzene	0.29	U	3.6	0.29	mg/Kg	₽	08/10/15 14:33	08/11/15 22:55	10
2-Nitrophenol	0.45	U	3.6	0.45	mg/Kg	₩	08/10/15 14:33	08/11/15 22:55	10
4-Nitrophenol	3.6	U	19	3.6	mg/Kg	☼	08/10/15 14:33	08/11/15 22:55	10
N-Nitrosodi-n-propylamine	0.35	U	3.6	0.35	mg/Kg	φ.	08/10/15 14:33	08/11/15 22:55	10
N-Nitrosodiphenylamine	0.36	U	3.6	0.36	mg/Kg	☼	08/10/15 14:33	08/11/15 22:55	10
Pentachlorophenol	3.6	U	19	3.6	mg/Kg	☼	08/10/15 14:33	08/11/15 22:55	10
Phenanthrene	0.30	U	3.6	0.30	mg/Kg	φ.	08/10/15 14:33	08/11/15 22:55	10
Phenol	0.37	U	3.6	0.37	mg/Kg	₩	08/10/15 14:33	08/11/15 22:55	10
Pyrene	0.30	U	3.6	0.30	mg/Kg	≎	08/10/15 14:33	08/11/15 22:55	10

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl		D	41 - 116	08/10/15 14:33	08/11/15 22:55	10
2-Fluorophenol (Surr)	0	D	39 - 114	08/10/15 14:33	08/11/15 22:55	10
Nitrobenzene-d5 (Surr)	0	D	37 - 115	08/10/15 14:33	08/11/15 22:55	10
Phenol-d5 (Surr)	0	D	38 - 122	08/10/15 14:33	08/11/15 22:55	10
Terphenyl-d14 (Surr)	0	D	46 - 126	08/10/15 14:33	08/11/15 22:55	10
2,4,6-Tribromophenol (Surr)	0	D	45 - 129	08/10/15 14:33	08/11/15 22:55	10

3.6

3.6

0.38 mg/Kg

0.32 mg/Kg

0.38 U

0.32 U

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	6.0		1.9	0.76	mg/Kg	<u> </u>	08/11/15 08:25	08/15/15 03:38	1
Barium	220		0.95	0.15	mg/Kg	₩	08/11/15 08:25	08/15/15 03:38	1
Beryllium	0.26	J	0.38	0.0095	mg/Kg	☆	08/11/15 08:25	08/15/15 03:38	1
Cadmium	0.15	J	0.47	0.095	mg/Kg	₩	08/11/15 08:25	08/15/15 03:38	1
Chromium	74	F2	0.95	0.20	mg/Kg	₩	08/11/15 08:25	08/15/15 03:38	1
Copper	61		2.4	0.16	mg/Kg	☆	08/11/15 08:25	08/15/15 03:38	1
Lead	250		0.95	0.32	mg/Kg	₩	08/11/15 08:25	08/15/15 03:38	1
Nickel	12	F1	3.8	0.36	mg/Kg	☆	08/11/15 08:25	08/15/15 03:38	1
Selenium	0.92	U	2.4	0.92	mg/Kg	≎	08/11/15 08:25	08/15/15 03:38	1
Silver	0.25	J	0.95	0.057	mg/Kg		08/11/15 08:25	08/15/15 03:38	1
Vanadium	47		0.95	0.095	mg/Kg	≎	08/11/15 08:25	08/15/15 03:38	1
Zinc	270		1.9	0.66	mg/Kg	₩	08/11/15 08:25	08/15/15 03:38	1

Method: 7471B - Mercury (CVAA) Analyte Mercury	Result 0.27	Qualifier		MDL 0.0082		D <u>₩</u>	Prepared 08/16/15 13:43	Analyzed 08/17/15 21:53	Dil Fac
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.78		0.54	0.23	mg/Kg	<u></u>	08/17/15 06:30	08/17/15 12:02	1

10

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: GB-3 8-10

Date Collected: 08/07/15 15:36 Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-21

Matrix: Solid	
Percent Solids: 63.3	

Method: 8270D - Semivolatile	_				11:4	_	D	A a l	D" -
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.064		0.52	0.064	0 0	— <u>∓</u>	08/10/15 16:16	08/12/15 16:15	
Acenaphthylene	0.056		0.52		mg/Kg	Ψ.	08/10/15 16:16	08/12/15 16:15	
Acetophenone	0.044		0.52		mg/Kg	<u></u> .	08/10/15 16:16	08/12/15 16:15	
Anthracene	0.039		0.52		mg/Kg	☆	08/10/15 16:16	08/12/15 16:15	
Atrazine	0.036		0.52		mg/Kg	₽.	08/10/15 16:16	08/12/15 16:15	
Benzaldehyde	0.091		0.52		mg/Kg		08/10/15 16:16	08/12/15 16:15	
Benzo[a]anthracene	0.15	J	0.52		mg/Kg	₩	08/10/15 16:16	08/12/15 16:15	
Benzo[a]pyrene	0.12	J	0.52	0.081	mg/Kg	☼	08/10/15 16:16	08/12/15 16:15	
Benzo[b]fluoranthene	0.27	J	0.52	0.059	mg/Kg	☼	08/10/15 16:16	08/12/15 16:15	
Benzo[g,h,i]perylene	0.064	J	0.52	0.034	mg/Kg	₽	08/10/15 16:16	08/12/15 16:15	
Benzo[k]fluoranthene	0.13	J	0.52	0.10	mg/Kg	☼	08/10/15 16:16	08/12/15 16:15	
1,1'-Biphenyl	2.7	U	2.7	2.7	mg/Kg	☼	08/10/15 16:16	08/12/15 16:15	
Bis(2-chloroethoxy)methane	0.061	U	0.52	0.061	mg/Kg	₽	08/10/15 16:16	08/12/15 16:15	
Bis(2-chloroethyl)ether	0.070	U	0.52	0.070	mg/Kg	₽	08/10/15 16:16	08/12/15 16:15	
ois (2-chloroisopropyl) ether	0.047	U	0.52	0.047		≎	08/10/15 16:16	08/12/15 16:15	
Bis(2-ethylhexyl) phthalate	0.42	JB	0.52	0.045	mg/Kg	₽	08/10/15 16:16	08/12/15 16:15	
1-Bromophenyl phenyl ether	0.056	U	0.52	0.056	mg/Kg	☼	08/10/15 16:16	08/12/15 16:15	
Butyl benzyl phthalate	0.041	U	0.52	0.041		≎	08/10/15 16:16	08/12/15 16:15	
Caprolactam	0.10	U	0.52	0.10	mg/Kg		08/10/15 16:16	08/12/15 16:15	
Carbazole	0.047		0.52	0.047		₩		08/12/15 16:15	
l-Chloroaniline	0.081		1.0	0.081		☼		08/12/15 16:15	
-Chloro-3-methylphenol	0.055		0.52		mg/Kg			08/12/15 16:15	
2-Chloronaphthalene	0.055		0.52		mg/Kg	₩		08/12/15 16:15	
2-Chlorophenol	0.062		0.52		mg/Kg	₩	08/10/15 16:16		
I-Chlorophenyl phenyl ether	0.069		0.52	0.069			08/10/15 16:16	08/12/15 16:15	
, , , ,	0.003		0.52	0.033	0 0	₽	08/10/15 16:16	08/12/15 16:15	
Chrysene Dibenz(a,h)anthracene	0.061		0.52	0.061		₽	08/10/15 16:16	08/12/15 16:15	
	0.051		0.52				08/10/15 16:16	08/12/15 16:15	
Dibenzofuran			1.0		mg/Kg	~ ⇔			
3,3'-Dichlorobenzidine	0.044			0.044	0 0	☆	08/10/15 16:16	08/12/15 16:15	
2,4-Dichlorophenol	0.055		0.52		mg/Kg			08/12/15 16:15	
Diethyl phthalate	0.058		0.52		mg/Kg	☆		08/12/15 16:15	
2,4-Dimethylphenol	0.069		0.52	0.069		Ψ.			
Dimethyl phthalate	0.053		0.52		mg/Kg			08/12/15 16:15	
Di-n-butyl phthalate	0.047		0.52		mg/Kg	₩	08/10/15 16:16	08/12/15 16:15	
1,6-Dinitro-2-methylphenol	0.27		2.7		mg/Kg	☆		08/12/15 16:15	
2,4-Dinitrophenol	1.3		2.7		mg/Kg	☆		08/12/15 16:15	
2,4-Dinitrotoluene	0.076		0.52		mg/Kg	₩		08/12/15 16:15	
2,6-Dinitrotoluene	0.066	U	0.52	0.066	mg/Kg	☼		08/12/15 16:15	
Di-n-octyl phthalate	0.045	U	0.52		mg/Kg	☼	08/10/15 16:16	08/12/15 16:15	
luoranthene	0.067	J	0.52	0.050	mg/Kg	₽	08/10/15 16:16	08/12/15 16:15	
Fluorene	0.056	U	0.52	0.056	mg/Kg	☼	08/10/15 16:16	08/12/15 16:15	
Hexachlorobenzene	0.061	U	0.52	0.061	mg/Kg	≎	08/10/15 16:16	08/12/15 16:15	
Hexachlorobutadiene	0.056	U	0.52	0.056	mg/Kg	₽	08/10/15 16:16	08/12/15 16:15	
Hexachlorocyclopentadiene	0.064	U	0.52	0.064	mg/Kg	≎	08/10/15 16:16	08/12/15 16:15	
Hexachloroethane	0.044		0.52		mg/Kg	₩	08/10/15 16:16	08/12/15 16:15	
ndeno[1,2,3-cd]pyrene	0.060		0.52		mg/Kg		08/10/15 16:16	08/12/15 16:15	
sophorone	0.052		0.52		mg/Kg	≎		08/12/15 16:15	
2-Methylnaphthalene	0.059		0.52		mg/Kg	₽		08/12/15 16:15	
2-Methylphenol	0.042		0.52		mg/Kg			08/12/15 16:15	

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

Cyanide, Total

Client Sample ID: GB-3 8-10 Lab Sample ID: 680-115409-21

Date Collected: 08/07/15 15:36 **Matrix: Solid** Date Received: 08/08/15 10:00 Percent Solids: 63.3

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
3 & 4 Methylphenol	0.067	U	0.52	0.067	mg/Kg	₩	08/10/15 16:16	08/12/15 16:15	
Naphthalene	0.047	U	0.52	0.047	mg/Kg	₩	08/10/15 16:16	08/12/15 16:15	
2-Nitroaniline	0.070	U	2.7	0.070	mg/Kg	₽	08/10/15 16:16	08/12/15 16:15	
3-Nitroaniline	0.072	U	2.7	0.072	mg/Kg	₩	08/10/15 16:16	08/12/15 16:15	
4-Nitroaniline	0.076	U	2.7	0.076	mg/Kg	₩	08/10/15 16:16	08/12/15 16:15	
Nitrobenzene	0.041	U	0.52	0.041	mg/Kg	₩	08/10/15 16:16	08/12/15 16:15	
2-Nitrophenol	0.064	U	0.52	0.064	mg/Kg	☼	08/10/15 16:16	08/12/15 16:15	
4-Nitrophenol	0.52	U	2.7	0.52	mg/Kg	☼	08/10/15 16:16	08/12/15 16:15	
N-Nitrosodi-n-propylamine	0.050	U	0.52	0.050	mg/Kg		08/10/15 16:16	08/12/15 16:15	
N-Nitrosodiphenylamine	0.052	U	0.52	0.052	mg/Kg	₩	08/10/15 16:16	08/12/15 16:15	
Pentachlorophenol	0.52	U *	2.7	0.52	mg/Kg	₩	08/10/15 16:16	08/12/15 16:15	
Phenanthrene	0.042		0.52	0.042	mg/Kg		08/10/15 16:16	08/12/15 16:15	
Phenol	0.053	U	0.52		mg/Kg	₩	08/10/15 16:16	08/12/15 16:15	
Pyrene	0.065	J	0.52	0.042	mg/Kg	₩	08/10/15 16:16	08/12/15 16:15	
2,4,5-Trichlorophenol	0.055		0.52	0.055	mg/Kg		08/10/15 16:16	08/12/15 16:15	
2,4,6-Trichlorophenol	0.045	U	0.52		mg/Kg	☼	08/10/15 16:16	08/12/15 16:15	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	77		41 - 116				08/10/15 16:16	08/12/15 16:15	
2-Fluorophenol (Surr)	56		39 - 114				08/10/15 16:16	08/12/15 16:15	
Nitrobenzene-d5 (Surr)	51		37 - 115				08/10/15 16:16	08/12/15 16:15	
Phenol-d5 (Surr)	60		38 - 122				08/10/15 16:16	08/12/15 16:15	
Terphenyl-d14 (Surr)	74		46 - 126				08/10/15 16:16	08/12/15 16:15	
2,4,6-Tribromophenol (Surr)	77		45 - 129				08/10/15 16:16	08/12/15 16:15	
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	5.3		2.8	1.1	mg/Kg	<u> </u>	08/11/15 08:25	08/15/15 04:29	
Barium	53		1.4	0.22	mg/Kg	☼	08/11/15 08:25	08/15/15 04:29	
Beryllium	0.40	J	0.55	0.014	mg/Kg	☼	08/11/15 08:25	08/15/15 04:29	
Cadmium	0.14	U	0.69	0.14	mg/Kg	₽	08/11/15 08:25	08/15/15 04:29	
Chromium	29		1.4	0.29	mg/Kg	₩	08/11/15 08:25	08/15/15 04:29	
Copper	10		3.5	0.24	mg/Kg	₩	08/11/15 08:25	08/15/15 04:29	
Lead	42		1.4		mg/Kg		08/11/15 08:25	08/15/15 04:29	
Nickel	3.9	J	5.5		mg/Kg	₽	08/11/15 08:25	08/15/15 04:29	
Selenium	1.3		3.5		mg/Kg	₩		08/15/15 04:29	
Silver	0.083		1.4		mg/Kg	· · · · · · · · · · · · · · · · · · ·		08/15/15 04:29	
Vanadium	55	-	1.4		mg/Kg	₩		08/15/15 04:29	
variadium	35		1.7	0.14	9/13/9				

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Method: 7471B - Mercury (CVAA) Analyte Mercury	Result	Qualifier	RL 0.029		Unit mg/Kg	D 变	Prepared 08/16/15 13:43	Analyzed 08/17/15 21:56	Dil Fac	
Zinc	59		2.0	0.97	mg/ k g	**	06/11/15 06.25	06/15/15 04.29	ı	

0.78

0.33 U

0.07 ma/Ka

0.33 mg/Kg

TestAmerica Savannah

00/11/15 00:25 00/15/15 01:20

 ☼
 08/17/15 08:00
 08/17/15 12:05

Client: Geotechnical & Environmental Consultants

Client Sample ID: GB-3 13-15

Date Collected: 08/07/15 15:42 Date Received: 08/08/15 10:00

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-22

	Matri	x: Solid	
	Percent Soli	ds: 80.7	
Dramarad	Amalumad	Dil Fac	5

Method: 8270D - Semivolatile Analyte	Result	Qualifier	ŘL	MDL		D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.051		0.41	0.051		<u>₩</u>	08/10/15 16:16		
Acenaphthylene	0.045		0.41		mg/Kg	.;.	08/10/15 16:16		
Acetophenone	0.035		0.41		mg/Kg			08/12/15 16:42	
Anthracene	0.031		0.41		mg/Kg	₩		08/12/15 16:42	
Atrazine	0.029		0.41	0.029	mg/Kg	₩.		08/12/15 16:42	
Benzaldehyde	0.072		0.41		mg/Kg	, .		08/12/15 16:42	
Benzo[a]anthracene	0.034		0.41		mg/Kg	**		08/12/15 16:42	
Benzo[a]pyrene	0.065		0.41	0.065	mg/Kg	*		08/12/15 16:42	
Benzo[b]fluoranthene	0.047	U	0.41	0.047			08/10/15 16:16	08/12/15 16:42	
Benzo[g,h,i]perylene	0.027	U	0.41	0.027	mg/Kg	₩	08/10/15 16:16	08/12/15 16:42	
Benzo[k]fluoranthene	0.081	U	0.41	0.081	mg/Kg	₩	08/10/15 16:16	08/12/15 16:42	
1,1'-Biphenyl	2.1	U	2.1	2.1	mg/Kg	₩	08/10/15 16:16	08/12/15 16:42	
Bis(2-chloroethoxy)methane	0.048	U	0.41	0.048	mg/Kg	₽	08/10/15 16:16	08/12/15 16:42	
Bis(2-chloroethyl)ether	0.056	U	0.41	0.056	mg/Kg	₽	08/10/15 16:16	08/12/15 16:42	
bis (2-chloroisopropyl) ether	0.037	U	0.41	0.037	mg/Kg	₽	08/10/15 16:16	08/12/15 16:42	
Bis(2-ethylhexyl) phthalate	0.29	JB	0.41	0.036	mg/Kg	₩	08/10/15 16:16	08/12/15 16:42	
4-Bromophenyl phenyl ether	0.045	U	0.41	0.045	mg/Kg	₩	08/10/15 16:16	08/12/15 16:42	
Butyl benzyl phthalate	0.032	U	0.41	0.032	mg/Kg	₩	08/10/15 16:16	08/12/15 16:42	
Caprolactam	0.082	U	0.41	0.082	mg/Kg		08/10/15 16:16	08/12/15 16:42	
Carbazole	0.037	U	0.41	0.037	mg/Kg	₽	08/10/15 16:16	08/12/15 16:42	
4-Chloroaniline	0.065	U	0.82	0.065	mg/Kg	☼	08/10/15 16:16	08/12/15 16:42	
4-Chloro-3-methylphenol	0.043	Ü	0.41	0.043	mg/Kg	.	08/10/15 16:16	08/12/15 16:42	
2-Chloronaphthalene	0.043	U	0.41	0.043	mg/Kg	₩	08/10/15 16:16	08/12/15 16:42	
2-Chlorophenol	0.050	U	0.41	0.050	mg/Kg	₩	08/10/15 16:16	08/12/15 16:42	
4-Chlorophenyl phenyl ether	0.055	U	0.41	0.055	mg/Kg		08/10/15 16:16	08/12/15 16:42	
Chrysene	0.026	U	0.41	0.026	mg/Kg	₽	08/10/15 16:16	08/12/15 16:42	
Dibenz(a,h)anthracene	0.048	U	0.41		mg/Kg	₩	08/10/15 16:16	08/12/15 16:42	
Dibenzofuran	0.041	U	0.41	0.041			08/10/15 16:16	08/12/15 16:42	
3,3'-Dichlorobenzidine	0.035	U	0.82	0.035	mg/Kg	₩	08/10/15 16:16	08/12/15 16:42	
2,4-Dichlorophenol	0.043	U	0.41		mg/Kg	₩	08/10/15 16:16	08/12/15 16:42	
Diethyl phthalate	0.046	U	0.41		mg/Kg		08/10/15 16:16	08/12/15 16:42	
2,4-Dimethylphenol	0.055		0.41		mg/Kg	₩	08/10/15 16:16	08/12/15 16:42	
Dimethyl phthalate	0.042		0.41		mg/Kg	₽		08/12/15 16:42	
Di-n-butyl phthalate	0.037		0.41		mg/Kg			08/12/15 16:42	
4,6-Dinitro-2-methylphenol	0.21		2.1		mg/Kg	₽		08/12/15 16:42	
2,4-Dinitrophenol	1.0		2.1		mg/Kg	≎		08/12/15 16:42	
2,4-Dinitrotoluene	0.061		0.41		mg/Kg	 .		08/12/15 16:42	
2,6-Dinitrotoluene	0.052		0.41		mg/Kg	≎		08/12/15 16:42	
Di-n-octyl phthalate	0.036		0.41		mg/Kg	≎		08/12/15 16:42	
Fluoranthene	0.045		0.41		mg/Kg			08/12/15 16:42	
Fluorene	0.045		0.41		mg/Kg	₩		08/12/15 16:42	
Hexachlorobenzene	0.048		0.41		mg/Kg	±		08/12/15 16:42	
Hexachlorobutadiene	0.045		0.41		mg/Kg			08/12/15 16:42	
Hexachlorocyclopentadiene	0.045		0.41		mg/Kg	Ť.		08/12/15 16:42	
Hexachloroethane	0.031		0.41		mg/Kg	Ť ř		08/12/15 16:42	
						· · · · · · ›			
Indeno[1,2,3-cd]pyrene	0.035		0.41		mg/Kg	*		08/12/15 16:42	
Isophorone	0.041		0.41		mg/Kg	:D:		08/12/15 16:42	
2-Methylnaphthalene	0.047	U	0.41	0.047	mg/Kg	-D-	U8/1U/15 16:16	08/12/15 16:42	

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

Client Sample ID: GB-3 13-15

Lab Sample ID: 680-115409-22 Date Collected: 08/07/15 15:42 **Matrix: Solid**

Percent Solids: 80.7

Date Received: 08/08/15 10:00 Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.053	U	0.41	0.053	mg/Kg	<u> </u>	08/10/15 16:16	08/12/15 16:42	
Naphthalene	0.037	U	0.41	0.037	mg/Kg	₽	08/10/15 16:16	08/12/15 16:42	1
2-Nitroaniline	0.056	U	2.1	0.056	mg/Kg	₽	08/10/15 16:16	08/12/15 16:42	
3-Nitroaniline	0.057	U	2.1	0.057	mg/Kg	☼	08/10/15 16:16	08/12/15 16:42	1
4-Nitroaniline	0.061	U	2.1	0.061	mg/Kg	☼	08/10/15 16:16	08/12/15 16:42	
Nitrobenzene	0.032	U	0.41	0.032	mg/Kg	₽	08/10/15 16:16	08/12/15 16:42	,
2-Nitrophenol	0.051	U	0.41	0.051	mg/Kg	☼	08/10/15 16:16	08/12/15 16:42	
4-Nitrophenol	0.41	U	2.1	0.41	mg/Kg	☼	08/10/15 16:16	08/12/15 16:42	
N-Nitrosodi-n-propylamine	0.040	U	0.41	0.040	mg/Kg	₽	08/10/15 16:16	08/12/15 16:42	
N-Nitrosodiphenylamine	0.041	U	0.41	0.041	mg/Kg	☼	08/10/15 16:16	08/12/15 16:42	
Pentachlorophenol	0.41	U *	2.1	0.41	mg/Kg	☼	08/10/15 16:16	08/12/15 16:42	
Phenanthrene	0.075	J	0.41	0.034	mg/Kg	₽	08/10/15 16:16	08/12/15 16:42	
Phenol	0.042	U	0.41	0.042	mg/Kg	☼	08/10/15 16:16	08/12/15 16:42	
Pyrene	0.035	J	0.41	0.034	mg/Kg	☼	08/10/15 16:16	08/12/15 16:42	
2,4,5-Trichlorophenol	0.043	U	0.41	0.043	mg/Kg	₽	08/10/15 16:16	08/12/15 16:42	
2 4 6-Trichlorophenol	0.036	U	0.41	0.036	ma/Ka	☆	08/10/15 16:16	08/12/15 16:42	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	84	41 - 116	08/10/15 16:16	08/12/15 16:42	1
2-Fluorophenol (Surr)	62	39 - 114	08/10/15 16:16	08/12/15 16:42	1
Nitrobenzene-d5 (Surr)	53	37 - 115	08/10/15 16:16	08/12/15 16:42	1
Phenol-d5 (Surr)	65	38 - 122	08/10/15 16:16	08/12/15 16:42	1
Terphenyl-d14 (Surr)	77	46 - 126	08/10/15 16:16	08/12/15 16:42	1
2,4,6-Tribromophenol (Surr)	86	45 - 129	08/10/15 16:16	08/12/15 16:42	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.4		2.2	0.86	mg/Kg	<u> </u>	08/11/15 08:25	08/15/15 04:33	1
Barium	39		1.1	0.17	mg/Kg	☼	08/11/15 08:25	08/15/15 04:33	1
Beryllium	0.32	J	0.43	0.011	mg/Kg	☼	08/11/15 08:25	08/15/15 04:33	1
Cadmium	0.11	U	0.54	0.11	mg/Kg	₩	08/11/15 08:25	08/15/15 04:33	1
Chromium	20		1.1	0.23	mg/Kg	☼	08/11/15 08:25	08/15/15 04:33	1
Copper	6.7		2.7	0.18	mg/Kg	☼	08/11/15 08:25	08/15/15 04:33	1
Lead	14		1.1	0.37	mg/Kg	φ.	08/11/15 08:25	08/15/15 04:33	1
Nickel	3.0	J	4.3	0.41	mg/Kg	☼	08/11/15 08:25	08/15/15 04:33	1
Selenium	1.0	U	2.7	1.0	mg/Kg	☼	08/11/15 08:25	08/15/15 04:33	1
Silver	0.065	U	1.1	0.065	mg/Kg	☼	08/11/15 08:25	08/15/15 04:33	1
Vanadium	43		1.1	0.11	mg/Kg	☼	08/11/15 08:25	08/15/15 04:33	1
Zinc	26		2.2	0.75	mg/Kg	☼	08/11/15 08:25	08/15/15 04:33	1

Method: 7471B - Mercury (CVAA) Analyte Mercury	Result	Qualifier	RL 0.024	MDL 0.0097		D	Prepared 08/16/15 13:43	Analyzed 08/17/15 22:05	Dil Fac
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.25	U	0.59	0.25	mg/Kg		08/17/15 08:00	08/17/15 12:08	1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: GB-5 8-10

Date Collected: 08/07/15 13:45

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-23

Matrix: Solid

Percent Solids: 75.9

Method: 8260B - Volatile O Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00072	U	0.0049	0.00072	mg/Kg	<u> </u>	08/10/15 10:33	08/11/15 20:21	1
Carbon disulfide	0.0011	U	0.0049	0.0011	mg/Kg	☼	08/10/15 10:33	08/11/15 20:21	1
Ethylbenzene	0.0013	U	0.0049	0.0013	mg/Kg	≎	08/10/15 10:33	08/11/15 20:21	1
Methylene Chloride	0.00096	U	0.0049	0.00096	mg/Kg	☆	08/10/15 10:33	08/11/15 20:21	1
Toluene	0.00083	U	0.0049	0.00083	mg/Kg	₩	08/10/15 10:33	08/11/15 20:21	1
Xylenes, Total	0.0011	U	0.0098	0.0011	mg/Kg	₩	08/10/15 10:33	08/11/15 20:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84		65 - 130				08/10/15 10:33	08/11/15 20:21	1
Dibromofluoromethane (Surr)	89		65 - 130				08/10/15 10:33	08/11/15 20:21	1
1,2-Dichloroethane-d4 (Surr)	88		65 - 130				08/10/15 10:33	08/11/15 20:21	1
Toluene-d8 (Surr)	92		65 - 130				08/10/15 10:33	08/11/15 20:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.054	U	0.43	0.054	mg/Kg	<u> </u>	08/10/15 16:16	08/12/15 17:08	1
Acenaphthylene	0.047	U	0.43	0.047	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Acetophenone	0.037	U	0.43	0.037	mg/Kg	☼	08/10/15 16:16	08/12/15 17:08	1
Anthracene	0.033	U	0.43	0.033	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Atrazine	0.030	U	0.43	0.030	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Benzaldehyde	0.076	U	0.43	0.076	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Benzo[a]anthracene	0.035	U	0.43	0.035	mg/Kg	₽	08/10/15 16:16	08/12/15 17:08	1
Benzo[a]pyrene	0.068	U	0.43	0.068	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Benzo[b]fluoranthene	0.050	U	0.43	0.050	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Benzo[g,h,i]perylene	0.029	U	0.43	0.029	mg/Kg	₩.	08/10/15 16:16	08/12/15 17:08	1
Benzo[k]fluoranthene	0.085	U	0.43	0.085	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
1,1'-Biphenyl	2.2	U	2.2	2.2	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Bis(2-chloroethoxy)methane	0.051	U	0.43	0.051	mg/Kg	₩.	08/10/15 16:16	08/12/15 17:08	1
Bis(2-chloroethyl)ether	0.059	U	0.43	0.059	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
bis (2-chloroisopropyl) ether	0.039	U	0.43	0.039	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Bis(2-ethylhexyl) phthalate	0.50	В	0.43	0.038	mg/Kg	₩.	08/10/15 16:16	08/12/15 17:08	1
4-Bromophenyl phenyl ether	0.047	U	0.43	0.047	mg/Kg	☼	08/10/15 16:16	08/12/15 17:08	1
Butyl benzyl phthalate	0.034	U	0.43	0.034	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Caprolactam	0.086	Ü	0.43	0.086	mg/Kg		08/10/15 16:16	08/12/15 17:08	1
Carbazole	0.039	U	0.43	0.039	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
4-Chloroaniline	0.068	U	0.86	0.068	mg/Kg	☼	08/10/15 16:16	08/12/15 17:08	1
4-Chloro-3-methylphenol	0.046	U	0.43	0.046	mg/Kg	₩.	08/10/15 16:16	08/12/15 17:08	1
2-Chloronaphthalene	0.046	U	0.43	0.046	mg/Kg	☼	08/10/15 16:16	08/12/15 17:08	1
2-Chlorophenol	0.052	U	0.43	0.052	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
4-Chlorophenyl phenyl ether	0.058	Ü	0.43	0.058	mg/Kg	₽	08/10/15 16:16	08/12/15 17:08	1
Chrysene	0.029	J	0.43	0.027	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Dibenz(a,h)anthracene	0.051	U	0.43	0.051	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Dibenzofuran	0.043	U	0.43	0.043	mg/Kg		08/10/15 16:16	08/12/15 17:08	1
3,3'-Dichlorobenzidine	0.037	U	0.86	0.037	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
2,4-Dichlorophenol	0.046	U	0.43	0.046	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Diethyl phthalate	0.048	U	0.43	0.048	mg/Kg		08/10/15 16:16	08/12/15 17:08	1
2,4-Dimethylphenol	0.058	U	0.43	0.058	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Dimethyl phthalate	0.045	U	0.43	0.045	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Di-n-butyl phthalate	0.039	U	0.43		mg/Kg	φ.	08/10/15 16:16	08/12/15 17:08	1
4,6-Dinitro-2-methylphenol	0.22	U *	2.2		mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1

TestAmerica Savannah

Page 52 of 127

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: GB-5 8-10

Date Collected: 08/07/15 13:45

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-23

Matrix: Solid

Percent Solids: 75.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dinitrophenol	1.1	U	2.2	1.1	mg/Kg	<u>₩</u>	08/10/15 16:16	08/12/15 17:08	1
2,4-Dinitrotoluene	0.064	U	0.43	0.064	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
2,6-Dinitrotoluene	0.055	U	0.43	0.055	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Di-n-octyl phthalate	0.038	U	0.43	0.038	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Fluoranthene	0.054	J	0.43	0.042	mg/Kg	₽	08/10/15 16:16	08/12/15 17:08	1
Fluorene	0.047	U	0.43	0.047	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Hexachlorobenzene	0.051	U	0.43	0.051	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Hexachlorobutadiene	0.047	U	0.43	0.047	mg/Kg	₽	08/10/15 16:16	08/12/15 17:08	1
Hexachlorocyclopentadiene	0.054	U	0.43	0.054	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Hexachloroethane	0.037	U	0.43	0.037	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Indeno[1,2,3-cd]pyrene	0.037	U	0.43	0.037	mg/Kg		08/10/15 16:16	08/12/15 17:08	1
Isophorone	0.043	U	0.43	0.043	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
2-Methylnaphthalene	0.050	U	0.43	0.050	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
2-Methylphenol	0.035	U	0.43	0.035	mg/Kg	₩.	08/10/15 16:16	08/12/15 17:08	1
3 & 4 Methylphenol	0.056	U	0.43	0.056	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Naphthalene	0.039	U	0.43	0.039	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
2-Nitroaniline	0.059	U	2.2	0.059	mg/Kg	₩.	08/10/15 16:16	08/12/15 17:08	1
3-Nitroaniline	0.060	U	2.2	0.060	mg/Kg	☼	08/10/15 16:16	08/12/15 17:08	1
4-Nitroaniline	0.064	U	2.2	0.064	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
Nitrobenzene	0.034	U	0.43	0.034	mg/Kg	₽	08/10/15 16:16	08/12/15 17:08	1
2-Nitrophenol	0.054	U	0.43	0.054	mg/Kg	☼	08/10/15 16:16	08/12/15 17:08	1
4-Nitrophenol	0.43	U	2.2	0.43	mg/Kg	₩	08/10/15 16:16	08/12/15 17:08	1
N-Nitrosodi-n-propylamine	0.042	U	0.43	0.042	mg/Kg	₽	08/10/15 16:16	08/12/15 17:08	1
N-Nitrosodiphenylamine	0.043	U	0.43	0.043	mg/Kg	☼	08/10/15 16:16	08/12/15 17:08	1
Pentachlorophenol	0.43	U *	2.2	0.43	mg/Kg	☼	08/10/15 16:16	08/12/15 17:08	1
Phenanthrene	0.069	J	0.43	0.035	mg/Kg	₩.	08/10/15 16:16	08/12/15 17:08	1
Phenol	0.045	U	0.43	0.045	mg/Kg	☼	08/10/15 16:16	08/12/15 17:08	1
Pyrene	0.044	J	0.43	0.035	mg/Kg	☼	08/10/15 16:16	08/12/15 17:08	1
2,4,5-Trichlorophenol	0.046	Ü	0.43	0.046	mg/Kg		08/10/15 16:16	08/12/15 17:08	1
2,4,6-Trichlorophenol	0.038	U	0.43		mg/Kg	☆	08/10/15 16:16	08/12/15 17:08	1

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	66	41 - 116	08/10/15 16:16	08/12/15 17:08	1
2-Fluorophenol (Surr)	52	39 - 114	08/10/15 16:16	08/12/15 17:08	1
Nitrobenzene-d5 (Surr)	43	37 - 115	08/10/15 16:16	08/12/15 17:08	1
Phenol-d5 (Surr)	54	38 - 122	08/10/15 16:16	08/12/15 17:08	1
Terphenyl-d14 (Surr)	61	46 - 126	08/10/15 16:16	08/12/15 17:08	1
2,4,6-Tribromophenol (S	Surr) 67	45 - 129	08/10/15 16:16	08/12/15 17:08	1

Method: 6010C - Metals Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	6.4		2.4	0.95	mg/Kg	\	08/11/15 08:25	08/15/15 04:38	1
Barium	84		1.2	0.19	mg/Kg	☼	08/11/15 08:25	08/15/15 04:38	1
Beryllium	0.40	J	0.47	0.012	mg/Kg	☼	08/11/15 08:25	08/15/15 04:38	1
Cadmium	0.12	U	0.59	0.12	mg/Kg		08/11/15 08:25	08/15/15 04:38	1
Chromium	19		1.2	0.25	mg/Kg	☼	08/11/15 08:25	08/15/15 04:38	1
Copper	190		3.0	0.20	mg/Kg	☼	08/11/15 08:25	08/15/15 04:38	1
Lead	100		1.2	0.40	mg/Kg		08/11/15 08:25	08/15/15 04:38	1
Nickel	9.2		4.7	0.45	mg/Kg	☼	08/11/15 08:25	08/15/15 04:38	1
Selenium	1.2	U	3.0	1.2	mg/Kg	₽	08/11/15 08:25	08/15/15 04:38	1

TestAmerica Savannah

2

6

8

46

4 4

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: GB-5 8-10

Date Collected: 08/07/15 13:45

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-23

Matrix: Solid

Percent Solids: 75.9

Method: 6010C - Metals (ICP) (Co) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	0.17	J	1.2	0.071	mg/Kg	<u></u>	08/11/15 08:25	08/15/15 04:38	1
Vanadium	35		1.2	0.12	mg/Kg	ф.	08/11/15 08:25	08/15/15 04:38	1
Zinc	83		2.4	0.83	mg/Kg	₽	08/11/15 08:25	08/15/15 04:38	1
Method: 7471B - Mercury (CVAA	١								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.18		0.024	0.0096	mg/Kg	\	08/16/15 13:43	08/17/15 22:08	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cvanide, Total	0.48	J -	0.63	0.26	mg/Kg	<u></u>	08/17/15 08:00	08/17/15 12:11	

7

8

9

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: GB-7 8-10

Date Collected: 08/07/15 09:54

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-24

Matrix: Solid
Percent Solids: 80.0

Method: 8260B - Volatile O Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00074	U	0.0050	0.00074	mg/Kg	<u> </u>	08/10/15 10:33	08/11/15 20:42	1
Carbon disulfide	0.0011	U	0.0050	0.0011	mg/Kg	☼	08/10/15 10:33	08/11/15 20:42	1
Ethylbenzene	0.0013	U	0.0050	0.0013	mg/Kg	☼	08/10/15 10:33	08/11/15 20:42	1
Methylene Chloride	0.00099	U	0.0050	0.00099	mg/Kg	₽	08/10/15 10:33	08/11/15 20:42	1
Toluene	0.00085	U	0.0050	0.00085	mg/Kg	₽	08/10/15 10:33	08/11/15 20:42	1
Xylenes, Total	0.0011	U	0.010	0.0011	mg/Kg	≎	08/10/15 10:33	08/11/15 20:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84		65 - 130				08/10/15 10:33	08/11/15 20:42	1
Dibromofluoromethane (Surr)	89		65 - 130				08/10/15 10:33	08/11/15 20:42	1
1,2-Dichloroethane-d4 (Surr)	92		65 - 130				08/10/15 10:33	08/11/15 20:42	1
Toluene-d8 (Surr)	91		65 - 130				08/10/15 10:33	08/11/15 20:42	1

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.051	U	0.41	0.051	mg/Kg	<u>₩</u>	08/10/15 16:16	08/12/15 17:36	1
Acenaphthylene	0.045	U	0.41	0.045	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Acetophenone	0.035	U	0.41	0.035	mg/Kg	☼	08/10/15 16:16	08/12/15 17:36	1
Anthracene	0.031	U	0.41	0.031	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Atrazine	0.029	U	0.41	0.029	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Benzaldehyde	0.072	U	0.41	0.072	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Benzo[a]anthracene	0.034	U	0.41	0.034	mg/Kg	₽	08/10/15 16:16	08/12/15 17:36	1
Benzo[a]pyrene	0.065	U	0.41	0.065	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Benzo[b]fluoranthene	0.047	U	0.41	0.047	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Benzo[g,h,i]perylene	0.027	U	0.41	0.027	mg/Kg	₽	08/10/15 16:16	08/12/15 17:36	1
Benzo[k]fluoranthene	0.081	U	0.41	0.081	mg/Kg	☼	08/10/15 16:16	08/12/15 17:36	1
1,1'-Biphenyl	2.1	U	2.1	2.1	mg/Kg	☼	08/10/15 16:16	08/12/15 17:36	1
Bis(2-chloroethoxy)methane	0.049	Ü	0.41	0.049	mg/Kg	₽	08/10/15 16:16	08/12/15 17:36	1
Bis(2-chloroethyl)ether	0.056	U	0.41	0.056	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
bis (2-chloroisopropyl) ether	0.037	U	0.41	0.037	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Bis(2-ethylhexyl) phthalate	0.46	В	0.41	0.036	mg/Kg		08/10/15 16:16	08/12/15 17:36	1
4-Bromophenyl phenyl ether	0.045	U	0.41	0.045	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Butyl benzyl phthalate	0.032	U	0.41	0.032	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Caprolactam	0.082	U	0.41	0.082	mg/Kg		08/10/15 16:16	08/12/15 17:36	1
Carbazole	0.037	U	0.41	0.037	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
4-Chloroaniline	0.065	U	0.82	0.065	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
4-Chloro-3-methylphenol	0.044	U	0.41	0.044	mg/Kg		08/10/15 16:16	08/12/15 17:36	1
2-Chloronaphthalene	0.044	U	0.41	0.044	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
2-Chlorophenol	0.050	U	0.41	0.050	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
4-Chlorophenyl phenyl ether	0.055	U	0.41	0.055	mg/Kg	Φ.	08/10/15 16:16	08/12/15 17:36	1
Chrysene	0.026	U	0.41	0.026	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Dibenz(a,h)anthracene	0.049	U	0.41	0.049	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Dibenzofuran	0.041	U	0.41	0.041	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
3,3'-Dichlorobenzidine	0.035	U	0.82	0.035	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
2,4-Dichlorophenol	0.044	U	0.41	0.044	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Diethyl phthalate	0.046	U	0.41	0.046	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
2,4-Dimethylphenol	0.055	U	0.41		mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Dimethyl phthalate	0.042	U	0.41		mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Di-n-butyl phthalate	0.037	U	0.41		mg/Kg		08/10/15 16:16	08/12/15 17:36	1
4,6-Dinitro-2-methylphenol	0.21		2.1		mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1

TestAmerica Savannah

Page 55 of 127

8

3

4 1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: GB-7 8-10

Date Collected: 08/07/15 09:54

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-24

Matrix: Solid

Percent Solids: 80.0

Method: 8270D - Semivola Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2,4-Dinitrophenol	1.0	U	2.1	1.0	mg/Kg	<u>₩</u>	08/10/15 16:16	08/12/15 17:36	1
2,4-Dinitrotoluene	0.061	U	0.41	0.061	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
2,6-Dinitrotoluene	0.052	U	0.41	0.052	mg/Kg	☼	08/10/15 16:16	08/12/15 17:36	1
Di-n-octyl phthalate	0.036	U	0.41	0.036	mg/Kg	☼	08/10/15 16:16	08/12/15 17:36	1
Fluoranthene	0.047	J	0.41	0.040	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Fluorene	0.045	U	0.41	0.045	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Hexachlorobenzene	0.049	U	0.41	0.049	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Hexachlorobutadiene	0.045	U	0.41	0.045	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Hexachlorocyclopentadiene	0.051	U	0.41	0.051	mg/Kg	☼	08/10/15 16:16	08/12/15 17:36	1
Hexachloroethane	0.035	U	0.41	0.035	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Indeno[1,2,3-cd]pyrene	0.035	U	0.41	0.035	mg/Kg		08/10/15 16:16	08/12/15 17:36	1
Isophorone	0.041	U	0.41	0.041	mg/Kg	☼	08/10/15 16:16	08/12/15 17:36	1
2-Methylnaphthalene	0.047	U	0.41	0.047	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
2-Methylphenol	0.034	U	0.41	0.034	mg/Kg	φ.	08/10/15 16:16	08/12/15 17:36	1
3 & 4 Methylphenol	0.054	U	0.41	0.054	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Naphthalene	0.037	U	0.41	0.037	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
2-Nitroaniline	0.056	U	2.1	0.056	mg/Kg		08/10/15 16:16	08/12/15 17:36	1
3-Nitroaniline	0.057	U	2.1	0.057	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
4-Nitroaniline	0.061	U	2.1	0.061	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Nitrobenzene	0.032	U	0.41	0.032	mg/Kg		08/10/15 16:16	08/12/15 17:36	1
2-Nitrophenol	0.051	U	0.41	0.051	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
4-Nitrophenol	0.41	U	2.1	0.41	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
N-Nitrosodi-n-propylamine	0.040	U	0.41	0.040	mg/Kg		08/10/15 16:16	08/12/15 17:36	1
N-Nitrosodiphenylamine	0.041	U	0.41	0.041	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Pentachlorophenol	0.41	U *	2.1		mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Phenanthrene	0.034	U	0.41	0.034	mg/Kg	₩.	08/10/15 16:16	08/12/15 17:36	1
Phenol	0.042	U	0.41	0.042	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Pyrene	0.039	J	0.41		mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
2,4,5-Trichlorophenol	0.044	U	0.41		mg/Kg		08/10/15 16:16	08/12/15 17:36	1
2,4,6-Trichlorophenol	0.036	U	0.41	0.036	mg/Kg	₩	08/10/15 16:16	08/12/15 17:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	84		41 - 116				08/10/15 16:16	08/12/15 17:36	1
2-Fluorophenol (Surr)	62		39 - 114				08/10/15 16:16	08/12/15 17:36	1
Nitrobenzene-d5 (Surr)	61		37 - 115				08/10/15 16:16	08/12/15 17:36	1
Phenol-d5 (Surr)	66		38 - 122				08/10/15 16:16	08/12/15 17:36	1
Terphenyl-d14 (Surr)	76		46 - 126				08/10/15 16:16	08/12/15 17:36	1
2,4,6-Tribromophenol (Surr)	89		45 - 129				08/10/15 16:16	08/12/15 17:36	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.6	J	2.2	0.89	mg/Kg	₩	08/11/15 08:25	08/15/15 04:43	1
Barium	61		1.1	0.18	mg/Kg	☼	08/11/15 08:25	08/15/15 04:43	1
Beryllium	0.48		0.45	0.011	mg/Kg	☼	08/11/15 08:25	08/15/15 04:43	1
Cadmium	0.11	U	0.56	0.11	mg/Kg	₽	08/11/15 08:25	08/15/15 04:43	1
Chromium	9.5		1.1	0.23	mg/Kg	₽	08/11/15 08:25	08/15/15 04:43	1
Copper	20		2.8	0.19	mg/Kg	₽	08/11/15 08:25	08/15/15 04:43	1
Lead	16		1.1	0.38	mg/Kg	₽	08/11/15 08:25	08/15/15 04:43	1
Nickel	5.5		4.5	0.42	mg/Kg	☼	08/11/15 08:25	08/15/15 04:43	1
Selenium	1.1	U	2.8	1.1	mg/Kg	☼	08/11/15 08:25	08/15/15 04:43	1

TestAmerica Savannah

Page 56 of 127

9/17/2015

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: GB-7 8-10

Date Collected: 08/07/15 09:54

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-24

Matrix: Solid

Percent Solids: 80.0

Analyte	P) (Continued) Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	0.082		1.1	0.067	mg/Kg	<u></u>	08/11/15 08:25	08/15/15 04:43	1
Vanadium	51		1.1	0.11	mg/Kg	₩.	08/11/15 08:25	08/15/15 04:43	1
Zinc	43		2.2	0.78	mg/Kg	₽	08/11/15 08:25	08/15/15 04:43	1
_ Method: 7471B - Mercury (0	CVAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Managemen	0.062		0.025	0.0008	mg/Kg	<u> </u>	08/16/15 13:43	08/17/15 22:11	
_Mercury _	0.062		0.023	0.0090	mg/rtg	~	00/10/13 13.43	00/17/13 22.11	1
Mercury General Chemistry	0.062		0.023	0.0098	mg/ng	4	00/10/13 13.43	00/1//13 22.11	1
		Qualifier	RL	MDL	0 0	D	Prepared	Analyzed	Dil Fac

10

11

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: GB-7 13-15

Date Collected: 08/07/15 10:00

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-25

Matrix: Solid
Percent Solids: 86.0

Method: 8260B - Volatile O Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00062	U	0.0042	0.00062	mg/Kg	<u> </u>	08/10/15 10:33	08/11/15 21:04	1
Carbon disulfide	0.00093	U	0.0042	0.00093	mg/Kg	☼	08/10/15 10:33	08/11/15 21:04	1
Ethylbenzene	0.0011	U	0.0042	0.0011	mg/Kg	≎	08/10/15 10:33	08/11/15 21:04	1
Methylene Chloride	0.00083	U	0.0042	0.00083	mg/Kg	☆	08/10/15 10:33	08/11/15 21:04	1
Toluene	0.00071	U	0.0042	0.00071	mg/Kg	₩	08/10/15 10:33	08/11/15 21:04	1
Xylenes, Total	0.00093	U	0.0085	0.00093	mg/Kg	₩	08/10/15 10:33	08/11/15 21:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		65 - 130				08/10/15 10:33	08/11/15 21:04	1
Dibromofluoromethane (Surr)	91		65 - 130				08/10/15 10:33	08/11/15 21:04	1
1,2-Dichloroethane-d4 (Surr)	86		65 - 130				08/10/15 10:33	08/11/15 21:04	1
Toluene-d8 (Surr)	94		65 - 130				08/10/15 10:33	08/11/15 21:04	1

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.047		0.38	0.047	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
Acenaphthylene	0.042	U	0.38	0.042	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
Acetophenone	0.032	U	0.38	0.032	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
Anthracene	0.029	U	0.38	0.029	mg/Kg	₽	08/10/15 16:16	08/12/15 18:02	1
Atrazine	0.027	U	0.38	0.027	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
Benzaldehyde	0.067	U	0.38	0.067	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
Benzo[a]anthracene	0.099	J	0.38	0.031	mg/Kg	₽	08/10/15 16:16	08/12/15 18:02	1
Benzo[a]pyrene	0.083	J	0.38	0.060	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
Benzo[b]fluoranthene	0.13	J	0.38	0.044	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
Benzo[g,h,i]perylene	0.056	J	0.38	0.025	mg/Kg	₽	08/10/15 16:16	08/12/15 18:02	1
Benzo[k]fluoranthene	0.075	U	0.38	0.075	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
1,1'-Biphenyl	2.0	U	2.0	2.0	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
Bis(2-chloroethoxy)methane	0.045	U	0.38	0.045	mg/Kg	₽	08/10/15 16:16	08/12/15 18:02	1
Bis(2-chloroethyl)ether	0.052	U	0.38	0.052	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
bis (2-chloroisopropyl) ether	0.035	U	0.38	0.035	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
Bis(2-ethylhexyl) phthalate	0.32	JB	0.38	0.034	mg/Kg	₽	08/10/15 16:16	08/12/15 18:02	1
4-Bromophenyl phenyl ether	0.042	U	0.38	0.042	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
Butyl benzyl phthalate	0.030	U	0.38	0.030	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
Caprolactam	0.076	U	0.38	0.076	mg/Kg	₽	08/10/15 16:16	08/12/15 18:02	1
Carbazole	0.035	U	0.38	0.035	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
4-Chloroaniline	0.060	U	0.76	0.060	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
4-Chloro-3-methylphenol	0.041	U	0.38	0.041	mg/Kg	₽	08/10/15 16:16	08/12/15 18:02	1
2-Chloronaphthalene	0.041	U	0.38	0.041	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
2-Chlorophenol	0.046	U	0.38	0.046	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
4-Chlorophenyl phenyl ether	0.051	U	0.38	0.051	mg/Kg	₽	08/10/15 16:16	08/12/15 18:02	1
Chrysene	0.096	J	0.38	0.024	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
Dibenz(a,h)anthracene	0.045	U	0.38	0.045	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
Dibenzofuran	0.038	U	0.38	0.038	mg/Kg	₽	08/10/15 16:16	08/12/15 18:02	1
3,3'-Dichlorobenzidine	0.032	U	0.76	0.032	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
2,4-Dichlorophenol	0.041	U	0.38	0.041	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
Diethyl phthalate	0.043	U	0.38	0.043	mg/Kg	₽	08/10/15 16:16	08/12/15 18:02	1
2,4-Dimethylphenol	0.051	U	0.38	0.051	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
Dimethyl phthalate	0.039	U	0.38	0.039	mg/Kg	☼	08/10/15 16:16	08/12/15 18:02	1
Di-n-butyl phthalate	0.035	Ü	0.38		mg/Kg	ф.	08/10/15 16:16	08/12/15 18:02	1
4,6-Dinitro-2-methylphenol	0.20	U *	2.0		mg/Kg	₽	08/10/15 16:16	08/12/15 18:02	1

TestAmerica Savannah

Page 58 of 127

2

4

J

0

9

1 4

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Nitrobenzene-d5 (Surr)

Terphenyl-d14 (Surr)

2,4,6-Tribromophenol (Surr)

Phenol-d5 (Surr)

Client Sample ID: GB-7 13-15

Lab Sample ID: 680-115409-25

Matrix: Solid Percent Solids: 86.0

Date Collected: 08/07/15 10:00 Date Received: 08/08/15 10:00

Method: 8270D - Semivolation	tile Organic Co	mpounds	(GC/MS) (Co	ntinued)				
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dinitrophenol	0.96	U	2.0	0.96	mg/Kg	₩	08/10/15 16:16	08/12/15 18:02	1
2,4-Dinitrotoluene	0.057	U	0.38	0.057	mg/Kg	☆	08/10/15 16:16	08/12/15 18:02	1
2,6-Dinitrotoluene	0.049	U	0.38	0.049	mg/Kg	☆	08/10/15 16:16	08/12/15 18:02	1
Di-n-octyl phthalate	0.034	U	0.38	0.034	mg/Kg	☆	08/10/15 16:16	08/12/15 18:02	1
Fluoranthene	0.19	J	0.38	0.037	mg/Kg	₽	08/10/15 16:16	08/12/15 18:02	1
Fluorene	0.042	U	0.38	0.042	mg/Kg	≎	08/10/15 16:16	08/12/15 18:02	1
Hexachlorobenzene	0.045	U	0.38	0.045	mg/Kg	≎	08/10/15 16:16	08/12/15 18:02	1
Hexachlorobutadiene	0.042	U	0.38	0.042	mg/Kg	₽	08/10/15 16:16	08/12/15 18:02	1
Hexachlorocyclopentadiene	0.047	U	0.38	0.047	mg/Kg	≎	08/10/15 16:16	08/12/15 18:02	1
Hexachloroethane	0.032	U	0.38	0.032	mg/Kg	₩	08/10/15 16:16	08/12/15 18:02	1
Indeno[1,2,3-cd]pyrene	0.046	J	0.38	0.032	mg/Kg	₽	08/10/15 16:16	08/12/15 18:02	1
Isophorone	0.038	U	0.38	0.038	mg/Kg	₩	08/10/15 16:16	08/12/15 18:02	1
2-Methylnaphthalene	0.044	U	0.38	0.044	mg/Kg	☆	08/10/15 16:16	08/12/15 18:02	1
2-Methylphenol	0.031	U	0.38	0.031	mg/Kg	☆	08/10/15 16:16	08/12/15 18:02	1
3 & 4 Methylphenol	0.050	U	0.38	0.050	mg/Kg	☆	08/10/15 16:16	08/12/15 18:02	1
Naphthalene	0.035	U	0.38	0.035	mg/Kg	☆	08/10/15 16:16	08/12/15 18:02	1
2-Nitroaniline	0.052	U	2.0	0.052	mg/Kg	☆	08/10/15 16:16	08/12/15 18:02	1
3-Nitroaniline	0.053	U	2.0	0.053	mg/Kg	≎	08/10/15 16:16	08/12/15 18:02	1
4-Nitroaniline	0.057	U	2.0	0.057	mg/Kg	☆	08/10/15 16:16	08/12/15 18:02	1
Nitrobenzene	0.030	U	0.38	0.030	mg/Kg	₽	08/10/15 16:16	08/12/15 18:02	1
2-Nitrophenol	0.047	U	0.38	0.047	mg/Kg	☆	08/10/15 16:16	08/12/15 18:02	1
4-Nitrophenol	0.38	U	2.0	0.38	mg/Kg	☆	08/10/15 16:16	08/12/15 18:02	1
N-Nitrosodi-n-propylamine	0.037	U	0.38	0.037	mg/Kg		08/10/15 16:16	08/12/15 18:02	1
N-Nitrosodiphenylamine	0.038	U	0.38	0.038	mg/Kg	≎	08/10/15 16:16	08/12/15 18:02	1
Pentachlorophenol	0.38	U *	2.0	0.38	mg/Kg	₩	08/10/15 16:16	08/12/15 18:02	1
Phenanthrene	0.12	J	0.38	0.031	mg/Kg	₽	08/10/15 16:16	08/12/15 18:02	1
Phenol	0.039	U	0.38	0.039	mg/Kg	≎	08/10/15 16:16	08/12/15 18:02	1
Pyrene	0.17	J	0.38	0.031	mg/Kg	₩	08/10/15 16:16	08/12/15 18:02	1
2,4,5-Trichlorophenol	0.041	U	0.38	0.041	mg/Kg		08/10/15 16:16	08/12/15 18:02	1
2,4,6-Trichlorophenol	0.034	U	0.38	0.034	mg/Kg	₩	08/10/15 16:16	08/12/15 18:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	69		41 - 116				08/10/15 16:16	08/12/15 18:02	1
2-Fluorophenol (Surr)	53		39 - 114				08/10/15 16:16	08/12/15 18:02	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.2	J	2.0	0.79	mg/Kg	₩	08/11/15 08:25	08/15/15 04:47	1
Barium	64		0.99	0.16	mg/Kg	☼	08/11/15 08:25	08/15/15 04:47	1
Beryllium	0.51		0.39	0.0099	mg/Kg	☼	08/11/15 08:25	08/15/15 04:47	1
Cadmium	0.099	U	0.49	0.099	mg/Kg	☼	08/11/15 08:25	08/15/15 04:47	1
Chromium	7.6		0.99	0.21	mg/Kg	☼	08/11/15 08:25	08/15/15 04:47	1
Copper	22		2.5	0.17	mg/Kg	☼	08/11/15 08:25	08/15/15 04:47	1
Lead	10		0.99	0.34	mg/Kg	₽	08/11/15 08:25	08/15/15 04:47	1
Nickel	4.8		3.9	0.37	mg/Kg	☼	08/11/15 08:25	08/15/15 04:47	1
Selenium	0.96	U	2.5	0.96	mg/Kg	≎	08/11/15 08:25	08/15/15 04:47	1

37 - 115

38 - 122

46 - 126

45 - 129

54

57

65

69

TestAmerica Savannah

08/10/15 16:16 08/12/15 18:02

08/10/15 16:16 08/12/15 18:02

08/10/15 16:16 08/12/15 18:02

08/10/15 16:16 08/12/15 18:02

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: GB-7 13-15

Date Collected: 08/07/15 10:00

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-25

Matrix: Solid

Percent Solids: 86.0

Method: 6010C - Metals (IC Analyte	, ,) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	0.059		0.99		mg/Kg	_	<u> </u>		1
Vanadium	48		0.99	0.099	mg/Kg	ф.	08/11/15 08:25	08/15/15 04:47	1
Zinc	40		2.0	0.69	mg/Kg	₽	08/11/15 08:25	08/15/15 04:47	1
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Method: 7471B - Mercury (•					_	_		
Mercury	0.29	F1 F2	0.023	0.0091	mg/Kg	\	08/17/15 10:06	08/17/15 22:42	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.24	U	0.58	0.24	mg/Kg	<u></u>	08/17/15 08:00	08/17/15 12:14	

11

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-26

Matrix: Solid Percent Solids: 83.9

Client Sample ID: GB-7 18
Date Collected: 08/07/15 10:06
Date Received: 08/08/15 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00065	U	0.0045	0.00065	mg/Kg	<u> </u>	08/10/15 10:33	08/11/15 21:25	1
Carbon disulfide	0.00098	U	0.0045	0.00098	mg/Kg	☼	08/10/15 10:33	08/11/15 21:25	1
Ethylbenzene	0.0012	U	0.0045	0.0012	mg/Kg	☼	08/10/15 10:33	08/11/15 21:25	1
Methylene Chloride	0.00087	U	0.0045	0.00087	mg/Kg	☼	08/10/15 10:33	08/11/15 21:25	1
Toluene	0.00075	U	0.0045	0.00075	mg/Kg	☼	08/10/15 10:33	08/11/15 21:25	1
Xylenes, Total	0.00098	U	0.0089	0.00098	mg/Kg	₩	08/10/15 10:33	08/11/15 21:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	80		65 - 130				08/10/15 10:33	08/11/15 21:25	1
Dibromofluoromethane (Surr)	90		65 - 130				08/10/15 10:33	08/11/15 21:25	1
1,2-Dichloroethane-d4 (Surr)	86		65 - 130				08/10/15 10:33	08/11/15 21:25	1
Toluene-d8 (Surr)	91		65 - 130				08/10/15 10:33	08/11/15 21:25	1

Analyte	Result		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.049	U	0.39	0.049	mg/Kg	<u> </u>	08/10/15 16:16	08/12/15 18:28	1
Acenaphthylene	0.043	U	0.39	0.043	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Acetophenone	0.033	U	0.39	0.033	mg/Kg	☼	08/10/15 16:16	08/12/15 18:28	1
Anthracene	0.030	U	0.39	0.030	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Atrazine	0.027	U	0.39	0.027	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Benzaldehyde	0.069	U	0.39	0.069	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Benzo[a]anthracene	0.053	J	0.39	0.032	mg/Kg	₽	08/10/15 16:16	08/12/15 18:28	1
Benzo[a]pyrene	0.062	U	0.39	0.062	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Benzo[b]fluoranthene	0.071	J	0.39	0.045	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Benzo[g,h,i]perylene	0.037	J	0.39	0.026	mg/Kg	₽	08/10/15 16:16	08/12/15 18:28	1
Benzo[k]fluoranthene	0.077	U	0.39	0.077	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
1,1'-Biphenyl	2.0	U	2.0	2.0	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Bis(2-chloroethoxy)methane	0.046	U	0.39	0.046	mg/Kg	₩.	08/10/15 16:16	08/12/15 18:28	1
Bis(2-chloroethyl)ether	0.054	U	0.39	0.054	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
bis (2-chloroisopropyl) ether	0.036	U	0.39	0.036	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Bis(2-ethylhexyl) phthalate	0.26	JB	0.39	0.035	mg/Kg		08/10/15 16:16	08/12/15 18:28	1
4-Bromophenyl phenyl ether	0.043	U	0.39	0.043	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Butyl benzyl phthalate	0.031	U	0.39	0.031	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Caprolactam	0.079	U	0.39	0.079	mg/Kg	φ.	08/10/15 16:16	08/12/15 18:28	1
Carbazole	0.036	U	0.39	0.036	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
4-Chloroaniline	0.062	U	0.79	0.062	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
4-Chloro-3-methylphenol	0.042	U	0.39	0.042	mg/Kg	φ.	08/10/15 16:16	08/12/15 18:28	1
2-Chloronaphthalene	0.042	U	0.39	0.042	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
2-Chlorophenol	0.048	U	0.39	0.048	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
4-Chlorophenyl phenyl ether	0.052	U	0.39	0.052	mg/Kg	₩.	08/10/15 16:16	08/12/15 18:28	1
Chrysene	0.052	J	0.39	0.025	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Dibenz(a,h)anthracene	0.046	U	0.39	0.046	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Dibenzofuran	0.039	U	0.39	0.039	mg/Kg	₩.	08/10/15 16:16	08/12/15 18:28	1
3,3'-Dichlorobenzidine	0.033	U	0.79	0.033	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
2,4-Dichlorophenol	0.042	U	0.39	0.042	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Diethyl phthalate	0.044	U	0.39	0.044	mg/Kg	₩.	08/10/15 16:16	08/12/15 18:28	1
2,4-Dimethylphenol	0.052	U	0.39	0.052	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Dimethyl phthalate	0.040	U	0.39	0.040	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Di-n-butyl phthalate	0.036	U	0.39	0.036	mg/Kg	Φ.	08/10/15 16:16	08/12/15 18:28	1
4,6-Dinitro-2-methylphenol	0.20	U *	2.0		mg/Kg	☆	08/10/15 16:16	08/12/15 18:28	1

TestAmerica Savannah

Page 61 of 127

4

0

ŏ

10

11

12

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: GB-7 18

Date Collected: 08/07/15 10:06

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-26

Matrix: Solid Percent Solids: 83.9

Method: 8270D - Semivola Analyte	_	Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
2,4-Dinitrophenol	0.99	U	2.0	0.99	mg/Kg	<u> </u>	08/10/15 16:16	08/12/15 18:28	1
2,4-Dinitrotoluene	0.058	U	0.39	0.058	mg/Kg	φ.	08/10/15 16:16	08/12/15 18:28	1
2,6-Dinitrotoluene	0.050	U	0.39	0.050	mg/Kg	☼	08/10/15 16:16	08/12/15 18:28	1
Di-n-octyl phthalate	0.035	U	0.39	0.035	mg/Kg	☼	08/10/15 16:16	08/12/15 18:28	1
Fluoranthene	0.10	J	0.39	0.038	mg/Kg	₩.	08/10/15 16:16	08/12/15 18:28	1
Fluorene	0.043	U	0.39	0.043	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Hexachlorobenzene	0.046	U	0.39	0.046	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Hexachlorobutadiene	0.043	U	0.39	0.043	mg/Kg	₽	08/10/15 16:16	08/12/15 18:28	1
Hexachlorocyclopentadiene	0.049	U	0.39	0.049	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Hexachloroethane	0.033	U	0.39	0.033	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Indeno[1,2,3-cd]pyrene	0.033	U	0.39	0.033	mg/Kg		08/10/15 16:16	08/12/15 18:28	1
Isophorone	0.039	U	0.39	0.039	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
2-Methylnaphthalene	0.045	U	0.39	0.045	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
2-Methylphenol	0.032	U	0.39	0.032	mg/Kg		08/10/15 16:16	08/12/15 18:28	1
3 & 4 Methylphenol	0.051	U	0.39	0.051	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Naphthalene	0.036	U	0.39	0.036	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
2-Nitroaniline	0.054	Ü	2.0	0.054	mg/Kg		08/10/15 16:16	08/12/15 18:28	1
3-Nitroaniline	0.055	U	2.0	0.055	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
4-Nitroaniline	0.058	U	2.0	0.058	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Nitrobenzene	0.031	U	0.39	0.031	mg/Kg		08/10/15 16:16	08/12/15 18:28	1
2-Nitrophenol	0.049	U	0.39	0.049	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
4-Nitrophenol	0.39	U	2.0	0.39	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
N-Nitrosodi-n-propylamine	0.038	U	0.39	0.038	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
N-Nitrosodiphenylamine	0.039	U	0.39	0.039	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Pentachlorophenol	0.39	U *	2.0		mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Phenanthrene	0.065	J	0.39		mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Phenol	0.040		0.39	0.040	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Pyrene	0.083	J	0.39		mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
2,4,5-Trichlorophenol	0.042	U	0.39	0.042	mg/Kg		08/10/15 16:16	08/12/15 18:28	1
2,4,6-Trichlorophenol	0.035	U	0.39	0.035	mg/Kg	₩	08/10/15 16:16	08/12/15 18:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	63		41 - 116				08/10/15 16:16	08/12/15 18:28	1
2-Fluorophenol (Surr)	47		39 - 114				08/10/15 16:16	08/12/15 18:28	1
Nitrobenzene-d5 (Surr)	47		37 - 115				08/10/15 16:16	08/12/15 18:28	1
Phenol-d5 (Surr)	49		38 - 122				08/10/15 16:16	08/12/15 18:28	1
Terphenyl-d14 (Surr)	60		46 - 126				08/10/15 16:16	08/12/15 18:28	1
2,4,6-Tribromophenol (Surr)	67		45 - 129				08/10/15 16:16	08/12/15 18:28	1

Method: 6010C - Metals (ICP) Analyte	Popult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzad	Dil Fac
Analyte	Resuit	Qualifier	KL	MDL	Onit	D	Frepareu	Analyzed	DII Fac
Arsenic	2.0	J	2.2	0.87	mg/Kg	₩	08/11/15 08:25	08/15/15 04:52	1
Barium	95		1.1	0.17	mg/Kg	☼	08/11/15 08:25	08/15/15 04:52	1
Beryllium	0.49		0.43	0.011	mg/Kg	☼	08/11/15 08:25	08/15/15 04:52	1
Cadmium	0.11	U	0.54	0.11	mg/Kg	₽	08/11/15 08:25	08/15/15 04:52	1
Chromium	12		1.1	0.23	mg/Kg	☼	08/11/15 08:25	08/15/15 04:52	1
Copper	19		2.7	0.18	mg/Kg	☼	08/11/15 08:25	08/15/15 04:52	1
Lead	41		1.1	0.37	mg/Kg	₽	08/11/15 08:25	08/15/15 04:52	1
Nickel	5.5		4.3	0.41	mg/Kg	☼	08/11/15 08:25	08/15/15 04:52	1
Selenium	1.1	U	2.7	1.1	mg/Kg	☼	08/11/15 08:25	08/15/15 04:52	1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: GB-7 18

Date Collected: 08/07/15 10:06

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-26

Matrix: Solid

Percent Solids: 83.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	0.065	U	1.1	0.065	mg/Kg	<u> </u>	08/11/15 08:25	08/15/15 04:52	1
Vanadium	40		1.1	0.11	mg/Kg	φ.	08/11/15 08:25	08/15/15 04:52	1
Zinc	60		2.2	0.76	mg/Kg	₽	08/11/15 08:25	08/15/15 04:52	1
Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.13		0.021	0.0085	mg/Kg	<u> </u>	08/16/15 13:43	08/17/15 22:14	1
General Chemistry									
•	Docult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Quanner			•	_	opu.ou	7 tilaly 20 a	5 uo

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: SB-17 8-10

Date Collected: 08/07/15 14:50

Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-27

Matrix: Solid Percent Solids: 88.1

Analyte		Qualifier	ŘL	MDL		D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.12		0.37		0 0	<u>₩</u>	08/10/15 16:16	08/12/15 18:54	1
Acenaphthylene	0.041		0.37	0.041	mg/Kg	₽.		08/12/15 18:54	1
Acetophenone	0.032		0.37		mg/Kg			08/12/15 18:54	
Anthracene	0.19		0.37		mg/Kg	☆		08/12/15 18:54	1
Atrazine	0.026		0.37		mg/Kg	**		08/12/15 18:54	1
Benzaldehyde	0.066	U	0.37		mg/Kg			08/12/15 18:54	1
Benzo[a]anthracene	0.39		0.37		mg/Kg	₿	08/10/15 16:16	08/12/15 18:54	1
Benzo[a]pyrene	0.32	J F1	0.37	0.059	mg/Kg	☼	08/10/15 16:16	08/12/15 18:54	1
Benzo[b]fluoranthene	0.45		0.37	0.043	mg/Kg		08/10/15 16:16	08/12/15 18:54	1
Benzo[g,h,i]perylene	0.19	J	0.37	0.025	mg/Kg	☼	08/10/15 16:16	08/12/15 18:54	1
Benzo[k]fluoranthene	0.18	J	0.37	0.074	mg/Kg	☼	08/10/15 16:16	08/12/15 18:54	1
1,1'-Biphenyl	1.9	U	1.9	1.9	mg/Kg	≎	08/10/15 16:16	08/12/15 18:54	1
Bis(2-chloroethoxy)methane	0.044	U F1	0.37	0.044	mg/Kg	₽	08/10/15 16:16	08/12/15 18:54	1
Bis(2-chloroethyl)ether	0.051	U	0.37	0.051	mg/Kg	₩	08/10/15 16:16	08/12/15 18:54	1
bis (2-chloroisopropyl) ether	0.034	U	0.37	0.034	mg/Kg	₩	08/10/15 16:16	08/12/15 18:54	1
Bis(2-ethylhexyl) phthalate	0.18	JB	0.37	0.033	mg/Kg	₽	08/10/15 16:16	08/12/15 18:54	1
4-Bromophenyl phenyl ether	0.041	U	0.37	0.041	mg/Kg	☼	08/10/15 16:16	08/12/15 18:54	1
Butyl benzyl phthalate	0.030	U	0.37	0.030	mg/Kg	☼	08/10/15 16:16	08/12/15 18:54	1
Caprolactam	0.075	U	0.37	0.075	mg/Kg	.	08/10/15 16:16	08/12/15 18:54	1
Carbazole	0.12	J F1	0.37	0.034	mg/Kg	☼	08/10/15 16:16	08/12/15 18:54	1
4-Chloroaniline	0.059	U	0.75	0.059	mg/Kg	☼	08/10/15 16:16	08/12/15 18:54	1
4-Chloro-3-methylphenol	0.040	U	0.37		mg/Kg	φ.	08/10/15 16:16	08/12/15 18:54	1
2-Chloronaphthalene	0.040	U	0.37		mg/Kg	₽	08/10/15 16:16	08/12/15 18:54	1
2-Chlorophenol	0.045	U	0.37		mg/Kg	☼	08/10/15 16:16	08/12/15 18:54	1
4-Chlorophenyl phenyl ether	0.050	U	0.37		mg/Kg		08/10/15 16:16	08/12/15 18:54	1
Chrysene	0.33		0.37		mg/Kg	₽	08/10/15 16:16	08/12/15 18:54	1
Dibenz(a,h)anthracene	0.061		0.37		mg/Kg	₽	08/10/15 16:16	08/12/15 18:54	1
Dibenzofuran	0.052		0.37		mg/Kg	 \$		08/12/15 18:54	1
3,3'-Dichlorobenzidine	0.032		0.75		mg/Kg	₩		08/12/15 18:54	1
2,4-Dichlorophenol	0.040		0.37		mg/Kg	≎		08/12/15 18:54	1
Diethyl phthalate	0.042		0.37		mg/Kg	 \$		08/12/15 18:54	1
2,4-Dimethylphenol	0.050		0.37		mg/Kg	₩		08/12/15 18:54	1
Dimethyl phthalate	0.039		0.37		mg/Kg	₽		08/12/15 18:54	
Di-n-butyl phthalate	0.034		0.37		mg/Kg	 \$		08/12/15 18:54	· · · · · · · · · · · · · · · · · · ·
4,6-Dinitro-2-methylphenol		U F2 *	1.9		mg/Kg	₽		08/12/15 18:54	1
2,4-Dinitrophenol		U F1	1.9		mg/Kg	₩		08/12/15 18:54	
2,4-Dinitrotoluene	0.056		0.37		mg/Kg			08/12/15 18:54	 1
2,6-Dinitrotoluene	0.030		0.37		mg/Kg	₽		08/12/15 18:54	1
	0.046		0.37			₽		08/12/15 18:54	
Di-n-octyl phthalate					mg/Kg	· · · · · · .		08/12/15 18:54	1
Fluoranthene	0.78		0.37		mg/Kg	ж ж			1
Fluorene	0.13		0.37		mg/Kg	₩ ₩		08/12/15 18:54	1
Hexachlorobenzene	0.044		0.37		mg/Kg			08/12/15 18:54	1
Hexachlorobutadiene	0.041		0.37		mg/Kg	×.		08/12/15 18:54	1
Hexachlorocyclopentadiene	0.047		0.37		mg/Kg	\$\tau \tau \tau \tau \tau \tau \tau \tau		08/12/15 18:54	1
Hexachloroethane	0.032		0.37		mg/Kg			08/12/15 18:54	
Indeno[1,2,3-cd]pyrene	0.17		0.37		mg/Kg	Δ.		08/12/15 18:54	1
Isophorone	0.037		0.37		mg/Kg	₩		08/12/15 18:54	1
2-Methylnaphthalene	0.043	U	0.37	0.043	mg/Kg	₩	08/10/15 16:16	08/12/15 18:54	1
2-Methylphenol	0.031		0.37		mg/Kg			08/12/15 18:54	

TestAmerica Savannah

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

General Chemistry

Analyte

Cyanide, Total

Client Sample ID: SB-17 8-10

Lab Sample ID: 680-115409-27

Date Collected: 08/07/15 14:50 Date Received: 08/08/15 10:00 Matrix: Solid Percent Solids: 88.1

Method: 8270D - Semivolat ^{Analyte}		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
3 & 4 Methylphenol	0.049		0.37		mg/Kg	<u>~</u>	08/10/15 16:16	08/12/15 18:54	
Naphthalene	0.034	U	0.37		mg/Kg	☼	08/10/15 16:16	08/12/15 18:54	
2-Nitroaniline	0.051	U	1.9	0.051	mg/Kg		08/10/15 16:16	08/12/15 18:54	
3-Nitroaniline	0.052	U	1.9		mg/Kg	☼	08/10/15 16:16	08/12/15 18:54	
1-Nitroaniline	0.056	U	1.9		mg/Kg	₩	08/10/15 16:16	08/12/15 18:54	
Nitrobenzene	0.030	U	0.37		mg/Kg		08/10/15 16:16	08/12/15 18:54	
2-Nitrophenol	0.047	U	0.37	0.047	mg/Kg	₩	08/10/15 16:16	08/12/15 18:54	
4-Nitrophenol	0.37	U	1.9	0.37	mg/Kg	₩	08/10/15 16:16	08/12/15 18:54	
N-Nitrosodi-n-propylamine	0.036	U	0.37		mg/Kg	· · · · · 🌣 ·	08/10/15 16:16	08/12/15 18:54	
N-Nitrosodiphenylamine	0.037	U	0.37		mg/Kg	₩	08/10/15 16:16	08/12/15 18:54	
Pentachlorophenol	0.37	U *	1.9		mg/Kg	₩	08/10/15 16:16	08/12/15 18:54	
Phenanthrene	0.63		0.37	0.031	mg/Kg			08/12/15 18:54	
Phenol	0.039		0.37		mg/Kg	₩		08/12/15 18:54	
Pyrene	0.56		0.37	0.031	mg/Kg	₩		08/12/15 18:54	
2,4,5-Trichlorophenol	0.040		0.37		mg/Kg	 		08/12/15 18:54	
2,4,6-Trichlorophenol	0.033		0.37		mg/Kg	₩		08/12/15 18:54	
<u>-, ,,, </u>	0.000		0.0.	0.000	99		00/10/10 10110	00/ 12/ 10 10/01	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
2-Fluorobiphenyl	52		41 - 116				08/10/15 16:16	08/12/15 18:54	
2-Fluorophenol (Surr)	39		39 - 114				08/10/15 16:16	08/12/15 18:54	
Nitrobenzene-d5 (Surr)	41		37 - 115				08/10/15 16:16	08/12/15 18:54	
Phenol-d5 (Surr)	41		38 - 122				08/10/15 16:16	08/12/15 18:54	
Terphenyl-d14 (Surr)	49		46 - 126				08/10/15 16:16	08/12/15 18:54	
2,4,6-Tribromophenol (Surr)	49		45 - 129				08/10/15 16:16	08/12/15 18:54	
Method: 6010C - Metals (IC	(P)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Arsenic	0.80	U	2.0	0.80	mg/Kg	<u> </u>	08/11/15 08:25	08/15/15 04:56	
Barium	18		1.0	0.16	mg/Kg	₩	08/11/15 08:25	08/15/15 04:56	
Beryllium	0.29	J	0.40	0.010	mg/Kg	₩	08/11/15 08:25	08/15/15 04:56	
Cadmium	0.10	U	0.50	0.10	mg/Kg	₩	08/11/15 08:25	08/15/15 04:56	
Chromium	7.1		1.0	0.21	mg/Kg	₩	08/11/15 08:25	08/15/15 04:56	
Copper	3.3		2.5	0.17	mg/Kg	₩	08/11/15 08:25	08/15/15 04:56	
Lead	8.3		1.0	0.34	mg/Kg	φ.	08/11/15 08:25	08/15/15 04:56	
Nickel	2.1	J	4.0	0.38	mg/Kg	☼	08/11/15 08:25	08/15/15 04:56	
Selenium	0.97	U	2.5	0.97	mg/Kg	₩	08/11/15 08:25	08/15/15 04:56	
Silver	0.060	U	1.0		mg/Kg	 	08/11/15 08:25	08/15/15 04:56	
Vanadium	12		1.0	0.10	mg/Kg	☼	08/11/15 08:25	08/15/15 04:56	
Zinc	8.4		2.0	0.70	mg/Kg	₽	08/11/15 08:25	08/15/15 04:56	
Method: 7471B - Mercury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F

Analyzed

Prepared

 ☼
 08/17/15 08:00
 08/17/15 12:16

RL

0.57

MDL Unit

0.24 mg/Kg

Result Qualifier

0.24 U

Dil Fac

Client: Geotechnical & Environmental Consultants

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Client Sample ID: SB-17 13-15

Date Collected: 08/07/15 14:56

Date Received: 08/08/15 10:00

Project/Site: Macon MGP

Hexachlorocyclopentadiene

Indeno[1,2,3-cd]pyrene

Hexachloroethane

2-Methylnaphthalene

Isophorone

2-Methylphenol

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-28

Matrix: Solid Percent Solids: 85.5

Dil Fac	5
10	
10	
10	
10	
10	
10	8
10	
10	Q
10	
10	

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	5.5		3.9	0.48	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
Acenaphthylene	0.42	U	3.9	0.42	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
Acetophenone	0.33	U	3.9	0.33	mg/Kg	☼	08/10/15 16:16	08/12/15 19:20	10
Anthracene	6.2		3.9	0.29	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
Atrazine	0.27	U	3.9	0.27	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
Benzaldehyde	0.68	U	3.9	0.68	mg/Kg	≎	08/10/15 16:16	08/12/15 19:20	10
Benzo[a]anthracene	13		3.9	0.32	mg/Kg	.	08/10/15 16:16	08/12/15 19:20	10
Benzo[a]pyrene	10		3.9	0.61	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
Benzo[b]fluoranthene	13		3.9	0.44	mg/Kg	☼	08/10/15 16:16	08/12/15 19:20	10
Benzo[g,h,i]perylene	6.9		3.9	0.26	mg/Kg	₩.	08/10/15 16:16	08/12/15 19:20	10
Benzo[k]fluoranthene	6.3		3.9	0.76	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
1,1'-Biphenyl	20	U	20	20	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
Bis(2-chloroethoxy)methane	0.46	Ü	3.9	0.46	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
Bis(2-chloroethyl)ether	0.53	U	3.9	0.53	mg/Kg	☼	08/10/15 16:16	08/12/15 19:20	10
bis (2-chloroisopropyl) ether	0.35	U	3.9	0.35	mg/Kg	☼	08/10/15 16:16	08/12/15 19:20	10
Bis(2-ethylhexyl) phthalate	0.34	U	3.9	0.34	mg/Kg		08/10/15 16:16	08/12/15 19:20	10
4-Bromophenyl phenyl ether	0.42	U	3.9	0.42	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
Butyl benzyl phthalate	0.30	U	3.9		mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
Caprolactam	0.77	U	3.9		mg/Kg	· · · · · · · · · · · · · · · · · · ·	08/10/15 16:16	08/12/15 19:20	10
Carbazole	3.3	J	3.9		mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
4-Chloroaniline	0.61		7.7		mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
4-Chloro-3-methylphenol	0.41		3.9	0.41	mg/Kg	· · · · · · · · · · · · · · · · · · ·	08/10/15 16:16	08/12/15 19:20	10
2-Chloronaphthalene	0.41	U	3.9	0.41	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
2-Chlorophenol	0.47	U	3.9	0.47	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
4-Chlorophenyl phenyl ether	0.51	U	3.9		mg/Kg		08/10/15 16:16	08/12/15 19:20	10
Chrysene	10		3.9		mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
Dibenz(a,h)anthracene	2.0	J	3.9		mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
Dibenzofuran	1.3		3.9		mg/Kg		08/10/15 16:16	08/12/15 19:20	10
3,3'-Dichlorobenzidine	0.33		7.7		mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
2,4-Dichlorophenol	0.41	U	3.9		mg/Kg	₩		08/12/15 19:20	10
Diethyl phthalate	0.43	U	3.9		mg/Kg		08/10/15 16:16	08/12/15 19:20	10
2,4-Dimethylphenol	0.51		3.9	0.51		₩	08/10/15 16:16	08/12/15 19:20	10
Dimethyl phthalate	0.40	U	3.9		mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
Di-n-butyl phthalate	0.35		3.9		mg/Kg	· · · · · · · · · · · · · · · · · · ·		08/12/15 19:20	10
4,6-Dinitro-2-methylphenol		U *	20		mg/Kg	₩		08/12/15 19:20	10
2,4-Dinitrophenol	9.7		20		mg/Kg	₩		08/12/15 19:20	10
2,4-Dinitrotoluene	0.57		3.9		mg/Kg			08/12/15 19:20	10
2,6-Dinitrotoluene	0.49		3.9		mg/Kg	₩		08/12/15 19:20	10
Di-n-octyl phthalate	0.34		3.9		mg/Kg	₩		08/12/15 19:20	10
Fluoranthene	28		3.9		mg/Kg			08/12/15 19:20	10
Fluorene	4.1		3.9		mg/Kg	₩		08/12/15 19:20	10
Hexachlorobenzene	0.46	U	3.9		mg/Kg			08/12/15 19:20	10
Hexachlorobutadiene	0.42		3.9		mg/Kg			08/12/15 19:20	10
	0.42		0.0	0.72	9,1.9		00/40/45 40 40	23/12/13 10.20	10

TestAmerica Savannah

© 08/10/15 16:16 08/12/15 19:20

© 08/10/15 16:16 08/12/15 19:20

© 08/10/15 16:16 08/12/15 19:20

© 08/10/15 16:16 08/12/15 19:20

© 08/10/15 16:16 08/12/15 19:20

© 08/10/15 16:16 08/12/15 19:20

3.9

3.9

3.9

3.9

3.9

3.9

0.48 mg/Kg

0.33 mg/Kg

0.33 mg/Kg

0.39 mg/Kg

0.44 mg/Kg

0.32 mg/Kg

0.48 U

0.33 U

0.39 U

0.44 U

0.32 U

6.1

10

10

10

10

10

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

Client Sample ID: SB-17 13-15

Lab Sample ID: 680-115409-28 Date Collected: 08/07/15 14:56

Matrix: Solid Percent Solids: 85.5

Date Received: 08/08/15 10:00 Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.50	U	3.9	0.50	mg/Kg	<u> </u>	08/10/15 16:16	08/12/15 19:20	10
Naphthalene	0.94	J	3.9	0.35	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
2-Nitroaniline	0.53	U	20	0.53	mg/Kg	₽	08/10/15 16:16	08/12/15 19:20	10
3-Nitroaniline	0.54	U	20	0.54	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
4-Nitroaniline	0.57	U	20	0.57	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
Nitrobenzene	0.30	U	3.9	0.30	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
2-Nitrophenol	0.48	U	3.9	0.48	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
4-Nitrophenol	3.9	U	20	3.9	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
N-Nitrosodi-n-propylamine	0.37	U	3.9	0.37	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
N-Nitrosodiphenylamine	0.39	U	3.9	0.39	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
Pentachlorophenol	3.9	U *	20	3.9	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
Phenanthrene	20		3.9	0.32	mg/Kg	₽	08/10/15 16:16	08/12/15 19:20	10
Phenol	0.40	U	3.9	0.40	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
Pyrene	20		3.9	0.32	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10
2,4,5-Trichlorophenol	0.41	U	3.9	0.41	mg/Kg	₽	08/10/15 16:16	08/12/15 19:20	10
2,4,6-Trichlorophenol	0.34	U	3.9	0.34	mg/Kg	₩	08/10/15 16:16	08/12/15 19:20	10

- 1							
	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	2-Fluorobiphenyl		D	41 - 116	08/10/15 16:16	08/12/15 19:20	10
	2-Fluorophenol (Surr)	0	D	39 - 114	08/10/15 16:16	08/12/15 19:20	10
	Nitrobenzene-d5 (Surr)	0	D	37 - 115	08/10/15 16:16	08/12/15 19:20	10
	Phenol-d5 (Surr)	0	D	38 - 122	08/10/15 16:16	08/12/15 19:20	10
	Terphenyl-d14 (Surr)	0	D	46 - 126	08/10/15 16:16	08/12/15 19:20	10
	2,4,6-Tribromophenol (Surr)	0	D	45 - 129	08/10/15 16:16	08/12/15 19:20	10

Method:	6010C - Metals	(ICP)
Method.	ou luc - Metais	ILLE

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.3		2.0	0.81	mg/Kg	<u> </u>	08/11/15 08:25	08/15/15 05:10	1
Barium	49		1.0	0.16	mg/Kg	☼	08/11/15 08:25	08/15/15 05:10	1
Beryllium	0.20	J	0.40	0.010	mg/Kg	☼	08/11/15 08:25	08/15/15 05:10	1
Cadmium	0.23	J	0.50	0.10	mg/Kg	₩	08/11/15 08:25	08/15/15 05:10	1
Chromium	11		1.0	0.21	mg/Kg	₩	08/11/15 08:25	08/15/15 05:10	1
Copper	16		2.5	0.17	mg/Kg	☼	08/11/15 08:25	08/15/15 05:10	1
Lead	96		1.0	0.34	mg/Kg	₩.	08/11/15 08:25	08/15/15 05:10	1
Nickel	2.8	J	4.0	0.38	mg/Kg	☼	08/11/15 08:25	08/15/15 05:10	1
Selenium	0.98	U	2.5	0.98	mg/Kg	₩	08/11/15 08:25	08/15/15 05:10	1
Silver	0.061	U	1.0	0.061	mg/Kg		08/11/15 08:25	08/15/15 05:10	1
Vanadium	25		1.0	0.10	mg/Kg	₩	08/11/15 08:25	08/15/15 05:10	1
Zinc	90		2.0	0.71	mg/Kg	₩	08/11/15 08:25	08/15/15 05:10	1

Method: 7471B - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.17		0.021	0.0085	mg/Kg		08/16/15 13:43	08/17/15 22:20	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.24	U	0.58	0.24	mg/Kg		08/17/15 08:00	08/17/15 12:17	1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: SB-20 0-2

Date Collected: 08/07/15 15:04 Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-29

-	Matrix: Solid
	Percent Solids: 86.5

Method: 8270D - Semivolatile Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Acenaphthene	0.047		0.38		mg/Kg	— ĕ	<u> </u>	08/12/15 19:46	
Acenaphthylene	0.047		0.38		mg/Kg	₽		08/12/15 19:46	
Acetophenone	0.042		0.38		mg/Kg			08/12/15 19:46	
Anthracene	0.032		0.38		mg/Kg	· · · · · · · · · · · · · · · · · · ·		08/12/15 19:46	
						≎			
Atrazine	0.027		0.38		mg/Kg			08/12/15 19:46	
Benzaldehyde	0.067		0.38		mg/Kg	 .		08/12/15 19:46	
Benzo[a]anthracene	0.031		0.38		mg/Kg	₩		08/12/15 19:46	
Benzo[a]pyrene	0.060		0.38		mg/Kg	ψ.		08/12/15 19:46	
Benzo[b]fluoranthene	0.044		0.38		mg/Kg	::::::::::::::::::::::::::::::::::::::		08/12/15 19:46	
Benzo[g,h,i]perylene	0.040		0.38		mg/Kg	*		08/12/15 19:46	
Benzo[k]fluoranthene	0.075		0.38		mg/Kg	*		08/12/15 19:46	
,1'-Biphenyl	2.0	U	2.0		mg/Kg		08/10/15 16:16	08/12/15 19:46	
Bis(2-chloroethoxy)methane	0.045	U	0.38		mg/Kg	₩	08/10/15 16:16	08/12/15 19:46	
Bis(2-chloroethyl)ether	0.052		0.38		mg/Kg	☼		08/12/15 19:46	
ois (2-chloroisopropyl) ether	0.035	U	0.38	0.035	mg/Kg	₩	08/10/15 16:16	08/12/15 19:46	
Bis(2-ethylhexyl) phthalate	0.21	JB	0.38	0.033	mg/Kg	₩	08/10/15 16:16	08/12/15 19:46	
-Bromophenyl phenyl ether	0.042	U	0.38	0.042	mg/Kg	☆	08/10/15 16:16	08/12/15 19:46	
Butyl benzyl phthalate	0.030	U	0.38	0.030	mg/Kg	₩	08/10/15 16:16	08/12/15 19:46	
Caprolactam	0.076	U	0.38	0.076	mg/Kg	₩	08/10/15 16:16	08/12/15 19:46	
Carbazole	0.035	U	0.38	0.035	mg/Kg	₩	08/10/15 16:16	08/12/15 19:46	
-Chloroaniline	0.060	U	0.76	0.060	mg/Kg	₽	08/10/15 16:16	08/12/15 19:46	
-Chloro-3-methylphenol	0.040	U	0.38	0.040	mg/Kg		08/10/15 16:16	08/12/15 19:46	
-Chloronaphthalene	0.040	U	0.38	0.040	mg/Kg	₩	08/10/15 16:16	08/12/15 19:46	
-Chlorophenol	0.046	U	0.38	0.046	mg/Kg	☆	08/10/15 16:16	08/12/15 19:46	
-Chlorophenyl phenyl ether	0.051		0.38		mg/Kg	 Ф	08/10/15 16:16	08/12/15 19:46	
Chrysene	0.024	U	0.38		mg/Kg	₩	08/10/15 16:16	08/12/15 19:46	
Dibenz(a,h)anthracene	0.045	U	0.38		mg/Kg	₩	08/10/15 16:16	08/12/15 19:46	
Dibenzofuran	0.038		0.38		mg/Kg		08/10/15 16:16	08/12/15 19:46	
3,3'-Dichlorobenzidine	0.032		0.76		mg/Kg	☼		08/12/15 19:46	
2,4-Dichlorophenol	0.040		0.38		mg/Kg	☼		08/12/15 19:46	
Diethyl phthalate	0.043		0.38		mg/Kg	 \$		08/12/15 19:46	
2,4-Dimethylphenol	0.051		0.38	0.051	mg/Kg	₩		08/12/15 19:46	
Dimethyl phthalate	0.039		0.38		mg/Kg	☆		08/12/15 19:46	
Di-n-butyl phthalate	0.035		0.38		mg/Kg	·		08/12/15 19:46	
,6-Dinitro-2-methylphenol	0.20		2.0		mg/Kg	☆		08/12/15 19:46	
• •			2.0			≎		08/12/15 19:46	
,4-Dinitrophenol	0.96		0.38		mg/Kg mg/Kg	· · · · · · .		08/12/15 19:46	
,4-Dinitrotoluene	0.057					*		08/12/15 19:46	
t,6-Dinitrotoluene	0.048		0.38		mg/Kg	Ţ.			
Di-n-octyl phthalate	0.033		0.38		mg/Kg			08/12/15 19:46	
luoranthene	0.037		0.38		mg/Kg	1.tr		08/12/15 19:46	
luorene	0.042		0.38		mg/Kg	ψ.		08/12/15 19:46	
lexachlorobenzene	0.045		0.38		mg/Kg			08/12/15 19:46	
lexachlorobutadiene	0.042		0.38		mg/Kg	₩.		08/12/15 19:46	
lexachlorocyclopentadiene	0.047		0.38		mg/Kg	*		08/12/15 19:46	
lexachloroethane	0.032		0.38		mg/Kg			08/12/15 19:46	
ndeno[1,2,3-cd]pyrene	0.032		0.38		mg/Kg	☆		08/12/15 19:46	
sophorone	0.038	U	0.38	0.038	mg/Kg	₩	08/10/15 16:16	08/12/15 19:46	
-Methylnaphthalene	0.044	U	0.38	0.044	mg/Kg	☼	08/10/15 16:16	08/12/15 19:46	
2-Methylphenol	0.031	Ü	0.38	0.031	mg/Kg	₩	08/10/15 16:16	08/12/15 19:46	

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

General Chemistry

Analyte

Cyanide, Total

Client Sample ID: SB-20 0-2

Date Collected: 08/07/15 15:04 Date Received: 08/08/15 10:00

Lab Sample ID: 680-115409-29

Matrix: Solid

Percent Solids: 86.5

Method: 8270D - Semivolat ^{Analyte}		Qualifier	ŔĹ	MDL	Unit	D	Prepared	Analyzed	Dil Fa
3 & 4 Methylphenol	0.050		0.38		mg/Kg	\	08/10/15 16:16	08/12/15 19:46	
Naphthalene	0.035	U	0.38		mg/Kg	☼	08/10/15 16:16	08/12/15 19:46	
2-Nitroaniline	0.052		2.0	0.052	mg/Kg		08/10/15 16:16	08/12/15 19:46	
3-Nitroaniline	0.053	U	2.0	0.053	mg/Kg	≎	08/10/15 16:16	08/12/15 19:46	
4-Nitroaniline	0.057	U	2.0		mg/Kg	☼	08/10/15 16:16	08/12/15 19:46	
Nitrobenzene	0.030		0.38		mg/Kg		08/10/15 16:16	08/12/15 19:46	
2-Nitrophenol	0.047	U	0.38	0.047	mg/Kg	≎	08/10/15 16:16	08/12/15 19:46	
4-Nitrophenol	0.38	U	2.0	0.38	mg/Kg	≎	08/10/15 16:16	08/12/15 19:46	
N-Nitrosodi-n-propylamine	0.037		0.38		mg/Kg	 	08/10/15 16:16	08/12/15 19:46	
N-Nitrosodiphenylamine	0.038	U	0.38		mg/Kg	☼	08/10/15 16:16	08/12/15 19:46	
Pentachlorophenol	0.38	U *	2.0		mg/Kg	☼	08/10/15 16:16	08/12/15 19:46	
Phenanthrene	0.031		0.38	0.031	mg/Kg			08/12/15 19:46	
Phenol	0.039		0.38		mg/Kg	₽		08/12/15 19:46	
Pyrene	0.031		0.38	0.031	mg/Kg	☼		08/12/15 19:46	
2,4,5-Trichlorophenol	0.040		0.38		mg/Kg			08/12/15 19:46	
2,4,6-Trichlorophenol	0.033		0.38		mg/Kg	≎		08/12/15 19:46	
_, ,,,,	0.000		0.00	0.000	9/.19		00/10/10 10110	00/12/10 10/10	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	68		41 - 116				08/10/15 16:16	08/12/15 19:46	
2-Fluorophenol (Surr)	51		39 - 114				08/10/15 16:16	08/12/15 19:46	
Nitrobenzene-d5 (Surr)	52		37 - 115				08/10/15 16:16	08/12/15 19:46	
Phenol-d5 (Surr)	53		38 - 122				08/10/15 16:16	08/12/15 19:46	
Terphenyl-d14 (Surr)	61		46 - 126				08/10/15 16:16	08/12/15 19:46	
2,4,6-Tribromophenol (Surr)	69		45 - 129				08/10/15 16:16	08/12/15 19:46	
Method: 6010C - Metals (IC	P)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	2.5		2.0	0.80	mg/Kg	₩	08/11/15 08:25	08/15/15 05:15	
Barium	99		1.0	0.16	mg/Kg	≎	08/11/15 08:25	08/15/15 05:15	
Beryllium	1.1		0.40	0.010	mg/Kg	☼	08/11/15 08:25	08/15/15 05:15	
Cadmium	0.10	U	0.50	0.10	mg/Kg	₩	08/11/15 08:25	08/17/15 15:17	
Chromium	16		1.0	0.21	mg/Kg	₩	08/11/15 08:25	08/15/15 05:15	
Copper	27		2.5	0.17	mg/Kg	≎	08/11/15 08:25	08/15/15 05:15	
Lead	14		1.0	0.34	mg/Kg	₩	08/11/15 08:25	08/15/15 05:15	
Nickel	6.3		4.0	0.38	mg/Kg	☼	08/11/15 08:25	08/15/15 05:15	
Selenium	0.98	U	2.5	0.98	mg/Kg	☼	08/11/15 08:25	08/15/15 05:15	
Silver	0.060	U	1.0	0.060	mg/Kg		08/11/15 08:25	08/15/15 05:15	
Vanadium	66		1.0	0.10	mg/Kg	≎	08/11/15 08:25	08/15/15 05:15	
Zinc	36		2.0		mg/Kg	₽	08/11/15 08:25	08/15/15 05:15	
Method: 7471B - Mercury (CVAA)								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
			0.021		mg/Kg			08/17/15 22:24	

Analyzed

Prepared

 ☼
 08/17/15 08:00
 08/17/15 12:18

RL

0.55

MDL Unit

0.23 mg/Kg

Result Qualifier

0.23 U

Dil Fac

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: SB-20 2-4

Date Collected: 08/07/15 15:04 Date Received: 08/08/15 10:00

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-30

Matrix: Solid	
Percent Solids: 84.8	
Percent Solids: 84.8	

Method: 8270D - Semivolatile Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.048		0.39	0.048	mg/Kg	— ğ		08/12/15 20:11	DILLE
Acenaphthylene	0.048		0.39			₽		08/12/15 20:11	
• •					mg/Kg	~ ☆			
Acetophenone	0.033		0.39		mg/Kg	······		08/12/15 20:11	
Anthracene	0.029		0.39		mg/Kg			08/12/15 20:11	
Atrazine	0.027		0.39		mg/Kg	☆		08/12/15 20:11	
Benzaldehyde	0.068		0.39		mg/Kg			08/12/15 20:11	
Benzo[a]anthracene	0.032		0.39		mg/Kg	Ţ.		08/12/15 20:11	
Benzo[a]pyrene	0.061		0.39		mg/Kg	₩.		08/12/15 20:11	
Benzo[b]fluoranthene	0.045		0.39		mg/Kg	₽		08/12/15 20:11	
Benzo[g,h,i]perylene	0.026	U	0.39		mg/Kg	₩		08/12/15 20:11	
Benzo[k]fluoranthene	0.077	U	0.39	0.077	mg/Kg	₩	08/10/15 16:16	08/12/15 20:11	
1,1'-Biphenyl	2.0	U	2.0	2.0	mg/Kg	₩	08/10/15 16:16	08/12/15 20:11	
Bis(2-chloroethoxy)methane	0.046	U	0.39	0.046	mg/Kg	₽	08/10/15 16:16	08/12/15 20:11	
Bis(2-chloroethyl)ether	0.053	U	0.39	0.053	mg/Kg	₩	08/10/15 16:16	08/12/15 20:11	
bis (2-chloroisopropyl) ether	0.035	U	0.39	0.035	mg/Kg	₩	08/10/15 16:16	08/12/15 20:11	
Bis(2-ethylhexyl) phthalate	0.26	JB	0.39	0.034	mg/Kg	₽	08/10/15 16:16	08/12/15 20:11	
4-Bromophenyl phenyl ether	0.042	U	0.39	0.042	mg/Kg	≎	08/10/15 16:16	08/12/15 20:11	
Butyl benzyl phthalate	0.031	U	0.39	0.031	mg/Kg	☼	08/10/15 16:16	08/12/15 20:11	
Caprolactam	0.078	Ü	0.39	0.078	mg/Kg	₽	08/10/15 16:16	08/12/15 20:11	
Carbazole	0.035	U	0.39	0.035	mg/Kg	☼	08/10/15 16:16	08/12/15 20:11	
4-Chloroaniline	0.061	U	0.78	0.061	mg/Kg	≎	08/10/15 16:16	08/12/15 20:11	
4-Chloro-3-methylphenol	0.041	U	0.39	0.041	mg/Kg		08/10/15 16:16	08/12/15 20:11	
2-Chloronaphthalene	0.041	U	0.39	0.041	mg/Kg	₩	08/10/15 16:16	08/12/15 20:11	
2-Chlorophenol	0.047		0.39		mg/Kg	₩		08/12/15 20:11	
4-Chlorophenyl phenyl ether	0.052		0.39		mg/Kg	ф		08/12/15 20:11	
Chrysene	0.025		0.39		mg/Kg	☼		08/12/15 20:11	
Dibenz(a,h)anthracene	0.046		0.39		mg/Kg	☼		08/12/15 20:11	
Dibenzofuran	0.039		0.39	0.039	mg/Kg			08/12/15 20:11	
3,3'-Dichlorobenzidine	0.033		0.78		mg/Kg	₽		08/12/15 20:11	
2,4-Dichlorophenol	0.033		0.70	0.033	mg/Kg	₽		08/12/15 20:11	
Diethyl phthalate	0.041		0.39		mg/Kg			08/12/15 20:11	
• •	0.044		0.39		mg/Kg	₽		08/12/15 20:11	
2,4-Dimethylphenol					0 0				
Dimethyl phthalate	0.040		0.39		mg/Kg			08/12/15 20:11	
Di-n-butyl phthalate	0.035		0.39		mg/Kg	☆		08/12/15 20:11	
4,6-Dinitro-2-methylphenol	0.20		2.0		mg/Kg	₩		08/12/15 20:11	
2,4-Dinitrophenol	0.98		2.0		mg/Kg	<u>.</u>		08/12/15 20:11	
2,4-Dinitrotoluene	0.058		0.39		mg/Kg	‡; 		08/12/15 20:11	
2,6-Dinitrotoluene	0.049		0.39		mg/Kg	₽.		08/12/15 20:11	
Di-n-octyl phthalate	0.034		0.39		mg/Kg	₽		08/12/15 20:11	
Fluoranthene	0.038		0.39		mg/Kg	₩	08/10/15 16:16		
Fluorene	0.042		0.39		mg/Kg	₽		08/12/15 20:11	
Hexachlorobenzene	0.046		0.39		mg/Kg			08/12/15 20:11	
Hexachlorobutadiene	0.042	U	0.39		mg/Kg	₩	08/10/15 16:16		
Hexachlorocyclopentadiene	0.048	U	0.39		mg/Kg	₩	08/10/15 16:16	08/12/15 20:11	
Hexachloroethane	0.033	U	0.39	0.033	mg/Kg	≎	08/10/15 16:16	08/12/15 20:11	
Indeno[1,2,3-cd]pyrene	0.033	U	0.39	0.033	mg/Kg	₽	08/10/15 16:16	08/12/15 20:11	
sophorone	0.039	U	0.39	0.039	mg/Kg	₽	08/10/15 16:16	08/12/15 20:11	
2-Methylnaphthalene	0.045	U	0.39	0.045	mg/Kg	₩	08/10/15 16:16	08/12/15 20:11	
2-Methylphenol	0.032	U	0.39		mg/Kg		08/10/15 16:16	08/12/15 20:11	

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Zinc

Client Sample ID: SB-20 2-4

Date Collected: 08/07/15 15:04 Date Received: 08/08/15 10:00

Lab Sample ID: 680-115409-30

Matrix: Solid

Percent Solids: 84.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
3 & 4 Methylphenol	0.051	U	0.39	0.051	mg/Kg	<u> </u>	08/10/15 16:16	08/12/15 20:11	
Naphthalene	0.035	U	0.39	0.035	mg/Kg	₩	08/10/15 16:16	08/12/15 20:11	
2-Nitroaniline	0.053	U	2.0	0.053	mg/Kg	₩.	08/10/15 16:16	08/12/15 20:11	
3-Nitroaniline	0.054	U	2.0	0.054	mg/Kg	☼	08/10/15 16:16	08/12/15 20:11	•
4-Nitroaniline	0.058	U	2.0	0.058	mg/Kg	☼	08/10/15 16:16	08/12/15 20:11	•
Nitrobenzene	0.031	U	0.39	0.031	mg/Kg	₩	08/10/15 16:16	08/12/15 20:11	
2-Nitrophenol	0.048	U	0.39	0.048	mg/Kg	₩	08/10/15 16:16	08/12/15 20:11	
4-Nitrophenol	0.39	U	2.0	0.39	mg/Kg	☼	08/10/15 16:16	08/12/15 20:11	
N-Nitrosodi-n-propylamine	0.038	U	0.39	0.038	mg/Kg	₩	08/10/15 16:16	08/12/15 20:11	
N-Nitrosodiphenylamine	0.039	U	0.39	0.039	mg/Kg	☼	08/10/15 16:16	08/12/15 20:11	
Pentachlorophenol	0.39	U *	2.0	0.39	mg/Kg	☼	08/10/15 16:16	08/12/15 20:11	
Phenanthrene	0.032	U	0.39	0.032	mg/Kg		08/10/15 16:16	08/12/15 20:11	· · · · · · · · ·
Phenol	0.040	U	0.39	0.040	mg/Kg	₩	08/10/15 16:16	08/12/15 20:11	
Pyrene	0.032	U	0.39	0.032	mg/Kg	₩	08/10/15 16:16	08/12/15 20:11	
2,4,5-Trichlorophenol	0.041	U	0.39	0.041	mg/Kg	₩	08/10/15 16:16	08/12/15 20:11	
2,4,6-Trichlorophenol	0.034	U	0.39	0.034	mg/Kg	₩	08/10/15 16:16	08/12/15 20:11	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	65		41 - 116				08/10/15 16:16	08/12/15 20:11	
2-Fluorophenol (Surr)	47		39 - 114				08/10/15 16:16	08/12/15 20:11	
Nitrobenzene-d5 (Surr)	47		37 - 115				08/10/15 16:16	08/12/15 20:11	
Phenol-d5 (Surr)	49		38 - 122				08/10/15 16:16	08/12/15 20:11	
Terphenyl-d14 (Surr)	64		46 - 126				08/10/15 16:16	08/12/15 20:11	
2,4,6-Tribromophenol (Surr)	70		45 - 129				08/10/15 16:16	08/12/15 20:11	
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	1.6	J	2.0	0.80	mg/Kg	<u>₩</u>	08/11/15 08:25	08/15/15 05:19	
Barium	99		1.0	0.16	mg/Kg	₩	08/11/15 08:25	08/15/15 05:19	
Beryllium	1.6		0.40	0.010	mg/Kg	₩	08/11/15 08:25	08/15/15 05:19	
Cadmium	0.10	U	0.50	0.10	mg/Kg	Φ.	08/11/15 08:25	08/17/15 15:22	
Chromium	9.5		1.0	0.21	mg/Kg	☼	08/11/15 08:25	08/15/15 05:19	
Copper	60		2.5	0.17	mg/Kg	☼	08/11/15 08:25	08/15/15 05:19	
Lead	13		1.0	0.34	mg/Kg		08/11/15 08:25	08/15/15 05:19	
Nickel	6.7		4.0	0.38	mg/Kg	₩	08/11/15 08:25	08/15/15 05:19	
Selenium	0.97	U	2.5		mg/Kg	₩	08/11/15 08:25	08/15/15 05:19	
Silver	0.060	U	1.0		mg/Kg		08/11/15 08:25	08/15/15 05:19	
Vanadium	61		1.0		mg/Kg	₽	08/11/15 08:25	08/15/15 05:19	
	٠.		-		5 5				

Method: 7471B - Mercury (CVAA) Analyte	Result Quali	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.028	0.023	0.0092	mg/Kg		08/16/15 13:43	08/17/15 22:27	1
General Chemistry								

2.0

0.70 mg/Kg

56

Analyte Result Qualifier RL MDL Unit Analyzed Dil Fac Prepared
 ☼
 08/17/15 08:00
 08/17/15 12:21
 Cyanide, Total 0.25 U 0.58 0.25 mg/Kg

© 08/11/15 08:25 08/15/15 05:19

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-31

Matrix: Water

Client Sample ID: Trip Blank lot ATL156 Date Collected: 08/07/15 00:00

Date Received: 08/08/15 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.43	U	1.0	0.43	ug/L			08/18/15 11:14	1
Carbon disulfide	1.0	U	2.0	1.0	ug/L			08/18/15 11:14	1
Ethylbenzene	0.33	U	1.0	0.33	ug/L			08/18/15 11:14	1
Methylene Chloride	2.5	U	5.0	2.5	ug/L			08/18/15 11:14	1
Toluene	0.48	U	1.0	0.48	ug/L			08/18/15 11:14	1
Xylenes, Total	0.23	U	1.0	0.23	ug/L			08/18/15 11:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130			,		08/18/15 11:14	1
Dibromofluoromethane (Surr)	100		70 - 130					08/18/15 11:14	1
1,2-Dichloroethane-d4 (Surr)	92		70 - 130					08/18/15 11:14	1
Toluene-d8 (Surr)	100		70 - 130					08/18/15 11:14	1

Project/Site: Macon MGP

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-395460/10

Client: Geotechnical & Environmental Consultants

Matrix: Solid

Analysis Batch: 395460

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00072	U	0.0049	0.00072	mg/Kg			08/11/15 16:33	1
Carbon disulfide	0.0011	U	0.0049	0.0011	mg/Kg			08/11/15 16:33	1
Ethylbenzene	0.0013	U	0.0049	0.0013	mg/Kg			08/11/15 16:33	1
Methylene Chloride	0.00097	U	0.0049	0.00097	mg/Kg			08/11/15 16:33	1
Toluene	0.00083	U	0.0049	0.00083	mg/Kg			08/11/15 16:33	1
Xylenes, Total	0.0011	U	0.0099	0.0011	mg/Kg			08/11/15 16:33	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 65 - 130 08/11/15 16:33 80 Dibromofluoromethane (Surr) 90 65 - 130 08/11/15 16:33 85 65 - 130 08/11/15 16:33 1,2-Dichloroethane-d4 (Surr) 1 Toluene-d8 (Surr) 92 65 - 130 08/11/15 16:33

Lab Sample ID: LCS 680-395460/4

Matrix: Solid

Analysis Batch: 395460

Client Sample ID: Lab Control Sample Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.0500	0.0507		mg/Kg		101	76 - 120	
Carbon disulfide	0.0500	0.0499		mg/Kg		100	74 - 125	
Ethylbenzene	0.0500	0.0505		mg/Kg		101	78 ₋ 121	
Methylene Chloride	0.0500	0.0506		mg/Kg		101	80 - 120	
Toluene	0.0500	0.0507		mg/Kg		101	73 - 122	
Xylenes, Total	0.100	0.101		mg/Kg		101	79 - 121	

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 95 65 - 130 101 Dibromofluoromethane (Surr) 65 - 130 1,2-Dichloroethane-d4 (Surr) 97 65 - 130 Toluene-d8 (Surr) 99 65 - 130

Lab Sample ID: LCSD 680-395460/5

Matrix: Solid

Analysis Batch: 395460

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD LCSD			%Rec.		RPD
Analyte	Added	Result Qualif	fier Unit	D %Rec	Limits	RPD	Limit
Benzene	0.0487	0.0520	mg/Kg	107	76 - 120	3	30
Carbon disulfide	0.0487	0.0525	mg/Kg	108	74 - 125	5	30
Ethylbenzene	0.0487	0.0544	mg/Kg	112	78 - 121	7	30
Methylene Chloride	0.0487	0.0511	mg/Kg	105	80 - 120	1	30
Toluene	0.0487	0.0523	mg/Kg	107	73 - 122	3	30
Xylenes, Total	0.0975	0.108	mg/Kg	111	79 - 121	7	30

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		65 - 130
Dibromofluoromethane (Surr)	103		65 - 130
1,2-Dichloroethane-d4 (Surr)	97		65 - 130

TestAmerica Savannah

Page 73 of 127

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Solid Analysis Batch: 395460

Lab Sample ID: LCSD 680-395460/5

Lab Sample ID: MB 680-396685/11

LCSD LCSD

Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 108 65 - 130

Client: Geotechnical & Environmental Consultants

Client Sample ID: Method Blank

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 396685

Analyte Benzene Carbon disulfide	IVID	IVID								
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Benzene	0.43	U	1.0	0.43	ug/L			08/18/15 10:38	1
	Carbon disulfide	1.0	U	2.0	1.0	ug/L			08/18/15 10:38	1
	Ethylbenzene	0.33	U	1.0	0.33	ug/L			08/18/15 10:38	1
	Methylene Chloride	2.5	U	5.0	2.5	ug/L			08/18/15 10:38	1
	Toluene	0.48	U	1.0	0.48	ug/L			08/18/15 10:38	1
	Xylenes, Total	0.23	U	1.0	0.23	ug/L			08/18/15 10:38	1

MB MB

MD MD

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120	70 - 130		08/18/15 10:38	1
Dibromofluoromethane (Surr)	98	70 - 130		08/18/15 10:38	1
1,2-Dichloroethane-d4 (Surr)	94	70 - 130		08/18/15 10:38	1
Toluene-d8 (Surr)	99	70 - 130		08/18/15 10:38	1

Lab Sample ID: LCS 680-396685/4

Matrix: Water

Analysis Batch: 396685

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec.
Limits
73 - 131
73 - 127
80 - 120
76 - 129
80 - 122
80 - 120

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	92		70 - 130
Dibromofluoromethane (Surr)	96		70 - 130
1,2-Dichloroethane-d4 (Surr)	94		70 - 130
Toluene-d8 (Surr)	97		70 - 130

Lab Sample ID: LCSD 680-396685/5

Matrix: Water

Analysis Batch: 396685

Client Sample ID:	Lab Control Sample Dup
	Prep Type: Total/NA

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	49.1		ug/L		98	73 - 131	1	30
Carbon disulfide	50.0	51.6		ug/L		103	73 - 127	1	20
Ethylbenzene	50.0	48.3		ug/L		97	80 - 120	3	20
Methylene Chloride	50.0	49.3		ug/L		99	76 - 129	1	20

TestAmerica Savannah

Page 74 of 127

9/17/2015

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-396685/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 396685

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Toluene	50.0	50.1		ug/L		100	80 - 122	1	20	
Xylenes, Total	100	99.0		ug/L		99	80 - 120	2	20	

LCSD LCSD %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 89 70 - 130 Dibromofluoromethane (Surr) 94 70 - 130 1,2-Dichloroethane-d4 (Surr) 93 70 - 130 Toluene-d8 (Surr) 95 70 - 130

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-395299/21-A **Client Sample ID: Method Blank Prep Type: Total/NA**

Matrix: Solid

Analysis Batch: 395487	МВ	МВ						Prep Batch:	395299
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.041	U -	0.33	0.041	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Acenaphthylene	0.036	U	0.33	0.036	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Acetophenone	0.028	U	0.33	0.028	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Anthracene	0.025	Ü	0.33	0.025	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Atrazine	0.023	U	0.33	0.023	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Benzaldehyde	0.058	U	0.33	0.058	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Benzo[a]anthracene	0.027	Ü	0.33	0.027	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Benzo[a]pyrene	0.052	U	0.33	0.052	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Benzo[b]fluoranthene	0.038	U	0.33	0.038	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Benzo[g,h,i]perylene	0.022	Ü	0.33	0.022	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Benzo[k]fluoranthene	0.065	U	0.33	0.065	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
1,1'-Biphenyl	1.7	U	1.7	1.7	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Bis(2-chloroethoxy)methane	0.039	U	0.33	0.039	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Bis(2-chloroethyl)ether	0.045	U	0.33	0.045	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
bis (2-chloroisopropyl) ether	0.030	U	0.33	0.030	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Bis(2-ethylhexyl) phthalate	0.141	J	0.33	0.029	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
4-Bromophenyl phenyl ether	0.036	U	0.33	0.036	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Butyl benzyl phthalate	0.026	U	0.33	0.026	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Caprolactam	0.066	U	0.33	0.066	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Carbazole	0.030	U	0.33	0.030	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
4-Chloroaniline	0.052	U	0.66	0.052	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
4-Chloro-3-methylphenol	0.035	U	0.33		mg/Kg		08/10/15 14:33	08/11/15 14:58	1
2-Chloronaphthalene	0.035		0.33		mg/Kg		08/10/15 14:33	08/11/15 14:58	1
2-Chlorophenol	0.040	U	0.33	0.040	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
4-Chlorophenyl phenyl ether	0.044	U	0.33	0.044	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Chrysene	0.021	U	0.33	0.021	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Dibenz(a,h)anthracene	0.039	U	0.33		mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Dibenzofuran	0.033	U	0.33		mg/Kg		08/10/15 14:33	08/11/15 14:58	1
3,3'-Dichlorobenzidine	0.028	U	0.66		mg/Kg		08/10/15 14:33	08/11/15 14:58	1
2,4-Dichlorophenol	0.035	U	0.33		mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Diethyl phthalate	0.037	U	0.33		mg/Kg		08/10/15 14:33	08/11/15 14:58	1
2,4-Dimethylphenol	0.044		0.33		mg/Kg			08/11/15 14:58	1

TestAmerica Savannah

Page 75 of 127

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-395299/21-A

Matrix: Solid

Analysis Batch: 395487

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 395299

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dimethyl phthalate	0.034	U	0.33	0.034	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Di-n-butyl phthalate	0.030	U	0.33	0.030	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
4,6-Dinitro-2-methylphenol	0.17	U	1.7	0.17	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
2,4-Dinitrophenol	0.83	U	1.7	0.83	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
2,4-Dinitrotoluene	0.049	U	0.33	0.049	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
2,6-Dinitrotoluene	0.042	U	0.33	0.042	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Di-n-octyl phthalate	0.029	U	0.33	0.029	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Fluoranthene	0.032	U	0.33	0.032	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Fluorene	0.036	U	0.33	0.036	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Hexachlorobenzene	0.039	U	0.33	0.039	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Hexachlorobutadiene	0.036	U	0.33	0.036	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Hexachlorocyclopentadiene	0.041	U	0.33	0.041	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Hexachloroethane	0.028	U	0.33	0.028	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Indeno[1,2,3-cd]pyrene	0.028	U	0.33	0.028	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Isophorone	0.033	U	0.33	0.033	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
2-Methylnaphthalene	0.038	U	0.33	0.038	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
2-Methylphenol	0.027	U	0.33	0.027	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
3 & 4 Methylphenol	0.043	U	0.33	0.043	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Naphthalene	0.030	U	0.33	0.030	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
2-Nitroaniline	0.045	U	1.7	0.045	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
3-Nitroaniline	0.046	U	1.7	0.046	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
4-Nitroaniline	0.049	U	1.7	0.049	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Nitrobenzene	0.026	U	0.33	0.026	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
2-Nitrophenol	0.041	U	0.33	0.041	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
4-Nitrophenol	0.33	U	1.7	0.33	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
N-Nitrosodi-n-propylamine	0.032	U	0.33	0.032	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
N-Nitrosodiphenylamine	0.033	U	0.33	0.033	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Pentachlorophenol	0.33	U	1.7	0.33	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Phenanthrene	0.027	U	0.33	0.027	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Phenol	0.034	U	0.33	0.034	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
Pyrene	0.027	U	0.33	0.027	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
2,4,5-Trichlorophenol	0.035	U	0.33	0.035	mg/Kg		08/10/15 14:33	08/11/15 14:58	1
2,4,6-Trichlorophenol	0.029		0.33	0.000	mg/Kg		00/40/45 44 00	08/11/15 14:58	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	55		41 - 116	08/10/15 14:33	08/11/15 14:58	1
2-Fluorophenol (Surr)	66		39 - 114	08/10/15 14:33	08/11/15 14:58	1
Nitrobenzene-d5 (Surr)	69		37 - 115	08/10/15 14:33	08/11/15 14:58	1
Phenol-d5 (Surr)	63		38 - 122	08/10/15 14:33	08/11/15 14:58	1
Terphenyl-d14 (Surr)	79		46 - 126	08/10/15 14:33	08/11/15 14:58	1
2,4,6-Tribromophenol (Surr)	61		45 - 129	08/10/15 14:33	08/11/15 14:58	1

Lab Sample ID: LCS 680-395299/22-A

Matrix: Solid

Analysis Batch: 395487							Prep Batch: 395	5299
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	3.34	2.78		mg/Kg		83	47 - 130	

TestAmerica Savannah

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 76 of 127

QC Sample Results

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab	Sai	mple	ID:	LCS	680-3	9529	9/22-A

Matrix: Solid

Client Sample ID: La	b Control Sample
Pro	ep Type: Total/NA
Pi	en Batch: 395299

Analysis Batch: 395487	Spike	LCS	LCS				Prep Batch: 3952998
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthylene	3.34	2.58		mg/Kg		77	45 - 130
Acetophenone	3.34	2.46		mg/Kg		74	44 - 130
Anthracene	3.34	2.72		mg/Kg		82	50 - 130
Atrazine	3.34	2.70		mg/Kg		81	47 - 130
Benzaldehyde	3.34	0.430		mg/Kg		13	10 - 130
Benzo[a]anthracene	3.34	2.95		mg/Kg		88	50 - 130
Benzo[a]pyrene	3.34	2.91		mg/Kg		87	47 - 131
Benzo[b]fluoranthene	3.34	3.03		mg/Kg		91	48 - 130
Benzo[g,h,i]perylene	3.34	2.70		mg/Kg		81	42 - 130
Benzo[k]fluoranthene	3.34	3.61		mg/Kg		108	48 - 108
1,1'-Biphenyl	3.34	2.42		mg/Kg		72	48 - 130
Bis(2-chloroethoxy)methane	3.34	2.55		mg/Kg		76	47 - 130
Bis(2-chloroethyl)ether	3.34	2.42		mg/Kg		73	37 - 130
bis (2-chloroisopropyl) ether	3.34	2.81		mg/Kg		84	38 - 130
Bis(2-ethylhexyl) phthalate	3.34	3.47		mg/Kg		104	48 - 130
4-Bromophenyl phenyl ether	3.34	2.66		mg/Kg		80	53 - 130
Butyl benzyl phthalate	3.34	3.21		mg/Kg		96	53 - 134
Caprolactam	3.34	2.74		mg/Kg		82	44 - 130
Carbazole	3.34	2.81		mg/Kg		84	51 - 130
4-Chloroaniline	3.34	1.38		mg/Kg		41	10 - 130
4-Chloro-3-methylphenol	3.34	2.70		mg/Kg		81	51 - 130
2-Chloronaphthalene	3.34	2.51		mg/Kg		75	48 - 130
2-Chlorophenol	3.34	2.58		mg/Kg		77	47 - 130
4-Chlorophenyl phenyl ether	3.34	2.60		mg/Kg		78	49 - 130
Chrysene	3.34	2.83		mg/Kg		85	47 - 130
Dibenz(a,h)anthracene	3.34	2.74		mg/Kg		82	44 - 130
Dibenzofuran	3.34	2.59		mg/Kg		77	49 - 130
3,3'-Dichlorobenzidine	3.34	1.61		mg/Kg		48	16 - 130
2,4-Dichlorophenol	3.34	2.64		mg/Kg		79	48 - 130
Diethyl phthalate	3.34	2.75		mg/Kg		82	49 - 130
2,4-Dimethylphenol	3.34	2.59		mg/Kg		78	43 - 130
Dimethyl phthalate	3.34	2.73		mg/Kg		82	50 ₋ 130
Di-n-butyl phthalate	3.34	3.01		mg/Kg		90	52 - 130
4,6-Dinitro-2-methylphenol	6.68	0.578	J *	mg/Kg		9	23 - 130
2,4-Dinitrophenol	6.68	1.97		mg/Kg		29	10 - 130
2,4-Dinitrotoluene	3.34	2.82		mg/Kg		84	49 - 111
2,6-Dinitrotoluene	3.34	2.74		mg/Kg		82	49 - 130
Di-n-octyl phthalate	3.34	3.50		mg/Kg		105	46 - 130
Fluoranthene	3.34	2.75		mg/Kg		82	51 - 130
Fluorene	3.34	2.61		mg/Kg		78	52 - 130
Hexachlorobenzene	3.34	2.66		mg/Kg		80	53 - 130
Hexachlorobutadiene	3.34	2.55		mg/Kg		76	48 - 130
Hexachlorocyclopentadiene	3.34	1.81		mg/Kg		54	28 - 130
Hexachloroethane	3.34	2.53		mg/Kg		76	42 - 130
Indeno[1,2,3-cd]pyrene	3.34	2.68		mg/Kg		80	41 - 130
Isophorone	3.34	2.65		mg/Kg		79	48 - 130
2-Methylnaphthalene	3.34	2.55		mg/Kg		79 76	48 - 130 48 - 130
2-Methylphenol	3.34	2.59		mg/Kg		78	46 - 130

TestAmerica Savannah

9/17/2015

Page 77 of 127

2

3

5

6

ŏ

10

11

14

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

r rojourono. Macon Moi

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-395299/22-A

Matrix: Solid

Analysis Batch: 395487

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 395299

LCS LCS Spike %Rec. Added Result Qualifier Analyte Unit D %Rec Limits 3 & 4 Methylphenol 3.34 2.72 81 46 - 130 mg/Kg Naphthalene 3.34 2.64 mg/Kg 79 47 - 130 2-Nitroaniline 3.34 2.70 mg/Kg 81 44 - 130 3-Nitroaniline 3.34 2.02 mg/Kg 60 21 - 130 4-Nitroaniline 3.34 2.30 mg/Kg 69 41 - 130 Nitrobenzene 3.34 2.61 mg/Kg 78 45 - 130 2-Nitrophenol 3.34 2.64 79 43 - 130 mg/Kg 4-Nitrophenol 6.68 73 40 - 130 4.84 mg/Kg 78 N-Nitrosodi-n-propylamine 3.34 2.61 mg/Kg 38 - 130N-Nitrosodiphenylamine 6.68 79 50 - 130 5.28 mg/Kg Pentachlorophenol 6.68 4.37 41 - 130 mg/Kg Phenanthrene 3.34 2.73 mg/Kg 82 52 - 130 Phenol 3.34 2.41 72 47 - 130 mg/Kg Pyrene 2.94 88 50 - 130 3.34 mg/Kg 2,4,5-Trichlorophenol 3.34 2.50 mg/Kg 75 51 - 130 2,4,6-Trichlorophenol 77 3.34 2.59 mg/Kg 50 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	69		41 - 116
2-Fluorophenol (Surr)	68		39 - 114
Nitrobenzene-d5 (Surr)	76		37 - 115
Phenol-d5 (Surr)	74		38 - 122
Terphenyl-d14 (Surr)	88		46 - 126
2,4,6-Tribromophenol (Surr)	79		45 - 129

Lab Sample ID: 680-115409-18 MS

Matrix: Solid

Analysis Batch: 395487

Client Sample ID: GB-16 4-6 Prep Type: Total/NA Prep Batch: 395299

Analysis Baton. 600407	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	0.055	U	4.45	3.38		mg/Kg	<u> </u>	76	58 - 130
Acenaphthylene	0.048	U	4.45	3.18		mg/Kg	₩	71	58 - 130
Acetophenone	0.037	U	4.45	3.13		mg/Kg	☼	70	42 - 130
Anthracene	0.033	U	4.45	3.25		mg/Kg		73	60 - 130
Atrazine	0.031	U	4.45	3.16		mg/Kg	₩	71	54 - 141
Benzaldehyde	0.078	U	4.45	2.33		mg/Kg	☼	52	10 - 130
Benzo[a]anthracene	0.036	U	4.45	3.39		mg/Kg		76	62 - 130
Benzo[a]pyrene	0.070	U	4.45	3.45		mg/Kg	₩	77	68 - 131
Benzo[b]fluoranthene	0.051	U	4.45	3.20		mg/Kg	☼	72	53 - 130
Benzo[g,h,i]perylene	0.029	U	4.45	3.29		mg/Kg		74	54 - 130
Benzo[k]fluoranthene	0.087	U	4.45	3.48		mg/Kg	☼	78	57 - 130
1,1'-Biphenyl	2.3	U	4.45	3.04		mg/Kg	☼	68	57 - 130
Bis(2-chloroethoxy)methane	0.052	U	4.45	3.23		mg/Kg	₩.	73	56 - 130
Bis(2-chloroethyl)ether	0.060	U	4.45	3.04		mg/Kg	☼	68	42 - 130
bis (2-chloroisopropyl) ether	0.040	U	4.45	3.58		mg/Kg	☼	80	44 - 130
Bis(2-ethylhexyl) phthalate	0.24	JВ	4.45	4.02		mg/Kg	₩.	85	62 - 132
4-Bromophenyl phenyl ether	0.048	U	4.45	3.21		mg/Kg	☼	72	65 - 130
Butyl benzyl phthalate	0.035	U	4.45	3.76		mg/Kg	₩	84	65 - 134

TestAmerica Savannah

Page 78 of 127

6

3

5

7

10

11

17

QC Sample Results

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-18 MS Client Sample ID: GB-16 4-6 **Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 395487	Sample	Sample	Spike	MS	MS				Prep Batch: 39529 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Caprolactam	0.088	U	4.45	2.73		mg/Kg	\	61	52 - 130
Carbazole	0.040	U	4.45	3.36		mg/Kg	₩.	76	60 - 130
4-Chloroaniline	0.070	U	4.45	1.73		mg/Kg	☼	39	36 - 130
4-Chloro-3-methylphenol	0.047	. U	4.45	3.26		mg/Kg	₩.	73	52 - 130
2-Chloronaphthalene	0.047	U	4.45	3.01		mg/Kg	☼	68	55 ₋ 130
2-Chlorophenol	0.054	U	4.45	3.04		mg/Kg	☼	68	51 - 130
4-Chlorophenyl phenyl ether	0.059	. U	4.45	3.11		mg/Kg	₩.	70	61 - 130
Chrysene	0.028	U	4.45	3.27		mg/Kg	₩	73	62 _ 130
Dibenz(a,h)anthracene	0.052	U	4.45	3.35		mg/Kg	₩	75	56 - 130
Dibenzofuran	0.044	. U	4.45	3.15		mg/Kg		71	56 - 130
3,3'-Dichlorobenzidine	0.037	U F1	4.45	1.98	F1	mg/Kg	₩	44	45 - 130
2,4-Dichlorophenol	0.047	U	4.45	3.32		mg/Kg	₩	75	53 - 130
Diethyl phthalate	0.049		4.45	3.14		mg/Kg		70	62 - 130
2,4-Dimethylphenol	0.059	U	4.45	3.30		mg/Kg	☼	74	47 - 130
Dimethyl phthalate	0.045	U	4.45	3.28		mg/Kg	☼	74	63 - 130
Di-n-butyl phthalate	0.040	U	4.45	3.49		mg/Kg		78	65 - 130
4,6-Dinitro-2-methylphenol	0.23	U F2 *	8.91	2.71		mg/Kg	☼	30	14 - 137
2,4-Dinitrophenol	1.1	U F1	8.91	1.1	U F1	mg/Kg	₩	0	10 - 154
2,4-Dinitrotoluene	0.066	U	4.45	3.32		mg/Kg		74	55 - 130
2,6-Dinitrotoluene	0.056	U	4.45	3.25		mg/Kg	☼	73	57 ₋ 130
Di-n-octyl phthalate	0.039	U	4.45	3.89		mg/Kg	₩	87	59 - 146
Fluoranthene	0.043	U	4.45	3.23		mg/Kg		72	62 - 130
Fluorene	0.048		4.45	3.21		mg/Kg	₩	72	58 - 130
Hexachlorobenzene	0.052	U	4.45	3.18		mg/Kg	₩	71	59 ₋ 130
Hexachlorobutadiene	0.048		4.45	2.85		mg/Kg		64	47 - 130
Hexachlorocyclopentadiene	0.055		4.45	2.31		mg/Kg	₩	52	35 - 130
Hexachloroethane	0.037		4.45	2.88		mg/Kg	₩	65	44 - 130
Indeno[1,2,3-cd]pyrene	0.037		4.45	3.29		mg/Kg	· · · · · · · · · · · · · · · · · · ·	74	52 - 130
Isophorone	0.044	U	4.45	3.29		mg/Kg	☼	74	48 - 130
2-Methylnaphthalene	0.051	U	4.45	2.78		mg/Kg	☼	62	55 - 130
2-Methylphenol	0.036		4.45	3.31		mg/Kg		74	49 - 130
3 & 4 Methylphenol	0.058		4.45	3.15		mg/Kg	☼	71	50 - 130
Naphthalene	0.040		4.45	2.99		mg/Kg	₩	67	54 - 130
2-Nitroaniline	0.060		4.45	3.19		mg/Kg		72	52 - 130
3-Nitroaniline	0.062		4.45	2.50		mg/Kg	₩	56	42 - 130
4-Nitroaniline	0.066		4.45	2.79		mg/Kg	₩	63	49 - 130
Nitrobenzene	0.035		4.45	3.27		mg/Kg		73	43 - 130
2-Nitrophenol	0.055		4.45	3.32		mg/Kg	₩	75	45 - 130
4-Nitrophenol	0.44		8.91	6.46		mg/Kg	₩	73	30 - 130
N-Nitrosodi-n-propylamine	0.043		4.45	3.28		mg/Kg		74	48 - 130
N-Nitrosodiphenylamine	0.044		8.91	6.58		mg/Kg	₩	74	62 - 130
Pentachlorophenol	0.44		8.91	5.94		mg/Kg	₩	67	38 - 131
Phenanthrene	0.036		4.45	3.22		mg/Kg		72	61 - 130
Phenol	0.045		4.45	3.03		mg/Kg	₩	68	46 - 130
Pyrene	0.036		4.45	3.02		mg/Kg	₩	68	59 ₋ 130
2,4,5-Trichlorophenol	0.047		4.45	2.91		mg/Kg		65	60 - 130
2,4,6-Trichlorophenol	0.039		4.45	3.16		mg/Kg	≎	71	53 ₋ 130

Project/Site: Macon MGP

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Me Me

Lab Sample ID: 680-115409-18 MS

Matrix: Solid

Analysis Batch: 395487

Client Sample ID: GB-16 4-6 **Prep Type: Total/NA**

Prep Batch: 395299

	IVIS	WS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	58		41 - 116
2-Fluorophenol (Surr)	65		39 - 114
Nitrobenzene-d5 (Surr)	70		37 - 115
Phenol-d5 (Surr)	69		38 - 122
Terphenyl-d14 (Surr)	74		46 - 126
2 4 6-Tribromophenol (Surr)	74		45 - 129

Lab Sample ID: 680-115409-18 MSD

2,4-Dinitrophenol

Client Sample ID: GB-16 4-6

Matrix: Solid									Prep Ty		
Analysis Batch: 395487	Samnla	Sample	Spike	MSD	MSD				Prep Ba	atcn: 3	95299 RPD
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	0.055		4.44	3.69		mg/Kg	— ☆	83	58 - 130	9	50
Acenaphthylene	0.048	U	4.44	3.38		mg/Kg	₩	76	58 ₋ 130	6	50
Acetophenone	0.037	U	4.44	2.90		mg/Kg	₩	65	42 - 130	8	50
Anthracene	0.033	Ü	4.44	3.82		mg/Kg		86	60 - 130	16	50
Atrazine	0.031	U	4.44	3.66		mg/Kg	☼	82	54 - 141	15	50
Benzaldehyde	0.078	U	4.44	2.54		mg/Kg	☼	57	10 - 130	8	50
Benzo[a]anthracene	0.036	U	4.44	3.74		mg/Kg		84	62 - 130	10	50
Benzo[a]pyrene	0.070	U	4.44	3.57		mg/Kg	☼	80	68 - 131	4	50
Benzo[b]fluoranthene	0.051	U	4.44	3.80		mg/Kg	☼	85	53 - 130	17	50
Benzo[g,h,i]perylene	0.029	Ü	4.44	3.62		mg/Kg		82	54 - 130	10	50
Benzo[k]fluoranthene	0.087	U	4.44	3.94		mg/Kg	☼	89	57 - 130	12	50
1,1'-Biphenyl	2.3	U	4.44	3.23		mg/Kg	☼	73	57 ₋ 130	6	50
Bis(2-chloroethoxy)methane	0.052	U	4.44	3.23		mg/Kg		73	56 - 130	0	50
Bis(2-chloroethyl)ether	0.060	U	4.44	2.96		mg/Kg	☼	67	42 - 130	3	50
bis (2-chloroisopropyl) ether	0.040	U	4.44	3.24		mg/Kg	☼	73	44 - 130	10	50
Bis(2-ethylhexyl) phthalate	0.24	JB	4.44	4.49		mg/Kg	₩.	96	62 - 132	11	50
4-Bromophenyl phenyl ether	0.048	U	4.44	3.76		mg/Kg	₩	85	65 - 130	16	50
Butyl benzyl phthalate	0.035	U	4.44	3.90		mg/Kg	☼	88	65 - 134	4	50
Caprolactam	0.088	U	4.44	3.07		mg/Kg		69	52 - 130	12	50
Carbazole	0.040	U	4.44	3.85		mg/Kg	☼	87	60 - 130	13	50
4-Chloroaniline	0.070	U	4.44	1.68		mg/Kg	₩	38	36 - 130	3	50
4-Chloro-3-methylphenol	0.047	U	4.44	3.26		mg/Kg		73	52 - 130	0	50
2-Chloronaphthalene	0.047	U	4.44	3.21		mg/Kg	☼	72	55 - 130	6	50
2-Chlorophenol	0.054	U	4.44	3.12		mg/Kg	₩	70	51 - 130	3	50
4-Chlorophenyl phenyl ether	0.059	U	4.44	3.28		mg/Kg	₩	74	61 - 130	5	50
Chrysene	0.028	U	4.44	3.74		mg/Kg	₩	84	62 - 130	14	50
Dibenz(a,h)anthracene	0.052	U	4.44	3.84		mg/Kg	₩	86	56 - 130	14	50
Dibenzofuran	0.044	U	4.44	3.37		mg/Kg	₩.	76	56 - 130	7	50
3,3'-Dichlorobenzidine	0.037	U F1	4.44	1.88	F1	mg/Kg	☼	42	45 - 130	5	50
2,4-Dichlorophenol	0.047	U	4.44	3.16		mg/Kg	☼	71	53 - 130	5	50
Diethyl phthalate	0.049	U	4.44	3.50		mg/Kg	₩.	79	62 - 130	11	50
2,4-Dimethylphenol	0.059	U	4.44	3.22		mg/Kg	☼	72	47 - 130	2	50
Dimethyl phthalate	0.045	U	4.44	3.55		mg/Kg	₩	80	63 - 130	8	50
Di-n-butyl phthalate	0.040	U	4.44	4.07		mg/Kg		92	65 - 130	15	50
4,6-Dinitro-2-methylphenol	0.23	U F2 *	8.88	5.13	F2	mg/Kg	₩	58	14 - 137	62	50

TestAmerica Savannah

25

10 - 154

2.26 J

8.88

1.1 UF1

mg/Kg

NC

50

Project/Site: Macon MGP

Client: Geotechnical & Environmental Consultants

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-115409-18 MSD Client Sample ID: GB-16 4-6 **Matrix: Solid Prep Type: Total/NA** Analysis Batch: 395487 Prep Batch: 395299

Analysis Batch: 395487	Sample	Sample	Spike	MSD	MSD				Prep Ba	atch: 39	9 5299 RPD
Analyte	•	Qualifier	Added	_	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4-Dinitrotoluene	0.066	U	4.44	3.67	-	mg/Kg	<u></u>	83	55 - 130	10	50
2,6-Dinitrotoluene	0.056		4.44	3.51		mg/Kg		79	57 - 130	8	50
Di-n-octyl phthalate	0.039	U	4.44	4.61		mg/Kg	≎	104	59 ₋ 146	17	50
Fluoranthene	0.043	U	4.44	3.83		mg/Kg	₩.	86	62 - 130	17	50
Fluorene	0.048	U	4.44	3.33		mg/Kg	₩	75	58 - 130	4	50
Hexachlorobenzene	0.052	U	4.44	3.70		mg/Kg	☼	83	59 - 130	15	50
Hexachlorobutadiene	0.048	Ü	4.44	3.09		mg/Kg	₩.	70	47 - 130	8	50
Hexachlorocyclopentadiene	0.055	U	4.44	2.65		mg/Kg	₩	60	35 - 130	14	50
Hexachloroethane	0.037	U	4.44	2.90		mg/Kg	₩	65	44 - 130	1	50
Indeno[1,2,3-cd]pyrene	0.037	U	4.44	3.49		mg/Kg	ф.	79	52 - 130	6	50
Isophorone	0.044	U	4.44	3.20		mg/Kg	☼	72	48 - 130	3	50
2-Methylnaphthalene	0.051	U	4.44	3.09		mg/Kg	☼	70	55 - 130	11	50
2-Methylphenol	0.036	U	4.44	3.03		mg/Kg	₩.	68	49 - 130	9	50
3 & 4 Methylphenol	0.058	U	4.44	3.28		mg/Kg	☼	74	50 - 130	4	50
Naphthalene	0.040	U	4.44	3.25		mg/Kg	≎	73	54 - 130	8	50
2-Nitroaniline	0.060	U	4.44	3.49		mg/Kg	₩	79	52 - 130	9	50
3-Nitroaniline	0.062	U	4.44	2.34		mg/Kg	≎	53	42 - 130	7	50
4-Nitroaniline	0.066	U	4.44	3.10		mg/Kg	≎	70	49 - 130	10	50
Nitrobenzene	0.035	U	4.44	3.10		mg/Kg	₩	70	43 - 130	5	50
2-Nitrophenol	0.055	U	4.44	3.14		mg/Kg	₩	71	45 - 130	6	50
4-Nitrophenol	0.44	U	8.88	7.05		mg/Kg	₩	79	30 - 130	9	50
N-Nitrosodi-n-propylamine	0.043	Ü	4.44	3.14		mg/Kg	₩	71	48 - 130	4	50
N-Nitrosodiphenylamine	0.044	U	8.88	7.50		mg/Kg	₩	84	62 - 130	13	50
Pentachlorophenol	0.44	U	8.88	7.17		mg/Kg	₩	81	38 - 131	19	50
Phenanthrene	0.036	U	4.44	3.83		mg/Kg	₽	86	61 - 130	17	50
Phenol	0.045	U	4.44	2.88		mg/Kg	₩	65	46 - 130	5	50
Pyrene	0.036	U	4.44	3.52		mg/Kg	☼	79	59 - 130	15	50
2,4,5-Trichlorophenol	0.047	U	4.44	3.27		mg/Kg	₩	74	60 - 130	12	50
2,4,6-Trichlorophenol	0.039	U	4.44	3.37		mg/Kg	₩	76	53 - 130	6	50

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	72		41 - 116
2-Fluorophenol (Surr)	68		39 - 114
Nitrobenzene-d5 (Surr)	68		37 - 115
Phenol-d5 (Surr)	69		38 - 122
Terphenyl-d14 (Surr)	79		46 - 126
2.4.6-Tribromophenol (Surr)	76		45 - 129

Lab Sample ID: MB 680-395304/11-A

Matrix: Solid

Analysis Batch: 395880

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 395304

	MR	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.041	U	0.33	0.041	mg/Kg		08/10/15 16:16	08/14/15 13:28	1
Acenaphthylene	0.036	U	0.33	0.036	mg/Kg		08/10/15 16:16	08/14/15 13:28	1
Acetophenone	0.028	U	0.33	0.028	mg/Kg		08/10/15 16:16	08/14/15 13:28	1
Anthracene	0.025	U	0.33	0.025	mg/Kg		08/10/15 16:16	08/14/15 13:28	1
Atrazine	0.023	U	0.33	0.023	mg/Kg		08/10/15 16:16	08/14/15 13:28	1

TestAmerica Savannah

Page 81 of 127

QC Sample Results

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MR MR

0.037 U

0.044 U

0.034 U

0.030 U

0.17 U

0.83 U

0.049 U

0.042 U

0.029 U

0.032 U

0.036 U

0.039 U

0.036 U

0.041 U

0.028 U

0.028 U

0.033 U

0.038 U

0.027 U

0.043 U

0.030 U

0.045 U

0.046 U

Lab Sample ID: MB 680-395304/11-A

Matrix: Solid

2,4-Dimethylphenol

Dimethyl phthalate

Di-n-butyl phthalate

2,4-Dinitrophenol

2,4-Dinitrotoluene

2,6-Dinitrotoluene

Fluoranthene

Fluorene

Di-n-octyl phthalate

Hexachlorobenzene

Hexachlorobutadiene

Indeno[1,2,3-cd]pyrene

2-Methylnaphthalene

3 & 4 Methylphenol

2-Methylphenol

Naphthalene

2-Nitroaniline

3-Nitroaniline

Hexachloroethane

Isophorone

Hexachlorocyclopentadiene

4,6-Dinitro-2-methylphenol

Dibenzofuran 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate

Analysis Batch: 395880

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 395304

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

08/10/15 16:16 08/14/15 13:28

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzaldehyde	0.058	U	0.33	0.058	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
Benzo[a]anthracene	0.027	U	0.33	0.027	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	П
Benzo[a]pyrene	0.052	U	0.33	0.052	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
Benzo[b]fluoranthene	0.038	U	0.33	0.038	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
Benzo[g,h,i]perylene	0.022	U	0.33	0.022	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
Benzo[k]fluoranthene	0.065	U	0.33	0.065	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
1,1'-Biphenyl	1.7	U	1.7	1.7	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
Bis(2-chloroethoxy)methane	0.039	U	0.33	0.039	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
Bis(2-chloroethyl)ether	0.045	U	0.33	0.045	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
bis (2-chloroisopropyl) ether	0.030	U	0.33	0.030	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
Bis(2-ethylhexyl) phthalate	0.0973	J	0.33	0.029	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
4-Bromophenyl phenyl ether	0.036	U	0.33	0.036	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
Butyl benzyl phthalate	0.026	U	0.33	0.026	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
Caprolactam	0.066	U	0.33	0.066	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
Carbazole	0.030	U	0.33	0.030	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
4-Chloroaniline	0.052	U	0.66	0.052	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
4-Chloro-3-methylphenol	0.035	U	0.33	0.035	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
2-Chloronaphthalene	0.035	U	0.33	0.035	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
2-Chlorophenol	0.040	U	0.33	0.040	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
4-Chlorophenyl phenyl ether	0.044	U	0.33	0.044	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
Chrysene	0.021	U	0.33	0.021	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
Dibenz(a,h)anthracene	0.039	U	0.33	0.039	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
Dibenzofuran	0.033	U	0.33	0.033	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
3,3'-Dichlorobenzidine	0.028	U	0.66	0.028	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	
2,4-Dichlorophenol	0.035	U	0.33	0.035	mg/Kg		08/10/15 16:16	08/14/15 13:28	1	

0.037 mg/Kg

0.044 mg/Kg

0.034 mg/Kg

0.030 mg/Kg

0.17 mg/Kg

0.83 mg/Kg

0.042 mg/Kg

0.029 mg/Kg

0.032 mg/Kg

0.036 mg/Kg

0.039 mg/Kg

0.036 mg/Kg

0.041 mg/Kg

0.028 mg/Kg

0.028 mg/Kg

0.033 mg/Kg

0.038 mg/Kg

0.027 mg/Kg

0.043 mg/Kg

0.030 mg/Kg

0.045 mg/Kg

0.046 mg/Kg

mg/Kg

0.049

TestAmerica Savannah

Page 82 of 127

0.33

0.33

0.33

0.33

1.7

1.7

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

1.7

1.7

6

1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-395304/11-A **Matrix: Solid**

Analysis Batch: 395880

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 395304

ME	MB							
Analyte Resul	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitroaniline 0.049	Ū U	1.7	0.049	mg/Kg		08/10/15 16:16	08/14/15 13:28	1
Nitrobenzene 0.026	S U	0.33	0.026	mg/Kg		08/10/15 16:16	08/14/15 13:28	1
2-Nitrophenol 0.041	U	0.33	0.041	mg/Kg		08/10/15 16:16	08/14/15 13:28	1
4-Nitrophenol 0.33	s U	1.7	0.33	mg/Kg		08/10/15 16:16	08/14/15 13:28	1
N-Nitrosodi-n-propylamine 0.032	. U	0.33	0.032	mg/Kg		08/10/15 16:16	08/14/15 13:28	1
N-Nitrosodiphenylamine 0.033	s U	0.33	0.033	mg/Kg		08/10/15 16:16	08/14/15 13:28	1
Pentachlorophenol 0.33	3 U	1.7	0.33	mg/Kg		08/10/15 16:16	08/14/15 13:28	1
Phenanthrene 0.027	, n	0.33	0.027	mg/Kg		08/10/15 16:16	08/14/15 13:28	1
Phenol 0.034	U	0.33	0.034	mg/Kg		08/10/15 16:16	08/14/15 13:28	1
Pyrene 0.027	' U	0.33	0.027	mg/Kg		08/10/15 16:16	08/14/15 13:28	1
2,4,5-Trichlorophenol 0.035	5 U	0.33	0.035	mg/Kg		08/10/15 16:16	08/14/15 13:28	1
2,4,6-Trichlorophenol 0.029	U	0.33	0.029	mg/Kg		08/10/15 16:16	08/14/15 13:28	1

MB MB

Surrogate	%Recovery Q	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	73		41 - 116	08/10/15 16:16	08/14/15 13:28	1
2-Fluorophenol (Surr)	62		39 - 114	08/10/15 16:16	08/14/15 13:28	1
Nitrobenzene-d5 (Surr)	96		37 - 115	08/10/15 16:16	08/14/15 13:28	1
Phenol-d5 (Surr)	73		38 - 122	08/10/15 16:16	08/14/15 13:28	1
Terphenyl-d14 (Surr)	82		46 - 126	08/10/15 16:16	08/14/15 13:28	1
2,4,6-Tribromophenol (Surr)	72		45 - 129	08/10/15 16:16	08/14/15 13:28	1

Lab Sample ID: LCS 680-395304/12-A

Matrix: Solid

Analysis Batch: 395714

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 395304

	Spike	LCS	LCS		%Rec.
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
Acenaphthene	3.33	2.12	mg/Kg	64	47 - 130
Acenaphthylene	3.33	2.26	mg/Kg	68	45 - 130
Acetophenone	3.33	2.15	mg/Kg	64	44 - 130
Anthracene	3.33	2.53	mg/Kg	76	50 - 130
Atrazine	3.33	2.34	mg/Kg	70	47 - 130
Benzaldehyde	3.33	0.426	mg/Kg	13	10 - 130
Benzo[a]anthracene	3.33	2.71	mg/Kg	81	50 - 130
Benzo[a]pyrene	3.33	2.44	mg/Kg	73	47 - 131
Benzo[b]fluoranthene	3.33	2.48	mg/Kg	74	48 - 130
Benzo[g,h,i]perylene	3.33	2.31	mg/Kg	69	42 - 130
Benzo[k]fluoranthene	3.33	2.62	mg/Kg	79	48 - 108
1,1'-Biphenyl	3.33	2.29	mg/Kg	69	48 - 130
Bis(2-chloroethoxy)methane	3.33	2.04	mg/Kg	61	47 - 130
Bis(2-chloroethyl)ether	3.33	1.88	mg/Kg	56	37 - 130
bis (2-chloroisopropyl) ether	3.33	1.96	mg/Kg	59	38 - 130
Bis(2-ethylhexyl) phthalate	3.33	2.61	mg/Kg	78	48 - 130
4-Bromophenyl phenyl ether	3.33	2.49	mg/Kg	75	53 - 130
Butyl benzyl phthalate	3.33	2.44	mg/Kg	73	53 - 134
Caprolactam	3.33	1.95	mg/Kg	59	44 - 130
Carbazole	3.33	2.34	mg/Kg	70	51 - 130
4-Chloroaniline	3.33	1.88	mg/Kg	56	10 - 130
4-Chloro-3-methylphenol	3.33	2.37	mg/Kg	71	51 - 130

TestAmerica Savannah

Page 83 of 127

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-395304/12-A

Matrix: Solid

Analysis Batch: 395714

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 395304

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2-Chloronaphthalene	3.33	2.46		mg/Kg		74	48 - 130	_
2-Chlorophenol	3.33	2.18		mg/Kg		65	47 - 130	
4-Chlorophenyl phenyl ether	3.33	2.50		mg/Kg		75	49 - 130	
Chrysene	3.33	2.23		mg/Kg		67	47 - 130	
Dibenz(a,h)anthracene	3.33	2.42		mg/Kg		73	44 - 130	
Dibenzofuran	3.33	2.33		mg/Kg		70	49 - 130	
3,3'-Dichlorobenzidine	3.33	2.01		mg/Kg		60	16 - 130	
2,4-Dichlorophenol	3.33	2.39		mg/Kg		72	48 - 130	
Diethyl phthalate	3.33	2.47		mg/Kg		74	49 - 130	
2,4-Dimethylphenol	3.33	2.20		mg/Kg		66	43 - 130	
Dimethyl phthalate	3.33	2.41		mg/Kg		72	50 - 130	
Di-n-butyl phthalate	3.33	2.43		mg/Kg		73	52 - 130	
4,6-Dinitro-2-methylphenol	6.67	0.225	J *	mg/Kg		3	23 - 130	
2,4-Dinitrophenol	6.67	5.31		mg/Kg		80	10 - 130	
2,4-Dinitrotoluene	3.33	2.38		mg/Kg		71	49 - 111	
2,6-Dinitrotoluene	3.33	2.36		mg/Kg		71	49 - 130	
Di-n-octyl phthalate	3.33	2.46		mg/Kg		74	46 - 130	
Fluoranthene	3.33	2.43		mg/Kg		73	51 - 130	
Fluorene	3.33	2.66		mg/Kg		80	52 - 130	
Hexachlorobenzene	3.33	2.47		mg/Kg		74	53 - 130	
Hexachlorobutadiene	3.33	2.22		mg/Kg		67	48 - 130	
Hexachlorocyclopentadiene	3.33	1.80		mg/Kg		54	28 - 130	
Hexachloroethane	3.33	1.96		mg/Kg		59	42 - 130	
Indeno[1,2,3-cd]pyrene	3.33	2.31		mg/Kg		69	41 - 130	
Isophorone	3.33	1.98		mg/Kg		59	48 - 130	
2-Methylnaphthalene	3.33	2.23		mg/Kg		67	48 - 130	
2-Methylphenol	3.33	2.18		mg/Kg		65	46 - 130	
3 & 4 Methylphenol	3.33	2.14		mg/Kg		64	46 - 130	
Naphthalene	3.33	2.16		mg/Kg		65	47 - 130	
2-Nitroaniline	3.33	2.16		mg/Kg		65	44 - 130	
3-Nitroaniline	3.33	2.12		mg/Kg		64	21 - 130	
4-Nitroaniline	3.33	2.27		mg/Kg		68	41 - 130	
Nitrobenzene	3.33	1.96		mg/Kg		59	45 - 130	
2-Nitrophenol	3.33	2.28		mg/Kg		68	43 - 130	
4-Nitrophenol	6.67	4.13		mg/Kg		62	40 - 130	
N-Nitrosodi-n-propylamine	3.33	1.97		mg/Kg		59	38 - 130	
N-Nitrosodiphenylamine	6.67	5.15		mg/Kg		77	50 - 130	
Pentachlorophenol	6.67	1.45	J *	mg/Kg		22	41 - 130	
Phenanthrene	3.33	2.35		mg/Kg		70	52 - 130	
Phenol	3.33	2.19		mg/Kg		66	47 - 130	
Pyrene	3.33	2.42		mg/Kg		73	50 - 130	
2,4,5-Trichlorophenol	3.33	2.60		mg/Kg		78	51 ₋ 130	
2,4,6-Trichlorophenol	3.33	2.28		mg/Kg		69	50 - 130	

LCS LCS Surrogate %Recovery Qualifier Limits 2-Fluorobiphenyl 73 41 - 116 2-Fluorophenol (Surr) 61 39 - 114

60

Nitrobenzene-d5 (Surr)

TestAmerica Savannah

9/17/2015

Page 84 of 127

37 - 115

QC Sample Results

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-395304/12-A

Matrix: Solid

Analysis Batch: 395714

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 395304

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Phenol-d5 (Surr)	65		38 - 122
Terphenyl-d14 (Surr)	76		46 - 126
2,4,6-Tribromophenol (Surr)	79		45 - 129

Client Sample ID: SB-17 8-10

Prep Type: Total/NA

Prep Batch: 395304

Lab Sample ID: 680-115409-27 MS

Matrix: Solid

Analysis Batch: 395714

Analysis Batch: 395714	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
Acenaphthene		JF1	3.77	2.82		mg/Kg	<u>∓</u>	72	
Acenaphthylene	0.041		3.77	2.89		mg/Kg	☼	77	58 - 130
Acetophenone	0.032		3.77	2.72		mg/Kg	☼	72	42 - 130
Anthracene	0.19	J	3.77	3.37		mg/Kg	₩.	84	60 - 130
Atrazine	0.026	U	3.77	2.92		mg/Kg	₩	77	54 - 141
Benzaldehyde	0.066	U	3.77	1.62		mg/Kg	☼	43	10 - 130
Benzo[a]anthracene	0.39		3.77	3.84		mg/Kg		91	62 - 130
Benzo[a]pyrene	0.32	J F1	3.77	3.39		mg/Kg	₩	81	68 - 131
Benzo[b]fluoranthene	0.45		3.77	3.47		mg/Kg	₩	80	53 - 130
Benzo[g,h,i]perylene	0.19	J	3.77	3.23		mg/Kg		81	54 - 130
Benzo[k]fluoranthene	0.18	J	3.77	3.68		mg/Kg	₩	93	57 - 130
1,1'-Biphenyl	1.9	U	3.77	2.88		mg/Kg	☼	76	57 ₋ 130
Bis(2-chloroethoxy)methane	0.044	U F1	3.77	2.64		mg/Kg	₩	70	56 - 130
Bis(2-chloroethyl)ether	0.051	U	3.77	2.28		mg/Kg	☼	60	42 - 130
bis (2-chloroisopropyl) ether	0.034	U	3.77	2.41		mg/Kg	₩	64	44 - 130
Bis(2-ethylhexyl) phthalate	0.18	JВ	3.77	3.36		mg/Kg	₩	84	62 - 132
4-Bromophenyl phenyl ether	0.041	U	3.77	3.18		mg/Kg	☼	84	65 - 130
Butyl benzyl phthalate	0.030	U	3.77	3.15		mg/Kg	☼	83	65 - 134
Caprolactam	0.075	Ü	3.77	2.57		mg/Kg	₩.	68	52 - 130
Carbazole	0.12	J F1	3.77	2.78		mg/Kg	☼	71	60 - 130
4-Chloroaniline	0.059	U	3.77	2.42		mg/Kg	☼	64	36 - 130
4-Chloro-3-methylphenol	0.040	U	3.77	2.95		mg/Kg	₩	78	52 - 130
2-Chloronaphthalene	0.040	U	3.77	3.11		mg/Kg	☼	82	55 ₋ 130
2-Chlorophenol	0.045	U	3.77	2.72		mg/Kg	☼	72	51 ₋ 130
4-Chlorophenyl phenyl ether	0.050	U	3.77	3.11		mg/Kg	₩	82	61 - 130
Chrysene	0.33	J F1	3.77	3.13		mg/Kg	☼	74	62 - 130
Dibenz(a,h)anthracene	0.061	J	3.77	3.12		mg/Kg	☼	81	56 ₋ 130
Dibenzofuran	0.052	J	3.77	3.04		mg/Kg	₩	79	56 - 130
3,3'-Dichlorobenzidine	0.032	U	3.77	2.81		mg/Kg	☼	75	45 - 130
2,4-Dichlorophenol	0.040	U	3.77	3.02		mg/Kg	₩	80	53 - 130
Diethyl phthalate	0.042	Ü	3.77	3.09		mg/Kg	₩	82	62 - 130
2,4-Dimethylphenol	0.050	U	3.77	2.86		mg/Kg	☼	76	47 - 130
Dimethyl phthalate	0.039	U F1	3.77	3.07		mg/Kg	₩	81	63 - 130
Di-n-butyl phthalate	0.034	U F1	3.77	3.02		mg/Kg		80	65 - 130
4,6-Dinitro-2-methylphenol	0.19	U F2 *	7.55	3.93		mg/Kg	☼	52	14 - 137
2,4-Dinitrophenol	0.94	U F1	7.55	1.50	J	mg/Kg	☼	20	10 - 154
2,4-Dinitrotoluene	0.056	\mathbf{U}	3.77	3.17		mg/Kg		84	55 - 130
2,6-Dinitrotoluene	0.048	U	3.77	3.01		mg/Kg	☼	80	57 ₋ 130
Di-n-octyl phthalate	0.033	U	3.77	3.17		mg/Kg	₩	84	59 ₋ 146
• •									

Project/Site: Macon MGP

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-115409-27 MS

Client: Geotechnical & Environmental Consultants

Matrix: Solid

Analysis Batch: 395714

Client Sample ID: SB-17 8-10

Prep Type: Total/NA Prep Batch: 395304

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluoranthene	0.78	F1	3.77	3.72		mg/Kg	₩	78	62 - 130	
Fluorene	0.13	J	3.77	3.41		mg/Kg	₩	87	58 - 130	
Hexachlorobenzene	0.044	U	3.77	3.16		mg/Kg	₩	84	59 ₋ 130	
Hexachlorobutadiene	0.041	Ü	3.77	2.80		mg/Kg	₩	74	47 - 130	
Hexachlorocyclopentadiene	0.047	U	3.77	2.04		mg/Kg	≎	54	35 - 130	
Hexachloroethane	0.032	U	3.77	2.38		mg/Kg	☼	63	44 - 130	
Indeno[1,2,3-cd]pyrene	0.17	J	3.77	3.25		mg/Kg		82	52 ₋ 130	
Isophorone	0.037	U	3.77	2.57		mg/Kg	☼	68	48 - 130	
2-Methylnaphthalene	0.043	U	3.77	2.90		mg/Kg	☼	77	55 - 130	
2-Methylphenol	0.031	Ü	3.77	2.73		mg/Kg		72	49 - 130	
3 & 4 Methylphenol	0.049	U	3.77	2.65		mg/Kg	☼	70	50 - 130	
Naphthalene	0.034	U	3.77	2.77		mg/Kg	☼	73	54 ₋ 130	
2-Nitroaniline	0.051	Ü	3.77	2.80		mg/Kg	₩.	74	52 - 130	
3-Nitroaniline	0.052	U	3.77	2.75		mg/Kg	☼	73	42 - 130	
4-Nitroaniline	0.056	U	3.77	2.34		mg/Kg	₩	62	49 - 130	
Nitrobenzene	0.030	U	3.77	2.49		mg/Kg	₩.	66	43 - 130	
2-Nitrophenol	0.047	U	3.77	2.93		mg/Kg	≎	78	45 - 130	
4-Nitrophenol	0.37	U	7.55	6.13		mg/Kg	☼	81	30 - 130	
N-Nitrosodi-n-propylamine	0.036	U	3.77	2.45		mg/Kg	₩.	65	48 - 130	
N-Nitrosodiphenylamine	0.037	U	7.55	6.62		mg/Kg	≎	88	62 - 130	
Pentachlorophenol	0.37	U *	7.55	5.27		mg/Kg	☼	70	38 - 131	
Phenanthrene	0.63	F1	3.77	3.43		mg/Kg		74	61 - 130	
Phenol	0.039	U	3.77	2.65		mg/Kg	☼	70	46 - 130	
Pyrene	0.56	F1	3.77	3.61		mg/Kg	☼	81	59 ₋ 130	
2,4,5-Trichlorophenol	0.040	Ü	3.77	3.32		mg/Kg	₩.	88	60 - 130	
2,4,6-Trichlorophenol	0.033	U	3.77	2.90		mg/Kg	₩	77	53 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	83		41 - 116
2-Fluorophenol (Surr)	67		39 - 114
Nitrobenzene-d5 (Surr)	65		37 - 115
Phenol-d5 (Surr)	70		38 - 122
Terphenyl-d14 (Surr)	85		46 - 126

Sample Sample

Lab Sample ID: 680-115409-27 MSD

Matrix: Solid

Analysis Batch: 395714

2,4,6-Tribromophenol (Surr)

		Prep Batch: 395304							
		%Rec.	RPD						
D	%Rec	Limits	RPD	Limit					
₩	52	58 - 130	31	50					
≎	57	58 - 130	30	50					
₩	56	42 - 130	26	50					
	63	60 - 130	27	50					

Client Sample ID: SB-17 8-10

Prep Type: Total/NA

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	0.12	J F1	3.76	2.06	F1	mg/Kg	\	52	58 - 130	31	50
Acenaphthylene	0.041	U F1	3.76	2.14	F1	mg/Kg	₩	57	58 - 130	30	50
Acetophenone	0.032	U	3.76	2.09		mg/Kg	☼	56	42 - 130	26	50
Anthracene	0.19	J	3.76	2.57		mg/Kg	\$	63	60 - 130	27	50
Atrazine	0.026	U	3.76	2.28		mg/Kg	☼	61	54 - 141	25	50
Benzaldehyde	0.066	U	3.76	1.00		mg/Kg	₩	27	10 - 130	47	50
Benzo[a]anthracene	0.39		3.76	2.87		mg/Kg	₩.	66	62 - 130	29	50
Benzo[a]pyrene	0.32	J F1	3.76	2.49	F1	mg/Kg	₩	58	68 - 131	31	50

MSD MSD

45 - 129

Spike

TestAmerica Savannah

Page 86 of 127

9/17/2015

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-115409-27 MSD Client Sample ID: SB-17 8-10

Matrix: Solid Analysis Batch: 395714	Sample	Sample	Spike	MSD	MSD				Prep Ty Prep Ba %Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzo[b]fluoranthene	0.45		3.76	2.58		mg/Kg	<u> </u>	57	53 - 130	29	50
Benzo[g,h,i]perylene	0.19	J	3.76	2.36		mg/Kg	₩.	58	54 - 130	31	50
Benzo[k]fluoranthene	0.18	J	3.76	2.54		mg/Kg	₩	63	57 ₋ 130	37	50
1,1'-Biphenyl	1.9	U	3.76	2.18		mg/Kg	₩	58	57 - 130	28	50
Bis(2-chloroethoxy)methane	0.044	U F1	3.76	1.99	F1	mg/Kg	₩.	53	56 - 130	28	50
Bis(2-chloroethyl)ether	0.051	U	3.76	1.84		mg/Kg	₩	49	42 - 130	21	50
bis (2-chloroisopropyl) ether	0.034	U	3.76	1.92		mg/Kg	₩	51	44 - 130	23	50
Bis(2-ethylhexyl) phthalate	0.18	JB	3.76	2.64		mg/Kg	₩	66	62 - 132	24	50
4-Bromophenyl phenyl ether	0.041	U	3.76	2.43		mg/Kg	₩	65	65 - 130	27	50
Butyl benzyl phthalate	0.030	U	3.76	2.45		mg/Kg	₩	65	65 - 134	25	50
Caprolactam	0.075	U	3.76	2.01		mg/Kg	₩.	54	52 - 130	24	50
Carbazole	0.12	J F1	3.76	2.25	F1	mg/Kg	₩	57	60 - 130	21	50
4-Chloroaniline	0.059	U	3.76	1.76		mg/Kg	₩	47	36 - 130	32	50
4-Chloro-3-methylphenol	0.040	U	3.76	2.25		mg/Kg	₩.	60	52 - 130	27	50
2-Chloronaphthalene	0.040	U	3.76	2.37		mg/Kg	₩	63	55 ₋ 130	27	50
2-Chlorophenol	0.045	U	3.76	2.15		mg/Kg	₩	57	51 - 130	23	50
4-Chlorophenyl phenyl ether	0.050	Ü	3.76	2.30		mg/Kg	.	61	61 - 130	30	50
Chrysene	0.33	J F1	3.76	2.28	F1	mg/Kg	₩	52	62 - 130	31	50
Dibenz(a,h)anthracene	0.061	J	3.76	2.39		mg/Kg	₩	62	56 - 130	27	50
Dibenzofuran	0.052	J	3.76	2.29		mg/Kg		60	56 - 130	28	50
3,3'-Dichlorobenzidine	0.032	U	3.76	2.09		mg/Kg	₩	56	45 - 130	30	50
2,4-Dichlorophenol	0.040	U	3.76	2.29		mg/Kg	₩	61	53 - 130	28	50
Diethyl phthalate	0.042	Ü	3.76	2.32		mg/Kg		62	62 - 130	28	50
2,4-Dimethylphenol	0.050	U	3.76	2.19		mg/Kg	₩	58	47 - 130	26	50
Dimethyl phthalate	0.039	U F1	3.76	2.31	F1	mg/Kg	₩	62	63 - 130	28	50
Di-n-butyl phthalate	0.034	U F1	3.76	2.35	F1	mg/Kg	₩.	63	65 - 130	25	50
4,6-Dinitro-2-methylphenol	0.19	U F2 *	7.51	2.13	F2	mg/Kg	₩	28	14 - 137	60	50
2,4-Dinitrophenol	0.94	U F1	7.51	0.94	U F1	mg/Kg	₩	0	10 - 154	NC	50
2,4-Dinitrotoluene	0.056	Ü	3.76	2.27		mg/Kg		60	55 - 130	33	50
2,6-Dinitrotoluene	0.048	U	3.76	2.30		mg/Kg	₩	61	57 ₋ 130	27	50
Di-n-octyl phthalate	0.033	U	3.76	2.43		mg/Kg	₩	65	59 - 146	26	50
Fluoranthene	0.78	F1	3.76	2.68	F1	mg/Kg		51	62 - 130	33	50
Fluorene	0.13	J	3.76	2.55		mg/Kg	₩	64	58 ₋ 130	29	50
Hexachlorobenzene	0.044	U	3.76	2.44		mg/Kg	₩	65	59 ₋ 130	26	50
Hexachlorobutadiene	0.041	. U	3.76	2.16		mg/Kg		58	47 - 130	26	50
Hexachlorocyclopentadiene	0.047		3.76	1.68		mg/Kg	₩	45	35 - 130	19	50
Hexachloroethane	0.032		3.76	1.92		mg/Kg	₩	51	44 - 130	22	50
Indeno[1,2,3-cd]pyrene	0.17		3.76	2.43		mg/Kg		60	52 - 130	29	50
Isophorone	0.037		3.76	1.96		mg/Kg	₩	52	48 - 130	27	50
2-Methylnaphthalene	0.043		3.76	2.15		mg/Kg	₩	57	55 - 130	30	50
2-Methylphenol	0.031		3.76	2.12		mg/Kg		56	49 - 130	25	50
3 & 4 Methylphenol	0.049		3.76	2.07		mg/Kg	₩	55	50 - 130	25	50
Naphthalene	0.034		3.76	2.15		mg/Kg	₩	57	54 ₋ 130	25	50
2-Nitroaniline	0.051		3.76	2.11		mg/Kg		56	52 - 130	28	50
3-Nitroaniline	0.052		3.76	2.03		mg/Kg	₩	54	42 - 130	30	50
4-Nitroaniline	0.056		3.76	1.93		mg/Kg	₩	51	49 - 130	19	50
Nitrobenzene	0.030		3.76	1.92		mg/Kg		51	43 - 130	26	50
2-Nitrophenol	0.030		3.76	2.22		mg/Kg	₩	59	45 - 130	28	50

TestAmerica Savannah

9/17/2015

Page 87 of 127

Project/Site: Macon MGP

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-115409-27 MSD

Client: Geotechnical & Environmental Consultants

Matrix: Solid

Analysis Batch: 395714

Client Sample ID: SB-17 8-10 **Prep Type: Total/NA**

Prep Batch: 395304

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4-Nitrophenol	0.37	U	7.51	4.18		mg/Kg	₩	56	30 - 130	38	50
N-Nitrosodi-n-propylamine	0.036	U	3.76	1.95		mg/Kg	₽	52	48 - 130	23	50
N-Nitrosodiphenylamine	0.037	U	7.51	5.14		mg/Kg	≎	68	62 - 130	25	50
Pentachlorophenol	0.37	U *	7.51	3.42		mg/Kg	☼	46	38 - 131	42	50
Phenanthrene	0.63	F1	3.76	2.51	F1	mg/Kg	₩.	50	61 - 130	31	50
Phenol	0.039	U	3.76	2.09		mg/Kg	☼	56	46 - 130	24	50
Pyrene	0.56	F1	3.76	2.60	F1	mg/Kg	≎	54	59 - 130	33	50
2,4,5-Trichlorophenol	0.040	U	3.76	2.51		mg/Kg	\$	67	60 - 130	28	50
2,4,6-Trichlorophenol	0.033	U	3.76	2.15		mg/Kg	☼	57	53 - 130	30	50

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	63		41 - 116
2-Fluorophenol (Surr)	52		39 - 114
Nitrobenzene-d5 (Surr)	54		37 - 115
Phenol-d5 (Surr)	56		38 - 122
Terphenyl-d14 (Surr)	68		46 - 126
2,4,6-Tribromophenol (Surr)	67		45 - 129

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-395413/1-A

Matrix: Solid

Analysis Batch: 395634

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 395413

7 maryone Datom Cocco :	МВ	MB						op Datom	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.68	U	1.7	0.68	mg/Kg		08/11/15 07:36	08/11/15 18:29	1
Barium	0.14	U	0.85	0.14	mg/Kg		08/11/15 07:36	08/11/15 18:29	1
Beryllium	0.0085	U	0.34	0.0085	mg/Kg		08/11/15 07:36	08/11/15 18:29	1
Cadmium	0.085	U	0.42	0.085	mg/Kg		08/11/15 07:36	08/11/15 18:29	1
Chromium	0.18	U	0.85	0.18	mg/Kg		08/11/15 07:36	08/11/15 18:29	1
Copper	0.14	U	2.1	0.14	mg/Kg		08/11/15 07:36	08/11/15 18:29	1
Lead	0.29	U	0.85	0.29	mg/Kg		08/11/15 07:36	08/11/15 18:29	1
Nickel	0.32	U	3.4	0.32	mg/Kg		08/11/15 07:36	08/11/15 18:29	1
Selenium	0.82	U	2.1	0.82	mg/Kg		08/11/15 07:36	08/11/15 18:29	1
Silver	0.051	U	0.85	0.051	mg/Kg		08/11/15 07:36	08/11/15 18:29	1
Vanadium	0.085	U	0.85	0.085	mg/Kg		08/11/15 07:36	08/11/15 18:29	1
Zinc	0.59	U	1.7	0.59	mg/Kg		08/11/15 07:36	08/11/15 18:29	1

Lab Sample ID: LCS 680-395413/2-A

Matrix: Solid

Analysis Batch: 395634

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 395413**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	8.85	8.85		mg/Kg		100	80 - 120	
Barium	8.85	8.79		mg/Kg		99	80 - 120	
Beryllium	4.42	4.58		mg/Kg		104	80 - 120	
Cadmium	4.42	4.67		mg/Kg		105	80 - 120	
Chromium	8.85	9.15		mg/Kg		103	80 - 120	
	Arsenic Barium Beryllium Cadmium	Analyte Added Arsenic 8.85 Barium 8.85 Beryllium 4.42 Cadmium 4.42	Analyte Added Result Arsenic 8.85 8.85 Barium 8.85 8.79 Beryllium 4.42 4.58 Cadmium 4.42 4.67	Analyte Added Arsenic Result Qualifier Arsenic 8.85 8.85 Barium 8.85 8.79 Beryllium 4.42 4.58 Cadmium 4.42 4.67	Analyte Added Result Result Qualifier Unit Unit Arsenic 8.85 8.85 mg/Kg Barium 8.85 8.79 mg/Kg Beryllium 4.42 4.58 mg/Kg Cadmium 4.42 4.67 mg/Kg	Analyte Added Result Qualifier Unit D Arsenic 8.85 8.85 mg/Kg Barium 8.85 8.79 mg/Kg Beryllium 4.42 4.58 mg/Kg Cadmium 4.42 4.67 mg/Kg	Analyte Added Result Qualifier Unit D %Rec Arsenic 8.85 8.85 mg/Kg 100 Barium 8.85 8.79 mg/Kg 99 Beryllium 4.42 4.58 mg/Kg 104 Cadmium 4.42 4.67 mg/Kg 105	Analyte Added Result Qualifier Unit D %Rec Limits Arsenic 8.85 8.85 mg/Kg 100 80 - 120 Barium 8.85 8.79 mg/Kg 99 80 - 120 Beryllium 4.42 4.58 mg/Kg 104 80 - 120 Cadmium 4.42 4.67 mg/Kg 105 80 - 120

TestAmerica Savannah

Page 88 of 127

9/17/2015

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 680-395413/2-A

Matrix: Solid

Analysis Batch: 395634

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 395413

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit D %Rec Copper 8.85 9.01 mg/Kg 102 80 - 120 Lead 44.2 44.7 mg/Kg 101 80 - 120 Nickel 8.85 9.14 mg/Kg 103 80 - 120 Selenium 8.85 8.68 mg/Kg 98 80 - 120 Silver 4.42 4.38 mg/Kg 99 80 - 120 Vanadium 8.85 8.77 mg/Kg 99 80 - 120 Zinc 8.85 9.19 mg/Kg 104 80 - 120

Lab Sample ID: 680-115409-14 MS

Matrix: Solid

Analysis Batch: 395634

Client Sample ID: SB-42 4-6 **Prep Type: Total/NA**

Prep Batch: 395413

•	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	2.1		9.58	10.3	-	mg/Kg	₽	86	75 - 125
Barium	220		9.58	207	4	mg/Kg	≎	-130	75 - 125
Beryllium	1.6		4.79	6.17		mg/Kg	≎	95	75 - 125
Cadmium	0.095	U	4.79	4.70		mg/Kg	\$	98	75 - 125
Chromium	26	F1	9.58	31.3	F1	mg/Kg	≎	58	75 - 125
Copper	13		9.58	21.9		mg/Kg	≎	93	75 - 125
Lead	22		47.9	64.0		mg/Kg	₩	87	75 - 125
Nickel	11	F1	9.58	18.2	F1	mg/Kg	≎	72	75 - 125
Selenium	0.92	U	9.58	7.70		mg/Kg	≎	80	75 - 125
Silver	0.057	Ū	4.79	4.29		mg/Kg		90	75 - 125
Vanadium	50		9.58	52.6	4	mg/Kg	≎	28	75 - 125
Zinc	100		9.58	106	4	mg/Kg	₩	27	75 ₋ 125

Lab Sample ID: 680-115409-14 MSD

Matrix: Solid

Analysis Ratch: 395634

Client Sample ID: SB-42 4-6 Prep Type: Total/NA

Pron Batch: 395/13

Analysis Batch: 395634									Prep Ba	aten: 3	15413
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	2.1		9.50	10.6		mg/Kg	₩	89	75 - 125	2	20
Barium	220		9.50	221	4	mg/Kg	₩	14	75 - 125	6	20
Beryllium	1.6		4.75	6.15		mg/Kg	₩	96	75 - 125	0	20
Cadmium	0.095	U	4.75	4.62		mg/Kg	₩.	97	75 - 125	2	20
Chromium	26	F1	9.50	31.6	F1	mg/Kg	☼	61	75 - 125	1	20
Copper	13		9.50	21.8		mg/Kg	₩	93	75 - 125	1	20
Lead	22		47.5	65.0		mg/Kg	₩.	90	75 - 125	2	20
Nickel	11	F1	9.50	18.7		mg/Kg	☼	78	75 - 125	3	20
Selenium	0.92	U	9.50	7.13		mg/Kg	₩	75	75 - 125	8	20
Silver	0.057	U	4.75	4.27		mg/Kg		90	75 - 125	1	20
Vanadium	50		9.50	60.1	4	mg/Kg	₩	107	75 - 125	13	20
Zinc	100		9.50	115	4	mg/Kg	₩	121	75 - 125	8	20

TestAmerica Savannah

9/17/2015

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

Method: 6010C - Metals (ICP) (Continued)

Client Sample ID: Method Blank Lab Sample ID: MB 680-395425/1-A **Matrix: Solid Prep Type: Total/NA** Analysis Batch: 396333 **Prep Batch: 395425**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.71	U	1.8	0.71	mg/Kg		08/11/15 08:25	08/15/15 03:29	1
Barium	0.14	U	0.89	0.14	mg/Kg		08/11/15 08:25	08/15/15 03:29	1
Beryllium	0.0089	U	0.36	0.0089	mg/Kg		08/11/15 08:25	08/15/15 03:29	1
Cadmium	0.089	U	0.45	0.089	mg/Kg		08/11/15 08:25	08/15/15 03:29	1
Chromium	0.19	U	0.89	0.19	mg/Kg		08/11/15 08:25	08/15/15 03:29	1
Copper	0.15	U	2.2	0.15	mg/Kg		08/11/15 08:25	08/15/15 03:29	1
Lead	0.30	U	0.89	0.30	mg/Kg		08/11/15 08:25	08/15/15 03:29	1
Nickel	0.34	U	3.6	0.34	mg/Kg		08/11/15 08:25	08/15/15 03:29	1
Selenium	0.87	U	2.2	0.87	mg/Kg		08/11/15 08:25	08/15/15 03:29	1
Silver	0.054	U	0.89	0.054	mg/Kg		08/11/15 08:25	08/15/15 03:29	1
Vanadium	0.089	U	0.89	0.089	mg/Kg		08/11/15 08:25	08/15/15 03:29	1
Zinc	0.63	U	1.8	0.63	mg/Kg		08/11/15 08:25	08/15/15 03:29	1
	Arsenic Barium Beryllium Cadmium Chromium Copper Lead Nickel Selenium Silver Vanadium	Analyte Result Arsenic 0.71 Barium 0.14 Beryllium 0.0089 Cadmium 0.089 Chromium 0.19 Copper 0.15 Lead 0.30 Nickel 0.34 Selenium 0.87 Silver 0.054 Vanadium 0.089	Arsenic 0.71 U Barium 0.14 U Beryllium 0.0089 U Cadmium 0.089 U Chromium 0.19 U Copper 0.15 U Lead 0.30 U Nickel 0.34 U Selenium 0.87 U Silver 0.054 U Vanadium 0.089 U	Analyte Result Arsenic Qualifier RL Barium 0.71 U 1.8 Beryllium 0.14 U 0.89 Beryllium 0.0089 U 0.36 Cadmium 0.089 U 0.45 Chromium 0.19 U 0.89 Copper 0.15 U 2.2 Lead 0.30 U 0.89 Nickel 0.34 U 3.6 Selenium 0.87 U 2.2 Silver 0.054 U 0.89 Vanadium 0.089 U 0.89	Analyte Result Qualifier RL Qualifier MDL RL Qualifier Arsenic 0.71 U 1.8 0.71 Barium 0.14 U 0.89 0.49 0.14 Beryllium 0.0089 U 0.36 0.0089 Cadmium 0.089 U 0.45 0.89 Chromium 0.19 U 0.89 0.19 Copper 0.15 U 2.2 0.15 Lead 0.30 U 0.89 0.30 Nickel 0.34 U 3.6 0.34 Selenium 0.87 U 2.2 0.87 Silver 0.054 U 0.89 0.054 Vanadium 0.089 U 0.89 0.089	Analyte Result Arsenic Qualifier RL MDL Unit Arsenic 0.71 U 1.8 0.71 mg/Kg Barium 0.14 U 0.89 0.14 mg/Kg Beryllium 0.0089 U 0.36 0.0089 mg/Kg Cadmium 0.089 U 0.45 0.089 mg/Kg Chromium 0.19 U 0.89 0.19 mg/Kg Copper 0.15 U 2.2 0.15 mg/Kg Lead 0.30 U 0.89 0.30 mg/Kg Nickel 0.34 U 3.6 0.34 mg/Kg Selenium 0.87 U 2.2 0.87 mg/Kg Silver 0.054 U 0.89 0.054 mg/Kg Vanadium 0.089 U 0.89 0.089 mg/Kg	Analyte Result Arsenic Qualifier RL MDL Unit mg/Kg D Barium 0.71 U 1.8 0.71 mg/Kg Barium 0.14 U 0.89 0.14 mg/Kg Beryllium 0.0089 U 0.36 0.0089 mg/Kg Cadmium 0.089 U 0.45 0.089 mg/Kg Chromium 0.19 U 0.89 0.19 mg/Kg Copper 0.15 U 2.2 0.15 mg/Kg Lead 0.30 U 0.89 0.30 mg/Kg Nickel 0.34 U 3.6 0.34 mg/Kg Selenium 0.87 U 2.2 0.87 mg/Kg Silver 0.054 U 0.89 0.054 mg/Kg Vanadium 0.089 U 0.89 0.089 mg/Kg	Analyte Result Arsenic Qualifier RL MDL Unit mg/Kg D 08/11/15 08:25 Barium 0.71 U 1.8 0.71 mg/Kg 08/11/15 08:25 Barium 0.14 U 0.89 0.14 mg/Kg 08/11/15 08:25 Beryllium 0.0089 U 0.36 0.0089 mg/Kg 08/11/15 08:25 Cadmium 0.089 U 0.45 0.089 mg/Kg 08/11/15 08:25 Chromium 0.19 U 0.89 0.19 mg/Kg 08/11/15 08:25 Copper 0.15 U 2.2 0.15 mg/Kg 08/11/15 08:25 Lead 0.30 U 0.89 0.30 mg/Kg 08/11/15 08:25 Nickel 0.34 U 3.6 0.34 mg/Kg 08/11/15 08:25 Selenium 0.87 U 2.2 0.87 mg/Kg 08/11/15 08:25 Silver 0.054 U 0.89 0.054 mg/Kg 08/11/15 08:25 Vanadium 0.089 U 0.89 0.089 mg/Kg 08/11/15 08:25	Analyte Result Qualifier RL MDL Unit D 0 08/11/15 08:25 Analyzed Arsenic 0.71 U 1.8 0.71 mg/Kg 08/11/15 08:25 08/15/15 03:29 Barium 0.14 U 0.89 0.14 mg/Kg 08/11/15 08:25 08/15/15 03:29 Beryllium 0.0089 U 0.36 0.0089 mg/Kg 08/11/15 08:25 08/15/15 03:29 Cadmium 0.089 U 0.45 0.089 mg/Kg 08/11/15 08:25 08/15/15 03:29 Chromium 0.19 U 0.89 0.19 mg/Kg 08/11/15 08:25 08/15/15 03:29 Copper 0.15 U 2.2 0.15 mg/Kg 08/11/15 08:25 08/15/15 03:29 Lead 0.30 U 0.89 0.30 mg/Kg 08/11/15 08:25 08/15/15 03:29 Nickel 0.34 U 3.6 0.34 mg/Kg 08/11/15 08:25 08/15/15 03:29 Selenium 0.87 U 2.2 0.87 mg/Kg 08/11/15 08:25 08/15/15 03:29 Vanadium 0.0

Lab Sample ID: LCS 680-395425/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Prep Batch: 395425 **Analysis Batch: 396333** Spike LCS LCS %Rec.

	Spike	LUS	LUS				MRec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	9.01	9.14		mg/Kg		101	80 - 120	
Barium	9.01	8.91		mg/Kg		99	80 - 120	
Beryllium	4.50	4.78		mg/Kg		106	80 - 120	
Cadmium	4.50	4.78		mg/Kg		106	80 - 120	
Chromium	9.01	9.38		mg/Kg		104	80 - 120	
Copper	9.01	9.45		mg/Kg		105	80 - 120	
Lead	45.0	45.2		mg/Kg		100	80 - 120	
Nickel	9.01	9.31		mg/Kg		103	80 - 120	
Selenium	9.01	9.46		mg/Kg		105	80 - 120	
Silver	4.50	4.55		mg/Kg		101	80 - 120	
Vanadium	9.01	9.03		mg/Kg		100	80 - 120	
Zinc	9.01	9.28		mg/Kg		103	80 - 120	

Lab Sample ID: 680-115409-20 MS Client Sample ID: GB-18 4-6 **Matrix: Solid**

Analysis Batch: 396333	Sample	Sample	Spike	MS	MS				Prep Batch: 395425 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	6.0		9.49	13.9		mg/Kg	₩	83	75 - 125
Barium	220		9.49	244	4	mg/Kg	₩	216	75 - 125
Beryllium	0.26	J	4.75	5.49		mg/Kg	☼	110	75 - 125
Cadmium	0.15	J	4.75	5.66		mg/Kg	₩.	116	75 - 125
Chromium	74	F2	9.49	36.8	4	mg/Kg	☼	-396	75 - 125
Copper	61		9.49	42.9	4	mg/Kg	₩	-194	75 - 125
Lead	250		47.5	354	4	mg/Kg	₩.	213	75 - 125
Nickel	12	F1	9.49	16.4	F1	mg/Kg	☼	49	75 - 125
Selenium	0.92	U	9.49	9.26		mg/Kg	☼	98	75 - 125
Silver	0.25	J	4.75	4.99		mg/Kg	₩.	100	75 - 125
Vanadium	47		9.49	28.5	4	mg/Kg	☼	-192	75 ₋ 125
Zinc	270		9.49	316	4	mg/Kg	☼	514	75 - 125

TestAmerica Savannah

Page 90 of 127

Prep Type: Total/NA

Prep Batch: 395891

Prep Batch: 396439

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 680-115409-20 MSD	Client Sample ID: GB-18 4-6
Matrix: Solid	Prep Type: Total/NA
Analysis Details 200222	Drew Detake 205425

Analysis Batch: 396333									Prep Ba	itch: 39	35425
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	6.0		9.41	13.4		mg/Kg	₩	79	75 - 125	4	20
Barium	220		9.41	199	4	mg/Kg	☼	-264	75 - 125	20	20
Beryllium	0.26	J	4.70	5.44		mg/Kg	☼	110	75 - 125	1	20
Cadmium	0.15	J	4.70	5.34		mg/Kg	₩.	110	75 - 125	6	20
Chromium	74	F2	9.41	45.9	4 F2	mg/Kg	☼	-302	75 - 125	22	20
Copper	61		9.41	43.8	4	mg/Kg	☼	-185	75 - 125	2	20
Lead	250		47.0	292	4	mg/Kg	₩.	84	75 - 125	19	20
Nickel	12	F1	9.41	17.4	F1	mg/Kg	☼	60	75 - 125	6	20
Selenium	0.92	U	9.41	8.92		mg/Kg	☼	95	75 - 125	4	20
Silver	0.25	J	4.70	5.23		mg/Kg	₩.	106	75 - 125	5	20
Vanadium	47		9.41	31.2	4	mg/Kg	☼	-166	75 - 125	9	20
Zinc	270		9.41	268	4	mg/Kg	₩	3	75 - 125	17	20

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 680-395891/13-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 396091

MB MB

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0077	U	0.019	0.0077 mg/Kg		08/13/15 09:48	08/13/15 15:51	1

Lab Sample ID: LCS 680-395891/14-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 396091 **Prep Batch: 395891** LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits

0.227 0.222 98 80 - 120 Mercury mg/Kg Lab Sample ID: MB 680-396439/13-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 396738

MB MB MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac 0.0075 mg/Kg Mercury 0.0075 U 0.019 08/16/15 13:43 08/17/15 21:05

Lab Sample ID: LCS 680-396439/14-A				Clien	ıt Saı	mple ID	: Lab Control Sample
Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 396738							Prep Batch: 396439
•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Mercury	0.212	0.213		mg/Kg		100	80 - 120

Lab Sample ID: 680-115409-10 MS Client Sample ID: SB-24 4-6 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 396738									Prep Ba	atch: 396439
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.43	F1 F2	0.113	0.397	F1	mg/Kg	₩	-31	80 - 120	

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Lab Sample ID: 680-115409-10 MSD Client Sample ID: SB-24 4-6

Matrix: Solid

Analysis Batch: 396738

MB MB

Prep Type: Total/NA **Prep Batch: 396439**

Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit 0.43 F1 F2 0.120 0.556 F2 ₩ 104 80 - 120 33 20 Mercury mg/Kg

Lab Sample ID: MB 680-396509/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 396738

Prep Type: Total/NA

Prep Batch: 396509

Result Qualifier Analyte RI **MDL** Unit ח Prepared Analyzed Dil Fac 0.017 08/17/15 10:06 08/17/15 22:30 Mercury 0.0068 U 0.0068 mg/Kg

Lab Sample ID: LCS 680-396509/2-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 396738

Prep Batch: 396509

mg/Kg

LCS LCS Spike %Rec. Added Limits **Analyte** Result Qualifier D %Rec Unit

0.245

Lab Sample ID: 680-115409-25 MS Client Sample ID: GB-7 13-15

0.259

MSD MSD

Matrix: Solid

Mercury

Analysis Batch: 396738

Prep Type: Total/NA

80 - 120

106

Prep Batch: 396509

Spike MS MS %Rec. Sample Sample Result Qualifier Added Result Qualifier Unit D %Rec Limits

Analyte Mercury 0.29 F1 F2 0.108 0.248 F1 mg/Kg -36 80 - 120

Spike

Lab Sample ID: 680-115409-25 MSD

Matrix: Solid

Analysis Batch: 396738

Client Sample ID: GB-7 13-15 Prep Type: Total/NA

Prep Batch: 396509 %Rec. **RPD**

Analyte Result Qualifier Added Result Qualifier Limits RPD Limit Unit Mercury 0.29 F1 F2 0.0969 0.194 F1 F2 -96 80 - 120 24 20 mg/Kg

Method: 9012B - Cyanide, Total andor Amenable

Sample Sample

MB MB

Lab Sample ID: MB 680-396472/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 396567

Analysis Batch: 396567

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Batch: 396472

Result Qualifier RL MDL Unit Analyte Prepared Analyzed Dil Fac

08/17/15 06:30 08/17/15 11:29 0.50 Cyanide, Total 0.21 U 0.21 mg/Kg

Lab Sample ID: HLCS 680-396472/4-A **Matrix: Solid**

Prep Type: Total/NA **Prep Batch: 396472**

Spike HLCS HLCS %Rec. hahhA n

Result Qualifier Limits Analyte Unit %Rec

Cyanide, Total 0.0750 0.0709 mg/Kg 95

Lab Sample ID: LCS 680-396472/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 396567 Prep Batch: 396472

LCS LCS Spike %Rec. Added Result Qualifier Limits Analyte Unit D %Rec Cyanide, Total 5.00 96 75 - 125 4.82 mq/Kq

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Lab Sample ID: LLCS 680-396472/3-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 396567 Prep Batch: 396472** Spike LLCS LLCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Cyanide, Total 0.0100 0.0106 106 90 - 110 mg/Kg

Lab Sample ID: 680-115409-1 MS Client Sample ID: GB-14 3-5 **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 396567 Prep Batch: 396472** Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Limits Analyte Unit ח %Rec 0.23 U 75 - 125 Cyanide, Total 5.59 5.45 mg/Kg 98

Lab Sample ID: 680-115409-1 MSD Client Sample ID: GB-14 3-5 **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 396567 **Prep Batch: 396472** MSD MSD Sample Sample Spike %Rec. **RPD** Result Qualifier Limits Analyte Added Result Qualifier Unit D %Rec **RPD** Limit Cyanide, Total 0.23 U 5.48 5.46 100 75 - 125 mg/Kg

Lab Sample ID: 680-115409-13 DU Client Sample ID: SB-42 2-4 **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 396567 Prep Batch: 396472** DU DU Sample Sample **RPD** Analyte Result Qualifier Result Qualifier Unit **RPD** Limit Cyanide, Total 0.22 U 0.22 Ū mg/Kg

Lab Sample ID: MB 680-396473/1-A

Matrix: Solid

Analysis Batch: 396567

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 396473

MB MB

 Analyte
 Result Cyanide, Total
 Qualifier Qualifier
 RL VIDENTIAL
 MDL VIDENTIAL
 Unit VIDENTIAL
 D VIDENTIAL
 Prepared VIDENTIAL
 Analyzed VIDENTIAL
 DIT Fac VIDENTIAL

Lab Sample ID: LCS 680-396473/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 396567 Prep Batch: 396473** LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit D %Rec Limits 5.00 Cyanide, Total 4.85 mg/Kg 97 75 - 125

Lab Sample ID: 680-115409-22 MS

Matrix: Solid

Analysis Batch: 396567

Sample Sample Spike MS MS

Client Sample ID: GB-3 13-15
Prep Type: Total/NA
Prep Batch: 396473
%Rec.

Sample
AnalyteSample
Result
Cyanide, TotalSpike
Result
UMS
Result
Valifier
SpikeMS
Result
Result
Spike
Result
Result
Spike
Result
Spike
Result
Spike
Result
Result
Spike
Result
Result
Spike
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result
Result

Lab Sample ID: 680-115409-22 MSD Client Sample ID: GB-3 13-15 **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 396567 Prep Batch: 396473** MSD MSD Sample Sample Spike %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Cyanide, Total 0.25 U 5.90 5.48 mg/Kg 93 75 - 125

QC Association Summary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

GC/MS VOA

Prep Batch: 395276

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-23	GB-5 8-10	Total/NA	Solid	5035	
680-115409-24	GB-7 8-10	Total/NA	Solid	5035	
680-115409-25	GB-7 13-15	Total/NA	Solid	5035	
680-115409-26	GB-7 18	Total/NA	Solid	5035	

Analysis Batch: 395460

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-23	GB-5 8-10	Total/NA	Solid	8260B	395276
680-115409-24	GB-7 8-10	Total/NA	Solid	8260B	395276
680-115409-25	GB-7 13-15	Total/NA	Solid	8260B	395276
680-115409-26	GB-7 18	Total/NA	Solid	8260B	395276
LCS 680-395460/4	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-395460/5	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 680-395460/10	Method Blank	Total/NA	Solid	8260B	

Analysis Batch: 396685

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-31	Trip Blank lot ATL156	Total/NA	Water	8260B	
LCS 680-396685/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-396685/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-396685/11	Method Blank	Total/NA	Water	8260B	

GC/MS Semi VOA

Prep Batch: 395299

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-1	GB-14 3-5	Total/NA	Solid	3546	 -
680-115409-2	GB-14 8-10	Total/NA	Solid	3546	
680-115409-3	GB-14 13-15	Total/NA	Solid	3546	
680-115409-4	GB-19 8-10	Total/NA	Solid	3546	
680-115409-5	GB-21 8-10	Total/NA	Solid	3546	
680-115409-6	GB-28 2-4	Total/NA	Solid	3546	
680-115409-7	GB-28 8-10	Total/NA	Solid	3546	
680-115409-8	GB-28 13-15	Total/NA	Solid	3546	
680-115409-9	SB-24 2-4	Total/NA	Solid	3546	
680-115409-10	SB-24 4-6	Total/NA	Solid	3546	
680-115409-11	SB-24 8-10	Total/NA	Solid	3546	
680-115409-12	SB-24 13-15	Total/NA	Solid	3546	
680-115409-13	SB-42 2-4	Total/NA	Solid	3546	
680-115409-14	SB-42 4-6	Total/NA	Solid	3546	
680-115409-15	SB-42 8-10	Total/NA	Solid	3546	
680-115409-16	SB-42 13-15	Total/NA	Solid	3546	
680-115409-17	GB-16 2-4	Total/NA	Solid	3546	
680-115409-18	GB-16 4-6	Total/NA	Solid	3546	
680-115409-18 MS	GB-16 4-6	Total/NA	Solid	3546	
680-115409-18 MSD	GB-16 4-6	Total/NA	Solid	3546	
680-115409-19	GB-18 2-4	Total/NA	Solid	3546	
680-115409-20	GB-18 4-6	Total/NA	Solid	3546	
LCS 680-395299/22-A	Lab Control Sample	Total/NA	Solid	3546	
MB 680-395299/21-A	Method Blank	Total/NA	Solid	3546	

TestAmerica Savannah

9/17/2015

Page 94 of 127

6

6

7

0

9

11

15

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

GC/MS Semi VOA (Continued)

Prep Batch: 395304

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-21	GB-3 8-10	Total/NA	Solid	3546	
680-115409-22	GB-3 13-15	Total/NA	Solid	3546	
680-115409-23	GB-5 8-10	Total/NA	Solid	3546	
680-115409-24	GB-7 8-10	Total/NA	Solid	3546	
680-115409-25	GB-7 13-15	Total/NA	Solid	3546	
680-115409-26	GB-7 18	Total/NA	Solid	3546	
680-115409-27	SB-17 8-10	Total/NA	Solid	3546	
680-115409-27 MS	SB-17 8-10	Total/NA	Solid	3546	
680-115409-27 MSD	SB-17 8-10	Total/NA	Solid	3546	
680-115409-28	SB-17 13-15	Total/NA	Solid	3546	
680-115409-29	SB-20 0-2	Total/NA	Solid	3546	
680-115409-30	SB-20 2-4	Total/NA	Solid	3546	
LCS 680-395304/12-A	Lab Control Sample	Total/NA	Solid	3546	
MB 680-395304/11-A	Method Blank	Total/NA	Solid	3546	

Analysis Batch: 395487

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-1	GB-14 3-5	Total/NA	Solid	8270D	395299
680-115409-2	GB-14 8-10	Total/NA	Solid	8270D	395299
680-115409-3	GB-14 13-15	Total/NA	Solid	8270D	395299
680-115409-4	GB-19 8-10	Total/NA	Solid	8270D	395299
680-115409-5	GB-21 8-10	Total/NA	Solid	8270D	395299
680-115409-6	GB-28 2-4	Total/NA	Solid	8270D	395299
680-115409-7	GB-28 8-10	Total/NA	Solid	8270D	395299
680-115409-8	GB-28 13-15	Total/NA	Solid	8270D	395299
680-115409-9	SB-24 2-4	Total/NA	Solid	8270D	395299
680-115409-10	SB-24 4-6	Total/NA	Solid	8270D	395299
680-115409-11	SB-24 8-10	Total/NA	Solid	8270D	395299
680-115409-12	SB-24 13-15	Total/NA	Solid	8270D	395299
680-115409-13	SB-42 2-4	Total/NA	Solid	8270D	395299
680-115409-14	SB-42 4-6	Total/NA	Solid	8270D	395299
680-115409-15	SB-42 8-10	Total/NA	Solid	8270D	395299
680-115409-16	SB-42 13-15	Total/NA	Solid	8270D	395299
680-115409-17	GB-16 2-4	Total/NA	Solid	8270D	395299
680-115409-18	GB-16 4-6	Total/NA	Solid	8270D	395299
680-115409-18 MS	GB-16 4-6	Total/NA	Solid	8270D	395299
680-115409-18 MSD	GB-16 4-6	Total/NA	Solid	8270D	395299
680-115409-19	GB-18 2-4	Total/NA	Solid	8270D	395299
680-115409-20	GB-18 4-6	Total/NA	Solid	8270D	395299
LCS 680-395299/22-A	Lab Control Sample	Total/NA	Solid	8270D	395299
MB 680-395299/21-A	Method Blank	Total/NA	Solid	8270D	395299

Analysis Batch: 395714

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-21	GB-3 8-10	Total/NA	Solid	8270D	395304
680-115409-22	GB-3 13-15	Total/NA	Solid	8270D	395304
680-115409-23	GB-5 8-10	Total/NA	Solid	8270D	395304
680-115409-24	GB-7 8-10	Total/NA	Solid	8270D	395304
680-115409-25	GB-7 13-15	Total/NA	Solid	8270D	395304
680-115409-26	GB-7 18	Total/NA	Solid	8270D	395304
680-115409-27	SB-17 8-10	Total/NA	Solid	8270D	395304

QC Association Summary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

GC/MS Semi VOA (Continued)

Analysis Batch: 395714 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-27 MS	SB-17 8-10	Total/NA	Solid	8270D	395304
680-115409-27 MSD	SB-17 8-10	Total/NA	Solid	8270D	395304
680-115409-28	SB-17 13-15	Total/NA	Solid	8270D	395304
680-115409-29	SB-20 0-2	Total/NA	Solid	8270D	395304
680-115409-30	SB-20 2-4	Total/NA	Solid	8270D	395304
LCS 680-395304/12-A	Lab Control Sample	Total/NA	Solid	8270D	395304

Analysis Batch: 395880

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-395304/11-A	Method Blank	Total/NA	Solid	8270D	395304

Metals

Prep Batch: 395413

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-1	GB-14 3-5	Total/NA	Solid	3050B	_
680-115409-2	GB-14 8-10	Total/NA	Solid	3050B	
680-115409-3	GB-14 13-15	Total/NA	Solid	3050B	
680-115409-4	GB-19 8-10	Total/NA	Solid	3050B	
680-115409-5	GB-21 8-10	Total/NA	Solid	3050B	
680-115409-6	GB-28 2-4	Total/NA	Solid	3050B	
680-115409-7	GB-28 8-10	Total/NA	Solid	3050B	
680-115409-8	GB-28 13-15	Total/NA	Solid	3050B	
680-115409-9	SB-24 2-4	Total/NA	Solid	3050B	
680-115409-10	SB-24 4-6	Total/NA	Solid	3050B	
680-115409-11	SB-24 8-10	Total/NA	Solid	3050B	
680-115409-12	SB-24 13-15	Total/NA	Solid	3050B	
680-115409-13	SB-42 2-4	Total/NA	Solid	3050B	
680-115409-14	SB-42 4-6	Total/NA	Solid	3050B	
680-115409-14 MS	SB-42 4-6	Total/NA	Solid	3050B	
680-115409-14 MSD	SB-42 4-6	Total/NA	Solid	3050B	
680-115409-15	SB-42 8-10	Total/NA	Solid	3050B	
LCS 680-395413/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 680-395413/1-A	Method Blank	Total/NA	Solid	3050B	

Prep Batch: 395425

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-16	SB-42 13-15	Total/NA	Solid	3050B	_
680-115409-17	GB-16 2-4	Total/NA	Solid	3050B	
680-115409-18	GB-16 4-6	Total/NA	Solid	3050B	
680-115409-19	GB-18 2-4	Total/NA	Solid	3050B	
680-115409-20	GB-18 4-6	Total/NA	Solid	3050B	
680-115409-20 MS	GB-18 4-6	Total/NA	Solid	3050B	
680-115409-20 MSD	GB-18 4-6	Total/NA	Solid	3050B	
680-115409-21	GB-3 8-10	Total/NA	Solid	3050B	
680-115409-22	GB-3 13-15	Total/NA	Solid	3050B	
680-115409-23	GB-5 8-10	Total/NA	Solid	3050B	
680-115409-24	GB-7 8-10	Total/NA	Solid	3050B	
680-115409-25	GB-7 13-15	Total/NA	Solid	3050B	
680-115409-26	GB-7 18	Total/NA	Solid	3050B	

TestAmerica Job ID: 680-115409-1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Metals (Continued)

Prep Batch: 395425 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-27	SB-17 8-10	Total/NA	Solid	3050B	<u> </u>
680-115409-28	SB-17 13-15	Total/NA	Solid	3050B	
680-115409-29	SB-20 0-2	Total/NA	Solid	3050B	
680-115409-30	SB-20 2-4	Total/NA	Solid	3050B	
LCS 680-395425/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 680-395425/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 395634

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-1	GB-14 3-5	Total/NA	Solid	6010C	395413
680-115409-2	GB-14 8-10	Total/NA	Solid	6010C	395413
680-115409-3	GB-14 13-15	Total/NA	Solid	6010C	395413
680-115409-4	GB-19 8-10	Total/NA	Solid	6010C	395413
680-115409-5	GB-21 8-10	Total/NA	Solid	6010C	395413
680-115409-6	GB-28 2-4	Total/NA	Solid	6010C	395413
680-115409-7	GB-28 8-10	Total/NA	Solid	6010C	395413
680-115409-8	GB-28 13-15	Total/NA	Solid	6010C	395413
680-115409-9	SB-24 2-4	Total/NA	Solid	6010C	395413
680-115409-10	SB-24 4-6	Total/NA	Solid	6010C	395413
680-115409-11	SB-24 8-10	Total/NA	Solid	6010C	395413
680-115409-12	SB-24 13-15	Total/NA	Solid	6010C	395413
680-115409-13	SB-42 2-4	Total/NA	Solid	6010C	395413
680-115409-14	SB-42 4-6	Total/NA	Solid	6010C	395413
680-115409-14 MS	SB-42 4-6	Total/NA	Solid	6010C	395413
680-115409-14 MSD	SB-42 4-6	Total/NA	Solid	6010C	395413
680-115409-15	SB-42 8-10	Total/NA	Solid	6010C	395413
LCS 680-395413/2-A	Lab Control Sample	Total/NA	Solid	6010C	395413
MB 680-395413/1-A	Method Blank	Total/NA	Solid	6010C	395413

Prep Batch: 395891

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-1	GB-14 3-5	Total/NA	Solid	7471B	
680-115409-2	GB-14 8-10	Total/NA	Solid	7471B	
680-115409-3	GB-14 13-15	Total/NA	Solid	7471B	
680-115409-4	GB-19 8-10	Total/NA	Solid	7471B	
680-115409-5	GB-21 8-10	Total/NA	Solid	7471B	
680-115409-6	GB-28 2-4	Total/NA	Solid	7471B	
680-115409-7	GB-28 8-10	Total/NA	Solid	7471B	
680-115409-8	GB-28 13-15	Total/NA	Solid	7471B	
680-115409-9	SB-24 2-4	Total/NA	Solid	7471B	
LCS 680-395891/14-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 680-395891/13-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 396091

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-1	GB-14 3-5	Total/NA	Solid	7471B	395891
680-115409-2	GB-14 8-10	Total/NA	Solid	7471B	395891
680-115409-3	GB-14 13-15	Total/NA	Solid	7471B	395891
680-115409-4	GB-19 8-10	Total/NA	Solid	7471B	395891
680-115409-5	GB-21 8-10	Total/NA	Solid	7471B	395891
680-115409-6	GB-28 2-4	Total/NA	Solid	7471B	395891

QC Association Summary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Metals (Continued)

Analysis Batch: 396091 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-7	GB-28 8-10	Total/NA	Solid	7471B	395891
680-115409-8	GB-28 13-15	Total/NA	Solid	7471B	395891
680-115409-9	SB-24 2-4	Total/NA	Solid	7471B	395891
LCS 680-395891/14-A	Lab Control Sample	Total/NA	Solid	7471B	395891
MB 680-395891/13-A	Method Blank	Total/NA	Solid	7471B	395891

Analysis Batch: 396333

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-16	SB-42 13-15	Total/NA	Solid	6010C	395425
680-115409-17	GB-16 2-4	Total/NA	Solid	6010C	395425
680-115409-18	GB-16 4-6	Total/NA	Solid	6010C	395425
680-115409-19	GB-18 2-4	Total/NA	Solid	6010C	395425
680-115409-20	GB-18 4-6	Total/NA	Solid	6010C	395425
680-115409-20 MS	GB-18 4-6	Total/NA	Solid	6010C	395425
680-115409-20 MSD	GB-18 4-6	Total/NA	Solid	6010C	395425
680-115409-21	GB-3 8-10	Total/NA	Solid	6010C	395425
680-115409-22	GB-3 13-15	Total/NA	Solid	6010C	395425
680-115409-23	GB-5 8-10	Total/NA	Solid	6010C	395425
680-115409-24	GB-7 8-10	Total/NA	Solid	6010C	395425
680-115409-25	GB-7 13-15	Total/NA	Solid	6010C	395425
680-115409-26	GB-7 18	Total/NA	Solid	6010C	395425
680-115409-27	SB-17 8-10	Total/NA	Solid	6010C	395425
680-115409-28	SB-17 13-15	Total/NA	Solid	6010C	395425
680-115409-29	SB-20 0-2	Total/NA	Solid	6010C	395425
680-115409-30	SB-20 2-4	Total/NA	Solid	6010C	395425
LCS 680-395425/2-A	Lab Control Sample	Total/NA	Solid	6010C	395425
MB 680-395425/1-A	Method Blank	Total/NA	Solid	6010C	395425

Prep Batch: 396439

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-10	SB-24 4-6	Total/NA	Solid	7471B	
680-115409-10 MS	SB-24 4-6	Total/NA	Solid	7471B	
680-115409-10 MSD	SB-24 4-6	Total/NA	Solid	7471B	
680-115409-11	SB-24 8-10	Total/NA	Solid	7471B	
680-115409-12	SB-24 13-15	Total/NA	Solid	7471B	
680-115409-13	SB-42 2-4	Total/NA	Solid	7471B	
680-115409-14	SB-42 4-6	Total/NA	Solid	7471B	
680-115409-15	SB-42 8-10	Total/NA	Solid	7471B	
680-115409-16	SB-42 13-15	Total/NA	Solid	7471B	
680-115409-17	GB-16 2-4	Total/NA	Solid	7471B	
680-115409-18	GB-16 4-6	Total/NA	Solid	7471B	
680-115409-19	GB-18 2-4	Total/NA	Solid	7471B	
680-115409-20	GB-18 4-6	Total/NA	Solid	7471B	
680-115409-21	GB-3 8-10	Total/NA	Solid	7471B	
680-115409-22	GB-3 13-15	Total/NA	Solid	7471B	
680-115409-23	GB-5 8-10	Total/NA	Solid	7471B	
680-115409-24	GB-7 8-10	Total/NA	Solid	7471B	
680-115409-26	GB-7 18	Total/NA	Solid	7471B	
680-115409-27	SB-17 8-10	Total/NA	Solid	7471B	
680-115409-28	SB-17 13-15	Total/NA	Solid	7471B	
680-115409-29	SB-20 0-2	Total/NA	Solid	7471B	

TestAmerica Savannah

4

5

7

8

10

11

QC Association Summary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Metals (Continued)

Prep Batch: 396439 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-30	SB-20 2-4	Total/NA	Solid	7471B	
LCS 680-396439/14-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 680-396439/13-A	Method Blank	Total/NA	Solid	7471B	

Prep Batch: 396509

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-25	GB-7 13-15	Total/NA	Solid	7471B	
680-115409-25 MS	GB-7 13-15	Total/NA	Solid	7471B	
680-115409-25 MSD	GB-7 13-15	Total/NA	Solid	7471B	
LCS 680-396509/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 680-396509/1-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 396738

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-10	SB-24 4-6	Total/NA	Solid	7471B	396439
680-115409-10 MS	SB-24 4-6	Total/NA	Solid	7471B	396439
680-115409-10 MSD	SB-24 4-6	Total/NA	Solid	7471B	396439
680-115409-11	SB-24 8-10	Total/NA	Solid	7471B	396439
680-115409-12	SB-24 13-15	Total/NA	Solid	7471B	396439
680-115409-13	SB-42 2-4	Total/NA	Solid	7471B	396439
680-115409-14	SB-42 4-6	Total/NA	Solid	7471B	396439
680-115409-15	SB-42 8-10	Total/NA	Solid	7471B	396439
680-115409-16	SB-42 13-15	Total/NA	Solid	7471B	396439
680-115409-17	GB-16 2-4	Total/NA	Solid	7471B	396439
680-115409-18	GB-16 4-6	Total/NA	Solid	7471B	396439
680-115409-19	GB-18 2-4	Total/NA	Solid	7471B	396439
680-115409-20	GB-18 4-6	Total/NA	Solid	7471B	396439
680-115409-21	GB-3 8-10	Total/NA	Solid	7471B	396439
680-115409-22	GB-3 13-15	Total/NA	Solid	7471B	396439
680-115409-23	GB-5 8-10	Total/NA	Solid	7471B	396439
680-115409-24	GB-7 8-10	Total/NA	Solid	7471B	396439
680-115409-25	GB-7 13-15	Total/NA	Solid	7471B	396509
680-115409-25 MS	GB-7 13-15	Total/NA	Solid	7471B	396509
680-115409-25 MSD	GB-7 13-15	Total/NA	Solid	7471B	396509
680-115409-26	GB-7 18	Total/NA	Solid	7471B	396439
680-115409-27	SB-17 8-10	Total/NA	Solid	7471B	396439
680-115409-28	SB-17 13-15	Total/NA	Solid	7471B	396439
680-115409-29	SB-20 0-2	Total/NA	Solid	7471B	396439
680-115409-30	SB-20 2-4	Total/NA	Solid	7471B	396439
LCS 680-396439/14-A	Lab Control Sample	Total/NA	Solid	7471B	396439
LCS 680-396509/2-A	Lab Control Sample	Total/NA	Solid	7471B	396509
MB 680-396439/13-A	Method Blank	Total/NA	Solid	7471B	396439
MB 680-396509/1-A	Method Blank	Total/NA	Solid	7471B	396509

Analysis Batch: 396749

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-29	SB-20 0-2	Total/NA	Solid	6010C	395425
680-115409-30	SB-20 2-4	Total/NA	Solid	6010C	395425

Page 99 of 127

TestAmerica Job ID: 680-115409-1

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

General Chemistry

Analysis Batch: 395339

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-1	GB-14 3-5	Total/NA	Solid	Moisture	
680-115409-2	GB-14 8-10	Total/NA	Solid	Moisture	
680-115409-3	GB-14 13-15	Total/NA	Solid	Moisture	
680-115409-4	GB-19 8-10	Total/NA	Solid	Moisture	
680-115409-5	GB-21 8-10	Total/NA	Solid	Moisture	
680-115409-6	GB-28 2-4	Total/NA	Solid	Moisture	
680-115409-7	GB-28 8-10	Total/NA	Solid	Moisture	
680-115409-8	GB-28 13-15	Total/NA	Solid	Moisture	
680-115409-9	SB-24 2-4	Total/NA	Solid	Moisture	
680-115409-10	SB-24 4-6	Total/NA	Solid	Moisture	
680-115409-11	SB-24 8-10	Total/NA	Solid	Moisture	
680-115409-12	SB-24 13-15	Total/NA	Solid	Moisture	
680-115409-13	SB-42 2-4	Total/NA	Solid	Moisture	
680-115409-14	SB-42 4-6	Total/NA	Solid	Moisture	
680-115409-15	SB-42 8-10	Total/NA	Solid	Moisture	
680-115409-16	SB-42 13-15	Total/NA	Solid	Moisture	
680-115409-17	GB-16 2-4	Total/NA	Solid	Moisture	
680-115409-18	GB-16 4-6	Total/NA	Solid	Moisture	
680-115409-19	GB-18 2-4	Total/NA	Solid	Moisture	
680-115409-20	GB-18 4-6	Total/NA	Solid	Moisture	
680-115409-21	GB-3 8-10	Total/NA	Solid	Moisture	
680-115409-22	GB-3 13-15	Total/NA	Solid	Moisture	
680-115409-23	GB-5 8-10	Total/NA	Solid	Moisture	
680-115409-24	GB-7 8-10	Total/NA	Solid	Moisture	
680-115409-25	GB-7 13-15	Total/NA	Solid	Moisture	
680-115409-26	GB-7 18	Total/NA	Solid	Moisture	
680-115409-27	SB-17 8-10	Total/NA	Solid	Moisture	
680-115409-28	SB-17 13-15	Total/NA	Solid	Moisture	
680-115409-29	SB-20 0-2	Total/NA	Solid	Moisture	
680-115409-30	SB-20 2-4	Total/NA	Solid	Moisture	

Prep Batch: 396472

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-1	GB-14 3-5	Total/NA	Solid	9012B	_
680-115409-1 MS	GB-14 3-5	Total/NA	Solid	9012B	
680-115409-1 MSD	GB-14 3-5	Total/NA	Solid	9012B	
680-115409-2	GB-14 8-10	Total/NA	Solid	9012B	
680-115409-3	GB-14 13-15	Total/NA	Solid	9012B	
680-115409-4	GB-19 8-10	Total/NA	Solid	9012B	
680-115409-5	GB-21 8-10	Total/NA	Solid	9012B	
680-115409-6	GB-28 2-4	Total/NA	Solid	9012B	
680-115409-7	GB-28 8-10	Total/NA	Solid	9012B	
680-115409-8	GB-28 13-15	Total/NA	Solid	9012B	
680-115409-9	SB-24 2-4	Total/NA	Solid	9012B	
680-115409-10	SB-24 4-6	Total/NA	Solid	9012B	
680-115409-11	SB-24 8-10	Total/NA	Solid	9012B	
680-115409-12	SB-24 13-15	Total/NA	Solid	9012B	
680-115409-13	SB-42 2-4	Total/NA	Solid	9012B	
680-115409-13 DU	SB-42 2-4	Total/NA	Solid	9012B	
680-115409-14	SB-42 4-6	Total/NA	Solid	9012B	
680-115409-15	SB-42 8-10	Total/NA	Solid	9012B	

TestAmerica Savannah

9/17/2015

TestAmerica Job ID: 680-115409-1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

General Chemistry (Continued)

Prep Batch: 396472 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-16	SB-42 13-15	Total/NA	Solid	9012B	
680-115409-17	GB-16 2-4	Total/NA	Solid	9012B	
680-115409-18	GB-16 4-6	Total/NA	Solid	9012B	
680-115409-19	GB-18 2-4	Total/NA	Solid	9012B	
680-115409-20	GB-18 4-6	Total/NA	Solid	9012B	
HLCS 680-396472/4-A	Lab Control Sample	Total/NA	Solid	9012B	
LCS 680-396472/2-A	Lab Control Sample	Total/NA	Solid	9012B	
LLCS 680-396472/3-A	Lab Control Sample	Total/NA	Solid	9012B	
MB 680-396472/1-A	Method Blank	Total/NA	Solid	9012B	

Prep Batch: 396473

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-21	GB-3 8-10	Total/NA	Solid	9012B	<u> </u>
680-115409-22	GB-3 13-15	Total/NA	Solid	9012B	
680-115409-22 MS	GB-3 13-15	Total/NA	Solid	9012B	
680-115409-22 MSD	GB-3 13-15	Total/NA	Solid	9012B	
680-115409-23	GB-5 8-10	Total/NA	Solid	9012B	
680-115409-24	GB-7 8-10	Total/NA	Solid	9012B	
680-115409-25	GB-7 13-15	Total/NA	Solid	9012B	
680-115409-26	GB-7 18	Total/NA	Solid	9012B	
680-115409-27	SB-17 8-10	Total/NA	Solid	9012B	
680-115409-28	SB-17 13-15	Total/NA	Solid	9012B	
680-115409-29	SB-20 0-2	Total/NA	Solid	9012B	
680-115409-30	SB-20 2-4	Total/NA	Solid	9012B	
LCS 680-396473/2-A	Lab Control Sample	Total/NA	Solid	9012B	
MB 680-396473/1-A	Method Blank	Total/NA	Solid	9012B	

Analysis Batch: 396567

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-1	GB-14 3-5	Total/NA	Solid	9012B	396472
680-115409-1 MS	GB-14 3-5	Total/NA	Solid	9012B	396472
680-115409-1 MSD	GB-14 3-5	Total/NA	Solid	9012B	396472
680-115409-2	GB-14 8-10	Total/NA	Solid	9012B	396472
680-115409-3	GB-14 13-15	Total/NA	Solid	9012B	396472
680-115409-4	GB-19 8-10	Total/NA	Solid	9012B	396472
680-115409-5	GB-21 8-10	Total/NA	Solid	9012B	396472
680-115409-6	GB-28 2-4	Total/NA	Solid	9012B	396472
680-115409-7	GB-28 8-10	Total/NA	Solid	9012B	396472
680-115409-8	GB-28 13-15	Total/NA	Solid	9012B	396472
680-115409-9	SB-24 2-4	Total/NA	Solid	9012B	396472
680-115409-10	SB-24 4-6	Total/NA	Solid	9012B	396472
680-115409-11	SB-24 8-10	Total/NA	Solid	9012B	396472
680-115409-12	SB-24 13-15	Total/NA	Solid	9012B	396472
680-115409-13	SB-42 2-4	Total/NA	Solid	9012B	396472
680-115409-13 DU	SB-42 2-4	Total/NA	Solid	9012B	396472
680-115409-14	SB-42 4-6	Total/NA	Solid	9012B	396472
680-115409-15	SB-42 8-10	Total/NA	Solid	9012B	396472
680-115409-16	SB-42 13-15	Total/NA	Solid	9012B	396472
680-115409-17	GB-16 2-4	Total/NA	Solid	9012B	396472
680-115409-18	GB-16 4-6	Total/NA	Solid	9012B	396472
680-115409-19	GB-18 2-4	Total/NA	Solid	9012B	396472

QC Association Summary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

General Chemistry (Continued)

Analysis Batch: 396567 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115409-20	GB-18 4-6	Total/NA	Solid	9012B	396472
680-115409-21	GB-3 8-10	Total/NA	Solid	9012B	396473
680-115409-22	GB-3 13-15	Total/NA	Solid	9012B	396473
680-115409-22 MS	GB-3 13-15	Total/NA	Solid	9012B	396473
680-115409-22 MSD	GB-3 13-15	Total/NA	Solid	9012B	396473
680-115409-23	GB-5 8-10	Total/NA	Solid	9012B	396473
680-115409-24	GB-7 8-10	Total/NA	Solid	9012B	396473
680-115409-25	GB-7 13-15	Total/NA	Solid	9012B	396473
680-115409-26	GB-7 18	Total/NA	Solid	9012B	396473
680-115409-27	SB-17 8-10	Total/NA	Solid	9012B	396473
680-115409-28	SB-17 13-15	Total/NA	Solid	9012B	396473
680-115409-29	SB-20 0-2	Total/NA	Solid	9012B	396473
680-115409-30	SB-20 2-4	Total/NA	Solid	9012B	396473
HLCS 680-396472/4-A	Lab Control Sample	Total/NA	Solid	9012B	396472
LCS 680-396472/2-A	Lab Control Sample	Total/NA	Solid	9012B	396472
LCS 680-396473/2-A	Lab Control Sample	Total/NA	Solid	9012B	396473
LLCS 680-396472/3-A	Lab Control Sample	Total/NA	Solid	9012B	396472
MB 680-396472/1-A	Method Blank	Total/NA	Solid	9012B	396472
MB 680-396473/1-A	Method Blank	Total/NA	Solid	9012B	396473

-

1

6

7

8

9

10

11

Lab Sample ID: 680-115409-1

Matrix: Solid

Date Collected: 08/06/15 12:47 Date Received: 08/08/15 10:00

Client Sample ID: GB-14 3-5

Client: Geotechnical & Environmental Consultants

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395339	08/10/15 15:25	FES	TAL SAV
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: GB-14 3-5 Lab Sample ID: 680-115409-1

Date Collected: 08/06/15 12:47 **Matrix: Solid**

Date Received: 08/08/15 10:00 Percent Solids: 87.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546		-	30.28 g	1 mL	395299	08/10/15 14:33	JMV	TAL SAV
Total/NA	Analysis	8270D		10	30.28 g	1 mL	395487	08/11/15 15:23	RAM	TAL SAV
	Instrume	nt ID: CMSN								
Total/NA	Prep	3050B			1.17 g	100 mL	395413	08/11/15 07:36	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.17 g	100 mL	395634	08/11/15 20:25	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.51 g	50 mL	395891	08/13/15 09:48	CRW	TAL SAV
Total/NA	Analysis	7471B		1	0.51 g	50 mL	396091	08/13/15 16:06	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.03 g	50 mL	396472	08/17/15 06:30	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.03 g	50 mL	396567	08/17/15 11:33	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Client Sample ID: GB-14 8-10 Lab Sample ID: 680-115409-2

Date Collected: 08/06/15 12:54 **Matrix: Solid** Date Received: 08/08/15 10:00

Batch Batch Dil Initial Final Batch Prepared Method Amount Amount Number or Analyzed Analyst **Prep Type** Type Run **Factor** Lab Analysis 395339 Total/NA Moisture 08/10/15 15:25 FES TAL SAV Instrument ID: NOEQUIP

Client Sample ID: GB-14 8-10 Lab Sample ID: 680-115409-2

Date Collected: 08/06/15 12:54 **Matrix: Solid** Date Received: 08/08/15 10:00 Percent Solids: 53.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.03 g	1 mL	395299	08/10/15 14:33	JMV	TAL SAV
Total/NA	Analysis	8270D		10	30.03 g	1 mL	395487	08/11/15 15:48	RAM	TAL SAV
	Instrume	nt ID: CMSN								
Total/NA	Prep	3050B			1.17 g	100 mL	395413	08/11/15 07:36	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.17 g	100 mL	395634	08/11/15 19:17	ВСВ	TAL SAV
Total/NA	Prep	7471B			0.51 g	50 mL	395891	08/13/15 09:48	CRW	TAL SAV
Total/NA	Analysis	7471B		5	0.51 g	50 mL	396091	08/13/15 17:29	всв	TAL SAV
	Instrume	nt ID: LEEMAN2								

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Lab Sample ID: 680-115409-2

Client Sample ID: GB-14 8-10 Date Collected: 08/06/15 12:54 Matrix: Solid Date Received: 08/08/15 10:00

Percent Solids: 53.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	9012B			1.04 g	50 mL	396472	08/17/15 06:30	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.04 g	50 mL	396567	08/17/15 11:36	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Lab Sample ID: 680-115409-3 Client Sample ID: GB-14 13-15

Date Collected: 08/06/15 12:59 **Matrix: Solid**

Date Received: 08/08/15 10:00

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395339	08/10/15 15:25	FES	TAL SAV
	Instrume	nt ID: NOFQUIP								

Client Sample ID: GB-14 13-15 Lab Sample ID: 680-115409-3

Date Collected: 08/06/15 12:59 **Matrix: Solid** Date Received: 08/08/15 10:00 Percent Solids: 68.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.04 g	1 mL	395299	08/10/15 14:33	JMV	TAL SAV
Total/NA	Analysis	8270D		1	30.04 g	1 mL	395487	08/11/15 16:12	RAM	TAL SAV
	Instrume	nt ID: CMSN								
Total/NA	Prep	3050B			1.04 g	100 mL	395413	08/11/15 07:36	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.04 g	100 mL	395634	08/11/15 19:21	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.53 g	50 mL	395891	08/13/15 09:48	CRW	TAL SAV
Total/NA	Analysis	7471B		5	0.53 g	50 mL	396091	08/13/15 17:32	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.01 g	50 mL	396472	08/17/15 06:30	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.01 g	50 mL	396567	08/17/15 11:38	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Client Sample ID: GB-19 8-10 Lab Sample ID: 680-115409-4

Date Collected: 08/06/15 11:30 **Matrix: Solid** Date Received: 08/08/15 10:00

Prep Type Total/NA	Batch Type Analysis	Batch Method Moisture	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 395339	Prepared or Analyzed 08/10/15 15:25	Analyst FES	Lab TAL SAV
	Instrume	nt ID: NOEQUIP								

Client Sample ID: GB-19 8-10

Date Collected: 08/06/15 11:30

Date Received: 08/08/15 10:00

Client: Geotechnical & Environmental Consultants

Lab Sample ID: 680-115409-4

Matrix: Solid

Percent Solids: 67.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.25 g	1 mL	395299	08/10/15 14:33	JMV	TAL SAV
Total/NA	Analysis Instrume	8270D nt ID: CMSN		1	30.25 g	1 mL	395487	08/11/15 16:36	RAM	TAL SAV
Total/NA	Prep	3050B			1.14 g	100 mL	395413	08/11/15 07:36	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.14 g	100 mL	395634	08/11/15 19:26	ВСВ	TAL SAV
Total/NA	Prep	7471B			0.57 g	50 mL	395891	08/13/15 09:48	CRW	TAL SAV
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.57 g	50 mL	396091	08/13/15 16:15	ВСВ	TAL SAV
Total/NA	Prep	9012B			1.04 g	50 mL	396472	08/17/15 06:30	DAM	TAL SAV
Total/NA	Analysis Instrume	9012B nt ID: LACHAT1		1	1.04 g	50 mL	396567	08/17/15 11:39	DAM	TAL SAV

Client Sample ID: GB-21 8-10

Lab Sample ID: 680-115409-5 Date Collected: 08/06/15 10:45

Matrix: Solid

Date Received: 08/08/15 10:00

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture				-	395339	08/10/15 15:25	FES	TAL SAV
	Instrume	nt ID: NOEQUIP								

Client Sample ID: GB-21 8-10

Lab Sample ID: 680-115409-5 Date Collected: 08/06/15 10:45 **Matrix: Solid** Date Received: 08/08/15 10:00 Percent Solids: 80.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.03 g	1 mL	395299	08/10/15 14:33	JMV	TAL SAV
Total/NA	Analysis	8270D		1	30.03 g	1 mL	395487	08/11/15 17:00	RAM	TAL SAV
	Instrume	nt ID: CMSN								
Total/NA	Prep	3050B			1.16 g	100 mL	395413	08/11/15 07:36	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.16 g	100 mL	395634	08/11/15 19:30	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.58 g	50 mL	395891	08/13/15 09:48	CRW	TAL SAV
Total/NA	Analysis	7471B		1	0.58 g	50 mL	396091	08/13/15 16:18	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.04 g	50 mL	396472	08/17/15 06:30	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.04 g	50 mL	396567	08/17/15 11:42	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

9/17/2015

Client Sample ID: GB-28 2-4

Client Sample ID: GB-28 2-4

Client: Geotechnical & Environmental Consultants

Date Collected: 08/06/15 14:00 Date Received: 08/08/15 10:00

Lab Sample ID: 680-115409-6

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395339	08/10/15 15:25	FES	TAL SAV
	Inetrumer	ALID: NOFOLIID								

Lab Sample ID: 680-115409-6

Date Collected: 08/06/15 14:00 **Matrix: Solid** Date Received: 08/08/15 10:00 Percent Solids: 70.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			29.95 g	1 mL	395299	08/10/15 14:33	JMV	TAL SAV
Total/NA	Analysis	8270D		1	29.95 g	1 mL	395487	08/11/15 17:24	RAM	TAL SAV
	Instrume	nt ID: CMSN								
Total/NA	Prep	3050B			1.15 g	100 mL	395413	08/11/15 07:36	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.15 g	100 mL	395634	08/11/15 19:35	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.50 g	50 mL	395891	08/13/15 09:48	CRW	TAL SAV
Total/NA	Analysis	7471B		1	0.50 g	50 mL	396091	08/13/15 16:27	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.03 g	50 mL	396472	08/17/15 06:30	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.03 g	50 mL	396567	08/17/15 11:43	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Lab Sample ID: 680-115409-7 Client Sample ID: GB-28 8-10

Date Collected: 08/06/15 14:20 Date Received: 08/08/15 10:00

Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395339	08/10/15 15:25	FES	TAL SAV
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: GB-28 8-10 Lab Sample ID: 680-115409-7

Date Collected: 08/06/15 14:20 Date Received: 08/08/15 10:00

Matrix: Solid Percent Solids: 86.5

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.21 g	1 mL	395299	08/10/15 14:33	JMV	TAL SAV
Total/NA	Analysis Instrume	8270D nt ID: CMSN		1	30.21 g	1 mL	395487	08/11/15 17:48	RAM	TAL SAV
Total/NA	Prep	3050B			1.16 g	100 mL	395413	08/11/15 07:36	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.16 g	100 mL	395634	08/11/15 19:49	ВСВ	TAL SAV
Total/NA	Prep	7471B			0.53 g	50 mL	395891	08/13/15 09:48	CRW	TAL SAV
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.53 g	50 mL	396091	08/13/15 16:31	ВСВ	TAL SAV
Total/NA	Prep	9012B			1.02 g	50 mL	396472	08/17/15 06:30	DAM	TAL SAV

Client Sample ID: GB-28 8-10 Lab Sample ID: 680-115409-7

 Date Collected: 08/06/15 14:20
 Matrix: Solid

 Date Received: 08/08/15 10:00
 Percent Solids: 86.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9012B		1	1.02 g	50 mL	396567	08/17/15 11:44	DAM	TAL SAV
	Instrumer	nt ID: LACHAT1								

Client Sample ID: GB-28 13-15 Lab Sample ID: 680-115409-8

Date Collected: 08/06/15 14:30 Matrix: Solid

Date Received: 08/08/15 10:00

Prep Type Total/NA	Batch Type Analysis	Batch Method Moisture	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 395339	Prepared or Analyzed 08/10/15 15:25	Analyst FES	Lab TAL SAV
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: GB-28 13-15 Lab Sample ID: 680-115409-8

Date Collected: 08/06/15 14:30 Matrix: Solid
Date Received: 08/08/15 10:00 Percent Solids: 82.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.02 g	1 mL	395299	08/10/15 14:33	JMV	TAL SAV
Total/NA	Analysis	8270D		1	30.02 g	1 mL	395487	08/11/15 18:12	RAM	TAL SAV
	Instrume	nt ID: CMSN								
Total/NA	Prep	3050B			1.13 g	100 mL	395413	08/11/15 07:36	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.13 g	100 mL	395634	08/11/15 19:53	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.54 g	50 mL	395891	08/13/15 09:48	CRW	TAL SAV
Total/NA	Analysis	7471B		5	0.54 g	50 mL	396091	08/13/15 17:35	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.05 g	50 mL	396472	08/17/15 06:30	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.05 g	50 mL	396567	08/17/15 11:45	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Client Sample ID: SB-24 2-4 Lab Sample ID: 680-115409-9

Date Collected: 08/06/15 15:25

Date Received: 08/08/15 10:00

Matrix: Solid

Dil Initial Batch Batch **Batch** Final Prepared Method Number or Analyzed **Prep Type** Type Run **Factor** Amount Amount Analyst Total/NA Moisture 395339 08/10/15 15:25 FES TAL SAV Analysis

Instrument ID: NOEQUIP

Client Sample ID: SB-24 2-4

Date Collected: 08/06/15 15:25

Date Received: 08/08/15 10:00

Lab Sample ID: 680-115409-9

Matrix: Solid

Percent Solids: 80.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.08 g	1 mL	395299	08/10/15 14:33	JMV	TAL SAV

Matrix: Solid

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Client Sample ID: SB-24 2-4

Date Collected: 08/06/15 15:25 Date Received: 08/08/15 10:00

Lab Sample ID: 680-115409-9

Matrix: Solid Percent Solids: 80.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrume	8270D nt ID: CMSN		10	30.08 g	1 mL	395487	08/11/15 18:35	RAM	TAL SAV
Total/NA	Prep	3050B			1.10 g	100 mL	395413	08/11/15 07:36	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.10 g	100 mL	395634	08/11/15 19:58	ВСВ	TAL SAV
Total/NA	Prep	7471B			0.59 g	50 mL	395891	08/13/15 09:48	CRW	TAL SAV
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.59 g	50 mL	396091	08/13/15 16:37	BCB	TAL SAV
Total/NA	Prep	9012B			1.05 g	50 mL	396472	08/17/15 06:30	DAM	TAL SAV
Total/NA	Analysis Instrume	9012B nt ID: LACHAT1		1	1.05 g	50 mL	396567	08/17/15 11:46	DAM	TAL SAV

Client Sample ID: SB-24 4-6 Lab Sample ID: 680-115409-10

Date Collected: 08/06/15 15:32

Date Received: 08/08/15 10:00

Batch Dil Initial Final Batch Batch Prepared **Prep Type** Type Method Run **Factor** Amount **Amount** Number or Analyzed **Analyst** Analysis TAL SAV Total/NA Moisture 395339 08/10/15 15:25 FES Instrument ID: NOEQUIP

Client Sample ID: SB-24 4-6

Date Collected: 08/06/15 15:32

Date Received: 08/08/15 10:00

Lab Sample ID: 680-115409-10 **Matrix: Solid** Percent Solids: 76.0

Lab Sample ID: 680-115409-11

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.11 g	1 mL	395299	08/10/15 14:33	JMV	TAL SAV
Total/NA	Analysis	8270D		10	30.11 g	1 mL	395487	08/11/15 18:59	RAM	TAL SAV
	Instrume	nt ID: CMSN								
Total/NA	Prep	3050B			1.06 g	100 mL	395413	08/11/15 07:36	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.06 g	100 mL	395634	08/11/15 20:02	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.54 g	50 mL	396439	08/16/15 13:43	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.54 g	50 mL	396738	08/17/15 21:11	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.05 g	50 mL	396472	08/17/15 06:30	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.05 g	50 mL	396567	08/17/15 11:47	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Client Sample ID: SB-24 8-10

Date Collected: 08/06/15 15:38

Date Received: 08/08/15 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395339	08/10/15 15:25	FES	TAL SAV

TestAmerica Savannah

Matrix: Solid

TestAmerica Job ID: 680-115409-1

Project/Site: Macon MGP

Client: Geotechnical & Environmental Consultants

Client Sample ID: SB-24 8-10 Lab Sample ID: 680-115409-11 Date Collected: 08/06/15 15:38

Matrix: Solid

Date Received: 08/08/15 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395339	08/10/15 15:25	FES	TAL SAV
	Instrumen	t ID: NOEQUIP								

Lab Sample ID: 680-115409-11 Client Sample ID: SB-24 8-10

Date Collected: 08/06/15 15:38 **Matrix: Solid** Percent Solids: 69.7 Date Received: 08/08/15 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.14 g	1 mL	395299	08/10/15 14:33	JMV	TAL SAV
Total/NA	Analysis	8270D		10	30.14 g	1 mL	395487	08/11/15 19:23	RAM	TAL SAV
	Instrume	nt ID: CMSN								
Total/NA	Prep	3050B			1.06 g	100 mL	395413	08/11/15 07:36	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.06 g	100 mL	395634	08/11/15 20:07	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.51 g	50 mL	396439	08/16/15 13:43	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.51 g	50 mL	396738	08/17/15 21:20	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.04 g	50 mL	396472	08/17/15 06:30	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.04 g	50 mL	396567	08/17/15 11:48	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Client Sample ID: SB-24 13-15 Lab Sample ID: 680-115409-12

Date Collected: 08/06/15 15:50 **Matrix: Solid** Date Received: 08/08/15 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395339	08/10/15 15:25	FES	TAL SAV
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: SB-24 13-15 Lab Sample ID: 680-115409-12

Date Collected: 08/06/15 15:50 Date Received: 08/08/15 10:00 Percent Solids: 86.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.21 g	1 mL	395299	08/10/15 14:33	JMV	TAL SAV
Total/NA	Analysis	8270D		1	30.21 g	1 mL	395487	08/11/15 19:47	RAM	TAL SAV
	Instrume	nt ID: CMSN								
Total/NA	Prep	3050B			1.17 g	100 mL	395413	08/11/15 07:36	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.17 g	100 mL	395634	08/11/15 20:11	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.50 g	50 mL	396439	08/16/15 13:43	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.50 g	50 mL	396738	08/17/15 21:29	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.02 g	50 mL	396472	08/17/15 06:30	DAM	TAL SAV

TestAmerica Savannah

Page 109 of 127

Client Sample ID: SB-24 13-15

Date Collected: 08/06/15 15:50

Date Received: 08/08/15 10:00

Lab Sample ID: 680-115409-12

Matrix: Solid Percent Solids: 86.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9012B		1	1.02 g	50 mL	396567	08/17/15 11:50	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Client Sample ID: SB-42 2-4

Date Collected: 08/06/15 16:02 Date Received: 08/08/15 10:00

Lab Sample ID: 680-115409-13

Matrix: Solid

Prep Type Total/NA	Batch Type Analysis	Batch Method Moisture	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 395339	Prepared or Analyzed 08/10/15 15:25	Analyst FES	Lab TAL SAV
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: SB-42 2-4

Date Collected: 08/06/15 16:02

Lab Sample ID: 680-115409-13 **Matrix: Solid**

Date Received: 08/08/15 10:00 Percent Solids: 92.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.06 g	1 mL	395299	08/10/15 14:33	JMV	TAL SAV
Total/NA	Analysis	8270D		1	30.06 g	1 mL	395487	08/11/15 20:10	RAM	TAL SAV
	Instrume	nt ID: CMSN								
Total/NA	Prep	3050B			1.10 g	100 mL	395413	08/11/15 07:36	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.10 g	100 mL	395634	08/11/15 20:16	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.52 g	50 mL	396439	08/16/15 13:43	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.52 g	50 mL	396738	08/17/15 21:32	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.05 g	50 mL	396472	08/17/15 06:30	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.05 g	50 mL	396567	08/17/15 11:51	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Client Sample ID: SB-42 4-6

Date Collected: 08/06/15 16:05 Date Received: 08/08/15 10:00

Lab Sample ID: 680-115409-14 **Matrix: Solid**

Dil Initial Batch Batch **Batch** Final Prepared Method Number or Analyzed **Prep Type** Type Run **Factor** Amount Amount **Analyst** Total/NA Moisture 395339 08/10/15 15:25 FES TAL SAV Analysis Instrument ID: NOEQUIP

Client Sample ID: SB-42 4-6 Lab Sample ID: 680-115409-14

Date Collected: 08/06/15 16:05 **Matrix: Solid** Date Received: 08/08/15 10:00 Percent Solids: 92.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			29.93 g	1 mL	395299	08/10/15 14:33	JMV	TAL SAV

Client: Geotechnical & Environmental Consultants

Client Sample ID: SB-42 4-6 Lab Sample ID: 680-115409-14 Date Collected: 08/06/15 16:05 **Matrix: Solid**

Date Received: 08/08/15 10:00 Percent Solids: 92.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrume	8270D nt ID: CMSN		1	29.93 g	1 mL	395487	08/11/15 20:34	RAM	TAL SAV
Total/NA	Prep	3050B			1.14 g	100 mL	395413	08/11/15 07:36	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.14 g	100 mL	395634	08/11/15 18:47	ВСВ	TAL SAV
Total/NA	Prep	7471B			0.51 g	50 mL	396439	08/16/15 13:43	JKL	TAL SAV
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.51 g	50 mL	396738	08/17/15 21:35	ВСВ	TAL SAV
Total/NA	Prep	9012B			1.00 g	50 mL	396472	08/17/15 06:30	DAM	TAL SAV
Total/NA	Analysis Instrume	9012B nt ID: LACHAT1		1	1.00 g	50 mL	396567	08/17/15 11:55	DAM	TAL SAV

Lab Sample ID: 680-115409-15 Client Sample ID: SB-42 8-10

Date Collected: 08/06/15 16:10 **Matrix: Solid**

Date Received: 08/08/15 10:00

Prep Type Total/NA	Batch Type Analysis	Batch Method Moisture	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 395339	Prepared or Analyzed 08/10/15 15:25	Analyst	Lab TAL SAV
TOTAL TOTAL	- ,	nt ID: NOEQUIP		•			333333	00/10/13 13.23	1 20	TAL OAV

Client Sample ID: SB-42 8-10 Lab Sample ID: 680-115409-15 Date Collected: 08/06/15 16:10 **Matrix: Solid**

Date Received: 08/08/15 10:00 Percent Solids: 88.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.33 g	1 mL	395299	08/10/15 14:33	JMV	TAL SAV
Total/NA	Analysis	8270D		10	30.33 g	1 mL	395487	08/11/15 20:57	RAM	TAL SAV
	Instrume	nt ID: CMSN								
Total/NA	Prep	3050B			1.17 g	100 mL	395413	08/11/15 07:36	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.17 g	100 mL	395634	08/11/15 20:21	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.55 g	50 mL	396439	08/16/15 13:43	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.55 g	50 mL	396738	08/17/15 21:38	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.05 g	50 mL	396472	08/17/15 06:30	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.05 g	50 mL	396567	08/17/15 11:56	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Client Sample ID: SB-42 13-15 Lab Sample ID: 680-115409-16

Date Collected: 08/06/15 16:15 **Matrix: Solid**

Date Received: 08/08/15 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395339	08/10/15 15:25	FES	TAL SAV

Page 111 of 127

TestAmerica Job ID: 680-115409-1

Project/Site: Macon MGP

Client: Geotechnical & Environmental Consultants

Client Sample ID: SB-42 13-15 Lab Sample ID: 680-115409-16 Date Collected: 08/06/15 16:15

Matrix: Solid Date Received: 08/08/15 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395339	08/10/15 15:25	FES	TAL SAV
	Instrumer	nt ID: NOEQUIP								

Lab Sample ID: 680-115409-16 Client Sample ID: SB-42 13-15

Date Collected: 08/06/15 16:15 **Matrix: Solid** Percent Solids: 88.9 Date Received: 08/08/15 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.10 g	1 mL	395299	08/10/15 14:33	JMV	TAL SAV
Total/NA	Analysis	8270D nt ID: CMSN		1	30.10 g	1 mL	395487	08/11/15 21:21	RAM	TAL SAV
T-4-1/010					4.40	400	005405	00/44/45 00:05		
Total/NA	Prep	3050B			1.10 g	100 mL	395425	08/11/15 08:25		TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.10 g	100 mL	396333	08/15/15 04:01	BCB	TAL SAV
Total/NA	Prep	7471B			0.51 g	50 mL	396439	08/16/15 13:43	JKL	TAL SAV
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.51 g	50 mL	396738	08/17/15 21:41	ВСВ	TAL SAV
Total/NA	Prep	9012B			1.02 g	50 mL	396472	08/17/15 06:30	DAM	TAL SAV
Total/NA	Analysis Instrume	9012B nt ID: LACHAT1		1	1.02 g	50 mL	396567	08/17/15 11:57	DAM	TAL SAV

Client Sample ID: GB-16 2-4 Lab Sample ID: 680-115409-17

Date Collected: 08/06/15 13:29 **Matrix: Solid** Date Received: 08/08/15 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395339	08/10/15 15:25	FES	TAL SAV
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: GB-16 2-4 Lab Sample ID: 680-115409-17

Date Collected: 08/06/15 13:29 **Matrix: Solid** Date Received: 08/08/15 10:00 Percent Solids: 47.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.18 g	1 mL	395299	08/10/15 14:33	JMV	TAL SAV
Total/NA	Analysis	8270D		1	30.18 g	1 mL	395487	08/11/15 21:45	RAM	TAL SAV
	Instrume	nt ID: CMSN								
Total/NA	Prep	3050B			1.12 g	100 mL	395425	08/11/15 08:25	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.12 g	100 mL	396333	08/15/15 04:15	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.54 g	50 mL	396439	08/16/15 13:43	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.54 g	50 mL	396738	08/17/15 21:44	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.05 g	50 mL	396472	08/17/15 06:30	DAM	TAL SAV

TestAmerica Savannah

Page 112 of 127

9/17/2015

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

Lab Sample ID: 680-115409-17

Client Sample ID: GB-16 2-4 Date Collected: 08/06/15 13:29 Date Received: 08/08/15 10:00

Matrix: Solid Percent Solids: 47.6

Batch Dil Initial Batch Batch Final **Prepared** Method **Prep Type** Type Run **Factor** Amount **Amount** Number or Analyzed Analyst Lab Total/NA Analysis 9012B 1.05 g 50 mL 396567 08/17/15 11:58 DAM TAL SAV Instrument ID: LACHAT1

Client Sample ID: GB-16 4-6 Lab Sample ID: 680-115409-18

Date Collected: 08/06/15 13:35 **Matrix: Solid**

Date Received: 08/08/15 10:00

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis Moisture 395339 08/10/15 15:25 FES TAL SAV Instrument ID: NOEQUIP

Client Sample ID: GB-16 4-6

Lab Sample ID: 680-115409-18 Date Collected: 08/06/15 13:35 **Matrix: Solid**

Date Received: 08/08/15 10:00 Percent Solids: 74.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			29.97 g	1 mL	395299	08/10/15 14:33	JMV	TAL SAV
Total/NA	Analysis	8270D		1	29.97 g	1 mL	395487	08/11/15 22:08	RAM	TAL SAV
	Instrume	nt ID: CMSN								
Total/NA	Prep	3050B			1.08 g	100 mL	395425	08/11/15 08:25	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.08 g	100 mL	396333	08/15/15 04:20	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.56 g	50 mL	396439	08/16/15 13:43	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.56 g	50 mL	396738	08/17/15 21:47	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.04 g	50 mL	396472	08/17/15 06:30	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.04 g	50 mL	396567	08/17/15 11:59	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Lab Sample ID: 680-115409-19 Client Sample ID: GB-18 2-4 Date Collected: 08/06/15 15:05 **Matrix: Solid**

Date Received: 08/08/15 10:00

Dil Batch **Batch** Initial Final **Batch Prepared** Number **Prep Type** Type Method Run **Factor** Amount Amount or Analyzed **Analyst** Total/NA 395339 08/10/15 15:25 FES TAL SAV Analysis Moisture Instrument ID: NOEQUIP

Client Sample ID: GB-18 2-4 Lab Sample ID: 680-115409-19

Date Collected: 08/06/15 15:05 Matrix: Solid Date Received: 08/08/15 10:00 Percent Solids: 90.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			29.96 g	1 mL	395299	08/10/15 14:33	JMV	TAL SAV

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

Client Sample ID: GB-18 2-4

Date Collected: 08/06/15 15:05

Date Received: 08/08/15 10:00

Lab Sample ID: 680-115409-19

Lab Sample ID: 680-115409-20

Matrix: Solid

Percent Solids: 90.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrume	8270D nt ID: CMSN		10	29.96 g	1 mL	395487	08/11/15 22:32	RAM	TAL SAV
Total/NA	Prep	3050B			1.10 g	100 mL	395425	08/11/15 08:25	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.10 g	100 mL	396333	08/15/15 04:24	ВСВ	TAL SAV
Total/NA	Prep	7471B			0.60 g	50 mL	396439	08/16/15 13:43	JKL	TAL SAV
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.60 g	50 mL	396738	08/17/15 21:50	ВСВ	TAL SAV
Total/NA	Prep	9012B			1.04 g	50 mL	396472	08/17/15 06:30	DAM	TAL SAV
Total/NA	Analysis Instrume	9012B nt ID: LACHAT1		1	1.04 g	50 mL	396567	08/17/15 12:01	DAM	TAL SAV

Client Sample ID: GB-18 4-6

Date Collected: 08/06/15 15:15

Date Received: 08/08/15 10:00

Prep Type Total/NA	Batch Type Analysis	Batch Method Moisture	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 395339	Prepared or Analyzed 08/10/15 15:25	Analyst FES	Lab TAL SAV
	Instrume	nt ID: NOEQUIP								

Client Sample ID: GB-18 4-6

Date Collected: 08/06/15 15:15

Date Received: 08/08/15 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.09 g	1 mL	395299	08/10/15 14:33	JMV	TAL SAV
Total/NA	Analysis	8270D		10	30.09 g	1 mL	395487	08/11/15 22:55	RAM	TAL SAV
	Instrume	nt ID: CMSN								
Total/NA	Prep	3050B			1.16 g	100 mL	395425	08/11/15 08:25	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.16 g	100 mL	396333	08/15/15 03:38	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.54 g	50 mL	396439	08/16/15 13:43	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.54 g	50 mL	396738	08/17/15 21:53	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.02 g	50 mL	396472	08/17/15 06:30	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.02 g	50 mL	396567	08/17/15 12:02	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Client Sample ID: GB-3 8-10

Date Collected: 08/07/15 15:36

Date Received: 08/08/15 10:00

Г										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395339	08/10/15 15:25	FES	TAL SAV

TestAmerica Savannah

Lab Sample ID: 680-115409-21

Page 114 of 127

9/17/2015

Matrix: Solid

Lab Sample ID: 680-115409-20 **Matrix: Solid**

Matrix: Solid

Percent Solids: 90.8

TestAmerica Job ID: 680-115409-1

Project/Site: Macon MGP

Client: Geotechnical & Environmental Consultants

Client Sample ID: GB-3 8-10 Lab Sample ID: 680-115409-21 Date Collected: 08/07/15 15:36 **Matrix: Solid**

Date Received: 08/08/15 10:00

Batch Dil Initial Final Batch Batch Prepared **Prep Type** Type Method Run **Factor** Amount Amount Number or Analyzed Analyst 08/10/15 15:25 FES Total/NA Analysis Moisture 395339 TAL SAV Instrument ID: NOEQUIP

Client Sample ID: GB-3 8-10 Lab Sample ID: 680-115409-21

Matrix: Solid Date Collected: 08/07/15 15:36 Date Received: 08/08/15 10:00 Percent Solids: 63.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.34 g	1 mL	395304	08/10/15 16:16	ALS	TAL SAV
Total/NA	Analysis Instrume	8270D nt ID: CMST		1	30.34 g	1 mL	395714	08/12/15 16:15	RAM	TAL SAV
Total/NA	Prep	3050B			1.14 g	100 mL	395425	08/11/15 08:25	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.14 g	100 mL	396333	08/15/15 04:29	ВСВ	TAL SAV
Total/NA	Prep	7471B			0.55 g	50 mL	396439	08/16/15 13:43	JKL	TAL SAV
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.55 g	50 mL	396738	08/17/15 21:56	ВСВ	TAL SAV
Total/NA	Prep	9012B			1.01 g	50 mL	396473	08/17/15 08:00	DAM	TAL SAV
Total/NA	Analysis Instrume	9012B nt ID: LACHAT1		1	1.01 g	50 mL	396567	08/17/15 12:05	DAM	TAL SAV

Client Sample ID: GB-3 13-15 Lab Sample ID: 680-115409-22

Date Collected: 08/07/15 15:42 Date Received: 08/08/15 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395339	08/10/15 15:25	FES	TAL SAV
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: GB-3 13-15 Lab Sample ID: 680-115409-22

Date Collected: 08/07/15 15:42 Date Received: 08/08/15 10:00 Percent Solids: 80.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			29.95 g	1 mL	395304	08/10/15 16:16	ALS	TAL SAV
Total/NA	Analysis	8270D		1	29.95 g	1 mL	395714	08/12/15 16:42	RAM	TAL SAV
	Instrume	nt ID: CMST								
Total/NA	Prep	3050B			1.15 g	100 mL	395425	08/11/15 08:25	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.15 g	100 mL	396333	08/15/15 04:33	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.51 g	50 mL	396439	08/16/15 13:43	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.51 g	50 mL	396738	08/17/15 22:05	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.05 g	50 mL	396473	08/17/15 08:00	DAM	TAL SAV

TestAmerica Savannah

Page 115 of 127

Matrix: Solid

Matrix: Solid

Client: Geotechnical & Environmental Consultants

Client Sample ID: GB-3 13-15

Date Collected: 08/07/15 15:42

Date Received: 08/08/15 10:00

Project/Site: Macon MGP

Lab Sample ID: 680-115409-22

Matrix: Solid

Percent Solids: 80.7

Dil Initial Batch Batch **Batch** Final **Prepared Prep Type** Type Method Run **Factor** Amount **Amount** Number or Analyzed Analyst Lab Total/NA Analysis 9012B 1.05 g 50 mL 396567 08/17/15 12:08 DAM TAL SAV Instrument ID: LACHAT1

Lab Sample ID: 680-115409-23

Client Sample ID: GB-5 8-10 Date Collected: 08/07/15 13:45 **Matrix: Solid**

Date Received: 08/08/15 10:00

Batch Dil Initial Final Batch Batch Prepared **Prep Type** Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis Moisture 395339 08/10/15 15:25 FES TAL SAV Instrument ID: NOEQUIP

Client Sample ID: GB-5 8-10 Lab Sample ID: 680-115409-23

Date Collected: 08/07/15 13:45 **Matrix: Solid** Date Received: 08/08/15 10:00 Percent Solids: 75.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.698 g	5 mL	395276	08/10/15 10:33	FES	TAL SAV
Total/NA	Analysis	8260B		1	6.698 g	5 mL	395460	08/11/15 20:21	DJK	TAL SAV
	instrume	nt ID: CMSL								
Total/NA	Prep	3546			30.20 g	1 mL	395304	08/10/15 16:16	ALS	TAL SAV
Total/NA	Analysis Instrume	8270D nt ID: CMST		1	30.20 g	1 mL	395714	08/12/15 17:08	RAM	TAL SAV
Total/NA	Prep	3050B			1.11 g	100 mL	395425	08/11/15 08:25	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.11 g	100 mL	396333	08/15/15 04:38	BCB	TAL SAV
Total/NA	Prep	7471B			0.55 g	50 mL	396439	08/16/15 13:43	JKL	TAL SAV
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.55 g	50 mL	396738	08/17/15 22:08	ВСВ	TAL SAV
Total/NA	Prep	9012B			1.05 g	50 mL	396473	08/17/15 08:00	DAM	TAL SAV
Total/NA	Analysis Instrume	9012B nt ID: LACHAT1		1	1.05 g	50 mL	396567	08/17/15 12:11	DAM	TAL SAV

Client Sample ID: GB-7 8-10 Lab Sample ID: 680-115409-24

Date Collected: 08/07/15 09:54 Date Received: 08/08/15 10:00

Dil Initial Final **Batch Batch** Batch Prepared Method Amount Amount Number or Analyzed **Prep Type** Type Run **Factor** Analyst Lab 395339 08/10/15 15:25 FES Total/NA Analysis Moisture TAL SAV Instrument ID: NOEQUIP

TestAmerica Savannah

Matrix: Solid

Client Sample ID: GB-7 8-10

Date Collected: 08/07/15 09:54

Date Received: 08/08/15 10:00

Client: Geotechnical & Environmental Consultants

Lab Sample ID: 680-115409-24

Matrix: Solid Percent Solids: 80.0

Batch Dil Initial Final Batch Batch Prepared **Prep Type** Type Method Run **Factor** Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 6.209 g 5 mL 395276 08/10/15 10:33 FES TAL SAV Total/NA 8260B 6.209 g 5 mL 395460 08/11/15 20:42 DJK TAL SAV Analysis 1 Instrument ID: CMSL Total/NA 3546 08/10/15 16:16 ALS TAL SAV Prep 30.14 g 1 mL 395304 Total/NA Analysis 8270D 1 30.14 g 1 mL 395714 08/12/15 17:36 RAM TAL SAV Instrument ID: CMST Total/NA 3050B TAL SAV Prep 100 mL 395425 08/11/15 08:25 CDD 1.12 g 6010C 396333 Total/NA Analysis 1.12 g 100 mL 08/15/15 04:43 BCB TAL SAV Instrument ID: ICPE Total/NA Prep 7471B 0.51 g 50 mL 396439 08/16/15 13:43 JKL TAL SAV Total/NA Analysis 7471B 0.51 g 50 mL 396738 08/17/15 22:11 BCB TAL SAV Instrument ID: LEEMAN2 Total/NA Prep 9012B 1.00 g 50 mL 396473 08/17/15 08:00 DAM TAL SAV Total/NA Analysis 9012B 1.00 g 50 mL 396567 08/17/15 12:13 DAM TAL SAV Instrument ID: LACHAT1

Client Sample ID: GB-7 13-15 Lab Sample ID: 680-115409-25

Date Collected: 08/07/15 10:00 **Matrix: Solid** Date Received: 08/08/15 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture nt ID: NOEQUIP		1			395339	08/10/15 15:25	FES	TAL SAV

Lab Sample ID: 680-115409-25 Client Sample ID: GB-7 13-15

Date Collected: 08/07/15 10:00 **Matrix: Solid** Date Received: 08/08/15 10:00 Percent Solids: 86.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.845 g	5 mL	395276	08/10/15 10:33	FES	TAL SAV
Total/NA	Analysis Instrume	8260B nt ID: CMSL		1	6.845 g	5 mL	395460	08/11/15 21:04	DJK	TAL SAV
Total/NA	Prep	3546			30.16 g	1 mL	395304	08/10/15 16:16	ALS	TAL SAV
Total/NA	Analysis Instrume	8270D nt ID: CMST		1	30.16 g	1 mL	395714	08/12/15 18:02	RAM	TAL SAV
Total/NA	Prep	3050B			1.18 g	100 mL	395425	08/11/15 08:25	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.18 g	100 mL	396333	08/15/15 04:47	BCB	TAL SAV
Total/NA	Prep	7471B			0.51 g	50 mL	396509	08/17/15 10:06	JKL	TAL SAV
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.51 g	50 mL	396738	08/17/15 22:42	ВСВ	TAL SAV
Total/NA	Prep	9012B			1.01 g	50 mL	396473	08/17/15 08:00	DAM	TAL SAV
Total/NA	Analysis Instrume	9012B nt ID: LACHAT1		1	1.01 g	50 mL	396567	08/17/15 12:14	DAM	TAL SAV

Lab Chronicle

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-26

. Matrix: Solid

Date Collected: 08/07/15 10:06 Date Received: 08/08/15 10:00

Client Sample ID: GB-7 18

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395339	08/10/15 15:25	FES	TAL SAV
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: GB-7 18 Lab Sample ID: 680-115409-26

Date Collected: 08/07/15 10:06

Date Received: 08/08/15 10:00

Matrix: Solid
Percent Solids: 83.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.694 g	5 mL	395276	08/10/15 10:33	FES	TAL SAV
Total/NA	Analysis	8260B		1	6.694 g	5 mL	395460	08/11/15 21:25	DJK	TAL SAV
	Instrume	nt ID: CMSL								
Total/NA	Prep	3546			30.05 g	1 mL	395304	08/10/15 16:16	ALS	TAL SAV
Total/NA	Analysis	8270D		1	30.05 g	1 mL	395714	08/12/15 18:28	RAM	TAL SAV
	Instrume	nt ID: CMST								
Total/NA	Prep	3050B			1.10 g	100 mL	395425	08/11/15 08:25	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.10 g	100 mL	396333	08/15/15 04:52	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.56 g	50 mL	396439	08/16/15 13:43	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.56 g	50 mL	396738	08/17/15 22:14	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.02 g	50 mL	396473	08/17/15 08:00	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.02 g	50 mL	396567	08/17/15 12:15	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Client Sample ID: SB-17 8-10 Lab Sample ID: 680-115409-27

Date Collected: 08/07/15 14:50

Date Received: 08/08/15 10:00

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395339	08/10/15 15:25	FES	TAL SAV
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: SB-17 8-10 Lab Sample ID: 680-115409-27

Date Collected: 08/07/15 14:50 Matrix: Solid
Date Received: 08/08/15 10:00 Percent Solids: 88.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			29.98 g	1 mL	395304	08/10/15 16:16	ALS	TAL SAV
Total/NA	Analysis Instrume	8270D nt ID: CMST		1	29.98 g	1 mL	395714	08/12/15 18:54	RAM	TAL SAV
Total/NA	Prep	3050B			1.14 g	100 mL	395425	08/11/15 08:25	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.14 g	100 mL	396333	08/15/15 04:56	BCB	TAL SAV
Total/NA	Prep	7471B			0.53 g	50 mL	396439	08/16/15 13:43	JKL	TAL SAV

TestAmerica Savannah

Page 118 of 127

9/17/2015

3

5

6

8

9

10

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

Client Sample ID: SB-17 8-10

Date Collected: 08/07/15 14:50

Date Received: 08/08/15 10:00

Lab Sample ID: 680-115409-27

Matrix: Solid

Percent Solids: 88.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.53 g	50 mL	396738	08/17/15 22:17	ВСВ	TAL SAV
Total/NA	Prep	9012B			1.00 g	50 mL	396473	08/17/15 08:00	DAM	TAL SAV
Total/NA	Analysis Instrume	9012B nt ID: LACHAT1		1	1.00 g	50 mL	396567	08/17/15 12:16	DAM	TAL SAV

Client Sample ID: SB-17 13-15 Lab Sample ID: 680-115409-28

Date Collected: 08/07/15 14:56 Matrix: Solid

Date Received: 08/08/15 10:00

Batch **Batch** Dil Initial Final Batch Prepared Method or Analyzed Analyst Number **Prep Type** Type Run **Factor** Amount Amount Lab 395339 08/10/15 15:25 FES TAL SAV Total/NA Analysis Moisture Instrument ID: NOEQUIP

Client Sample ID: SB-17 13-15 Lab Sample ID: 680-115409-28 Date Collected: 08/07/15 14:56 **Matrix: Solid**

Date Received: 08/08/15 10:00 Percent Solids: 85.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.05 g	1 mL	395304	08/10/15 16:16	ALS	TAL SAV
Total/NA	Analysis Instrume	8270D nt ID: CMST		10	30.05 g	1 mL	395714	08/12/15 19:20	RAM	TAL SAV
Total/NA	Prep	3050B			1.16 g	100 mL	395425	08/11/15 08:25	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.16 g	100 mL	396333	08/15/15 05:10	ВСВ	TAL SAV
Total/NA	Prep	7471B			0.55 g	50 mL	396439	08/16/15 13:43	JKL	TAL SAV
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.55 g	50 mL	396738	08/17/15 22:20	ВСВ	TAL SAV
Total/NA	Prep	9012B			1.01 g	50 mL	396473	08/17/15 08:00	DAM	TAL SAV
Total/NA	Analysis Instrume	9012B nt ID: LACHAT1		1	1.01 g	50 mL	396567	08/17/15 12:17	DAM	TAL SAV

Client Sample ID: SB-20 0-2 Lab Sample ID: 680-115409-29 Date Collected: 08/07/15 15:04

Date Received: 08/08/15 10:00

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395339	08/10/15 15:25	FES	TAL SAV
	Instrume	nt ID: NOEQUIP								

TestAmerica Savannah

Matrix: Solid

Client Sample ID: SB-20 0-2

Date Collected: 08/07/15 15:04

Date Received: 08/08/15 10:00

Client: Geotechnical & Environmental Consultants

Lab Sample ID: 680-115409-29

Matrix: Solid Percent Solids: 86.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.08 g	1 mL	395304	08/10/15 16:16	ALS	TAL SAV
Total/NA	Analysis	8270D		1	30.08 g	1 mL	395714	08/12/15 19:46	RAM	TAL SAV
	Instrume	nt ID: CMST								
Total/NA	Prep	3050B			1.15 g	100 mL	395425	08/11/15 08:25	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.15 g	100 mL	396333	08/15/15 05:15	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	3050B			1.15 g	100 mL	395425	08/11/15 08:25	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.15 g	100 mL	396749	08/17/15 15:17	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.56 g	50 mL	396439	08/16/15 13:43	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.56 g	50 mL	396738	08/17/15 22:24	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.05 g	50 mL	396473	08/17/15 08:00	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.05 g	50 mL	396567	08/17/15 12:18	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Client Sample ID: SB-20 2-4 Lab Sample ID: 680-115409-30 **Matrix: Solid**

Date Collected: 08/07/15 15:04 Date Received: 08/08/15 10:00

Prep Type Total/NA	Batch Type Analysis	Batch Method Moisture	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 395339	Prepared or Analyzed 08/10/15 15:25	Analyst FES	Lab TAL SAV
	Inctrumor	STID: NOEOLIID								

Client Sample ID: SB-20 2-4 Lab Sample ID: 680-115409-30 Date Collected: 08/07/15 15:04

Date Received: 08/08/15 10:00 Percent Solids: 84.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.01 g	1 mL	395304	08/10/15 16:16	ALS	TAL SAV
Total/NA	Analysis Instrume	8270D nt ID: CMST		1	30.01 g	1 mL	395714	08/12/15 20:11	RAM	TAL SAV
Total/NA	Prep	3050B			1.18 g	100 mL	395425	08/11/15 08:25	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.18 g	100 mL	396333	08/15/15 05:19	ВСВ	TAL SAV
Total/NA	Prep	3050B			1.18 g	100 mL	395425	08/11/15 08:25	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.18 g	100 mL	396749	08/17/15 15:22	BCB	TAL SAV
Total/NA	Prep	7471B			0.51 g	50 mL	396439	08/16/15 13:43	JKL	TAL SAV
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.51 g	50 mL	396738	08/17/15 22:27	BCB	TAL SAV
Total/NA	Prep	9012B			1.01 g	50 mL	396473	08/17/15 08:00	DAM	TAL SAV
Total/NA	Analysis Instrume	9012B nt ID: LACHAT1		1	1.01 g	50 mL	396567	08/17/15 12:21	DAM	TAL SAV

TestAmerica Savannah

Page 120 of 127

Lab Chronicle

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Lab Sample ID: 680-115409-31

Client Sample ID: Trip Blank lot ATL156 Date Collected: 08/07/15 00:00 **Matrix: Water**

Date Received: 08/08/15 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	396685	08/18/15 11:14	JD1	TAL SAV
	Instrumer	nt ID: CMSB								

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TestAmerica Job ID: 680-115409-1

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP

. reject ener maceri mer

Laboratory: TestAmerica Savannah

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Program	EPA Region	Certification ID	Expiration Date
AFCEE		SAVLAB	
DoD ELAP		399.01	02-28-17
ISO/IEC 17025		399.01	02-28-17
State Program	4	41450	06-30-16
State Program	6	88-0692	01-31-16
State Program	9	2939	07-31-16
State Program	8	N/A	12-31-15
State Program	1	PH-0161	03-31-17
NELAP	4	E87052	06-30-16
State Program	4	N/A	06-12-17
State Program	4	803	06-30-16
State Program	9	14-004r	04-16-16
State Program	9	N/A	06-30-16
NELAP	5	200022	11-30-15
State Program	5	N/A	06-30-15 *
	7	353	06-30-17
State Program	4	90084	12-31-15
State Program	4	18	06-30-16
State Program	4	90084	12-31-15
NELAP	6	30690	06-30-16
NELAP	6	LA150014	12-31-15
State Program	1	GA00006	09-24-16
	3	250	12-31-15
	1	M-GA006	06-30-16
	5	9925	03-05-16
	4	N/A	06-30-15 *
	8	CERT0081	12-31-15
	7	TestAmerica-Savannah	06-30-16
	2		09-30-15 *
			06-30-16
			03-31-16
	4		07-31-16
	4		12-31-15
			08-31-15 *
			06-30-16
			12-31-15
			06-30-15 *
ŭ			06-30-16
			11-30-15
			06-11-17
	3		06-14-16
			06-14-16
			12-31-15
State Program	3	094	06-30-16
		U214	
State Program	5	999819810	08-31-16
	AFCEE DOD ELAP ISO/IEC 17025 State Program NELAP State Program NELAP State Program	AFCEE DoD ELAP ISO/IEC 17025 State Program State Program 6 State Program 9 State Program 9 State Program 1 NELAP 4 State Program 4 State Program 9 State Program 9 State Program 9 NELAP 5 State Program 7 State Program 7 State Program 4 State Program 4 State Program 4 NELAP 6 NELAP 6 State Program 1 State Program 3 State Program 4 State Program 4 State Program 6 NELAP 2 State Program 4 State Program	AFCEE DOD ELAP BOD STATE Program BASONIC STATE PROGRAM BOD STATE PROGRAM BOD STATE PROGRAM BOD STATE PROGRAM BOD STATE BOD STAT BOD STATE BOD STATE BOD STATE BOD STATE BOD STATE BOD STATE BOD

4

5

9

10

11

^{*} Certification renewal pending - certification considered valid.

Method Summary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP

TestAmerica Job ID: 680-115409-1

Method	Method Description	Protocol	Laboratory
3260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
3270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL SAV
6010C	Metals (ICP)	SW846	TAL SAV
7471B	Mercury (CVAA)	SW846	TAL SAV
9012B	Cyanide, Total andor Amenable	SW846	TAL SAV
Moisture	Percent Moisture	EPA	TAL SAV

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

3

4

5

7

8

9

10

11

11

Client: Geotechnical & Environmental Consultants

Job Number: 680-115409-1

Login Number: 115409 List Source: TestAmerica Savannah

List Number: 1

Creator: Banda, Christy S

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	False	COC not received for samples -21 through -31, client emailed 8/10/15
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-115544-1

Client Project/Site: Macon MGP #2

Revision: 1

For:

Geotechnical & Environmental Consultants 514 Hillcrest Industrial Blvd. Macon, Georgia 31204

Attn: Carrie Holderfield

Authorized for release by: 9/17/2015 6:40:12 PM

Lisa Harvey, Project Manager II (912)354-7858 e.3221

lisa.harvey@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Definitions/Glossary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

TestAmerica Job ID: 680-115544-1

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
*	LCS or LCSD is outside acceptance limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.
D	Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.
В	Compound was found in the blank and sample.

Metals

Qualifier	Qualifier Description
٨	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.
В	Compound was found in the blank and sample.
F2	MS/MSD RPD exceeds control limits
F1	MS and/or MSD Recovery is outside acceptance limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.

General Chemistry

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

9/17/2015

Page 2 of 80

Sample Summary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

TestAmerica Job ID: 680-115544-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-115544-1	SB-41 4-6	Solid	08/10/15 09:20	08/12/15 09:46
680-115544-2	SB-41 8-10	Solid	08/10/15 09:24	08/12/15 09:46
680-115544-3	SB-41 13-15	Solid	08/10/15 09:28	08/12/15 09:46
680-115544-4	GB-9 8-10	Solid	08/10/15 09:57	08/12/15 09:46
680-115544-5	GB-9 13-15	Solid	08/10/15 10:06	08/12/15 09:46
680-115544-6	GB-11 3-5	Solid	08/10/15 10:31	08/12/15 09:46
680-115544-7	GB-11 8-10	Solid	08/10/15 10:36	08/12/15 09:46
680-115544-8	GB-11 13-15	Solid	08/10/15 10:41	08/12/15 09:46
680-115544-9	SB-25 0-2	Solid	08/10/15 10:56	08/12/15 09:46
680-115544-10	SB-25 2-4	Solid	08/10/15 10:56	08/12/15 09:46
680-115544-11	SB-25 4-6	Solid	08/10/15 11:11	08/12/15 09:46
680-115544-12	SB-25 8-10	Solid	08/10/15 11:17	08/12/15 09:46
680-115544-13	SB-25 13-15	Solid	08/10/15 11:21	08/12/15 09:46
680-115544-14	GB-25 2-4	Solid	08/10/15 11:39	08/12/15 09:46
680-115544-15	GB-25 4-6	Solid	08/10/15 11:42	08/12/15 09:46
680-115544-16	GB-26 2-4	Solid	08/10/15 12:20	08/12/15 09:46
680-115544-17	GB-26 4-6	Solid	08/10/15 12:25	08/12/15 09:46
680-115544-18	GB-27 3-5	Solid	08/10/15 12:33	08/12/15 09:46
680-115544-19	GB-27 8-10	Solid	08/10/15 12:45	08/12/15 09:46
680-115544-20	GB-27 13-15	Solid	08/10/15 12:48	08/12/15 09:46

TestAmerica Job ID: 680-115544-1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Job ID: 680-115544-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE

Client: Geotechnical & Environmental Consultants **Project: Macon MGP #2** Report Number: 680-115544-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

09/17/2015: This report has been revised. The report formatter has been changed so that non-detects would be reported at the Method Detection Limit (MDL) rather than the Reporting Limit (RL).

RECEIPT

The samples were received on 08/12/2015; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 4.8 C.

The following sample(s) were submitted for analysis; however, it was not listed on the Chain-of-Custody (COC): GB-27 3-5, GB-27 8-10, GB-27 13-15. The lab was instructed to analyze these samples.

SEMIVOLATILE ORGANIC COMPOUNDS (SOLID)

Samples SB-41 4-6 (680-115544-1), SB-41 8-10 (680-115544-2), SB-41 13-15 (680-115544-3), GB-9 8-10 (680-115544-4), GB-9 13-15 (680-115544-5), GB-11 3-5 (680-115544-6), GB-11 8-10 (680-115544-7), GB-11 13-15 (680-115544-8), SB-25 0-2 (680-115544-9), SB-25 2-4 (680-115544-10), SB-25 4-6 (680-115544-11), SB-25 8-10 (680-115544-12), SB-25 13-15 (680-115544-13), GB-25 2-4 (680-115544-14), GB-25 4-6 (680-115544-15), GB-26 2-4 (680-115544-16), GB-26 4-6 (680-115544-17), GB-27 3-5 (680-115544-18), GB-27 8-10 (680-115544-19) and GB-27 13-15 (680-115544-20) were analyzed for Semivolatile Organic Compounds (Solid) in accordance with EPA SW-846 Method 8270D. The samples were prepared on 08/14/2015 and analyzed on 08/17/2015 and 08/20/2015.

Method(s) 8270D: The following analytes have been identified, in the reference method and/or via historical data, to be poor and/or erratic performers: Famphur, 1,4-Napthaguinone, Methane sulfonate, 1-naphthylamine, 2-naphthylamine, p-Dimethylamino azobenzene, p-phenylenediamine, a,a-dimethylphenethylamine, Methapyriline, 2-picoline (2-methylpyridine), 3,3'-dimethylbenzidine, 3,3'-dichlorobenzidine, Benzidine, Benzaldehyde, Benzoic acid, Dinoseb, Hexachlorophene, Hexachlorocyclopentadiene, o,o,o-triethylphosphorothioate. These analytes may have a %D >60% if the average %D of all the analytes in the continuing calibration verification (CCV) is 30%.

Method(s) 8270D: The continuing calibration verification (CCV) analyzed in batch 680-396502 was outside the method criteria for the following analyte(s): 2.4-Dinitrophenol. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method(s) 8270D: The following analyte recovered outside control limits for the 680-396502 LCS associated with 680-396502: Bis(2-chloroethyl)ether. This is not indicative of a systematic control problem because these were random marginal exceedances. Qualified results have been reported.

Method(s) 8270D: The following samples was diluted due to the nature of the sample matrix: GB-26 2-4 (680-115544-16), SB-25 0-2 (680-115544-9), SB-25 8-10 (680-115544-12), GB-27 8-10 (680-115544-19) and GB-27 13-15 (680-115544-20). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

Method(s) 8270D: The following sample was diluted due to abundance of target analytes: GB-27 3-5 (680-115544-18). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

Method(s) 8270D: The method blank for preparation batch 680-395865 and analytical batch 680-396502 contained Bis(2-ethylhexyl)phthalate above the method detection limit (MDL). Associated samples were not re-analyzed because results were less

Job ID: 680-115544-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

than the reporting limit (RL) OR practical quantitation limit (PQL).

Bis(2-chloroethyl)ether recovery is outside criteria low for the MS and MSD of sample SB-25 4-6 (680-115544-11) in batch 680-396502. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP)

Samples SB-41 4-6 (680-115544-1), SB-41 8-10 (680-115544-2), SB-41 13-15 (680-115544-3), GB-9 8-10 (680-115544-4), GB-9 13-15 (680-115544-5), GB-11 3-5 (680-115544-6), GB-11 8-10 (680-115544-7), GB-11 13-15 (680-115544-8), SB-25 0-2 (680-115544-9), SB-25 2-4 (680-115544-10), SB-25 4-6 (680-115544-11), SB-25 8-10 (680-115544-12), SB-25 13-15 (680-115544-13), GB-25 2-4 (680-115544-14), GB-25 4-6 (680-115544-15), GB-26 2-4 (680-115544-16), GB-26 4-6 (680-115544-17), GB-27 3-5 (680-115544-18), GB-27 8-10 (680-115544-19) and GB-27 13-15 (680-115544-20) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 08/14/2015 and analyzed on 08/17/2015.

Barium was detected in method blank MB 680-396119/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Barium, Lead and Zinc have recovery outside criteria low for the MS of sample SB-41 4-6 (680-115544-1) in batch 680-396749. Chromium and Vanadium failed the recovery criteria high.

Barium, Copper, Lead and Zinc have recovery outside criteria high for the MSD of sample SB-41 4-6 (680-115544-1) in batch 680-396749. Barium, Copper, Lead and Zinc exceeded the RPD limit.

Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL MERCURY

Samples SB-41 4-6 (680-115544-1), SB-41 8-10 (680-115544-2), SB-41 13-15 (680-115544-3), GB-9 8-10 (680-115544-4), GB-9 13-15 (680-115544-5), GB-11 3-5 (680-115544-6), GB-11 8-10 (680-115544-7), GB-11 13-15 (680-115544-8), SB-25 0-2 (680-115544-9), SB-25 2-4 (680-115544-10), SB-25 4-6 (680-115544-11), SB-25 8-10 (680-115544-12), SB-25 13-15 (680-115544-13), GB-25 2-4 (680-115544-14), GB-25 4-6 (680-115544-15), GB-26 2-4 (680-115544-16), GB-26 4-6 (680-115544-17), GB-27 3-5 (680-115544-18), GB-27 8-10 (680-115544-19) and GB-27 13-15 (680-115544-20) were analyzed for total mercury in accordance with EPA SW-846 Method 7471B. The samples were prepared on 08/16/2015 and 08/17/2015 and analyzed on 08/17/2015 and 08/18/2015.

Samples SB-25 2-4 (680-115544-10)[5X] and GB-27 3-5 (680-115544-18)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL CYANIDE

Samples SB-41 4-6 (680-115544-1), SB-41 8-10 (680-115544-2), SB-41 13-15 (680-115544-3), GB-9 8-10 (680-115544-4), GB-9 13-15 (680-115544-5), GB-11 3-5 (680-115544-6), GB-11 8-10 (680-115544-7), GB-11 13-15 (680-115544-8), SB-25 0-2 (680-115544-9), SB-25 2-4 (680-115544-10), SB-25 4-6 (680-115544-11), SB-25 8-10 (680-115544-12), SB-25 13-15 (680-115544-13), GB-25 2-4 (680-115544-14), GB-25 4-6 (680-115544-15), GB-26 2-4 (680-115544-16), GB-26 4-6 (680-115544-17), GB-27 3-5 (680-115544-18), GB-27 8-10 (680-115544-19) and GB-27 13-15 (680-115544-20) were analyzed for total cyanide in accordance with EPA SW-846 Method 9012B. The samples were prepared and analyzed on 08/19/2015 and 08/20/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

PERCENT SOLIDS/MOISTURE

Samples SB-41 4-6 (680-115544-1), SB-41 8-10 (680-115544-2), SB-41 13-15 (680-115544-3), GB-9 8-10 (680-115544-4), GB-9 13-15 (680-115544-5), GB-11 3-5 (680-115544-6), GB-11 8-10 (680-115544-7), GB-11 13-15 (680-115544-8), SB-25 0-2 (680-115544-9),

TestAmerica Savannah 9/17/2015

4

6

0

10

Case Narrative

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

TestAmerica Job ID: 680-115544-1

Job ID: 680-115544-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

SB-25 2-4 (680-115544-10), SB-25 4-6 (680-115544-11), SB-25 8-10 (680-115544-12), SB-25 13-15 (680-115544-13), GB-25 2-4 (680-115544-14), GB-25 4-6 (680-115544-15), GB-26 2-4 (680-115544-16), GB-26 4-6 (680-115544-17), GB-27 3-5 (680-115544-18), GB-27 8-10 (680-115544-19) and GB-27 13-15 (680-115544-20) were analyzed for Percent Solids/Moisture in accordance with TestAmerica SOP. The samples were analyzed on 08/13/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

1

1

4

5

7

4.0

11

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

4-Bromophenyl phenyl ether

Chrysene

Dibenzofuran

2,4-Dinitrophenol

2-Methylnaphthalene

2-Methylphenol

Dibenz(a,h)anthracene

Client Sample ID: SB-41 4-6

Date Collected: 08/10/15 09:20

TestAmerica Job ID: 680-115544-1

Lab Sample ID: 680-115544-1

Matrix: Solid Percent Solids: 89.4

08/17/15 12:56

08/17/15 12:56

08/17/15 12:56

08/14/15 10:57

08/14/15 10:57

08/14/15 10:57

08/14/15 10:57

08/14/15 10:57

08/14/15 10:57 08/17/15 12:56

Date Received: 08/12/15 09:46 Method: 8270D - Semivolatile Organic Compounds (GC/MS) **MDL** Unit Dil Fac Result Qualifier RL D Prepared Analyzed Analyte ₩ 0.23 U 1.8 0.23 mg/Kg 08/14/15 10:57 08/17/15 12:56 Acenaphthene 0.20 U 18 0.20 mg/Kg 08/14/15 10:57 08/17/15 12:56 0.16 U 1.8 0.16 mg/Kg 08/14/15 10:57 08/17/15 12:56 0.14 U 1.8 0.14 mg/Kg 08/14/15 10:57 08/17/15 12:56

Acenaphthylene Acetophenone Anthracene Atrazine 0.13 U 1.8 0.13 mg/Kg 08/14/15 10:57 08/17/15 12:56 Benzaldehyde 0.32 U 1.8 0.32 mg/Kg 08/14/15 10:57 08/17/15 12:56 Benzo[a]anthracene 0.15 U 1.8 0.15 mg/Kg 08/14/15 10:57 08/17/15 12:56 Benzo[a]pyrene 0.29 U 1.8 0.29 mg/Kg 08/14/15 10:57 08/17/15 12:56 ₩ Benzo[b]fluoranthene 08/17/15 12:56 0.21 U 1.8 0.21 mg/Kg 08/14/15 10:57

Benzo[g,h,i]perylene 0.12 U 1.8 0.12 mg/Kg 08/14/15 10:57 08/17/15 12:56 Benzo[k]fluoranthene 0.36 U 08/17/15 12:56 1.8 0.36 mg/Kg 08/14/15 10:57 08/17/15 12:56 1,1'-Biphenyl 9.5 U 9.5 9.5 mg/Kg 08/14/15 10:57 Bis(2-chloroethoxy)methane 0.22 U 1.8 0.22 mg/Kg 08/14/15 10:57 08/17/15 12:56 Bis(2-chloroethyl)ether 0.25 08/14/15 10:57 0.25 U * 1.8 mg/Kg 08/17/15 12:56 bis (2-chloroisopropyl) ether 0.17 U 18 0.17 08/14/15 10:57 08/17/15 12:56 mg/Kg 0.16 Bis(2-ethylhexyl) phthalate 0.16 1.8 08/14/15 10:57 08/17/15 12:56 mg/Kg

0.20 U

0 12 U

0.22 U

0.18 U

4.6 U

0.21 U

0.15 U

Butyl benzyl phthalate 0.14 U 1.8 0.14 mg/Kg 08/14/15 10:57 08/17/15 12:56 Caprolactam 0.37 U 1.8 0.37 08/14/15 10:57 08/17/15 12:56 mg/Kg Carbazole 0.17 U 1.8 0.17 mg/Kg 08/14/15 10:57 08/17/15 12:56 4-Chloroaniline 0.29 U 3.7 0.29 mg/Kg 08/14/15 10:57 08/17/15 12:56 0.19 U 1.8 0.19 08/17/15 12:56 4-Chloro-3-methylphenol mg/Kg 08/14/15 10:57 2-Chloronaphthalene 0.19 U 1.8 0.19 mg/Kg 08/14/15 10:57 08/17/15 12:56 2-Chlorophenol 0.22 U 1.8 0.22 mg/Kg 08/14/15 10:57 08/17/15 12:56 4-Chlorophenyl phenyl ether 0.24 U 1.8 0.24 mg/Kg 08/14/15 10:57 08/17/15 12:56 08/17/15 12:56

18

18

1.8

1.8

9.5

0.20

0.12

0.22

0.18

4.6

0.21

0.15

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

3,3'-Dichlorobenzidine 0.16 U 3.7 0.16 mg/Kg 08/14/15 10:57 08/17/15 12:56 2,4-Dichlorophenol 0.19 U 1.8 0.19 mg/Kg 08/14/15 10:57 08/17/15 12:56 Diethyl phthalate 0.21 U 1.8 0.21 mg/Kg 08/14/15 10:57 08/17/15 12:56 2,4-Dimethylphenol 0.24 U 1.8 0.24 mg/Kg 08/14/15 10:57 08/17/15 12:56 Dimethyl phthalate 0.19 U 1.8 0.19 mg/Kg 08/14/15 10:57 08/17/15 12:56 Di-n-butyl phthalate 0.17 U 1.8 0.17 mg/Kg 08/14/15 10:57 08/17/15 12:56 0.95 U 9.5 0.95 ₩ 08/14/15 10:57 08/17/15 12:56 4,6-Dinitro-2-methylphenol mg/Kg

2,4-Dinitrotoluene 0.27 U 1.8 0.27 mg/Kg 08/14/15 10:57 08/17/15 12:56 2,6-Dinitrotoluene 0.23 U 1.8 0.23 mg/Kg 08/14/15 10:57 08/17/15 12:56 08/17/15 12:56 Di-n-octyl phthalate 0.16 U 1.8 0.16 mg/Kg 08/14/15 10:57 1.8 0.18 08/14/15 10:57 08/17/15 12:56 **Fluoranthene** 0.19 J mg/Kg Fluorene 0.20 U 1.8 0.20 mg/Kg 08/14/15 10:57 08/17/15 12:56

Hexachlorobenzene 0.22 U 1.8 0.22 mg/Kg 08/14/15 10:57 08/17/15 12:56 Hexachlorobutadiene 08/17/15 12:56 0.20 U 1.8 0.20 mg/Kg 08/14/15 10:57 ₩ Hexachlorocyclopentadiene 0.23 U 1.8 0.23 mg/Kg 08/14/15 10:57 08/17/15 12:56 Hexachloroethane 0.16 U 1.8 0.16 mg/Kg 08/14/15 10:57 08/17/15 12:56 Indeno[1,2,3-cd]pyrene 0.16 U 1.8 0.16 mg/Kg 08/14/15 10:57 08/17/15 12:56 Isophorone 0.18 U 1.8 0.18 mg/Kg 08/14/15 10:57 08/17/15 12:56

08/14/15 10:57 08/17/15 12:56

08/17/15 12:56

TestAmerica Savannah

Page 7 of 80

1.8

1.8

5

5

5

5 5

5 5

5

5

5

5

5

5

5

5

5

5

5

5

5

5 5

5 5

5 5

5

5

5 5

5

5 5

5

5

5 5

5

5

5

5

5

5

5

5

5

5

TestAmerica Job ID: 680-115544-1

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

Nickel

Silver

Selenium

Vanadium

Client Sample ID: SB-41 4-6

Date Collected: 08/10/15 09:20 Date Received: 08/12/15 09:46

Lab Sample ID: 680-115544-1

Matrix: Solid Percent Solids: 89.4

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.24	U	1.8	0.24	mg/Kg	₩	08/14/15 10:57	08/17/15 12:56	- 5
Naphthalene	0.17	U	1.8	0.17	mg/Kg	₩	08/14/15 10:57	08/17/15 12:56	5
2-Nitroaniline	0.25	U	9.5	0.25	mg/Kg	₩	08/14/15 10:57	08/17/15 12:56	5
3-Nitroaniline	0.26	U	9.5	0.26	mg/Kg	₩	08/14/15 10:57	08/17/15 12:56	5
4-Nitroaniline	0.27	U	9.5	0.27	mg/Kg	₩	08/14/15 10:57	08/17/15 12:56	5
Nitrobenzene	0.14	U	1.8	0.14	mg/Kg	₩	08/14/15 10:57	08/17/15 12:56	5
2-Nitrophenol	0.23	U	1.8	0.23	mg/Kg	₩	08/14/15 10:57	08/17/15 12:56	5
4-Nitrophenol	1.8	U	9.5	1.8	mg/Kg	₩	08/14/15 10:57	08/17/15 12:56	5
N-Nitrosodi-n-propylamine	0.18	U	1.8	0.18	mg/Kg	ф	08/14/15 10:57	08/17/15 12:56	5
N-Nitrosodiphenylamine	0.18	U	1.8	0.18	mg/Kg	☆	08/14/15 10:57	08/17/15 12:56	5
Pentachlorophenol	1.8	U	9.5	1.8	mg/Kg	☆	08/14/15 10:57	08/17/15 12:56	5
Phenanthrene	0.15	U	1.8	0.15	mg/Kg	₩.	08/14/15 10:57	08/17/15 12:56	5
Phenol	0.19	U	1.8	0.19	mg/Kg	☆	08/14/15 10:57	08/17/15 12:56	5
Pyrene	0.15	U	1.8	0.15	mg/Kg	☆	08/14/15 10:57	08/17/15 12:56	5
2,4,5-Trichlorophenol	0.19	U	1.8	0.19	mg/Kg	₩	08/14/15 10:57	08/17/15 12:56	5
2,4,6-Trichlorophenol	0.16	U	1.8	0.16	mg/Kg	₩	08/14/15 10:57	08/17/15 12:56	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	76		41 - 116				08/14/15 10:57	08/17/15 12:56	5
2-Fluorophenol (Surr)	57		39 - 114				08/14/15 10:57	08/17/15 12:56	5
Nitrobenzene-d5 (Surr)	60		37 - 115				08/14/15 10:57	08/17/15 12:56	5
Phenol-d5 (Surr)	61		38 - 122				08/14/15 10:57	08/17/15 12:56	5
Terphenyl-d14 (Surr)	73		46 - 126				08/14/15 10:57	08/17/15 12:56	5
2,4,6-Tribromophenol (Surr)	73		45 - 129				08/14/15 10:57	08/17/15 12:56	5
Method: 6010C - Metals (ICI	P)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.3		2.0	0.78	mg/Kg	<u> </u>	08/14/15 08:59	08/17/15 19:34	1
Barium	110	B F2	0.98		mg/Kg	₩	08/14/15 08:59	08/17/15 19:34	1
Beryllium	0.47		0.39	0.0098		₩	08/14/15 08:59	08/17/15 19:34	1
Cadmium	2.7		0.49	0.098	mg/Kg	₩	08/14/15 08:59	08/17/15 19:34	1
Chromium	13	F1	0.98	0.21	mg/Kg	₩	08/14/15 08:59	08/17/15 19:34	1
Copper	12	F2 F1	2.5	0.17	mg/Kg	₩	08/14/15 08:59	08/17/15 19:34	1
Lead	190	F1 F2	0.98	0.33	mg/Kg	₩	08/14/15 08:59	08/17/15 19:34	1

Zinc	960	F2	2.0	0.69	mg/Kg	≎	08/14/15 08:59	08/17/15 19:34	1
Method: 7471B - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.14	۸	0.022	0.0088	mg/Kg	<u> </u>	08/16/15 14:39	08/17/15 19:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.23	U	0.56	0.23	mg/Kg	<u> </u>	08/19/15 09:00	08/19/15 12:14	1

3.9

2.5

0.98

0.98

3.6 J

0.95 U

24 F1

0.059 U

0.37 mg/Kg

0.95 mg/Kg

0.059 mg/Kg

0.098 mg/Kg

© 08/14/15 08:59 08/17/15 19:34

© 08/14/15 08:59 08/17/15 19:34

© 08/14/15 08:59 08/17/15 19:34

© 08/14/15 08:59 08/17/15 19:34

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Hexachlorobenzene

Hexachlorobutadiene

Indeno[1,2,3-cd]pyrene

2-Methylnaphthalene

2-Methylphenol

Hexachloroethane

Isophorone

Hexachlorocyclopentadiene

Client Sample ID: SB-41 8-10

Date Collected: 08/10/15 09:24

TestAmerica Job ID: 680-115544-1

Lab Sample ID: 680-115544-2

Matrix: Solid Percent Solids: 88.7

Date Received: 08/12/15 09:46 Method: 8270D - Semivolatile Organic Compounds (GC/MS) **MDL** Unit Dil Fac Result Qualifier RL D Prepared Analyzed Analyte ₩ 0.23 U 1.8 0.23 mg/Kg 08/14/15 10:57 08/17/15 13:22 5 Acenaphthene 0.20 U 0.20 Acenaphthylene 18 mg/Kg 08/14/15 10:57 08/17/15 13:22 5 Acetophenone 0.16 U 1.8 0.16 mg/Kg 08/14/15 10:57 08/17/15 13:22 5 Anthracene 0.14 U 1.8 0.14 mg/Kg 08/14/15 10:57 08/17/15 13:22 5 5 Atrazine 0.13 U 1.8 0.13 mg/Kg 08/14/15 10:57 08/17/15 13:22 Benzaldehyde 0.32 U 1.8 0.32 mg/Kg 08/14/15 10:57 08/17/15 13:22 5 5 Benzo[a]anthracene 0.15 U 1.8 0.15 mg/Kg 08/14/15 10:57 08/17/15 13:22 Benzo[a]pyrene 0.29 U 1.8 0.29 mg/Kg 08/14/15 10:57 08/17/15 13:22 5 ₩ 5 Benzo[b]fluoranthene 08/17/15 13:22 0.21 U 1.8 0.21 mg/Kg 08/14/15 10:57 Benzo[g,h,i]perylene 0.12 U 1.8 0.12 mg/Kg 08/14/15 10:57 08/17/15 13:22 5 Benzo[k]fluoranthene 0.36 U 08/17/15 13:22 5 1.8 0.36 mg/Kg 08/14/15 10:57 08/17/15 13:22 5 1,1'-Biphenyl 9.4 U 94 9.4 mg/Kg 08/14/15 10:57 5 Bis(2-chloroethoxy)methane 0.22 U 1.8 0.22 mg/Kg 08/14/15 10:57 08/17/15 13:22 Bis(2-chloroethyl)ether 0.25 08/14/15 10:57 5 0.25 U * 1.8 mg/Kg 08/17/15 13:22 bis (2-chloroisopropyl) ether 5 0.17 U 18 0.17 08/14/15 10:57 08/17/15 13:22 mg/Kg 0.16 Bis(2-ethylhexyl) phthalate 0.16 1.8 08/14/15 10:57 08/17/15 13:22 5 mg/Kg 08/17/15 13:22 5 4-Bromophenyl phenyl ether 0.20 U 18 0.20 mg/Kg 08/14/15 10:57 Butyl benzyl phthalate 0.14 U 1.8 0.14 mg/Kg 08/14/15 10:57 08/17/15 13:22 5 Caprolactam 0.37 U 1.8 0.37 08/14/15 10:57 08/17/15 13:22 5 mg/Kg Carbazole 0.17 U 1.8 0.17 mg/Kg 08/14/15 10:57 08/17/15 13:22 5 4-Chloroaniline 0.29 U 3.7 0.29 mg/Kg 08/14/15 10:57 08/17/15 13:22 5 5 0.19 U 0.19 08/17/15 13:22 4-Chloro-3-methylphenol 1.8 mg/Kg 08/14/15 10:57 2-Chloronaphthalene 0.19 U 1.8 0.19 mg/Kg 08/14/15 10:57 08/17/15 13:22 5 08/17/15 13:22 5 2-Chlorophenol 0.22 U 1.8 0.22 mg/Kg 08/14/15 10:57 4-Chlorophenyl phenyl ether 0.24 U 1.8 0.24 mg/Kg 08/14/15 10:57 08/17/15 13:22 5 5 08/17/15 13:22 Chrysene 0 12 U 18 0.12 mg/Kg 08/14/15 10:57 Dibenz(a,h)anthracene 0.22 U 1.8 0.22 mg/Kg 08/14/15 10:57 08/17/15 13:22 5 0.18 U 08/14/15 10:57 08/17/15 13:22 5 Dibenzofuran 1.8 0.18 mg/Kg 3,3'-Dichlorobenzidine 0.16 U 3.7 0.16 mg/Kg 08/14/15 10:57 08/17/15 13:22 5 5 2,4-Dichlorophenol 0.19 U 1.8 0.19 mg/Kg 08/14/15 10:57 08/17/15 13:22 Diethyl phthalate 0.21 U 1.8 0.21 mg/Kg 08/14/15 10:57 08/17/15 13:22 5 2,4-Dimethylphenol 0.24 U 1.8 0.24 mg/Kg 08/14/15 10:57 08/17/15 13:22 5 5 Dimethyl phthalate 0.19 U 1.8 0.19 mg/Kg 08/14/15 10:57 08/17/15 13:22 Di-n-butyl phthalate 0.17 U 1.8 0.17 mg/Kg 08/14/15 10:57 08/17/15 13:22 5 9.4 0.94 ₩ 08/17/15 13:22 5 4,6-Dinitro-2-methylphenol 0.94 U mg/Kg 08/14/15 10:57 2,4-Dinitrophenol 4.6 U 94 4.6 mg/Kg 08/14/15 10:57 08/17/15 13:22 5 5 2,4-Dinitrotoluene 0.27 U 1.8 0.27 mg/Kg 08/14/15 10:57 08/17/15 13:22 2,6-Dinitrotoluene 0.23 U 1.8 0.23 mg/Kg 08/14/15 10:57 08/17/15 13:22 5 08/17/15 13:22 Di-n-octyl phthalate 0.16 U 1.8 0.16 mg/Kg 08/14/15 10:57 5 Fluoranthene 0.18 U 1.8 0.18 08/14/15 10:57 08/17/15 13:22 5 mg/Kg 5 Fluorene 0.20 U 1.8 0.20 mg/Kg 08/14/15 10:57 08/17/15 13:22

TestAmerica Savannah

9/17/2015

08/17/15 13:22

08/17/15 13:22

08/17/15 13:22

08/17/15 13:22

08/17/15 13:22

08/17/15 13:22

5

5

5

5

5

5

5

Page 9 of 80

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

0.22

0.20

0.23

0.16

0.16

0.18

0.21

0.15

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

08/14/15 10:57

08/14/15 10:57

08/14/15 10:57

08/14/15 10:57

08/14/15 10:57

08/14/15 10:57

08/14/15 10:57 08/17/15 13:22

08/14/15 10:57 08/17/15 13:22

₩

0.22 U

0.20 U

0.23 U

0.16 U

0.16 U

0.18 U

0.21 U

0.15 U

5

3

5

9

10

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

Analyte

Cyanide, Total

Client Sample ID: SB-41 8-10 Lab Sample ID: 680-115544-2

Date Collected: 08/10/15 09:24 **Matrix: Solid** Date Received: 08/12/15 09:46 Percent Solids: 88.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.24	U	1.8	0.24	mg/Kg	<u> </u>	08/14/15 10:57	08/17/15 13:22	
Naphthalene	0.17	U	1.8	0.17	mg/Kg	☼	08/14/15 10:57	08/17/15 13:22	
2-Nitroaniline	0.25	Ü	9.4	0.25	mg/Kg	₽	08/14/15 10:57	08/17/15 13:22	
3-Nitroaniline	0.26	U	9.4	0.26	mg/Kg	☼	08/14/15 10:57	08/17/15 13:22	5
4-Nitroaniline	0.27	U	9.4	0.27	mg/Kg	☼	08/14/15 10:57	08/17/15 13:22	5
Nitrobenzene	0.14	Ü	1.8	0.14	mg/Kg	₽	08/14/15 10:57	08/17/15 13:22	
2-Nitrophenol	0.23	U	1.8	0.23	mg/Kg	☼	08/14/15 10:57	08/17/15 13:22	į
4-Nitrophenol	1.8	U	9.4	1.8	mg/Kg	☼	08/14/15 10:57	08/17/15 13:22	5
N-Nitrosodi-n-propylamine	0.18	Ü	1.8	0.18	mg/Kg	ф.	08/14/15 10:57	08/17/15 13:22	
N-Nitrosodiphenylamine	0.18	U	1.8	0.18	mg/Kg	☼	08/14/15 10:57	08/17/15 13:22	5
Pentachlorophenol	1.8	U	9.4		mg/Kg	☼	08/14/15 10:57	08/17/15 13:22	į
Phenanthrene	0.15		1.8		mg/Kg		08/14/15 10:57	08/17/15 13:22	
Phenol	0.19	U	1.8		mg/Kg	☆	08/14/15 10:57	08/17/15 13:22	Ę
Pyrene	0.15		1.8		mg/Kg	₽		08/17/15 13:22	Ę
2,4,5-Trichlorophenol	0.19		1.8		mg/Kg	ф		08/17/15 13:22	
2,4,6-Trichlorophenol	0.16	U	1.8		mg/Kg	≎	08/14/15 10:57	08/17/15 13:22	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	75		41 - 116				08/14/15 10:57	08/17/15 13:22	
2-Fluorophenol (Surr)	53		39 - 114				08/14/15 10:57	08/17/15 13:22	;
Nitrobenzene-d5 (Surr)	56		37 - 115				08/14/15 10:57	08/17/15 13:22	
Phenol-d5 (Surr)	60		38 - 122				08/14/15 10:57	08/17/15 13:22	
Terphenyl-d14 (Surr)	70		46 - 126				08/14/15 10:57	08/17/15 13:22	
2,4,6-Tribromophenol (Surr)	67		45 - 129				08/14/15 10:57	08/17/15 13:22	
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.9		1.9	0.77	mg/Kg	₩	08/14/15 08:59	08/17/15 21:29	
Barium	42	В	0.96	0.15	mg/Kg	☼	08/14/15 08:59	08/17/15 21:29	•
Beryllium	0.45		0.39	0.0096	mg/Kg	₩	08/14/15 08:59	08/17/15 21:29	
Cadmium	0.096	U	0.48	0.096	mg/Kg	₽	08/14/15 08:59	08/17/15 21:29	
Chromium	9.1		0.96	0.20	mg/Kg	☼	08/14/15 08:59	08/17/15 21:29	
Copper	7.8		2.4	0.16	mg/Kg	☼	08/14/15 08:59	08/17/15 21:29	
Lead	28		0.96	0.33	mg/Kg	φ.	08/14/15 08:59	08/17/15 21:29	
Nickel	3.1	J	3.9	0.37	mg/Kg	₽	08/14/15 08:59	08/17/15 21:29	
Selenium	0.93	U	2.4	0.93	mg/Kg	₽	08/14/15 08:59	08/17/15 21:29	•
Silver	0.058	U	0.96	0.058	mg/Kg	₽	08/14/15 08:59	08/17/15 21:29	•
Vanadium	20		0.96	0.096	mg/Kg	☼	08/14/15 08:59	08/17/15 21:29	
Zinc	31		1.9	0.67	mg/Kg	☼	08/14/15 08:59	08/17/15 21:29	
Method: 7471B - Mercury (CVA) Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.28	^	0.022		mg/Kg		08/16/15 14:39	•	
General Chemistry									

Analyzed

Prepared

 ☼
 08/19/15 09:00
 08/19/15 12:19

RL

0.56

MDL Unit

0.24 mg/Kg

Result Qualifier

0.24 U

9/17/2015

Dil Fac

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Date Collected: 08/10/15 09:28

Client Sample ID: SB-41 13-15

TestAmerica Job ID: 680-115544-1

Lab Sample ID: 680-115544-3

Matrix: Solid

Percent Solids: 88.1

Method: 8270D - Semivolatile	e Organic Cor	mpounds (G	C/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.23	U	1.9	0.23	mg/Kg	<u> </u>	08/14/15 10:57	08/17/15 13:48	
Acenaphthylene	0.20	U	1.9	0.20	mg/Kg	☼	08/14/15 10:57	08/17/15 13:48	
Acetophenone	0.16	U	1.9	0.16	mg/Kg	₩	08/14/15 10:57	08/17/15 13:48	
Anthracene	0.14	U	1.9	0.14	mg/Kg	₽	08/14/15 10:57	08/17/15 13:48	
Atrazine	0.13	U	1.9	0.13	mg/Kg	☼	08/14/15 10:57	08/17/15 13:48	
Benzaldehyde	0.33	U	1.9	0.33	mg/Kg	☼	08/14/15 10:57	08/17/15 13:48	
Benzo[a]anthracene	0.15	U	1.9	0.15	mg/Kg	₽	08/14/15 10:57	08/17/15 13:48	
Benzo[a]pyrene	0.29	U	1.9	0.29	mg/Kg	☼	08/14/15 10:57	08/17/15 13:48	
Benzo[b]fluoranthene	0.21	U	1.9	0.21	mg/Kg	☼	08/14/15 10:57	08/17/15 13:48	
Benzo[g,h,i]perylene	0.12	U	1.9	0.12	mg/Kg	₽	08/14/15 10:57	08/17/15 13:48	
Benzo[k]fluoranthene	0.37	U	1.9	0.37	mg/Kg	☼	08/14/15 10:57	08/17/15 13:48	
1,1'-Biphenyl	9.6	U	9.6	9.6	mg/Kg	☼	08/14/15 10:57	08/17/15 13:48	
Bis(2-chloroethoxy)methane	0.22	U	1.9	0.22	mg/Kg	₽	08/14/15 10:57	08/17/15 13:48	
Bis(2-chloroethyl)ether	0.25	U *	1.9	0.25	mg/Kg	☼	08/14/15 10:57	08/17/15 13:48	
ois (2-chloroisopropyl) ether	0.17	U	1.9		mg/Kg	☼	08/14/15 10:57	08/17/15 13:48	
Bis(2-ethylhexyl) phthalate	0.16	U	1.9	0.16	mg/Kg	₩.	08/14/15 10:57	08/17/15 13:48	
1-Bromophenyl phenyl ether	0.20	U	1.9	0.20	mg/Kg	☼	08/14/15 10:57	08/17/15 13:48	
Butyl benzyl phthalate	0.15	U	1.9		mg/Kg	☼	08/14/15 10:57	08/17/15 13:48	
Caprolactam	0.37	U	1.9	0.37	mg/Kg		08/14/15 10:57	08/17/15 13:48	
Carbazole	0.17		1.9		mg/Kg	☼	08/14/15 10:57	08/17/15 13:48	
l-Chloroaniline	0.29	U	3.7	0.29	mg/Kg	☼	08/14/15 10:57	08/17/15 13:48	
I-Chloro-3-methylphenol	0.20		1.9		mg/Kg	φ.		08/17/15 13:48	
2-Chloronaphthalene	0.20		1.9		mg/Kg	☼		08/17/15 13:48	
2-Chlorophenol	0.22		1.9		mg/Kg	₩		08/17/15 13:48	
4-Chlorophenyl phenyl ether	0.25		1.9		mg/Kg			08/17/15 13:48	
Chrysene	0.14		1.9		mg/Kg	₩	08/14/15 10:57	08/17/15 13:48	
Dibenz(a,h)anthracene	0.22		1.9		mg/Kg	₩		08/17/15 13:48	
Dibenzofuran	0.19		1.9		mg/Kg			08/17/15 13:48	
3,3'-Dichlorobenzidine	0.16		3.7		mg/Kg	☼		08/17/15 13:48	
2,4-Dichlorophenol	0.20		1.9		mg/Kg	₩		08/17/15 13:48	
Diethyl phthalate	0.21		1.9		mg/Kg			08/17/15 13:48	
2,4-Dimethylphenol	0.25		1.9		mg/Kg	☼		08/17/15 13:48	
Dimethyl phthalate	0.19		1.9		mg/Kg	☼		08/17/15 13:48	
Di-n-butyl phthalate	0.17		1.9		mg/Kg	· · · · · · · · · · · · · · · · · · ·		08/17/15 13:48	
1,6-Dinitro-2-methylphenol	0.96		9.6		mg/Kg	☼		08/17/15 13:48	
2,4-Dinitrophenol	4.7		9.6		mg/Kg	₩		08/17/15 13:48	
2,4-Dinitrotoluene	0.28		1.9		mg/Kg			08/17/15 13:48	
2,6-Dinitrotoluene	0.24		1.9		mg/Kg	₽		08/17/15 13:48	
Di-n-octyl phthalate	0.16		1.9		mg/Kg	₽		08/17/15 13:48	
Fluoranthene	0.29		1.9		mg/Kg	ф		08/17/15 13:48	
Fluorene	0.20		1.9		mg/Kg	₽		08/17/15 13:48	
Hexachlorobenzene	0.22		1.9		mg/Kg	₩		08/17/15 13:48	
Hexachlorobutadiene	0.22		1.9		mg/Kg	·····		08/17/15 13:48	
Hexachlorocyclopentadiene	0.20		1.9		mg/Kg	≎		08/17/15 13:48	
Hexachloroethane	0.23		1.9		mg/Kg	≎		08/17/15 13:48	
						· · · · · · · · · · · · · · · · · · ·		08/17/15 13:48	
ndeno[1,2,3-cd]pyrene	0.16 0.19		1.9 1.9		mg/Kg	₩		08/17/15 13:48	
sophorone 2 Methylpanhthalone					mg/Kg				
2-Methylnaphthalene 2-Methylphenol	0.21 0.15		1.9 1.9		mg/Kg mg/Kg	ф.		08/17/15 13:48 08/17/15 13:48	

TestAmerica Job ID: 680-115544-1

Client Sample ID: SB-41 13-15

Lab Sample ID: 680-115544-3 Date Collected: 08/10/15 09:28 **Matrix: Solid** Date Received: 08/12/15 09:46 Percent Solids: 88.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.24	U	1.9	0.24	mg/Kg	₩	08/14/15 10:57	08/17/15 13:48	5
Naphthalene	0.17	U	1.9	0.17	mg/Kg	≎	08/14/15 10:57	08/17/15 13:48	5
2-Nitroaniline	0.25	U	9.6	0.25	mg/Kg	\$	08/14/15 10:57	08/17/15 13:48	5
3-Nitroaniline	0.26	U	9.6	0.26	mg/Kg	☼	08/14/15 10:57	08/17/15 13:48	5
4-Nitroaniline	0.28	U	9.6	0.28	mg/Kg	☼	08/14/15 10:57	08/17/15 13:48	5
Nitrobenzene	0.15	U	1.9	0.15	mg/Kg	₽	08/14/15 10:57	08/17/15 13:48	5
2-Nitrophenol	0.23	U	1.9	0.23	mg/Kg	☼	08/14/15 10:57	08/17/15 13:48	5
4-Nitrophenol	1.9	U	9.6	1.9	mg/Kg	≎	08/14/15 10:57	08/17/15 13:48	5
N-Nitrosodi-n-propylamine	0.18	U	1.9	0.18	mg/Kg	\$	08/14/15 10:57	08/17/15 13:48	5
N-Nitrosodiphenylamine	0.19	U	1.9	0.19	mg/Kg	≎	08/14/15 10:57	08/17/15 13:48	5
Pentachlorophenol	1.9	U	9.6	1.9	mg/Kg	☼	08/14/15 10:57	08/17/15 13:48	5
Phenanthrene	0.25	J	1.9	0.15	mg/Kg	φ.	08/14/15 10:57	08/17/15 13:48	5
Phenol	0.19	U	1.9	0.19	mg/Kg	≎	08/14/15 10:57	08/17/15 13:48	5
Pyrene	0.23	J	1.9	0.15	mg/Kg	☼	08/14/15 10:57	08/17/15 13:48	5
2,4,5-Trichlorophenol	0.20	U	1.9	0.20	mg/Kg	φ.	08/14/15 10:57	08/17/15 13:48	5
2,4,6-Trichlorophenol	0.16	U	1.9	0.16	mg/Kg	₩	08/14/15 10:57	08/17/15 13:48	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	64		41 - 116	08/14/15 10:57	08/17/15 13:48	5
2-Fluorophenol (Surr)	47		39 - 114	08/14/15 10:57	08/17/15 13:48	5
Nitrobenzene-d5 (Surr)	49		37 - 115	08/14/15 10:57	08/17/15 13:48	5
Phenol-d5 (Surr)	52		38 - 122	08/14/15 10:57	08/17/15 13:48	5
Terphenyl-d14 (Surr)	65		46 - 126	08/14/15 10:57	08/17/15 13:48	5
2,4,6-Tribromophenol (Surr)	66		45 - 129	08/14/15 10:57	08/17/15 13:48	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.7	J	2.2	0.87	mg/Kg	<u> </u>	08/14/15 08:59	08/17/15 21:07	1
Barium	30	В	1.1	0.17	mg/Kg	₩	08/14/15 08:59	08/17/15 21:07	1
Beryllium	0.25	J	0.43	0.011	mg/Kg	₩	08/14/15 08:59	08/17/15 21:07	1
Cadmium	0.11	U	0.54	0.11	mg/Kg	₩.	08/14/15 08:59	08/17/15 21:07	1
Chromium	11		1.1	0.23	mg/Kg	₩	08/14/15 08:59	08/17/15 21:07	1
Copper	5.9		2.7	0.18	mg/Kg	☼	08/14/15 08:59	08/17/15 21:07	1
Lead	29		1.1	0.37	mg/Kg	₩.	08/14/15 08:59	08/17/15 21:07	1
Nickel	2.5	J	4.3	0.41	mg/Kg	₩	08/14/15 08:59	08/17/15 21:07	1
Selenium	1.0	U	2.7	1.0	mg/Kg	₩	08/14/15 08:59	08/17/15 21:07	1
Silver	0.065	Ü	1.1	0.065	mg/Kg		08/14/15 08:59	08/17/15 21:07	1
Vanadium	28		1.1	0.11	mg/Kg	₩	08/14/15 08:59	08/17/15 21:07	1
Zinc	30		2.2	0.76	mg/Kg	₩	08/14/15 08:59	08/17/15 21:07	1

Method: 7471B - Mercury (CVAA) Analyte Mercury	Result	Qualifier	RL 0.022	MDL 0.0089		D <u>₩</u>	Prepared 08/16/15 14:39	Analyzed 08/17/15 19:58	Dil Fac
General Chemistry Analyte Cyanide, Total	Result	Qualifier U	RL 0.55	MDL 0.23	Unit mg/Kg	D 荥	Prepared 08/19/15 09:00	Analyzed 08/19/15 12:20	Dil Fac

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Client Sample ID: GB-9 8-10

Date Collected: 08/10/15 09:57

Date Received: 08/12/15 09:46

TestAmerica Job ID: 680-115544-1

Lab Sample ID: 680-115544-4

Percent Solids: 88.0

Matrix: Solid

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.046		0.37		mg/Kg	<u>*</u>		08/17/15 14:14	
Acenaphthylene	0.041		0.37	0.041	mg/Kg	ψ.		08/17/15 14:14	
Acetophenone	0.032		0.37		mg/Kg	<u>.</u> .		08/17/15 14:14	
Anthracene	0.028		0.37		mg/Kg	φ. 		08/17/15 14:14	
Atrazine	0.026		0.37		mg/Kg	₩.		08/17/15 14:14	
Benzaldehyde	0.066		0.37		mg/Kg			08/17/15 14:14	
Benzo[a]anthracene	0.031		0.37		mg/Kg			08/17/15 14:14	
Benzo[a]pyrene	0.059		0.37		mg/Kg	₩		08/17/15 14:14	
Benzo[b]fluoranthene	0.043		0.37		mg/Kg			08/17/15 14:14	
Benzo[g,h,i]perylene	0.025		0.37		mg/Kg	.;.		08/17/15 14:14	
Benzo[k]fluoranthene	0.074		0.37		mg/Kg	.;.		08/17/15 14:14	
1,1'-Biphenyl	1.9		1.9	1.9	mg/Kg	, .		08/17/15 14:14	
Bis(2-chloroethoxy)methane	0.044		0.37		mg/Kg	₽.		08/17/15 14:14	
Bis(2-chloroethyl)ether	0.051		0.37	0.051	mg/Kg	₽		08/17/15 14:14	
bis (2-chloroisopropyl) ether	0.034		0.37		mg/Kg			08/17/15 14:14	
Bis(2-ethylhexyl) phthalate	0.037		0.37		mg/Kg	₽.		08/17/15 14:14	
4-Bromophenyl phenyl ether	0.041		0.37	0.041	mg/Kg	₩		08/17/15 14:14	
Butyl benzyl phthalate	0.029	U	0.37		mg/Kg		08/14/15 10:57	08/17/15 14:14	
Caprolactam	0.075	U	0.37	0.075	mg/Kg	₽	08/14/15 10:57	08/17/15 14:14	
Carbazole	0.034	U	0.37	0.034	mg/Kg	₩	08/14/15 10:57	08/17/15 14:14	
4-Chloroaniline	0.059	U	0.75	0.059	mg/Kg	☼	08/14/15 10:57	08/17/15 14:14	
4-Chloro-3-methylphenol	0.040	U	0.37	0.040	mg/Kg	\$	08/14/15 10:57	08/17/15 14:14	
2-Chloronaphthalene	0.040	U	0.37	0.040	mg/Kg	₩	08/14/15 10:57	08/17/15 14:14	
2-Chlorophenol	0.045	U	0.37	0.045	mg/Kg	₩	08/14/15 10:57	08/17/15 14:14	
4-Chlorophenyl phenyl ether	0.050	U	0.37	0.050	mg/Kg		08/14/15 10:57	08/17/15 14:14	
Chrysene	0.024	U	0.37	0.024	mg/Kg	₩	08/14/15 10:57	08/17/15 14:14	
Dibenz(a,h)anthracene	0.044	U	0.37	0.044	mg/Kg	₩	08/14/15 10:57	08/17/15 14:14	
Dibenzofuran	0.037	U	0.37	0.037	mg/Kg	₽	08/14/15 10:57	08/17/15 14:14	
3,3'-Dichlorobenzidine	0.032	U	0.75	0.032	mg/Kg	₩	08/14/15 10:57	08/17/15 14:14	
2,4-Dichlorophenol	0.040	U	0.37	0.040	mg/Kg	₩	08/14/15 10:57	08/17/15 14:14	
Diethyl phthalate	0.042	U	0.37	0.042	mg/Kg	₽	08/14/15 10:57	08/17/15 14:14	
2,4-Dimethylphenol	0.050	U	0.37	0.050	mg/Kg	₽	08/14/15 10:57	08/17/15 14:14	
Dimethyl phthalate	0.038	U	0.37	0.038	mg/Kg	₽	08/14/15 10:57	08/17/15 14:14	
Di-n-butyl phthalate	0.034	U	0.37	0.034	mg/Kg	.	08/14/15 10:57	08/17/15 14:14	
4,6-Dinitro-2-methylphenol	0.19	U	1.9	0.19	mg/Kg	₩	08/14/15 10:57	08/17/15 14:14	
2,4-Dinitrophenol	0.94	U	1.9	0.94	mg/Kg	₩	08/14/15 10:57	08/17/15 14:14	
2,4-Dinitrotoluene	0.055	U	0.37	0.055	mg/Kg		08/14/15 10:57	08/17/15 14:14	
2,6-Dinitrotoluene	0.048	U	0.37	0.048	mg/Kg	₩	08/14/15 10:57	08/17/15 14:14	
Di-n-octyl phthalate	0.033	U	0.37	0.033	mg/Kg	₩	08/14/15 10:57	08/17/15 14:14	
Fluoranthene	0.036	U	0.37	0.036	mg/Kg		08/14/15 10:57	08/17/15 14:14	
Fluorene	0.041	U	0.37	0.041	mg/Kg	₩	08/14/15 10:57	08/17/15 14:14	
Hexachlorobenzene	0.044	U	0.37	0.044	mg/Kg	₩	08/14/15 10:57	08/17/15 14:14	
Hexachlorobutadiene	0.041	U	0.37		mg/Kg	φ.	08/14/15 10:57	08/17/15 14:14	
Hexachlorocyclopentadiene	0.046		0.37		mg/Kg	₩	08/14/15 10:57	08/17/15 14:14	
Hexachloroethane	0.032		0.37		mg/Kg	≎		08/17/15 14:14	
Indeno[1,2,3-cd]pyrene	0.032		0.37		mg/Kg		08/14/15 10:57	08/17/15 14:14	
Isophorone	0.037		0.37		mg/Kg	₽		08/17/15 14:14	
2-Methylnaphthalene	0.043		0.37		mg/Kg	₽		08/17/15 14:14	
2-Methylphenol	0.031		0.37		mg/Kg			08/17/15 14:14	

Project/Site: Macon MGP #2

Client Sample ID: GB-9 8-10

Client: Geotechnical & Environmental Consultants

Date Collected: 08/10/15 09:57 Date Received: 08/12/15 09:46

Lab Sample ID: 680-115544-4

Matrix: Solid Percent Solids: 88.0

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) MDL Unit Dil Fac **Analyte** Result Qualifier RL D Prepared Analyzed 3 & 4 Methylphenol 0.049 U 0.37 0.049 mg/Kg 08/14/15 10:57 08/17/15 14:14 Naphthalene 0.034 U 0.37 0.034 mg/Kg 08/14/15 10:57 08/17/15 14:14 1 2-Nitroaniline 0.051 U 1.9 0.051 mg/Kg 08/14/15 10:57 08/17/15 14:14 3-Nitroaniline 0.052 U 1.9 0.052 mg/Kg 08/14/15 10:57 08/17/15 14:14 4-Nitroaniline 0.055 mg/Kg ☼ 08/14/15 10:57 08/17/15 14:14 1 0.055 U 1.9 Nitrobenzene 0.029 U 0.37 0.029 mg/Kg 08/14/15 10:57 08/17/15 14:14 2-Nitrophenol 0.046 mg/Kg 0.046 U 0.37 08/14/15 10:57 08/17/15 14:14 4-Nitrophenol 0.37 U 1.9 0.37 mg/Kg 08/14/15 10:57 08/17/15 14:14 © 08/14/15 10:57 08/17/15 14:14 N-Nitrosodi-n-propylamine 0.37 0.036 mg/Kg 0.036 U N-Nitrosodiphenylamine 0.037 U 0.37 0.037 mg/Kg 08/14/15 10:57 08/17/15 14:14 Pentachlorophenol 0.37 U 1.9 0.37 mg/Kg 08/14/15 10:57 08/17/15 14:14 Phenanthrene 0.031 U 0.37 0.031 mg/Kg 08/14/15 10:57 08/17/15 14:14 Phenol 0.038 U 0.37 0.038 mg/Kg 08/14/15 10:57 08/17/15 14:14 Pyrene 0.031 U 0.37 0.031 mg/Kg © 08/14/15 10:57 08/17/15 14:14 2,4,5-Trichlorophenol 0.040 U 0.37 0.040 mg/Kg 08/14/15 10:57 08/17/15 14:14 2,4,6-Trichlorophenol © 08/14/15 10:57 08/17/15 14:14 0.033 U 0.37 0.033 mg/Kg

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	85	41 - 116	08/14/15 10:57	08/17/15 14:14	1
2-Fluorophenol (Surr)	62	39 - 114	08/14/15 10:57	08/17/15 14:14	1
Nitrobenzene-d5 (Surr)	71	37 - 115	08/14/15 10:57	08/17/15 14:14	1
Phenol-d5 (Surr)	67	38 - 122	08/14/15 10:57	08/17/15 14:14	1
Terphenyl-d14 (Surr)	83	46 - 126	08/14/15 10:57	08/17/15 14:14	1
2,4,6-Tribromophenol (Surr)	90	45 - 129	08/14/15 10:57	08/17/15 14:14	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.8		2.1	0.86	mg/Kg	<u>₩</u>	08/14/15 08:59	08/17/15 20:05	1
Barium	46	В	1.1	0.17	mg/Kg	₩	08/14/15 08:59	08/17/15 20:05	1
Beryllium	0.39	J	0.43	0.011	mg/Kg	₩	08/14/15 08:59	08/17/15 20:05	1
Cadmium	0.11	U	0.54	0.11	mg/Kg	₩.	08/14/15 08:59	08/17/15 20:05	1
Chromium	6.3		1.1	0.23	mg/Kg	₩	08/14/15 08:59	08/17/15 20:05	1
Copper	3.6		2.7	0.18	mg/Kg	☼	08/14/15 08:59	08/17/15 20:05	1
Lead	14		1.1	0.36	mg/Kg	₩.	08/14/15 08:59	08/17/15 20:05	1
Nickel	3.8	J	4.3	0.41	mg/Kg	₩	08/14/15 08:59	08/17/15 20:05	1
Selenium	1.0	U	2.7	1.0	mg/Kg	₩	08/14/15 08:59	08/17/15 20:05	1
Silver	0.064	U	1.1	0.064	mg/Kg	₩.	08/14/15 08:59	08/17/15 20:05	1
Vanadium	15		1.1	0.11	mg/Kg	☼	08/14/15 08:59	08/17/15 20:05	1
Zinc	14		2.1	0.75	mg/Kg	≎	08/14/15 08:59	08/17/15 20:05	1

Method: 7471B - Mercury (CVAA) Analyte Mercury	Result 0.0077	Qualifier	RL 0.019	MDL 0.0077	Unit mg/Kg	D 👨	Prepared 08/16/15 14:39	Analyzed 08/17/15 20:01	Dil Fac
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.24	U	0.56	0.24	mg/Kg	<u>₩</u>	08/19/15 09:00	08/19/15 12:21	1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Client Sample ID: GB-9 13-15

Date Collected: 08/10/15 10:06

Date Received: 08/12/15 09:46

TestAmerica Job ID: 680-115544-1

Lab Sample ID: 680-115544-5

Matrix: Solid
Percent Solids: 79.1

Method: 8270D - Semivolatile			•			_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.051		0.41	0.051	0 0	<u>₩</u>	08/14/15 10:57	08/17/15 14:40	
Acenaphthylene	0.045		0.41		mg/Kg	☆	08/14/15 10:57	08/17/15 14:40	
Acetophenone	0.035		0.41		mg/Kg	, .	08/14/15 10:57	08/17/15 14:40	
Anthracene	0.031		0.41	0.031	0 0	: :	08/14/15 10:57	08/17/15 14:40	
Atrazine	0.029		0.41	0.029	mg/Kg	*	08/14/15 10:57	08/17/15 14:40	
Benzaldehyde	0.073	U	0.41	0.073	0 0		08/14/15 10:57	08/17/15 14:40	
Benzo[a]anthracene	0.034	U	0.41	0.034		☼	08/14/15 10:57	08/17/15 14:40	
Benzo[a]pyrene	0.065	U	0.41	0.065	mg/Kg	₩	08/14/15 10:57	08/17/15 14:40	
Benzo[b]fluoranthene	0.048	U	0.41	0.048	mg/Kg	₩	08/14/15 10:57	08/17/15 14:40	
Benzo[g,h,i]perylene	0.028	U	0.41	0.028	mg/Kg	₽	08/14/15 10:57	08/17/15 14:40	
Benzo[k]fluoranthene	0.082	U	0.41	0.082	mg/Kg	₩	08/14/15 10:57	08/17/15 14:40	
1,1'-Biphenyl	2.1	U	2.1	2.1	mg/Kg	₩	08/14/15 10:57	08/17/15 14:40	
Bis(2-chloroethoxy)methane	0.049	U	0.41	0.049	mg/Kg	₽	08/14/15 10:57	08/17/15 14:40	
Bis(2-chloroethyl)ether	0.057	U *	0.41	0.057	mg/Kg	☼	08/14/15 10:57	08/17/15 14:40	
bis (2-chloroisopropyl) ether	0.038	U	0.41	0.038	mg/Kg	☼	08/14/15 10:57	08/17/15 14:40	
Bis(2-ethylhexyl) phthalate	0.070	JB	0.41	0.036	mg/Kg		08/14/15 10:57	08/17/15 14:40	
4-Bromophenyl phenyl ether	0.045	U	0.41	0.045	mg/Kg	☼	08/14/15 10:57	08/17/15 14:40	
Butyl benzyl phthalate	0.033	U	0.41	0.033		☼	08/14/15 10:57	08/17/15 14:40	
Caprolactam	0.083	U	0.41	0.083	mg/Kg		08/14/15 10:57	08/17/15 14:40	
Carbazole	0.038	U	0.41	0.038		☆	08/14/15 10:57	08/17/15 14:40	
4-Chloroaniline	0.065		0.83	0.065	mg/Kg	☼	08/14/15 10:57	08/17/15 14:40	
4-Chloro-3-methylphenol	0.044		0.41		mg/Kg		08/14/15 10:57	08/17/15 14:40	
2-Chloronaphthalene	0.044		0.41		mg/Kg	₩	08/14/15 10:57	08/17/15 14:40	
2-Chlorophenol	0.050		0.41	0.050		☆	08/14/15 10:57	08/17/15 14:40	
4-Chlorophenyl phenyl ether	0.055		0.41		mg/Kg		08/14/15 10:57	08/17/15 14:40	
Chrysene	0.026		0.41		mg/Kg	☆	08/14/15 10:57	08/17/15 14:40	
Dibenz(a,h)anthracene	0.049		0.41	0.049	mg/Kg	₩	08/14/15 10:57	08/17/15 14:40	
Dibenzofuran	0.041		0.41	0.041			08/14/15 10:57		
3,3'-Dichlorobenzidine	0.041		0.83		mg/Kg	₩	08/14/15 10:57	08/17/15 14:40	
2,4-Dichlorophenol	0.033		0.63	0.033		₩	08/14/15 10:57	08/17/15 14:40	
Diethyl phthalate	0.044		0.41		mg/Kg		08/14/15 10:57	08/17/15 14:40	
	0.046		0.41			≎			
2,4-Dimethylphenol					mg/Kg		08/14/15 10:57		
Dimethyl phthalate	0.043		0.41	0.043		\		08/17/15 14:40	
Di-n-butyl phthalate	0.038		0.41	0.038	mg/Kg		08/14/15 10:57	08/17/15 14:40	
4,6-Dinitro-2-methylphenol	0.21		2.1		mg/Kg	☆		08/17/15 14:40	
2,4-Dinitrophenol	1.0		2.1		mg/Kg			08/17/15 14:40	
2,4-Dinitrotoluene	0.062		0.41		mg/Kg	±.		08/17/15 14:40	
2,6-Dinitrotoluene	0.053		0.41		mg/Kg	.;;		08/17/15 14:40	
Di-n-octyl phthalate	0.036		0.41		mg/Kg	: ;		08/17/15 14:40	
Fluoranthene	0.040		0.41		mg/Kg	*		08/17/15 14:40	
Fluorene	0.045		0.41		mg/Kg	: *		08/17/15 14:40	
Hexachlorobenzene	0.049		0.41	0.049	mg/Kg	.		08/17/15 14:40	
Hexachlorobutadiene	0.045	U	0.41		mg/Kg	₽	08/14/15 10:57	08/17/15 14:40	
Hexachlorocyclopentadiene	0.051	U	0.41	0.051	mg/Kg	☼	08/14/15 10:57	08/17/15 14:40	
Hexachloroethane	0.035		0.41		mg/Kg	₩		08/17/15 14:40	
ndeno[1,2,3-cd]pyrene	0.035	U	0.41	0.035	mg/Kg	₽		08/17/15 14:40	
sophorone	0.041	U	0.41	0.041	mg/Kg	₩	08/14/15 10:57	08/17/15 14:40	
2-Methylnaphthalene	0.048	U	0.41	0.048	mg/Kg	☼	08/14/15 10:57	08/17/15 14:40	
2-Methylphenol	0.034	U	0.41	0.034	mg/Kg	₽	08/14/15 10:57	08/17/15 14:40	

TestAmerica Savannah

3

5

9

1 4

TestAmerica Job ID: 680-115544-1

Client Sample ID: GB-9 13-15

Date Collected: 08/10/15 10:06

Date Received: 08/12/15 09:46

Lab Sample ID: 680-115544-5

Matrix: Solid

Percent Solids: 79.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.054	U	0.41	0.054	mg/Kg	<u> </u>	08/14/15 10:57	08/17/15 14:40	1
Naphthalene	0.038	U	0.41	0.038	mg/Kg	₩	08/14/15 10:57	08/17/15 14:40	1
2-Nitroaniline	0.057	U	2.1	0.057	mg/Kg	₩	08/14/15 10:57	08/17/15 14:40	1
3-Nitroaniline	0.058	U	2.1	0.058	mg/Kg	₩	08/14/15 10:57	08/17/15 14:40	1
4-Nitroaniline	0.062	U	2.1	0.062	mg/Kg	₩	08/14/15 10:57	08/17/15 14:40	1
Nitrobenzene	0.033	U	0.41	0.033	mg/Kg	₩	08/14/15 10:57	08/17/15 14:40	1
2-Nitrophenol	0.051	U	0.41	0.051	mg/Kg	₩	08/14/15 10:57	08/17/15 14:40	1
4-Nitrophenol	0.41	U	2.1	0.41	mg/Kg	₩	08/14/15 10:57	08/17/15 14:40	1
N-Nitrosodi-n-propylamine	0.040	U	0.41	0.040	mg/Kg	₩	08/14/15 10:57	08/17/15 14:40	1
N-Nitrosodiphenylamine	0.041	U	0.41	0.041	mg/Kg	☼	08/14/15 10:57	08/17/15 14:40	1
Pentachlorophenol	0.41	U	2.1	0.41	mg/Kg	₩	08/14/15 10:57	08/17/15 14:40	1
Phenanthrene	0.034	U	0.41	0.034	mg/Kg	₩.	08/14/15 10:57	08/17/15 14:40	1
Phenol	0.043	U	0.41	0.043	mg/Kg	☼	08/14/15 10:57	08/17/15 14:40	1
Pyrene	0.034	U	0.41	0.034	mg/Kg	☼	08/14/15 10:57	08/17/15 14:40	1
2,4,5-Trichlorophenol	0.044	U	0.41	0.044	mg/Kg		08/14/15 10:57	08/17/15 14:40	1
2,4,6-Trichlorophenol	0.036	U	0.41	0.036	mg/Kg	₽	08/14/15 10:57	08/17/15 14:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery (Qualifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	85	41 - 116	08/14/15 10:57	08/17/15 14:40	1
2-Fluorophenol (Surr)	64	39 - 114	08/14/15 10:57	08/17/15 14:40	1
Nitrobenzene-d5 (Surr)	68	37 - 115	08/14/15 10:57	08/17/15 14:40	1
Phenol-d5 (Surr)	67	38 - 122	08/14/15 10:57	08/17/15 14:40	1
Terphenyl-d14 (Surr)	77	46 - 126	08/14/15 10:57	08/17/15 14:40	1
2,4,6-Tribromophenol (Surr)	92	45 - 129	08/14/15 10:57	08/17/15 14:40	1
I and the second					

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.3		2.3	0.92	mg/Kg	<u>₩</u>	08/14/15 08:59	08/17/15 21:20	1
Barium	170	В	1.1	0.18	mg/Kg	₩	08/14/15 08:59	08/17/15 21:20	1
Beryllium	1.9		0.46	0.011	mg/Kg	₩	08/14/15 08:59	08/17/15 21:20	1
Cadmium	0.11	U	0.57	0.11	mg/Kg	₩.	08/14/15 08:59	08/17/15 21:20	1
Chromium	27		1.1	0.24	mg/Kg	₩	08/14/15 08:59	08/17/15 21:20	1
Copper	53		2.9	0.20	mg/Kg	☼	08/14/15 08:59	08/17/15 21:20	1
Lead	26		1.1	0.39	mg/Kg	₩.	08/14/15 08:59	08/17/15 21:20	1
Nickel	16		4.6	0.44	mg/Kg	₩	08/14/15 08:59	08/17/15 21:20	1
Selenium	1.1	U	2.9	1.1	mg/Kg	₩	08/14/15 08:59	08/17/15 21:20	1
Silver	0.069	U	1.1	0.069	mg/Kg	₩.	08/14/15 08:59	08/17/15 21:20	1
Vanadium	77		1.1	0.11	mg/Kg	₩	08/14/15 08:59	08/17/15 21:20	1
Zinc	110		2.3	0.80	mg/Kg	₽	08/14/15 08:59	08/17/15 21:20	1

Method: 7471B - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.11	^	0.023	0.0090	mg/Kg	<u> </u>	08/16/15 14:39	08/17/15 20:04	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.26	U	0.61	0.26	mg/Kg	<u> </u>	08/19/15 09:00	08/19/15 12:22	1

Project/Site: Macon MGP #2

Client Sample ID: GB-11 3-5

Date Collected: 08/10/15 10:31

Date Received: 08/12/15 09:46

Client: Geotechnical & Environmental Consultants

Lab Sample ID: 680-115544-6

Matrix: Solid

Percent Solids: 87.6

Method: 8270D - Semivolatile Analyte	Result	Qualifier	ŘL		Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.23		1.9		mg/Kg	**		08/17/15 15:06	
Acenaphthylene	0.21		1.9		mg/Kg	: D		08/17/15 15:06	
Acetophenone	0.16	U	1.9		mg/Kg			08/17/15 15:06	
Anthracene	0.14	U	1.9	0.14	mg/Kg	☼	08/14/15 10:57	08/17/15 15:06	
Atrazine	0.13	U	1.9	0.13	mg/Kg	₽	08/14/15 10:57	08/17/15 15:06	
Benzaldehyde	0.33		1.9		mg/Kg	₩		08/17/15 15:06	
Benzo[a]anthracene	0.15	U	1.9		mg/Kg	☼		08/17/15 15:06	
Benzo[a]pyrene	0.30		1.9		mg/Kg	₩	08/14/15 10:57	08/17/15 15:06	
Benzo[b]fluoranthene	0.22		1.9		mg/Kg		08/14/15 10:57	08/17/15 15:06	
Benzo[g,h,i]perylene	0.13		1.9	0.13	mg/Kg	₩	08/14/15 10:57	08/17/15 15:06	
Benzo[k]fluoranthene	0.37		1.9	0.37	mg/Kg	₩		08/17/15 15:06	
1,1'-Biphenyl	9.7	U	9.7		mg/Kg	₩	08/14/15 10:57	08/17/15 15:06	
Bis(2-chloroethoxy)methane	0.22	U	1.9	0.22	mg/Kg	₽	08/14/15 10:57	08/17/15 15:06	
Bis(2-chloroethyl)ether	0.26		1.9		mg/Kg	₩	08/14/15 10:57	08/17/15 15:06	
bis (2-chloroisopropyl) ether	0.17	U	1.9		mg/Kg	₩	08/14/15 10:57	08/17/15 15:06	
Bis(2-ethylhexyl) phthalate	0.17	U	1.9		mg/Kg	₽	08/14/15 10:57	08/17/15 15:06	
4-Bromophenyl phenyl ether	0.21	U	1.9	0.21	mg/Kg	☼	08/14/15 10:57	08/17/15 15:06	
Butyl benzyl phthalate	0.15	U	1.9	0.15	mg/Kg	☼	08/14/15 10:57	08/17/15 15:06	
Caprolactam	0.38	U	1.9	0.38	mg/Kg	₽	08/14/15 10:57	08/17/15 15:06	
Carbazole	0.17	U	1.9	0.17	mg/Kg	☼	08/14/15 10:57	08/17/15 15:06	
4-Chloroaniline	0.30	U	3.8	0.30	mg/Kg	☼	08/14/15 10:57	08/17/15 15:06	
4-Chloro-3-methylphenol	0.20	U	1.9	0.20	mg/Kg	φ.	08/14/15 10:57	08/17/15 15:06	
2-Chloronaphthalene	0.20	U	1.9	0.20	mg/Kg	☼	08/14/15 10:57	08/17/15 15:06	
2-Chlorophenol	0.23	U	1.9	0.23	mg/Kg	☼	08/14/15 10:57	08/17/15 15:06	
4-Chlorophenyl phenyl ether	0.25	U	1.9	0.25	mg/Kg	₽	08/14/15 10:57	08/17/15 15:06	
Chrysene	0.12	U	1.9	0.12	mg/Kg	☼	08/14/15 10:57	08/17/15 15:06	
Dibenz(a,h)anthracene	0.22	U	1.9	0.22	mg/Kg	☼	08/14/15 10:57	08/17/15 15:06	
Dibenzofuran	0.19	U	1.9	0.19	mg/Kg	₽	08/14/15 10:57	08/17/15 15:06	
3,3'-Dichlorobenzidine	0.16	U	3.8	0.16	mg/Kg	☼	08/14/15 10:57	08/17/15 15:06	
2,4-Dichlorophenol	0.20	U	1.9	0.20	mg/Kg	☼	08/14/15 10:57	08/17/15 15:06	
Diethyl phthalate	0.21	U	1.9	0.21	mg/Kg	₽	08/14/15 10:57	08/17/15 15:06	
2,4-Dimethylphenol	0.25	U	1.9	0.25	mg/Kg	☼	08/14/15 10:57	08/17/15 15:06	
Dimethyl phthalate	0.19	U	1.9	0.19	mg/Kg	☼	08/14/15 10:57	08/17/15 15:06	
Di-n-butyl phthalate	0.17	U	1.9	0.17	mg/Kg	ф	08/14/15 10:57	08/17/15 15:06	
4,6-Dinitro-2-methylphenol	0.97	U	9.7	0.97	mg/Kg	☼	08/14/15 10:57	08/17/15 15:06	
2,4-Dinitrophenol	4.7	U	9.7	4.7	mg/Kg	☼	08/14/15 10:57	08/17/15 15:06	
2,4-Dinitrotoluene	0.28	U	1.9		mg/Kg	φ.		08/17/15 15:06	
2,6-Dinitrotoluene	0.24		1.9		mg/Kg	₩		08/17/15 15:06	
Di-n-octyl phthalate	0.17	U	1.9		mg/Kg	☼	08/14/15 10:57	08/17/15 15:06	
Fluoranthene	0.18	U	1.9		mg/Kg		08/14/15 10:57	08/17/15 15:06	
Fluorene	0.21		1.9		mg/Kg	☼	08/14/15 10:57	08/17/15 15:06	
Hexachlorobenzene	0.22		1.9		mg/Kg	☆		08/17/15 15:06	
Hexachlorobutadiene	0.21		1.9		mg/Kg			08/17/15 15:06	
Hexachlorocyclopentadiene	0.23		1.9		mg/Kg	₽		08/17/15 15:06	
Hexachloroethane	0.16		1.9		mg/Kg	₽		08/17/15 15:06	
Indeno[1,2,3-cd]pyrene	0.16		1.9		mg/Kg	ф.		08/17/15 15:06	
Isophorone	0.19		1.9		mg/Kg	☆		08/17/15 15:06	
2-Methylnaphthalene	0.22		1.9		mg/Kg	☼		08/17/15 15:06	
2-Methylphenol	0.15		1.9		mg/Kg			08/17/15 15:06	

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Mercury

Analyte

Cyanide, Total

General Chemistry

Client Sample ID: GB-11 3-5 Lab Sample ID: 680-115544-6

Date Collected: 08/10/15 10:31 **Matrix: Solid** Date Received: 08/12/15 09:46 Percent Solids: 87.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.25	U	1.9	0.25	mg/Kg	<u>₩</u>	08/14/15 10:57	08/17/15 15:06	
Naphthalene	0.17	U	1.9	0.17	mg/Kg	₩	08/14/15 10:57	08/17/15 15:06	5
2-Nitroaniline	0.26	U	9.7	0.26	mg/Kg	*	08/14/15 10:57	08/17/15 15:06	5
3-Nitroaniline	0.26	U	9.7	0.26	mg/Kg	☼	08/14/15 10:57	08/17/15 15:06	5
4-Nitroaniline	0.28	U	9.7	0.28	mg/Kg	₩	08/14/15 10:57	08/17/15 15:06	5
Nitrobenzene	0.15	Ü	1.9	0.15	mg/Kg	₩.	08/14/15 10:57	08/17/15 15:06	
2-Nitrophenol	0.23	U	1.9	0.23	mg/Kg	☼	08/14/15 10:57	08/17/15 15:06	5
4-Nitrophenol	1.9	U	9.7	1.9	mg/Kg	☼	08/14/15 10:57	08/17/15 15:06	5
N-Nitrosodi-n-propylamine	0.18	U	1.9	0.18	mg/Kg	₩.	08/14/15 10:57	08/17/15 15:06	5
N-Nitrosodiphenylamine	0.19	U	1.9	0.19	mg/Kg	₩	08/14/15 10:57	08/17/15 15:06	5
Pentachlorophenol	1.9	U	9.7	1.9	mg/Kg	₩	08/14/15 10:57	08/17/15 15:06	5
Phenanthrene	0.15	Ü	1.9	0.15	mg/Kg		08/14/15 10:57	08/17/15 15:06	5
Phenol	0.19	U	1.9	0.19	mg/Kg	₩	08/14/15 10:57	08/17/15 15:06	5
Pyrene	0.15	U	1.9	0.15	mg/Kg	₩	08/14/15 10:57	08/17/15 15:06	5
2,4,5-Trichlorophenol	0.20	U	1.9	0.20	mg/Kg	₩	08/14/15 10:57	08/17/15 15:06	5
2,4,6-Trichlorophenol	0.17	U	1.9	0.17	mg/Kg	₩	08/14/15 10:57	08/17/15 15:06	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	75		41 - 116				08/14/15 10:57	08/17/15 15:06	
2-Fluorophenol (Surr)	58		39 - 114				08/14/15 10:57	08/17/15 15:06	5
Nitrobenzene-d5 (Surr)	59		37 - 115				08/14/15 10:57	08/17/15 15:06	į
Phenol-d5 (Surr)	61		38 - 122				08/14/15 10:57	08/17/15 15:06	
Terphenyl-d14 (Surr)	72		46 - 126				08/14/15 10:57	08/17/15 15:06	
2,4,6-Tribromophenol (Surr)	80		45 - 129				08/14/15 10:57	08/17/15 15:06	
Method: 6010C - Metals (IC	P)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.5	J	2.0	0.82	mg/Kg	<u> </u>	08/14/15 08:59	08/17/15 21:12	1
Barium	49	В	1.0	0.16	mg/Kg	₩	08/14/15 08:59	08/17/15 21:12	1
Beryllium	0.30	J	0.41	0.010	mg/Kg	₩	08/14/15 08:59	08/17/15 21:12	1
Cadmium	0.10	U	0.51	0.10	mg/Kg	₩	08/14/15 08:59	08/17/15 21:12	1
Chromium	13		1.0	0.21	mg/Kg	₩	08/14/15 08:59	08/17/15 21:12	1
Copper	7.8		2.5	0.17	mg/Kg	₩	08/14/15 08:59	08/17/15 21:12	1
Lead	73		1.0	0.35	mg/Kg	₩	08/14/15 08:59	08/17/15 21:12	1
Nickel	2.8	J	4.1	0.39	mg/Kg	₩	08/14/15 08:59	08/17/15 21:12	1
Selenium	0.99	U	2.5	0.99	mg/Kg	₽	08/14/15 08:59	08/17/15 21:12	1
Silver	0.061	U	1.0	0.061	mg/Kg		08/14/15 08:59	08/17/15 21:12	1
Vanadium	28		1.0	0.10	mg/Kg	₩	08/14/15 08:59	08/17/15 21:12	•
Zinc	51		2.0	0.71	mg/Kg	₽	08/14/15 08:59	08/17/15 21:12	1
Method: 7471B - Mercury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

TestAmerica Savannah

Analyzed

 ☼
 08/19/15 09:00
 08/19/15 12:24

Prepared

0.021

RL

0.54

0.20 ^

0.23 U

Result Qualifier

0.0083 mg/Kg

MDL Unit

0.23 mg/Kg

D

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

Client Sample ID: GB-11 8-10 Lab Sample ID: 680-115544-7

Date Collected: 08/10/15 10:36 **Matrix: Solid** Date Received: 08/12/15 09:46 Percent Solids: 87.6

Method: 8270D - Semivolatile Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.23		1.9	0.23		— ~		08/17/15 15:32	
•	0.23		1.9	0.23	mg/Kg	₽		08/17/15 15:32	
Acenaphthylene Acetophenone	0.21		1.9		mg/Kg mg/Kg	~ ☆		08/17/15 15:32	
						······			
Anthracene	0.14		1.9		mg/Kg			08/17/15 15:32	
Atrazine	0.13		1.9		mg/Kg	☆		08/17/15 15:32	
Benzaldehyde	0.33		1.9		mg/Kg			08/17/15 15:32	
Benzo[a]anthracene	0.15		1.9		mg/Kg	☆		08/17/15 15:32	
Benzo[a]pyrene	0.30		1.9		mg/Kg			08/17/15 15:32	
Benzo[b]fluoranthene	0.22		1.9		mg/Kg			08/17/15 15:32	
Benzo[g,h,i]perylene	0.13		1.9		mg/Kg	☆		08/17/15 15:32	
Benzo[k]fluoranthene	0.37		1.9		mg/Kg	☆		08/17/15 15:32	
1,1'-Biphenyl	9.7	U	9.7		mg/Kg		08/14/15 10:57	08/17/15 15:32	
Bis(2-chloroethoxy)methane	0.22		1.9		mg/Kg	₩	08/14/15 10:57	08/17/15 15:32	
Bis(2-chloroethyl)ether	0.26		1.9		mg/Kg	₽		08/17/15 15:32	
bis (2-chloroisopropyl) ether	0.17	U	1.9	0.17	mg/Kg	☼	08/14/15 10:57	08/17/15 15:32	
Bis(2-ethylhexyl) phthalate	0.17	U	1.9	0.17	mg/Kg	₩	08/14/15 10:57	08/17/15 15:32	
4-Bromophenyl phenyl ether	0.21	U	1.9	0.21	mg/Kg	₩	08/14/15 10:57	08/17/15 15:32	
Butyl benzyl phthalate	0.15	U	1.9	0.15	mg/Kg	≎	08/14/15 10:57	08/17/15 15:32	
Caprolactam	0.38	U	1.9	0.38	mg/Kg	₽	08/14/15 10:57	08/17/15 15:32	
Carbazole	0.17	U	1.9	0.17	mg/Kg	₩	08/14/15 10:57	08/17/15 15:32	
1-Chloroaniline	0.30	U	3.8	0.30	mg/Kg	☼	08/14/15 10:57	08/17/15 15:32	
l-Chloro-3-methylphenol	0.20	U	1.9	0.20	mg/Kg		08/14/15 10:57	08/17/15 15:32	
2-Chloronaphthalene	0.20	U	1.9	0.20	mg/Kg	☼	08/14/15 10:57	08/17/15 15:32	
2-Chlorophenol	0.23	U	1.9		mg/Kg	☼	08/14/15 10:57	08/17/15 15:32	
1-Chlorophenyl phenyl ether	0.25		1.9		mg/Kg		08/14/15 10:57	08/17/15 15:32	
Chrysene	0.12	U	1.9		mg/Kg	☼	08/14/15 10:57	08/17/15 15:32	
Dibenz(a,h)anthracene	0.22	U	1.9		mg/Kg	₩	08/14/15 10:57	08/17/15 15:32	
Dibenzofuran	0.19	Ü	1.9		mg/Kg	₩	08/14/15 10:57	08/17/15 15:32	
3,3'-Dichlorobenzidine	0.16		3.8		mg/Kg	≎		08/17/15 15:32	
2,4-Dichlorophenol	0.20		1.9		mg/Kg	☼		08/17/15 15:32	
Diethyl phthalate	0.21		1.9	0.21				08/17/15 15:32	
2,4-Dimethylphenol	0.25		1.9		mg/Kg	☼		08/17/15 15:32	
Dimethyl phthalate	0.19		1.9		mg/Kg	₩		08/17/15 15:32	
Di-n-butyl phthalate	0.17		1.9		mg/Kg	 ☆		08/17/15 15:32	
4,6-Dinitro-2-methylphenol	0.97		9.7		mg/Kg	₽		08/17/15 15:32	
2,4-Dinitrophenol	4.7		9.7		mg/Kg	₽		08/17/15 15:32	
			1.9			₂		08/17/15 15:32	
2,4-Dinitrotoluene	0.28				mg/Kg	*			
2,6-Dinitrotoluene	0.24		1.9		mg/Kg	₩		08/17/15 15:32	
Di-n-octyl phthalate	0.17		1.9		mg/Kg			08/17/15 15:32	
Fluoranthene	0.18		1.9		mg/Kg	1.tr		08/17/15 15:32	
Fluorene	0.21		1.9		mg/Kg			08/17/15 15:32	
Hexachlorobenzene	0.22		1.9		mg/Kg			08/17/15 15:32	
Hexachlorobutadiene	0.21		1.9		mg/Kg	ψ.		08/17/15 15:32	
Hexachlorocyclopentadiene	0.23		1.9		mg/Kg	₩		08/17/15 15:32	
Hexachloroethane	0.16		1.9		mg/Kg			08/17/15 15:32	
ndeno[1,2,3-cd]pyrene	0.16		1.9		mg/Kg	₽		08/17/15 15:32	
sophorone	0.19		1.9	0.19	mg/Kg	≎	08/14/15 10:57	08/17/15 15:32	
2-Methylnaphthalene	0.22	U	1.9	0.22	mg/Kg	☼	08/14/15 10:57	08/17/15 15:32	
2-Methylphenol	0.15	U	1.9	0.15	mg/Kg		08/14/15 10:57	08/17/15 15:32	

Date Received: 08/12/15 09:46

Mercury

Analyte

Cyanide, Total

General Chemistry

TestAmerica Job ID: 680-115544-1

Client Sample ID: GB-11 8-10

Lab Sample ID: 680-115544-7 Date Collected: 08/10/15 10:36 **Matrix: Solid**

Percent Solids: 87.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.25	U	1.9	0.25	mg/Kg	<u> </u>	08/14/15 10:57	08/17/15 15:32	
Naphthalene	0.17	U	1.9	0.17	mg/Kg	☼	08/14/15 10:57	08/17/15 15:32	5
2-Nitroaniline	0.26	U	9.7	0.26	mg/Kg	φ.	08/14/15 10:57	08/17/15 15:32	
3-Nitroaniline	0.26	U	9.7	0.26	mg/Kg	☼	08/14/15 10:57	08/17/15 15:32	5
4-Nitroaniline	0.28	U	9.7	0.28	mg/Kg	☼	08/14/15 10:57	08/17/15 15:32	į
Nitrobenzene	0.15	U	1.9	0.15	mg/Kg		08/14/15 10:57	08/17/15 15:32	
2-Nitrophenol	0.23	U	1.9	0.23	mg/Kg	☼	08/14/15 10:57	08/17/15 15:32	
4-Nitrophenol	1.9	U	9.7	1.9	mg/Kg	☼	08/14/15 10:57	08/17/15 15:32	
N-Nitrosodi-n-propylamine	0.18	U	1.9	0.18	mg/Kg		08/14/15 10:57	08/17/15 15:32	
N-Nitrosodiphenylamine	0.19	U	1.9	0.19	mg/Kg	☼	08/14/15 10:57	08/17/15 15:32	
Pentachlorophenol	1.9	U	9.7	1.9	mg/Kg	☼	08/14/15 10:57	08/17/15 15:32	į
Phenanthrene	0.15	U	1.9	0.15	mg/Kg	.	08/14/15 10:57	08/17/15 15:32	
Phenol	0.19	U	1.9		mg/Kg	₩	08/14/15 10:57	08/17/15 15:32	5
Pyrene	0.15	U	1.9	0.15	mg/Kg	☼	08/14/15 10:57	08/17/15 15:32	į.
2,4,5-Trichlorophenol	0.20	U	1.9	0.20	mg/Kg	φ.	08/14/15 10:57	08/17/15 15:32	
2,4,6-Trichlorophenol	0.17	U	1.9	0.17	mg/Kg	₩	08/14/15 10:57	08/17/15 15:32	ţ
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	59		41 - 116				08/14/15 10:57	08/17/15 15:32	
2-Fluorophenol (Surr)	49		39 - 114				08/14/15 10:57	08/17/15 15:32	
Nitrobenzene-d5 (Surr)	48		37 - 115				08/14/15 10:57	08/17/15 15:32	
Phenol-d5 (Surr)	52		38 - 122				08/14/15 10:57	08/17/15 15:32	
Terphenyl-d14 (Surr)	60		46 - 126				08/14/15 10:57	08/17/15 15:32	
2,4,6-Tribromophenol (Surr)	61		45 - 129				08/14/15 10:57	08/17/15 15:32	
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	2.2		2.0	0.82	mg/Kg	₩	08/14/15 08:59	08/17/15 20:23	
Barium	33	В	1.0	0.16	mg/Kg	₩	08/14/15 08:59	08/17/15 20:23	
Beryllium	0.18	J	0.41	0.010	mg/Kg	₩	08/14/15 08:59	08/17/15 20:23	
Cadmium	0.10	U	0.51	0.10	mg/Kg	₩	08/14/15 08:59	08/17/15 20:23	
Chromium	11		1.0	0.21	mg/Kg	₩	08/14/15 08:59	08/17/15 20:23	
Copper	10		2.5	0.17	mg/Kg	☼	08/14/15 08:59	08/17/15 20:23	
Lead	72		1.0	0.35	mg/Kg	₽	08/14/15 08:59	08/17/15 20:23	
Nickel	2.7	J	4.1	0.39	mg/Kg	₩	08/14/15 08:59	08/17/15 20:23	
Selenium	0.99	U	2.5	0.99	mg/Kg	₩	08/14/15 08:59	08/17/15 20:23	
Silver	0.061	U	1.0	0.061	mg/Kg	₽	08/14/15 08:59	08/17/15 20:23	
Vanadium	25		1.0	0.10	mg/Kg	☼	08/14/15 08:59	08/17/15 20:23	
Zinc	28		2.0	0.71	mg/Kg	≎	08/14/15 08:59	08/17/15 20:23	
Method: 7471B - Mercury (CVA	AA)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
			0.040	0.0077			00/40/45 44.00		

Analyzed

□ 08/16/15 14:39 □ 08/17/15 20:16

□ 08/19/15 09:00 □ 08/19/15 12:25

Prepared

0.019

RL

0.56

0.0077 mg/Kg

MDL Unit

0.24 mg/Kg

D

0.19

Result Qualifier

0.25 J

Dil Fac

Project/Site: Macon MGP #2

Client Sample ID: GB-11 13-15

Client: Geotechnical & Environmental Consultants

Lab Sample ID: 680-115544-8 Date Collected: 08/10/15 10:41 **Matrix: Solid** Date Received: 08/12/15 09:46 Percent Solids: 87.7

Method: 8270D - Semivolatil		Qualifier	RL	MDL	Unit	D	Prepared	Analyzod	Dil F
Analyte	0.23		1.9	0.23		— ¤	•	Analyzed 08/17/15 15:58	טוו ר
Acenaphthene	0.23		1.9	0.23	mg/Kg	☆		08/17/15 15:58	
Acenaphthylene	0.21				mg/Kg	~ ☆			
Acetophenone			1.9		mg/Kg	.		08/17/15 15:58	
Anthracene	0.22		1.9		mg/Kg			08/17/15 15:58	
Atrazine	0.13		1.9		mg/Kg	☆		08/17/15 15:58	
Benzaldehyde	0.33		1.9		mg/Kg	*. Æ		08/17/15 15:58	
Benzo[a]anthracene	0.84		1.9		mg/Kg	☼		08/17/15 15:58	
Benzo[a]pyrene	0.67		1.9		mg/Kg			08/17/15 15:58	
Benzo[b]fluoranthene	1.1		1.9		mg/Kg			08/17/15 15:58	
Benzo[g,h,i]perylene	0.51		1.9		mg/Kg	₩		08/17/15 15:58	
Benzo[k]fluoranthene	0.43		1.9		mg/Kg	☆		08/17/15 15:58	
1,1'-Biphenyl	9.7	U	9.7		mg/Kg	₽	08/14/15 10:57	08/17/15 15:58	
Bis(2-chloroethoxy)methane	0.22		1.9		mg/Kg	☼	08/14/15 10:57	08/17/15 15:58	
Bis(2-chloroethyl)ether	0.26		1.9		mg/Kg	☼		08/17/15 15:58	
ois (2-chloroisopropyl) ether	0.17	U	1.9		mg/Kg	☼	08/14/15 10:57	08/17/15 15:58	
Bis(2-ethylhexyl) phthalate	0.17	U	1.9	0.17	mg/Kg	₩	08/14/15 10:57	08/17/15 15:58	
1-Bromophenyl phenyl ether	0.21	U	1.9	0.21	mg/Kg	☼	08/14/15 10:57	08/17/15 15:58	
Butyl benzyl phthalate	0.15	U	1.9	0.15	mg/Kg	₽	08/14/15 10:57	08/17/15 15:58	
Caprolactam	0.38	U	1.9	0.38	mg/Kg	₽	08/14/15 10:57	08/17/15 15:58	
Carbazole	0.17	U	1.9	0.17	mg/Kg	☼	08/14/15 10:57	08/17/15 15:58	
l-Chloroaniline	0.30	U	3.8	0.30	mg/Kg	☼	08/14/15 10:57	08/17/15 15:58	
-Chloro-3-methylphenol	0.20	Ü	1.9	0.20	mg/Kg		08/14/15 10:57	08/17/15 15:58	
2-Chloronaphthalene	0.20	U	1.9	0.20	mg/Kg	☼	08/14/15 10:57	08/17/15 15:58	
2-Chlorophenol	0.23	U	1.9	0.23	mg/Kg	☼	08/14/15 10:57	08/17/15 15:58	
I-Chlorophenyl phenyl ether	0.25	U	1.9	0.25	mg/Kg	₩.	08/14/15 10:57	08/17/15 15:58	
Chrysene	0.78	J	1.9		mg/Kg	≎	08/14/15 10:57	08/17/15 15:58	
Dibenz(a,h)anthracene	0.22		1.9		mg/Kg	≎	08/14/15 10:57	08/17/15 15:58	
Dibenzofuran	0.19	U	1.9		mg/Kg		08/14/15 10:57	08/17/15 15:58	
3,3'-Dichlorobenzidine	0.16		3.8		mg/Kg	☼		08/17/15 15:58	
2,4-Dichlorophenol	0.20		1.9		mg/Kg	₽		08/17/15 15:58	
Diethyl phthalate	0.21		1.9	0.21		 ☆		08/17/15 15:58	
2,4-Dimethylphenol	0.25		1.9		mg/Kg	☼		08/17/15 15:58	
Dimethyl phthalate	0.19		1.9		mg/Kg	₽		08/17/15 15:58	
Di-n-butyl phthalate	0.17		1.9		mg/Kg			08/17/15 15:58	
4,6-Dinitro-2-methylphenol	0.97		9.7		mg/Kg	☆		08/17/15 15:58	
,,4-Dinitrophenol	4.7		9.7		mg/Kg	т Ф		08/17/15 15:58	
			1.9			₂		08/17/15 15:58	
,4-Dinitrotoluene	0.28				mg/Kg	*		08/17/15 15:58	
2,6-Dinitrotoluene	0.24		1.9		mg/Kg	Ţ.			
Di-n-octyl phthalate	0.17		1.9		mg/Kg			08/17/15 15:58	
luoranthene	1.6		1.9		mg/Kg	**		08/17/15 15:58	
Fluorene	0.21		1.9		mg/Kg	₩ ₩		08/17/15 15:58	
lexachlorobenzene	0.22		1.9		mg/Kg	#. #		08/17/15 15:58	
lexachlorobutadiene	0.21		1.9		mg/Kg	₩ ₩		08/17/15 15:58	
	0.23		1.9		mg/Kg	₩		08/17/15 15:58	
Hexachloroethane	0.16	U	1.9		mg/Kg			08/17/15 15:58	
ndeno[1,2,3-cd]pyrene	0.45		1.9		mg/Kg	₩		08/17/15 15:58	
sophorone	0.19	U	1.9	0.19	mg/Kg	₩	08/14/15 10:57	08/17/15 15:58	
2-Methylnaphthalene	0.22	U	1.9	0.22	mg/Kg	₩	08/14/15 10:57	08/17/15 15:58	
2-Methylphenol	0.15	U	1.9	0.15	mg/Kg	ф	08/14/15 10:57	08/17/15 15:58	

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

Client Sample ID: GB-11 13-15

Date Collected: 08/10/15 10:41 Date Received: 08/12/15 09:46 Lab Sample ID: 680-115544-8

Matrix: Solid Percent Solids: 87.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.25	U	1.9	0.25	mg/Kg	<u> </u>	08/14/15 10:57	08/17/15 15:58	5
Naphthalene	0.17	U	1.9	0.17	mg/Kg	₩	08/14/15 10:57	08/17/15 15:58	5
2-Nitroaniline	0.26	U	9.7	0.26	mg/Kg	₩.	08/14/15 10:57	08/17/15 15:58	5
3-Nitroaniline	0.26	U	9.7	0.26	mg/Kg	₩	08/14/15 10:57	08/17/15 15:58	5
4-Nitroaniline	0.28	U	9.7	0.28	mg/Kg	₩	08/14/15 10:57	08/17/15 15:58	5
Nitrobenzene	0.15	U	1.9	0.15	mg/Kg	₩.	08/14/15 10:57	08/17/15 15:58	5
2-Nitrophenol	0.23	U	1.9	0.23	mg/Kg	₩	08/14/15 10:57	08/17/15 15:58	5
4-Nitrophenol	1.9	U	9.7	1.9	mg/Kg	☼	08/14/15 10:57	08/17/15 15:58	5
N-Nitrosodi-n-propylamine	0.18	U	1.9	0.18	mg/Kg	₩.	08/14/15 10:57	08/17/15 15:58	5
N-Nitrosodiphenylamine	0.19	U	1.9	0.19	mg/Kg	☼	08/14/15 10:57	08/17/15 15:58	5
Pentachlorophenol	1.9	U	9.7	1.9	mg/Kg	☼	08/14/15 10:57	08/17/15 15:58	5
Phenanthrene	1.0	J	1.9	0.15	mg/Kg	₩.	08/14/15 10:57	08/17/15 15:58	5
Phenol	0.19	U	1.9	0.19	mg/Kg	☼	08/14/15 10:57	08/17/15 15:58	5
Pyrene	1.3	J	1.9	0.15	mg/Kg	☼	08/14/15 10:57	08/17/15 15:58	5
2,4,5-Trichlorophenol	0.20	U	1.9	0.20	mg/Kg		08/14/15 10:57	08/17/15 15:58	5
2,4,6-Trichlorophenol	0.17	U	1.9	0.17	mg/Kg	₩	08/14/15 10:57	08/17/15 15:58	5

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	85	41 - 116	08/14/15 10:57	08/17/15 15:58	5
2-Fluorophenol (Surr)	67	39 - 114	08/14/15 10:57	08/17/15 15:58	5
Nitrobenzene-d5 (Surr)	66	37 <i>-</i> 115	08/14/15 10:57	08/17/15 15:58	5
Phenol-d5 (Surr)	70	38 - 122	08/14/15 10:57	08/17/15 15:58	5
Terphenyl-d14 (Surr)	83	46 - 126	08/14/15 10:57	08/17/15 15:58	5
2,4,6-Tribromophenol (Surr)	92	45 - 129	08/14/15 10:57	08/17/15 15:58	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.7		2.1	0.84	mg/Kg	<u> </u>	08/14/15 08:59	08/17/15 21:25	1
Barium	36	В	1.1	0.17	mg/Kg	☆	08/14/15 08:59	08/17/15 21:25	1
Beryllium	0.12	J	0.42	0.011	mg/Kg	☆	08/14/15 08:59	08/17/15 21:25	1
Cadmium	0.27	J	0.53	0.11	mg/Kg	₩	08/14/15 08:59	08/17/15 21:25	1
Chromium	6.7		1.1	0.22	mg/Kg	☆	08/14/15 08:59	08/17/15 21:25	1
Copper	11		2.6	0.18	mg/Kg	≎	08/14/15 08:59	08/17/15 21:25	1
Lead	74		1.1	0.36	mg/Kg	₩	08/14/15 08:59	08/17/15 21:25	1
Nickel	1.9	J	4.2	0.40	mg/Kg	≎	08/14/15 08:59	08/17/15 21:25	1
Selenium	1.0	U	2.6	1.0	mg/Kg	≎	08/14/15 08:59	08/17/15 21:25	1
Silver	0.063	U	1.1	0.063	mg/Kg		08/14/15 08:59	08/17/15 21:25	1
Vanadium	16		1.1	0.11	mg/Kg	≎	08/14/15 08:59	08/17/15 21:25	1
Zinc	55		2.1	0.74	mg/Kg	☆	08/14/15 08:59	08/17/15 21:25	1

Method: 7471B - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.092		0.020	0.0079	mg/Kg	<u>∓</u>	08/16/15 14:39	08/17/15 20:19	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.24	U	0.57	0.24	mg/Kg	<u></u>	08/19/15 09:00	08/19/15 12:26	1

6

8

10

11

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

TestAmerica Job ID: 680-115544-1

Lab Sample ID: 680-115544-9

Percent Solids: 87.1

Client Sample ID: SB-25 0-2 Date Collected: 08/10/15 10:56 **Matrix: Solid** Date Received: 08/12/15 09:46

Method: 8270D - Semivolatile Analyte	•	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.47		3.8	0.47		— ğ		08/17/15 16:24	1
Acenaphthylene	0.41		3.8		mg/Kg	₽		08/17/15 16:24	1
Acetophenone	0.32		3.8		mg/Kg	₽		08/17/15 16:24	1
Anthracene	0.29		3.8		mg/Kg			08/17/15 16:24	
Atrazine	0.29		3.8		mg/Kg	₽		08/17/15 16:24	1
	0.20		3.8		mg/Kg	~ ⇔		08/17/15 16:24	1
Benzaldehyde	0.31		3.8					08/17/15 16:24	<u>'</u> 1
Benzo[a]anthracene Benzo[a]pyrene	0.51		3.8		mg/Kg	~ ☆		08/17/15 16:24	1
,					mg/Kg	☆			1
Benzo[b]fluoranthene	0.43 0.25		3.8		mg/Kg	· · · · · · · · · · · · · · · · · · ·		08/17/15 16:24	
Benzo[g,h,i]perylene			3.8		mg/Kg			08/17/15 16:24	1
Benzo[k]fluoranthene	0.74		3.8		mg/Kg	☆		08/17/15 16:24	1
1,1'-Biphenyl	19		19		mg/Kg			08/17/15 16:24	1
Bis(2-chloroethoxy)methane	0.44		3.8		mg/Kg	1.tr		08/17/15 16:24	1
Bis(2-chloroethyl)ether	0.51		3.8		mg/Kg			08/17/15 16:24	1
bis (2-chloroisopropyl) ether	0.34		3.8		mg/Kg	<u></u> .		08/17/15 16:24	
Bis(2-ethylhexyl) phthalate	0.33		3.8		mg/Kg	₩.		08/17/15 16:24	1
4-Bromophenyl phenyl ether	0.41		3.8	0.41	mg/Kg	**		08/17/15 16:24	1
Butyl benzyl phthalate	0.30	U	3.8		mg/Kg	₩	08/14/15 10:57	08/17/15 16:24	
Caprolactam	0.75		3.8	0.75	mg/Kg	☆	08/14/15 10:57	08/17/15 16:24	1
Carbazole	0.34	U	3.8	0.34	mg/Kg	☼	08/14/15 10:57	08/17/15 16:24	1
4-Chloroaniline	0.59	U	7.5	0.59	mg/Kg	₩	08/14/15 10:57	08/17/15 16:24	1
4-Chloro-3-methylphenol	0.40	U	3.8	0.40	mg/Kg	₽	08/14/15 10:57	08/17/15 16:24	1
2-Chloronaphthalene	0.40	U	3.8	0.40	mg/Kg	☼	08/14/15 10:57	08/17/15 16:24	1
2-Chlorophenol	0.46	U	3.8	0.46	mg/Kg	☼	08/14/15 10:57	08/17/15 16:24	1
4-Chlorophenyl phenyl ether	0.50	U	3.8	0.50	mg/Kg	₽	08/14/15 10:57	08/17/15 16:24	1
Chrysene	0.24	U	3.8	0.24	mg/Kg	≎	08/14/15 10:57	08/17/15 16:24	1
Dibenz(a,h)anthracene	0.44	U	3.8	0.44	mg/Kg	☼	08/14/15 10:57	08/17/15 16:24	1
Dibenzofuran	0.38	Ü	3.8	0.38	mg/Kg	₽	08/14/15 10:57	08/17/15 16:24	1
3,3'-Dichlorobenzidine	0.32	U	7.5	0.32	mg/Kg	☼	08/14/15 10:57	08/17/15 16:24	1
2,4-Dichlorophenol	0.40	U	3.8	0.40	mg/Kg	≎	08/14/15 10:57	08/17/15 16:24	1
Diethyl phthalate	0.42	U	3.8	0.42	mg/Kg		08/14/15 10:57	08/17/15 16:24	1
2,4-Dimethylphenol	0.50	U	3.8	0.50	mg/Kg	☼	08/14/15 10:57	08/17/15 16:24	1
Dimethyl phthalate	0.39	U	3.8		mg/Kg	≎	08/14/15 10:57	08/17/15 16:24	1
Di-n-butyl phthalate	0.34	U	3.8	0.34	mg/Kg	ф	08/14/15 10:57	08/17/15 16:24	1
4,6-Dinitro-2-methylphenol	1.9	U	19		mg/Kg	₩	08/14/15 10:57	08/17/15 16:24	1
2,4-Dinitrophenol	9.5	U	19		mg/Kg	☼	08/14/15 10:57	08/17/15 16:24	1
2,4-Dinitrotoluene	0.56		3.8		mg/Kg			08/17/15 16:24	1
2,6-Dinitrotoluene	0.48		3.8		mg/Kg	≎		08/17/15 16:24	1
Di-n-octyl phthalate	0.33		3.8		mg/Kg	≎		08/17/15 16:24	1
Fluoranthene	0.37		3.8		mg/Kg			08/17/15 16:24	1
Fluorene	0.41		3.8		mg/Kg	₩		08/17/15 16:24	1
Hexachlorobenzene	0.44		3.8		mg/Kg	₩		08/17/15 16:24	1
						ф		08/17/15 16:24	
Hexachlorobutadiene	0.41		3.8		mg/Kg	₩			1
Hexachlorocyclopentadiene	0.47		3.8		mg/Kg			08/17/15 16:24	
Hexachloroethane	0.32		3.8		mg/Kg			08/17/15 16:24	1
Indeno[1,2,3-cd]pyrene	0.32		3.8		mg/Kg	₩ ₩		08/17/15 16:24	1
Isophorone	0.38		3.8		mg/Kg	₩		08/17/15 16:24	1
2-Methylnaphthalene	0.43	U	3.8	0.43	mg/Kg	Ð	u8/14/15 10:57	08/17/15 16:24	1

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

Vanadium

Client Sample ID: SB-25 0-2 Lab Sample ID: 680-115544-9

Date Collected: 08/10/15 10:56 **Matrix: Solid** Date Received: 08/12/15 09:46 Percent Solids: 87.1

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.49	U	3.8	0.49	mg/Kg	\	08/14/15 10:57	08/17/15 16:24	10
Naphthalene	0.34	U	3.8	0.34	mg/Kg	☼	08/14/15 10:57	08/17/15 16:24	10
2-Nitroaniline	0.51	U	19	0.51	mg/Kg	₽	08/14/15 10:57	08/17/15 16:24	10
3-Nitroaniline	0.52	U	19	0.52	mg/Kg	₩	08/14/15 10:57	08/17/15 16:24	10
4-Nitroaniline	0.56	U	19	0.56	mg/Kg	₩	08/14/15 10:57	08/17/15 16:24	10
Nitrobenzene	0.30	U	3.8	0.30	mg/Kg	₽	08/14/15 10:57	08/17/15 16:24	10
2-Nitrophenol	0.47	U	3.8	0.47	mg/Kg	☼	08/14/15 10:57	08/17/15 16:24	10
4-Nitrophenol	3.8	U	19	3.8	mg/Kg	☼	08/14/15 10:57	08/17/15 16:24	10
N-Nitrosodi-n-propylamine	0.37	U	3.8	0.37	mg/Kg	₽	08/14/15 10:57	08/17/15 16:24	10
N-Nitrosodiphenylamine	0.38	U	3.8	0.38	mg/Kg	☼	08/14/15 10:57	08/17/15 16:24	10
Pentachlorophenol	3.8	U	19	3.8	mg/Kg	☼	08/14/15 10:57	08/17/15 16:24	10
Phenanthrene	0.31	U	3.8	0.31	mg/Kg	φ.	08/14/15 10:57	08/17/15 16:24	10
Phenol	0.39	U	3.8	0.39	mg/Kg	☼	08/14/15 10:57	08/17/15 16:24	10
Pyrene	0.31	U	3.8	0.31	mg/Kg	☼	08/14/15 10:57	08/17/15 16:24	10
2,4,5-Trichlorophenol	0.40	U	3.8	0.40	mg/Kg	₽	08/14/15 10:57	08/17/15 16:24	10
2,4,6-Trichlorophenol	0.33	U	3.8	0.33	mg/Kg	₩	08/14/15 10:57	08/17/15 16:24	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	0	D	41 - 116				08/14/15 10:57	08/17/15 16:24	10
2-Fluorophenol (Surr)	0	D	39 - 114				08/14/15 10:57	08/17/15 16:24	10
Nitrobenzene-d5 (Surr)	0	D	37 - 115				08/14/15 10:57	08/17/15 16:24	10
Phenol-d5 (Surr)	0	D	38 - 122				08/14/15 10:57	08/17/15 16:24	10
Terphenyl-d14 (Surr)	0	D	46 - 126				08/14/15 10:57	08/17/15 16:24	10
2,4,6-Tribromophenol (Surr)	0	D	45 - 129				08/14/15 10:57	08/17/15 16:24	10
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.8	J	2.1	0.83	mg/Kg	₩	08/14/15 08:59	08/17/15 21:16	1
Barium	55	В	1.0	0.17	mg/Kg	☼	08/14/15 08:59	08/17/15 21:16	1
Beryllium	0.39	J	0.42	0.010	mg/Kg	☼	08/14/15 08:59	08/17/15 21:16	1
Cadmium	0.10	U	0.52	0.10	mg/Kg	φ.	08/14/15 08:59	08/17/15 21:16	1
Chromium	23		1.0	0.22	mg/Kg	☼	08/14/15 08:59	08/17/15 21:16	1
Copper	20		2.6	0.18	mg/Kg	☼	08/14/15 08:59	08/17/15 21:16	1
Lead	38		1.0	0.35	mg/Kg		08/14/15 08:59	08/17/15 21:16	1
Nickel	4.3		4.2	0.40	mg/Kg	☼	08/14/15 08:59	08/17/15 21:16	1
Selenium	1.0	U	2.6	1.0	mg/Kg	☼	08/14/15 08:59	08/17/15 21:16	1

Zinc	50		2.1	0.73	mg/Kg	₩	08/14/15 08:59	08/17/15 21:16	1
Method: 7471B - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.086		0.023 0	.0090	mg/Kg	_ <u>\</u>	08/16/15 14:39	08/17/15 20:23	1
General Chemistry									

1.0

39

0.10 mg/Kg

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.23	U	0.56	0.23	mg/Kg	\	08/19/15 09:00	08/19/15 12:27	1

TestAmerica Savannah

© 08/14/15 08:59 08/17/15 21:16

Project/Site: Macon MGP #2

Client Sample ID: SB-25 2-4

Date Collected: 08/10/15 10:56

Date Received: 08/12/15 09:46

Lab Sample ID: 680-115544-10

Matrix: Solid

Percent Solids: 87.2

Acenaphthene Acenaphthylene Acetophenone	0.047	1.1							
Acetophenone			0.37	0.047	0 0	**	08/14/15 10:57	08/17/15 16:51	
	0.041		0.37		mg/Kg	.	08/14/15 10:57		
\ male management	0.032	U	0.37		mg/Kg	∵	08/14/15 10:57	08/17/15 16:51	
Anthracene	0.071		0.37		mg/Kg	.	08/14/15 10:57	08/17/15 16:51	
Atrazine	0.026		0.37	0.026	mg/Kg	.	08/14/15 10:57	08/17/15 16:51	
Benzaldehyde	0.066	U	0.37		mg/Kg		08/14/15 10:57		
Benzo[a]anthracene	0.60		0.37		mg/Kg	.	08/14/15 10:57		
Benzo[a]pyrene	0.76		0.37	0.059	mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	
Benzo[b]fluoranthene	0.95		0.37	0.043	0 0		08/14/15 10:57		
Benzo[g,h,i]perylene	0.64		0.37	0.025	mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	
Benzo[k]fluoranthene	0.33	J	0.37	0.074	mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	
I,1'-Biphenyl	1.9	U	1.9	1.9	mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	
Bis(2-chloroethoxy)methane	0.044	U	0.37	0.044	mg/Kg	₽	08/14/15 10:57	08/17/15 16:51	
Bis(2-chloroethyl)ether	0.051	U *	0.37		mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	
ois (2-chloroisopropyl) ether	0.034	U	0.37	0.034	mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	
Bis(2-ethylhexyl) phthalate	0.033	U	0.37	0.033	mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	
I-Bromophenyl phenyl ether	0.041	U	0.37	0.041	mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	
Butyl benzyl phthalate	0.030	U	0.37	0.030	mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	
Caprolactam	0.075	U	0.37	0.075	mg/Kg	₩.	08/14/15 10:57	08/17/15 16:51	
Carbazole	0.034	U	0.37	0.034	mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	
l-Chloroaniline	0.059	U	0.75	0.059	mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	
I-Chloro-3-methylphenol	0.040	U	0.37	0.040		.	08/14/15 10:57	08/17/15 16:51	
2-Chloronaphthalene	0.040	U	0.37	0.040	mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	
2-Chlorophenol	0.045	U	0.37	0.045	mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	
I-Chlorophenyl phenyl ether	0.050	U	0.37	0.050	mg/Kg	 ☆	08/14/15 10:57	08/17/15 16:51	
Chrysene	0.50		0.37	0.024	mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	
Dibenz(a,h)anthracene	0.15	J	0.37		mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	
Dibenzofuran	0.037		0.37		mg/Kg		08/14/15 10:57	08/17/15 16:51	
3,3'-Dichlorobenzidine	0.032	U	0.75		mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	
2,4-Dichlorophenol	0.040	U	0.37		mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	
Diethyl phthalate	0.042	U	0.37		mg/Kg		08/14/15 10:57	08/17/15 16:51	
2,4-Dimethylphenol	0.050		0.37		mg/Kg	₩	08/14/15 10:57		
Dimethyl phthalate	0.039		0.37	0.039	mg/Kg	₩	08/14/15 10:57		
Di-n-butyl phthalate	0.034		0.37		mg/Kg		08/14/15 10:57		
I,6-Dinitro-2-methylphenol	0.19		1.9		mg/Kg	₩	08/14/15 10:57		
2,4-Dinitrophenol	0.94		1.9		mg/Kg	₩		08/17/15 16:51	
2,4-Dinitrotoluene	0.056		0.37		mg/Kg			08/17/15 16:51	
2,6-Dinitrotoluene	0.048		0.37		mg/Kg	₽		08/17/15 16:51	
Di-n-octyl phthalate	0.033		0.37		mg/Kg	₽		08/17/15 16:51	
Fluoranthene	0.77		0.37		mg/Kg			08/17/15 16:51	
Fluorene	0.041	ш	0.37		mg/Kg	₩		08/17/15 16:51	
	0.041		0.37			т Ф		08/17/15 16:51	
lexachlorobenzene					mg/Kg				
Hexachlorobutadiene	0.041		0.37		mg/Kg	₩		08/17/15 16:51 08/17/15 16:51	
Hexachlorocyclopentadiene	0.047		0.37		mg/Kg				
lexachloroethane	0.032		0.37		mg/Kg			08/17/15 16:51	
ndeno[1,2,3-cd]pyrene	0.49		0.37		mg/Kg	₽ *		08/17/15 16:51	
sophorone	0.037		0.37		mg/Kg	₽		08/17/15 16:51	
2-Methylnaphthalene 2-Methylphenol	0.043 0.031		0.37	0.043	mg/Kg	☆	08/14/15 10:57 08/14/15 10:57	08/17/15 16:51	

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Client Sample ID: SB-25 2-4

Date Collected: 08/10/15 10:56 Date Received: 08/12/15 09:46

Lab Sample ID: 680-115544-10

Matrix: Solid Percent Solids: 87.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.049	U	0.37	0.049	mg/Kg	<u> </u>	08/14/15 10:57	08/17/15 16:51	1
Naphthalene	0.046	J	0.37	0.034	mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	1
2-Nitroaniline	0.051	U	1.9	0.051	mg/Kg	₽	08/14/15 10:57	08/17/15 16:51	1
3-Nitroaniline	0.052	U	1.9	0.052	mg/Kg	☼	08/14/15 10:57	08/17/15 16:51	1
4-Nitroaniline	0.056	U	1.9	0.056	mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	1
Nitrobenzene	0.030	U	0.37	0.030	mg/Kg		08/14/15 10:57	08/17/15 16:51	1
2-Nitrophenol	0.047	U	0.37	0.047	mg/Kg	☼	08/14/15 10:57	08/17/15 16:51	1
4-Nitrophenol	0.37	U	1.9	0.37	mg/Kg	☼	08/14/15 10:57	08/17/15 16:51	1
N-Nitrosodi-n-propylamine	0.036	U	0.37	0.036	mg/Kg	φ.	08/14/15 10:57	08/17/15 16:51	1
N-Nitrosodiphenylamine	0.037	U	0.37	0.037	mg/Kg	☼	08/14/15 10:57	08/17/15 16:51	1
Pentachlorophenol	0.37	U	1.9	0.37	mg/Kg	☼	08/14/15 10:57	08/17/15 16:51	1
Phenanthrene	0.21	J	0.37	0.031	mg/Kg	φ.	08/14/15 10:57	08/17/15 16:51	1
Phenol	0.039	U	0.37	0.039	mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	1
Pyrene	0.81		0.37	0.031	mg/Kg	☼	08/14/15 10:57	08/17/15 16:51	1
2,4,5-Trichlorophenol	0.040	U	0.37	0.040	mg/Kg	₩	08/14/15 10:57	08/17/15 16:51	1
2,4,6-Trichlorophenol	0.033	U	0.37	0.033	mg/Kg	₽	08/14/15 10:57	08/17/15 16:51	1
Surrogate	%Recovery	Ouglifier	l imits				Prenared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	61		41 - 116	08/14/15 10:57	08/17/15 16:51	
2-Fluorophenol (Surr)	47		39 - 114	08/14/15 10:57	08/17/15 16:51	1
Nitrobenzene-d5 (Surr)	48		37 - 115	08/14/15 10:57	08/17/15 16:51	1
Phenol-d5 (Surr)	48		38 - 122	08/14/15 10:57	08/17/15 16:51	1
Terphenyl-d14 (Surr)	59		46 - 126	08/14/15 10:57	08/17/15 16:51	1
2,4,6-Tribromophenol (Surr)	67		45 - 129	08/14/15 10:57	08/17/15 16:51	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.7		2.0	0.81	mg/Kg	<u> </u>	08/14/15 08:59	08/17/15 21:34	1
Barium	120	В	1.0	0.16	mg/Kg	☼	08/14/15 08:59	08/17/15 21:34	1
Beryllium	0.28	J	0.40	0.010	mg/Kg	☼	08/14/15 08:59	08/17/15 21:34	1
Cadmium	1.2		0.50	0.10	mg/Kg	₽	08/14/15 08:59	08/17/15 21:34	1
Chromium	10		1.0	0.21	mg/Kg	☼	08/14/15 08:59	08/17/15 21:34	1
Copper	20		2.5	0.17	mg/Kg	☼	08/14/15 08:59	08/17/15 21:34	1
Lead	1800		1.0	0.34	mg/Kg		08/14/15 08:59	08/17/15 21:34	1
Nickel	3.4	J	4.0	0.38	mg/Kg	☼	08/14/15 08:59	08/17/15 21:34	1
Selenium	0.98	U	2.5	0.98	mg/Kg	☼	08/14/15 08:59	08/17/15 21:34	1
Silver	0.14	J	1.0	0.060	mg/Kg		08/14/15 08:59	08/17/15 21:34	1
Vanadium	15		1.0	0.10	mg/Kg	☼	08/14/15 08:59	08/17/15 21:34	1
Zinc	470		2.0	0.70	mg/Kg	₽	08/14/15 08:59	08/17/15 21:34	1

Method: 7471B - Mercury (CVAA) Analyte Mercury	Result	Qualifier	RL 0.10	MDL 0.041	Unit mg/Kg	D <u>₩</u>	Prepared 08/16/15 14:39	Analyzed 08/18/15 09:33	Dil Fac
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.24	U	0.56	0.24	mg/Kg	<u></u>	08/20/15 07:30	08/20/15 11:53	1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Client Sample ID: SB-25 4-6

Date Collected: 08/10/15 11:11

Date Received: 08/12/15 09:46

TestAmerica Job ID: 680-115544-1

Lab Sample ID: 680-115544-11

Matrix: Solid
Percent Solids: 80.2

,	
_	

Method: 8270D - Semivolatile			•						
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.051		0.41		mg/Kg	<u>.</u>	08/14/15 10:57		
Acenaphthylene	0.045		0.41		mg/Kg	₩		08/17/15 17:17	•
Acetophenone	0.035		0.41		mg/Kg	<u></u>	08/14/15 10:57		
Anthracene	0.031		0.41	0.031	mg/Kg	*		08/17/15 17:17	
Atrazine	0.029		0.41		mg/Kg	*		08/17/15 17:17	
Benzaldehyde	0.072		0.41		mg/Kg			08/17/15 17:17	
Benzo[a]anthracene	0.033		0.41		mg/Kg	₩		08/17/15 17:17	
Benzo[a]pyrene	0.064	U	0.41	0.064	mg/Kg	☆	08/14/15 10:57	08/17/15 17:17	
Benzo[b]fluoranthene	0.047	U	0.41		mg/Kg	☆	08/14/15 10:57	08/17/15 17:17	
Benzo[g,h,i]perylene	0.027	U	0.41	0.027	mg/Kg	₩	08/14/15 10:57	08/17/15 17:17	
Benzo[k]fluoranthene	0.081	U	0.41	0.081	mg/Kg	₩	08/14/15 10:57	08/17/15 17:17	
I,1'-Biphenyl	2.1	U	2.1	2.1	mg/Kg	☆	08/14/15 10:57	08/17/15 17:17	
Bis(2-chloroethoxy)methane	0.048	U	0.41	0.048	mg/Kg	₽	08/14/15 10:57	08/17/15 17:17	
Bis(2-chloroethyl)ether	0.056	U F1 *	0.41	0.056	mg/Kg	₩	08/14/15 10:57	08/17/15 17:17	
ois (2-chloroisopropyl) ether	0.037	U	0.41	0.037	mg/Kg	₩	08/14/15 10:57	08/17/15 17:17	
Bis(2-ethylhexyl) phthalate	0.036	U	0.41	0.036	mg/Kg	₩	08/14/15 10:57	08/17/15 17:17	
I-Bromophenyl phenyl ether	0.045	U	0.41	0.045	mg/Kg	☆	08/14/15 10:57	08/17/15 17:17	
Butyl benzyl phthalate	0.032	U	0.41	0.032	mg/Kg	☼	08/14/15 10:57	08/17/15 17:17	
Caprolactam	0.082	Ü	0.41	0.082	mg/Kg	.	08/14/15 10:57	08/17/15 17:17	
Carbazole	0.037	U	0.41	0.037	mg/Kg	₩	08/14/15 10:57	08/17/15 17:17	
l-Chloroaniline	0.064	U	0.82	0.064	mg/Kg	☆	08/14/15 10:57	08/17/15 17:17	
-Chloro-3-methylphenol	0.043	U	0.41	0.043	mg/Kg	. ф	08/14/15 10:57	08/17/15 17:17	
-Chloronaphthalene	0.043	U	0.41	0.043	mg/Kg	☼	08/14/15 10:57	08/17/15 17:17	
2-Chlorophenol	0.050	U	0.41	0.050	mg/Kg	₩	08/14/15 10:57	08/17/15 17:17	
-Chlorophenyl phenyl ether	0.055	U	0.41		mg/Kg		08/14/15 10:57	08/17/15 17:17	
Chrysene	0.026		0.41		mg/Kg	☆	08/14/15 10:57	08/17/15 17:17	
Dibenz(a,h)anthracene	0.048		0.41		mg/Kg	≎		08/17/15 17:17	
Dibenzofuran	0.041		0.41		mg/Kg	 ☆		08/17/15 17:17	
3,3'-Dichlorobenzidine	0.035		0.82		mg/Kg	☼	08/14/15 10:57		
2,4-Dichlorophenol	0.043		0.41		mg/Kg	₩		08/17/15 17:17	
Diethyl phthalate	0.046		0.41		mg/Kg	 \$		08/17/15 17:17	
2,4-Dimethylphenol	0.055		0.41		mg/Kg	₩		08/17/15 17:17	
Dimethyl phthalate	0.042		0.41		mg/Kg	₩		08/17/15 17:17	
Di-n-butyl phthalate	0.037		0.41		mg/Kg			08/17/15 17:17	
I,6-Dinitro-2-methylphenol	0.037		2.1		mg/Kg	☆		08/17/15 17:17	
2,4-Dinitrophenol	1.0		2.1		mg/Kg	☆		08/17/15 17:17	
			0.41		mg/Kg	· · · · · · · · · · · · · · · · · · ·		08/17/15 17:17	
2,4-Dinitrotoluene	0.061					₽			
2,6-Dinitrotoluene	0.052		0.41		mg/Kg			08/17/15 17:17 08/17/15 17:17	
Di-n-octyl phthalate	0.036		0.41		mg/Kg	¥.			
Fluoranthene	0.040		0.41		mg/Kg	* *		08/17/15 17:17	
luorene	0.045		0.41		mg/Kg	₩		08/17/15 17:17	
lexachlorobenzene	0.048		0.41		mg/Kg			08/17/15 17:17	
lexachlorobutadiene	0.045		0.41		mg/Kg	₩		08/17/15 17:17	
lexachlorocyclopentadiene	0.051		0.41		mg/Kg	☆		08/17/15 17:17	
lexachloroethane	0.035		0.41		mg/Kg	<u>.</u>		08/17/15 17:17	
ndeno[1,2,3-cd]pyrene	0.035		0.41		mg/Kg	₽		08/17/15 17:17	
sophorone	0.041		0.41		mg/Kg	*		08/17/15 17:17	
2-Methylnaphthalene	0.047	U	0.41	0.047	mg/Kg	₩	08/14/15 10:57	08/17/15 17:17	

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

Cyanide, Total

Oliant Carrella ID: OD OF 4

Client Sample ID: SB-25 4-6

Lab Sample ID: 680-115544-11

Date Collected: 08/10/15 11:11

Matrix: Solid

Date Received: 08/12/15 09:46

Percent Solids: 80.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.053	U	0.41	0.053	mg/Kg	₩	08/14/15 10:57	08/17/15 17:17	1
Naphthalene	0.037	U	0.41	0.037	mg/Kg	☼	08/14/15 10:57	08/17/15 17:17	1
2-Nitroaniline	0.056	U	2.1	0.056	mg/Kg	₽	08/14/15 10:57	08/17/15 17:17	1
3-Nitroaniline	0.057	U	2.1	0.057	mg/Kg	☼	08/14/15 10:57	08/17/15 17:17	1
4-Nitroaniline	0.061	U	2.1	0.061	mg/Kg	☼	08/14/15 10:57	08/17/15 17:17	1
Nitrobenzene	0.032	U	0.41	0.032	mg/Kg		08/14/15 10:57	08/17/15 17:17	1
2-Nitrophenol	0.051	U	0.41	0.051	mg/Kg	☼	08/14/15 10:57	08/17/15 17:17	1
4-Nitrophenol	0.41	U	2.1	0.41	mg/Kg	☼	08/14/15 10:57	08/17/15 17:17	1
N-Nitrosodi-n-propylamine	0.040	U	0.41	0.040	mg/Kg	φ.	08/14/15 10:57	08/17/15 17:17	1
N-Nitrosodiphenylamine	0.041	U	0.41	0.041	mg/Kg	☼	08/14/15 10:57	08/17/15 17:17	1
Pentachlorophenol	0.41	U	2.1	0.41	mg/Kg	☼	08/14/15 10:57	08/17/15 17:17	1
Phenanthrene	0.033	U	0.41	0.033	mg/Kg	φ.	08/14/15 10:57	08/17/15 17:17	1
Phenol	0.042	U	0.41	0.042	mg/Kg	☼	08/14/15 10:57	08/17/15 17:17	1
Pyrene	0.033	U	0.41	0.033	mg/Kg	☼	08/14/15 10:57	08/17/15 17:17	1
2,4,5-Trichlorophenol	0.043	U	0.41	0.043	mg/Kg	₽	08/14/15 10:57	08/17/15 17:17	1
2,4,6-Trichlorophenol	0.036	U	0.41	0.036	mg/Kg	☼	08/14/15 10:57	08/17/15 17:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	85		41 - 116				08/14/15 10:57	08/17/15 17:17	1
2-Fluorophenol (Surr)	64		39 - 114				08/14/15 10:57	08/17/15 17:17	1
Nitrobanzana d5 (Surr)	60		27 115				09/14/15 10:57	09/17/15 17:17	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	85	41 - 116	08/14/15 10:57	08/17/15 17:17	1
2-Fluorophenol (Surr)	64	39 - 114	08/14/15 10:57	08/17/15 17:17	1
Nitrobenzene-d5 (Surr)	69	37 - 115	08/14/15 10:57	08/17/15 17:17	1
Phenol-d5 (Surr)	67	38 - 122	08/14/15 10:57	08/17/15 17:17	1
Terphenyl-d14 (Surr)	78	46 - 126	08/14/15 10:57	08/17/15 17:17	1
2,4,6-Tribromophenol (Surr)	96	45 - 129	08/14/15 10:57	08/17/15 17:17	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.5		2.2	0.88	mg/Kg	<u> </u>	08/14/15 08:59	08/17/15 20:36	1
Barium	6.4	В	1.1	0.18	mg/Kg	₩	08/14/15 08:59	08/17/15 20:36	1
Beryllium	0.069	J	0.44	0.011	mg/Kg	☆	08/14/15 08:59	08/17/15 20:36	1
Cadmium	0.11	U	0.55	0.11	mg/Kg	₩	08/14/15 08:59	08/17/15 20:36	1
Chromium	8.6		1.1	0.23	mg/Kg	☆	08/14/15 08:59	08/17/15 20:36	1
Copper	1.6	J	2.8	0.19	mg/Kg	☆	08/14/15 08:59	08/17/15 20:36	1
Lead	5.0		1.1	0.38	mg/Kg	₩.	08/14/15 08:59	08/17/15 20:36	1
Nickel	0.90	J	4.4	0.42	mg/Kg	☆	08/14/15 08:59	08/17/15 20:36	1
Selenium	1.1	U	2.8	1.1	mg/Kg	☼	08/14/15 08:59	08/17/15 20:36	1
Silver	0.066	U	1.1	0.066	mg/Kg	₩.	08/14/15 08:59	08/17/15 20:36	1
Vanadium	12		1.1	0.11	mg/Kg	☼	08/14/15 08:59	08/17/15 20:36	1
Zinc	5.3		2.2	0.77	mg/Kg	₩	08/14/15 08:59	08/17/15 20:36	1

Method: 7471B - Mercury (CVAA) Analyte Mercury	Result	Qualifier J	RL 0.022	MDL 0.0086		D 	Prepared 08/16/15 14:39	Analyzed 08/17/15 20:29	Dil Fac	
General Chemistry	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	

0.61

0.25 mg/Kg

0.25 U

TestAmerica Savannah

© 08/20/15 07:30 08/20/15 11:56

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Date Collected: 08/10/15 11:17

Date Received: 08/12/15 09:46

Client Sample ID: SB-25 8-10

TestAmerica Job ID: 680-115544-1

Lab Sample ID: 680-115544-12

Percent Solids: 85.1

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.48	U –	3.9	0.48	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
Acenaphthylene	0.42	U	3.9	0.42	mg/Kg	≎	08/14/15 10:57	08/17/15 17:42	10
Acetophenone	0.33	U	3.9	0.33	mg/Kg	≎	08/14/15 10:57	08/17/15 17:42	10
Anthracene	0.29	U	3.9	0.29	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
Atrazine	0.27	U	3.9	0.27	mg/Kg	≎	08/14/15 10:57	08/17/15 17:42	10
Benzaldehyde	0.68	U	3.9	0.68	mg/Kg	☼	08/14/15 10:57	08/17/15 17:42	10
Benzo[a]anthracene	0.32	U	3.9	0.32	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
Benzo[a]pyrene	0.61	U	3.9	0.61	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
Benzo[b]fluoranthene	0.45	U	3.9	0.45	mg/Kg	≎	08/14/15 10:57	08/17/15 17:42	10
Benzo[g,h,i]perylene	0.26	U	3.9	0.26	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
Benzo[k]fluoranthene	0.76	U	3.9	0.76	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
1,1'-Biphenyl	20	U	20	20	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
Bis(2-chloroethoxy)methane	0.46	U	3.9	0.46	mg/Kg	₽	08/14/15 10:57	08/17/15 17:42	10
Bis(2-chloroethyl)ether	0.53	U *	3.9	0.53	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
bis (2-chloroisopropyl) ether	0.35	U	3.9	0.35	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
Bis(2-ethylhexyl) phthalate	0.34	U	3.9	0.34	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
4-Bromophenyl phenyl ether	0.42	U	3.9	0.42	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
Butyl benzyl phthalate	0.31	U	3.9	0.31	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
Caprolactam	0.78	U	3.9	0.78	mg/Kg	≎	08/14/15 10:57	08/17/15 17:42	10
Carbazole	0.35	U	3.9	0.35	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
4-Chloroaniline	0.61	U	7.8	0.61	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
4-Chloro-3-methylphenol	0.41	U	3.9	0.41	mg/Kg	☼	08/14/15 10:57	08/17/15 17:42	10
2-Chloronaphthalene	0.41	U	3.9	0.41	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
2-Chlorophenol	0.47	U	3.9	0.47	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
4-Chlorophenyl phenyl ether	0.52	U	3.9	0.52	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
Chrysene	0.25	U	3.9	0.25	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
Dibenz(a,h)anthracene	0.46	U	3.9	0.46	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
Dibenzofuran	0.39	U	3.9	0.39	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
3,3'-Dichlorobenzidine	0.33	U	7.8	0.33	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
2,4-Dichlorophenol	0.41	U	3.9	0.41	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
Diethyl phthalate	0.43	U	3.9	0.43	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
2,4-Dimethylphenol	0.52	U	3.9	0.52	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
Dimethyl phthalate	0.40	U	3.9	0.40	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
Di-n-butyl phthalate	0.35	U	3.9	0.35	mg/Kg	\$	08/14/15 10:57	08/17/15 17:42	10
4,6-Dinitro-2-methylphenol	2.0	U	20	2.0	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
2,4-Dinitrophenol	9.8	U	20	9.8	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
2,4-Dinitrotoluene	0.58	U	3.9	0.58	mg/Kg		08/14/15 10:57	08/17/15 17:42	10
2,6-Dinitrotoluene	0.49	U	3.9	0.49	mg/Kg	☼	08/14/15 10:57	08/17/15 17:42	10
Di-n-octyl phthalate	0.34	U	3.9	0.34	mg/Kg	☼	08/14/15 10:57	08/17/15 17:42	10
Fluoranthene	0.38	U	3.9	0.38	mg/Kg		08/14/15 10:57	08/17/15 17:42	10
Fluorene	0.42	U	3.9	0.42	mg/Kg	☼	08/14/15 10:57	08/17/15 17:42	10
Hexachlorobenzene	0.46	U	3.9	0.46	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
Hexachlorobutadiene	0.42	U	3.9	0.42	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
Hexachlorocyclopentadiene	0.48	U	3.9		mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
Hexachloroethane	0.33	U	3.9		mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
Indeno[1,2,3-cd]pyrene	0.33	U	3.9		mg/Kg		08/14/15 10:57	08/17/15 17:42	10
Isophorone	0.39		3.9		mg/Kg	₩		08/17/15 17:42	10
2-Methylnaphthalene	0.45	U	3.9		mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
2-Methylphenol	0.32		3.9		mg/Kg			08/17/15 17:42	10

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Silver

Zinc

Vanadium

Client Sample ID: SB-25 8-10

Date Collected: 08/10/15 11:17 Date Received: 08/12/15 09:46 Lab Sample ID: 680-115544-12

Matrix: Solid

Percent Solids: 85.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.51	U	3.9	0.51	mg/Kg	☼	08/14/15 10:57	08/17/15 17:42	10
Naphthalene	0.35	U	3.9	0.35	mg/Kg	☼	08/14/15 10:57	08/17/15 17:42	10
2-Nitroaniline	0.53	U	20	0.53	mg/Kg	₽	08/14/15 10:57	08/17/15 17:42	10
3-Nitroaniline	0.54	U	20	0.54	mg/Kg	☼	08/14/15 10:57	08/17/15 17:42	10
4-Nitroaniline	0.58	U	20	0.58	mg/Kg	☼	08/14/15 10:57	08/17/15 17:42	10
Nitrobenzene	0.31	U	3.9	0.31	mg/Kg		08/14/15 10:57	08/17/15 17:42	10
2-Nitrophenol	0.48	U	3.9	0.48	mg/Kg	☼	08/14/15 10:57	08/17/15 17:42	10
4-Nitrophenol	3.9	U	20	3.9	mg/Kg	☼	08/14/15 10:57	08/17/15 17:42	10
N-Nitrosodi-n-propylamine	0.38	U	3.9	0.38	mg/Kg	₽	08/14/15 10:57	08/17/15 17:42	10
N-Nitrosodiphenylamine	0.39	U	3.9	0.39	mg/Kg	☼	08/14/15 10:57	08/17/15 17:42	10
Pentachlorophenol	3.9	U	20	3.9	mg/Kg	☼	08/14/15 10:57	08/17/15 17:42	10
Phenanthrene	0.32	U	3.9	0.32	mg/Kg	₽	08/14/15 10:57	08/17/15 17:42	10
Phenol	0.40	U	3.9	0.40	mg/Kg	☼	08/14/15 10:57	08/17/15 17:42	10
Pyrene	0.32	U	3.9	0.32	mg/Kg	☼	08/14/15 10:57	08/17/15 17:42	10
2,4,5-Trichlorophenol	0.41	U	3.9	0.41	mg/Kg		08/14/15 10:57	08/17/15 17:42	10
2,4,6-Trichlorophenol	0.34	U	3.9	0.34	mg/Kg	₩	08/14/15 10:57	08/17/15 17:42	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	0	D	41 - 116				08/14/15 10:57	08/17/15 17:42	10
2-Fluorophenol (Surr)	0	D	39 - 114				08/14/15 10:57	08/17/15 17:42	10
Nitrobenzene-d5 (Surr)	0	D	37 - 115				08/14/15 10:57	08/17/15 17:42	10
Phenol-d5 (Surr)	0	D	38 - 122				08/14/15 10:57	08/17/15 17:42	10
Terphenyl-d14 (Surr)	0	D	46 - 126				08/14/15 10:57	08/17/15 17:42	10
2,4,6-Tribromophenol (Surr)	0	D	45 - 129				08/14/15 10:57	08/17/15 17:42	10
Method: 6010C - Metals (ICP)									
					1114	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	RL	MDL	Unit		opa.oa		
• • • • • • • • • • • • • • • • • • • •	Result 2.3	Qualifier			mg/Kg	— ¤		08/17/15 20:58	1
Analyte		Qualifier B		0.84			08/14/15 08:59		1
Analyte Arsenic	2.3	В	2.1	0.84 0.17	mg/Kg	<u> </u>	08/14/15 08:59 08/14/15 08:59	08/17/15 20:58	
Analyte Arsenic Barium	2.3 59	B J	2.1	0.84 0.17 0.010	mg/Kg mg/Kg	— ÿ	08/14/15 08:59 08/14/15 08:59 08/14/15 08:59	08/17/15 20:58 08/17/15 20:58	1
Analyte Arsenic Barium Beryllium	2.3 59 0.098	B J	2.1 1.0 0.42	0.84 0.17 0.010 0.10	mg/Kg mg/Kg mg/Kg	- \$ \$	08/14/15 08:59 08/14/15 08:59 08/14/15 08:59 08/14/15 08:59	08/17/15 20:58 08/17/15 20:58 08/17/15 20:58	1
Analyte Arsenic Barium Beryllium Cadmium Chromium	2.3 59 0.098 0.10	B J	2.1 1.0 0.42 0.52	0.84 0.17 0.010 0.10 0.22	mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$	08/14/15 08:59 08/14/15 08:59 08/14/15 08:59 08/14/15 08:59 08/14/15 08:59	08/17/15 20:58 08/17/15 20:58 08/17/15 20:58 08/17/15 20:58	1 1
Analyte Arsenic Barium Beryllium Cadmium	2.3 59 0.098 0.10 9.5	B J	2.1 1.0 0.42 0.52 1.0	0.84 0.17 0.010 0.10 0.22 0.18	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	*	08/14/15 08:59 08/14/15 08:59 08/14/15 08:59 08/14/15 08:59 08/14/15 08:59 08/14/15 08:59	08/17/15 20:58 08/17/15 20:58 08/17/15 20:58 08/17/15 20:58 08/17/15 20:58	1 1 1
Analyte Arsenic Barium Beryllium Cadmium Chromium Copper	2.3 59 0.098 0.10 9.5 3.6	B J U	2.1 1.0 0.42 0.52 1.0 2.6	0.84 0.17 0.010 0.10 0.22 0.18 0.36	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	08/14/15 08:59 08/14/15 08:59 08/14/15 08:59 08/14/15 08:59 08/14/15 08:59 08/14/15 08:59 08/14/15 08:59	08/17/15 20:58 08/17/15 20:58 08/17/15 20:58 08/17/15 20:58 08/17/15 20:58 08/17/15 20:58	1 1 1 1

Method: 7471B - Mercury (CVAA) Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.029		0.020	0.0081	mg/Kg		08/16/15 14:39	08/17/15 20:32	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.24	U	0.56	0.24	mg/Kg	<u> </u>	08/20/15 07:30	08/20/15 11:59	1

1.0

1.0

2.1

0.063 U

16

86

0.063 mg/Kg

0.10 mg/Kg

0.73 mg/Kg

© 08/14/15 08:59 08/17/15 20:58

© 08/14/15 08:59 08/17/15 20:58

☼ 08/14/15 08:59 08/17/15 20:58

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Date Collected: 08/10/15 11:21

Date Received: 08/12/15 09:46

Isophorone

2-Methylphenol

2-Methylnaphthalene

Client Sample ID: SB-25 13-15

TestAmerica Job ID: 680-115544-1

Lab Sample ID: 680-115544-13

Matrix: Solid
Percent Solids: 86.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.047		0.38	0.047	mg/Kg	<u> </u>	08/14/15 10:57	08/17/15 18:08	1
Acenaphthylene	0.041	U	0.38	0.041	mg/Kg	₩	08/14/15 10:57	08/17/15 18:08	1
Acetophenone	0.032	U	0.38	0.032	mg/Kg	₩	08/14/15 10:57	08/17/15 18:08	1
Anthracene	0.040	J	0.38	0.029	mg/Kg	₽	08/14/15 10:57	08/17/15 18:08	1
Atrazine	0.026	U	0.38	0.026	mg/Kg	₩	08/14/15 10:57	08/17/15 18:08	1
Benzaldehyde	0.067	U	0.38	0.067	mg/Kg	☼	08/14/15 10:57	08/17/15 18:08	1
Benzo[a]anthracene	0.14	J	0.38	0.031	mg/Kg	₩	08/14/15 10:57	08/17/15 18:08	1
Benzo[a]pyrene	0.12	J	0.38	0.060	mg/Kg	≎	08/14/15 10:57	08/17/15 18:08	1
Benzo[b]fluoranthene	0.16	J	0.38	0.044	mg/Kg	☼	08/14/15 10:57	08/17/15 18:08	1
Benzo[g,h,i]perylene	0.094	J	0.38	0.025	mg/Kg	☆	08/14/15 10:57	08/17/15 18:08	1
Benzo[k]fluoranthene	0.075	U	0.38	0.075	mg/Kg	₩	08/14/15 10:57	08/17/15 18:08	1
1,1'-Biphenyl	2.0	U	2.0	2.0	mg/Kg	≎	08/14/15 10:57	08/17/15 18:08	1
Bis(2-chloroethoxy)methane	0.045	U	0.38	0.045	mg/Kg	₽	08/14/15 10:57	08/17/15 18:08	1
Bis(2-chloroethyl)ether	0.052	U *	0.38	0.052	mg/Kg	☼	08/14/15 10:57	08/17/15 18:08	1
bis (2-chloroisopropyl) ether	0.034	U	0.38	0.034	mg/Kg	☼	08/14/15 10:57	08/17/15 18:08	1
Bis(2-ethylhexyl) phthalate	0.033	U	0.38	0.033	mg/Kg	₩	08/14/15 10:57	08/17/15 18:08	1
4-Bromophenyl phenyl ether	0.041	U	0.38	0.041	mg/Kg	₩	08/14/15 10:57	08/17/15 18:08	1
Butyl benzyl phthalate	0.030	U	0.38	0.030	mg/Kg	₩	08/14/15 10:57	08/17/15 18:08	1
Caprolactam	0.076	Ü	0.38	0.076	mg/Kg		08/14/15 10:57	08/17/15 18:08	1
Carbazole	0.034	U	0.38	0.034	mg/Kg	₩	08/14/15 10:57	08/17/15 18:08	1
4-Chloroaniline	0.060	U	0.76	0.060	mg/Kg	≎	08/14/15 10:57	08/17/15 18:08	1
4-Chloro-3-methylphenol	0.040	Ü	0.38	0.040	mg/Kg		08/14/15 10:57	08/17/15 18:08	1
2-Chloronaphthalene	0.040	U	0.38	0.040	mg/Kg	₩	08/14/15 10:57	08/17/15 18:08	1
2-Chlorophenol	0.046	U	0.38		mg/Kg	≎	08/14/15 10:57	08/17/15 18:08	1
4-Chlorophenyl phenyl ether	0.050	U	0.38	0.050	mg/Kg		08/14/15 10:57	08/17/15 18:08	1
Chrysene	0.11	J	0.38	0.024	mg/Kg	≎	08/14/15 10:57	08/17/15 18:08	1
Dibenz(a,h)anthracene	0.045	U	0.38	0.045	mg/Kg	≎	08/14/15 10:57	08/17/15 18:08	1
Dibenzofuran	0.038	U	0.38		mg/Kg		08/14/15 10:57	08/17/15 18:08	1
3,3'-Dichlorobenzidine	0.032	U	0.76		mg/Kg	₩	08/14/15 10:57	08/17/15 18:08	1
2,4-Dichlorophenol	0.040	U	0.38	0.040	mg/Kg	≎	08/14/15 10:57	08/17/15 18:08	1
Diethyl phthalate	0.042	U	0.38		mg/Kg		08/14/15 10:57	08/17/15 18:08	1
2,4-Dimethylphenol	0.050	U	0.38		mg/Kg	₩	08/14/15 10:57	08/17/15 18:08	1
Dimethyl phthalate	0.039	U	0.38		mg/Kg	₩	08/14/15 10:57	08/17/15 18:08	1
Di-n-butyl phthalate	0.034	U	0.38		mg/Kg		08/14/15 10:57	08/17/15 18:08	1
4,6-Dinitro-2-methylphenol	0.20		2.0	0.20		₽	08/14/15 10:57	08/17/15 18:08	1
2,4-Dinitrophenol	0.95	U	2.0	0.95	mg/Kg	₩	08/14/15 10:57	08/17/15 18:08	1
2,4-Dinitrotoluene	0.056	U	0.38		mg/Kg	 	08/14/15 10:57	08/17/15 18:08	1
2,6-Dinitrotoluene	0.048		0.38		mg/Kg	₩	08/14/15 10:57	08/17/15 18:08	1
Di-n-octyl phthalate	0.033	U	0.38		mg/Kg	₩		08/17/15 18:08	1
Fluoranthene	0.27	J	0.38		mg/Kg		08/14/15 10:57	08/17/15 18:08	1
Fluorene	0.041		0.38		mg/Kg	₩		08/17/15 18:08	1
Hexachlorobenzene	0.045		0.38		mg/Kg	₽		08/17/15 18:08	1
Hexachlorobutadiene	0.041		0.38		mg/Kg			08/17/15 18:08	1
Hexachlorocyclopentadiene	0.047		0.38		mg/Kg	☼		08/17/15 18:08	1
Hexachloroethane	0.032		0.38		mg/Kg	☆		08/17/15 18:08	1
Indeno[1,2,3-cd]pyrene	0.077		0.38		mg/Kg			08/17/15 18:08	1
lasabassas	0.077	-	0.00	0.002	J -3	**		00/17/15 10:00	

TestAmerica Savannah

9/17/2015

© 08/14/15 10:57 08/17/15 18:08

© 08/14/15 10:57 08/17/15 18:08

© 08/14/15 10:57 08/17/15 18:08

0.38

0.38

0.38

0.038 mg/Kg

0.044 mg/Kg

0.031 mg/Kg

0.038 U

0.045 J

0.031 U

3

ن

8

10

11

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

General Chemistry

Analyte

Cyanide, Total

Client Sample ID: SB-25 13-15

Lab Sample ID: 680-115544-13 Date Collected: 08/10/15 11:21 **Matrix: Solid**

Date Received: 08/12/15 09:46 Percent Solids: 86.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
3 & 4 Methylphenol	0.049	U	0.38	0.049	mg/Kg	<u></u>	08/14/15 10:57	08/17/15 18:08	
Naphthalene	0.034	U	0.38	0.034	mg/Kg	☼	08/14/15 10:57	08/17/15 18:08	
2-Nitroaniline	0.052	U	2.0	0.052	mg/Kg		08/14/15 10:57	08/17/15 18:08	
3-Nitroaniline	0.053	U	2.0	0.053	mg/Kg	☼	08/14/15 10:57	08/17/15 18:08	
4-Nitroaniline	0.056	U	2.0	0.056	mg/Kg	☼	08/14/15 10:57	08/17/15 18:08	
Nitrobenzene	0.030	U	0.38	0.030	mg/Kg	₩.	08/14/15 10:57	08/17/15 18:08	
2-Nitrophenol	0.047	U	0.38		mg/Kg	☼	08/14/15 10:57	08/17/15 18:08	
4-Nitrophenol	0.38	U	2.0		mg/Kg	₩	08/14/15 10:57	08/17/15 18:08	
N-Nitrosodi-n-propylamine	0.037	U	0.38		mg/Kg		08/14/15 10:57	08/17/15 18:08	
N-Nitrosodiphenylamine	0.038	U	0.38			☼	08/14/15 10:57	08/17/15 18:08	
Pentachlorophenol	0.38	U	2.0		mg/Kg	☼	08/14/15 10:57	08/17/15 18:08	
Phenanthrene	0.17		0.38	0.031	mg/Kg	· · · · · 🌣 ·	08/14/15 10:57	08/17/15 18:08	
Phenol	0.039		0.38	0.039	mg/Kg	₽		08/17/15 18:08	
Pyrene	0.20		0.38	0.031	mg/Kg	₽		08/17/15 18:08	
2,4,5-Trichlorophenol	0.040		0.38		mg/Kg		08/14/15 10:57	08/17/15 18:08	
2,4,6-Trichlorophenol	0.033	U	0.38	0.033	mg/Kg	₩	08/14/15 10:57	08/17/15 18:08	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl			41 - 116				08/14/15 10:57		
2-Fluorophenol (Surr)	58		39 - 114				08/14/15 10:57	08/17/15 18:08	
Nitrobenzene-d5 (Surr)	62		37 - 115				08/14/15 10:57	08/17/15 18:08	
Phenol-d5 (Surr)	62		38 - 122				08/14/15 10:57	08/17/15 18:08	
Terphenyl-d14 (Surr)	75		46 - 126				08/14/15 10:57	08/17/15 18:08	
2,4,6-Tribromophenol (Surr)	87		45 - 129				08/14/15 10:57	08/17/15 18:08	
Method: 6010C - Metals (IC	P)								
Analyte `		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	3.9		2.1	0.85	mg/Kg	<u> </u>	08/14/15 08:59	08/17/15 21:03	
Barium	75	В	1.1	0.17	mg/Kg	☼	08/14/15 08:59	08/17/15 21:03	
Beryllium	0.43		0.43	0.011	mg/Kg	₩	08/14/15 08:59	08/17/15 21:03	
Cadmium	0.11	U	0.53	0.11	mg/Kg	₩	08/14/15 08:59	08/17/15 21:03	
Chromium	11		1.1	0.22	mg/Kg	₩	08/14/15 08:59	08/17/15 21:03	
Copper	10		2.7	0.18	mg/Kg	₩	08/14/15 08:59	08/17/15 21:03	
Lead	64		1.1	0.36	mg/Kg	☼	08/14/15 08:59	08/17/15 21:03	
Nickel	4.8		4.3	0.41	mg/Kg	₩	08/14/15 08:59	08/17/15 21:03	
Selenium	1.0	U	2.7	1.0	mg/Kg	☼	08/14/15 08:59	08/17/15 21:03	
Silver	0.064	U	1.1	0.064	mg/Kg		08/14/15 08:59	08/17/15 21:03	
Vanadium	23		1.1	0.11	mg/Kg	☼	08/14/15 08:59	08/17/15 21:03	
Zinc	50		2.1	0.75	mg/Kg	₽	08/14/15 08:59	08/17/15 21:03	
Method: 7471B - Mercury (
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.19		0.021		mg/Kg	<u> </u>		08/17/15 20:35	

Analyzed

Prepared

□ 08/20/15 07:30 □ 08/20/15 12:01

RL

0.58

MDL Unit

0.24 mg/Kg

Result Qualifier

0.24 U

Dil Fac

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Client Sample ID: GB-25 2-4

Date Collected: 08/10/15 11:39

Date Received: 08/12/15 09:46

TestAmerica Job ID: 680-115544-1

Lab Sample ID: 680-115544-14

Matrix: Solid Percent Solids: 89.9

Acetaphthylene	Method: 8270D - Semivolati Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetophenone	Acenaphthene	0.046	U	0.37	0.046	mg/Kg	<u> </u>	08/14/15 10:57	08/17/15 18:34	1
Anthracene	Acenaphthylene	0.040	U	0.37	0.040	mg/Kg	₩	08/14/15 10:57	08/17/15 18:34	1
Artzazine	Acetophenone	0.031	U	0.37	0.031	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
Benzadelhyde	Anthracene	0.028	U	0.37	0.028	mg/Kg	\$	08/14/15 10:57	08/17/15 18:34	1
Benzo(a)printene	Atrazine	0.026	U	0.37	0.026	mg/Kg	₩	08/14/15 10:57	08/17/15 18:34	1
Benzo[pi]nuoranthene	Benzaldehyde	0.065	U	0.37	0.065	mg/Kg	₩	08/14/15 10:57	08/17/15 18:34	1
Benzo[pi]tuoranthene	Benzo[a]anthracene	0.030	U	0.37	0.030	mg/Kg	≎	08/14/15 10:57	08/17/15 18:34	1
Benzo(R)fluoranthene	Benzo[a]pyrene	0.058	U	0.37	0.058	mg/Kg	₩	08/14/15 10:57	08/17/15 18:34	1
Benzo(R) Tuoranthene	Benzo[b]fluoranthene	0.042	U	0.37	0.042	mg/Kg	≎	08/14/15 10:57	08/17/15 18:34	1
1.1-Biphenyl	Benzo[g,h,i]perylene	0.024	U	0.37	0.024	mg/Kg	≎	08/14/15 10:57	08/17/15 18:34	1
Bist2-chloroethoxy/methane	Benzo[k]fluoranthene	0.072	U	0.37	0.072	mg/Kg	≎	08/14/15 10:57	08/17/15 18:34	1
Bist2-chloroethylylether 0.050 U	1,1'-Biphenyl	1.9	U	1.9	1.9	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
bis (2-chloroisopropyl) ether 0.033 U 0.37 0.033 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.032 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.040 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.040 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.029 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.033 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.033 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.033 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.038 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.039 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.039 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.039 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.039 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.045 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.045 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.045 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.045 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.045 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.045 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.045 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.034 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.034 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.034 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.034 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.034 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.034 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.034 mg/kg 0.08/14/15 10:57 0.08/17/15 18:34 1.032 U 0.37 0.034 mg/kg 0.08/1	Bis(2-chloroethoxy)methane	0.043	U	0.37	0.043	mg/Kg	≎	08/14/15 10:57	08/17/15 18:34	1
Bis(2-ethylhexyl) phthalate	Bis(2-chloroethyl)ether	0.050	U *	0.37	0.050	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
A-Bromophenyl phenyl ether 0.040 U	bis (2-chloroisopropyl) ether	0.033	U	0.37	0.033	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
Butyl benzyl phthalate	Bis(2-ethylhexyl) phthalate	0.032	U	0.37	0.032	mg/Kg	₽	08/14/15 10:57	08/17/15 18:34	1
Carpolactam 0.073 U 0.37 0.073 mg/kg 0 08/14/15 10:57 08/17/15 18:34 1 Carbazole 0.033 U 0.37 0.033 mg/kg 08/14/15 10:57 08/17/15 18:34 1 4-Chloroaniline 0.058 U 0.37 0.039 mg/kg 08/14/15 10:57 08/17/15 18:34 1 4-Chloro-3-methylphenol 0.039 U 0.37 0.039 mg/kg 08/14/15 10:57 08/17/15 18:34 1 2-Chlorophenol 0.045 U 0.37 0.045 mg/kg 0.044/15 10:57 08/17/15 18:34 1 4-Chlorophenol 0.045 U 0.37 0.049 mg/kg 0.041/15 10:57 08/17/15 18:34 1 4-Chlorophenol 0.049 U 0.37 0.049 mg/kg 0.041/15 10:57 08/17/15 18:34 1 Dibenz/chran 0.023 U 0.37 0.043 mg/kg 0.041/15 10:57 08/17/15 18:34 1 Dibenz/chran 0.031 <th< td=""><td>4-Bromophenyl phenyl ether</td><td>0.040</td><td>U</td><td>0.37</td><td>0.040</td><td>mg/Kg</td><td>₩</td><td>08/14/15 10:57</td><td>08/17/15 18:34</td><td>1</td></th<>	4-Bromophenyl phenyl ether	0.040	U	0.37	0.040	mg/Kg	₩	08/14/15 10:57	08/17/15 18:34	1
Carbazole 0.033 U 0.37 0.033 mg/kg © 08/14/15 10:57 08/17/15 18:34 1 4-Chloro-a-methylphenol 0.058 U 0.73 0.058 mg/kg © 08/14/15 10:57 08/17/15 18:34 1 4-Chloro-3-methylphenol 0.039 U 0.37 0.039 mg/kg © 08/14/15 10:57 08/17/15 18:34 1 2-Chloropaphthalene 0.039 U 0.37 0.039 mg/kg © 08/14/15 10:57 08/17/15 18:34 1 2-Chlorophenol 0.045 U 0.37 0.049 mg/kg 0 08/14/15 10:57 08/17/15 18:34 1 4-Chlorophenol 0.049 U 0.37 0.049 mg/kg 0 08/14/15 10:57 08/17/15 18:34 1 Chropophenol 0.023 U 0.37 0.023 mg/kg 0 08/14/15 10:57 08/17/15 18:34 1 Dibenz(a,h)anthracene 0.043 U 0.37 0.043 mg/kg 0 08/14/15 10:57 08/17/15 18:34 1 Dibenz(a,h)anthracene	Butyl benzyl phthalate	0.029	U	0.37	0.029	mg/Kg	₽	08/14/15 10:57	08/17/15 18:34	1
4-Chloroaniline 0.058 U 0.73 0.058 mg/kg 08/14/15 10:57 08/17/15 18:34 1 4-Chloro-3-methylphenol 0.039 U 0.37 0.039 mg/kg 08/14/15 10:57 08/17/15 18:34 1 2-Chlorophenol 0.045 U 0.37 0.045 mg/kg 08/14/15 10:57 08/17/15 18:34 1 2-Chlorophenol 0.045 U 0.37 0.045 mg/kg 08/14/15 10:57 08/17/15 18:34 1 4-Chlorophenyl phenyl ether 0.049 U 0.37 0.045 mg/kg 08/14/15 10:57 08/17/15 18:34 1 4-Chlorophenyl phenyl ether 0.049 U 0.37 0.049 mg/kg 08/14/15 10:57 08/17/15 18:34 1 4-Chlorophenyl phenyl ether 0.049 U 0.37 0.049 mg/kg 08/14/15 10:57 08/17/15 18:34 1 1-Dibenz(a,h)anthracene 0.043 U 0.37 0.043 mg/kg 08/14/15 10:57 08/17/15 18:34 1 1-Dibenz(a,h)anthracene 0.043 U 0.37 0.037 mg/kg 08/14/15 10:57 08/17/15 18:34 1 1-Dibenz(a,h)anthracene 0.031 U 0.37 0.037 mg/kg 08/14/15 10:57 08/17/15 18:34 1 1-Dibenz(a,h)anthracene 0.031 U 0.37 0.031 mg/kg 08/14/15 10:57 08/17/15 18:34 1 1-Dibenz(a,h)anthracene 0.031 U 0.37 0.031 mg/kg 08/14/15 10:57 08/17/15 18:34 1 1-Diethyl phthalate 0.031 U 0.37 0.039 mg/kg 08/14/15 10:57 08/17/15 18:34 1 1-Diethyl phthalate 0.041 U 0.37 0.041 mg/kg 08/14/15 10:57 08/17/15 18:34 1 1-Di-butyl phthalate 0.038 U 0.37 0.049 mg/kg 08/14/15 10:57 08/17/15 18:34 1 1-Di-butyl phthalate 0.038 U 0.37 0.049 mg/kg 08/14/15 10:57 08/17/15 18:34 1 1-Di-butyl phthalate 0.038 U 0.37 0.049 mg/kg 08/14/15 10:57 08/17/15 18:34 1 1-Di-butyl phthalate 0.038 U 0.37 0.038 mg/kg 08/14/15 10:57 08/17/15 18:34 1 1-Di-butyl phthalate 0.032 U 0.37 0.039 mg/kg 08/14/15 10:57 08/17/15 18:34 1 1-Di-butyl phthalate 0.032 U 0.37 0.039 mg/kg 08/14/15 10:57 08/17/15 18:34 1 1-Di-butyl phthalate 0.032 U 0.37 0.039 mg/kg 08/14/15 10:57 08/17/15 18:34 1 1-Di-butyl phthalate 0.032 U 0.37 0.039 mg/kg 08/14/15 10:57 08/17/15 18:34 1 1-Di-butyl phthalate 0.032 U 0.37 0.039 mg/kg 08/14/15 10:57 08/17/15 18:34 1 1-Di-butyl phthalate 0.039 U 0.37 0.040 mg/kg 08/14/15 10:57 08/17/15 18:34 1 1-Di-butyl phthalate 0.030 U 0.37 0.040 mg/kg 08/14/15 10:57 08/17/15 18:34 1 1-Di-butyl phthalate 0.031 U 0.37 0.040 mg/kg 08/14/15 10:57 08/17/15 18:34	Caprolactam	0.073	Ü	0.37	0.073	mg/Kg	₽	08/14/15 10:57	08/17/15 18:34	1
4-Chloro-3-methylphenol 0.039 U 0.37 0.039 mg/kg 08/14/15 10:57 08/17/15 18:34 1 2-Chloronaphthalene 0.039 U 0.37 0.039 mg/kg 08/14/15 10:57 08/17/15 18:34 1 2-Chlorophenol 0.045 U 0.37 0.045 mg/kg 08/14/15 10:57 08/17/15 18:34 1 4-Chlorophenyl phenyl ether 0.049 U 0.37 0.049 0.043 0.043 0.043 0.023 0.043 0.023 mg/kg 08/14/15 10:57 08/17/15 18:34 1 Chrysene 0.023 U 0.37 0.043 mg/kg 08/14/15 10:57 08/17/15 18:34 1 Dibenzofuran 0.037 U 0.37 0.043 mg/kg 08/14/15 10:57 08/17/15 18:34 1 2.4-Dichlorobenzidine 0.031 U 0.37 0.037 mg/kg 08/14/15 10:57 08/17/15 18:34 1 2.4-Dichlorobenzidine 0.031 U 0.37 0.039 mg/kg 08	Carbazole	0.033	U	0.37	0.033	mg/Kg	₽	08/14/15 10:57	08/17/15 18:34	1
2-Chlorophenol 0.039 U 0.37 0.039 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 4-Chlorophenol 0.045 U 0.37 0.045 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 4-Chlorophenyl ether 0.049 U 0.37 0.049 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 4-Chlorophenyl ether 0.023 U 0.37 0.049 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Dibenz(a,h)anthracene 0.023 U 0.37 0.043 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Dibenzofuran 0.037 U 0.37 0.037 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Jibenzofuran 0.037 U 0.37 0.037 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Jibenzofuran 0.031 U 0.37 0.037 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Jibenzofuran 0.031 U 0.37 0.037 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Jibenzofuran 0.039 U 0.37 0.039 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Jibenzofuran 0.039 U 0.37 0.039 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Diethyl phthalate 0.039 U 0.37 0.041 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Diethyl phthalate 0.041 U 0.37 0.041 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Dimethyl phthalate 0.038 U 0.37 0.038 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Dimethyl phthalate 0.033 U 0.37 0.038 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Dimethyl phthalate 0.033 U 0.37 0.038 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 A,6-Dinitro-2-methylphenol 0.19 U 1.9 0.19 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 A,6-Dinitro-2-methylphenol 0.092 U 1.9 0.92 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 A,6-Dinitro-2-methylphenol 0.092 U 1.9 0.92 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 A,6-Dinitro-2-methylphenol 0.092 U 0.37 0.033 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 A,6-Dinitro-2-methylphenol 0.092 U 0.37 0.040 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 A,6-Dinitro-2-methylphenol 0.092 U 0.37 0.047 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 A,6-Dinitro-2-methylphenol 0.093 U 0.37 0.048 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 A,6-Dinitro-2-methylphenol 0.093 U 0.37 0.048 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 A,6-Dinitro-2-methylphenol 0.093 U 0.37 0.048 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 A,6-Dinitro-2-methylphenol 0.094 U 0.37 0.095 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 A,6-Dinitr	4-Chloroaniline	0.058	U	0.73	0.058	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
2-Chlorophenol 0.045 U 0.37 0.045 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 4-Chlorophenyl phenyl ether 0.049 U 0.37 0.049 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Dibenz(a,h)anthracene 0.043 U 0.37 0.037 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Dibenz(a,h)anthracene 0.043 U 0.37 0.037 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Dibenz(a,h)anthracene 0.037 U 0.37 0.037 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Dibenz(a,h)anthracene 0.031 U 0.37 0.037 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Dibenz(a,h)anthracene 0.031 U 0.37 0.037 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 2,4-Dichlorophenol 0.039 U 0.37 0.039 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Diethyl phthalate 0.041 U 0.37 0.041 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Di-n-butyl phthalate 0.038 U 0.37 0.039 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Di-n-butyl phthalate 0.038 U 0.37 0.038 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Di-n-butyl phthalate 0.033 U 0.37 0.038 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Di-n-butyl phthalate 0.033 U 0.37 0.038 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Di-n-butyl phthalate 0.033 U 0.37 0.038 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Di-n-butyl phthalate 0.032 U 0.37 0.038 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Di-n-butyl phthalate 0.032 U 0.37 0.055 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.032 U 0.37 0.055 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.032 U 0.37 0.059 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.032 U 0.37 0.040 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.034 U 0.37 0.040 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.040 U 0.37 0.040 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.040 U 0.37 0.040 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.040 U 0.37 0.040 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.040 U 0.37 0.040 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.040 U 0.37 0.040 mg/Kg 0.88/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.040 U 0.37 0.040 mg/Kg	4-Chloro-3-methylphenol	0.039	Ü	0.37	0.039	mg/Kg		08/14/15 10:57	08/17/15 18:34	1
4-Chlorophenyl phenyl ether 0.049 U 0.37 0.049 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Dibenz(a,h)anthracene 0.043 U 0.37 0.023 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Dibenzofuran 0.037 U 0.37 0.037 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 3,3'-Dichlorobenzidine 0.031 U 0.73 0.031 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 2,4-Dichlorophenol 0.039 U 0.37 0.039 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Diethyl phthalate 0.041 U 0.37 0.041 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Diethyl phthalate 0.041 U 0.37 0.049 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Diethyl phthalate 0.038 U 0.37 0.049 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Diethyl phthalate 0.038 U 0.37 0.049 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Di-n-butyl phthalate 0.038 U 0.37 0.038 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Di-n-butyl phthalate 0.038 U 0.37 0.038 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Di-n-butyl phthalate 0.038 U 0.37 0.038 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Di-n-butyl phthalate 0.038 U 0.37 0.038 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Di-n-butyl phthalate 0.030 U 0.37 0.038 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Di-n-butyl phthalate 0.030 U 0.37 0.039 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Di-n-butyl phthalate 0.030 U 0.37 0.039 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Di-n-butyl phthalate 0.030 U 0.37 0.030 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.030 U 0.37 0.047 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.030 U 0.37 0.037 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.030 U 0.37 0.030 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.030 U 0.37 0.030 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.030 U 0.37 0.030 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.030 U 0.37 0.040 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.030 U 0.37 0.040 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.031 U 0.37 0.040 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.031 U 0.37 0.040 mg/Kg 0.8/14/15 10:57 08/17/15 18:34 1 Di-n	2-Chloronaphthalene	0.039	U	0.37	0.039	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
Chrysene	2-Chlorophenol	0.045	U	0.37	0.045	mg/Kg	₽	08/14/15 10:57	08/17/15 18:34	1
Dibenzofuran 0.043 U 0.37 0.043 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1	4-Chlorophenyl phenyl ether	0.049	U	0.37	0.049	mg/Kg	\$	08/14/15 10:57	08/17/15 18:34	1
Dibenzofuran 0.037 U 0.37 0.037 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 3,3'-Dichlorobenzidine 0.031 U 0.73 0.031 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 2,4-Dichlorophenol 0.039 U 0.37 0.039 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 Diethyl phthalate 0.041 U 0.37 0.041 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 2,4-Dimethylphenol 0.049 U 0.37 0.049 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 Dimethyl phthalate 0.038 U 0.37 0.038 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 Dimethyl phthalate 0.038 U 0.37 0.038 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 Di-n-butyl phthalate 0.033 U 0.37 0.033 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 Di-n-butyl phthalate 0.033 U 0.37 0.033 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 Di-n-butyl phthalate 0.035 U 0.37 0.035 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 Di-n-butyl phthalate 0.040 U 0.37 0.055 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 Di-n-butyl phthalate 0.047 U 0.37 0.047 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 Di-n-butyl phthalate 0.032 U 0.37 0.047 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 Di-n-butyl phthalate 0.032 U 0.37 0.032 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 Di-n-butyl phthalate 0.032 U 0.37 0.032 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 Di-n-butyl phthalate 0.036 U 0.37 0.036 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 Di-n-butyl phthalate 0.040 U 0.37 0.040 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 Di-n-butyl phthalate 0.040 U 0.37 0.040 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 Di-n-butyl phthalate 0.040 U 0.37 0.040 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 Di-n-butyl phthalate 0.040 U 0.37 0.040 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 Di-n-butyl phthalate 0.040 U 0.37 0.040 mg/Kg 0.8/14/15 10:57 0.8/17/15 18:34 1 Di-n-butyl phthalate 0.040 U 0.37 0.0	Chrysene	0.023	U	0.37	0.023	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
3,3-Dichlorobenzidine	Dibenz(a,h)anthracene	0.043	U	0.37	0.043	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
2,4-Dichlorophenol 0.039 U 0.37 0.039 mg/Kg 0.0314/15 10:57 08/17/15 18:34 1 Diethyl phthalate 0.041 U 0.37 0.041 mg/Kg 0.0414/15 10:57 08/17/15 18:34 1 2,4-Dimethylphenol 0.049 U 0.37 0.049 mg/Kg 0.08/14/15 10:57 08/17/15 18:34 1 Dimethyl phthalate 0.038 U 0.37 0.038 mg/Kg 0.06/14/15 10:57 08/17/15 18:34 1 Di-n-butyl phthalate 0.033 U 0.37 0.033 mg/Kg 0.08/14/15 10:57 08/17/15 18:34 1 4,6-Dinitro-2-methylphenol 0.19 U 1.9 0.92 mg/Kg 0.08/14/15 10:57 08/17/15 18:34 1 2,4-Dinitrotoluene 0.055 U 0.37 0.055 mg/Kg 0.08/14/15 10:57 08/17/15 18:34 1 2,6-Dinitrotoluene 0.047 U 0.37 0.055 mg/Kg 0.08/14/15 10:57 08/17/15 18:34 1 2,6-Dinitrotoluene 0.047 U 0.37 0.032 mg/Kg 0.08/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.032 U 0.37 0.036 mg/Kg 0.08/14/15 10:57 08/17/15 18:34 1 Fluoranthene 0.036 U 0.37 0.036 mg/Kg 0.08/14/15 10:57 08/17/15 18:34 1 Fluorene 0.040 U 0.37 0.040 mg/Kg 0.08/14/15 10:57 08/17/15 18:34 <	Dibenzofuran	0.037	U	0.37	0.037	mg/Kg	₽	08/14/15 10:57	08/17/15 18:34	1
Diethyl phthalate 0.041 U 0.37 0.041 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 2,4-Dimethylphenol 0.049 U 0.37 0.049 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Dimethyl phthalate 0.038 U 0.37 0.038 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Di-n-butyl phthalate 0.033 U 0.37 0.033 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 4,6-Dinitro-2-methylphenol 0.19 U 1.9 0.19 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 2,4-Dinitrophenol 0.92 U 1.9 0.92 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 2,4-Dinitrotoluene 0.055 U 0.37 0.055 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 2,6-Dinitrotoluene 0.047 U 0.37 0.057 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 2,6-Dinitrotoluene 0.047 U 0.37 0.047 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 1-n-octyl phthalate 0.032 U 0.37 0.036 mg/Kg	3,3'-Dichlorobenzidine	0.031	U	0.73	0.031	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
2,4-Dimethylphenol 0.049 U 0.37 0.049 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Dimethyl phthalate 0.038 U 0.37 0.038 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Di-n-butyl phthalate 0.033 U 0.37 0.033 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 4,6-Dinitro-2-methylphenol 0.19 U 1.9 0.19 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 2,4-Dinitrophenol 0.92 U 1.9 0.92 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 2,4-Dinitrotoluene 0.055 U 0.37 0.055 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 2,6-Dinitrotoluene 0.047 U 0.37 0.057 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 2,6-Dinitrotoluene 0.047 U 0.37 0.047 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 1,6-Dinitrotoluene 0.040 U 0.37 0.032 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 2,6-Dinitrotoluene 0.047 U 0.37 0.047 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 1,0-n-cotyl	2,4-Dichlorophenol	0.039	U	0.37	0.039	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
Dimethyl phthalate 0.038 U 0.37 0.038 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Di-n-butyl phthalate 0.033 U 0.37 0.033 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 4,6-Dinitro-2-methylphenol 0.19 U 1.9 0.19 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 2,4-Dinitrophenol 0.92 U 1.9 0.92 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 2,4-Dinitrotoluene 0.055 U 0.37 0.055 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 2,6-Dinitrotoluene 0.047 U 0.37 0.055 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 2,6-Dinitrotoluene 0.047 U 0.37 0.047 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.032 U 0.37 0.032 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Fluoranthene 0.036 U 0.37 0.036 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Fluorene 0.040 U 0.37 0.040 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Hexachlorobenzene 0.043 U 0.37 0.040 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Hexachlorobutadiene 0.040 U 0.37 0.040 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Hexachlorocyclopentadiene 0.046 U 0.37 0.040 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Hexachlorocyclopentadiene 0.046 U 0.37 0.046 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Hexachlorocethane 0.031 U 0.37 0.046 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Indeno[1,2,3-cd]pyrene 0.031 U 0.37 0.031 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Isophorone 0.032 U 0.37 0.037 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Isophorone 0.042 U 0.37 0.037 mg/Kg 08/14/15 10:57 08/17/15 18:34 1	Diethyl phthalate	0.041	U	0.37	0.041	mg/Kg	\$	08/14/15 10:57	08/17/15 18:34	1
Di-n-butyl phthalate 0.033 U 0.37 0.033 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 4,6-Dinitro-2-methylphenol 0.19 U 1.9 0.19 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 2,4-Dinitrophenol 0.92 U 1.9 0.92 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 2,4-Dinitrophenol 0.055 U 0.37 0.055 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 2,4-Dinitrophenol 0.055 U 0.37 0.055 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 2,6-Dinitrophenol 0.047 U 0.37 0.047 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 2,6-Dinitrophenol 0.047 U 0.37 0.047 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.032 U 0.37 0.032 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Fluorene 0.036	2,4-Dimethylphenol	0.049	U	0.37	0.049	mg/Kg	₽	08/14/15 10:57	08/17/15 18:34	1
4,6-Dinitro-2-methylphenol 0.19 U 1.9 0.19 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 2,4-Dinitrophenol 0.92 U 1.9 0.92 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 2,4-Dinitrotoluene 0.055 U 0.37 0.055 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 2,6-Dinitrotoluene 0.047 U 0.37 0.047 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.032 U 0.37 0.032 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Fluoranthene 0.036 U 0.37 0.036 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Fluorene 0.040 U 0.37 0.040 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Hexachlorobenzene 0.043 U 0.37 0.040 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Hexachlorocyclopentadiene 0.040 U 0.37 0.040 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Hexachloroethane 0.031 U 0.37 0.031 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Indeno[1,2,3-cd]pyrene 0.031 U 0.37 0.031 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Isophorone 0.032 U 0.37 0.037 mg/Kg © 08/14/15 10:57	Dimethyl phthalate	0.038	U	0.37	0.038	mg/Kg	₽	08/14/15 10:57	08/17/15 18:34	1
2,4-Dinitrophenol 0.92 U 1.9 0.92 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 2,4-Dinitrotoluene 0.055 U 0.37 0.055 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 2,6-Dinitrotoluene 0.047 U 0.37 0.047 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.032 U 0.37 0.032 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Fluoranthene 0.036 U 0.37 0.036 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Fluorene 0.040 U 0.37 0.040 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Hexachlorobenzene 0.043 U 0.37 0.043 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Hexachlorocyclopentadiene 0.040 U 0.37 0.040 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Hexachlorocethane 0.031 U 0.37 0.046 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Indeno[1,2,3-cd]pyrene 0.031 U 0.37 0.031 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Isophorone 0.037 U 0.37 0.037 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 2-Methylnaphthalene 0.042 U 0.37 0.037 mg/Kg © 08/14/15 10:57 08/17/15 18:34 <td>Di-n-butyl phthalate</td> <td>0.033</td> <td>U</td> <td>0.37</td> <td>0.033</td> <td>mg/Kg</td> <td>☼</td> <td>08/14/15 10:57</td> <td>08/17/15 18:34</td> <td>1</td>	Di-n-butyl phthalate	0.033	U	0.37	0.033	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
2,4-Dinitrotoluene 0.055 U 0.37 0.055 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 2,6-Dinitrotoluene 0.047 U 0.37 0.047 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.032 U 0.37 0.032 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Fluoranthene 0.036 U 0.37 0.036 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Fluorene 0.040 U 0.37 0.040 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Hexachlorobenzene 0.043 U 0.37 0.043 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Hexachlorobutadiene 0.040 U 0.37 0.040 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Hexachlorocyclopentadiene 0.046 U 0.37 0.040 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Hexachlorocyclopentadiene 0.031 U 0.37 0.040 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Indeno[1,2,3-cd]pyrene 0.031 U 0.37 0.031 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1	4,6-Dinitro-2-methylphenol	0.19	U	1.9	0.19	mg/Kg	₩	08/14/15 10:57	08/17/15 18:34	1
2,6-Dinitrotoluene 0.047 U 0.37 0.047 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Di-n-octyl phthalate 0.032 U 0.37 0.032 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Fluoranthene 0.036 U 0.37 0.036 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Fluorene 0.040 U 0.37 0.040 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Hexachlorobenzene 0.043 U 0.37 0.043 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Hexachlorobutadiene 0.040 U 0.37 0.040 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Hexachlorocyclopentadiene 0.046 U 0.37 0.046 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Hexachloroethane 0.031 U 0.37 0.031 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Indeno[1,2,3-cd]pyrene 0.031 U 0.37 0.031 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Isophorone 0.037 U 0.37 0.037 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 2-Methylnaphthalene 0.042 U 0.37 0.042 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1	2,4-Dinitrophenol	0.92	U	1.9	0.92	mg/Kg	≎	08/14/15 10:57	08/17/15 18:34	1
Di-n-octyl phthalate 0.032 U 0.37 0.032 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Fluoranthene 0.036 U 0.37 0.036 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Fluorene 0.040 U 0.37 0.040 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Hexachlorobenzene 0.043 U 0.37 0.043 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Hexachlorobutadiene 0.040 U 0.37 0.040 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Hexachlorocyclopentadiene 0.046 U 0.37 0.046 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Hexachlorocyclopentadiene 0.031 U 0.37 0.031 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Indeno[1,2,3-cd]pyrene 0.031 U 0.37 0.031 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Isophorone 0.042 </td <td>2,4-Dinitrotoluene</td> <td>0.055</td> <td>U</td> <td>0.37</td> <td>0.055</td> <td>mg/Kg</td> <td>≎</td> <td>08/14/15 10:57</td> <td>08/17/15 18:34</td> <td>1</td>	2,4-Dinitrotoluene	0.055	U	0.37	0.055	mg/Kg	≎	08/14/15 10:57	08/17/15 18:34	1
Fluoranthene 0.036 U 0.37 0.036 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Fluorene 0.040 U 0.37 0.040 mg/Kg 0.041 d/15 10:57 08/17/15 18:34 1 Hexachlorobenzene 0.043 U 0.37 0.043 mg/Kg 0.041 d/15 10:57 08/17/15 18:34 1 Hexachlorobutadiene 0.040 U 0.37 0.040 mg/Kg 0.041 d/15 10:57 08/17/15 18:34 1 Hexachlorocyclopentadiene 0.046 U 0.37 0.046 mg/Kg 0.041 d/15 10:57 08/17/15 18:34 1 Hexachloroethane 0.031 U 0.37 0.031 mg/Kg 0.031 d/14/15 10:57 08/17/15 18:34 1 Indeno[1,2,3-cd]pyrene 0.031 U 0.37 0.031 mg/Kg 0.08/14/15 10:57 08/17/15 18:34 1 Isophorone 0.037 U 0.37 0.037 mg/Kg 0.041 d/15 10:57 08/17/15 18:34 1 2-Methylnaphthalene 0.042 U 0.37 0.042 mg/Kg 0.08/14/15 10:57 08/17/15 18:34 1	2,6-Dinitrotoluene	0.047	U	0.37	0.047	mg/Kg	₽	08/14/15 10:57	08/17/15 18:34	1
Fluorene 0.040 U 0.37 0.040 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Hexachlorobenzene 0.043 U 0.37 0.043 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Hexachlorobutadiene 0.040 U 0.37 0.040 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Hexachlorocyclopentadiene 0.046 U 0.37 0.046 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Hexachloroethane 0.031 U 0.37 0.031 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Indeno[1,2,3-cd]pyrene 0.031 U 0.37 0.031 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Isophorone 0.037 U 0.37 0.037 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 2-Methylnaphthalene 0.042 U 0.37 0.042 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1	Di-n-octyl phthalate	0.032	U	0.37	0.032	mg/Kg	₩	08/14/15 10:57	08/17/15 18:34	1
Hexachlorobenzene 0.043 U 0.37 0.043 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Hexachlorobutadiene 0.040 U 0.37 0.040 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Hexachlorocyclopentadiene 0.046 U 0.37 0.046 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Hexachloroethane 0.031 U 0.37 0.031 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Indeno[1,2,3-cd]pyrene 0.031 U 0.37 0.031 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 Isophorone 0.037 U 0.37 0.037 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 2-Methylnaphthalene 0.042 U 0.37 0.042 mg/Kg 08/14/15 10:57 08/17/15 18:34 1	Fluoranthene	0.036	U	0.37	0.036	mg/Kg	₽	08/14/15 10:57	08/17/15 18:34	1
Hexachlorobutadiene 0.040 U 0.37 0.040 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 1 Hexachlorocyclopentadiene 0.046 U 0.37 0.046 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 1 Hexachloroethane 0.031 U 0.37 0.031 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 1 Indeno[1,2,3-cd]pyrene 0.031 U 0.37 0.031 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 1 Isophorone 0.037 U 0.37 0.037 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 1 2-Methylnaphthalene 0.042 U 0.37 0.042 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 1	Fluorene	0.040	U	0.37	0.040	mg/Kg	≎	08/14/15 10:57	08/17/15 18:34	1
Hexachlorocyclopentadiene 0.046 U 0.37 0.046 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Hexachloroethane 0.031 U 0.37 0.031 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Indeno[1,2,3-cd]pyrene 0.031 U 0.37 0.031 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Isophorone 0.037 U 0.37 0.037 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 2-Methylnaphthalene 0.042 U 0.37 0.042 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1	Hexachlorobenzene	0.043	U	0.37	0.043	mg/Kg	≎	08/14/15 10:57	08/17/15 18:34	1
Hexachloroethane 0.031 U 0.37 0.031 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 1 Indeno[1,2,3-cd]pyrene 0.031 U 0.37 0.031 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 1 Isophorone 0.037 U 0.37 0.037 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 1 2-Methylnaphthalene 0.042 U 0.37 0.042 mg/Kg 08/14/15 10:57 08/17/15 18:34 1 1	Hexachlorobutadiene	0.040	U	0.37	0.040	mg/Kg	₽	08/14/15 10:57	08/17/15 18:34	1
Indeno[1,2,3-cd]pyrene 0.031 U 0.37 0.031 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 Isophorone 0.037 U 0.37 0.037 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 2-Methylnaphthalene 0.042 U 0.37 0.042 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1	Hexachlorocyclopentadiene	0.046	U	0.37	0.046	mg/Kg	≎	08/14/15 10:57	08/17/15 18:34	1
Isophorone 0.037 U 0.37 0.037 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1 2-Methylnaphthalene 0.042 U 0.37 0.042 mg/Kg © 08/14/15 10:57 08/17/15 18:34 1	Hexachloroethane	0.031	U	0.37	0.031	mg/Kg	₽	08/14/15 10:57	08/17/15 18:34	1
2-Methylnaphthalene 0.042 U 0.37 0.042 mg/Kg * 08/14/15 10:57 08/17/15 18:34 1	Indeno[1,2,3-cd]pyrene	0.031	U	0.37	0.031	mg/Kg		08/14/15 10:57	08/17/15 18:34	1
	Isophorone	0.037	U	0.37	0.037	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
2-Methylphenol 0.030 U 0.37 0.030 mg/Kg * 08/14/15 10:57 08/17/15 18:34 1	2-Methylnaphthalene	0.042	U	0.37	0.042	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
	2-Methylphenol	0.030	U	0.37	0.030	mg/Kg	₩	08/14/15 10:57	08/17/15 18:34	1

TestAmerica Savannah

Page 33 of 80

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Client Sample ID: GB-25 2-4

Date Collected: 08/10/15 11:39 Date Received: 08/12/15 09:46 Lab Sample ID: 680-115544-14

Matrix: Solid

Percent Solids: 89.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.048	U	0.37	0.048	mg/Kg	<u> </u>	08/14/15 10:57	08/17/15 18:34	1
Naphthalene	0.033	U	0.37	0.033	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
2-Nitroaniline	0.050	U	1.9	0.050	mg/Kg	₽	08/14/15 10:57	08/17/15 18:34	1
3-Nitroaniline	0.051	U	1.9	0.051	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
4-Nitroaniline	0.055	U	1.9	0.055	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
Nitrobenzene	0.029	U	0.37	0.029	mg/Kg	₩	08/14/15 10:57	08/17/15 18:34	1
2-Nitrophenol	0.046	U	0.37	0.046	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
4-Nitrophenol	0.37	U	1.9	0.37	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
N-Nitrosodi-n-propylamine	0.036	U	0.37	0.036	mg/Kg	.	08/14/15 10:57	08/17/15 18:34	1
N-Nitrosodiphenylamine	0.037	U	0.37	0.037	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
Pentachlorophenol	0.37	U	1.9	0.37	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
Phenanthrene	0.030	U	0.37	0.030	mg/Kg	₩	08/14/15 10:57	08/17/15 18:34	1
Phenol	0.038	U	0.37	0.038	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
Pyrene	0.030	U	0.37	0.030	mg/Kg	☼	08/14/15 10:57	08/17/15 18:34	1
2,4,5-Trichlorophenol	0.039	U	0.37	0.039	mg/Kg		08/14/15 10:57	08/17/15 18:34	1
2,4,6-Trichlorophenol	0.032	U	0.37	0.032	mg/Kg	₩	08/14/15 10:57	08/17/15 18:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	83		41 - 116				08/14/15 10:57	08/17/15 18:34	1
2-Fluorophenol (Surr)	61		39 - 114				08/14/15 10:57	08/17/15 18:34	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	83	41 - 116	08/14/15 10:57	08/17/15 18:34	1
2-Fluorophenol (Surr)	61	39 - 114	08/14/15 10:57	08/17/15 18:34	1
Nitrobenzene-d5 (Surr)	64	37 - 115	08/14/15 10:57	08/17/15 18:34	1
Phenol-d5 (Surr)	63	38 - 122	08/14/15 10:57	08/17/15 18:34	1
Terphenyl-d14 (Surr)	76	46 - 126	08/14/15 10:57	08/17/15 18:34	1
2,4,6-Tribromophenol (Surr)	90	45 - 129	08/14/15 10:57	08/17/15 18:34	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.9		2.0	0.79	mg/Kg	<u> </u>	08/14/15 08:59	08/17/15 20:18	1
Barium	7.8	В	0.99	0.16	mg/Kg	₩	08/14/15 08:59	08/17/15 20:18	1
Beryllium	0.18	J	0.40	0.0099	mg/Kg	☆	08/14/15 08:59	08/17/15 20:18	1
Cadmium	0.099	U	0.50	0.099	mg/Kg	₩	08/14/15 08:59	08/17/15 20:18	1
Chromium	4.9		0.99	0.21	mg/Kg	☆	08/14/15 08:59	08/17/15 20:18	1
Copper	1.5	J	2.5	0.17	mg/Kg	☆	08/14/15 08:59	08/17/15 20:18	1
Lead	5.7		0.99	0.34	mg/Kg	₩.	08/14/15 08:59	08/17/15 20:18	1
Nickel	1.3	J	4.0	0.38	mg/Kg	☆	08/14/15 08:59	08/17/15 20:18	1
Selenium	0.96	U	2.5	0.96	mg/Kg	☼	08/14/15 08:59	08/17/15 20:18	1
Silver	0.060	U	0.99	0.060	mg/Kg	₩.	08/14/15 08:59	08/17/15 20:18	1
Vanadium	10		0.99	0.099	mg/Kg	☼	08/14/15 08:59	08/17/15 20:18	1
Zinc	5.8		2.0	0.69	mg/Kg	₩	08/14/15 08:59	08/17/15 20:18	1

Method: 7471B - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0094	J	0.021	0.0084	mg/Kg		08/17/15 10:06	08/17/15 22:51	1
_ General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.23	U	0.54	0.23	mg/Kg	<u> </u>	08/20/15 07:30	08/20/15 12:02	1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Client Sample ID: GB-25 4-6

Date Collected: 08/10/15 11:42

Date Received: 08/12/15 09:46

TestAmerica Job ID: 680-115544-1

Lab Sample ID: 680-115544-15

Matrix: Solid Percent Solids: 89.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.046	U	0.37	0.046	mg/Kg	<u> </u>	08/14/15 10:57	08/17/15 19:00	1
Acenaphthylene	0.040	U	0.37		mg/Kg	₩	08/14/15 10:57	08/17/15 19:00	1
Acetophenone	0.031	U	0.37		mg/Kg	₩	08/14/15 10:57	08/17/15 19:00	1
Anthracene	0.028	U	0.37		mg/Kg	₽	08/14/15 10:57	08/17/15 19:00	1
Atrazine	0.026	U	0.37		mg/Kg	₩	08/14/15 10:57	08/17/15 19:00	1
Benzaldehyde	0.065	U	0.37		mg/Kg	₩	08/14/15 10:57	08/17/15 19:00	1
Benzo[a]anthracene	0.14	J	0.37	0.030	mg/Kg	₽	08/14/15 10:57	08/17/15 19:00	1
Benzo[a]pyrene	0.12	J	0.37	0.058	mg/Kg	≎	08/14/15 10:57	08/17/15 19:00	1
Benzo[b]fluoranthene	0.18	J	0.37		mg/Kg	₩	08/14/15 10:57	08/17/15 19:00	1
Benzo[g,h,i]perylene	0.025	U	0.37		mg/Kg	₽	08/14/15 10:57	08/17/15 19:00	1
Benzo[k]fluoranthene	0.076	J	0.37	0.073	mg/Kg	≎	08/14/15 10:57	08/17/15 19:00	1
1,1'-Biphenyl	1.9	U	1.9	1.9	mg/Kg	≎	08/14/15 10:57	08/17/15 19:00	1
Bis(2-chloroethoxy)methane	0.044	U	0.37	0.044	mg/Kg	₽	08/14/15 10:57	08/17/15 19:00	1
Bis(2-chloroethyl)ether	0.050	U *	0.37	0.050	mg/Kg	≎	08/14/15 10:57	08/17/15 19:00	1
bis (2-chloroisopropyl) ether	0.034	U	0.37		mg/Kg	≎	08/14/15 10:57	08/17/15 19:00	1
Bis(2-ethylhexyl) phthalate	0.12	JB	0.37	0.032	mg/Kg	≎	08/14/15 10:57	08/17/15 19:00	1
4-Bromophenyl phenyl ether	0.040	U	0.37		mg/Kg	≎	08/14/15 10:57	08/17/15 19:00	1
Butyl benzyl phthalate	0.029	U	0.37	0.029	mg/Kg	≎	08/14/15 10:57	08/17/15 19:00	1
Caprolactam	0.074	U	0.37		mg/Kg	≎	08/14/15 10:57	08/17/15 19:00	1
Carbazole	0.034	U	0.37	0.034	mg/Kg	₩	08/14/15 10:57	08/17/15 19:00	1
4-Chloroaniline	0.058	U	0.74	0.058	mg/Kg	₩	08/14/15 10:57	08/17/15 19:00	1
4-Chloro-3-methylphenol	0.039	U	0.37	0.039	mg/Kg	₽	08/14/15 10:57	08/17/15 19:00	1
2-Chloronaphthalene	0.039	U	0.37	0.039	mg/Kg	₩	08/14/15 10:57	08/17/15 19:00	1
2-Chlorophenol	0.045	U	0.37	0.045	mg/Kg	≎	08/14/15 10:57	08/17/15 19:00	1
4-Chlorophenyl phenyl ether	0.049	U	0.37	0.049	mg/Kg	₽	08/14/15 10:57	08/17/15 19:00	1
Chrysene	0.12	J	0.37	0.023	mg/Kg	₩	08/14/15 10:57	08/17/15 19:00	1
Dibenz(a,h)anthracene	0.044	U	0.37	0.044	mg/Kg	≎	08/14/15 10:57	08/17/15 19:00	1
Dibenzofuran	0.037	U	0.37	0.037	mg/Kg	₽	08/14/15 10:57	08/17/15 19:00	1
3,3'-Dichlorobenzidine	0.031	U	0.74	0.031	mg/Kg	☼	08/14/15 10:57	08/17/15 19:00	1
2,4-Dichlorophenol	0.039	U	0.37	0.039	mg/Kg	☼	08/14/15 10:57	08/17/15 19:00	1
Diethyl phthalate	0.041	U	0.37	0.041	mg/Kg	₽	08/14/15 10:57	08/17/15 19:00	1
2,4-Dimethylphenol	0.049	U	0.37	0.049	mg/Kg	₩	08/14/15 10:57	08/17/15 19:00	1
Dimethyl phthalate	0.038	U	0.37	0.038	mg/Kg	≎	08/14/15 10:57	08/17/15 19:00	1
Di-n-butyl phthalate	0.034	U	0.37	0.034	mg/Kg	☆	08/14/15 10:57	08/17/15 19:00	1
4,6-Dinitro-2-methylphenol	0.19	U	1.9	0.19	mg/Kg	₩	08/14/15 10:57	08/17/15 19:00	1
2,4-Dinitrophenol	0.93	U	1.9	0.93	mg/Kg	≎	08/14/15 10:57	08/17/15 19:00	1
2,4-Dinitrotoluene	0.055	U	0.37	0.055	mg/Kg		08/14/15 10:57	08/17/15 19:00	1
2,6-Dinitrotoluene	0.047	U	0.37	0.047	mg/Kg	₩	08/14/15 10:57	08/17/15 19:00	1
Di-n-octyl phthalate	0.032	U	0.37	0.032	mg/Kg	₩	08/14/15 10:57	08/17/15 19:00	1
Fluoranthene	0.25	J	0.37	0.036	mg/Kg	\$	08/14/15 10:57	08/17/15 19:00	1
Fluorene	0.040	U	0.37	0.040	mg/Kg	₩	08/14/15 10:57	08/17/15 19:00	1
Hexachlorobenzene	0.044	U	0.37	0.044	mg/Kg	₩	08/14/15 10:57	08/17/15 19:00	1
Hexachlorobutadiene	0.040	Ü	0.37	0.040	mg/Kg		08/14/15 10:57	08/17/15 19:00	1
Hexachlorocyclopentadiene	0.046	U	0.37	0.046	mg/Kg	≎	08/14/15 10:57	08/17/15 19:00	1
Hexachloroethane	0.031	U	0.37		mg/Kg	₩	08/14/15 10:57	08/17/15 19:00	1
Indeno[1,2,3-cd]pyrene	0.080	J	0.37		mg/Kg	φ.	08/14/15 10:57	08/17/15 19:00	1
Isophorone	0.037		0.37		mg/Kg	₩		08/17/15 19:00	1
2-Methylnaphthalene	0.042		0.37		mg/Kg	₩	08/14/15 10:57	08/17/15 19:00	1
2-Methylphenol	0.030		0.37		mg/Kg			08/17/15 19:00	1

TestAmerica Savannah

Page 35 of 80

Cyanide, Total

Client Sample ID: GB-25 4-6 Date Collected: 08/10/15 11:42 Date Received: 08/12/15 09:46

TestAmerica Job ID: 680-115544-1

Percent Solids: 89.6

Lab Sample	ID:	680-115544-15
		Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.048	U	0.37	0.048	mg/Kg	<u> </u>	08/14/15 10:57	08/17/15 19:00	1
Naphthalene	0.034	U	0.37	0.034	mg/Kg	☼	08/14/15 10:57	08/17/15 19:00	1
2-Nitroaniline	0.050	U	1.9	0.050	mg/Kg	₽	08/14/15 10:57	08/17/15 19:00	1
3-Nitroaniline	0.051	U	1.9	0.051	mg/Kg	☼	08/14/15 10:57	08/17/15 19:00	1
4-Nitroaniline	0.055	U	1.9	0.055	mg/Kg	☼	08/14/15 10:57	08/17/15 19:00	1
Nitrobenzene	0.029	U	0.37	0.029	mg/Kg		08/14/15 10:57	08/17/15 19:00	1
2-Nitrophenol	0.046	U	0.37	0.046	mg/Kg	☼	08/14/15 10:57	08/17/15 19:00	1
4-Nitrophenol	0.37	U	1.9	0.37	mg/Kg	☼	08/14/15 10:57	08/17/15 19:00	1
N-Nitrosodi-n-propylamine	0.036	U	0.37	0.036	mg/Kg	₽	08/14/15 10:57	08/17/15 19:00	1
N-Nitrosodiphenylamine	0.037	U	0.37	0.037	mg/Kg	☼	08/14/15 10:57	08/17/15 19:00	1
Pentachlorophenol	0.37	U	1.9	0.37	mg/Kg	☼	08/14/15 10:57	08/17/15 19:00	1
Phenanthrene	0.13	J	0.37	0.030	mg/Kg	₽	08/14/15 10:57	08/17/15 19:00	1
Phenol	0.038	U	0.37	0.038	mg/Kg	☼	08/14/15 10:57	08/17/15 19:00	1
Pyrene	0.20	J	0.37	0.030	mg/Kg	☼	08/14/15 10:57	08/17/15 19:00	1
2,4,5-Trichlorophenol	0.039	U	0.37	0.039	mg/Kg	₽	08/14/15 10:57	08/17/15 19:00	1
2,4,6-Trichlorophenol	0.032	U	0.37	0.032	mg/Kg	₽	08/14/15 10:57	08/17/15 19:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Q	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	81		41 - 116	08/14/15 10:57	08/17/15 19:00	1
2-Fluorophenol (Surr)	59		39 - 114	08/14/15 10:57	08/17/15 19:00	1
Nitrobenzene-d5 (Surr)	63		37 - 115	08/14/15 10:57	08/17/15 19:00	1
Phenol-d5 (Surr)	63		38 - 122	08/14/15 10:57	08/17/15 19:00	1
Terphenyl-d14 (Surr)	77		46 - 126	08/14/15 10:57	08/17/15 19:00	1
2,4,6-Tribromophenol (Surr)	89		45 - 129	08/14/15 10:57	08/17/15 19:00	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.8		2.1	0.83	mg/Kg	<u> </u>	08/14/15 08:59	08/17/15 20:09	1
Barium	32	В	1.0	0.17	mg/Kg	₩	08/14/15 08:59	08/17/15 20:09	1
Beryllium	0.20	J	0.42	0.010	mg/Kg	☆	08/14/15 08:59	08/17/15 20:09	1
Cadmium	0.12	J	0.52	0.10	mg/Kg	₩	08/14/15 08:59	08/17/15 20:09	1
Chromium	17		1.0	0.22	mg/Kg	☆	08/14/15 08:59	08/17/15 20:09	1
Copper	17		2.6	0.18	mg/Kg	☆	08/14/15 08:59	08/17/15 20:09	1
Lead	98		1.0	0.35	mg/Kg	₩	08/14/15 08:59	08/17/15 20:09	1
Nickel	4.0	J	4.2	0.40	mg/Kg	≎	08/14/15 08:59	08/17/15 20:09	1
Selenium	1.0	U	2.6	1.0	mg/Kg	≎	08/14/15 08:59	08/17/15 20:09	1
Silver	0.063	U	1.0	0.063	mg/Kg		08/14/15 08:59	08/17/15 20:09	1
Vanadium	10		1.0	0.10	mg/Kg	≎	08/14/15 08:59	08/17/15 20:09	1
Zinc	58		2.1	0.73	mg/Kg	☆	08/14/15 08:59	08/17/15 20:09	1

Method: 7471B - Mercury (CVAA) Analyte Mercury	Result	Qualifier	RL 0.020	MDL 0.0081		D 变	Prepared 08/17/15 10:06	Analyzed 08/17/15 22:54	Dil Fac
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.54

0.23 mg/Kg

0.23 U

TestAmerica Savannah

 ☼
 08/20/15 07:30
 08/20/15 12:03

Project/Site: Macon MGP #2

Client: Geotechnical & Environmental Consultants

Client Sample ID: GB-26 2-4 Lab Sample ID: 680-115544-16

Date Collected: 08/10/15 12:20 Matrix: Solid
Date Received: 08/12/15 09:46 Percent Solids: 93.8

Method: 8270D - Semivolatil	le Organic Co	mpounds (G	•						
Analyte		Qualifier	ŘL	MDL		D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.43	U	3.5		mg/Kg	₩	08/14/15 10:57	08/20/15 22:02	1
cenaphthylene	0.38	U	3.5	0.38	mg/Kg	☆	08/14/15 10:57	08/20/15 22:02	1
cetophenone	0.30	U	3.5	0.30	mg/Kg	₩	08/14/15 10:57	08/20/15 22:02	1
nthracene	0.26	U	3.5	0.26	mg/Kg	₩	08/14/15 10:57	08/20/15 22:02	1
trazine	0.24	U	3.5	0.24	mg/Kg	☆	08/14/15 10:57	08/20/15 22:02	1
enzaldehyde	0.61	U	3.5	0.61	mg/Kg	≎	08/14/15 10:57	08/20/15 22:02	1
enzo[a]anthracene	0.28	U	3.5	0.28	mg/Kg	₽	08/14/15 10:57	08/20/15 22:02	1
enzo[a]pyrene	0.55	U	3.5	0.55	mg/Kg	₩	08/14/15 10:57	08/20/15 22:02	1
enzo[b]fluoranthene	0.40	U	3.5	0.40	mg/Kg	☆	08/14/15 10:57	08/20/15 22:02	1
enzo[g,h,i]perylene	0.23	U	3.5	0.23	mg/Kg	₽	08/14/15 10:57	08/20/15 22:02	1
enzo[k]fluoranthene	0.69	U	3.5	0.69	mg/Kg	☼	08/14/15 10:57	08/20/15 22:02	1
,1'-Biphenyl	18	U	18		mg/Kg	₩	08/14/15 10:57	08/20/15 22:02	1
is(2-chloroethoxy)methane	0.41	U	3.5	0.41	mg/Kg		08/14/15 10:57	08/20/15 22:02	1
is(2-chloroethyl)ether	0.47	U	3.5		mg/Kg	≎	08/14/15 10:57	08/20/15 22:02	1
is (2-chloroisopropyl) ether	0.32	U	3.5	0.32	mg/Kg	≎	08/14/15 10:57	08/20/15 22:02	1
is(2-ethylhexyl) phthalate	0.31	Ü	3.5		mg/Kg		08/14/15 10:57	08/20/15 22:02	1
-Bromophenyl phenyl ether	0.38		3.5		mg/Kg	₩		08/20/15 22:02	1
utyl benzyl phthalate	0.27		3.5		mg/Kg	≎		08/20/15 22:02	1
aprolactam	0.70		3.5		mg/Kg	 ☆		08/20/15 22:02	 1
carbazole	0.32		3.5		mg/Kg	₩		08/20/15 22:02	1
-Chloroaniline	0.55		7.0		mg/Kg	₩		08/20/15 22:02	1
-Chloro-3-methylphenol	0.37		3.5		mg/Kg	.		08/20/15 22:02	· · · · · · · · · · · · · · · · · · ·
-Chloronaphthalene	0.37		3.5		mg/Kg	₩		08/20/15 22:02	1
-Chlorophenol	0.42		3.5		mg/Kg	₩		08/20/15 22:02	1
-Chlorophenyl phenyl ether	0.46		3.5		mg/Kg			08/20/15 22:02	<u>'</u> 1
hrysene	0.26		3.5		mg/Kg	⊅		08/20/15 22:02	1
ibenz(a,h)anthracene	0.41		3.5		mg/Kg	≎		08/20/15 22:02	1
	0.35		3.5					08/20/15 22:02	<u>'</u> 1
Dibenzofuran	0.30		7.0		mg/Kg	≎		08/20/15 22:02	1
,3'-Dichlorobenzidine			7.0 3.5		mg/Kg	₩			1 1
,4-Dichlorophenol	0.37				mg/Kg			08/20/15 22:02	
Diethyl phthalate	0.39		3.5		mg/Kg			08/20/15 22:02	1
,4-Dimethylphenol	0.46		3.5		mg/Kg	₩		08/20/15 22:02	1
imethyl phthalate	0.36		3.5		mg/Kg			08/20/15 22:02	1
i-n-butyl phthalate	0.32		3.5		mg/Kg	₩		08/20/15 22:02	1
,6-Dinitro-2-methylphenol	1.8		18		mg/Kg	<u>*</u>		08/20/15 22:02	1
,4-Dinitrophenol	8.8		18		mg/Kg	J.		08/20/15 22:02	1
,4-Dinitrotoluene	0.52		3.5		mg/Kg	₩		08/20/15 22:02	1
,6-Dinitrotoluene	0.44		3.5		mg/Kg	₩.		08/20/15 22:02	1
i-n-octyl phthalate	0.31		3.5		mg/Kg	₩		08/20/15 22:02	1
luoranthene	0.34		3.5		mg/Kg	₩		08/20/15 22:02	1
luorene	0.38		3.5	0.38	mg/Kg	₩		08/20/15 22:02	1
exachlorobenzene	0.41	U	3.5		mg/Kg	₩	08/14/15 10:57	08/20/15 22:02	1
exachlorobutadiene	0.38	U	3.5		mg/Kg	≎		08/20/15 22:02	1
exachlorocyclopentadiene	0.43	U	3.5	0.43	mg/Kg	₩	08/14/15 10:57	08/20/15 22:02	1
lexachloroethane	0.30	U	3.5	0.30	mg/Kg	₩	08/14/15 10:57	08/20/15 22:02	1
ndeno[1,2,3-cd]pyrene	0.30	U	3.5	0.30	mg/Kg	₩	08/14/15 10:57	08/20/15 22:02	1
sophorone	0.35	U	3.5	0.35	mg/Kg	₩	08/14/15 10:57	08/20/15 22:02	1
-Methylnaphthalene	0.40	U	3.5	0.40	mg/Kg	☼	08/14/15 10:57	08/20/15 22:02	1
2-Methylphenol	0.28	U	3.5		mg/Kg		08/14/15 10:57	08/20/15 22:02	1

TestAmerica Savannah

9/17/2015

3

5

-

9

4 4

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Client Sample ID: GB-26 2-4

Lab Sample ID: 680-115544-16

Matrix: Solid Percent Solids: 93.8

Date Collected: 08/10/15 12:20 Date Received: 08/12/15 09:46

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.45	U	3.5	0.45	mg/Kg	<u> </u>	08/14/15 10:57	08/20/15 22:02	10
Naphthalene	0.32	U	3.5	0.32	mg/Kg	₩	08/14/15 10:57	08/20/15 22:02	10
2-Nitroaniline	0.47	U	18	0.47	mg/Kg	₩.	08/14/15 10:57	08/20/15 22:02	10
3-Nitroaniline	0.49	U	18	0.49	mg/Kg	₩	08/14/15 10:57	08/20/15 22:02	10
4-Nitroaniline	0.52	U	18	0.52	mg/Kg	₩	08/14/15 10:57	08/20/15 22:02	10
Nitrobenzene	0.27	U	3.5	0.27	mg/Kg	₩.	08/14/15 10:57	08/20/15 22:02	10
2-Nitrophenol	0.43	U	3.5	0.43	mg/Kg	☼	08/14/15 10:57	08/20/15 22:02	10
4-Nitrophenol	3.5	U	18	3.5	mg/Kg	₩	08/14/15 10:57	08/20/15 22:02	10
N-Nitrosodi-n-propylamine	0.34	U	3.5	0.34	mg/Kg		08/14/15 10:57	08/20/15 22:02	10
N-Nitrosodiphenylamine	0.35	U	3.5	0.35	mg/Kg	₩	08/14/15 10:57	08/20/15 22:02	10
Pentachlorophenol	3.5	U	18	3.5	mg/Kg	₩	08/14/15 10:57	08/20/15 22:02	10
Phenanthrene	0.28	U	3.5	0.28	mg/Kg		08/14/15 10:57	08/20/15 22:02	10
Phenol	0.36	U	3.5	0.36	mg/Kg	₩	08/14/15 10:57	08/20/15 22:02	10
Pyrene	0.37	J	3.5	0.28	mg/Kg	₩	08/14/15 10:57	08/20/15 22:02	10
2,4,5-Trichlorophenol	0.37	U	3.5	0.37	mg/Kg	φ.	08/14/15 10:57	08/20/15 22:02	10
2,4,6-Trichlorophenol	0.31	U	3.5	0.31	mg/Kg	₩	08/14/15 10:57	08/20/15 22:02	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	0	D	41 - 116	08/14/15 10:57	08/20/15 22:02	10
2-Fluorophenol (Surr)	0	D	39 - 114	08/14/15 10:57	08/20/15 22:02	10
Nitrobenzene-d5 (Surr)	0	D	37 - 115	08/14/15 10:57	08/20/15 22:02	10
Phenol-d5 (Surr)	0	D	38 - 122	08/14/15 10:57	08/20/15 22:02	10
Terphenyl-d14 (Surr)	0	D	46 - 126	08/14/15 10:57	08/20/15 22:02	10
2,4,6-Tribromophenol (Surr)	0	D	45 - 129	08/14/15 10:57	08/20/15 22:02	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.1		1.9	0.78	mg/Kg	<u>₩</u>	08/14/15 08:59	08/17/15 20:41	1
Barium	73	В	0.97	0.16	mg/Kg	₩	08/14/15 08:59	08/17/15 20:41	1
Beryllium	0.39		0.39	0.0097	mg/Kg	₩	08/14/15 08:59	08/17/15 20:41	1
Cadmium	0.18	J	0.48	0.097	mg/Kg	₩.	08/14/15 08:59	08/17/15 20:41	1
Chromium	11		0.97	0.20	mg/Kg	₩	08/14/15 08:59	08/17/15 20:41	1
Copper	13		2.4	0.16	mg/Kg	₩	08/14/15 08:59	08/17/15 20:41	1
Lead	110		0.97	0.33	mg/Kg		08/14/15 08:59	08/17/15 20:41	1
Nickel	3.4	J	3.9	0.37	mg/Kg	₩	08/14/15 08:59	08/17/15 20:41	1
Selenium	0.94	U	2.4	0.94	mg/Kg	₩	08/14/15 08:59	08/17/15 20:41	1
Silver	0.058	U	0.97	0.058	mg/Kg		08/14/15 08:59	08/17/15 20:41	1
Vanadium	27		0.97	0.097	mg/Kg	₩	08/14/15 08:59	08/17/15 20:41	1
Zinc	95		1.9	0.68	mg/Kg	₽	08/14/15 08:59	08/17/15 20:41	1

Method: 7471B - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.32		0.019	0.0076	mg/Kg		08/17/15 10:06	08/17/15 22:57	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.22	U	0.53	0.22	mg/Kg	<u> </u>	08/20/15 07:30	08/20/15 12:04	1

Project/Site: Macon MGP #2

Client Sample ID: GB-26 4-6

Client: Geotechnical & Environmental Consultants

Date Collected: 08/10/15 12:25 Date Received: 08/12/15 09:46 Lab Sample ID: 680-115544-17

Matrix: Solid
Percent Solids: 89.2

Method: 8270D - Semivolatil	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.23		1.9		mg/Kg	₽		08/17/15 19:52	
Acenaphthylene	0.20		1.9		mg/Kg	₩.		08/17/15 19:52	
Acetophenone	0.16		1.9		mg/Kg	*		08/17/15 19:52	
Anthracene	0.14		1.9		mg/Kg	₩		08/17/15 19:52	
Atrazine	0.13	U	1.9	0.13	mg/Kg	₩	08/14/15 10:57	08/17/15 19:52	
Benzaldehyde	0.33	U	1.9	0.33	mg/Kg	☼	08/14/15 10:57	08/17/15 19:52	
Benzo[a]anthracene	0.21		1.9		mg/Kg	₩		08/17/15 19:52	
Benzo[a]pyrene	0.29	U	1.9	0.29	mg/Kg	☼	08/14/15 10:57	08/17/15 19:52	
Benzo[b]fluoranthene	0.26	J	1.9	0.21	mg/Kg	☼	08/14/15 10:57	08/17/15 19:52	
Benzo[g,h,i]perylene	0.15	J	1.9	0.12	mg/Kg	₽	08/14/15 10:57	08/17/15 19:52	
Benzo[k]fluoranthene	0.37	U	1.9	0.37	mg/Kg	₩	08/14/15 10:57	08/17/15 19:52	
1,1'-Biphenyl	9.6	U	9.6	9.6	mg/Kg	☼	08/14/15 10:57	08/17/15 19:52	
Bis(2-chloroethoxy)methane	0.22	U	1.9	0.22	mg/Kg	₽	08/14/15 10:57	08/17/15 19:52	
Bis(2-chloroethyl)ether	0.25	U *	1.9	0.25	mg/Kg	≎	08/14/15 10:57	08/17/15 19:52	
bis (2-chloroisopropyl) ether	0.17	U	1.9	0.17	mg/Kg	₩	08/14/15 10:57	08/17/15 19:52	
Bis(2-ethylhexyl) phthalate	0.16	U	1.9	0.16	mg/Kg	₩	08/14/15 10:57	08/17/15 19:52	
4-Bromophenyl phenyl ether	0.20	U	1.9	0.20	mg/Kg	☼	08/14/15 10:57	08/17/15 19:52	
Butyl benzyl phthalate	0.15	U	1.9	0.15	mg/Kg	≎	08/14/15 10:57	08/17/15 19:52	
Caprolactam	0.37	U	1.9	0.37	mg/Kg		08/14/15 10:57	08/17/15 19:52	
Carbazole	0.17	U	1.9	0.17	mg/Kg	₩	08/14/15 10:57	08/17/15 19:52	
4-Chloroaniline	0.29	U	3.7	0.29	mg/Kg	≎	08/14/15 10:57	08/17/15 19:52	
4-Chloro-3-methylphenol	0.20		1.9		mg/Kg		08/14/15 10:57	08/17/15 19:52	
2-Chloronaphthalene	0.20		1.9		mg/Kg	☼	08/14/15 10:57	08/17/15 19:52	
2-Chlorophenol	0.22	U	1.9		mg/Kg	☼	08/14/15 10:57	08/17/15 19:52	
4-Chlorophenyl phenyl ether	0.25		1.9		mg/Kg	₩	08/14/15 10:57	08/17/15 19:52	
Chrysene	0.18	J	1.9		mg/Kg	₩	08/14/15 10:57	08/17/15 19:52	
Dibenz(a,h)anthracene	0.22		1.9		mg/Kg	≎		08/17/15 19:52	
Dibenzofuran	0.19		1.9		mg/Kg			08/17/15 19:52	
3,3'-Dichlorobenzidine	0.16		3.7		mg/Kg	≎		08/17/15 19:52	
2,4-Dichlorophenol	0.20		1.9		mg/Kg	☼		08/17/15 19:52	
Diethyl phthalate	0.21		1.9		mg/Kg			08/17/15 19:52	
2,4-Dimethylphenol	0.25		1.9		mg/Kg	≎		08/17/15 19:52	
Dimethyl phthalate	0.19		1.9		mg/Kg	☆		08/17/15 19:52	
Di-n-butyl phthalate	0.17		1.9		mg/Kg			08/17/15 19:52	
4,6-Dinitro-2-methylphenol	0.96		9.6		mg/Kg	₽		08/17/15 19:52	
2,4-Dinitrophenol	4.7		9.6		mg/Kg			08/17/15 19:52	
2,4-Dinitrotoluene	0.28		1.9					08/17/15 19:52	
	0.28				mg/Kg mg/Kg	т Ф		08/17/15 19:52	
2,6-Dinitrotoluene			1.9			≎		08/17/15 19:52	
Di-n-octyl phthalate	0.16		1.9		mg/Kg			08/17/15 19:52	
Fluoranthene	0.36		1.9		mg/Kg				
Fluorene	0.20		1.9		mg/Kg	☆		08/17/15 19:52 08/17/15 19:52	
Hexachlorobenzene	0.22		1.9		mg/Kg				
Hexachlorobutadiene	0.20		1.9		mg/Kg	₩ ₩		08/17/15 19:52	
Hexachlorocyclopentadiene	0.23		1.9		mg/Kg	☆		08/17/15 19:52	
Hexachloroethane	0.16		1.9		mg/Kg			08/17/15 19:52	
Indeno[1,2,3-cd]pyrene	0.16		1.9		mg/Kg	ψ.		08/17/15 19:52	
Isophorone	0.19		1.9		mg/Kg	Ψ.		08/17/15 19:52	
2-Methylnaphthalene	0.21		1.9		mg/Kg			08/17/15 19:52	
2-Methylphenol	0.15	U	1.9	0.15	mg/Kg	₩	08/14/15 10:57	08/17/15 19:52	

TestAmerica Savannah

9/17/2015

Project/Site: Macon MGP #2

Client Sample ID: GB-26 4-6

Date Collected: 08/10/15 12:25

Date Received: 08/12/15 09:46

Client: Geotechnical & Environmental Consultants

Lab Sample ID: 680-115544-17

Matrix: Solid

Percent Solids: 89.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.24	U	1.9	0.24	mg/Kg	<u> </u>	08/14/15 10:57	08/17/15 19:52	5
Naphthalene	0.17	U	1.9	0.17	mg/Kg	☼	08/14/15 10:57	08/17/15 19:52	5
2-Nitroaniline	0.25	U	9.6	0.25	mg/Kg	₽	08/14/15 10:57	08/17/15 19:52	5
3-Nitroaniline	0.26	U	9.6	0.26	mg/Kg	☼	08/14/15 10:57	08/17/15 19:52	5
4-Nitroaniline	0.28	U	9.6	0.28	mg/Kg	☼	08/14/15 10:57	08/17/15 19:52	5
Nitrobenzene	0.15	U	1.9	0.15	mg/Kg	₽	08/14/15 10:57	08/17/15 19:52	5
2-Nitrophenol	0.23	U	1.9	0.23	mg/Kg	☼	08/14/15 10:57	08/17/15 19:52	5
4-Nitrophenol	1.9	U	9.6	1.9	mg/Kg	☼	08/14/15 10:57	08/17/15 19:52	5
N-Nitrosodi-n-propylamine	0.18	U	1.9	0.18	mg/Kg	₽	08/14/15 10:57	08/17/15 19:52	5
N-Nitrosodiphenylamine	0.19	U	1.9	0.19	mg/Kg	☼	08/14/15 10:57	08/17/15 19:52	5
Pentachlorophenol	1.9	U	9.6	1.9	mg/Kg	☼	08/14/15 10:57	08/17/15 19:52	5
Phenanthrene	0.19	J	1.9	0.15	mg/Kg	₽	08/14/15 10:57	08/17/15 19:52	5
Phenol	0.19	U	1.9	0.19	mg/Kg	☼	08/14/15 10:57	08/17/15 19:52	5
Pyrene	0.28	J	1.9	0.15	mg/Kg	☼	08/14/15 10:57	08/17/15 19:52	5
2,4,5-Trichlorophenol	0.20	U	1.9	0.20	mg/Kg	\$	08/14/15 10:57	08/17/15 19:52	5
2,4,6-Trichlorophenol	0.16	U	1.9	0.16	mg/Kg	₽	08/14/15 10:57	08/17/15 19:52	5
Surrogate	%Recovery	Qualifier	l imits				Prenared	Analyzed	Dil Fac

Surrogate	%Recovery C	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	75		41 - 116	08/14/15 10:57	08/17/15 19:52	5
2-Fluorophenol (Surr)	55		39 - 114	08/14/15 10:57	08/17/15 19:52	5
Nitrobenzene-d5 (Surr)	59		37 - 115	08/14/15 10:57	08/17/15 19:52	5
Phenol-d5 (Surr)	58		38 - 122	08/14/15 10:57	08/17/15 19:52	5
Terphenyl-d14 (Surr)	76		46 - 126	08/14/15 10:57	08/17/15 19:52	5
2,4,6-Tribromophenol (Surr)	77		45 - 129	08/14/15 10:57	08/17/15 19:52	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.6		1.9	0.76	mg/Kg	<u> </u>	08/14/15 08:59	08/17/15 20:32	1
Barium	130	В	0.95	0.15	mg/Kg	₩	08/14/15 08:59	08/17/15 20:32	1
Beryllium	1.2		0.38	0.0095	mg/Kg	₩	08/14/15 08:59	08/17/15 20:32	1
Cadmium	0.095	U	0.48	0.095	mg/Kg	₩.	08/14/15 08:59	08/17/15 20:32	1
Chromium	12		0.95	0.20	mg/Kg	₩	08/14/15 08:59	08/17/15 20:32	1
Copper	11		2.4	0.16	mg/Kg	₩	08/14/15 08:59	08/17/15 20:32	1
Lead	44		0.95	0.32	mg/Kg	₩.	08/14/15 08:59	08/17/15 20:32	1
Nickel	4.5		3.8	0.36	mg/Kg	₩	08/14/15 08:59	08/17/15 20:32	1
Selenium	0.92	U	2.4	0.92	mg/Kg	₩	08/14/15 08:59	08/17/15 20:32	1
Silver	0.057	U	0.95	0.057	mg/Kg	₩.	08/14/15 08:59	08/17/15 20:32	1
Vanadium	22		0.95	0.095	mg/Kg	☼	08/14/15 08:59	08/17/15 20:32	1
Zinc	85		1.9	0.67	mg/Kg	₩	08/14/15 08:59	08/17/15 20:32	1

Method: 7471B - Mercury (CVAA) Analyte Mercury	Result	Qualifier	RL 0.020	MDL 0.0082		D <u>₩</u>	Prepared 08/17/15 10:06	Analyzed 08/17/15 23:00	Dil Fac
General Chemistry Analyte Cyanide, Total	Result	Qualifier U	RL 0.56	MDL 0.24	Unit mg/Kg	D 章	Prepared 08/20/15 07:30	Analyzed 08/20/15 12:05	Dil Fac

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

TestAmerica Job ID: 680-115544-1

Lab Sample ID: 680-115544-18

Matrix: Solid Percent Solids: 69.6

Client Sample ID: GB-27 3-5

Date Collected: 08/10/15 12:33

Date Received: 08/12/15 09:46

Method: 8270D - Semivolatilo Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.59		4.7		mg/Kg	**		08/20/15 22:27	1
Acenaphthylene	0.52		4.7		mg/Kg	.		08/20/15 22:27	1
Acetophenone	0.40	U	4.7		mg/Kg	;		08/20/15 22:27	
Anthracene	1.4	J	4.7	0.36	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
Atrazine	0.33		4.7		mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
Benzaldehyde	0.83	U	4.7		mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
Benzo[a]anthracene	3.4	J	4.7		mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
Benzo[a]pyrene	2.9	J	4.7	0.75	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
Benzo[b]fluoranthene	3.8	J	4.7	0.55	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
Benzo[g,h,i]perylene	2.1	J	4.7	0.32	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
Benzo[k]fluoranthene	2.0	J	4.7	0.93	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
1,1'-Biphenyl	24	U	24	24	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
Bis(2-chloroethoxy)methane	0.56	U	4.7	0.56	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
Bis(2-chloroethyl)ether	0.65	U	4.7	0.65	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
bis (2-chloroisopropyl) ether	0.43	U	4.7	0.43	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
Bis(2-ethylhexyl) phthalate	0.42	U	4.7	0.42	mg/Kg		08/14/15 10:57	08/20/15 22:27	1
4-Bromophenyl phenyl ether	0.52	U	4.7	0.52	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
Butyl benzyl phthalate	0.37	U	4.7	0.37	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
Caprolactam	0.95	U	4.7	0.95	mg/Kg	φ.	08/14/15 10:57	08/20/15 22:27	1
Carbazole	1.2	J	4.7	0.43	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
4-Chloroaniline	0.75	U	9.5	0.75	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
4-Chloro-3-methylphenol	0.50	U	4.7	0.50	mg/Kg		08/14/15 10:57	08/20/15 22:27	1
2-Chloronaphthalene	0.50	U	4.7	0.50	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
2-Chlorophenol	0.57	U	4.7	0.57	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
4-Chlorophenyl phenyl ether	0.63	U	4.7	0.63	mg/Kg	φ.	08/14/15 10:57	08/20/15 22:27	1
Chrysene	3.4	J	4.7	0.30	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
Dibenz(a,h)anthracene	0.63	J	4.7	0.56	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
Dibenzofuran	0.47	U	4.7	0.47	mg/Kg	Φ.	08/14/15 10:57	08/20/15 22:27	1
3,3'-Dichlorobenzidine	0.40	U	9.5	0.40	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
2,4-Dichlorophenol	0.50	U	4.7	0.50	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
Diethyl phthalate	0.53	Ü	4.7	0.53	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
2,4-Dimethylphenol	0.63	U	4.7	0.63	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
Dimethyl phthalate	0.49	U	4.7		mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
Di-n-butyl phthalate	0.43	U	4.7		mg/Kg		08/14/15 10:57	08/20/15 22:27	10
4,6-Dinitro-2-methylphenol	2.4	U	24		mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
2,4-Dinitrophenol	12	U	24		mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	1
2,4-Dinitrotoluene	0.70		4.7		mg/Kg	.		08/20/15 22:27	10
2,6-Dinitrotoluene	0.60		4.7		mg/Kg	₩		08/20/15 22:27	1
Di-n-octyl phthalate	0.42		4.7		mg/Kg	₩		08/20/15 22:27	1
Fluoranthene	7.3		4.7		mg/Kg			08/20/15 22:27	1
Fluorene	0.69	J	4.7		mg/Kg	₩		08/20/15 22:27	1
Hexachlorobenzene	0.56		4.7		mg/Kg	₩		08/20/15 22:27	1
Hexachlorobutadiene	0.52		4.7		mg/Kg			08/20/15 22:27	
Hexachlorocyclopentadiene	0.59		4.7		mg/Kg	₽		08/20/15 22:27	1
Hexachloroethane	0.40		4.7		mg/Kg	₩		08/20/15 22:27	1
Indeno[1,2,3-cd]pyrene	1.8		4.7		mg/Kg			08/20/15 22:27	
Isophorone	0.47		4.7		mg/Kg	₩		08/20/15 22:27	1
2-Methylnaphthalene	0.47		4.7		mg/Kg	₽		08/20/15 22:27	1
2-Methylphenol	0.39		4.7		mg/Kg			08/20/15 22:27	' <u>'</u> 1

TestAmerica Savannah

2

b

8

10

11

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

Analyte

Cyanide, Total

Client Sample ID: GB-27 3-5

Lab Sample ID: 680-115544-18

Date Collected: 08/10/15 12:33 **Matrix: Solid** Date Received: 08/12/15 09:46 Percent Solids: 69.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.62	U	4.7	0.62	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	10
Naphthalene	0.43	U	4.7	0.43	mg/Kg	☼	08/14/15 10:57	08/20/15 22:27	10
2-Nitroaniline	0.65	U	24	0.65	mg/Kg	₽	08/14/15 10:57	08/20/15 22:27	10
3-Nitroaniline	0.66	U	24	0.66	mg/Kg	☼	08/14/15 10:57	08/20/15 22:27	10
4-Nitroaniline	0.70	U	24	0.70	mg/Kg	☼	08/14/15 10:57	08/20/15 22:27	10
Nitrobenzene	0.37	U	4.7	0.37	mg/Kg	₽	08/14/15 10:57	08/20/15 22:27	10
2-Nitrophenol	0.59	U	4.7	0.59	mg/Kg	☼	08/14/15 10:57	08/20/15 22:27	10
4-Nitrophenol	4.7	U	24	4.7	mg/Kg	≎	08/14/15 10:57	08/20/15 22:27	10
N-Nitrosodi-n-propylamine	0.46	U	4.7	0.46	mg/Kg	₽	08/14/15 10:57	08/20/15 22:27	10
N-Nitrosodiphenylamine	0.47	U	4.7	0.47	mg/Kg	≎	08/14/15 10:57	08/20/15 22:27	10
Pentachlorophenol	4.7	U	24	4.7	mg/Kg	≎	08/14/15 10:57	08/20/15 22:27	10
Phenanthrene	5.5		4.7	0.39	mg/Kg	ф	08/14/15 10:57	08/20/15 22:27	10
Phenol	0.49	U	4.7	0.49	mg/Kg	≎	08/14/15 10:57	08/20/15 22:27	10
Pyrene	5.3		4.7	0.39	mg/Kg	☼	08/14/15 10:57	08/20/15 22:27	10
2,4,5-Trichlorophenol	0.50	U	4.7	0.50	mg/Kg		08/14/15 10:57	08/20/15 22:27	10
2,4,6-Trichlorophenol	0.42	U	4.7	0.42	mg/Kg	₩	08/14/15 10:57	08/20/15 22:27	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	0	D	41 - 116				08/14/15 10:57	08/20/15 22:27	10
2-Fluorophenol (Surr)	0	D	39 - 114				08/14/15 10:57	08/20/15 22:27	10
Nitrobenzene-d5 (Surr)	0	D	37 - 115				08/14/15 10:57	08/20/15 22:27	10
Phenol-d5 (Surr)	0	D	38 - 122				08/14/15 10:57	08/20/15 22:27	10
Terphenyl-d14 (Surr)	0	D	46 - 126				08/14/15 10:57	08/20/15 22:27	10
2,4,6-Tribromophenol (Surr)	0	D	45 - 129				08/14/15 10:57	08/20/15 22:27	10
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.4	J	2.6	1.0	mg/Kg	₩	08/14/15 08:59	08/17/15 20:45	1
Barium	56	В	1.3	0.21	mg/Kg	≎	08/14/15 08:59	08/17/15 20:45	1
Beryllium	0.36	1	0.52	0.013	mg/Kg	₩	08/14/15 08:59	08/17/15 20:45	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.4	J	2.6	1.0	mg/Kg	<u> </u>	08/14/15 08:59	08/17/15 20:45	1
Barium	56	В	1.3	0.21	mg/Kg	₩	08/14/15 08:59	08/17/15 20:45	1
Beryllium	0.36	J	0.52	0.013	mg/Kg	₩	08/14/15 08:59	08/17/15 20:45	1
Cadmium	0.16	J	0.65	0.13	mg/Kg	₩.	08/14/15 08:59	08/17/15 20:45	1
Chromium	11		1.3	0.27	mg/Kg	₩	08/14/15 08:59	08/17/15 20:45	1
Copper	12		3.3	0.22	mg/Kg	☼	08/14/15 08:59	08/17/15 20:45	1
Lead	100		1.3	0.44	mg/Kg	₩.	08/14/15 08:59	08/17/15 20:45	1
Nickel	2.7	J	5.2	0.50	mg/Kg	₩	08/14/15 08:59	08/17/15 20:45	1
Selenium	1.3	U	3.3	1.3	mg/Kg	☼	08/14/15 08:59	08/17/15 20:45	1
Silver	0.078	U	1.3	0.078	mg/Kg	₩.	08/14/15 08:59	08/17/15 20:45	1
Vanadium	17		1.3	0.13	mg/Kg	₩	08/14/15 08:59	08/17/15 20:45	1
Zinc	68		2.6	0.91	mg/Kg	₩	08/14/15 08:59	08/17/15 20:45	1

Method: 7471B - Mercury (CVAA) Analyte Mercury	Result	Qualifier	RL 0.14	MDL 0.058	Unit mg/Kg	D 豪	Prepared 08/17/15 10:06	Analyzed 08/18/15 09:36	Dil Fac	
General Chemistry										

RL

0.70

MDL Unit

0.29 mg/Kg

Result Qualifier

0.29 U

TestAmerica Savannah

Analyzed

Prepared

 ☼
 08/20/15 07:30
 08/20/15 12:06

Dil Fac

Client Sample Results

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Date Collected: 08/10/15 12:45

Date Received: 08/12/15 09:46

2-Methylnaphthalene

2-Methylphenol

Client Sample ID: GB-27 8-10

TestAmerica Job ID: 680-115544-1

Lab Sample ID: 680-115544-19

Matrix: Solid
Percent Solids: 91.3

3	
-	

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.45	U	3.6	0.45	mg/Kg	<u> </u>	08/14/15 10:57	08/17/15 20:42	10
Acenaphthylene	0.39	U	3.6	0.39	mg/Kg	₩	08/14/15 10:57	08/17/15 20:42	10
Acetophenone	0.31	U	3.6	0.31	mg/Kg	₩	08/14/15 10:57	08/17/15 20:42	10
Anthracene	0.27	U	3.6	0.27	mg/Kg	₽	08/14/15 10:57	08/17/15 20:42	10
Atrazine	0.25	U	3.6	0.25	mg/Kg	₩	08/14/15 10:57	08/17/15 20:42	10
Benzaldehyde	0.64	U	3.6	0.64	mg/Kg	₩	08/14/15 10:57	08/17/15 20:42	10
Benzo[a]anthracene	0.30	U	3.6	0.30	mg/Kg		08/14/15 10:57	08/17/15 20:42	10
Benzo[a]pyrene	0.57	U	3.6	0.57	mg/Kg	☼	08/14/15 10:57	08/17/15 20:42	10
Benzo[b]fluoranthene	0.42	U	3.6	0.42	mg/Kg	☼	08/14/15 10:57	08/17/15 20:42	10
Benzo[g,h,i]perylene	0.24	U	3.6	0.24	mg/Kg		08/14/15 10:57	08/17/15 20:42	10
Benzo[k]fluoranthene	0.71	U	3.6	0.71	mg/Kg	₩	08/14/15 10:57	08/17/15 20:42	10
1,1'-Biphenyl	19	U	19	19	mg/Kg	☼	08/14/15 10:57	08/17/15 20:42	10
Bis(2-chloroethoxy)methane	0.43	U	3.6	0.43	mg/Kg		08/14/15 10:57	08/17/15 20:42	10
Bis(2-chloroethyl)ether	0.49	U *	3.6		mg/Kg	₩	08/14/15 10:57	08/17/15 20:42	10
bis (2-chloroisopropyl) ether	0.33	U	3.6	0.33	mg/Kg	≎	08/14/15 10:57	08/17/15 20:42	10
Bis(2-ethylhexyl) phthalate	0.32	U	3.6	0.32	mg/Kg		08/14/15 10:57	08/17/15 20:42	10
4-Bromophenyl phenyl ether	0.39	U	3.6		mg/Kg	₩	08/14/15 10:57	08/17/15 20:42	10
Butyl benzyl phthalate	0.28	U	3.6		mg/Kg	₩	08/14/15 10:57	08/17/15 20:42	10
Caprolactam	0.72	U	3.6		mg/Kg		08/14/15 10:57	08/17/15 20:42	10
Carbazole	0.33	U	3.6		mg/Kg	₩	08/14/15 10:57	08/17/15 20:42	10
4-Chloroaniline	0.57	U	7.2		mg/Kg	☆	08/14/15 10:57	08/17/15 20:42	10
4-Chloro-3-methylphenol	0.38	Ü	3.6		mg/Kg			08/17/15 20:42	10
2-Chloronaphthalene	0.38	U	3.6		mg/Kg	₩	08/14/15 10:57	08/17/15 20:42	10
2-Chlorophenol	0.44		3.6		mg/Kg	₩		08/17/15 20:42	10
4-Chlorophenyl phenyl ether	0.48	U	3.6		mg/Kg		08/14/15 10:57	08/17/15 20:42	10
Chrysene	0.23		3.6		mg/Kg	₩	08/14/15 10:57	08/17/15 20:42	10
Dibenz(a,h)anthracene	0.43		3.6		mg/Kg	₩		08/17/15 20:42	10
Dibenzofuran	0.36		3.6		mg/Kg	 .		08/17/15 20:42	10
3,3'-Dichlorobenzidine	0.31		7.2		mg/Kg	₽		08/17/15 20:42	10
2,4-Dichlorophenol	0.38		3.6		mg/Kg	₽		08/17/15 20:42	10
Diethyl phthalate	0.41		3.6	0.41				08/17/15 20:42	10
2,4-Dimethylphenol	0.48		3.6		mg/Kg	₩		08/17/15 20:42	10
Dimethyl phthalate	0.37		3.6		mg/Kg	₩		08/17/15 20:42	10
Di-n-butyl phthalate	0.33		3.6		mg/Kg			08/17/15 20:42	10
4,6-Dinitro-2-methylphenol	1.9		19	1.9	mg/Kg	₩		08/17/15 20:42	10
2,4-Dinitrophenol	9.1		19		mg/Kg	₩		08/17/15 20:42	10
2,4-Dinitrotoluene	0.54		3.6		mg/Kg	· · · · · · · · · · · · · · · · · · ·		08/17/15 20:42	
2,6-Dinitrotoluene	0.46		3.6		mg/Kg	₩		08/17/15 20:42	10
Di-n-octyl phthalate	0.32		3.6		mg/Kg	≎		08/17/15 20:42	10
Fluoranthene	0.53		3.6		mg/Kg	 ☆		08/17/15 20:42	10
Fluorene	0.39		3.6		mg/Kg	≎		08/17/15 20:42	10
Hexachlorobenzene	0.43		3.6		mg/Kg	₩		08/17/15 20:42	10
Hexachlorobutadiene	0.39		3.6		mg/Kg	 ☆		08/17/15 20:42	
Hexachlorocyclopentadiene	0.45		3.6		mg/Kg	≎		08/17/15 20:42	1
Hexachloroethane	0.45		3.6		mg/Kg	≎		08/17/15 20:42	10
Indeno[1,2,3-cd]pyrene	0.31		3.6		mg/Kg	· · · · · · · · · · · · · · · · · · ·		08/17/15 20:42	!\ 10
	0.36		3.6		mg/Kg	≎		08/17/15 20:42	10
Isophorone	0.30	0	3.0	0.50	mg/rtg	Τ.	00/14/10 10.0/	00/17/15 20.42	11

TestAmerica Savannah

© 08/14/15 10:57 08/17/15 20:42

© 08/14/15 10:57 08/17/15 20:42

3.6

3.6

0.42 mg/Kg

0.30 mg/Kg

0.42 U

0.30 U

Project/Site: Macon MGP #2

Analyte

Cyanide, Total

Client Sample ID: GB-27 8-10

Client: Geotechnical & Environmental Consultants

Lab Sample ID: 680-115544-19 Date Collected: 08/10/15 12:45 **Matrix: Solid**

Date Received: 08/12/15 09:46 Percent Solids: 91.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
3 & 4 Methylphenol	0.47	U	3.6	0.47	mg/Kg	<u></u>	08/14/15 10:57	08/17/15 20:42	1
Naphthalene	0.33	U	3.6	0.33	mg/Kg	☼	08/14/15 10:57	08/17/15 20:42	1
2-Nitroaniline	0.49	Ü	19	0.49	mg/Kg	₽	08/14/15 10:57	08/17/15 20:42	10
3-Nitroaniline	0.50	U	19	0.50	mg/Kg	☼	08/14/15 10:57	08/17/15 20:42	10
4-Nitroaniline	0.54	U	19	0.54	mg/Kg	☼	08/14/15 10:57	08/17/15 20:42	10
Nitrobenzene	0.28	Ü	3.6	0.28	mg/Kg	₽	08/14/15 10:57	08/17/15 20:42	10
2-Nitrophenol	0.45	U	3.6	0.45	mg/Kg	☼	08/14/15 10:57	08/17/15 20:42	10
4-Nitrophenol	3.6	U	19	3.6	mg/Kg	☼	08/14/15 10:57	08/17/15 20:42	10
N-Nitrosodi-n-propylamine	0.35	Ü	3.6	0.35	mg/Kg	ф.	08/14/15 10:57	08/17/15 20:42	10
N-Nitrosodiphenylamine	0.36	U	3.6	0.36	mg/Kg	☼	08/14/15 10:57	08/17/15 20:42	10
Pentachlorophenol	3.6	U	19	3.6	mg/Kg	☼	08/14/15 10:57	08/17/15 20:42	10
Phenanthrene	0.42	J	3.6		mg/Kg	φ.	08/14/15 10:57	08/17/15 20:42	10
Phenol	0.37	U	3.6		mg/Kg	₽	08/14/15 10:57	08/17/15 20:42	10
Pyrene	0.41	J	3.6		mg/Kg	☼	08/14/15 10:57	08/17/15 20:42	10
2,4,5-Trichlorophenol	0.38		3.6		mg/Kg	φ.	08/14/15 10:57	08/17/15 20:42	10
2,4,6-Trichlorophenol	0.32	U	3.6		mg/Kg	₩	08/14/15 10:57	08/17/15 20:42	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	0	\overline{D}	41 - 116				08/14/15 10:57	08/17/15 20:42	
2-Fluorophenol (Surr)	0	D	39 - 114				08/14/15 10:57	08/17/15 20:42	10
Nitrobenzene-d5 (Surr)	0	D	37 - 115				08/14/15 10:57	08/17/15 20:42	10
Phenol-d5 (Surr)	0	D	38 - 122				08/14/15 10:57	08/17/15 20:42	10
Terphenyl-d14 (Surr)	0	D	46 - 126				08/14/15 10:57	08/17/15 20:42	10
2,4,6-Tribromophenol (Surr)	0	D	45 - 129				08/14/15 10:57	08/17/15 20:42	10
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	2.4		2.0		mg/Kg	₩	08/14/15 08:59	08/17/15 20:14	
Barium	40	В	0.99	0.16	mg/Kg	☼	08/14/15 08:59	08/17/15 20:14	•
Beryllium	0.14	J	0.39	0.0099	mg/Kg	☼	08/14/15 08:59	08/17/15 20:14	•
Cadmium	0.18	J	0.49	0.099	mg/Kg	₽	08/14/15 08:59	08/17/15 20:14	
Chromium	9.3		0.99	0.21	mg/Kg	☼	08/14/15 08:59	08/17/15 20:14	•
Copper	11		2.5	0.17	mg/Kg	₩	08/14/15 08:59	08/17/15 20:14	
Lead	110		0.99	0.34	mg/Kg	₽	08/14/15 08:59	08/17/15 20:14	
Nickel	2.0	J	3.9	0.38	mg/Kg	₩	08/14/15 08:59	08/17/15 20:14	•
Selenium	0.96	U	2.5	0.96	mg/Kg	₩	08/14/15 08:59	08/17/15 20:14	
Silver	0.059	U	0.99	0.059	mg/Kg	₽	08/14/15 08:59	08/17/15 20:14	
Vanadium	17		0.99		mg/Kg	☼	08/14/15 08:59	08/17/15 20:14	
Zinc	85		2.0	0.69	mg/Kg	₩	08/14/15 08:59	08/17/15 20:14	•
Method: 7471B - Mercury (CVA) Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.15		0.021	0.0084				08/17/15 23:06	
General Chemistry									
Sonorui Shonnoti y									

Analyzed

Prepared

□ 08/20/15 07:30 □ 08/20/15 12:07

RL

0.54

MDL Unit

0.23 mg/Kg

Result Qualifier

0.23 U

Dil Fac

Client Sample Results

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Date Collected: 08/10/15 12:48

Date Received: 08/12/15 09:46

Client Sample ID: GB-27 13-15

TestAmerica Job ID: 680-115544-1

Lab Sample ID: 680-115544-20

Matrix: Solid

Percent Solids: 85.0	

Method: 8270D - Semivolatilo	Result (Qualifier	ŘL —	MDL		D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.48		3.9		mg/Kg	₩	08/14/15 10:57		1
Acenaphthylene	0.42 \		3.9		mg/Kg	.		08/17/15 21:08	1
Acetophenone	0.33 \		3.9		mg/Kg			08/17/15 21:08	1
Anthracene	0.29 \		3.9		mg/Kg	.		08/17/15 21:08	1
Atrazine	0.27 l		3.9		mg/Kg	\$		08/17/15 21:08	1
Benzaldehyde	ا 86.0	U	3.9		mg/Kg	.	08/14/15 10:57	08/17/15 21:08	1
Benzo[a]anthracene	0.37	J	3.9		mg/Kg	₩	08/14/15 10:57	08/17/15 21:08	1
Benzo[a]pyrene	0.61 l	U	3.9	0.61	mg/Kg	≎	08/14/15 10:57	08/17/15 21:08	1
Benzo[b]fluoranthene	0.46	J	3.9		mg/Kg	≎	08/14/15 10:57	08/17/15 21:08	1
Benzo[g,h,i]perylene	0.32	J	3.9	0.26	mg/Kg	₽	08/14/15 10:57	08/17/15 21:08	
Benzo[k]fluoranthene	0.76 l	U	3.9	0.76	mg/Kg	☆	08/14/15 10:57	08/17/15 21:08	•
1,1'-Biphenyl	20 l	U	20	20	mg/Kg	₩	08/14/15 10:57	08/17/15 21:08	•
Bis(2-chloroethoxy)methane	0.46 l	Ú	3.9	0.46	mg/Kg	≎	08/14/15 10:57	08/17/15 21:08	
3is(2-chloroethyl)ether	0.53 l	U *	3.9	0.53	mg/Kg	₩	08/14/15 10:57	08/17/15 21:08	
ois (2-chloroisopropyl) ether	0.35 l	U	3.9	0.35	mg/Kg	☼	08/14/15 10:57	08/17/15 21:08	
Bis(2-ethylhexyl) phthalate	0.34 l	Ú	3.9	0.34	mg/Kg	.	08/14/15 10:57	08/17/15 21:08	
1-Bromophenyl phenyl ether	0.42 l	U	3.9	0.42	mg/Kg	₩	08/14/15 10:57	08/17/15 21:08	
Butyl benzyl phthalate	0.30 l	U	3.9	0.30	mg/Kg	₽	08/14/15 10:57	08/17/15 21:08	
Caprolactam	0.77 l	Ú	3.9	0.77	mg/Kg		08/14/15 10:57	08/17/15 21:08	
Carbazole	0.35 ไ	U	3.9	0.35	mg/Kg	₽	08/14/15 10:57	08/17/15 21:08	
l-Chloroaniline	0.61 l	U	7.7	0.61	mg/Kg	₩	08/14/15 10:57	08/17/15 21:08	
-Chloro-3-methylphenol	0.41 l	Ú	3.9		mg/Kg		08/14/15 10:57	08/17/15 21:08	
2-Chloronaphthalene	0.41 l	U	3.9		mg/Kg	≎	08/14/15 10:57	08/17/15 21:08	
2-Chlorophenol	0.47 l		3.9		mg/Kg	⇔		08/17/15 21:08	
I-Chlorophenyl phenyl ether	0.51 l		3.9		mg/Kg	. .		08/17/15 21:08	
Chrysene	0.35		3.9		mg/Kg	₩		08/17/15 21:08	
Dibenz(a,h)anthracene	0.46 l		3.9		mg/Kg	₩		08/17/15 21:08	
Dibenzofuran	0.39 (3.9		mg/Kg			08/17/15 21:08	
3,3'-Dichlorobenzidine	0.33 l		7.7		mg/Kg	₽		08/17/15 21:08	
2,4-Dichlorophenol	0.41 l		3.9		mg/Kg	₩		08/17/15 21:08	
Diethyl phthalate	0.43 l		3.9		mg/Kg			08/17/15 21:08	
2,4-Dimethylphenol	0. 1 3 (3.9		mg/Kg	₽		08/17/15 21:08	
Dimethyl phthalate	0.40 l		3.9		mg/Kg			08/17/15 21:08	
Di-n-butyl phthalate	0.40 t		3.9		mg/Kg			08/17/15 21:08	
1,6-Dinitro-2-methylphenol	2.0 l		20		mg/Kg	☆		08/17/15 21:08	
•						≎			
2,4-Dinitrophenol	9.7 l		20		mg/Kg			08/17/15 21:08	
2,4-Dinitrotoluene	0.57 (3.9		mg/Kg			08/17/15 21:08	
2,6-Dinitrotoluene	0.49 \		3.9		mg/Kg	₽		08/17/15 21:08	
Di-n-octyl phthalate	0.34 \		3.9		mg/Kg			08/17/15 21:08	
luoranthene 	0.61		3.9		mg/Kg	φ.		08/17/15 21:08	
luorene	0.42 \		3.9		mg/Kg	φ.		08/17/15 21:08	
Hexachlorobenzene	0.46 ↓		3.9		mg/Kg	::::::::::::::::::::::::::::::::::::::		08/17/15 21:08	
Hexachlorobutadiene	0.42 \		3.9		mg/Kg			08/17/15 21:08	
Hexachlorocyclopentadiene	0.48 \		3.9		mg/Kg	*		08/17/15 21:08	
Hexachloroethane	0.33 \		3.9		mg/Kg			08/17/15 21:08	
ndeno[1,2,3-cd]pyrene	0.33 \	U	3.9	0.33	mg/Kg	₽	08/14/15 10:57	08/17/15 21:08	
sophorone	0.39 เ	U	3.9	0.39	mg/Kg	₽	08/14/15 10:57	08/17/15 21:08	
2-Methylnaphthalene	0.44 l	U	3.9	0.44	mg/Kg	≎	08/14/15 10:57	08/17/15 21:08	
2-Methylphenol	0.32 l	Ú	3.9	0.32	mg/Kg		08/14/15 10:57	08/17/15 21:08	

TestAmerica Savannah

Page 45 of 80

9/17/2015

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

Client Sample ID: GB-27 13-15

Date Collected: 08/10/15 12:48 Date Received: 08/12/15 09:46

Lab Sample ID: 680-115544-20

Matrix: Solid

Percent Solids: 85.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.50	U	3.9	0.50	mg/Kg	₩	08/14/15 10:57	08/17/15 21:08	10
Naphthalene	0.35	U	3.9	0.35	mg/Kg	₩	08/14/15 10:57	08/17/15 21:08	10
2-Nitroaniline	0.53	U	20	0.53	mg/Kg	₽	08/14/15 10:57	08/17/15 21:08	10
3-Nitroaniline	0.54	U	20	0.54	mg/Kg	☼	08/14/15 10:57	08/17/15 21:08	10
4-Nitroaniline	0.57	U	20	0.57	mg/Kg	₩	08/14/15 10:57	08/17/15 21:08	10
Nitrobenzene	0.30	U	3.9	0.30	mg/Kg	₩.	08/14/15 10:57	08/17/15 21:08	10
2-Nitrophenol	0.48	U	3.9	0.48	mg/Kg	☼	08/14/15 10:57	08/17/15 21:08	10
4-Nitrophenol	3.9	U	20	3.9	mg/Kg	☼	08/14/15 10:57	08/17/15 21:08	10
N-Nitrosodi-n-propylamine	0.37	U	3.9	0.37	mg/Kg	φ.	08/14/15 10:57	08/17/15 21:08	10
N-Nitrosodiphenylamine	0.39	U	3.9	0.39	mg/Kg	☼	08/14/15 10:57	08/17/15 21:08	10
Pentachlorophenol	3.9	U	20	3.9	mg/Kg	☼	08/14/15 10:57	08/17/15 21:08	10
Phenanthrene	0.34	J	3.9	0.32	mg/Kg		08/14/15 10:57	08/17/15 21:08	10
Phenol	0.40	U	3.9	0.40	mg/Kg	☼	08/14/15 10:57	08/17/15 21:08	10
Pyrene	0.63	J	3.9	0.32	mg/Kg	☼	08/14/15 10:57	08/17/15 21:08	10
2,4,5-Trichlorophenol	0.41	U	3.9	0.41	mg/Kg	₽	08/14/15 10:57	08/17/15 21:08	10
2,4,6-Trichlorophenol	0.34	U	3.9	0.34	mg/Kg	≎	08/14/15 10:57	08/17/15 21:08	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2 Eluorohinhonyl		7	11 116				09/14/15 10:57	09/17/15 21:09	10

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl		D	41 - 116	08/14/15 10:57	08/17/15 21:08	10
2-Fluorophenol (Surr)	0	D	39 - 114	08/14/15 10:57	08/17/15 21:08	10
Nitrobenzene-d5 (Surr)	0	D	37 - 115	08/14/15 10:57	08/17/15 21:08	10
Phenol-d5 (Surr)	0	D	38 - 122	08/14/15 10:57	08/17/15 21:08	10
Terphenyl-d14 (Surr)	0	D	46 - 126	08/14/15 10:57	08/17/15 21:08	10
2,4,6-Tribromophenol (Surr)	0	D	45 - 129	08/14/15 10:57	08/17/15 21:08	10

Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.4 J		2.2	0.89	mg/Kg	<u> </u>	08/14/15 08:59	08/17/15 20:27	1
Barium	41 B		1.1	0.18	mg/Kg	☆	08/14/15 08:59	08/17/15 20:27	1
Beryllium	0.15 J		0.44	0.011	mg/Kg	≎	08/14/15 08:59	08/17/15 20:27	1
Cadmium	0.11 J		0.56	0.11	mg/Kg	₩	08/14/15 08:59	08/17/15 20:27	1
Chromium	11		1.1	0.23	mg/Kg	☆	08/14/15 08:59	08/17/15 20:27	1
Copper	12		2.8	0.19	mg/Kg	≎	08/14/15 08:59	08/17/15 20:27	1
Lead	64		1.1	0.38	mg/Kg	₩	08/14/15 08:59	08/17/15 20:27	1
Nickel	2.0 J		4.4	0.42	mg/Kg	≎	08/14/15 08:59	08/17/15 20:27	1
Selenium	1.1 U		2.8	1.1	mg/Kg	≎	08/14/15 08:59	08/17/15 20:27	1
Silver	0.067 U		1.1	0.067	mg/Kg	ф.	08/14/15 08:59	08/17/15 20:27	1
Vanadium	21		1.1	0.11	mg/Kg	≎	08/14/15 08:59	08/17/15 20:27	1
Zinc	27		2.2	0.78	mg/Kg	₩	08/14/15 08:59	08/17/15 20:27	1

Method: 7471B - Mercury (CVAA) Analyte Mercury	Result	Qualifier	RL 0.022	MDL 0.0087		D <u>₩</u>	Prepared 08/17/15 10:06	Analyzed 08/17/15 23:09	Dil Fac
General Chemistry Analyte Cyanide, Total	Result	Qualifier U	RL 0.58	MDL 0.24	Unit mg/Kg	D	Prepared 08/20/15 07:30	Analyzed 08/20/15 12:08	Dil Fac

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-395865/21-A

Matrix: Solid

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 395865

Analysis Batch: 396502	MD	MB						Prep Batch:	J9000
Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.041		0.33	0.041	mg/Kg			08/17/15 12:29	1
Acenaphthylene	0.036		0.33		mg/Kg			08/17/15 12:29	1
Acetophenone	0.028		0.33		mg/Kg			08/17/15 12:29	1
Anthracene	0.025		0.33		mg/Kg			08/17/15 12:29	
Atrazine	0.023		0.33		mg/Kg			08/17/15 12:29	1
Benzaldehyde	0.023		0.33		mg/Kg			08/17/15 12:29	1
Benzo[a]anthracene	0.030		0.33		mg/Kg			08/17/15 12:29	' 1
Benzo[a]pyrene	0.052		0.33		mg/Kg			08/17/15 12:29	1
Benzo[b]fluoranthene	0.032		0.33		mg/Kg			08/17/15 12:29	1
Benzo[g,h,i]perylene	0.030		0.33		mg/Kg			08/17/15 12:29	
Benzo[k]fluoranthene	0.022		0.33		mg/Kg			08/17/15 12:29	1
• •	1.7		0.33 1.7		mg/Kg			08/17/15 12:29	1
1,1'-Biphenyl	0.039							08/17/15 12:29	
Bis(2-chloroethoxy)methane			0.33		mg/Kg				1
Bis(2-chloroethyl)ether	0.045		0.33		mg/Kg			08/17/15 12:29	1
bis (2-chloroisopropyl) ether	0.030		0.33		mg/Kg			08/17/15 12:29	1
Bis(2-ethylhexyl) phthalate	0.0455		0.33		mg/Kg			08/17/15 12:29	1
4-Bromophenyl phenyl ether	0.036		0.33		mg/Kg			08/17/15 12:29	1
Butyl benzyl phthalate	0.026		0.33		mg/Kg			08/17/15 12:29	1
Caprolactam	0.066		0.33		mg/Kg			08/17/15 12:29	1
Carbazole	0.030		0.33		mg/Kg			08/17/15 12:29	1
4-Chloroaniline	0.052		0.66		mg/Kg			08/17/15 12:29	1
4-Chloro-3-methylphenol	0.035		0.33		mg/Kg			08/17/15 12:29	1
2-Chloronaphthalene	0.035		0.33		mg/Kg			08/17/15 12:29	1
2-Chlorophenol	0.040		0.33		mg/Kg			08/17/15 12:29	1
4-Chlorophenyl phenyl ether	0.044		0.33		mg/Kg			08/17/15 12:29	1
Chrysene	0.021		0.33	0.021	mg/Kg			08/17/15 12:29	1
Dibenz(a,h)anthracene	0.039		0.33		mg/Kg			08/17/15 12:29	1
Dibenzofuran	0.033		0.33		mg/Kg			08/17/15 12:29	1
3,3'-Dichlorobenzidine	0.028	U	0.66		mg/Kg		08/14/15 10:57	08/17/15 12:29	1
2,4-Dichlorophenol	0.035	U	0.33		mg/Kg		08/14/15 10:57	08/17/15 12:29	1
Diethyl phthalate	0.037	U	0.33		mg/Kg		08/14/15 10:57	08/17/15 12:29	1
2,4-Dimethylphenol	0.044	U	0.33		mg/Kg		08/14/15 10:57	08/17/15 12:29	1
Dimethyl phthalate	0.034	U	0.33		mg/Kg		08/14/15 10:57	08/17/15 12:29	1
Di-n-butyl phthalate	0.030	U	0.33	0.030	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
4,6-Dinitro-2-methylphenol	0.17	U	1.7	0.17	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
2,4-Dinitrophenol	0.83	U	1.7	0.83	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
2,4-Dinitrotoluene	0.049	U	0.33	0.049	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
2,6-Dinitrotoluene	0.042	U	0.33	0.042	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
Di-n-octyl phthalate	0.029	U	0.33	0.029	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
Fluoranthene	0.032	U	0.33	0.032	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
Fluorene	0.036	U	0.33	0.036	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
Hexachlorobenzene	0.039	U	0.33	0.039	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
Hexachlorobutadiene	0.036	U	0.33	0.036	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
Hexachlorocyclopentadiene	0.041	U	0.33	0.041	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
Hexachloroethane	0.028	U	0.33		mg/Kg		08/14/15 10:57	08/17/15 12:29	1
Indeno[1,2,3-cd]pyrene	0.028	U	0.33		mg/Kg		08/14/15 10:57	08/17/15 12:29	1
Isophorone	0.033		0.33		mg/Kg			08/17/15 12:29	1
2-Methylnaphthalene	0.038		0.33		mg/Kg		08/14/15 10:57	08/17/15 12:29	1

TestAmerica Savannah

Page 47 of 80

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-395865/21-A

Matrix: Solid

Analysis Batch: 396502

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 395865

7 that you Buton 000002								. Top Batom	00000
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	0.027	U	0.33	0.027	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
3 & 4 Methylphenol	0.043	U	0.33	0.043	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
Naphthalene	0.030	U	0.33	0.030	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
2-Nitroaniline	0.045	U	1.7	0.045	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
3-Nitroaniline	0.046	U	1.7	0.046	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
4-Nitroaniline	0.049	U	1.7	0.049	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
Nitrobenzene	0.026	U	0.33	0.026	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
2-Nitrophenol	0.041	U	0.33	0.041	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
4-Nitrophenol	0.33	U	1.7	0.33	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
N-Nitrosodi-n-propylamine	0.032	U	0.33	0.032	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
N-Nitrosodiphenylamine	0.033	U	0.33	0.033	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
Pentachlorophenol	0.33	U	1.7	0.33	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
Phenanthrene	0.027	U	0.33	0.027	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
Phenol	0.034	U	0.33	0.034	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
Pyrene	0.027	U	0.33	0.027	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
2,4,5-Trichlorophenol	0.035	U	0.33	0.035	mg/Kg		08/14/15 10:57	08/17/15 12:29	1
2,4,6-Trichlorophenol	0.029	U	0.33	0.029	mg/Kg		08/14/15 10:57	08/17/15 12:29	1

MB MB

Surrogate	%Recovery Qual	lifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	76	41 - 116	08/14/15 10:57	08/17/15 12:29	1
2-Fluorophenol (Surr)	59	39 - 114	08/14/15 10:57	08/17/15 12:29	1
Nitrobenzene-d5 (Surr)	64	37 - 115	08/14/15 10:57	08/17/15 12:29	1
Phenol-d5 (Surr)	62	38 - 122	08/14/15 10:57	08/17/15 12:29	1
Terphenyl-d14 (Surr)	74	46 - 126	08/14/15 10:57	08/17/15 12:29	1
2,4,6-Tribromophenol (Surr)	82	45 - 129	08/14/15 10:57	08/17/15 12:29	1

Lab Sample ID: LCS 680-395865/22-A

Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 396502	Spike	LCS	LCS				Prep Batch: 395865 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	3.32	2.43		mg/Kg		73	47 - 130
Acenaphthylene	3.32	2.47		mg/Kg		74	45 - 130
Acetophenone	3.32	2.37		mg/Kg		71	44 - 130
Anthracene	3.32	2.78		mg/Kg		84	50 - 130
Atrazine	3.32	2.52		mg/Kg		76	47 - 130
Benzaldehyde	3.32	1.52		mg/Kg		46	10 - 130
Benzo[a]anthracene	3.32	3.08		mg/Kg		93	50 - 130
Benzo[a]pyrene	3.32	2.78		mg/Kg		84	47 - 131
Benzo[b]fluoranthene	3.32	2.91		mg/Kg		87	48 - 130
Benzo[g,h,i]perylene	3.32	2.64		mg/Kg		79	42 - 130
Benzo[k]fluoranthene	3.32	2.83		mg/Kg		85	48 - 108
1,1'-Biphenyl	3.32	2.51		mg/Kg		75	48 - 130
Bis(2-chloroethoxy)methane	3.32	2.18		mg/Kg		65	47 - 130
Bis(2-chloroethyl)ether	3.32	0.925	*	mg/Kg		28	37 - 130
bis (2-chloroisopropyl) ether	3.32	1.91		mg/Kg		58	38 - 130
Bis(2-ethylhexyl) phthalate	3.32	2.72		mg/Kg		82	48 - 130
4-Bromophenyl phenyl ether	3.32	2.87		mg/Kg		86	53 - 130

TestAmerica Savannah

Page 48 of 80

9/17/2015

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-395865/22-A

Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 396502	Spike	LCS LCS			Prep Batch: 39586 %Rec.
Analyte	Added	Result Qualifie	er Unit	D %Rec	Limits
Butyl benzyl phthalate	3.32	2.71	mg/Kg	81	53 - 134
Caprolactam	3.32	2.33	mg/Kg	70	44 - 130
Carbazole	3.32	2.58	mg/Kg	77	51 - 130
4-Chloroaniline	3.32	2.31	mg/Kg	69	10 - 130
4-Chloro-3-methylphenol	3.32	2.63	mg/Kg	79	51 - 130
2-Chloronaphthalene	3.32	2.75	mg/Kg	83	48 - 130
2-Chlorophenol	3.32	2.46	mg/Kg	74	47 - 130
4-Chlorophenyl phenyl ether	3.32	2.87	mg/Kg	86	49 - 130
Chrysene	3.32	2.53	mg/Kg	76	47 - 130
Dibenz(a,h)anthracene	3.32	2.75	mg/Kg	83	44 - 130
Dibenzofuran	3.32	2.61	mg/Kg	78	49 - 130
3,3'-Dichlorobenzidine	3.32	2.99	mg/Kg	90	16 - 130
2,4-Dichlorophenol	3.32	2.69	mg/Kg	81	48 - 130
Diethyl phthalate	3.32	2.75	mg/Kg	83	49 - 130
2,4-Dimethylphenol	3.32	2.47	mg/Kg	74	43 - 130
Dimethyl phthalate	3.32	2.76	mg/Kg	83	50 - 130
Di-n-butyl phthalate	3.32	2.61	mg/Kg	79	52 - 130
4,6-Dinitro-2-methylphenol	6.65	3.19	mg/Kg	48	23 - 130
2,4-Dinitrophenol	6.65	2.13	mg/Kg	32	10 - 130
2,4-Dinitrotoluene	3.32	2.93	mg/Kg	88	49 - 111
2,6-Dinitrotoluene	3.32	2.80	mg/Kg	84	49 - 130
Di-n-octyl phthalate	3.32	2.70	mg/Kg	81	46 - 130
Fluoranthene	3.32	2.74	mg/Kg	82	51 - 130
Fluorene	3.32	2.95	mg/Kg	89	52 - 130
Hexachlorobenzene	3.32	2.87	mg/Kg	86	53 - 130
Hexachlorobutadiene	3.32	2.61	mg/Kg	78	48 - 130
Hexachlorocyclopentadiene	3.32	2.10	mg/Kg	63	28 - 130
Hexachloroethane	3.32	2.12	mg/Kg	64	42 - 130
Indeno[1,2,3-cd]pyrene	3.32	2.86	mg/Kg	86	41 - 130
Isophorone	3.32	2.17	mg/Kg	65	48 - 130
2-Methylnaphthalene	3.32	2.14	mg/Kg	64	48 - 130
2-Methylphenol	3.32	2.44	mg/Kg	73	46 - 130
3 & 4 Methylphenol	3.32	2.50	mg/Kg	75	46 - 130
Naphthalene	3.32	2.36	mg/Kg	71	47 - 130
2-Nitroaniline	3.32	2.41	mg/Kg		44 - 130
3-Nitroaniline	3.32	2.79	mg/Kg	84	21 - 130
4-Nitroaniline	3.32	2.68	mg/Kg	81	41 - 130
Nitrobenzene	3.32	2.13	mg/Kg	64	45 - 130
2-Nitrophenol	3.32	2.62	mg/Kg	79	43 - 130
4-Nitrophenol	6.65	5.10	mg/Kg	77	40 - 130
N-Nitrosodi-n-propylamine	3.32	2.14	mg/Kg	64	38 - 130
N-Nitrosodiphenylamine	6.65	5.58	mg/Kg	84	50 - 130
Pentachlorophenol	6.65	5.01	mg/Kg	75	41 - 130
Phenanthrene	3.32	2.55	mg/Kg	77	52 - 130
Phenol	3.32	2.53	mg/Kg	76	47 ₋ 130
Pyrene	3.32	2.73	mg/Kg	82	50 - 130
2,4,5-Trichlorophenol	3.32	3.06	mg/Kg	92	51 - 130
2,4,6-Trichlorophenol	3.32	2.63	mg/Kg	79	50 - 130
2,7,0 Moniorophonor	3.32	2.00	mg/rtg	13	00 - 100

TestAmerica Savannah

9/17/2015

Page 49 of 80

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-395865/22-A

Lab Sample ID: 680-115544-11 MS

Client: Geotechnical & Environmental Consultants

Matrix: Solid

Analysis Batch: 396502

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 395865

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	82		41 - 116
2-Fluorophenol (Surr)	69		39 - 114
Nitrobenzene-d5 (Surr)	63		37 - 115
Phenol-d5 (Surr)	73		38 - 122
Terphenyl-d14 (Surr)	88		46 - 126
2,4,6-Tribromophenol (Surr)	100		45 - 129

Client Sample ID: SB-25 4-6

Matrix: Solid Prep Type: Total/NA

Analysis Batch: 396502	Sample	Sample	Spike	MS	MS				Prep Batch: 395865 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	0.051	U	4.17	3.01		mg/Kg	<u></u>	72	58 - 130
Acenaphthylene	0.045	U	4.17	3.03		mg/Kg	₩	73	58 - 130
Acetophenone	0.035	U	4.17	2.95		mg/Kg	☼	71	42 - 130
Anthracene	0.031	Ü	4.17	3.50		mg/Kg	₩.	84	60 - 130
Atrazine	0.029	U	4.17	3.21		mg/Kg	≎	77	54 - 141
Benzaldehyde	0.072	U	4.17	1.43		mg/Kg	☼	34	10 - 130
Benzo[a]anthracene	0.033	U	4.17	3.78		mg/Kg		91	62 - 130
Benzo[a]pyrene	0.064	U	4.17	3.42		mg/Kg	₩	82	68 - 131
Benzo[b]fluoranthene	0.047	U	4.17	3.51		mg/Kg	☼	84	53 - 130
Benzo[g,h,i]perylene	0.027	U	4.17	3.52		mg/Kg	\$	85	54 - 130
Benzo[k]fluoranthene	0.081	U	4.17	3.49		mg/Kg	₩	84	57 - 130
1,1'-Biphenyl	2.1	U	4.17	3.06		mg/Kg	₩	74	57 - 130
Bis(2-chloroethoxy)methane	0.048	Ü	4.17	2.67		mg/Kg	\$	64	56 - 130
Bis(2-chloroethyl)ether	0.056	U F1 *	4.17	1.09	F1	mg/Kg	☼	26	42 - 130
bis (2-chloroisopropyl) ether	0.037	U	4.17	2.21		mg/Kg	₩	53	44 - 130
Bis(2-ethylhexyl) phthalate	0.036	U	4.17	3.22		mg/Kg	₩.	77	62 - 132
4-Bromophenyl phenyl ether	0.045	U	4.17	3.56		mg/Kg	₩	85	65 - 130
Butyl benzyl phthalate	0.032	U	4.17	3.24		mg/Kg	≎	78	65 - 134
Caprolactam	0.082	U	4.17	3.09		mg/Kg	₩.	74	52 - 130
Carbazole	0.037	U	4.17	3.25		mg/Kg	₩	78	60 - 130
4-Chloroaniline	0.064	U	4.17	1.79		mg/Kg	☼	43	36 - 130
4-Chloro-3-methylphenol	0.043	U	4.17	3.27		mg/Kg	₩.	79	52 - 130
2-Chloronaphthalene	0.043	U	4.17	3.29		mg/Kg	≎	79	55 - 130
2-Chlorophenol	0.050	U	4.17	2.89		mg/Kg	≎	69	51 - 130
4-Chlorophenyl phenyl ether	0.055	Ū	4.17	3.40		mg/Kg	\$	82	61 - 130
Chrysene	0.026	U	4.17	3.05		mg/Kg	≎	73	62 - 130
Dibenz(a,h)anthracene	0.048	U	4.17	3.62		mg/Kg	₩	87	56 - 130
Dibenzofuran	0.041	U	4.17	3.15		mg/Kg	\$	75	56 - 130
3,3'-Dichlorobenzidine	0.035	U	4.17	2.33		mg/Kg	₩	56	45 - 130
2,4-Dichlorophenol	0.043	U	4.17	3.39		mg/Kg	☼	81	53 - 130
Diethyl phthalate	0.046	U	4.17	3.33		mg/Kg	₩.	80	62 - 130
2,4-Dimethylphenol	0.055	U	4.17	3.10		mg/Kg	☼	74	47 - 130
Dimethyl phthalate	0.042	U	4.17	3.29		mg/Kg	☼	79	63 - 130
Di-n-butyl phthalate	0.037		4.17	3.28		mg/Kg		79	65 - 130
4,6-Dinitro-2-methylphenol	0.21	U	8.33	6.06		mg/Kg	☼	73	14 - 137
2,4-Dinitrophenol	1.0	U	8.33	4.36		mg/Kg	☼	52	10 - 154

TestAmerica Savannah

Project/Site: Macon MGP #2

Client: Geotechnical & Environmental Consultants

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-115544-11 MS Client Sample ID: SB-25 4-6 **Matrix: Solid Prep Type: Total/NA** Analysis Batch: 396502 **Prep Batch: 395865**

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-Dinitrotoluene	0.061	U	4.17	3.52		mg/Kg	\	85	55 - 130	
2,6-Dinitrotoluene	0.052	U	4.17	3.38		mg/Kg	₩.	81	57 ₋ 130	
Di-n-octyl phthalate	0.036	U	4.17	3.26		mg/Kg	₩	78	59 - 146	
Fluoranthene	0.040	U	4.17	3.45		mg/Kg	₩.	83	62 - 130	
Fluorene	0.045	U	4.17	3.60		mg/Kg	₩	86	58 - 130	
Hexachlorobenzene	0.048	U	4.17	3.53		mg/Kg	₩	85	59 - 130	
Hexachlorobutadiene	0.045	U	4.17	3.32		mg/Kg	₩.	80	47 - 130	
Hexachlorocyclopentadiene	0.051	U	4.17	2.33		mg/Kg	☼	56	35 - 130	
Hexachloroethane	0.035	U	4.17	2.53		mg/Kg	₩	61	44 - 130	
Indeno[1,2,3-cd]pyrene	0.035	U	4.17	3.63		mg/Kg	₩.	87	52 - 130	
Isophorone	0.041	U	4.17	2.65		mg/Kg	₩	64	48 - 130	
2-Methylnaphthalene	0.047	U	4.17	2.69		mg/Kg	☼	65	55 ₋ 130	
2-Methylphenol	0.033	U	4.17	2.91		mg/Kg	₩	70	49 - 130	
3 & 4 Methylphenol	0.053	U	4.17	2.84		mg/Kg	☼	68	50 - 130	
Naphthalene	0.037	U	4.17	3.00		mg/Kg	₩	72	54 - 130	
2-Nitroaniline	0.056	Ü	4.17	2.85		mg/Kg	₩.	68	52 - 130	
3-Nitroaniline	0.057	U	4.17	2.42		mg/Kg	₩	58	42 - 130	
4-Nitroaniline	0.061	U	4.17	2.81		mg/Kg	₩	68	49 - 130	
Nitrobenzene	0.032	Ü	4.17	2.67		mg/Kg	₩.	64	43 - 130	
2-Nitrophenol	0.051	U	4.17	3.30		mg/Kg	₩	79	45 - 130	
4-Nitrophenol	0.41	U	8.33	6.33		mg/Kg	₩	76	30 - 130	
N-Nitrosodi-n-propylamine	0.040	Ü	4.17	2.45		mg/Kg	₩.	59	48 - 130	
N-Nitrosodiphenylamine	0.041	U	8.33	7.15		mg/Kg	₩	86	62 - 130	
Pentachlorophenol	0.41	U	8.33	7.28		mg/Kg	₩	87	38 - 131	
Phenanthrene	0.033	U	4.17	3.28		mg/Kg		79	61 - 130	
Phenol	0.042	U	4.17	2.86		mg/Kg	₩	69	46 - 130	
Pyrene	0.033	U	4.17	3.32		mg/Kg	₩	80	59 ₋ 130	
2,4,5-Trichlorophenol	0.043	\mathbf{U}	4.17	3.64		mg/Kg		87	60 - 130	
2,4,6-Trichlorophenol	0.036	U	4.17	3.21		mg/Kg	₩	77	53 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	79		41 - 116
2-Fluorophenol (Surr)	63		39 - 114
Nitrobenzene-d5 (Surr)	64		37 - 115
Phenol-d5 (Surr)	65		38 - 122
Terphenyl-d14 (Surr)	85		46 - 126
2,4,6-Tribromophenol (Surr)	94		45 - 129

Lab Sample ID: 680-115544-11 MSD **Matrix: Solid**

Analysis Batch: 396502									Prep Ba	tch: 39	95865
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	0.051	U	4.17	2.91		mg/Kg	<u> </u>	70	58 - 130	4	50
Acenaphthylene	0.045	U	4.17	2.91		mg/Kg	₩	70	58 - 130	4	50
Acetophenone	0.035	U	4.17	2.75		mg/Kg	₩	66	42 - 130	7	50
Anthracene	0.031	U	4.17	3.42		mg/Kg	₩	82	60 - 130	2	50
Atrazine	0.029	U	4.17	3.02		mg/Kg	₩	72	54 - 141	6	50

TestAmerica Savannah

Client Sample ID: SB-25 4-6

Prep Type: Total/NA

Page 51 of 80

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-115544-11 MSD Client Sample ID: SB-25 4-6 Matrix: Solid **Prep Type: Total/NA**

Analysis Batch: 396502	Sample	Sample	Spike	MSD	MSD				Prep Type: Total/r Prep Batch: 3958 %Rec. R				
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit		
Benzaldehyde	0.072		4.17	1.44		mg/Kg	<u></u>	35	10 - 130	1	50		
Benzo[a]anthracene	0.033		4.17	3.66		mg/Kg		88	62 - 130	3	50		
Benzo[a]pyrene	0.064	U	4.17	3.27		mg/Kg	☼	78	68 - 131	4	50		
Benzo[b]fluoranthene	0.047	U	4.17	3.41		mg/Kg	☼	82	53 - 130	3	50		
Benzo[g,h,i]perylene	0.027		4.17	3.31		mg/Kg		79	54 - 130	6	50		
Benzo[k]fluoranthene	0.081	U	4.17	3.42		mg/Kg	☼	82	57 - 130	2	50		
1,1'-Biphenyl	2.1	U	4.17	2.93		mg/Kg	☼	70	57 ₋ 130	4	50		
Bis(2-chloroethoxy)methane	0.048		4.17	2.48		mg/Kg		60	56 - 130	7	50		
Bis(2-chloroethyl)ether	0.056	U F1 *	4.17	1.09	F1	mg/Kg	☼	26	42 - 130	0	50		
bis (2-chloroisopropyl) ether	0.037	U	4.17	2.14		mg/Kg	☼	51	44 - 130	3	50		
Bis(2-ethylhexyl) phthalate	0.036		4.17	3.14		mg/Kg		75	62 - 132	3	50		
4-Bromophenyl phenyl ether	0.045	U	4.17	3.48		mg/Kg	₩	83	65 ₋ 130	2	50		
Butyl benzyl phthalate	0.032	U	4.17	3.14		mg/Kg	☼	75	65 - 134	3	50		
Caprolactam	0.082	U	4.17	2.95		mg/Kg		71	52 - 130	4	50		
Carbazole	0.037	U	4.17	3.06		mg/Kg	₩	73	60 - 130	6	50		
4-Chloroaniline	0.064	U	4.17	1.63		mg/Kg	₩	39	36 - 130	9	50		
4-Chloro-3-methylphenol	0.043		4.17	3.05		mg/Kg	 \tilde{\ti}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	73	52 - 130	7	50		
2-Chloronaphthalene	0.043		4.17	3.16		mg/Kg	☼	76	55 ₋ 130	4	50		
2-Chlorophenol	0.050		4.17	2.86		mg/Kg	☼	68	51 - 130	1	50		
4-Chlorophenyl phenyl ether	0.055		4.17	3.37		mg/Kg		81	61 - 130	1	50		
Chrysene	0.026		4.17	3.00		mg/Kg	₩	72	62 - 130	2	50		
Dibenz(a,h)anthracene	0.048		4.17	3.40		mg/Kg	₩	81	56 - 130	6	50		
Dibenzofuran	0.041		4.17	3.04		mg/Kg		73	56 - 130	4	50		
3,3'-Dichlorobenzidine	0.035		4.17	2.42		mg/Kg	₩	58	45 - 130	4	50		
2,4-Dichlorophenol	0.043		4.17	3.15		mg/Kg	☼	76	53 - 130	7	50		
Diethyl phthalate	0.046		4.17	3.21		mg/Kg		77	62 - 130	4	50		
2,4-Dimethylphenol	0.055		4.17	2.85		mg/Kg	₩	68	47 - 130	8	50		
Dimethyl phthalate	0.042		4.17	3.18		mg/Kg	☼	76	63 - 130	4	50		
Di-n-butyl phthalate	0.037		4.17	3.15		mg/Kg		76	65 - 130	4	50		
4,6-Dinitro-2-methylphenol	0.21		8.34	5.45		mg/Kg	₩	65	14 - 137	11	50		
2,4-Dinitrophenol	1.0		8.34	3.64		mg/Kg	☼	44	10 - 154	18	50		
2,4-Dinitrotoluene	0.061		4.17	3.50		mg/Kg		84	55 - 130	1	50		
2.6-Dinitrotoluene	0.052		4.17	3.28		mg/Kg	☼	79	57 ₋ 130	3	50		
Di-n-octyl phthalate	0.036		4.17	3.13		mg/Kg	☼	75	59 ₋ 146	4	50		
Fluoranthene	0.040		4.17	3.38		mg/Kg		81	62 - 130	2	50		
Fluorene	0.045		4.17	3.44		mg/Kg	☼	82	58 - 130	5	50		
Hexachlorobenzene	0.048		4.17	3.51		mg/Kg	₩	84	59 ₋ 130	1	50		
Hexachlorobutadiene	0.045		4.17	3.11		mg/Kg		75	47 - 130	7	50		
Hexachlorocyclopentadiene	0.051		4.17	2.32		mg/Kg	₩	56	35 - 130	1	50		
Hexachloroethane	0.035		4.17	2.41		mg/Kg	☼	58	44 - 130	5	50		
Indeno[1,2,3-cd]pyrene	0.035		4.17	3.47		mg/Kg		83	52 - 130	5	50		
Isophorone	0.041		4.17	2.51		mg/Kg	₩	60	48 - 130	5	50		
2-Methylnaphthalene	0.047		4.17	2.53		mg/Kg	☼	61	55 - 130	6	50		
2-Methylphenol	0.033		4.17	2.77		mg/Kg		66	49 - 130		50		
3 & 4 Methylphenol	0.053		4.17	2.79		mg/Kg	☼	67	50 - 130	2	50		
Naphthalene	0.037		4.17	2.77		mg/Kg	₩	66	54 - 130	8	50		
2-Nitroaniline	0.056		4.17	2.84		mg/Kg	.	68	52 - 130	<u>3</u>	50		
3-Nitroaniline	0.057		4.17	2.14		mg/Kg	₩	51	42 - 130	12	50		

TestAmerica Savannah

9/17/2015

Page 52 of 80

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-115544-11 MSD

Matrix: Solid

Analysis Batch: 396502

Client Sample ID: SB-25 4-6 **Prep Type: Total/NA**

Prep Batch: 395865

Saı	nple	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte Re	sult	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4-Nitroaniline C	.061	U	4.17	2.69		mg/Kg	☼	65	49 - 130	4	50
Nitrobenzene 0	.032	U	4.17	2.47		mg/Kg	₩	59	43 - 130	8	50
2-Nitrophenol 0	.051	U	4.17	3.18		mg/Kg	≎	76	45 - 130	4	50
4-Nitrophenol	0.41	U	8.34	6.10		mg/Kg	☼	73	30 - 130	4	50
N-Nitrosodi-n-propylamine 0	.040	U	4.17	2.43		mg/Kg		58	48 - 130	1	50
N-Nitrosodiphenylamine C	.041	U	8.34	6.88		mg/Kg	☼	82	62 - 130	4	50
Pentachlorophenol	0.41	U	8.34	6.80		mg/Kg	≎	82	38 - 131	7	50
Phenanthrene C	.033	U	4.17	3.11		mg/Kg	₩.	74	61 - 130	5	50
Phenol C	.042	U	4.17	2.79		mg/Kg	☼	67	46 - 130	2	50
Pyrene 0	.033	U	4.17	3.20		mg/Kg	≎	77	59 - 130	4	50
2,4,5-Trichlorophenol 0	.043	U	4.17	3.52		mg/Kg	₩.	84	60 - 130	3	50
2,4,6-Trichlorophenol 0	.036	U	4.17	3.14		mg/Kg	☼	75	53 - 130	2	50

MSD MSD

Limits
41 - 116
39 - 114
37 - 115
38 - 122
46 - 126
45 - 129

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-396119/1-A

Matrix: Solid

Analysis Batch: 396749

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 396119

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.75	U	1.9	0.75	mg/Kg		08/14/15 08:59	08/17/15 19:25	1
Barium	0.152	J	0.94	0.15	mg/Kg		08/14/15 08:59	08/17/15 19:25	1
Beryllium	0.0094	U	0.38	0.0094	mg/Kg		08/14/15 08:59	08/17/15 19:25	1
Cadmium	0.094	U	0.47	0.094	mg/Kg		08/14/15 08:59	08/17/15 19:25	1
Chromium	0.20	U	0.94	0.20	mg/Kg		08/14/15 08:59	08/17/15 19:25	1
Copper	0.16	U	2.4	0.16	mg/Kg		08/14/15 08:59	08/17/15 19:25	1
Lead	0.32	U	0.94	0.32	mg/Kg		08/14/15 08:59	08/17/15 19:25	1
Nickel	0.36	U	3.8	0.36	mg/Kg		08/14/15 08:59	08/17/15 19:25	1
Selenium	0.92	U	2.4	0.92	mg/Kg		08/14/15 08:59	08/17/15 19:25	1
Silver	0.057	U	0.94	0.057	mg/Kg		08/14/15 08:59	08/17/15 19:25	1
Vanadium	0.094	U	0.94	0.094	mg/Kg		08/14/15 08:59	08/17/15 19:25	1
Zinc	0.66	U	1.9	0.66	mg/Kg		08/14/15 08:59	08/17/15 19:25	1

Lab Sample ID: LCS 680-396119/2-A

Matrix: Solid

Analyte

Arsenic

Barium

Analysis Batch: 396749

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 396119 %Rec. Unit D %Rec Limits mg/Kg 105 80 - 120

80 - 120

101

TestAmerica Savannah

Page 53 of 80

LCS LCS

8.96

8.66

Result Qualifier

mg/Kg

Spike

Added

8.55

8.55

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 680-396119/2-A **Matrix: Solid**

Analysis Batch: 396749

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 396119

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Beryllium	4.27	4.53	-	mg/Kg		106	80 - 120	
Cadmium	4.27	4.64		mg/Kg		109	80 - 120	
Chromium	8.55	8.98		mg/Kg		105	80 - 120	
Copper	8.55	8.97		mg/Kg		105	80 - 120	
Lead	42.7	43.4		mg/Kg		102	80 - 120	
Nickel	8.55	8.96		mg/Kg		105	80 - 120	
Selenium	8.55	8.14		mg/Kg		95	80 - 120	
Silver	4.27	4.29		mg/Kg		100	80 - 120	
Vanadium	8.55	8.74		mg/Kg		102	80 - 120	
Zinc	8.55	8.98		mg/Kg		105	80 - 120	

Lab Sample ID: 680-115544-1 MS

Matrix: Solid

Analysis Batch: 396749

Client Sample ID: SB-41 4-6 **Prep Type: Total/NA**

Prep Batch: 396119

Analysis Balch: 390749	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	2.3		9.56	13.8		mg/Kg	<u> </u>	121	75 - 125
Barium	110	B F2	9.56	102	4	mg/Kg	₩	-66	75 ₋ 125
Beryllium	0.47		4.78	5.79		mg/Kg	☼	111	75 ₋ 125
Cadmium	2.7		4.78	6.80		mg/Kg		86	75 - 125
Chromium	13	F1	9.56	26.2	F1	mg/Kg	₩	141	75 - 125
Copper	12	F2 F1	9.56	21.1		mg/Kg	☼	101	75 - 125
Lead	190	F1 F2	47.8	188	F1	mg/Kg		3	75 - 125
Nickel	3.6	J	9.56	13.5		mg/Kg	☼	104	75 ₋ 125
Selenium	0.95	U	9.56	8.79		mg/Kg	₩	92	75 - 125
Silver	0.059	U	4.78	4.97		mg/Kg	₩.	104	75 - 125
Vanadium	24	F1	9.56	40.9	F1	mg/Kg	☼	176	75 - 125
Zinc	960	F2	9.56	680	4	mg/Kg	☼	-2884	75 - 125
I and the second se									

Lab Sample ID: 680-115544-1 MSD

Matrix: Solid

Analysis Batch: 396749

Client Sample ID: SB-41 4-6 Prep Type: Total/NA Prep Batch: 396119

								i ieh ne	aton. J	90119
Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2.3		9.56	12.5		mg/Kg	<u> </u>	107	75 - 125	10	20
110	B F2	9.56	142	4 F2	mg/Kg	₩	357	75 - 125	33	20
0.47		4.78	5.57		mg/Kg	₩	107	75 - 125	4	20
2.7		4.78	8.21		mg/Kg	₩.	116	75 - 125	19	20
13	F1	9.56	23.8		mg/Kg	₩	115	75 - 125	10	20
12	F2 F1	9.56	26.2	F1 F2	mg/Kg	₩	154	75 - 125	21	20
190	F1 F2	47.8	285	F1 F2	mg/Kg	₩.	206	75 - 125	41	20
3.6	J	9.56	14.4		mg/Kg	₩	113	75 - 125	7	20
0.95	U	9.56	7.98		mg/Kg	₩	84	75 - 125	10	20
0.059	Ü	4.78	4.97		mg/Kg	₩.	104	75 - 125	0	20
24	F1	9.56	33.6		mg/Kg	☼	100	75 - 125	20	20
960	F2	9.56	1220	4 F2	mg/Kg	₩	2782	75 ₋ 125	57	20
	Result 2.3 110 0.47 2.7 13 12 190 3.6 0.95 0.059 24	110 BF2 0.47	Result Qualifier Added 2.3 9.56 110 B F2 9.56 0.47 4.78 2.7 4.78 13 F1 9.56 12 F2 F1 9.56 190 F1 F2 47.8 3.6 J 9.56 0.95 U 9.56 0.059 U 4.78 24 F1 9.56	Result Qualifier Added Result 2.3 9.56 12.5 110 B F2 9.56 142 0.47 4.78 5.57 2.7 4.78 8.21 13 F1 9.56 23.8 12 F2 F1 9.56 26.2 190 F1 F2 47.8 285 3.6 J 9.56 14.4 0.95 U 9.56 7.98 0.059 U 4.78 4.97 24 F1 9.56 33.6	Result Qualifier Added Result Qualifier 2.3 9.56 12.5 110 B F2 9.56 142 4 F2 0.47 4.78 5.57 2.7 4.78 8.21 13 F1 9.56 23.8 12 F2 F1 9.56 26.2 F1 F2 190 F1 F2 47.8 285 F1 F2 3.6 J 9.56 14.4 0.95 U 9.56 7.98 0.059 U 4.78 4.97 24 F1 9.56 33.6	Result Qualifier Added Result Qualifier Unit 2.3 9.56 12.5 mg/Kg 110 B F2 9.56 142 4 F2 mg/Kg 0.47 4.78 5.57 mg/Kg 2.7 4.78 8.21 mg/Kg 13 F1 9.56 23.8 mg/Kg 12 F2 F1 9.56 26.2 F1 F2 mg/Kg 190 F1 F2 47.8 285 F1 F2 mg/Kg 3.6 J 9.56 14.4 mg/Kg 0.95 U 9.56 7.98 mg/Kg 0.059 U 4.78 4.97 mg/Kg 24 F1 9.56 33.6 mg/Kg	Result Qualifier Added Result Qualifier Unit D 2.3 9.56 12.5 mg/Kg \$\frac{1}{2}\$ 110 B F2 9.56 142 4 F2 mg/Kg \$\frac{1}{2}\$ 0.47 4.78 5.57 mg/Kg \$\frac{1}{2}\$ 2.7 4.78 8.21 mg/Kg \$\frac{1}{2}\$ 13 F1 9.56 23.8 mg/Kg \$\frac{1}{2}\$ 12 F2 F1 9.56 26.2 F1 F2 mg/Kg \$\frac{1}{2}\$ 190 F1 F2 47.8 285 F1 F2 mg/Kg \$\frac{1}{2}\$ 3.6 J 9.56 7.98 mg/Kg \$\frac{1}{2}\$ 0.95 U 9.56 7.98 mg/Kg \$\frac{1}{2}\$ 0.059 U 4.78 4.97 mg/Kg \$\frac{1}{2}\$ 24 F1 9.56 33.6 mg/Kg \$\frac{1}{2}\$	Result Qualifier Added Result Qualifier Unit D %Rec 2.3 9.56 12.5 mg/Kg \$\frac{1}{2}\$ 107 110 B F2 9.56 142 4 F2 mg/Kg \$\frac{3}{2}\$ 0.47 4.78 5.57 mg/Kg \$\frac{1}{2}\$ 107 2.7 4.78 8.21 mg/Kg \$\frac{1}{2}\$ 116 13 F1 9.56 23.8 mg/Kg \$\frac{1}{2}\$ 115 12 F2 F1 9.56 26.2 F1 F2 mg/Kg \$\frac{1}{2}\$ 190 F1 F2 47.8 285 F1 F2 mg/Kg \$\frac{1}{2}\$ 3.6 J 9.56 7.98 mg/Kg \$\frac{1}{2}\$ 0.059 U 4.78 4.97 mg/Kg \$\frac{1}{2}\$ 0.059 U 4.78 4.97 mg/Kg \$\frac{1}{2}\$ 24 F1 9.56 33.6 mg/Kg \$\frac{1}{2}\$ </td <td>Sample Result Qualifier Added Added Result Qualifier Unit Unit Unit Unit Unit Unit Unit Unit</td> <td>Result Qualifier Added Added Result Qualifier Unit Unit Unit Unit Unit Unit Unit Unit</td>	Sample Result Qualifier Added Added Result Qualifier Unit Unit Unit Unit Unit Unit Unit Unit	Result Qualifier Added Added Result Qualifier Unit Unit Unit Unit Unit Unit Unit Unit

TestAmerica Savannah

Page 54 of 80

80 - 120

101

Prep Batch: 396443

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 680-396443/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 396738

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared 0.017 08/16/15 14:39 08/17/15 19:40 0.0069 U 0.0069 mg/Kg Mercury

Lab Sample ID: LCS 680-396443/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 396738 Prep Batch: 396443** Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec

0.234

mg/Kg

Lab Sample ID: 680-115544-1 MS Client Sample ID: SB-41 4-6 Prep Type: Total/NA

Matrix: Solid

Mercury

Analysis Batch: 396738 Prep Batch: 396443 Sample Sample Spike MS MS %Rec.

Result Qualifier Added Result Qualifier %Rec Limits Analyte Unit D 77 Mercury 0.14 ^ 0.102 0.245 mg/Kg 108 80 - 120

0.231

Client Sample ID: SB-41 4-6 Lab Sample ID: 680-115544-1 MSD **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 396738 Prep Batch: 396443** Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Mercury 0.14 ^ 0.104 0.255 116 80 - 120 mg/Kg

Lab Sample ID: MB 680-396509/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 396738 Prep Batch: 396509**

MB MB

Analysis Batch: 396738

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.0068 U 0.017 08/17/15 10:06 08/17/15 22:30 Mercury 0.0068 mg/Kg

Lab Sample ID: LCS 680-396509/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Spike LCS LCS %Rec. Added Result Qualifier Unit Limits Analyte D %Rec

0.245 0.259 mg/Kg 106 80 - 120 Mercury

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 680-396935/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 397029 Prep Batch: 396935 MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Cyanide, Total 0.21 U 0.50 0.21 mg/Kg 08/19/15 09:00 08/19/15 12:11

TestAmerica Savannah

Prep Batch: 396509

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

Method: 9012B - Cyanide, Total andor Amenable (Continued)

Lab Sample ID: LCS 680- Matrix: Solid	396935/2-A					Clie	nt Sai	mple ID	: Lab Cor Prep Ty		
Analysis Batch: 397029									Prep Ba		
7a. , 0.0 2 00. 02.0			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Cyanide, Total			5.00	5.10		mg/Kg		102	75 - 125		
Lab Sample ID: 680-1155	44-1 MS							Client	Sample II	D: SB-4	11 4-6
Matrix: Solid									Prep Ty	e: Tot	al/NA
Analysis Batch: 397029									Prep Ba	itch: 39	96935
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Cyanide, Total	0.23	U	5.48	5.65		mg/Kg		103	75 - 125		
Lab Sample ID: 680-1155	44-1 MSD							Client	Sample II	D: SB-4	11 4-6
Matrix: Solid									Prep Ty	e: Tot	al/NA
Analysis Batch: 397029									Prep Ba	itch: 39	96935
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cyanide, Total	0.23	U	5.48	5.54		mg/Kg	-	101	75 - 125	2	30
Lab Sample ID: MB 680-3	97121/1-A						Clie	ent San	nple ID: M	ethod I	Blank

Matrix: Solid							Preр туре: т	otal/NA
Analysis Batch: 397236							Prep Batch:	397121
-	MB	MB						
Δnalvto	Regult	Qualifier	RI	MDI Unit	D	Propared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.21	U	0.50	0.21	mg/Kg	_	08/20/15 07:30	08/20/15 11:51	1

Lab Sample ID: LCS 680-39/121/2-A				Ciler	it Sai	тріе іг	: Lab Control Sample
Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 397236							Prep Batch: 397121
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cyanide, Total	4.90	4.88		mg/Kg		100	75 - 125

Lab Sample ID: 680-115544 Matrix: Solid	I-10 MS							Client	•	0: SB-25 2-4 pe: Total/NA
Analysis Batch: 397236										atch: 397121
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cyanide, Total	0.24	U	5.57	5.85		mg/Kg	<u> </u>	105	75 - 125	

ab Sample ID: 680-115544-10 MSD								Client Sample ID: SB-25 2-4						
Matrix: Solid									Prep Typ	e: Tot	al/NA			
Analysis Batch: 397236									Prep Ba	itch: 39	7121			
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD			
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit			
Cyanide, Total	0.24	U	5.68	5.96		mg/Kg	<u> </u>	105	75 - 125	2	30			

Lab Sample ID: 680-11554 Matrix: Solid Analysis Batch: 397236	4-20 DU					Client	Sample ID: GB-27 Prep Type: To Prep Batch: 3	tal/NA	4
	Sample	Sample	DU	DU				RPI)
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limi	t
Cyanide, Total	0.24	U	0.24	U	mg/Kg	- -	NC	30	ō

TestAmerica Savannah

9/17/2015

Page 56 of 80

QC Sample Results

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

TestAmerica Job ID: 680-115544-1

2

3

4

5

7

8

9

10

11

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

GC/MS Semi VOA

Prep Batch: 395865

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115544-1	SB-41 4-6	Total/NA	Solid	3546	
680-115544-2	SB-41 8-10	Total/NA	Solid	3546	
680-115544-3	SB-41 13-15	Total/NA	Solid	3546	
680-115544-4	GB-9 8-10	Total/NA	Solid	3546	
680-115544-5	GB-9 13-15	Total/NA	Solid	3546	
680-115544-6	GB-11 3-5	Total/NA	Solid	3546	
680-115544-7	GB-11 8-10	Total/NA	Solid	3546	
680-115544-8	GB-11 13-15	Total/NA	Solid	3546	
680-115544-9	SB-25 0-2	Total/NA	Solid	3546	
680-115544-10	SB-25 2-4	Total/NA	Solid	3546	
680-115544-11	SB-25 4-6	Total/NA	Solid	3546	
680-115544-11 MS	SB-25 4-6	Total/NA	Solid	3546	
680-115544-11 MSD	SB-25 4-6	Total/NA	Solid	3546	
680-115544-12	SB-25 8-10	Total/NA	Solid	3546	
680-115544-13	SB-25 13-15	Total/NA	Solid	3546	
680-115544-14	GB-25 2-4	Total/NA	Solid	3546	
680-115544-15	GB-25 4-6	Total/NA	Solid	3546	
680-115544-16	GB-26 2-4	Total/NA	Solid	3546	
680-115544-17	GB-26 4-6	Total/NA	Solid	3546	
680-115544-18	GB-27 3-5	Total/NA	Solid	3546	
680-115544-19	GB-27 8-10	Total/NA	Solid	3546	
680-115544-20	GB-27 13-15	Total/NA	Solid	3546	
LCS 680-395865/22-A	Lab Control Sample	Total/NA	Solid	3546	
MB 680-395865/21-A	Method Blank	Total/NA	Solid	3546	

Analysis Batch: 396502

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115544-1	SB-41 4-6	Total/NA	Solid	8270D	395865
680-115544-2	SB-41 8-10	Total/NA	Solid	8270D	395865
680-115544-3	SB-41 13-15	Total/NA	Solid	8270D	395865
680-115544-4	GB-9 8-10	Total/NA	Solid	8270D	395865
680-115544-5	GB-9 13-15	Total/NA	Solid	8270D	395865
680-115544-6	GB-11 3-5	Total/NA	Solid	8270D	395865
680-115544-7	GB-11 8-10	Total/NA	Solid	8270D	395865
680-115544-8	GB-11 13-15	Total/NA	Solid	8270D	395865
680-115544-9	SB-25 0-2	Total/NA	Solid	8270D	395865
680-115544-10	SB-25 2-4	Total/NA	Solid	8270D	395865
680-115544-11	SB-25 4-6	Total/NA	Solid	8270D	395865
680-115544-11 MS	SB-25 4-6	Total/NA	Solid	8270D	395865
680-115544-11 MSD	SB-25 4-6	Total/NA	Solid	8270D	395865
680-115544-12	SB-25 8-10	Total/NA	Solid	8270D	395865
680-115544-13	SB-25 13-15	Total/NA	Solid	8270D	395865
680-115544-14	GB-25 2-4	Total/NA	Solid	8270D	395865
680-115544-15	GB-25 4-6	Total/NA	Solid	8270D	395865
680-115544-17	GB-26 4-6	Total/NA	Solid	8270D	395865
680-115544-19	GB-27 8-10	Total/NA	Solid	8270D	395865
680-115544-20	GB-27 13-15	Total/NA	Solid	8270D	395865
LCS 680-395865/22-A	Lab Control Sample	Total/NA	Solid	8270D	395865
MB 680-395865/21-A	Method Blank	Total/NA	Solid	8270D	395865

TestAmerica Savannah

Page 58 of 80

2

2

6

9

10

11

QC Association Summary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

TestAmerica Job ID: 680-115544-1

GC/MS Semi VOA (Continued)

Analysis Batch: 397169

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115544-16	GB-26 2-4	Total/NA	Solid	8270D	395865
680-115544-18	GB-27 3-5	Total/NA	Solid	8270D	395865

Metals

Prep Batch: 396119

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115544-1	SB-41 4-6	Total/NA	Solid	3050B	
680-115544-1 MS	SB-41 4-6	Total/NA	Solid	3050B	
680-115544-1 MSD	SB-41 4-6	Total/NA	Solid	3050B	
680-115544-2	SB-41 8-10	Total/NA	Solid	3050B	
680-115544-3	SB-41 13-15	Total/NA	Solid	3050B	
680-115544-4	GB-9 8-10	Total/NA	Solid	3050B	
680-115544-5	GB-9 13-15	Total/NA	Solid	3050B	
680-115544-6	GB-11 3-5	Total/NA	Solid	3050B	
680-115544-7	GB-11 8-10	Total/NA	Solid	3050B	
680-115544-8	GB-11 13-15	Total/NA	Solid	3050B	
680-115544-9	SB-25 0-2	Total/NA	Solid	3050B	
680-115544-10	SB-25 2-4	Total/NA	Solid	3050B	
680-115544-11	SB-25 4-6	Total/NA	Solid	3050B	
680-115544-12	SB-25 8-10	Total/NA	Solid	3050B	
680-115544-13	SB-25 13-15	Total/NA	Solid	3050B	
680-115544-14	GB-25 2-4	Total/NA	Solid	3050B	
680-115544-15	GB-25 4-6	Total/NA	Solid	3050B	
680-115544-16	GB-26 2-4	Total/NA	Solid	3050B	
680-115544-17	GB-26 4-6	Total/NA	Solid	3050B	
680-115544-18	GB-27 3-5	Total/NA	Solid	3050B	
680-115544-19	GB-27 8-10	Total/NA	Solid	3050B	
680-115544-20	GB-27 13-15	Total/NA	Solid	3050B	
LCS 680-396119/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 680-396119/1-A	Method Blank	Total/NA	Solid	3050B	

Prep Batch: 396443

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115544-1	SB-41 4-6	Total/NA	Solid	7471B	_
680-115544-1 MS	SB-41 4-6	Total/NA	Solid	7471B	
680-115544-1 MSD	SB-41 4-6	Total/NA	Solid	7471B	
680-115544-2	SB-41 8-10	Total/NA	Solid	7471B	
680-115544-3	SB-41 13-15	Total/NA	Solid	7471B	
680-115544-4	GB-9 8-10	Total/NA	Solid	7471B	
680-115544-5	GB-9 13-15	Total/NA	Solid	7471B	
680-115544-6	GB-11 3-5	Total/NA	Solid	7471B	
680-115544-7	GB-11 8-10	Total/NA	Solid	7471B	
680-115544-8	GB-11 13-15	Total/NA	Solid	7471B	
680-115544-9	SB-25 0-2	Total/NA	Solid	7471B	
680-115544-10	SB-25 2-4	Total/NA	Solid	7471B	
680-115544-11	SB-25 4-6	Total/NA	Solid	7471B	
680-115544-12	SB-25 8-10	Total/NA	Solid	7471B	
680-115544-13	SB-25 13-15	Total/NA	Solid	7471B	
LCS 680-396443/2-A	Lab Control Sample	Total/NA	Solid	7471B	

TestAmerica Savannah

9/17/2015

Page 59 of 80

2

3

9

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Metals (Continued)

Prep Batch: 396443 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-396443/1-A	Method Blank	Total/NA	Solid	7471B	

Prep Batch: 396509

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115544-14	GB-25 2-4	Total/NA	Solid	7471B	
680-115544-15	GB-25 4-6	Total/NA	Solid	7471B	
680-115544-16	GB-26 2-4	Total/NA	Solid	7471B	
680-115544-17	GB-26 4-6	Total/NA	Solid	7471B	
680-115544-18	GB-27 3-5	Total/NA	Solid	7471B	
680-115544-19	GB-27 8-10	Total/NA	Solid	7471B	
680-115544-20	GB-27 13-15	Total/NA	Solid	7471B	
LCS 680-396509/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 680-396509/1-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 396738

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115544-1	SB-41 4-6	Total/NA	Solid	7471B	396443
680-115544-1 MS	SB-41 4-6	Total/NA	Solid	7471B	396443
680-115544-1 MSD	SB-41 4-6	Total/NA	Solid	7471B	396443
680-115544-2	SB-41 8-10	Total/NA	Solid	7471B	396443
680-115544-3	SB-41 13-15	Total/NA	Solid	7471B	396443
680-115544-4	GB-9 8-10	Total/NA	Solid	7471B	396443
680-115544-5	GB-9 13-15	Total/NA	Solid	7471B	396443
680-115544-6	GB-11 3-5	Total/NA	Solid	7471B	396443
680-115544-7	GB-11 8-10	Total/NA	Solid	7471B	396443
680-115544-8	GB-11 13-15	Total/NA	Solid	7471B	396443
680-115544-9	SB-25 0-2	Total/NA	Solid	7471B	396443
680-115544-10	SB-25 2-4	Total/NA	Solid	7471B	396443
680-115544-11	SB-25 4-6	Total/NA	Solid	7471B	396443
680-115544-12	SB-25 8-10	Total/NA	Solid	7471B	396443
680-115544-13	SB-25 13-15	Total/NA	Solid	7471B	396443
680-115544-14	GB-25 2-4	Total/NA	Solid	7471B	396509
680-115544-15	GB-25 4-6	Total/NA	Solid	7471B	396509
680-115544-16	GB-26 2-4	Total/NA	Solid	7471B	396509
680-115544-17	GB-26 4-6	Total/NA	Solid	7471B	396509
680-115544-18	GB-27 3-5	Total/NA	Solid	7471B	396509
680-115544-19	GB-27 8-10	Total/NA	Solid	7471B	396509
680-115544-20	GB-27 13-15	Total/NA	Solid	7471B	396509
LCS 680-396443/2-A	Lab Control Sample	Total/NA	Solid	7471B	396443
LCS 680-396509/2-A	Lab Control Sample	Total/NA	Solid	7471B	396509
MB 680-396443/1-A	Method Blank	Total/NA	Solid	7471B	396443
MB 680-396509/1-A	Method Blank	Total/NA	Solid	7471B	396509

Analysis Batch: 396749

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115544-1	SB-41 4-6	Total/NA	Solid	6010C	396119
680-115544-1 MS	SB-41 4-6	Total/NA	Solid	6010C	396119
680-115544-1 MSD	SB-41 4-6	Total/NA	Solid	6010C	396119
680-115544-2	SB-41 8-10	Total/NA	Solid	6010C	396119
680-115544-3	SB-41 13-15	Total/NA	Solid	6010C	396119
680-115544-4	GB-9 8-10	Total/NA	Solid	6010C	396119

TestAmerica Savannah

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

Metals (Continued)

Analysis Batch: 396749 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115544-5	GB-9 13-15	Total/NA	Solid	6010C	396119
680-115544-6	GB-11 3-5	Total/NA	Solid	6010C	396119
680-115544-7	GB-11 8-10	Total/NA	Solid	6010C	396119
680-115544-8	GB-11 13-15	Total/NA	Solid	6010C	396119
680-115544-9	SB-25 0-2	Total/NA	Solid	6010C	396119
680-115544-10	SB-25 2-4	Total/NA	Solid	6010C	396119
680-115544-11	SB-25 4-6	Total/NA	Solid	6010C	396119
680-115544-12	SB-25 8-10	Total/NA	Solid	6010C	396119
680-115544-13	SB-25 13-15	Total/NA	Solid	6010C	396119
680-115544-14	GB-25 2-4	Total/NA	Solid	6010C	396119
680-115544-15	GB-25 4-6	Total/NA	Solid	6010C	396119
680-115544-16	GB-26 2-4	Total/NA	Solid	6010C	396119
680-115544-17	GB-26 4-6	Total/NA	Solid	6010C	396119
680-115544-18	GB-27 3-5	Total/NA	Solid	6010C	396119
680-115544-19	GB-27 8-10	Total/NA	Solid	6010C	396119
680-115544-20	GB-27 13-15	Total/NA	Solid	6010C	396119
LCS 680-396119/2-A	Lab Control Sample	Total/NA	Solid	6010C	396119
MB 680-396119/1-A	Method Blank	Total/NA	Solid	6010C	396119

General Chemistry

Analysis Batch: 395860

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-115544-1	SB-41 4-6	Total/NA	Solid	Moisture	
680-115544-2	SB-41 8-10	Total/NA	Solid	Moisture	
680-115544-3	SB-41 13-15	Total/NA	Solid	Moisture	
680-115544-4	GB-9 8-10	Total/NA	Solid	Moisture	
880-115544-5	GB-9 13-15	Total/NA	Solid	Moisture	
880-115544-6	GB-11 3-5	Total/NA	Solid	Moisture	
80-115544-7	GB-11 8-10	Total/NA	Solid	Moisture	
680-115544-8	GB-11 13-15	Total/NA	Solid	Moisture	
880-115544-9	SB-25 0-2	Total/NA	Solid	Moisture	
880-115544-10	SB-25 2-4	Total/NA	Solid	Moisture	
880-115544-11	SB-25 4-6	Total/NA	Solid	Moisture	
880-115544-12	SB-25 8-10	Total/NA	Solid	Moisture	
880-115544-13	SB-25 13-15	Total/NA	Solid	Moisture	
880-115544-14	GB-25 2-4	Total/NA	Solid	Moisture	
680-115544-15	GB-25 4-6	Total/NA	Solid	Moisture	
680-115544-16	GB-26 2-4	Total/NA	Solid	Moisture	
880-115544-17	GB-26 4-6	Total/NA	Solid	Moisture	
680-115544-18	GB-27 3-5	Total/NA	Solid	Moisture	
680-115544-19	GB-27 8-10	Total/NA	Solid	Moisture	
680-115544-20	GB-27 13-15	Total/NA	Solid	Moisture	

Prep Batch: 396935

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115544-1	SB-41 4-6	Total/NA	Solid	9012B	
680-115544-1 MS	SB-41 4-6	Total/NA	Solid	9012B	
680-115544-1 MSD	SB-41 4-6	Total/NA	Solid	9012B	
680-115544-2	SB-41 8-10	Total/NA	Solid	9012B	

TestAmerica Savannah

Page 61 of 80

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

General Chemistry (Continued)

Prep Batch: 396935 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115544-3	SB-41 13-15	Total/NA	Solid	9012B	
680-115544-4	GB-9 8-10	Total/NA	Solid	9012B	
680-115544-5	GB-9 13-15	Total/NA	Solid	9012B	
680-115544-6	GB-11 3-5	Total/NA	Solid	9012B	
680-115544-7	GB-11 8-10	Total/NA	Solid	9012B	
680-115544-8	GB-11 13-15	Total/NA	Solid	9012B	
680-115544-9	SB-25 0-2	Total/NA	Solid	9012B	
LCS 680-396935/2-A	Lab Control Sample	Total/NA	Solid	9012B	
MB 680-396935/1-A	Method Blank	Total/NA	Solid	9012B	

Analysis Batch: 397029

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115544-1	SB-41 4-6	Total/NA	Solid	9012B	396935
680-115544-1 MS	SB-41 4-6	Total/NA	Solid	9012B	396935
680-115544-1 MSD	SB-41 4-6	Total/NA	Solid	9012B	396935
680-115544-2	SB-41 8-10	Total/NA	Solid	9012B	396935
680-115544-3	SB-41 13-15	Total/NA	Solid	9012B	396935
680-115544-4	GB-9 8-10	Total/NA	Solid	9012B	396935
680-115544-5	GB-9 13-15	Total/NA	Solid	9012B	396935
680-115544-6	GB-11 3-5	Total/NA	Solid	9012B	396935
680-115544-7	GB-11 8-10	Total/NA	Solid	9012B	396935
680-115544-8	GB-11 13-15	Total/NA	Solid	9012B	396935
680-115544-9	SB-25 0-2	Total/NA	Solid	9012B	396935
LCS 680-396935/2-A	Lab Control Sample	Total/NA	Solid	9012B	396935
MB 680-396935/1-A	Method Blank	Total/NA	Solid	9012B	396935

Prep Batch: 397121

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115544-10	SB-25 2-4	Total/NA	Solid	9012B	_
680-115544-10 MS	SB-25 2-4	Total/NA	Solid	9012B	
680-115544-10 MSD	SB-25 2-4	Total/NA	Solid	9012B	
680-115544-11	SB-25 4-6	Total/NA	Solid	9012B	
680-115544-12	SB-25 8-10	Total/NA	Solid	9012B	
680-115544-13	SB-25 13-15	Total/NA	Solid	9012B	
680-115544-14	GB-25 2-4	Total/NA	Solid	9012B	
680-115544-15	GB-25 4-6	Total/NA	Solid	9012B	
680-115544-16	GB-26 2-4	Total/NA	Solid	9012B	
680-115544-17	GB-26 4-6	Total/NA	Solid	9012B	
680-115544-18	GB-27 3-5	Total/NA	Solid	9012B	
680-115544-19	GB-27 8-10	Total/NA	Solid	9012B	
680-115544-20	GB-27 13-15	Total/NA	Solid	9012B	
680-115544-20 DU	GB-27 13-15	Total/NA	Solid	9012B	
LCS 680-397121/2-A	Lab Control Sample	Total/NA	Solid	9012B	
MB 680-397121/1-A	Method Blank	Total/NA	Solid	9012B	

Analysis Batch: 397236

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115544-10	SB-25 2-4	Total/NA	Solid	9012B	397121
680-115544-10 MS	SB-25 2-4	Total/NA	Solid	9012B	397121
680-115544-10 MSD	SB-25 2-4	Total/NA	Solid	9012B	397121
680-115544-11	SB-25 4-6	Total/NA	Solid	9012B	397121

TestAmerica Savannah

2

3

4

6

Q

9

10

1

QC Association Summary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

TestAmerica Job ID: 680-115544-1

General Chemistry (Continued)

Analysis Batch: 397236 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115544-12	SB-25 8-10	Total/NA	Solid	9012B	397121
680-115544-13	SB-25 13-15	Total/NA	Solid	9012B	397121
680-115544-14	GB-25 2-4	Total/NA	Solid	9012B	397121
680-115544-15	GB-25 4-6	Total/NA	Solid	9012B	397121
680-115544-16	GB-26 2-4	Total/NA	Solid	9012B	397121
680-115544-17	GB-26 4-6	Total/NA	Solid	9012B	397121
680-115544-18	GB-27 3-5	Total/NA	Solid	9012B	397121
680-115544-19	GB-27 8-10	Total/NA	Solid	9012B	397121
680-115544-20	GB-27 13-15	Total/NA	Solid	9012B	397121
680-115544-20 DU	GB-27 13-15	Total/NA	Solid	9012B	397121
LCS 680-397121/2-A	Lab Control Sample	Total/NA	Solid	9012B	397121
MB 680-397121/1-A	Method Blank	Total/NA	Solid	9012B	397121

2

0

7

8

9

10

11

Client: Geotechnical & Environmental Consultants

Lab Sample ID: 680-115544-1

Matrix: Solid

Date Collected: 08/10/15 09:20 Date Received: 08/12/15 09:46

Client Sample ID: SB-41 4-6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture					395860	08/13/15 10:20	FES	TAL SAV
	Instrumei	nt ID: NOFQUIP								

Client Sample ID: SB-41 4-6 Lab Sample ID: 680-115544-1

Date Collected: 08/10/15 09:20 **Matrix: Solid** Date Received: 08/12/15 09:46 Percent Solids: 89.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.15 g	1 mL	395865	08/14/15 10:57	JMV	TAL SAV
Total/NA	Analysis	8270D		5	30.15 g	1 mL	396502	08/17/15 12:56	RAM	TAL SAV
	Instrume	nt ID: CMST								
Total/NA	Prep	3050B			1.14 g	100 mL	396119	08/14/15 08:59	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.14 g	100 mL	396749	08/17/15 19:34	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.51 g	50 mL	396443	08/16/15 14:39	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.51 g	50 mL	396738	08/17/15 19:46	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.00 g	50 mL	396935	08/19/15 09:00	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.00 g	50 mL	397029	08/19/15 12:14	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Client Sample ID: SB-41 8-10 Lab Sample ID: 680-115544-2

Date Collected: 08/10/15 09:24 **Matrix: Solid** Date Received: 08/12/15 09:46

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395860	08/13/15 10:20	FES	TAL SAV
	Inetrumo	AT ID: NOFOLIID								

Client Sample ID: SB-41 8-10 Lab Sample ID: 680-115544-2

Date Collected: 08/10/15 09:24 Date Received: 08/12/15 09:46 Percent Solids: 88.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.44 g	1 mL	395865	08/14/15 10:57	JMV	TAL SAV
Total/NA	Analysis	8270D		5	30.44 g	1 mL	396502	08/17/15 13:22	RAM	TAL SAV
	Instrume	nt ID: CMST								
Total/NA	Prep	3050B			1.17 g	100 mL	396119	08/14/15 08:59	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.17 g	100 mL	396749	08/17/15 21:29	ВСВ	TAL SAV
Total/NA	Prep	7471B			0.52 g	50 mL	396443	08/16/15 14:39	JKL	TAL SAV
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.52 g	50 mL	396738	08/17/15 19:55	ВСВ	TAL SAV

TestAmerica Savannah

Page 64 of 80

Matrix: Solid

Client: Geotechnical & Environmental Consultants

Instrument ID: NOEQUIP

Lab Sample ID: 680-115544-2

Client Sample ID: SB-41 8-10 Date Collected: 08/10/15 09:24 **Matrix: Solid** Date Received: 08/12/15 09:46 Percent Solids: 88.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	9012B			1.00 g	50 mL	396935	08/19/15 09:00	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.00 g	50 mL	397029	08/19/15 12:19	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Lab Sample ID: 680-115544-3 Client Sample ID: SB-41 13-15

Date Collected: 08/10/15 09:28 Matrix: Solid

Date Received: 08/12/15 09:46

Batch Batch Dil Initial Final **Batch** Prepared **Prep Type** Type Method Run **Factor** Amount **Amount** Number or Analyzed Analyst Lab Total/NA Analysis 395860 08/13/15 10:20 FES TAL SAV Moisture Instrument ID: NOEQUIP

Client Sample ID: SB-41 13-15 Lab Sample ID: 680-115544-3

Date Collected: 08/10/15 09:28 **Matrix: Solid**

Date Received: 08/12/15 09:46 Percent Solids: 88.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.31 g	1 mL	395865	08/14/15 10:57	JMV	TAL SAV
Total/NA	Analysis	8270D		5	30.31 g	1 mL	396502	08/17/15 13:48	RAM	TAL SAV
	Instrume	nt ID: CMST								
Total/NA	Prep	3050B			1.05 g	100 mL	396119	08/14/15 08:59	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.05 g	100 mL	396749	08/17/15 21:07	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.51 g	50 mL	396443	08/16/15 14:39	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.51 g	50 mL	396738	08/17/15 19:58	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.04 g	50 mL	396935	08/19/15 09:00	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.04 g	50 mL	397029	08/19/15 12:20	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Lab Sample ID: 680-115544-4 Client Sample ID: GB-9 8-10

Date Collected: 08/10/15 09:57 **Matrix: Solid** Date Received: 08/12/15 09:46

Dil Initial Batch **Batch** Final **Batch** Prepared **Prep Type** Method Amount Amount Number or Analyzed Type Run **Factor** Analyst Lab Total/NA Moisture 395860 08/13/15 10:20 FES TAL SAV Analysis

TestAmerica Savannah

Client Sample ID: GB-9 8-10

Date Collected: 08/10/15 09:57

Date Received: 08/12/15 09:46

Client: Geotechnical & Environmental Consultants

Lab Sample ID: 680-115544-4

Matrix: Solid Percent Solids: 88.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546	_		30.12 g	1 mL	395865	08/14/15 10:57	JMV	TAL SAV
Total/NA	Analysis Instrume	8270D nt ID: CMST		1	30.12 g	1 mL	396502	08/17/15 14:14	RAM	TAL SAV
Total/NA	Prep	3050B			1.06 g	100 mL	396119	08/14/15 08:59	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.06 g	100 mL	396749	08/17/15 20:05	ВСВ	TAL SAV
Total/NA	Prep	7471B			0.59 g	50 mL	396443	08/16/15 14:39	JKL	TAL SAV
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.59 g	50 mL	396738	08/17/15 20:01	ВСВ	TAL SAV
Total/NA	Prep	9012B			1.01 g	50 mL	396935	08/19/15 09:00	DAM	TAL SAV
Total/NA	Analysis Instrume	9012B nt ID: LACHAT1		1	1.01 g	50 mL	397029	08/19/15 12:21	DAM	TAL SAV

Client Sample ID: GB-9 13-15

Date Collected: 08/10/15 10:06

Date Received: 08/12/15 09:46

Lab Sample ID: 680-115544-5

Matrix: Solid

Prep Type Total/NA	Batch Type Analysis	Batch Method Moisture	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 395860	Prepared or Analyzed 08/13/15 10:20	Analyst FES	Lab TAL SAV
	- ,	nt ID: NOEQUIP		·				00/10/10/10120	0	

Client Sample ID: GB-9 13-15

Date Collected: 08/10/15 10:06

Date Received: 08/12/15 09:46

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.21 g	1 mL	395865	08/14/15 10:57	JMV	TAL SAV
Total/NA	Analysis	8270D		1	30.21 g	1 mL	396502	08/17/15 14:40	RAM	TAL SAV
	Instrume	nt ID: CMST								
Total/NA	Prep	3050B			1.10 g	100 mL	396119	08/14/15 08:59	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.10 g	100 mL	396749	08/17/15 21:20	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.56 g	50 mL	396443	08/16/15 14:39	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.56 g	50 mL	396738	08/17/15 20:04	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.04 g	50 mL	396935	08/19/15 09:00	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.04 g	50 mL	397029	08/19/15 12:22	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

TestAmerica Savannah

Lab Sample ID: 680-115544-5

Matrix: Solid Percent Solids: 79.1

Client: Geotechnical & Environmental Consultants

Client Sample ID: GB-11 3-5 Lab Sample ID: 680-115544-6 Date Collected: 08/10/15 10:31

Matrix: Solid

Date Received: 08/12/15 09:46

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395860	08/13/15 10:20	FES	TAL SAV
	Instrumen	t ID: NOEQUIP								

Lab Sample ID: 680-115544-6 Client Sample ID: GB-11 3-5

Date Collected: 08/10/15 10:31 **Matrix: Solid** Date Received: 08/12/15 09:46 Percent Solids: 87.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.04 g	1 mL	395865	08/14/15 10:57	JMV	TAL SAV
Total/NA	Analysis	8270D		5	30.04 g	1 mL	396502	08/17/15 15:06	RAM	TAL SAV
	Instrume	nt ID: CMST								
Total/NA	Prep	3050B			1.12 g	100 mL	396119	08/14/15 08:59	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.12 g	100 mL	396749	08/17/15 21:12	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.55 g	50 mL	396443	08/16/15 14:39	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.55 g	50 mL	396738	08/17/15 20:07	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.05 g	50 mL	396935	08/19/15 09:00	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.05 g	50 mL	397029	08/19/15 12:24	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Client Sample ID: GB-11 8-10 Lab Sample ID: 680-115544-7

Date Collected: 08/10/15 10:36 **Matrix: Solid** Date Received: 08/12/15 09:46

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395860	08/13/15 10:20	FES	TAL SAV
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: GB-11 8-10 Lab Sample ID: 680-115544-7 Date Collected: 08/10/15 10:36

Matrix: Solid Date Received: 08/12/15 09:46 Percent Solids: 87.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			29.94 g	1 mL	395865	08/14/15 10:57	JMV	TAL SAV
Total/NA	Analysis	8270D		5	29.94 g	1 mL	396502	08/17/15 15:32	RAM	TAL SAV
	Instrume	nt ID: CMST								
Total/NA	Prep	3050B			1.12 g	100 mL	396119	08/14/15 08:59	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.12 g	100 mL	396749	08/17/15 20:23	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.59 g	50 mL	396443	08/16/15 14:39	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.59 g	50 mL	396738	08/17/15 20:16	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.01 g	50 mL	396935	08/19/15 09:00	DAM	TAL SAV

TestAmerica Savannah

Page 67 of 80

Client Sample ID: GB-11 8-10

Date Collected: 08/10/15 10:36 Date Received: 08/12/15 09:46 Lab Sample ID: 680-115544-7

Matrix: Solid
Percent Solids: 87.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9012B		1	1.01 g	50 mL	397029	08/19/15 12:25	DAM	TAL SAV
	Inotrumor	ALID: LACHATA								

Client Sample ID: GB-11 13-15 Lab Sample ID: 680-115544-8

Date Collected: 08/10/15 10:41 Date Received: 08/12/15 09:46 Matrix: Solid

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	Moisture		1			395860	08/13/15 10:20	FES	TAL SAV

Client Sample ID: GB-11 13-15 Lab Sample ID: 680-115544-8

Date Collected: 08/10/15 10:41

Date Received: 08/12/15 09:46

Matrix: Solid
Percent Solids: 87.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			29.93 g	1 mL	395865	08/14/15 10:57	JMV	TAL SAV
Total/NA	Analysis	8270D		5	29.93 g	1 mL	396502	08/17/15 15:58	RAM	TAL SAV
	Instrume	nt ID: CMST								
Total/NA	Prep	3050B			1.08 g	100 mL	396119	08/14/15 08:59	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.08 g	100 mL	396749	08/17/15 21:25	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.58 g	50 mL	396443	08/16/15 14:39	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.58 g	50 mL	396738	08/17/15 20:19	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.00 g	50 mL	396935	08/19/15 09:00	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.00 g	50 mL	397029	08/19/15 12:26	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Client Sample ID: SB-25 0-2

Date Collected: 08/10/15 10:56

Lab Sample ID: 680-115544-9

Matrix: Solid

Date Received: 08/12/15 09:46

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395860	08/13/15 10:20	FES	TAL SAV
	Instrume	nt ID: NOEQUIP								

Client Sample ID: SB-25 0-2 Lab Sample ID: 680-115544-9

Date Collected: 08/10/15 10:56 Matrix: Solid
Date Received: 08/12/15 09:46 Percent Solids: 87.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.18 g	1 mL	395865	08/14/15 10:57	JMV	TAL SAV

TestAmerica Savannah

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Client Sample ID: SB-25 0-2

Date Collected: 08/10/15 10:56 Date Received: 08/12/15 09:46

Lab Sample ID: 680-115544-9

Matrix: Solid Percent Solids: 87.1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrume	8270D nt ID: CMST		10	30.18 g	1 mL	396502	08/17/15 16:24	RAM	TAL SAV
Total/NA	Prep	3050B			1.10 g	100 mL	396119	08/14/15 08:59	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.10 g	100 mL	396749	08/17/15 21:16	ВСВ	TAL SAV
Total/NA	Prep	7471B			0.51 g	50 mL	396443	08/16/15 14:39	JKL	TAL SAV
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.51 g	50 mL	396738	08/17/15 20:23	BCB	TAL SAV
Total/NA	Prep	9012B			1.03 g	50 mL	396935	08/19/15 09:00	DAM	TAL SAV
Total/NA	Analysis Instrume	9012B nt ID: LACHAT1		1	1.03 g	50 mL	397029	08/19/15 12:27	DAM	TAL SAV

Client Sample ID: SB-25 2-4 Lab Sample ID: 680-115544-10

Date Collected: 08/10/15 10:56

Date Received: 08/12/15 09:46

Prep Type Total/NA	Batch Type Analysis	Batch Method Moisture	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 395860	Prepared or Analyzed 08/13/15 10:20	Analyst FES	Lab TAL SAV
	Instrumer	nt ID: NOEQUIP								

Lab Sample ID: 680-115544-10 Client Sample ID: SB-25 2-4 Date Collected: 08/10/15 10:56 **Matrix: Solid**

Date Received: 08/12/15 09:46 Percent Solids: 87.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.30 g	1 mL	395865	08/14/15 10:57	JMV	TAL SAV
Total/NA	Analysis	8270D		1	30.30 g	1 mL	396502	08/17/15 16:51	RAM	TAL SAV
	Instrume	nt ID: CMST								
Total/NA	Prep	3050B			1.14 g	100 mL	396119	08/14/15 08:59	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.14 g	100 mL	396749	08/17/15 21:34	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.56 g	50 mL	396443	08/16/15 14:39	JKL	TAL SAV
Total/NA	Analysis	7471B		5	0.56 g	50 mL	396738	08/18/15 09:33	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.02 g	50 mL	397121	08/20/15 07:30	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.02 g	50 mL	397236	08/20/15 11:53	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Client Sample ID: SB-25 4-6 Lab Sample ID: 680-115544-11

Date Collected: 08/10/15 11:11

Date Received: 08/12/15 09:46

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395860	08/13/15 10:20	FES	TAL SAV

TestAmerica Savannah

Matrix: Solid

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

Client Sample ID: SB-25 4-6 Lab Sample ID: 680-115544-11 Date Collected: 08/10/15 11:11

Matrix: Solid

Date Received: 08/12/15 09:46

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395860	08/13/15 10:20	FES	TAL SAV
	Instrume	nt ID: NOEQUIP								

Lab Sample ID: 680-115544-11 Client Sample ID: SB-25 4-6

Date Collected: 08/10/15 11:11 **Matrix: Solid** Percent Solids: 80.2 Date Received: 08/12/15 09:46

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.20 g	1 mL	395865	08/14/15 10:57	JMV	TAL SAV
Total/NA	Analysis	8270D		1	30.20 g	1 mL	396502	08/17/15 17:17	RAM	TAL SAV
	Instrume	nt ID: CMST								
Total/NA	Prep	3050B			1.13 g	100 mL	396119	08/14/15 08:59	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.13 g	100 mL	396749	08/17/15 20:36	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.58 g	50 mL	396443	08/16/15 14:39	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.58 g	50 mL	396738	08/17/15 20:29	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.03 g	50 mL	397121	08/20/15 07:30	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.03 g	50 mL	397236	08/20/15 11:56	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Client Sample ID: SB-25 8-10 Lab Sample ID: 680-115544-12

Date Collected: 08/10/15 11:17 Date Received: 08/12/15 09:46

Batch **Batch** Dil Initial Final Batch Prepared Method Amount Number or Analyzed Analyst **Prep Type** Type Run **Factor** Amount Lab Total/NA 395860 08/13/15 10:20 FES Analysis Moisture TAL SAV Instrument ID: NOEQUIP

Client Sample ID: SB-25 8-10 Lab Sample ID: 680-115544-12

Date Collected: 08/10/15 11:17 Date Received: 08/12/15 09:46 Percent Solids: 85.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.00 g	1 mL	395865	08/14/15 10:57	JMV	TAL SAV
Total/NA	Analysis Instrume	8270D nt ID: CMST		10	30.00 g	1 mL	396502	08/17/15 17:42	RAM	TAL SAV
Total/NA	Prep	3050B			1.12 g	100 mL	396119	08/14/15 08:59	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.12 g	100 mL	396749	08/17/15 20:58	ВСВ	TAL SAV
Total/NA	Prep	7471B			0.58 g	50 mL	396443	08/16/15 14:39	JKL	TAL SAV
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.58 g	50 mL	396738	08/17/15 20:32	ВСВ	TAL SAV
Total/NA	Prep	9012B			1.05 g	50 mL	397121	08/20/15 07:30	DAM	TAL SAV

TestAmerica Savannah

Page 70 of 80

Matrix: Solid

Matrix: Solid

Client Sample ID: SB-25 8-10

Date Collected: 08/10/15 11:17 Date Received: 08/12/15 09:46 Lab Sample ID: 680-115544-12

Matrix: Solid
Percent Solids: 85.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9012B			1.05 g	50 mL	397236	08/20/15 11:59	DAM	TAL SAV
	Instrumer	nt ID: LACHAT1								

Client Sample ID: SB-25 13-15 Lab Sample ID: 680-115544-13

Date Collected: 08/10/15 11:21 Date Received: 08/12/15 09:46 Matrix: Solid

Prep Type Total/NA	Batch Type Analysis	Batch Method Moisture	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 395860	Prepared or Analyzed 08/13/15 10:20	Analyst FES	Lab TAL SAV
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: SB-25 13-15 Lab Sample ID: 680-115544-13

Date Collected: 08/10/15 11:21

Date Received: 08/12/15 09:46

Matrix: Solid
Percent Solids: 86.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.38 g	1 mL	395865	08/14/15 10:57	JMV	TAL SAV
Total/NA	Analysis	8270D		1	30.38 g	1 mL	396502	08/17/15 18:08	RAM	TAL SAV
	Instrume	nt ID: CMST								
Total/NA	Prep	3050B			1.09 g	100 mL	396119	08/14/15 08:59	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.09 g	100 mL	396749	08/17/15 21:03	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.56 g	50 mL	396443	08/16/15 14:39	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.56 g	50 mL	396738	08/17/15 20:35	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.01 g	50 mL	397121	08/20/15 07:30	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.01 g	50 mL	397236	08/20/15 12:01	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Client Sample ID: GB-25 2-4

Date Collected: 08/10/15 11:39

Lab Sample ID: 680-115544-14

Matrix: Solid

Date Received: 08/12/15 09:46

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395860	08/13/15 10:20	FES	TAL SAV
	Instrume	nt ID: NOEQUIP								

Client Sample ID: GB-25 2-4 Lab Sample ID: 680-115544-14

Date Collected: 08/10/15 11:39 Matrix: Solid
Date Received: 08/12/15 09:46 Percent Solids: 89.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			29.95 g	1 mL	395865	08/14/15 10:57	JMV	TAL SAV

TestAmerica Savannah

Client Sample ID: GB-25 2-4

Date Collected: 08/10/15 11:39

Date Received: 08/12/15 09:46

Client: Geotechnical & Environmental Consultants

Lab Sample ID: 680-115544-14

Matrix: Solid Percent Solids: 89.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8270D	= =====	1	29.95 g	1 mL	396502	08/17/15 18:34	RAM	TAL SAV
	Instrume	nt ID: CMST								
Total/NA	Prep	3050B			1.12 g	100 mL	396119	08/14/15 08:59	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.12 g	100 mL	396749	08/17/15 20:18	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.53 g	50 mL	396509	08/17/15 10:06	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.53 g	50 mL	396738	08/17/15 22:51	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.03 g	50 mL	397121	08/20/15 07:30	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.03 g	50 mL	397236	08/20/15 12:02	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Client Sample ID: GB-25 4-6 Lab Sample ID: 680-115544-15

Date Collected: 08/10/15 11:42

Date Received: 08/12/15 09:46

Prep Type Total/NA	Batch Type Analysis	Batch Method Moisture	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 395860	Prepared or Analyzed 08/13/15 10:20	Analyst FES	Lab TAL SAV
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: GB-25 4-6

Date Collected: 08/10/15 11:42

Date Received: 08/12/15 09:46

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			29.95 g	1 mL	395865	08/14/15 10:57	JMV	TAL SAV
Total/NA	Analysis	8270D		1	29.95 g	1 mL	396502	08/17/15 19:00	RAM	TAL SAV
	Instrume	nt ID: CMST								
Total/NA	Prep	3050B			1.07 g	100 mL	396119	08/14/15 08:59	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.07 g	100 mL	396749	08/17/15 20:09	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.55 g	50 mL	396509	08/17/15 10:06	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.55 g	50 mL	396738	08/17/15 22:54	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.03 g	50 mL	397121	08/20/15 07:30	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.03 g	50 mL	397236	08/20/15 12:03	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Client Sample ID: GB-26 2-4 Lab Sample ID: 680-115544-16

Date Collected: 08/10/15 12:20

Date Received: 08/12/15 09:46

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395860	08/13/15 10:20	FES	TAL SAV

TestAmerica Savannah

Page 72 of 80

Matrix: Solid

Lab Sample ID: 680-115544-15 **Matrix: Solid**

Percent Solids: 89.6

Matrix: Solid

Project/Site: Macon MGP #2

Date Collected: 08/10/15 12:20

Date Received: 08/12/15 09:46

Client Sample ID: GB-26 2-4

Client: Geotechnical & Environmental Consultants

Instrument ID: NOEQUIP

Lab Sample ID: 680-115544-16

Matrix: Solid

Batch Dil Initial Final Batch Batch Prepared **Prep Type** Type Method Run **Factor** Amount Amount Number or Analyzed Analyst 08/13/15 10:20 FES Total/NA Analysis Moisture 395860 TAL SAV

Client Sample ID: GB-26 2-4 Lab Sample ID: 680-115544-16

Date Collected: 08/10/15 12:20 **Matrix: Solid** Date Received: 08/12/15 09:46 Percent Solids: 93.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.31 g	1 mL	395865	08/14/15 10:57	JMV	TAL SAV
Total/NA	Analysis	8270D		10	30.31 g	1 mL	397169	08/20/15 22:02	RAM	TAL SAV
	Instrume	nt ID: CMST								
Total/NA	Prep	3050B			1.10 g	100 mL	396119	08/14/15 08:59	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.10 g	100 mL	396749	08/17/15 20:41	BCB	TAL SAV
Total/NA	Prep	7471B			0.56 g	50 mL	396509	08/17/15 10:06	JKL	TAL SAV
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.56 g	50 mL	396738	08/17/15 22:57	ВСВ	TAL SAV
Total/NA	Prep	9012B			1.01 g	50 mL	397121	08/20/15 07:30	DAM	TAL SAV
Total/NA	Analysis Instrume	9012B nt ID: LACHAT1		1	1.01 g	50 mL	397236	08/20/15 12:04	DAM	TAL SAV

Client Sample ID: GB-26 4-6 Lab Sample ID: 680-115544-17

Date Collected: 08/10/15 12:25 **Matrix: Solid** Date Received: 08/12/15 09:46

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			395860	08/13/15 10:20	FES	TAL SAV
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: GB-26 4-6 Lab Sample ID: 680-115544-17

Date Collected: 08/10/15 12:25 Date Received: 08/12/15 09:46 Percent Solids: 89.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			29.93 g	1 mL	395865	08/14/15 10:57	JMV	TAL SAV
Total/NA	Analysis	8270D		5	29.93 g	1 mL	396502	08/17/15 19:52	RAM	TAL SAV
	Instrume	nt ID: CMST								
Total/NA	Prep	3050B			1.18 g	100 mL	396119	08/14/15 08:59	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.18 g	100 mL	396749	08/17/15 20:32	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.55 g	50 mL	396509	08/17/15 10:06	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.55 g	50 mL	396738	08/17/15 23:00	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.00 g	50 mL	397121	08/20/15 07:30	DAM	TAL SAV

TestAmerica Savannah

Page 73 of 80

Matrix: Solid

Lab Sample ID: 680-115544-17

Client Sample ID: GB-26 4-6 Date Collected: 08/10/15 12:25 Matrix: Solid

Date Received: 08/12/15 09:46 Percent Solids: 89.2

Dil Initial Batch Batch **Batch** Final **Prepared** Number **Prep Type** Type Method Run **Factor** Amount **Amount** or Analyzed Analyst Lab Total/NA Analysis 9012B 1.00 g 50 mL 397236 08/20/15 12:05 DAM TAL SAV Instrument ID: LACHAT1

Client Sample ID: GB-27 3-5 Lab Sample ID: 680-115544-18

Date Collected: 08/10/15 12:33 **Matrix: Solid**

Date Received: 08/12/15 09:46

Batch Batch Dil Initial Final Batch **Prepared Prep Type** Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis Moisture 395860 08/13/15 10:20 FES TAL SAV Instrument ID: NOEQUIP

Client Sample ID: GB-27 3-5 Lab Sample ID: 680-115544-18

Date Collected: 08/10/15 12:33 **Matrix: Solid** Date Received: 08/12/15 09:46 Percent Solids: 69.6

Batch Batch Dil Initial Final Batch **Prepared Prep Type** Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab 08/14/15 10:57 Total/NA Prep 3546 30.06 g 395865 **JMV** TAL SAV 1 mL Total/NA Analysis 8270D 10 30.06 g 1 mL 397169 08/20/15 22:27 RAM TAL SAV Instrument ID: CMST Total/NA 3050B 08/14/15 08:59 CDD Prep 1.10 g 100 mL 396119 TAL SAV Total/NA 6010C Analysis 1 1.10 g 100 mL 396749 08/17/15 20:45 BCB TAL SAV Instrument ID: ICPE Total/NA Prep 7471B 0.50 q50 mL 396509 08/17/15 10:06 JKL TAL SAV Total/NA Analysis 7471B 5 0.50 g 50 mL 396738 08/18/15 09:36 BCB TAL SAV Instrument ID: LEEMAN2 Total/NA 9012B 1.03 g 50 ml 397121 08/20/15 07:30 DAM TAL SAV Prep 9012B 397236 TAL SAV Total/NA Analysis 1.03 g 50 mL 08/20/15 12:06 DAM Instrument ID: LACHAT1

Client Sample ID: GB-27 8-10 Lab Sample ID: 680-115544-19

Date Collected: 08/10/15 12:45 Matrix: Solid

Date Received: 08/12/15 09:46

Dil Batch **Batch** Initial Final **Batch Prepared** Method Number Prep Type Type Run **Factor** Amount Amount or Analyzed Analyst Lab Total/NA 395860 08/13/15 10:20 FES Analysis Moisture TAL SAV Instrument ID: NOEQUIP

Client Sample ID: GB-27 8-10 Lab Sample ID: 680-115544-19

Date Collected: 08/10/15 12:45 Matrix: Solid Date Received: 08/12/15 09:46 Percent Solids: 91.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			29.99 g	1 mL	395865	08/14/15 10:57	JMV	TAL SAV

Date Collected: 08/10/15 12:45

Date Received: 08/12/15 09:46

Client Sample ID: GB-27 8-10

Client: Geotechnical & Environmental Consultants

Lab Sample ID: 680-115544-19

Matrix: Solid

Percent Solids: 91.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrume	8270D nt ID: CMST		10	29.99 g	1 mL	396502	08/17/15 20:42	RAM	TAL SAV
Total/NA	Prep	3050B			1.11 g	100 mL	396119	08/14/15 08:59	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.11 g	100 mL	396749	08/17/15 20:14	BCB	TAL SAV
Total/NA	Prep	7471B			0.52 g	50 mL	396509	08/17/15 10:06	JKL	TAL SAV
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.52 g	50 mL	396738	08/17/15 23:06	ВСВ	TAL SAV
Total/NA	Prep	9012B			1.02 g	50 mL	397121	08/20/15 07:30	DAM	TAL SAV
Total/NA	Analysis Instrume	9012B nt ID: LACHAT1		1	1.02 g	50 mL	397236	08/20/15 12:07	DAM	TAL SAV

Client Sample ID: GB-27 13-15 Lab Sample ID: 680-115544-20

Date Collected: 08/10/15 12:48 **Matrix: Solid**

Date Received: 08/12/15 09:46

Prep Type Total/NA	Batch Type Analysis	Batch Method Moisture	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 395860	Prepared or Analyzed 08/13/15 10:20	Analyst FES	Lab TAL SAV
	Instrume	nt ID: NOEQUIP								

Client Sample ID: GB-27 13-15 Lab Sample ID: 680-115544-20 Date Collected: 08/10/15 12:48

Date Received: 08/12/15 09:46 Percent Solids: 85.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.20 g	1 mL	395865	08/14/15 10:57	JMV	TAL SAV
Total/NA	Analysis	8270D		10	30.20 g	1 mL	396502	08/17/15 21:08	RAM	TAL SAV
	Instrume	nt ID: CMST								
Total/NA	Prep	3050B			1.06 g	100 mL	396119	08/14/15 08:59	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.06 g	100 mL	396749	08/17/15 20:27	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.54 g	50 mL	396509	08/17/15 10:06	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.54 g	50 mL	396738	08/17/15 23:09	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.02 g	50 mL	397121	08/20/15 07:30	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.02 g	50 mL	397236	08/20/15 12:08	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TestAmerica Savannah

Matrix: Solid

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

Laboratory: TestAmerica Savannah

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Program	EPA Region	Certification ID	Expiration Date
AFCEE		SAVLAB	
DoD ELAP		399.01	02-28-17
ISO/IEC 17025		399.01	02-28-17
State Program	4	41450	06-30-16
State Program	6	88-0692	01-31-16
State Program	9	2939	07-31-16
State Program	8	N/A	12-31-15
State Program	1	PH-0161	03-31-17
NELAP	4	E87052	06-30-16
State Program	4	N/A	06-12-17
State Program	4	803	06-30-16
State Program	9	14-004r	04-16-16
State Program	9	N/A	06-30-16
NELAP	5	200022	11-30-15
State Program	5	N/A	06-30-15 *
	7	353	06-30-17
State Program	4	90084	12-31-15
State Program	4	18	06-30-16
State Program	4	90084	12-31-15
NELAP	6	30690	06-30-16
NELAP	6	LA150014	12-31-15
State Program	1	GA00006	09-24-16
	3	250	12-31-15
	1	M-GA006	06-30-16
	5	9925	03-05-16
	4	N/A	06-30-15 *
	8	CERT0081	12-31-15
	7	TestAmerica-Savannah	06-30-16
	2		09-30-15 *
			06-30-16
			03-31-16
	4		07-31-16
	4		12-31-15
			08-31-15 *
			06-30-16
			12-31-15
			06-30-15 *
ū			06-30-16
			11-30-15
			06-11-17
	3		06-14-16
			06-14-16
			12-31-15
State Program	3	094	06-30-16
		U214	
State Program	5	999819810	08-31-16
	AFCEE DOD ELAP ISO/IEC 17025 State Program NELAP State Program NELAP State Program	AFCEE DoD ELAP ISO/IEC 17025 State Program 4 State Program 6 State Program 9 State Program 9 State Program 1 NELAP 4 State Program 4 State Program 4 State Program 9 State Program 9 State Program 9 NELAP 5 State Program 9 NELAP 5 State Program 7 State Program 7 State Program 4 State Program 4 State Program 4 NELAP 6 State Program 1 State Program 1 State Program 5 State Program 4 State Program 4 State Program 7 NELAP 2 State Program 6 NELAP 2 State Program 4 State Program 4 State Program 4 State Program 4 State Program 4 State Program 4 State Program	AFCEE DOD ELAP BOD STATE Program BASOBE2 State Program BASOBE2 State Program BAN/A STATE SAN/BAN/A SAN/BAN/BAN/A SAN/BAN/A SAN/BAN/BAN/A SAN/BAN/BAN/BAN/A SAN/BAN/BAN/BAN/BAN/BAN/BAN/BAN/BAN/BAN/B

^{*} Certification renewal pending - certification considered valid.

TestAmerica Savannah

Method Summary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

TestAmerica Job ID: 680-115544-1

Method	Method Description	Protocol	Laboratory
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL SAV
6010C	Metals (ICP)	SW846	TAL SAV
7471B	Mercury (CVAA)	SW846	TAL SAV
9012B	Cyanide, Total andor Amenable	SW846	TAL SAV
Moisture	Percent Moisture	EPA	TAL SAV

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

3

4

5

6

8

40

44

า หาย เมื่อสามารถ เป็นสามารถ เมื่อสามารถ เมื่อสามารถสามารถ เมื่อสามารถ เมื่อสามารถ เมื่อสามารถ เมื่อสามารถ ค่

Aller Deliver	CC Figure Court	NUEST AND CHAIN OF CUSTODY RECORD	Website: www.testamer	Website: www.testamericainc.com Phone: (912) 354-7858 Fax: (912) 352-0165
NOTE THE PROJECT COATON WITHOUT STATE AND STAT	SAME DEMINDS SAME DEMINES SA			
SAMPLE DENTIFY A PRINCE TO SOME PROPERTY OF STANDING PROPERTY OF STANDIN	SWAPE STATE TO STATE TO STATE THE STATE ST		rione: Fax:	
SAMPLE DENTIFACTIVITY OF THE PRODUCT	SAME DE STACH WHENCE THE PLACE CONTRACTING WHENCE SAME DE STACH WHENCE W	PROJECT LOCATION (STATE)		7
NAMER DEVINED PROPER DEVISION ON THE PROPERTY OF THE PROPERTY	NAME AND STATE OF THE TIME THE TOTAL OF THE TIME	CONTRACT NO.		STANDARD REPORT DELIVERY DATE DUE
SAMPLE DENTIFICATION	13-15 13-1	CLIENT E-MAIL (Included Lie Consultates. 48 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		EXPEDITED REPORT SURCHARGE) DATE DUE
SAMPLE IDENTIFICATION	SAMPLE DENTIFICATION SAMPLE DATE TIME	ACO CO SEMISOR OF SEMISOR (WATER OF SEMISOR CO) CON SEMISOR (WATER OF SEMISOR CO) CON SEMISOR (C) CO		VUMBER OF COOLERS SUBMITTED PER SHIPMENT:
25 13-15 -25 2-4 -25 3-4 -25 4-6 -26 4-6 -27 3	-25 2-4 -25 2-4 -25 2-4 -25 2-4 -26 4-6 -26 2-4 -26 2-4 -26 2-4 -26 2-4 -26 2-4 -26 2-4 -27 3-5 -27 4-6 -27 3-5 -27 4-6 -27 3-5 -27 4-6 -27 3-6 -27 4-6 -27 3-7 -27 3-7 -27 3-7 -27 3-7 -27 3-7 -27 3-7 -27 3-7 -27 3-7 -27 3-7 -27 3-7 -27 3-7 -27 3-7 -27 3-7 -27 4-6 -27 3-7 -27 3-7 -27 4-6 -27 3-7 -27 3-7 -27 4-6 -27 4-6 -27 3-7 -27 4-6 -27 4-6 -27 3-7 -27 4-6 -28 4-6 -8 4-6 -8	SOLID COMPC COMPC	NUMBER OF CONTAINERS SUBMITTED .	REMARKS
25 2-4 -25 4-6 -26 2-4 -26 2-4 -26 2-4 -27 3-5 -27 4-6 -26 2-4 -26 2-4 -27 3-5 -27 4-6 -27 3-7 -27 3-7 -27 3-7 -27 4-6 -26 2-4 -27 3-7 -27 4-6 -27 4-6 -26 2-4 -27 3-7 -27 4-6 -27 4-6 -26 2-6 -27 4-6 -27 3-7 -27 4-6 -27 4-6 -28	25 2-4 -25 4-6 -26 2-4 -26 2-4 -26 2-4 -27 3-6 -27 3-7 -27	-25 13-15 C X		
-25 4-6 -26 2-4 -26 2-4 -27 3-5 -27 4-6 13-15 -27 4-6 13-15 -27 4-6 14-6 -27 4-6 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25 4-6 -26 2-4 -27 3-6 -27 3-6 -27 3-6 -27 3-6 -27 3-6 -27 3-6 -27 3-6 -27 3-7 -27 4-6 -18 4-6 -19 3-6 -27 3-6 -27 3-6 -27 3-6 -27 3-6 -27 3-6 -27 3-6 -27 3-6 -27 3-6 -27 3-7 -27 4-6 -27 3-6 -27 3-6 -27 3-6 -27 4-6 -27 3-6 -27 4-6 -27 3-6 -27 3-6 -27 4-6 -27 3-6 -27 3-6 -27 4-6 -27 3-6 -27 3-6 -27 3-6 -27 4-7 -27 4-6 -27 3-6 -27 4-6 -27 3-6 -27 4-6 -27 4-6 -27 3-6 -27 4-7 -27 4-7 -28 4-7 -28 4-8 -28	-25 25-		Vay Zn+
DATE TIME RECEIVED BY: (SIGNATURE)	DATE TIME RECEIVED BY: SIGNATURE) DATE TIME RECEIVED BY: SIGNATURE RECEIVED BY:	-77		143K) 72
DATE TIME RECEIVED BY; (SIGNATURE) -27 9-57 (3-15 DATE TIME RELINQUISHED BY; (SIGNATURE) DATE TIME RECEIVED BY; (SIGNATURE) DATE TIME TIME RECEIVED BY; (SIGNATURE) DATE TIME RECEIVED BY; (SIGNATURE) DATE TIME RECEIVED BY; (SIGNATURE) DATE TIME TIME TIME TIME TIME TIME TIME TI	DATE TIME RECEIVED BY, SIGNATURE) ABOUT OFFI TIME RECEIVED BY, SIGNATURE TIME RECEIVED BY, SIGNATURE TIME THE RECEIVED BY, SIGNATURE THE TIME THE THE TIME THE THE TIME THE THE THE TIME THE TIM	200		Scar
DATE TIME RECEIVED BY: (SIGNATURE)	DATE TIME RELINQUISHED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) LABORATORY REMARKS SEAL NO. LOG NO. LOG NO.			try blank.
DATE TIME RECEIVED BY: (SIGNATURE)	DATE TIME RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNAT	-27 4-		
TIME RELINQUISHED BY: (SIGNATURE) A SOO PATE TIME RECEIVED BY: (SIGNATURE) TIME RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) TIME RECEIVED BY: (SIGNATURE) TIME RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE)	TIME RECEIVED BY: (SIGNATURE) TO CUSTODY INTACT SEAL NO. TO CONTOUT SAVANNAH TIME RECEIVED BY: (SIGNATURE) TO CONTOUT SAVANNAH TO CONTOUT S	-29		1/21/80
TIME RECEIVED BY: (SIGNATURE) TIME RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE)	TIME RECEIVED BY: (SIGNATURE) TIME RECEIVED BY: (SIGNATURE) TIME RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) LABORATORY USE ONLY TIME SEAL NO. LOG NO.			
TIME RELINQUISHED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE)	TIME RECEIVED BY: (SIGNATURE) TABORATORY REMARKS TO SIGNATURE) TIME RECEIVED BY: (SIGNATURE) TO SIGNATURE) TO SIGNATURE) TO SIGNATURE) TIME RECEIVED BY: (SIGNATURE) TO SIGNATURE)			
TIME RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) DATE TIME (CC) U.	TIME RECEIVED BY: (SIGNATUHE) LABORATORY USE ONLY TIME RECEIVED BY: (SIGNATUHE) LABORATORY USE ONLY TIME RECEIVED BY: (SIGNATUHE) LABORATORY USE ONLY LABORATORY REMARKS SEAL NO. LOG NO.	TIME RELINQUISHED BY: (SIGNATURE)	TIME	DATE TIME
	LABORATORY USE ONLY LABORATORY USE ONLY CUSTODY INTACT CUSTODY SAVANNAH SEAL NO. LOG NO.	TIME RECEIVED BY; (SIGNATURE)	TIME	T DATE H. H(CF) 4.8E
		TIME CUSTODY INTACT CUSTODY SEAL NO. SEAL NO. $1/\sqrt{60}$ NO $1/\sqrt{60}$		

Job Number: 680-115544-1

Client: Geotechnical & Environmental Consultants

Login Number: 115544 List Source: TestAmerica Savannah

List Number: 1

Creator: Banda, Christy S

orottor: Buriau, erinoty e		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Savannah

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-116110-1

Client Project/Site: Macon MGP #2

Revision: 1

For:

Geotechnical & Environmental Consultants 514 Hillcrest Industrial Blvd. Macon, Georgia 31204

Attn: Carrie Holderfield

Authorized for release by: 9/17/2015 6:45:28 PM

Lisa Harvey, Project Manager II (912)354-7858 e.3221

lisa.harvey@testamericainc.com

----- LINKS -----

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Definitions/Glossary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

TestAmerica Job ID: 680-116110-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
Matala	

Metals

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
U	Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier	Qualifier Description
Ū	Indicates the analyte was analyzed for but not detected.

These commonly used abbreviations may or may not be present in this report.

GlossaryAbbreviation

¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TestAmerica Savannah

9/17/2015

2

7

_

10

11

10

Sample Summary

Matrix

Solid

Solid

Solid

Solid

Client: Geotechnical & Environmental Consultants

Client Sample ID

GB-5 13-15

GB-19 13-15

GB-21 13-15

GB-5 18

Project/Site: Macon MGP #2

Lab Sample ID

680-116110-1

680-116110-2

680-116110-3

680-116110-4

TestAmerica Job ID: 680-116110-1

08/25/15 11:30 08/27/15 09:45

08/25/15 11:50 08/27/15 09:45

Collected	Received
08/24/15 15:08	08/27/15 09:45
08/24/15 15:17	08/27/15 09:45

3

Δ

5

7

Q

10

11

Case Narrative

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

TestAmerica Job ID: 680-116110-1

Job ID: 680-116110-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE

Client: Geotechnical & Environmental Consultants
Project: Macon MGP #2
Report Number: 680-116110-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

09/17/2015: This report has been revised. The report formatter has been changed so that non-detects would be reported at the Method Detection Limit (MDL) rather than the Reporting Limit (RL).

RECEIPT

The samples were received on 08/27/2015; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 1.8 C.

A Trip Blank was listed on the COC, however, no Trip Blank was recieved.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples GB-5 13-15 (680-116110-1) and GB-5 18 (680-116110-2) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were prepared on 08/28/2015 and analyzed on 09/02/2015 and 09/03/2015.

Method(s) 5035: The MeOH terra core vials contain no MeOH for samples -1A and -2A. The other vials were used for analysis.

Method(s) 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 680-398538 and analytical batch 680-399189.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

SEMIVOLATILE ORGANIC COMPOUNDS (SOLID)

Samples GB-5 13-15 (680-116110-1), GB-5 18 (680-116110-2), GB-19 13-15 (680-116110-3) and GB-21 13-15 (680-116110-4) were analyzed for Semivolatile Organic Compounds (Solid) in accordance with EPA SW-846 Method 8270D. The samples were prepared on 09/01/2015 and analyzed on 09/02/2015.

Method(s) 8270D: The continuing calibration verification (CCV) analyzed in batch 680-399288 was outside the method criteria for the following analytes: Indeno[1,2,3-cd]pyrene and Benzaldehyde. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

- 3,3'-Dichlorobenzidine and 4-Chloroaniline recovery is outside criteria low for the MS of sample GB-19 13-15 (680-116110-3) in batch 680-399288.
- 3,3'-Dichlorobenzidine exceeded the RPD limit for the MSD of sample GB-19 13-15 (680-116110-3) in batch 680-399288.

Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP)

Samples GB-5 13-15 (680-116110-1), GB-5 18 (680-116110-2), GB-19 13-15 (680-116110-3) and GB-21 13-15 (680-116110-4) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 08/28/2015 and analyzed on 08/29/2015.

TestAmerica Savannah 9/17/2015

Page 4 of 37

4

C

Q

9

10

Case Narrative

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

TestAmerica Job ID: 680-116110-1

Job ID: 680-116110-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

Barium, Copper, Vanadium and Zinc recovery is outside criteria high for the MSD of sample GB-5 13-15 (680-116110-1) in batch 680-398685. Barium, Copper, Vanadium and Zinc exceeded the RPD limit.

Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL MERCURY

Samples GB-5 13-15 (680-116110-1), GB-5 18 (680-116110-2), GB-19 13-15 (680-116110-3) and GB-21 13-15 (680-116110-4) were analyzed for total mercury in accordance with EPA SW-846 Method 7471B. The samples were prepared on 09/03/2015 and analyzed on 09/04/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL CYANIDE

Samples GB-5 13-15 (680-116110-1), GB-5 18 (680-116110-2), GB-19 13-15 (680-116110-3) and GB-21 13-15 (680-116110-4) were analyzed for total cyanide in accordance with EPA SW-846 Method 9012B. The samples were prepared and analyzed on 09/01/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

PERCENT SOLIDS/MOISTURE

Samples GB-5 13-15 (680-116110-1), GB-5 18 (680-116110-2), GB-19 13-15 (680-116110-3) and GB-21 13-15 (680-116110-4) were analyzed for Percent Solids/Moisture in accordance with TestAmerica SOP. The samples were analyzed on 08/28/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

-6

4

5

6

10

11

Client Sample Results

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Client Sample ID: GB-5 13-15

TestAmerica Job ID: 680-116110-1

Lab Sample ID: 680-116110-1

Matrix: Solid Percent Solids: 86.1

Date Collected: 08/24/15 15:08	
Date Received: 08/27/15 09:45	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00066	U	0.0045	0.00066	mg/Kg	₩	08/28/15 11:33	09/03/15 20:23	1
Carbon disulfide	0.00099	U	0.0045	0.00099	mg/Kg	☼	08/28/15 11:33	09/03/15 20:23	1
Ethylbenzene	0.0012	U	0.0045	0.0012	mg/Kg	☼	08/28/15 11:33	09/03/15 20:23	1
Methylene Chloride	0.00088	U	0.0045	0.00088	mg/Kg	☼	08/28/15 11:33	09/03/15 20:23	1
Toluene	0.00076	U	0.0045	0.00076	mg/Kg	☼	08/28/15 11:33	09/03/15 20:23	1
Xylenes, Total	0.00099	U	0.0090	0.00099	mg/Kg	₩	08/28/15 11:33	09/03/15 20:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82		70 - 130				08/28/15 11:33	09/03/15 20:23	1
Dibromofluoromethane (Surr)	85		70 - 130				08/28/15 11:33	09/03/15 20:23	1
1,2-Dichloroethane-d4 (Surr)	70		70 - 130				08/28/15 11:33	09/03/15 20:23	1
Toluene-d8 (Surr)	97		70 - 130				08/28/15 11:33	09/03/15 20:23	1

-	0,		70-700				00,20,10,11.00	00,00,10 20.20	
Method: 8270D - Semivolatile Analyte		mpounds Qualifier	(GC/MS)	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.048		0.38	0.048		— 🌣	09/01/15 10:13	•	1
Acenaphthylene	0.042	-	0.38		mg/Kg	₩	09/01/15 10:13		1
Acetophenone	0.032		0.38		mg/Kg	☆	09/01/15 10:13	09/02/15 19:27	1
Anthracene	0.029		0.38		mg/Kg	 \$		09/02/15 19:27	· · · · · · · · · · · · · · · · · · ·
Atrazine	0.027		0.38		mg/Kg	₩		09/02/15 19:27	1
Benzaldehyde	0.067		0.38		mg/Kg	☆		09/02/15 19:27	1
Benzo[a]anthracene	0.031	U	0.38		mg/Kg	 \$		09/02/15 19:27	1
Benzo[a]pyrene	0.060		0.38		mg/Kg	☆		09/02/15 19:27	1
Benzo[b]fluoranthene	0.044	U	0.38		mg/Kg	₩		09/02/15 19:27	1
Benzo[g,h,i]perylene	0.026		0.38		mg/Kg	 \$	09/01/15 10:13	09/02/15 19:27	1
Benzo[k]fluoranthene	0.075	U	0.38		mg/Kg	₩	09/01/15 10:13	09/02/15 19:27	1
1,1'-Biphenyl	2.0		2.0		mg/Kg	≎	09/01/15 10:13	09/02/15 19:27	1
Bis(2-chloroethoxy)methane	0.045	U	0.38	0.045	mg/Kg		09/01/15 10:13	09/02/15 19:27	1
Bis(2-chloroethyl)ether	0.052	U	0.38		mg/Kg	☆	09/01/15 10:13	09/02/15 19:27	1
bis (2-chloroisopropyl) ether	0.035	U	0.38		mg/Kg	☆	09/01/15 10:13	09/02/15 19:27	1
Bis(2-ethylhexyl) phthalate	0.25	J	0.38	0.034	mg/Kg		09/01/15 10:13	09/02/15 19:27	1
4-Bromophenyl phenyl ether	0.042	U	0.38	0.042	mg/Kg	₩	09/01/15 10:13	09/02/15 19:27	1
Butyl benzyl phthalate	0.030	U	0.38	0.030	mg/Kg	₩	09/01/15 10:13	09/02/15 19:27	1
Caprolactam	0.077	U	0.38	0.077	mg/Kg		09/01/15 10:13	09/02/15 19:27	1
Carbazole	0.035	U	0.38	0.035	mg/Kg	₩	09/01/15 10:13	09/02/15 19:27	1
4-Chloroaniline	0.060	U	0.77	0.060	mg/Kg	₩	09/01/15 10:13	09/02/15 19:27	1
4-Chloro-3-methylphenol	0.041	U	0.38	0.041	mg/Kg		09/01/15 10:13	09/02/15 19:27	1
2-Chloronaphthalene	0.041	U	0.38	0.041	mg/Kg	₩	09/01/15 10:13	09/02/15 19:27	1
2-Chlorophenol	0.046	U	0.38	0.046	mg/Kg	≎	09/01/15 10:13	09/02/15 19:27	1
4-Chlorophenyl phenyl ether	0.051	U	0.38	0.051	mg/Kg	₩	09/01/15 10:13	09/02/15 19:27	1
Chrysene	0.024	U	0.38	0.024	mg/Kg	≎	09/01/15 10:13	09/02/15 19:27	1
Dibenz(a,h)anthracene	0.045	U	0.38	0.045	mg/Kg	₩	09/01/15 10:13	09/02/15 19:27	1
Dibenzofuran	0.038	U	0.38	0.038	mg/Kg	₩	09/01/15 10:13	09/02/15 19:27	1
3,3'-Dichlorobenzidine	0.032	U	0.77	0.032	mg/Kg	₩	09/01/15 10:13	09/02/15 19:27	1
2,4-Dichlorophenol	0.041	U	0.38	0.041	mg/Kg	≎	09/01/15 10:13	09/02/15 19:27	1
Diethyl phthalate	0.043	U	0.38	0.043	mg/Kg	₩	09/01/15 10:13	09/02/15 19:27	1
2,4-Dimethylphenol	0.051	U	0.38	0.051	mg/Kg	₩	09/01/15 10:13	09/02/15 19:27	1
Dimethyl phthalate	0.039	U	0.38	0.039	mg/Kg	₩	09/01/15 10:13	09/02/15 19:27	1
Di-n-butyl phthalate	0.035	U	0.38	0.035	mg/Kg	.	09/01/15 10:13	09/02/15 19:27	1
4,6-Dinitro-2-methylphenol	0.20	U	2.0	0.20	mg/Kg	₩	09/01/15 10:13	09/02/15 19:27	1

TestAmerica Savannah

Page 6 of 37

2

5

7

0

10

1

4-Nitroaniline

Nitrobenzene

2-Nitrophenol

4-Nitrophenol

N-Nitrosodi-n-propylamine

N-Nitrosodiphenylamine

Pentachlorophenol

2,4,5-Trichlorophenol

Phenanthrene

Phenol

Pyrene

Client Sample ID: GB-5 13-15

Client: Geotechnical & Environmental Consultants

Date Collected: 08/24/15 15:08 Date Received: 08/27/15 09:45 Lab Sample ID: 680-116110-1

© 09/01/15 10:13 09/02/15 19:27

© 09/01/15 10:13 09/02/15 19:27

© 09/01/15 10:13 09/02/15 19:27

© 09/01/15 10:13 09/02/15 19:27

© 09/01/15 10:13 09/02/15 19:27

© 09/01/15 10:13 09/02/15 19:27

09/01/15 10:13 09/02/15 19:27

© 09/01/15 10:13 09/02/15 19:27

© 09/01/15 10:13 09/02/15 19:27

© 09/01/15 10:13 09/02/15 19:27

09/01/15 10:13 09/02/15 19:27

Matrix: Solid Percent Solids: 86.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dinitrophenol	0.96	U	2.0	0.96	mg/Kg	₩	09/01/15 10:13	09/02/15 19:27	1
2,4-Dinitrotoluene	0.057	U	0.38	0.057	mg/Kg	₽	09/01/15 10:13	09/02/15 19:27	1
2,6-Dinitrotoluene	0.049	U	0.38	0.049	mg/Kg	☼	09/01/15 10:13	09/02/15 19:27	1
Di-n-octyl phthalate	0.034	U	0.38	0.034	mg/Kg	☼	09/01/15 10:13	09/02/15 19:27	1
Fluoranthene	0.037	U	0.38	0.037	mg/Kg	₽	09/01/15 10:13	09/02/15 19:27	1
Fluorene	0.042	U	0.38	0.042	mg/Kg	☼	09/01/15 10:13	09/02/15 19:27	1
Hexachlorobenzene	0.045	U	0.38	0.045	mg/Kg	☼	09/01/15 10:13	09/02/15 19:27	1
Hexachlorobutadiene	0.042	U	0.38	0.042	mg/Kg	₽	09/01/15 10:13	09/02/15 19:27	1
Hexachlorocyclopentadiene	0.048	U	0.38	0.048	mg/Kg	☼	09/01/15 10:13	09/02/15 19:27	1
Hexachloroethane	0.032	U	0.38	0.032	mg/Kg	☼	09/01/15 10:13	09/02/15 19:27	1
Indeno[1,2,3-cd]pyrene	0.032	U	0.38	0.032	mg/Kg		09/01/15 10:13	09/02/15 19:27	1
Isophorone	0.038	U	0.38	0.038	mg/Kg	₩	09/01/15 10:13	09/02/15 19:27	1
2-Methylnaphthalene	0.044	U	0.38	0.044	mg/Kg	☼	09/01/15 10:13	09/02/15 19:27	1
2-Methylphenol	0.031	U	0.38	0.031	mg/Kg	φ.	09/01/15 10:13	09/02/15 19:27	1
3 & 4 Methylphenol	0.050	U	0.38	0.050	mg/Kg	☼	09/01/15 10:13	09/02/15 19:27	1
Naphthalene	0.035	U	0.38	0.035	mg/Kg	₩	09/01/15 10:13	09/02/15 19:27	1
2-Nitroaniline	0.052	U	2.0	0.052	mg/Kg	₩.	09/01/15 10:13	09/02/15 19:27	1
3-Nitroaniline	0.053	U	2.0	0.053	mg/Kg	≎	09/01/15 10:13	09/02/15 19:27	1

2.0

0.38

0.38

2.0

0.38

0.38

2.0

0.38

0.38

0.38

0.38

0.057 mg/Kg

0.030 mg/Kg

0.048 mg/Kg

0.38 mg/Kg

0.037 mg/Kg

0.038 mg/Kg

0.38 mg/Kg

0.031 mg/Kg

0.039 mg/Kg

0.031 mg/Kg

0.041 mg/Kg

0.057 U

0.030 U

0.048 U

0.38 U

0.037 U

0.038 U

0.38 U

0.034 J

0.039 U

0.031 U

0.041 U

2,4,6-Trichlorophenol	0.034 U	0.38	0.034 mg/Kg	₽	09/01/15 10:13	09/02/15 19:27	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	77	41 - 116			09/01/15 10:13	09/02/15 19:27	1
2-Fluorophenol (Surr)	63	39 - 114			09/01/15 10:13	09/02/15 19:27	1
Nitrobenzene-d5 (Surr)	64	37 - 115			09/01/15 10:13	09/02/15 19:27	1
Phenol-d5 (Surr)	71	38 - 122			09/01/15 10:13	09/02/15 19:27	1
Terphenyl-d14 (Surr)	76	46 - 126			09/01/15 10:13	09/02/15 19:27	1
2,4,6-Tribromophenol (Surr)	76	45 - 129			09/01/15 10:13	09/02/15 19:27	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.2	J	2.1	0.84	mg/Kg		08/28/15 08:33	08/29/15 03:30	1
Barium	2.0	F2 F1	1.0	0.17	mg/Kg	₩	08/28/15 08:33	08/29/15 03:30	1
Beryllium	0.082	J	0.42	0.010	mg/Kg	₩	08/28/15 08:33	08/29/15 03:30	1
Cadmium	0.10	Ü	0.52	0.10	mg/Kg	₽	08/28/15 08:33	08/29/15 03:30	1
Chromium	1.6		1.0	0.22	mg/Kg	₩	08/28/15 08:33	08/29/15 03:30	1
Copper	1.5	J F2 F1	2.6	0.18	mg/Kg	₩	08/28/15 08:33	08/29/15 03:30	1
Lead	1.4		1.0	0.36	mg/Kg	₩.	08/28/15 08:33	08/29/15 03:30	1
Nickel	0.40	U	4.2	0.40	mg/Kg	☼	08/28/15 08:33	08/29/15 03:30	1
Selenium	1.0	U	2.6	1.0	mg/Kg	₩	08/28/15 08:33	08/29/15 03:30	1

TestAmerica Savannah

Page 7 of 37

2

4

6

8

10

11

12

9/17/2015

Client Sample Results

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Date Received: 08/27/15 09:45

TestAmerica Job ID: 680-116110-1

Lab Sample ID: 680-116110-1

Client Sample ID: GB-5 13-15 Date Collected: 08/24/15 15:08 **Matrix: Solid**

Percent Solids: 86.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	0.063	U	1.0	0.063	mg/Kg	₩	08/28/15 08:33	08/29/15 03:30	1
Vanadium	3.8	F2 F1	1.0	0.10	mg/Kg	\$	08/28/15 08:33	08/29/15 03:30	1
Zinc	1.6	J F2 F1	2.1	0.73	mg/Kg	₩	08/28/15 08:33	08/29/15 03:30	1
- Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0084	U	0.021	0.0084	mg/Kg		09/03/15 09:02	09/04/15 15:55	1
_									
General Chemistry									
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample Results

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

TestAmerica Job ID: 680-116110-1

Lab Sample ID: 680-116110-2

Matrix: Solid Percent Solids: 85.4

Client	Samp	le ID:	GB-5 1	8
Data Ca	alloctod	09/24	14 5 4 5 • 4 7	,

Date Received: 08/27/15 09:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00066	U	0.0045	0.00066	mg/Kg	₩	08/28/15 11:33	09/02/15 19:49	1
Carbon disulfide	0.0010	U	0.0045	0.0010	mg/Kg	☼	08/28/15 11:33	09/02/15 19:49	1
Ethylbenzene	0.0012	U	0.0045	0.0012	mg/Kg	☼	08/28/15 11:33	09/02/15 19:49	1
Methylene Chloride	0.00089	U	0.0045	0.00089	mg/Kg	₽	08/28/15 11:33	09/02/15 19:49	1
Toluene	0.00076	U	0.0045	0.00076	mg/Kg	☼	08/28/15 11:33	09/02/15 19:49	1
Xylenes, Total	0.0010	U	0.0091	0.0010	mg/Kg	₩	08/28/15 11:33	09/02/15 19:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	83		70 - 130				08/28/15 11:33	09/02/15 19:49	1
Dibromofluoromethane (Surr)	89		70 - 130				08/28/15 11:33	09/02/15 19:49	1
1,2-Dichloroethane-d4 (Surr)	74		70 - 130				08/28/15 11:33	09/02/15 19:49	1
Toluene-d8 (Surr)	99		70 - 130				08/28/15 11:33	09/02/15 19:49	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.048	U	0.39	0.048	mg/Kg	₩	09/01/15 10:13	09/02/15 19:51	1
Acenaphthylene	0.042	U	0.39	0.042	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
Acetophenone	0.033	U	0.39	0.033	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
Anthracene	0.029	U	0.39	0.029	mg/Kg	₽	09/01/15 10:13	09/02/15 19:51	1
Atrazine	0.027	U	0.39	0.027	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
Benzaldehyde	0.068	U	0.39	0.068	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
Benzo[a]anthracene	0.032	U	0.39	0.032	mg/Kg	₽	09/01/15 10:13	09/02/15 19:51	1
Benzo[a]pyrene	0.061	U	0.39	0.061	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
Benzo[b]fluoranthene	0.044	U	0.39	0.044	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
Benzo[g,h,i]perylene	0.026	U	0.39	0.026	mg/Kg	₽	09/01/15 10:13	09/02/15 19:51	1
Benzo[k]fluoranthene	0.076	U	0.39	0.076	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
1,1'-Biphenyl	2.0	U	2.0	2.0	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
Bis(2-chloroethoxy)methane	0.046	U	0.39	0.046	mg/Kg	₽	09/01/15 10:13	09/02/15 19:51	1
Bis(2-chloroethyl)ether	0.053	U	0.39	0.053	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
bis (2-chloroisopropyl) ether	0.035	U	0.39	0.035	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
Bis(2-ethylhexyl) phthalate	0.034	U	0.39	0.034	mg/Kg		09/01/15 10:13	09/02/15 19:51	1
4-Bromophenyl phenyl ether	0.042	U	0.39	0.042	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
Butyl benzyl phthalate	0.030	U	0.39	0.030	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
Caprolactam	0.077	U	0.39	0.077	mg/Kg	φ.	09/01/15 10:13	09/02/15 19:51	1
Carbazole	0.035	U	0.39	0.035	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
4-Chloroaniline	0.061	U	0.77	0.061	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
4-Chloro-3-methylphenol	0.041	U	0.39	0.041	mg/Kg	φ.	09/01/15 10:13	09/02/15 19:51	1
2-Chloronaphthalene	0.041	U	0.39	0.041	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
2-Chlorophenol	0.047	U	0.39	0.047	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
4-Chlorophenyl phenyl ether	0.051	U	0.39	0.051	mg/Kg	₽	09/01/15 10:13	09/02/15 19:51	1
Chrysene	0.025	U	0.39	0.025	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
Dibenz(a,h)anthracene	0.046	U	0.39	0.046	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
Dibenzofuran	0.039	U	0.39	0.039	mg/Kg	₽	09/01/15 10:13	09/02/15 19:51	1
3,3'-Dichlorobenzidine	0.033	U	0.77	0.033	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
2,4-Dichlorophenol	0.041	U	0.39	0.041	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
Diethyl phthalate	0.043	U	0.39	0.043	mg/Kg	φ.	09/01/15 10:13	09/02/15 19:51	1
2,4-Dimethylphenol	0.051	U	0.39	0.051	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
Dimethyl phthalate	0.040	U	0.39	0.040	mg/Kg	₽	09/01/15 10:13	09/02/15 19:51	1
Di-n-butyl phthalate	0.035	U	0.39	0.035	mg/Kg	₽	09/01/15 10:13	09/02/15 19:51	1
4,6-Dinitro-2-methylphenol	0.20	U	2.0	0.20	mg/Kg	₩	09/01/15 10:13	09/02/15 19:51	1

TestAmerica Savannah

Page 9 of 37

2

Į,

6

8

3

11

12

9/17/2015

Project/Site: Macon MGP #2

Client: Geotechnical & Environmental Consultants

Client Sample ID: GB-5 18 Lab Sample ID: 680-116110-2

Date Collected: 08/24/15 15:17 **Matrix: Solid** Date Received: 08/27/15 09:45 Percent Solids: 85.4

Method: 8270D - Semivolatile (Analyte		Qualifier	ŔĹ	MDL		D	Prepared	Analyzed	Dil Fac
2,4-Dinitrophenol	0.97	U	2.0	0.97	mg/Kg	<u></u>	09/01/15 10:13	09/02/15 19:51	1
2,4-Dinitrotoluene	0.057	Ū	0.39	0.057	mg/Kg		09/01/15 10:13	09/02/15 19:51	1
2,6-Dinitrotoluene	0.049	U	0.39	0.049	mg/Kg	₩	09/01/15 10:13	09/02/15 19:51	1
Di-n-octyl phthalate	0.034	U	0.39	0.034	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
Fluoranthene	0.037	U	0.39	0.037	mg/Kg	φ.	09/01/15 10:13	09/02/15 19:51	1
Fluorene	0.042	U	0.39	0.042	mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
Hexachlorobenzene	0.046	U	0.39	0.046	mg/Kg	₩	09/01/15 10:13	09/02/15 19:51	1
Hexachlorobutadiene	0.042	U	0.39	0.042	mg/Kg	₩	09/01/15 10:13	09/02/15 19:51	1
Hexachlorocyclopentadiene	0.048	U	0.39	0.048	mg/Kg	₩	09/01/15 10:13	09/02/15 19:51	1
Hexachloroethane	0.033	U	0.39	0.033	mg/Kg	₩	09/01/15 10:13	09/02/15 19:51	1
Indeno[1,2,3-cd]pyrene	0.033	U	0.39	0.033	mg/Kg	₩	09/01/15 10:13	09/02/15 19:51	1
Isophorone	0.039	U	0.39	0.039	mg/Kg	₩	09/01/15 10:13	09/02/15 19:51	1
2-Methylnaphthalene	0.044	U	0.39	0.044	mg/Kg	₩	09/01/15 10:13	09/02/15 19:51	1
2-Methylphenol	0.032		0.39	0.032	mg/Kg		09/01/15 10:13	09/02/15 19:51	1
3 & 4 Methylphenol	0.050	U	0.39	0.050	mg/Kg	₩	09/01/15 10:13	09/02/15 19:51	1
Naphthalene	0.035	U	0.39	0.035	mg/Kg	₩	09/01/15 10:13	09/02/15 19:51	1
2-Nitroaniline	0.053	U	2.0		mg/Kg	<u>ф</u> .	09/01/15 10:13	09/02/15 19:51	1
3-Nitroaniline	0.054	U	2.0	0.054	mg/Kg	₩	09/01/15 10:13	09/02/15 19:51	1
4-Nitroaniline	0.057	U	2.0		mg/Kg	₩	09/01/15 10:13	09/02/15 19:51	1
Nitrobenzene	0.030	U	0.39		mg/Kg		09/01/15 10:13	09/02/15 19:51	1
2-Nitrophenol	0.048	U	0.39		mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
4-Nitrophenol	0.39	U	2.0	0.39	mg/Kg	₩	09/01/15 10:13	09/02/15 19:51	1
N-Nitrosodi-n-propylamine	0.037	U	0.39		mg/Kg		09/01/15 10:13	09/02/15 19:51	1
N-Nitrosodiphenylamine	0.039	U	0.39		mg/Kg	₩	09/01/15 10:13	09/02/15 19:51	1
Pentachlorophenol	0.39	U	2.0		mg/Kg	☼	09/01/15 10:13	09/02/15 19:51	1
Phenanthrene	0.032	U	0.39	0.032	mg/Kg	 ☆	09/01/15 10:13	09/02/15 19:51	1
Phenol	0.040	U	0.39		mg/Kg	₩	09/01/15 10:13	09/02/15 19:51	1
Pyrene	0.032	U	0.39	0.032	mg/Kg	₩	09/01/15 10:13	09/02/15 19:51	1
2,4,5-Trichlorophenol	0.041	U	0.39	0.041	mg/Kg	 ☆	09/01/15 10:13	09/02/15 19:51	1
2,4,6-Trichlorophenol	0.034	U	0.39	0.034	mg/Kg	₩	09/01/15 10:13	09/02/15 19:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	69		41 - 116				09/01/15 10:13	09/02/15 19:51	1
2-Fluorophenol (Surr)	58		39 - 114				09/01/15 10:13	09/02/15 19:51	1
Nitrobenzene-d5 (Surr)	61		37 - 115				09/01/15 10:13	09/02/15 19:51	1
Phenol-d5 (Surr)	62		38 - 122				09/01/15 10:13	09/02/15 19:51	1
Terphenyl-d14 (Surr)	72		46 - 126				09/01/15 10:13	09/02/15 19:51	1
2,4,6-Tribromophenol (Surr)	70		45 - 129				09/01/15 10:13	09/02/15 19:51	1
Method: 6010C - Metals (ICP) Analyte	Rocult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
,,	Nesult	-cuumiii Ci	116	171 D L	J		i iopaica	Allulyzeu	יוים מע

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.96	J	2.0	0.79	mg/Kg	<u> </u>	08/28/15 08:33	08/29/15 03:55	1
Barium	0.43	J	0.99	0.16	mg/Kg	☼	08/28/15 08:33	08/29/15 03:55	1
Beryllium	0.057	J	0.40	0.0099	mg/Kg	☼	08/28/15 08:33	08/29/15 03:55	1
Cadmium	0.099	U	0.50	0.099	mg/Kg	₩	08/28/15 08:33	08/29/15 03:55	1
Chromium	1.0		0.99	0.21	mg/Kg	☼	08/28/15 08:33	08/29/15 03:55	1
Copper	0.39	J	2.5	0.17	mg/Kg	₩	08/28/15 08:33	08/29/15 03:55	1
Lead	1.1		0.99	0.34	mg/Kg	₩	08/28/15 08:33	08/29/15 03:55	1
Nickel	0.38	U	4.0	0.38	mg/Kg	☼	08/28/15 08:33	08/29/15 03:55	1
Selenium	0.96	U	2.5	0.96	mg/Kg	₽	08/28/15 08:33	08/29/15 03:55	1

TestAmerica Savannah

Page 10 of 37

Client Sample Results

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Client Sample ID: GB-5 18

Date Collected: 08/24/15 15:17

Date Received: 08/27/15 09:45

TestAmerica Job ID: 680-116110-1

Lab Sample ID: 680-116110-2

Matrix: Solid

Percent Solids: 85.4

Method: 6010C - Metals (IC Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
									Diriac
Silver	0.060	U	0.99	0.060	mg/Kg	₩	08/28/15 08:33	08/29/15 03:55	1
Vanadium	3.2		0.99	0.099	mg/Kg	₽	08/28/15 08:33	08/29/15 03:55	1
Zinc	0.92	J	2.0	0.69	mg/Kg	₩	08/28/15 08:33	08/29/15 03:55	1
Method: 7471B - Mercury (Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0084	U	0.021	0.0084	mg/Kg	\	09/03/15 09:02	09/04/15 15:58	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.24	π -	0.58	0.24	ma/Ka	\	09/01/15 09:30	09/01/15 12:07	1

6

8

9

10

Client Sample Results

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Date Received: 08/27/15 09:45

TestAmerica Job ID: 680-116110-1

Lab Sample ID: 680-116110-3

Matrix: Solid Percent Solids: 88.3

Client Sample ID: GB-19 13-15 Date Collected: 08/25/15 11:30

Method: 8270D - Semivolatil Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.047	U	0.37	0.047	mg/Kg	<u> </u>	09/01/15 10:13	09/02/15 20:15	1
Acenaphthylene	0.041	U	0.37	0.041	mg/Kg	₩	09/01/15 10:13	09/02/15 20:15	1
Acetophenone	0.032	U	0.37	0.032	mg/Kg	☼	09/01/15 10:13	09/02/15 20:15	1
Anthracene	0.028	U	0.37	0.028	mg/Kg	₽	09/01/15 10:13	09/02/15 20:15	1
Atrazine	0.026	U	0.37	0.026	mg/Kg	☼	09/01/15 10:13	09/02/15 20:15	1
Benzaldehyde	0.066	U	0.37	0.066	mg/Kg	≎	09/01/15 10:13	09/02/15 20:15	1
Benzo[a]anthracene	0.031	Ü	0.37	0.031	mg/Kg	☼	09/01/15 10:13	09/02/15 20:15	1
Benzo[a]pyrene	0.059	U	0.37	0.059	mg/Kg	₽	09/01/15 10:13	09/02/15 20:15	1
Benzo[b]fluoranthene	0.043	U	0.37		mg/Kg	☼	09/01/15 10:13	09/02/15 20:15	1
Benzo[g,h,i]perylene	0.025	U	0.37	0.025	mg/Kg		09/01/15 10:13	09/02/15 20:15	1
Benzo[k]fluoranthene	0.074	U	0.37		mg/Kg	☼	09/01/15 10:13	09/02/15 20:15	1
1,1'-Biphenyl	1.9	U	1.9		mg/Kg	☼	09/01/15 10:13	09/02/15 20:15	1
Bis(2-chloroethoxy)methane	0.044	Ü	0.37		mg/Kg		09/01/15 10:13	09/02/15 20:15	1
Bis(2-chloroethyl)ether	0.051		0.37		mg/Kg	≎		09/02/15 20:15	1
bis (2-chloroisopropyl) ether	0.034		0.37			≎		09/02/15 20:15	1
Bis(2-ethylhexyl) phthalate	0.089		0.37		mg/Kg			09/02/15 20:15	1
4-Bromophenyl phenyl ether	0.041		0.37	0.041		☼		09/02/15 20:15	1
Butyl benzyl phthalate	0.029		0.37		0 0	☆		09/02/15 20:15	1
Caprolactam	0.075		0.37		mg/Kg			09/02/15 20:15	
Carbazole	0.034		0.37	0.073	mg/Kg	₩		09/02/15 20:15	1
4-Chloroaniline	0.059		0.37		0 0	₩		09/02/15 20:15	1
4-Chloro-3-methylphenol	0.039		0.73		mg/Kg			09/02/15 20:15	
• •					0 0	☆			
2-Chloronaphthalene	0.040		0.37		mg/Kg	☆		09/02/15 20:15	1
2-Chlorophenol	0.045		0.37		mg/Kg	 .		09/02/15 20:15	1
4-Chlorophenyl phenyl ether	0.050		0.37		mg/Kg			09/02/15 20:15	1
Chrysene	0.024		0.37		mg/Kg	☼		09/02/15 20:15	1
Dibenz(a,h)anthracene	0.044		0.37		mg/Kg	<u></u> .		09/02/15 20:15	1
Dibenzofuran	0.037		0.37		mg/Kg	☆		09/02/15 20:15	1
3,3'-Dichlorobenzidine		U F1 F2	0.75		mg/Kg	☆		09/02/15 20:15	1
2,4-Dichlorophenol	0.040		0.37	0.040	0 0			09/02/15 20:15	
Diethyl phthalate	0.042		0.37		mg/Kg	ά. Έ		09/02/15 20:15	1
2,4-Dimethylphenol	0.050		0.37	0.050	mg/Kg	*		09/02/15 20:15	1
Dimethyl phthalate	0.039		0.37		mg/Kg			09/02/15 20:15	1
Di-n-butyl phthalate	0.034		0.37	0.034	0 0	‡		09/02/15 20:15	1
4,6-Dinitro-2-methylphenol	0.19		1.9		mg/Kg	₩.		09/02/15 20:15	1
2,4-Dinitrophenol	0.94		1.9	0.94	mg/Kg		09/01/15 10:13	09/02/15 20:15	1
2,4-Dinitrotoluene	0.056	U	0.37		mg/Kg	☼	09/01/15 10:13	09/02/15 20:15	1
2,6-Dinitrotoluene	0.048		0.37		mg/Kg	≎	09/01/15 10:13	09/02/15 20:15	1
Di-n-octyl phthalate	0.033	U	0.37	0.033	mg/Kg	₩	09/01/15 10:13	09/02/15 20:15	1
Fluoranthene	0.036	U	0.37	0.036	mg/Kg	₽	09/01/15 10:13	09/02/15 20:15	1
Fluorene	0.041	U	0.37	0.041	mg/Kg	☼	09/01/15 10:13	09/02/15 20:15	1
Hexachlorobenzene	0.044	U	0.37	0.044	mg/Kg	☼	09/01/15 10:13	09/02/15 20:15	1
Hexachlorobutadiene	0.041	U	0.37	0.041	mg/Kg	₽	09/01/15 10:13	09/02/15 20:15	1
Hexachlorocyclopentadiene	0.047	U	0.37	0.047	mg/Kg	₩	09/01/15 10:13	09/02/15 20:15	1
Hexachloroethane	0.032	U	0.37	0.032	mg/Kg	☼	09/01/15 10:13	09/02/15 20:15	1
Indeno[1,2,3-cd]pyrene	0.032	U	0.37	0.032	mg/Kg		09/01/15 10:13	09/02/15 20:15	1
Isophorone	0.037	U	0.37	0.037	mg/Kg	☼	09/01/15 10:13	09/02/15 20:15	1
2-Methylnaphthalene	0.043	U	0.37		mg/Kg	₩	09/01/15 10:13	09/02/15 20:15	1
2-Methylphenol	0.031	Ü	0.37		mg/Kg		09/01/15 10:13	09/02/15 20:15	1

TestAmerica Savannah

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

Cyanide, Total

Client Sample ID: GB-19 13-15

Date Collected: 08/25/15 11:30 Date Received: 08/27/15 09:45 Lab Sample ID: 680-116110-3

Matrix: Solid

Percent Solids: 88.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.049	U	0.37	0.049	mg/Kg	<u> </u>	09/01/15 10:13	09/02/15 20:15	1
Naphthalene	0.034	U	0.37	0.034	mg/Kg	☼	09/01/15 10:13	09/02/15 20:15	1
2-Nitroaniline	0.051	U	1.9	0.051	mg/Kg	₽	09/01/15 10:13	09/02/15 20:15	1
3-Nitroaniline	0.052	U	1.9	0.052	mg/Kg	☼	09/01/15 10:13	09/02/15 20:15	1
4-Nitroaniline	0.056	U	1.9	0.056	mg/Kg	₩	09/01/15 10:13	09/02/15 20:15	1
Nitrobenzene	0.029	U	0.37	0.029	mg/Kg	₩.	09/01/15 10:13	09/02/15 20:15	1
2-Nitrophenol	0.047	U	0.37	0.047	mg/Kg	☼	09/01/15 10:13	09/02/15 20:15	1
4-Nitrophenol	0.37	U	1.9	0.37	mg/Kg	☼	09/01/15 10:13	09/02/15 20:15	1
N-Nitrosodi-n-propylamine	0.036	U	0.37	0.036	mg/Kg	φ.	09/01/15 10:13	09/02/15 20:15	1
N-Nitrosodiphenylamine	0.037	U	0.37	0.037	mg/Kg	₩	09/01/15 10:13	09/02/15 20:15	1
Pentachlorophenol	0.37	U	1.9	0.37	mg/Kg	₩	09/01/15 10:13	09/02/15 20:15	1
Phenanthrene	0.031	U	0.37	0.031	mg/Kg	φ.	09/01/15 10:13	09/02/15 20:15	1
Phenol	0.039	U	0.37	0.039	mg/Kg	☼	09/01/15 10:13	09/02/15 20:15	1
Pyrene	0.031	U	0.37	0.031	mg/Kg	₩	09/01/15 10:13	09/02/15 20:15	1
2,4,5-Trichlorophenol	0.040	U	0.37	0.040	mg/Kg	₩	09/01/15 10:13	09/02/15 20:15	1
2,4,6-Trichlorophenol	0.033	U	0.37	0.033	mg/Kg	₩	09/01/15 10:13	09/02/15 20:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	77		41 - 116				09/01/15 10:13	09/02/15 20:15	1
2-Fluorophenol (Surr)	64		39 - 114				09/01/15 10:13	09/02/15 20:15	1
Nitrobenzene-d5 (Surr)	69		37 - 115				09/01/15 10:13	09/02/15 20:15	1
Phenol-d5 (Surr)	72		38 - 122				09/01/15 10:13	09/02/15 20:15	1
Terphenyl-d14 (Surr)	76		46 - 126				09/01/15 10:13	09/02/15 20:15	1
2,4,6-Tribromophenol (Surr)	81		45 - 129				09/01/15 10:13	09/02/15 20:15	1
Method: 6010C - Metals (ICP))								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.5	J	2.0	0.78	mg/Kg	<u> </u>	08/28/15 08:33	08/29/15 04:08	1
Barium	1.9		0.98	0.16	mg/Kg	☆	08/28/15 08:33	08/29/15 04:08	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.5	J	2.0	0.78	mg/Kg	<u> </u>	08/28/15 08:33	08/29/15 04:08	1
Barium	1.9		0.98	0.16	mg/Kg	☼	08/28/15 08:33	08/29/15 04:08	1
Beryllium	0.11	J	0.39	0.0098	mg/Kg	☼	08/28/15 08:33	08/29/15 04:08	1
Cadmium	0.098	U	0.49	0.098	mg/Kg	☼	08/28/15 08:33	08/29/15 04:08	1
Chromium	3.6		0.98	0.20	mg/Kg	☼	08/28/15 08:33	08/29/15 04:08	1
Copper	0.79	J	2.4	0.17	mg/Kg	☼	08/28/15 08:33	08/29/15 04:08	1
Lead	4.6		0.98	0.33	mg/Kg		08/28/15 08:33	08/29/15 04:08	1
Nickel	1.6	J	3.9	0.37	mg/Kg	☼	08/28/15 08:33	08/29/15 04:08	1
Selenium	0.95	U	2.4	0.95	mg/Kg	☼	08/28/15 08:33	08/29/15 04:08	1
Silver	0.059	U	0.98	0.059	mg/Kg		08/28/15 08:33	08/29/15 04:08	1
Vanadium	3.5		0.98	0.098	mg/Kg	☼	08/28/15 08:33	08/29/15 04:08	1
Zinc	5.1		2.0	0.68	mg/Kg	☆	08/28/15 08:33	08/29/15 04:08	1

Method: 7471B - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0079	U	0.020	0.0079	mg/Kg	<u> </u>	09/03/15 09:02	09/04/15 16:01	1
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.54

0.23 mg/Kg

0.23 U

TestAmerica Savannah

 ☼
 09/01/15 09:30
 09/01/15 12:08

Client Sample Results

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Date Received: 08/27/15 09:45

TestAmerica Job ID: 680-116110-1

Lab Sample ID: 680-116110-4

Percent Solids: 87.8

Client Sample ID: GB-21 13-15 Date Collected: 08/25/15 11:50 **Matrix: Solid**

Method: 8270D - Semivolatile Analyte	Result	Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fa
Acenaphthene	0.046		0.37		mg/Kg	**	09/01/15 10:13		
Acenaphthylene	0.040	U	0.37		mg/Kg	₩	09/01/15 10:13	09/02/15 20:39	
Acetophenone	0.031	U	0.37	0.031	mg/Kg	₩	09/01/15 10:13	09/02/15 20:39	
Anthracene	0.028	U	0.37	0.028	mg/Kg	₩	09/01/15 10:13	09/02/15 20:39	
Atrazine	0.026	U	0.37		mg/Kg	₩	09/01/15 10:13	09/02/15 20:39	
Benzaldehyde	0.065	U	0.37	0.065	mg/Kg	₩	09/01/15 10:13	09/02/15 20:39	
Benzo[a]anthracene	0.030	U	0.37	0.030	mg/Kg	₽	09/01/15 10:13	09/02/15 20:39	
Benzo[a]pyrene	0.058	U	0.37	0.058	mg/Kg	₩	09/01/15 10:13		
Benzo[b]fluoranthene	0.043	J	0.37	0.043	mg/Kg	₩	09/01/15 10:13	09/02/15 20:39	
Benzo[g,h,i]perylene	0.025	U	0.37	0.025	mg/Kg	₩	09/01/15 10:13	09/02/15 20:39	
Benzo[k]fluoranthene	0.073	U	0.37	0.073	mg/Kg	₩	09/01/15 10:13	09/02/15 20:39	
1,1'-Biphenyl	1.9	U	1.9	1.9	mg/Kg	₩	09/01/15 10:13	09/02/15 20:39	
Bis(2-chloroethoxy)methane	0.044	U	0.37	0.044	mg/Kg	₽	09/01/15 10:13	09/02/15 20:39	
Bis(2-chloroethyl)ether	0.051	U	0.37	0.051	mg/Kg	₩	09/01/15 10:13	09/02/15 20:39	
bis (2-chloroisopropyl) ether	0.034	U	0.37	0.034	mg/Kg	₽	09/01/15 10:13	09/02/15 20:39	
Bis(2-ethylhexyl) phthalate	0.069	J	0.37	0.033	mg/Kg	₩.	09/01/15 10:13	09/02/15 20:39	
4-Bromophenyl phenyl ether	0.040	U	0.37	0.040	mg/Kg	₩	09/01/15 10:13	09/02/15 20:39	
Butyl benzyl phthalate	0.029	U	0.37	0.029	mg/Kg	₩	09/01/15 10:13	09/02/15 20:39	
Caprolactam	0.074	U	0.37	0.074	mg/Kg		09/01/15 10:13	09/02/15 20:39	
Carbazole	0.034	U	0.37	0.034	mg/Kg	₩	09/01/15 10:13	09/02/15 20:39	
4-Chloroaniline	0.058	U	0.74	0.058	mg/Kg	₩	09/01/15 10:13	09/02/15 20:39	
4-Chloro-3-methylphenol	0.039	U	0.37		mg/Kg		09/01/15 10:13	09/02/15 20:39	
2-Chloronaphthalene	0.039	U	0.37			₩	09/01/15 10:13	09/02/15 20:39	
2-Chlorophenol	0.045	U	0.37	0.045	mg/Kg	₩	09/01/15 10:13	09/02/15 20:39	
4-Chlorophenyl phenyl ether	0.049	U	0.37	0.049	mg/Kg	 ☆	09/01/15 10:13	09/02/15 20:39	
Chrysene	0.033	J	0.37		mg/Kg	₩	09/01/15 10:13	09/02/15 20:39	
Dibenz(a,h)anthracene	0.044		0.37		mg/Kg	₩		09/02/15 20:39	
Dibenzofuran	0.037	Ü	0.37		mg/Kg		09/01/15 10:13	09/02/15 20:39	
3,3'-Dichlorobenzidine	0.031		0.74		mg/Kg	₩	09/01/15 10:13		
2,4-Dichlorophenol	0.039		0.37		mg/Kg	₩	09/01/15 10:13		
Diethyl phthalate	0.042		0.37		mg/Kg	 \$	09/01/15 10:13		
2,4-Dimethylphenol	0.049		0.37		mg/Kg	₩		09/02/15 20:39	
Dimethyl phthalate	0.038		0.37		mg/Kg	₩		09/02/15 20:39	
Di-n-butyl phthalate	0.034		0.37		mg/Kg			09/02/15 20:39	
4,6-Dinitro-2-methylphenol	0.19		1.9		mg/Kg	₩		09/02/15 20:39	
2,4-Dinitrophenol	0.13		1.9		mg/Kg	₩.		09/02/15 20:39	
2,4-Dinitrophenol	0.055		0.37		mg/Kg			09/02/15 20:39	
	0.033		0.37		mg/Kg	₽		09/02/15 20:39	
2,6-Dinitrotoluene			0.37			₽		09/02/15 20:39	
Di-n-octyl phthalate	0.033		0.37		mg/Kg mg/Kg			09/02/15 20:39	
Fluoranthene	0.055								
Fluorene	0.040		0.37		mg/Kg	Φ n		09/02/15 20:39	
Hexachlorobenzene	0.044		0.37		mg/Kg	¥.		09/02/15 20:39	
Hexachlorobutadiene	0.040		0.37		mg/Kg	Φ n		09/02/15 20:39	
Hexachlorocyclopentadiene	0.046		0.37		mg/Kg	₽		09/02/15 20:39	
Hexachloroethane	0.031		0.37		mg/Kg	J.		09/02/15 20:39	
Indeno[1,2,3-cd]pyrene	0.031		0.37		mg/Kg	φ.		09/02/15 20:39	
Isophorone	0.037		0.37		mg/Kg	₩.		09/02/15 20:39	
2-Methylnaphthalene	0.043		0.37		mg/Kg	#		09/02/15 20:39	
2-Methylphenol	0.030	U	0.37	0.030	mg/Kg	₽	09/01/15 10:13	09/02/15 20:39	

TestAmerica Savannah

Project/Site: Macon MGP #2

Client Sample ID: GB-21 13-15

Client: Geotechnical & Environmental Consultants

Date Collected: 08/25/15 11:50 Date Received: 08/27/15 09:45 Lab Sample ID: 680-116110-4

Matrix: Solid Percent Solids: 87.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3 & 4 Methylphenol	0.048	U	0.37	0.048	mg/Kg	<u> </u>	09/01/15 10:13	09/02/15 20:39	1
Naphthalene	0.034	U	0.37	0.034	mg/Kg	☼	09/01/15 10:13	09/02/15 20:39	1
2-Nitroaniline	0.051	U	1.9	0.051	mg/Kg	₽	09/01/15 10:13	09/02/15 20:39	1
3-Nitroaniline	0.052	U	1.9	0.052	mg/Kg	☼	09/01/15 10:13	09/02/15 20:39	1
4-Nitroaniline	0.055	U	1.9	0.055	mg/Kg	☼	09/01/15 10:13	09/02/15 20:39	1
Nitrobenzene	0.029	U	0.37	0.029	mg/Kg		09/01/15 10:13	09/02/15 20:39	1
2-Nitrophenol	0.046	U	0.37	0.046	mg/Kg	☼	09/01/15 10:13	09/02/15 20:39	1
4-Nitrophenol	0.37	U	1.9	0.37	mg/Kg	☼	09/01/15 10:13	09/02/15 20:39	1
N-Nitrosodi-n-propylamine	0.036	U	0.37	0.036	mg/Kg	φ.	09/01/15 10:13	09/02/15 20:39	1
N-Nitrosodiphenylamine	0.037	U	0.37	0.037	mg/Kg	☼	09/01/15 10:13	09/02/15 20:39	1
Pentachlorophenol	0.37	U	1.9	0.37	mg/Kg	☼	09/01/15 10:13	09/02/15 20:39	1
Phenanthrene	0.034	J	0.37	0.030	mg/Kg	φ.	09/01/15 10:13	09/02/15 20:39	1
Phenol	0.038	U	0.37	0.038	mg/Kg	☼	09/01/15 10:13	09/02/15 20:39	1
Pyrene	0.046	J	0.37	0.030	mg/Kg	☼	09/01/15 10:13	09/02/15 20:39	1
2,4,5-Trichlorophenol	0.039	U	0.37	0.039	mg/Kg	₽	09/01/15 10:13	09/02/15 20:39	1
2,4,6-Trichlorophenol	0.033	U	0.37	0.033	mg/Kg	₩	09/01/15 10:13	09/02/15 20:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	83	41 - 116	09/01/15 10:13	09/02/15 20:39	1
2-Fluorophenol (Surr)	66	39 - 114	09/01/15 10:13	09/02/15 20:39	1
Nitrobenzene-d5 (Surr)	71	37 - 115	09/01/15 10:13	09/02/15 20:39	1
Phenol-d5 (Surr)	72	38 - 122	09/01/15 10:13	09/02/15 20:39	1
Terphenyl-d14 (Surr)	82	46 - 126	09/01/15 10:13	09/02/15 20:39	1
2,4,6-Tribromophenol (Surr)	84	45 - 129	09/01/15 10:13	09/02/15 20:39	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.5		2.0	0.80	mg/Kg	<u> </u>	08/28/15 08:33	08/29/15 04:13	1
Barium	50		1.0	0.16	mg/Kg	₩	08/28/15 08:33	08/29/15 04:13	1
Beryllium	0.26	J	0.40	0.010	mg/Kg	₩	08/28/15 08:33	08/29/15 04:13	1
Cadmium	0.10	U	0.50	0.10	mg/Kg	₩.	08/28/15 08:33	08/29/15 04:13	1
Chromium	57		1.0	0.21	mg/Kg	₩	08/28/15 08:33	08/29/15 04:13	1
Copper	5.1		2.5	0.17	mg/Kg	₩	08/28/15 08:33	08/29/15 04:13	1
Lead	24		1.0	0.34	mg/Kg		08/28/15 08:33	08/29/15 04:13	1
Nickel	3.9	J	4.0	0.38	mg/Kg	₩	08/28/15 08:33	08/29/15 04:13	1
Selenium	0.97	U	2.5	0.97	mg/Kg	₩	08/28/15 08:33	08/29/15 04:13	1
Silver	0.060	U	1.0	0.060	mg/Kg		08/28/15 08:33	08/29/15 04:13	1
Vanadium	28		1.0	0.10	mg/Kg	₩	08/28/15 08:33	08/29/15 04:13	1
Zinc	29		2.0	0.70	mg/Kg	₩	08/28/15 08:33	08/29/15 04:13	1

Method: 7471B - Mercury (CVAA) Analyte Mercury		Qualifier	RL 0.020	MDL 0.0080	Unit mg/Kg	D <u>□</u>	Prepared 09/03/15 09:02	Analyzed 09/04/15 16:04	Dil Fac
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cvanide. Total	0.24	U	0.56	0.24	ma/Ka	— Ţ	09/01/15 09:30	09/01/15 12:09	

0

8

10

11

Project/Site: Macon MGP #2

Client: Geotechnical & Environmental Consultants

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-399189/6

Matrix: Solid

Analysis Batch: 399189

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00071	U	0.0049	0.00071	mg/Kg			09/02/15 13:55	1
Carbon disulfide	0.0011	U	0.0049	0.0011	mg/Kg			09/02/15 13:55	1
Ethylbenzene	0.0013	U	0.0049	0.0013	mg/Kg			09/02/15 13:55	1
Methylene Chloride	0.00095	U	0.0049	0.00095	mg/Kg			09/02/15 13:55	1
Toluene	0.00082	U	0.0049	0.00082	mg/Kg			09/02/15 13:55	1
Xylenes, Total	0.0011	U	0.0097	0.0011	mg/Kg			09/02/15 13:55	1

MB MB

Surrogate	%Recovery Q	Qualifier Limits	Prepare	ed Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82	70 - 130		09/02/15 13:55	1
Dibromofluoromethane (Surr)	90	70 - 130		09/02/15 13:55	1
1,2-Dichloroethane-d4 (Surr)	76	70 - 130		09/02/15 13:55	1
Toluene-d8 (Surr)	98	70 - 130		09/02/15 13:55	1

Lab Sample ID: LCS 680-399189/3

Matrix: Solid

Analysis Batch: 399189

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.0492	0.0531		mg/Kg		108	70 - 130	
Carbon disulfide	0.0492	0.0539		mg/Kg		110	40 - 160	
Ethylbenzene	0.0492	0.0515		mg/Kg		105	70 - 130	
Methylene Chloride	0.0492	0.0529		mg/Kg		107	70 - 130	
Toluene	0.0492	0.0554		mg/Kg		112	70 - 130	
Xylenes, Total	0.0984	0.101		mg/Kg		102	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	87		70 - 130
Dibromofluoromethane (Surr)	106		70 - 130
1,2-Dichloroethane-d4 (Surr)	90		70 - 130
Toluene-d8 (Surr)	102		70 - 130

Lab Sample ID: LCSD 680-399189/4

Matrix: Solid

Analysis Batch: 399189

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.0499	0.0533		mg/Kg	_	107	70 - 130	1	20
Carbon disulfide	0.0499	0.0537		mg/Kg		108	40 - 160	1	20
Ethylbenzene	0.0499	0.0510		mg/Kg		102	70 - 130	1	20
Methylene Chloride	0.0499	0.0538		mg/Kg		108	70 - 130	2	20
Toluene	0.0499	0.0554		mg/Kg		111	70 - 130	0	20
Xylenes, Total	0.0998	0.0999		mg/Kg		100	70 - 130	1	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	84		70 - 130
Dibromofluoromethane (Surr)	105		70 - 130
1,2-Dichloroethane-d4 (Surr)	91		70 - 130

TestAmerica Savannah

Page 16 of 37

Client Sample ID: Lab Control Sample Dup

Project/Site: Macon MGP #2

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-399189/4

Lab Sample ID: MB 680-399391/8

Client: Geotechnical & Environmental Consultants

Matrix: Solid

Analysis Batch: 399189

LCSD LCSD

Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 100 70 - 130

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 399391

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00071	U	0.0049	0.00071	mg/Kg			09/03/15 15:11	1
Carbon disulfide	0.0011	U	0.0049	0.0011	mg/Kg			09/03/15 15:11	1
Ethylbenzene	0.0013	U	0.0049	0.0013	mg/Kg			09/03/15 15:11	1
Methylene Chloride	0.00096	U	0.0049	0.00096	mg/Kg			09/03/15 15:11	1
Toluene	0.00082	U	0.0049	0.00082	mg/Kg			09/03/15 15:11	1
Xylenes, Total	0.0011	U	0.0098	0.0011	mg/Kg			09/03/15 15:11	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	80	70 - 130		09/03/15 15:11	1
Dibromofluoromethane (Surr)	84	70 - 130		09/03/15 15:11	1
1,2-Dichloroethane-d4 (Surr)	73	70 - 130		09/03/15 15:11	1
Toluene-d8 (Surr)	97	70 - 130		09/03/15 15:11	1

Lab Sample ID: LCS 680-399391/4

Matrix: Solid

Analysis Batch: 399391

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS LCS			%Rec.
Analyte	Added	Result Qualifier	Unit	D %Rec	Limits
Benzene	0.0484	0.0481	mg/Kg	99	70 - 130
Carbon disulfide	0.0484	0.0467	mg/Kg	96	40 - 160
Ethylbenzene	0.0484	0.0450	mg/Kg	93	70 - 130
Methylene Chloride	0.0484	0.0500	mg/Kg	103	70 - 130
Toluene	0.0484	0.0504	mg/Kg	104	70 - 130
Xylenes, Total	0.0969	0.0891	mg/Kg	92	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	79		70 - 130
Dibromofluoromethane (Surr)	100		70 - 130
1,2-Dichloroethane-d4 (Surr)	90		70 - 130
Toluene-d8 (Surr)	90		70 - 130

Lab Sample ID: LCSD 680-399391/5

Matrix: Solid

Analysis Batch: 399391

Client Sample ID: Lab	Control Sample Dup
	Pren Type: Total/NA

	Spike	LCSD LCSD			%Rec.		RPD
Analyte	Added	Result Qualifier	Unit	D %Rec	Limits	RPD	Limit
Benzene	0.0493	0.0519	mg/Kg	105	70 - 130	7	20
Carbon disulfide	0.0493	0.0496	mg/Kg	101	40 - 160	6	20
Ethylbenzene	0.0493	0.0479	mg/Kg	97	70 - 130	6	20
Methylene Chloride	0.0493	0.0539	mg/Kg	109	70 - 130	8	20

TestAmerica Savannah

Page 17 of 37

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-399391/5 Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 399391

		Spike	LCSD	LCSD				%Rec.		RPD	
Analyt	9	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Toluen	9	 0.0493	0.0529		mg/Kg		107	70 - 130	5	20	
Xylene	s, Total	0.0986	0.0952		mg/Kg		97	70 - 130	7	20	

LCSD LCSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 80 70 - 130 Dibromofluoromethane (Surr) 104 70 - 130 1,2-Dichloroethane-d4 (Surr) 92 70 - 130 Toluene-d8 (Surr) 94 70 - 130

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-398884/10-A **Client Sample ID: Method Blank**

Matrix: Solid Prep Type: Total/NA Analysis Batch: 399055 Pren Batch: 398884

Analysis Batch: 399055								Prep Batch:	398884
		MB							
Analyte		Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.041	U	0.33	0.041	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Acenaphthylene	0.036	U	0.33	0.036	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Acetophenone	0.028	U	0.33	0.028	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Anthracene	0.025	U	0.33	0.025	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Atrazine	0.023	U	0.33	0.023	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Benzaldehyde	0.058	U	0.33	0.058	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Benzo[a]anthracene	0.027	U	0.33	0.027	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Benzo[a]pyrene	0.052	U	0.33	0.052	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Benzo[b]fluoranthene	0.038	U	0.33	0.038	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Benzo[g,h,i]perylene	0.022	U	0.33	0.022	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Benzo[k]fluoranthene	0.065	U	0.33	0.065	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
1,1'-Biphenyl	1.7	U	1.7	1.7	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Bis(2-chloroethoxy)methane	0.039	U	0.33	0.039	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Bis(2-chloroethyl)ether	0.045	U	0.33	0.045	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
bis (2-chloroisopropyl) ether	0.030	U	0.33	0.030	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Bis(2-ethylhexyl) phthalate	0.029	U	0.33	0.029	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
4-Bromophenyl phenyl ether	0.036	U	0.33	0.036	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Butyl benzyl phthalate	0.026	U	0.33	0.026	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Caprolactam	0.066	U	0.33	0.066	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Carbazole	0.030	U	0.33	0.030	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
4-Chloroaniline	0.052	U	0.66	0.052	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
4-Chloro-3-methylphenol	0.035	U	0.33	0.035	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
2-Chloronaphthalene	0.035	U	0.33	0.035	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
2-Chlorophenol	0.040	U	0.33	0.040	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
4-Chlorophenyl phenyl ether	0.044	U	0.33	0.044	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Chrysene	0.021	U	0.33	0.021	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Dibenz(a,h)anthracene	0.039	U	0.33	0.039	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Dibenzofuran	0.033	U	0.33	0.033	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
3,3'-Dichlorobenzidine	0.028	U	0.66	0.028	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
2,4-Dichlorophenol	0.035	U	0.33	0.035	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Diethyl phthalate	0.037	U	0.33		mg/Kg		09/01/15 10:13	09/01/15 23:31	1
2,4-Dimethylphenol	0.044	U	0.33		mg/Kg		09/01/15 10:13	09/01/15 23:31	1

TestAmerica Savannah

Page 18 of 37

9/17/2015

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-398884/10-A **Matrix: Solid**

Analysis Batch: 399055

Client Sample ID: Method Blank **Prep Type: Total/NA Prep Batch: 398884**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dimethyl phthalate	0.034	U	0.33	0.034	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Di-n-butyl phthalate	0.030	U	0.33	0.030	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
4,6-Dinitro-2-methylphenol	0.17	U	1.7	0.17	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
2,4-Dinitrophenol	0.83	U	1.7	0.83	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
2,4-Dinitrotoluene	0.049	U	0.33	0.049	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
2,6-Dinitrotoluene	0.042	U	0.33	0.042	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Di-n-octyl phthalate	0.029	U	0.33	0.029	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Fluoranthene	0.032	U	0.33	0.032	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Fluorene	0.036	U	0.33	0.036	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Hexachlorobenzene	0.039	U	0.33	0.039	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Hexachlorobutadiene	0.036	U	0.33	0.036	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Hexachlorocyclopentadiene	0.041	U	0.33	0.041	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Hexachloroethane	0.028	U	0.33	0.028	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Indeno[1,2,3-cd]pyrene	0.028	U	0.33	0.028	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Isophorone	0.033	U	0.33	0.033	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
2-Methylnaphthalene	0.038	U	0.33	0.038	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
2-Methylphenol	0.027	U	0.33	0.027	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
3 & 4 Methylphenol	0.043	U	0.33	0.043	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Naphthalene	0.030	U	0.33	0.030	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
2-Nitroaniline	0.045	U	1.7	0.045	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
3-Nitroaniline	0.046	U	1.7	0.046	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
4-Nitroaniline	0.049	U	1.7	0.049	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Nitrobenzene	0.026	U	0.33	0.026	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
2-Nitrophenol	0.041	U	0.33	0.041	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
4-Nitrophenol	0.33	U	1.7	0.33	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
N-Nitrosodi-n-propylamine	0.032	U	0.33	0.032	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
N-Nitrosodiphenylamine	0.033	U	0.33	0.033	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Pentachlorophenol	0.33	U	1.7	0.33	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Phenanthrene	0.027	U	0.33	0.027	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Phenol	0.034	U	0.33	0.034	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
Pyrene	0.027	U	0.33	0.027	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
2,4,5-Trichlorophenol	0.035	U	0.33	0.035	mg/Kg		09/01/15 10:13	09/01/15 23:31	1
2,4,6-Trichlorophenol	0.029	U	0.33	0.029	mg/Kg		09/01/15 10:13	09/01/15 23:31	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	68		41 - 116	09/01/15 10:13	09/01/15 23:31	1
2-Fluorophenol (Surr)	51		39 - 114	09/01/15 10:13	09/01/15 23:31	1
Nitrobenzene-d5 (Surr)	58		37 - 115	09/01/15 10:13	09/01/15 23:31	1
Phenol-d5 (Surr)	52		38 - 122	09/01/15 10:13	09/01/15 23:31	1
Terphenyl-d14 (Surr)	72		46 - 126	09/01/15 10:13	09/01/15 23:31	1
2,4,6-Tribromophenol (Surr)	82		45 - 129	09/01/15 10:13	09/01/15 23:31	1

Lab Sample ID: LCS 680-398884/11-A

Matrix: Solid

Analysis Batch: 399288							Prep Batch: 39888	34
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	3.31	2.18		mg/Kg		66	47 - 130	_

TestAmerica Savannah

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 19 of 37

9/17/2015

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-398884/11-A

Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 399288	Spike	LCS LCS			Prep Batch: 39888 %Rec.
Analyte	Added	Result Qualif	fier Unit	D %Rec	Limits
Acenaphthylene	3.31	2.15	mg/Kg	65	45 - 130
Acetophenone	3.31	1.86	mg/Kg	56	44 - 130
Anthracene	3.31	2.25	mg/Kg	68	50 - 130
Atrazine	3.31	2.25	mg/Kg	68	47 - 130
Benzaldehyde	3.31	0.879	mg/Kg	27	10 - 130
Benzo[a]anthracene	3.31	2.30	mg/Kg	70	50 - 130
Benzo[a]pyrene	3.31	2.36	mg/Kg	71	47 - 131
Benzo[b]fluoranthene	3.31	2.37	mg/Kg	72	48 - 130
Benzo[g,h,i]perylene	3.31	2.22	mg/Kg	67	42 - 130
Benzo[k]fluoranthene	3.31	2.21	mg/Kg	67	48 - 108
1,1'-Biphenyl	3.31	2.14	mg/Kg	65	48 - 130
Bis(2-chloroethoxy)methane	3.31	2.04	mg/Kg	62	47 - 130
Bis(2-chloroethyl)ether	3.31	1.79	mg/Kg	54	37 - 130
bis (2-chloroisopropyl) ether	3.31	1.64	mg/Kg	50	38 - 130
Bis(2-ethylhexyl) phthalate	3.31	2.43	mg/Kg	73	48 - 130
4-Bromophenyl phenyl ether	3.31	2.48	mg/Kg	75	53 - 130
Butyl benzyl phthalate	3.31	2.35	mg/Kg	71	53 - 134
Caprolactam	3.31	1.97	mg/Kg	60	44 - 130
Carbazole	3.31	2.27	mg/Kg	69	51 - 130
4-Chloroaniline	3.31	1.75	mg/Kg	53	10 - 130
4-Chloro-3-methylphenol	3.31	2.08	mg/Kg	63	51 - 130
2-Chloronaphthalene	3.31	2.11	mg/Kg	64	48 - 130
2-Chlorophenol	3.31	2.05	mg/Kg	62	47 - 130
4-Chlorophenyl phenyl ether	3.31	2.11	mg/Kg	64	49 - 130
Chrysene	3.31	2.36	mg/Kg	71	47 - 130
Dibenz(a,h)anthracene	3.31	2.22	mg/Kg	67	44 - 130
Dibenzofuran	3.31	2.09	mg/Kg	63	49 - 130
3,3'-Dichlorobenzidine	3.31	1.96	mg/Kg	59	16 - 130
2,4-Dichlorophenol	3.31	2.26	mg/Kg	68	48 - 130
Diethyl phthalate	3.31	2.06	mg/Kg	62	49 - 130
2,4-Dimethylphenol	3.31	2.18	mg/Kg	66	43 - 130
Dimethyl phthalate	3.31	2.19	mg/Kg	66	50 - 130
Di-n-butyl phthalate	3.31	2.39	mg/Kg	72	52 - 130
4,6-Dinitro-2-methylphenol	6.62	3.01	mg/Kg	45	23 - 130
2,4-Dinitrophenol	6.62	1.36 J	mg/Kg	21	10 - 130
2,4-Dinitrotoluene	3.31	1.98	mg/Kg	60	49 - 111
2,6-Dinitrotoluene	3.31	2.10	mg/Kg	63	49 - 130
Di-n-octyl phthalate	3.31	2.63	mg/Kg	79	46 - 130
Fluoranthene	3.31	2.47	mg/Kg	75	51 ₋ 130
Fluorene	3.31	2.01	mg/Kg	61	52 - 130
Hexachlorobenzene	3.31	2.46	mg/Kg	74	53 - 130
Hexachlorobutadiene	3.31	2.20	mg/Kg	67	48 - 130
Hexachlorocyclopentadiene	3.31	2.00	mg/Kg	60	28 - 130
Hexachloroethane	3.31	1.79	mg/Kg	54	42 - 130
Indeno[1,2,3-cd]pyrene	3.31	1.86	mg/Kg	56	41 - 130
Isophorone	3.31	2.00	mg/Kg	60	48 - 130
2-Methylnaphthalene	3.31	2.08	mg/Kg	63	48 - 130
2-Methylphenol	3.31	1.98	mg/Kg	60	46 - 130

TestAmerica Savannah

9/17/2015

Page 20 of 37

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP #2

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-398884/11-A

Matrix: Solid

3 & 4 Methylphenol

Analyte

Naphthalene

2-Nitroaniline

3-Nitroaniline

4-Nitroaniline

Nitrobenzene

2-Nitrophenol

4-Nitrophenol

N-Nitrosodi-n-propylamine

N-Nitrosodiphenylamine

Pentachlorophenol

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

Phenanthrene

Phenol

Pyrene

Analysis Batch: 399288

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 398884

69

71

51 - 130

50 - 130

LCS LCS Spike %Rec. Added Result Qualifier Unit D %Rec Limits 3.31 1.95 59 46 - 130 mg/Kg 3.31 2.10 mg/Kg 63 47 - 130 3.31 2.02 mg/Kg 61 44 - 130 3.31 1.85 mg/Kg 56 21 - 130 3.31 1.85 mg/Kg 56 41 - 130 3.31 1.96 mg/Kg 59 45 - 130 3.31 2.26 68 43 - 130 mg/Kg 71 6.62 4.71 mg/Kg 40 - 130 3.31 1.86 mg/Kg 56 38 - 130 69 6.62 4.60 mg/Kg 50 - 130 6.62 78 41 - 130 5.14 mg/Kg 3.31 2.29 mg/Kg 69 52 - 130 3.31 59 47 - 130 1.96 mg/Kg 67 3.31 2.21 mg/Kg 50 - 130

mg/Kg

mg/Kg

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	65		41 - 116
2-Fluorophenol (Surr)	58		39 - 114
Nitrobenzene-d5 (Surr)	62		37 - 115
Phenol-d5 (Surr)	62		38 - 122
Terphenyl-d14 (Surr)	70		46 - 126
2,4,6-Tribromophenol (Surr)	70		45 - 129

Lab Sample ID: 680-116110-3 MS

Matrix: Solid

Client Sample ID: GB-19 13-15 Prep Type: Total/NA

Analysis Batch: 399288	Sample	Sample	Spike	MS	MS				Prep Batch: 398884 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	0.047	U	3.78	2.93		mg/Kg	<u> </u>	78	58 - 130
Acenaphthylene	0.041	U	3.78	2.81		mg/Kg	☼	74	58 - 130
Acetophenone	0.032	U	3.78	2.64		mg/Kg	₩	70	42 - 130
Anthracene	0.028	U	3.78	3.13		mg/Kg	₩.	83	60 - 130
Atrazine	0.026	U	3.78	3.21		mg/Kg	☼	85	54 - 141
Benzaldehyde	0.066	U	3.78	2.66		mg/Kg	₩	71	10 - 130
Benzo[a]anthracene	0.031	U	3.78	3.24		mg/Kg	₩.	86	62 - 130
Benzo[a]pyrene	0.059	U	3.78	3.29		mg/Kg	☼	87	68 - 131
Benzo[b]fluoranthene	0.043	U	3.78	3.26		mg/Kg	₩	86	53 - 130
Benzo[g,h,i]perylene	0.025	U	3.78	3.07		mg/Kg	₩.	81	54 - 130
Benzo[k]fluoranthene	0.074	U	3.78	3.07		mg/Kg	☼	81	57 - 130
1,1'-Biphenyl	1.9	U	3.78	2.91		mg/Kg	☼	77	57 - 130
Bis(2-chloroethoxy)methane	0.044	U	3.78	2.76		mg/Kg	₩.	73	56 - 130
Bis(2-chloroethyl)ether	0.051	U	3.78	2.45		mg/Kg	☼	65	42 - 130
bis (2-chloroisopropyl) ether	0.034	U	3.78	2.15		mg/Kg	☼	57	44 - 130
Bis(2-ethylhexyl) phthalate	0.089	J	3.78	3.54		mg/Kg	₩.	91	62 - 132
4-Bromophenyl phenyl ether	0.041	U	3.78	3.24		mg/Kg	₩	86	65 - 130
Butyl benzyl phthalate	0.029	U	3.78	3.37		mg/Kg	☼	89	65 - 134

3.31

3.31

2.28

2.36

TestAmerica Savannah

9/17/2015

Page 21 of 37

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-116110-3 MS Client Sample ID: GB-19 13-15 Matrix: Solid Prep Type: Total/NA

Analysis Batch: 399288	Sample	Sample	Spike	MS	MS				Prep Batch: 39888 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Caprolactam	0.075	U	3.78	2.60		mg/Kg	₩	69	52 - 130
Carbazole	0.034	U	3.78	3.06		mg/Kg	₩.	81	60 - 130
4-Chloroaniline	0.059	U F1	3.78	1.03	F1	mg/Kg	☼	27	36 - 130
4-Chloro-3-methylphenol	0.040	Ü	3.78	2.83		mg/Kg	₩.	75	52 - 130
2-Chloronaphthalene	0.040	U	3.78	2.89		mg/Kg	☼	76	55 - 130
2-Chlorophenol	0.045	U	3.78	2.68		mg/Kg	☼	71	51 - 130
4-Chlorophenyl phenyl ether	0.050	U	3.78	2.93		mg/Kg	₩	78	61 - 130
Chrysene	0.024	U	3.78	3.13		mg/Kg	☼	83	62 - 130
Dibenz(a,h)anthracene	0.044	U	3.78	3.31		mg/Kg	☼	88	56 - 130
Dibenzofuran	0.037	U	3.78	2.88		mg/Kg	₩.	76	56 - 130
3,3'-Dichlorobenzidine	0.032	U F1 F2	3.78	1.34	F1	mg/Kg	☼	36	45 - 130
2,4-Dichlorophenol	0.040	U	3.78	2.93		mg/Kg	☼	77	53 ₋ 130
Diethyl phthalate	0.042	U	3.78	2.91		mg/Kg	₩	77	62 - 130
2,4-Dimethylphenol	0.050	U	3.78	2.85		mg/Kg	₩	76	47 - 130
Dimethyl phthalate	0.039	U	3.78	2.96		mg/Kg	☼	78	63 - 130
Di-n-butyl phthalate	0.034	Ü	3.78	3.42		mg/Kg	₩	91	65 - 130
4,6-Dinitro-2-methylphenol	0.19	U	7.55	6.90		mg/Kg	☼	91	14 - 137
2,4-Dinitrophenol	0.94	U	7.55	4.73		mg/Kg	☼	63	10 - 154
2,4-Dinitrotoluene	0.056	Ü	3.78	2.90		mg/Kg	₩.	77	55 - 130
2,6-Dinitrotoluene	0.048	U	3.78	2.95		mg/Kg	☼	78	57 - 130
Di-n-octyl phthalate	0.033	U	3.78	3.70		mg/Kg	☼	98	59 - 146
Fluoranthene	0.036	U	3.78	3.34		mg/Kg	₩	89	62 - 130
Fluorene	0.041	U	3.78	2.79		mg/Kg	₩	74	58 ₋ 130
Hexachlorobenzene	0.044	U	3.78	3.24		mg/Kg	☼	86	59 - 130
Hexachlorobutadiene	0.041	U	3.78	3.05		mg/Kg	₩.	81	47 - 130
Hexachlorocyclopentadiene	0.047	U	3.78	2.77		mg/Kg	☼	73	35 - 130
Hexachloroethane	0.032	U	3.78	2.44		mg/Kg	☼	65	44 - 130
Indeno[1,2,3-cd]pyrene	0.032	U	3.78	2.61		mg/Kg	₩.	69	52 - 130
Isophorone	0.037	U	3.78	2.66		mg/Kg	☼	70	48 - 130
2-Methylnaphthalene	0.043	U	3.78	2.67		mg/Kg	₩	71	55 - 130
2-Methylphenol	0.031	U	3.78	2.51		mg/Kg	₩.	67	49 - 130
3 & 4 Methylphenol	0.049	U	3.78	2.62		mg/Kg	☼	69	50 - 130
Naphthalene	0.034	U	3.78	2.84		mg/Kg	☼	75	54 - 130
2-Nitroaniline	0.051	U	3.78	2.78		mg/Kg		74	52 - 130
3-Nitroaniline	0.052	U	3.78	1.73	J	mg/Kg	₩	46	42 - 130
4-Nitroaniline	0.056	U	3.78	2.60		mg/Kg	☼	69	49 - 130
Nitrobenzene	0.029	U	3.78	2.68		mg/Kg	₩.	71	43 - 130
2-Nitrophenol	0.047	U	3.78	3.07		mg/Kg	☼	81	45 - 130
4-Nitrophenol	0.37	U	7.55	7.45		mg/Kg	☼	99	30 - 130
N-Nitrosodi-n-propylamine	0.036	U	3.78	2.39		mg/Kg	₽	63	48 - 130
N-Nitrosodiphenylamine	0.037	U	7.55	6.02		mg/Kg	☼	80	62 - 130
Pentachlorophenol	0.37	U	7.55	7.59		mg/Kg	₩	101	38 - 131
Phenanthrene	0.031	\mathbf{U}	3.78	3.05		mg/Kg	₩.	81	61 - 130
Phenol	0.039	U	3.78	2.53		mg/Kg	☼	67	46 - 130
Pyrene	0.031		3.78	3.13		mg/Kg	₩	83	59 - 130
2,4,5-Trichlorophenol	0.040	U	3.78	3.06		mg/Kg	₩.	81	60 - 130
2,4,6-Trichlorophenol	0.033		3.78	3.09		mg/Kg	☼	82	53 - 130

TestAmerica Savannah

Project/Site: Macon MGP #2

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-116110-3 MS

Client: Geotechnical & Environmental Consultants

Matrix: Solid

Analysis Batch: 399288

Client Sample ID: GB-19 13-15 Prep Type: Total/NA

Prep Batch: 398884

MS MS Surrogate %Recovery Qualifier Limits 2-Fluorobiphenyl 77 41 - 116 2-Fluorophenol (Surr) 69 39 - 114 Nitrobenzene-d5 (Surr) 74 37 - 115 Phenol-d5 (Surr) 70 38 - 122 Terphenyl-d14 (Surr) 88 46 - 126

89

Sample Sample

0.047 Ū

0.041 U

0.032 U

0.028 U

0.026 U

0.066 U

U

0.031 Ü

0.059 U

0.043

0.025 U

0.074 U

0.044 U

0.051 U

0.034 U

0.041 U

0.075 U

0.034 U

0.040 U

0.040 U

0.045 U

0.044 U

0.037 U

0.040 U

0.042 U

0.050 U

0.039 U

0.034 Ü

> 0.19 U

> 0.94 U

0.032 UF1F2

0.050 Ü

0.024 U

0.059 UF1

0.089 Ĵ

0.029

1.9 U

Result Qualifier

Client Sample ID: GB-19 13-15 Lab Sample ID: 680-116110-3 MSD

MSD MSD

Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mq/Kq

mg/Kg

D

Ö

%Rec

79

Result

2.96

2.86

2 53

3.09

3.01

2.61

3.15

3 16

3.31

2.85

3.01

2.85

2.68

2.38

2.04

3.53

3.33

3.41

2.24

3.03

1.68

2.79

2.87

2.62

3.05

3.11

3.09

2.95

2.69

3.06

2.76

2.98

3.23

7.19

6.18

2.32 F2

45 - 129

Spike

Added

3.76

3.76

3.76

3.76

3.76

3.76

3.76

3 76

3.76

3.76

3.76

3.76

3.76

3.76

3.76

3.76

3 76

3.76

3.76

3.76

3.76

3.76

3.76

3.76

3.76

3.76

3.76

3.76

3.76

3.76

3.76

3.76

3.76

3.76

7.52

7.52

Matrix: Solid

Acenaphthene

Acetophenone

Benzaldehyde

Benzo[a]pyrene

1,1'-Biphenyl

Caprolactam

4-Chloroaniline

2-Chlorophenol

Chrysene

Dibenzofuran

Carbazole

Benzo[a]anthracene

Benzo[b]fluoranthene

Benzo[g,h,i]perylene

Benzo[k]fluoranthene

Bis(2-chloroethyl)ether

Butyl benzyl phthalate

4-Chloro-3-methylphenol

4-Chlorophenyl phenyl ether

2-Chloronaphthalene

Dibenz(a,h)anthracene

3,3'-Dichlorobenzidine

2,4-Dichlorophenol

2,4-Dimethylphenol

Dimethyl phthalate

Di-n-butyl phthalate

2,4-Dinitrophenol

4,6-Dinitro-2-methylphenol

Diethyl phthalate

Bis(2-chloroethoxy)methane

bis (2-chloroisopropyl) ether

Bis(2-ethylhexyl) phthalate

4-Bromophenyl phenyl ether

Anthracene

Atrazine

Acenaphthylene

Analyte

Analysis Batch: 399288

2,4,6-Tribromophenol (Surr)

Prep Type: Total/NA

Prep Batch: 398884

RPD

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

%Rec. Limits RPD Limit 58 - 130 1 50

₩ 76 50 58 - 1302 ₩ 67 42 - 130 50 Ö 82 60 - 130 50 77 80 54 - 141 50 ₿ 70 10 - 130 2 50 Ö 84 62 - 130 3 50 ά 84 68 - 131 50 ∜ 88 53 - 130 50 ₩ 76 54 - 130 7 50 Ö 80 57 - 130 2 50 ₩ 76 57 - 130 2 50 ₩ 71 56 - 130 50

mg/Kg ₩ mg/Kg 63 42 - 130 ₿ mg/Kg 54 44 - 130 5 ď 92 62 - 132 mg/Kg Ö 89 65 - 130mg/Kg 3 Ö 91 mg/Kg 65 - 134. . 60 52 - 13015 mg/Kg Ö 81 60 - 130mg/Kg

₿

₩

₩

₩

86

96

82

mg/Kg 45 36 - 130 48 ₩ mg/Kg 74 52 - 130 mg/Kg ₩ 76 55 - 130 0 ₩ 70 mg/Kg 51 - 130 2 . ₩ 81 61 - 130 mg/Kg ₩ mg/Kg 83 62 - 130₩ mg/Kg 82 56 - 130 mg/Kg

50 50 . ₩ 78 56 - 130 2 50 ₩ 62 45 - 130 53 50 72 53 - 130 8 50 Ö 81 62 - 13050 ₿ 73 50 47 - 130∜ 79 63 - 130 50

65 - 130

14 - 137

10 - 154

TestAmerica Savannah

6

4

27

9/17/2015

Page 23 of 37

Project/Site: Macon MGP #2

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-116110-3 MSD

Client: Geotechnical & Environmental Consultants

Matrix: Solid

Analysis Batch: 399288

Client Sample ID: GB-19 13-15

Prep Type: Total/NA Prep Batch: 398884

,	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4-Dinitrotoluene	0.056	U	3.76	3.10		mg/Kg	₩	82	55 - 130	7	50
2,6-Dinitrotoluene	0.048	U	3.76	3.10		mg/Kg	₩	82	57 ₋ 130	5	50
Di-n-octyl phthalate	0.033	U	3.76	3.57		mg/Kg	₩	95	59 - 146	3	50
Fluoranthene	0.036	U	3.76	3.06		mg/Kg	₩.	81	62 - 130	9	50
Fluorene	0.041	U	3.76	2.97		mg/Kg	☼	79	58 - 130	6	50
Hexachlorobenzene	0.044	U	3.76	3.26		mg/Kg	₩	87	59 - 130	1	50
Hexachlorobutadiene	0.041	U	3.76	2.89		mg/Kg	₩	77	47 - 130	5	50
Hexachlorocyclopentadiene	0.047	U	3.76	2.68		mg/Kg	₩	71	35 - 130	3	50
Hexachloroethane	0.032	U	3.76	2.34		mg/Kg	₩	62	44 - 130	4	50
Indeno[1,2,3-cd]pyrene	0.032	U	3.76	2.36		mg/Kg	₩	63	52 - 130	10	50
Isophorone	0.037	U	3.76	2.56		mg/Kg	₩	68	48 - 130	4	50
2-Methylnaphthalene	0.043	U	3.76	2.55		mg/Kg	₩	68	55 - 130	4	50
2-Methylphenol	0.031	U	3.76	2.42		mg/Kg	₩	65	49 - 130	4	50
3 & 4 Methylphenol	0.049	U	3.76	2.38		mg/Kg	₩	63	50 - 130	10	50
Naphthalene	0.034	U	3.76	2.63		mg/Kg	☼	70	54 - 130	8	50
2-Nitroaniline	0.051	U	3.76	2.95		mg/Kg	₩	79	52 - 130	6	50
3-Nitroaniline	0.052	U	3.76	2.67		mg/Kg	☼	71	42 - 130	43	50
4-Nitroaniline	0.056	U	3.76	2.90		mg/Kg	₩	77	49 - 130	11	50
Nitrobenzene	0.029	U	3.76	2.52		mg/Kg	₩	67	43 - 130	6	50
2-Nitrophenol	0.047	U	3.76	2.88		mg/Kg	☼	77	45 - 130	6	50
4-Nitrophenol	0.37	U	7.52	7.63		mg/Kg	☼	102	30 - 130	2	50
N-Nitrosodi-n-propylamine	0.036	U	3.76	2.32		mg/Kg	₩	62	48 - 130	3	50
N-Nitrosodiphenylamine	0.037	U	7.52	5.93		mg/Kg	₩	79	62 - 130	2	50
Pentachlorophenol	0.37	U	7.52	7.38		mg/Kg	₩	98	38 - 131	3	50
Phenanthrene	0.031	U	3.76	3.07		mg/Kg	₩	82	61 - 130	1	50
Phenol	0.039	U	3.76	2.34		mg/Kg	₩	62	46 - 130	8	50
Pyrene	0.031	U	3.76	3.10		mg/Kg	₩	82	59 - 130	1	50
2,4,5-Trichlorophenol	0.040	U	3.76	3.13		mg/Kg	₩	83	60 - 130	2	50
2,4,6-Trichlorophenol	0.033	U	3.76	3.37		mg/Kg	₩	90	53 - 130	9	50

พรบ	พรบ

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	79		41 - 116
2-Fluorophenol (Surr)	71		39 - 114
Nitrobenzene-d5 (Surr)	69		37 - 115
Phenol-d5 (Surr)	68		38 - 122
Terphenyl-d14 (Surr)	90		46 - 126
2,4,6-Tribromophenol (Surr)	102		45 - 129

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-398487/1-A

Matrix: Solid

Analysis Batch: 398685

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 398487

MR MR

	IVID	IAID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.73	U	1.8	0.73	mg/Kg		08/28/15 08:33	08/29/15 03:22	1
Barium	0.15	U	0.91	0.15	mg/Kg		08/28/15 08:33	08/29/15 03:22	1
Beryllium	0.0091	U	0.36	0.0091	mg/Kg		08/28/15 08:33	08/29/15 03:22	1
	Arsenic Barium	Analyte Result Arsenic 0.73 Barium 0.15	Arsenic 0.73 U Barium 0.15 U	Analyte Result of the sum	Analyte Result Qualifier RL US MDL	Analyte Result Arsenic Qualifier 0.73 RL Unit Unit Unit Unit Unit Unit Unit Unit	Analyte Result Arsenic Qualifier RL MDL Unit D Barium 0.73 U 1.8 0.73 mg/Kg Barium 0.15 U 0.91 0.15 mg/Kg	Analyte Result Arsenic Qualifier RL MDL Unit mg/Kg D 08/28/15 08:33 Barium 0.15 U 0.91 0.15 mg/Kg 08/28/15 08:33	Analyte Result Arsenic Qualifier RL NDL Unit MDL Unit MDL

TestAmerica Savannah

Page 24 of 37

9/17/2015

Project/Site: Macon MGP #2

Method: 6010C - Metals (ICP) (Continued)

Client: Geotechnical & Environmental Consultants

Lab Sample ID: MB 680-398487/1-A

Matrix: Solid

Analysis Batch: 398685

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 398487

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	0.091	U	0.45	0.091	mg/Kg		08/28/15 08:33	08/29/15 03:22	1
Chromium	0.19	U	0.91	0.19	mg/Kg		08/28/15 08:33	08/29/15 03:22	1
Copper	0.15	U	2.3	0.15	mg/Kg		08/28/15 08:33	08/29/15 03:22	1
Lead	0.31	U	0.91	0.31	mg/Kg		08/28/15 08:33	08/29/15 03:22	1
Nickel	0.35	U	3.6	0.35	mg/Kg		08/28/15 08:33	08/29/15 03:22	1
Selenium	0.88	U	2.3	0.88	mg/Kg		08/28/15 08:33	08/29/15 03:22	1
Silver	0.055	U	0.91	0.055	mg/Kg		08/28/15 08:33	08/29/15 03:22	1
Vanadium	0.091	U	0.91	0.091	mg/Kg		08/28/15 08:33	08/29/15 03:22	1
Zinc	0.64	U	1.8	0.64	mg/Kg		08/28/15 08:33	08/29/15 03:22	1
Vanadium	0.091	U	0.91	0.091	mg/Kg		08/28/15 08:33	08/29/15 03:22	1 1 1

Lab Sample ID: LCS 680-398487/2-A

Matrix: Solid

Analysis Batch: 398685

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 398487

, , , , , , , , , , , , , , , , , , , ,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	9.35	10.1		mg/Kg		108	80 - 120	
Barium	9.35	9.19		mg/Kg		98	80 - 120	
Beryllium	4.67	5.02		mg/Kg		107	80 - 120	
Cadmium	4.67	4.88		mg/Kg		105	80 - 120	
Chromium	9.35	9.77		mg/Kg		104	80 - 120	
Copper	9.35	9.57		mg/Kg		102	80 - 120	
Lead	46.7	45.9		mg/Kg		98	80 - 120	
Nickel	9.35	9.58		mg/Kg		103	80 - 120	
Selenium	9.35	9.37		mg/Kg		100	80 - 120	
Silver	4.67	4.57		mg/Kg		98	80 - 120	
Vanadium	9.35	9.62		mg/Kg		103	80 - 120	
Zinc	9.35	9.84		mg/Kg		105	80 - 120	

Lab Sample ID: 680-116110-1 MS

Matrix: Solid

Analysis Batch: 398685

Client Sample ID: GB-5 13-15 Prep Type: Total/NA

Prep Batch: 398487

Spike MS MS Sample Sample %Rec. Result Qualifier Added Result Qualifier Limits Analyte Unit D %Rec ₩ Arsenic 1.2 J 10.4 103 75 - 125 11.9 mg/Kg Barium 2.0 F2 F1 10.4 11.2 ₩ 88 mg/Kg 75 - 125 ₩ Beryllium 0.082 J 5.18 5.60 mg/Kg 106 75 - 125 Cadmium 0.10 U 5.18 5.32 mg/Kg ₩ 103 75 - 125 Chromium 10.4 12.7 ☼ 107 75 - 125 1.6 mg/Kg ∜ Copper 1.5 J F2 F1 10.4 11.3 mg/Kg 94 75 - 125 96 75 - 125 Lead 1.4 51.8 51.3 mg/Kg ☼ Nickel 0.40 U 10.4 10.8 mg/Kg 104 75 - 125 ☼ Selenium 1.0 U 10.4 10.0 mg/Kg 97 75 - 125 . . Silver 0.063 U 5.18 4.70 mg/Kg 91 75 - 125 Vanadium 3.8 F2 F1 10.4 13.7 mg/Kg ₩ 95 75 - 125 Zinc 1.6 J F2 F1 mg/Kg ₩ 98 75 - 125 10.4 11.8

TestAmerica Savannah

Page 25 of 37

9/17/2015

Project/Site: Macon MGP #2

Method: 6010C - Metals (ICP) (Continued)

Client: Geotechnical & Environmental Consultants

Lab Sample ID: 680-116110-1 MSD Client Sample ID: GB-5 13-15 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 398685									Prep Ba		
7 maryono Zatom Coccoc	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	1.2	J	10.6	12.5		mg/Kg	<u>∓</u>	106	75 - 125	5	20
Barium	2.0	F2 F1	10.6	17.7	F1 F2	mg/Kg	☼	149	75 - 125	45	20
Beryllium	0.082	J	5.28	5.87		mg/Kg	₩	110	75 - 125	5	20
Cadmium	0.10	U	5.28	5.44		mg/Kg	₩.	103	75 - 125	2	20
Chromium	1.6		10.6	13.7		mg/Kg	₩	114	75 - 125	7	20
Copper	1.5	J F2 F1	10.6	15.2	F1 F2	mg/Kg	₩	129	75 - 125	29	20
Lead	1.4		52.8	53.6		mg/Kg	₩.	99	75 - 125	4	20
Nickel	0.40	U	10.6	11.5		mg/Kg	₩	109	75 - 125	7	20
Selenium	1.0	U	10.6	9.96		mg/Kg	₩	94	75 - 125	1	20
Silver	0.063	Ü	5.28	4.90		mg/Kg	₩.	93	75 - 125	4	20
Vanadium	3.8	F2 F1	10.6	18.2	F1 F2	mg/Kg	₩	137	75 - 125	29	20
Zinc	1.6	J F2 F1	10.6	15.0	F1 F2	mg/Kg	≎	127	75 - 125	24	20

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 680-399355/13-A **Client Sample ID: Method Blank**

Matrix: Solid

Analysis Batch: 399700

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Mercury 0.0075 U 0.019 0.0075 mg/Kg 09/03/15 09:02 09/04/15 15:10

Lab Sample ID: LCS 680-399355/14-A **Client Sample ID: Lab Control Sample Matrix: Solid**

Analysis Batch: 399700

LCS LCS Spike %Rec. Added Result Qualifier Unit D %Rec Limits

Analyte 0.227 0.232 Mercury mg/Kg 102 80 - 120

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 680-398946/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 399014 Prep Batch: 398946 MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Cyanide, Total 0.21 U 0.50 0.21 mg/Kg 09/01/15 09:30 09/01/15 12:01

Lab Sample ID: LCS 680-398946/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 399014 Prep Batch: 398946 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit %Rec Limits Cyanide, Total 5.00 102 75 - 125 5.10 mg/Kg

Prep Type: Total/NA **Prep Batch: 399355**

Prep Type: Total/NA

Prep Batch: 399355

QC Sample Results

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

TestAmerica Job ID: 680-116110-1

Method: 9012B - Cyanide, Total andor Amenable (Continued)

Lab Sample ID: 680-11611	0-1 MS							Client S	ample ID	: GB-5 13-15
Matrix: Solid									Prep Ty	pe: Total/NA
Analysis Batch: 399014									Prep Ba	atch: 398946
_	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cvanide. Total	0.24	U	5.81	5.92		ma/Ka	<u></u>	102	75 - 125	

Lab Sample ID: 680-11611	0-1 MSD							Client S	ample ID	: GB-5	13-15
Matrix: Solid									Prep Ty	pe: Tot	al/NA
Analysis Batch: 399014									Prep Ba	atch: 39	98946
_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cyanide, Total	0.24	U	5.69	5.86		mg/Kg	<u>∓</u>	103	75 - 125	1	30

4

5

7

8

9

10

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

TestAmerica Job ID: 680-116110-1

GC/MS VOA

Prep Batch: 398538

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-116110-1	GB-5 13-15	Total/NA	Solid	5035	
680-116110-2	GB-5 18	Total/NA	Solid	5035	

Analysis Batch: 399189

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-116110-2	GB-5 18	Total/NA	Solid	8260B	398538
LCS 680-399189/3	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-399189/4	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 680-399189/6	Method Blank	Total/NA	Solid	8260B	

Analysis Batch: 399391

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-116110-1	GB-5 13-15	Total/NA	Solid	8260B	398538
LCS 680-399391/4	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-399391/5	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 680-399391/8	Method Blank	Total/NA	Solid	8260B	

GC/MS Semi VOA

Prep Batch: 398884

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-116110-1	GB-5 13-15	Total/NA	Solid	3546	
680-116110-2	GB-5 18	Total/NA	Solid	3546	
680-116110-3	GB-19 13-15	Total/NA	Solid	3546	
680-116110-3 MS	GB-19 13-15	Total/NA	Solid	3546	
680-116110-3 MSD	GB-19 13-15	Total/NA	Solid	3546	
680-116110-4	GB-21 13-15	Total/NA	Solid	3546	
LCS 680-398884/11-A	Lab Control Sample	Total/NA	Solid	3546	
MB 680-398884/10-A	Method Blank	Total/NA	Solid	3546	

Analysis Batch: 399055

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-398884/10-A	Method Blank	Total/NA	Solid	8270D	398884

Analysis Batch: 399288

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-116110-1	GB-5 13-15	Total/NA	Solid	8270D	398884
680-116110-2	GB-5 18	Total/NA	Solid	8270D	398884
680-116110-3	GB-19 13-15	Total/NA	Solid	8270D	398884
680-116110-3 MS	GB-19 13-15	Total/NA	Solid	8270D	398884
680-116110-3 MSD	GB-19 13-15	Total/NA	Solid	8270D	398884
680-116110-4	GB-21 13-15	Total/NA	Solid	8270D	398884
LCS 680-398884/11-A	Lab Control Sample	Total/NA	Solid	8270D	398884

Metals

Prep Batch: 398487

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-116110-1	GB-5 13-15	Total/NA	Solid	3050B	<u> </u>
680-116110-1 MS	GB-5 13-15	Total/NA	Solid	3050B	

TestAmerica Savannah

9/17/2015

Page 28 of 37

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

TestAmerica Job ID: 680-116110-1

Metals (Continued)

Prep Batch: 398487 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-116110-1 MSD	GB-5 13-15	Total/NA	Solid	3050B	
680-116110-2	GB-5 18	Total/NA	Solid	3050B	
680-116110-3	GB-19 13-15	Total/NA	Solid	3050B	
680-116110-4	GB-21 13-15	Total/NA	Solid	3050B	
LCS 680-398487/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 680-398487/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 398685

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-116110-1	GB-5 13-15	Total/NA	Solid	6010C	398487
680-116110-1 MS	GB-5 13-15	Total/NA	Solid	6010C	398487
680-116110-1 MSD	GB-5 13-15	Total/NA	Solid	6010C	398487
680-116110-2	GB-5 18	Total/NA	Solid	6010C	398487
680-116110-3	GB-19 13-15	Total/NA	Solid	6010C	398487
680-116110-4	GB-21 13-15	Total/NA	Solid	6010C	398487
LCS 680-398487/2-A	Lab Control Sample	Total/NA	Solid	6010C	398487
MB 680-398487/1-A	Method Blank	Total/NA	Solid	6010C	398487

Prep Batch: 399355

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-116110-1	GB-5 13-15	Total/NA	Solid	7471B	
680-116110-2	GB-5 18	Total/NA	Solid	7471B	
680-116110-3	GB-19 13-15	Total/NA	Solid	7471B	
680-116110-4	GB-21 13-15	Total/NA	Solid	7471B	
LCS 680-399355/14-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 680-399355/13-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 399700

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-116110-1	GB-5 13-15	Total/NA	Solid	7471B	399355
680-116110-2	GB-5 18	Total/NA	Solid	7471B	399355
680-116110-3	GB-19 13-15	Total/NA	Solid	7471B	399355
680-116110-4	GB-21 13-15	Total/NA	Solid	7471B	399355
LCS 680-399355/14-A	Lab Control Sample	Total/NA	Solid	7471B	399355
MB 680-399355/13-A	Method Blank	Total/NA	Solid	7471B	399355

General Chemistry

Analysis Batch: 398502

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-116110-1	GB-5 13-15	Total/NA	Solid	Moisture	
680-116110-2	GB-5 18	Total/NA	Solid	Moisture	
680-116110-3	GB-19 13-15	Total/NA	Solid	Moisture	
680-116110-4	GB-21 13-15	Total/NA	Solid	Moisture	

Prep Batch: 398946

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-116110-1	GB-5 13-15	Total/NA	Solid	9012B	
680-116110-1 MS	GB-5 13-15	Total/NA	Solid	9012B	
680-116110-1 MSD	GB-5 13-15	Total/NA	Solid	9012B	

Page 29 of 37

QC Association Summary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

TestAmerica Job ID: 680-116110-1

General Chemistry (Continued)

Prep Batch: 398946 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-116110-2	GB-5 18	Total/NA	Solid	9012B	
680-116110-3	GB-19 13-15	Total/NA	Solid	9012B	
680-116110-4	GB-21 13-15	Total/NA	Solid	9012B	
LCS 680-398946/2-A	Lab Control Sample	Total/NA	Solid	9012B	
MB 680-398946/1-A	Method Blank	Total/NA	Solid	9012B	

Analysis Batch: 399014

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-116110-1	GB-5 13-15	Total/NA	Solid	9012B	398946
680-116110-1 MS	GB-5 13-15	Total/NA	Solid	9012B	398946
680-116110-1 MSD	GB-5 13-15	Total/NA	Solid	9012B	398946
680-116110-2	GB-5 18	Total/NA	Solid	9012B	398946
680-116110-3	GB-19 13-15	Total/NA	Solid	9012B	398946
680-116110-4	GB-21 13-15	Total/NA	Solid	9012B	398946
LCS 680-398946/2-A	Lab Control Sample	Total/NA	Solid	9012B	398946
MB 680-398946/1-A	Method Blank	Total/NA	Solid	9012B	398946

Project/Site: Macon MGP #2

Client: Geotechnical & Environmental Consultants

Client Sample ID: GB-5 13-15 Lab Sample ID: 680-116110-1

Date Collected: 08/24/15 15:08 **Matrix: Solid**

Date Received: 08/27/15 09:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			398502	08/28/15 09:46	FES	TAL SAV
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: GB-5 13-15 Lab Sample ID: 680-116110-1

Date Collected: 08/24/15 15:08 **Matrix: Solid** Date Received: 08/27/15 09:45 Percent Solids: 86.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.454 g	5 mL	398538	08/28/15 11:33	FES	TAL SAV
Total/NA	Analysis Instrume	8260B nt ID: CMSL		1	6.454 g	5 mL	399391	09/03/15 20:23	DJK	TAL SAV
Total/NA	Prep	3546			30.04 g	1 mL	398884	09/01/15 10:13	JMV	TAL SAV
Total/NA	Analysis Instrume	8270D nt ID: CMSG		1	30.04 g	1 mL	399288	09/02/15 19:27	NED	TAL SAV
Total/NA	Prep	3050B			1.11 g	100 mL	398487	08/28/15 08:33	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.11 g	100 mL	398685	08/29/15 03:30	BCB	TAL SAV
Total/NA	Prep	7471B			0.55 g	50 mL	399355	09/03/15 09:02	JKL	TAL SAV
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.55 g	50 mL	399700	09/04/15 15:55	ВСВ	TAL SAV
Total/NA	Prep	9012B			1.00 g	50 mL	398946	09/01/15 09:30	DAM	TAL SAV
Total/NA	Analysis Instrume	9012B nt ID: LACHAT1		1	1.00 g	50 mL	399014	09/01/15 12:03	DAM	TAL SAV

Client Sample ID: GB-5 18 Lab Sample ID: 680-116110-2

Date Collected: 08/24/15 15:17 Date Received: 08/27/15 09:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			398502	08/28/15 09:46	FES	TAL SAV
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: GB-5 18 Lab Sample ID: 680-116110-2

Date Collected: 08/24/15 15:17 **Matrix: Solid** Date Received: 08/27/15 09:45 Percent Solids: 85.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.455 g	5 mL	398538	08/28/15 11:33	FES	TAL SAV
Total/NA	Analysis	8260B		1	6.455 g	5 mL	399189	09/02/15 19:49	DJK	TAL SAV
	Instrume	nt ID: CMSL								
Total/NA	Prep	3546			30.06 g	1 mL	398884	09/01/15 10:13	JMV	TAL SAV
Total/NA	Analysis	8270D		1	30.06 g	1 mL	399288	09/02/15 19:51	NED	TAL SAV
	Instrume	nt ID: CMSG								

TestAmerica Savannah

Matrix: Solid

Project/Site: Macon MGP #2

Client: Geotechnical & Environmental Consultants

Client Sample ID: GB-5 18 Lab Sample ID: 680-116110-2 Date Collected: 08/24/15 15:17

Matrix: Solid Date Received: 08/27/15 09:45 Percent Solids: 85.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.18 g	100 mL	398487	08/28/15 08:33	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.18 g	100 mL	398685	08/29/15 03:55	ВСВ	TAL SAV
Total/NA	Prep	7471B			0.56 g	50 mL	399355	09/03/15 09:02	JKL	TAL SAV
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.56 g	50 mL	399700	09/04/15 15:58	ВСВ	TAL SAV
Total/NA	Prep	9012B			1.01 g	50 mL	398946	09/01/15 09:30	DAM	TAL SAV
Total/NA	Analysis Instrume	9012B nt ID: LACHAT1		1	1.01 g	50 mL	399014	09/01/15 12:07	DAM	TAL SAV

Lab Sample ID: 680-116110-3 Client Sample ID: GB-19 13-15 **Matrix: Solid**

Date Collected: 08/25/15 11:30 Date Received: 08/27/15 09:45

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			398502	08/28/15 09:46	FES	TAL SAV
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: GB-19 13-15 Lab Sample ID: 680-116110-3

Date Collected: 08/25/15 11:30 **Matrix: Solid** Date Received: 08/27/15 09:45 Percent Solids: 88.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			29.94 g	1 mL	398884	09/01/15 10:13	JMV	TAL SAV
Total/NA	Analysis	8270D		1	29.94 g	1 mL	399288	09/02/15 20:15	NED	TAL SAV
	Instrume	nt ID: CMSG								
Total/NA	Prep	3050B			1.16 g	100 mL	398487	08/28/15 08:33	CDD	TAL SAV
Total/NA	Analysis	6010C		1	1.16 g	100 mL	398685	08/29/15 04:08	BCB	TAL SAV
	Instrume	nt ID: ICPE								
Total/NA	Prep	7471B			0.57 g	50 mL	399355	09/03/15 09:02	JKL	TAL SAV
Total/NA	Analysis	7471B		1	0.57 g	50 mL	399700	09/04/15 16:01	BCB	TAL SAV
	Instrume	nt ID: LEEMAN2								
Total/NA	Prep	9012B			1.05 g	50 mL	398946	09/01/15 09:30	DAM	TAL SAV
Total/NA	Analysis	9012B		1	1.05 g	50 mL	399014	09/01/15 12:08	DAM	TAL SAV
	Instrume	nt ID: LACHAT1								

Client Sample ID: GB-21 13-15 Lab Sample ID: 680-116110-4

Date Collected: 08/25/15 11:50 Date Received: 08/27/15 09:45

Prep Typ	Batch De Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	. ,	Moisture nent ID: NOEQUIP		1			398502	08/28/15 09:46	FES	TAL SAV

TestAmerica Savannah

Page 32 of 37

Matrix: Solid

Lab Chronicle

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Date Received: 08/27/15 09:45

Client Sample ID: GB-21 13-15 Date Collected: 08/25/15 11:50

TestAmerica Job ID: 680-116110-1

Lab Sample ID: 680-116110-4

Matrix: Solid

Percent Solids: 87.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			30.37 g	1 mL	398884	09/01/15 10:13	JMV	TAL SAV
Total/NA	Analysis Instrume	8270D nt ID: CMSG		1	30.37 g	1 mL	399288	09/02/15 20:39	NED	TAL SAV
Total/NA	Prep	3050B			1.14 g	100 mL	398487	08/28/15 08:33	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.14 g	100 mL	398685	08/29/15 04:13	ВСВ	TAL SAV
Total/NA	Prep	7471B			0.57 g	50 mL	399355	09/03/15 09:02	JKL	TAL SAV
Total/NA	Analysis Instrume	7471B nt ID: LEEMAN2		1	0.57 g	50 mL	399700	09/04/15 16:04	ВСВ	TAL SAV
Total/NA	Prep	9012B			1.01 g	50 mL	398946	09/01/15 09:30	DAM	TAL SAV
Total/NA	Analysis Instrume	9012B nt ID: LACHAT1		1	1.01 g	50 mL	399014	09/01/15 12:09	DAM	TAL SAV

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TestAmerica Savannah

TestAmerica Job ID: 680-116110-1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

Laboratory: TestAmerica Savannah

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
	AFCEE		SAVLAB	
A2LA	DoD ELAP		399.01	02-28-17
A2LA	ISO/IEC 17025		399.01	02-28-17
Alabama	State Program	4	41450	06-30-16
Arkansas DEQ	State Program	6	88-0692	01-31-16
California	State Program	9	2939	07-31-16
Colorado	State Program	8	N/A	12-31-15
Connecticut	State Program	1	PH-0161	03-31-17
Florida	NELAP	4	E87052	06-30-16
GA Dept. of Agriculture	State Program	4	N/A	06-12-17
Georgia	State Program	4	803	06-30-16
Guam	State Program	9	14-004r	04-16-16
Hawaii	State Program	9	N/A	06-30-16
Illinois	NELAP	5	200022	11-30-15
Indiana	State Program	5	N/A	06-30-15 *
Iowa	State Program	7	353	06-30-17
Kentucky (DW)	State Program	4	90084	12-31-15
Kentucky (UST)	State Program	4	18	06-30-16
Kentucky (WW)	State Program	4	90084	12-31-15
Louisiana	NELAP	6	30690	06-30-16
Louisiana (DW)	NELAP	6	LA150014	12-31-15
Maine	State Program	1	GA00006	09-24-16
Maryland	State Program	3	250	12-31-15
Massachusetts	State Program	1	M-GA006	06-30-16
Michigan	State Program	5	9925	03-05-16
Mississippi	State Program	4	N/A	06-30-15 *
Montana	State Program	8	CERT0081	12-31-15
Nebraska	State Program	7	TestAmerica-Savannah	06-30-16
New Jersey	NELAP	2	GA769	09-30-15 *
New Mexico	State Program	6	N/A	06-30-16
New York	NELAP	2	10842	03-31-16
North Carolina (DW)	State Program	4	13701	07-31-16
North Carolina (WW/SW)	State Program	4	269	12-31-15
Oklahoma	State Program	6	9984	08-31-15 *
Pennsylvania	NELAP	3	68-00474	06-30-16
Puerto Rico	State Program	2	GA00006	12-31-15
South Carolina	State Program	4	98001	06-30-15 *
Tennessee	State Program	4	TN02961	06-30-16
Texas	NELAP	6	T104704185-14-7	11-30-15
USDA	Federal		SAV 3-04	06-11-17
Virginia	NELAP	3	460161	06-14-16
Washington	State Program	10	C805	06-10-16
West Virginia (DW)	State Program	3	9950C	12-31-15
West Virginia DEP	State Program	3	094	06-30-16
Wisconsin	State Program	5	999819810	08-31-16
* *	State Program	8	8TMS-L	06-30-16

9/17/2015

TestAmerica Savannah

^{*} Certification renewal pending - certification considered valid.

Method Summary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP #2

TestAmerica Job ID: 680-116110-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL SAV
6010C	Metals (ICP)	SW846	TAL SAV
7471B	Mercury (CVAA)	SW846	TAL SAV
9012B	Cyanide, Total andor Amenable	SW846	TAL SAV
Moisture	Percent Moisture	EPA	TAL SAV

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

2

3

Δ

5

6

40

44

)	Website: www.testamericainc.com Phone: (912) 354-7858 Fax: (912) 352-0165		Phone: Fax:	PAGE	STANDARD REPORT DELIVERY EXPEDITED REPORT DELIVERY (SURCHARGE) DATE DUE NUMBER OF COOLERS SUBMITTED PER SHIPMENT:	REMARKS	Note: Plus	C., Ni, Ve, 23	Batotel	Cyanides		580-116110 Chain of Custody TIME		1.4/1890	1 2 1 128740-680 (1008) 5 6 7
	TestAmerica Savannah We 5102 LaRoche Avenue Ph Savannah, GA 31404 Fa	Alternate Laboratory Name/Location	Phon Sex:	FEQUIRED ANALYSIS	SOLO STERMINERS RIBARTED		XXXXX	11111	T Kompain 3	and the second	× × × × × × × × × × × × × × × × × × ×	DATE TIME RE 680-116110 CF 580-116110 CF DATE TIME RECLINE	USE ONLY	SAVANNAH LABORATORY REMARKS LOG NO. 680 - 11611 0	8 9 10 11 12
	ANALYSIS REGUEST AND CHAIN OF CUSTODY RECORD			PROJECT NO. PROJECT LOCATION MATRIX (STATE) 6 P. TYPE	CONTRACT NO. CLIENT FAX CLIENT FAX CLIENT FAX CONTRACT NO. CONTRACT NO. CLIENT FAX CONTRACT NO. CLIENT FAX CONTRACT NO. CLIENT FAX CLIENT F	DA DOS	5 13-15	\ <u>\</u>	-6 13-1S	2-5	Sark	DATE TIME RELINQUISHED BY: (SIGNATURE) 6 34/1/5 600 1 1 1 1 1 1 1 1 1		DATE TIME CUSTODY INTACT CUSTODY SEAL NO. SEAL NO.	
	TestAmerica		THE LEADER IN ENVIRONMENTAL TESTING	Macon Mbp#2	TAL (LAB) PROJECT MANAGER CONFORM CLENT PHONE CLENT PHONE CLENT PHONE CLENT FAMIL CLENT FAMIL COMPANY CONTRACTING THIS WORK (II applicable) SAMPLE II SAMPLE	DATE TIME	5 8 24/15 1508 GB-S	1517 GB-	-89 0811 91308 6	18/25/1150 6.8-	7	RELINQUÍSHED BY: (SIGNATURE) CHAT CONTRES RECEIVED BY: (SIGNATURE)	/17/	RECEIVED FOR LABORATORY BY: G (SIGNATURE) G) TM. W. L.	,

Serial Number 99578

Client: Geotechnical & Environmental Consultants

Job Number: 680-116110-1

Login Number: 116110 List Source: TestAmerica Savannah

List Number: 1

Creator: Kicklighter, Marilyn D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	False	Trip Blank was listed on the COC but not received.
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Savannah

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-115715-1

Client Project/Site: Macon MGP - Air Sampling

For:

Geotechnical & Environmental Consultants 514 Hillcrest Industrial Blvd. Macon, Georgia 31204

Attn: Carrie Holderfield

Subar Horay

Authorized for release by: 8/26/2015 6:44:37 PM

Lisa Harvey, Project Manager II (912)354-7858 e.3221

lisa.harvey@testamericainc.com

..... Links

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Definitions/Glossary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP - Air Sampling

TestAmerica Job ID: 680-115715-1

Qualifiers

Air - GC/MS VOA

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.

These commonly used abbreviations may or may not be present in this report.

Relative Percent Difference, a measure of the relative difference between two points

Not detected at the reporting limit (or MDL or EDL if shown)

Reporting Limit or Requested Limit (Radiochemistry)

Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Quality Control

Relative error ratio

Glossary Abbreviation

ND

PQL

QC

RL RPD

TEF

TEQ

RER

¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated

TestAmerica Savannah

Page 2 of 24

2

-

6

1

_

10

11

Sample Summary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP - Air Sampling

TestAmerica Job ID: 680-115715-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-115715-1	VS-1 GB-7 10-ft	Air	08/13/15 09:31	08/17/15 11:45
680-115715-2	VS-2 GB-7 5-ft	Air	08/13/15 09:50	08/17/15 11:45
680-115715-3	VS-3 GB-5 5-ft	Air	08/13/15 10:05	08/17/15 11:45
680-115715-4	VS-4 GB-5 8-ft	Air	08/13/15 10:31	08/17/15 11:45

3

_

6

10

11

Case Narrative

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP - Air Sampling

TestAmerica Job ID: 680-115715-1

Job ID: 680-115715-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE

Client: Geotechnical & Environmental Consultants **Project: Macon MGP - Air Sampling** Report Number: 680-115715-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

The samples were received on 08/17/2015; the samples arrived in good condition. Samples were received without ice as required.

VOLATILE ORGANIC COMPOUNDS IN AMBIENT AIR

Samples VS-1 GB-7 10-ft (680-115715-1), VS-2 GB-7 5-ft (680-115715-2), VS-3 GB-5 5-ft (680-115715-3) and VS-4 GB-5 8-ft (680-115715-4) were analyzed for Volatile Organic Compounds in Ambient Air in accordance with EPA Method TO-15. The samples were analyzed on 08/18/2015.

Method(s) TO 15 LL, TO-15: EPA methods TO-14A and TO-15 specify the use of humidified "zero air" as the blank reagent for canister cleaning, instrument calibration and sample analysis. Ultra-high purity humidified nitrogen from a cryogenic reservoir is used in place of "zero air" by TestAmerica Knoxville.

Method(s) TO-15: The following sample was diluted due to the abundance of non-target analytes: VS-4 GB-5 8-ft (680-115715-4). Elevated reporting limits (RLs) are provided.

4-Methyl-2-pentanone (MIBK) and Methylene Chloride were detected in method blank MB 140-3242/4 at levels that were above the method detection limit but below the reporting limit. The values should be considered estimates, and have been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP - Air Sampling

TestAmerica Job ID: 680-115715-1

Lab Sample ID: 680-115715-1

Matrix: Air

Client Sample ID: VS-1 GB-7 10-ft

Date Collected: 08/13/15 09:31 Date Received: 08/17/15 11:45

Sample Container: Summa Canister 6L

Analyte		u <mark>nds in Amb</mark> Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	9.8		5.0	1.4	ppb v/v			08/18/15 16:26	
Benzene	0.16	J	0.20	0.056	ppb v/v			08/18/15 16:26	•
Benzyl chloride	0.80	U	0.80	0.078	ppb v/v			08/18/15 16:26	
Bromodichloromethane	0.20	U	0.20	0.044	ppb v/v			08/18/15 16:26	
Bromoform	0.20	U	0.20	0.048	ppb v/v			08/18/15 16:26	
Bromomethane	0.20	U	0.20	0.032	ppb v/v			08/18/15 16:26	
2-Butanone (MEK)	0.92		1.0	0.20	ppb v/v			08/18/15 16:26	• • • • • • • •
Carbon disulfide	1.5		0.50	0.031	ppb v/v			08/18/15 16:26	
Carbon tetrachloride	0.079	J	0.20	0.038	ppb v/v			08/18/15 16:26	
Chlorobenzene	0.20		0.20	0.049	ppb v/v			08/18/15 16:26	
Chloroethane	0.20		0.80		ppb v/v			08/18/15 16:26	
Chloroform	0.20		0.20		ppb v/v			08/18/15 16:26	
Chloromethane	1.1		0.50		ppb v/v			08/18/15 16:26	
cis-1,2-Dichloroethene	0.20	U	0.20		ppb v/v			08/18/15 16:26	
cis-1,3-Dichloropropene	0.20		0.20		ppb v/v			08/18/15 16:26	
Cyclohexane	0.50		0.50		ppb v/v			08/18/15 16:26	
Dibromochloromethane	0.20		0.20		ppb v/v			08/18/15 16:26	
1,2-Dibromoethane (EDB)	0.20		0.20		ppb v/v			08/18/15 16:26	
1,2-Dishorhoethane (EDB)	0.20		0.20		ppb v/v			08/18/15 16:26	
1,3-Dichlorobenzene	0.20		0.20					08/18/15 16:26	
1,4-Dichlorobenzene	0.20		0.20		ppb v/v				
·					ppb v/v			08/18/15 16:26	
Dichlorodifluoromethane	0.42		0.50		ppb v/v			08/18/15 16:26	
1,1-Dichloroethane	0.20		0.20		ppb v/v			08/18/15 16:26	
1,2-Dichloroethane	0.20		0.20		ppb v/v			08/18/15 16:26	
1,1-Dichloroethene	0.20		0.20		ppb v/v			08/18/15 16:26	
1,2-Dichloropropane	0.20		0.20		ppb v/v			08/18/15 16:26	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.20		0.20		ppb v/v			08/18/15 16:26	
1,4-Dioxane	5.0		5.0		ppb v/v			08/18/15 16:26	
Ethylbenzene	0.20		0.20		ppb v/v			08/18/15 16:26	
Hexachlorobutadiene	0.20		0.20		ppb v/v			08/18/15 16:26	
Hexane	0.72		0.80	0.032	ppb v/v			08/18/15 16:26	
Isopropyl alcohol	0.47	J	5.0	0.094	ppb v/v			08/18/15 16:26	
Isopropylbenzene	0.80	U	0.80	0.060	ppb v/v			08/18/15 16:26	
Methylene Chloride	0.32		0.50		ppb v/v			08/18/15 16:26	
4-Methyl-2-pentanone (MIBK)	0.61	В	0.50	0.045	ppb v/v			08/18/15 16:26	
Methyl tert-butyl ether	1.0	U	1.0	0.17	ppb v/v			08/18/15 16:26	
m-Xylene & p-Xylene	0.17	J	0.80	0.12	ppb v/v			08/18/15 16:26	
Naphthalene	0.50	U	0.50	0.090	ppb v/v			08/18/15 16:26	
o-Xylene	0.061	J	0.20	0.061	ppb v/v			08/18/15 16:26	
Styrene	0.20	U	0.20	0.058	ppb v/v			08/18/15 16:26	
1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.061	ppb v/v			08/18/15 16:26	
Tetrachloroethene	0.20	U	0.20	0.040	ppb v/v			08/18/15 16:26	
Tetrahydrofuran	0.10		5.0		ppb v/v			08/18/15 16:26	
Toluene	0.22		0.20		ppb v/v			08/18/15 16:26	
trans-1,2-Dichloroethene	0.20	U	0.20		ppb v/v			08/18/15 16:26	
trans-1,3-Dichloropropene	0.20		0.20		ppb v/v			08/18/15 16:26	
1,2,4-Trichlorobenzene	2.0		2.0		ppb v/v			08/18/15 16:26	
1,1,1-Trichloroethane	0.20		0.20		ppb v/v			08/18/15 16:26	

TestAmerica Savannah

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP - Air Sampling

Client Sample ID: VS-1 GB-7 10-ft

TestAmerica Job ID: 680-115715-1

Lab Sample ID: 680-115715-1

Matrix: Air

Date Collected: 08/13/15 09:31 Date Received: 08/17/15 11:45

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	0.20	U	0.20	0.054	ppb v/v			08/18/15 16:26	1
Trichloroethene	0.20	U	0.20	0.036	ppb v/v			08/18/15 16:26	1
Trichlorofluoromethane	0.27		0.20	0.024	ppb v/v			08/18/15 16:26	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.064	J	0.20	0.031	ppb v/v			08/18/15 16:26	1
ne									
1,2,4-Trimethylbenzene	0.20	U	0.20	0.063	ppb v/v			08/18/15 16:26	1
1,3,5-Trimethylbenzene	0.20	U	0.20	0.065	ppb v/v			08/18/15 16:26	1
Vinyl acetate	5.0	U	5.0	0.14	ppb v/v			08/18/15 16:26	1
Vinyl bromide	0.20	U	0.20	0.035	ppb v/v			08/18/15 16:26	1
Vinyl chloride	0.21		0.20	0.071	ppb v/v			08/18/15 16:26	1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP - Air Sampling

TestAmerica Job ID: 680-115715-1

Lab Sample ID: 680-115715-2

Matrix: Air

Client Sample ID: VS-2 GB-7 5-ft

Date Collected: 08/13/15 09:50 Date Received: 08/17/15 11:45

Sample Container: Summa Canister 6L

Analyte	ic Compo Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	10		5.0	1.4	ppb v/v			08/18/15 17:08	
Benzene	0.12	J	0.20	0.056	ppb v/v			08/18/15 17:08	•
Benzyl chloride	0.80	U	0.80	0.078	ppb v/v			08/18/15 17:08	•
Bromodichloromethane	0.20	U	0.20	0.044	ppb v/v			08/18/15 17:08	•
Bromoform	0.20	U	0.20	0.048	ppb v/v			08/18/15 17:08	
Bromomethane	0.20	U	0.20	0.032	ppb v/v			08/18/15 17:08	•
2-Butanone (MEK)	1.1		1.0	0.20	ppb v/v			08/18/15 17:08	•
Carbon disulfide	1.2		0.50	0.031	ppb v/v			08/18/15 17:08	
Carbon tetrachloride	0.063	J	0.20	0.038	ppb v/v			08/18/15 17:08	
Chlorobenzene	0.20	U	0.20	0.049	ppb v/v			08/18/15 17:08	
Chloroethane	0.17	J	0.80	0.035	ppb v/v			08/18/15 17:08	
Chloroform	0.20	U	0.20	0.038	ppb v/v			08/18/15 17:08	
Chloromethane	1.3		0.50	0.16	ppb v/v			08/18/15 17:08	
cis-1,2-Dichloroethene	0.20	U	0.20	0.060	ppb v/v			08/18/15 17:08	
cis-1,3-Dichloropropene	0.20	U	0.20	0.074	ppb v/v			08/18/15 17:08	
Cyclohexane	0.50	U	0.50	0.040	ppb v/v			08/18/15 17:08	
Dibromochloromethane	0.20	U	0.20	0.042	ppb v/v			08/18/15 17:08	
1,2-Dibromoethane (EDB)	0.20	U	0.20	0.044	ppb v/v			08/18/15 17:08	
1,2-Dichlorobenzene	0.20	U	0.20	0.070	ppb v/v			08/18/15 17:08	
1,3-Dichlorobenzene	0.20	U	0.20	0.065	ppb v/v			08/18/15 17:08	
1,4-Dichlorobenzene	0.20	U	0.20	0.064	ppb v/v			08/18/15 17:08	
Dichlorodifluoromethane	0.44	J	0.50	0.068	ppb v/v			08/18/15 17:08	
1,1-Dichloroethane	0.20	U	0.20	0.026	ppb v/v			08/18/15 17:08	
1,2-Dichloroethane	0.20	U	0.20	0.047	ppb v/v			08/18/15 17:08	
1,1-Dichloroethene	0.20	U	0.20	0.034	ppb v/v			08/18/15 17:08	
1,2-Dichloropropane	0.20	U	0.20	0.052	ppb v/v			08/18/15 17:08	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.20	U	0.20	0.032	ppb v/v			08/18/15 17:08	
1,4-Dioxane	0.25	J	5.0	0.080	ppb v/v			08/18/15 17:08	
Ethylbenzene	0.20	U	0.20	0.068	ppb v/v			08/18/15 17:08	
Hexachlorobutadiene	0.20	U	0.20	0.078	ppb v/v			08/18/15 17:08	
Hexane	0.10	J	0.80	0.032	ppb v/v			08/18/15 17:08	
Isopropyl alcohol	0.43	J	5.0	0.094	ppb v/v			08/18/15 17:08	
Isopropylbenzene	0.80	U	0.80	0.060	ppb v/v			08/18/15 17:08	
Methylene Chloride	0.41	JB	0.50	0.13	ppb v/v			08/18/15 17:08	
4-Methyl-2-pentanone (MIBK)	0.48	JB	0.50	0.045	ppb v/v			08/18/15 17:08	
Methyl tert-butyl ether	1.0	U	1.0	0.17	ppb v/v			08/18/15 17:08	
m-Xylene & p-Xylene	0.21	J	0.80	0.12	ppb v/v			08/18/15 17:08	
Naphthalene	0.50	U	0.50	0.090	ppb v/v			08/18/15 17:08	
o-Xylene	0.071	J	0.20	0.061	ppb v/v			08/18/15 17:08	
Styrene	0.20	U	0.20	0.058	ppb v/v			08/18/15 17:08	
1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.061	ppb v/v			08/18/15 17:08	
Tetrachloroethene	0.20	U	0.20	0.040	ppb v/v			08/18/15 17:08	
Tetrahydrofuran	0.19	J	5.0	0.063	ppb v/v			08/18/15 17:08	
Toluene	0.24		0.20		ppb v/v			08/18/15 17:08	
trans-1,2-Dichloroethene	0.20	U	0.20	0.050	ppb v/v			08/18/15 17:08	
trans-1,3-Dichloropropene	0.20	U	0.20	0.048	ppb v/v			08/18/15 17:08	
1,2,4-Trichlorobenzene	2.0	U	2.0	0.098	ppb v/v			08/18/15 17:08	
1,1,1-Trichloroethane	0.20	U	0.20		ppb v/v			08/18/15 17:08	

TestAmerica Savannah

8/26/2015

Page 7 of 24

5

7

9

4 4

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP - Air Sampling Client Sample ID: VS-2 GB-7 5-ft TestAmerica Job ID: 680-115715-1

Lab Sample ID: 680-115715-2

Matrix: Air

Date Collected: 08/13/15 09:50 Date Received: 08/17/15 11:45

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	0.20	U –	0.20	0.054	ppb v/v			08/18/15 17:08	1
Trichloroethene	0.20	U	0.20	0.036	ppb v/v			08/18/15 17:08	1
Trichlorofluoromethane	0.23		0.20	0.024	ppb v/v			08/18/15 17:08	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.062	J	0.20	0.031	ppb v/v			08/18/15 17:08	1
ne									
1,2,4-Trimethylbenzene	0.076	J	0.20	0.063	ppb v/v			08/18/15 17:08	1
1,3,5-Trimethylbenzene	0.20	U	0.20	0.065	ppb v/v			08/18/15 17:08	1
Vinyl acetate	5.0	U	5.0	0.14	ppb v/v			08/18/15 17:08	1
Vinyl bromide	0.20	U	0.20	0.035	ppb v/v			08/18/15 17:08	1
Vinyl chloride	0.20	U	0.20	0.071	ppb v/v			08/18/15 17:08	1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP - Air Sampling

TestAmerica Job ID: 680-115715-1

Lab Sample ID: 680-115715-3

Matrix: Air

Client Sample ID: VS-3 GB-5 5-ft Date Collected: 08/13/15 10:05

Date Received: 08/17/15 11:45

Sample Container: Summa Canister 6L

Analyte	iic Compo Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	11	J	25	7.0	ppb v/v			08/18/15 17:50	
Benzene	9.2		1.0	0.28	ppb v/v			08/18/15 17:50	•
Benzyl chloride	4.0	U	4.0	0.39	ppb v/v			08/18/15 17:50	
Bromodichloromethane	1.0	U	1.0	0.22	ppb v/v			08/18/15 17:50	
Bromoform	1.0	U	1.0	0.24	ppb v/v			08/18/15 17:50	
Bromomethane	1.0	U	1.0	0.16	ppb v/v			08/18/15 17:50	
2-Butanone (MEK)	1.9	J	5.0	1.0	ppb v/v			08/18/15 17:50	
Carbon disulfide	77		2.5	0.16	ppb v/v			08/18/15 17:50	
Carbon tetrachloride	1.0	U	1.0	0.19	ppb v/v			08/18/15 17:50	
Chlorobenzene	1.0	U	1.0	0.25	ppb v/v			08/18/15 17:50	
Chloroethane	4.9		4.0		ppb v/v			08/18/15 17:50	
Chloroform	1.0	U	1.0	0.19	ppb v/v			08/18/15 17:50	
Chloromethane	11		2.5	0.80	ppb v/v			08/18/15 17:50	
cis-1,2-Dichloroethene	1.0	U	1.0	0.30	ppb v/v			08/18/15 17:50	
cis-1,3-Dichloropropene	1.0	U	1.0	0.37	ppb v/v			08/18/15 17:50	
Cyclohexane	8.4		2.5		ppb v/v			08/18/15 17:50	
Dibromochloromethane	1.0	U	1.0		ppb v/v			08/18/15 17:50	
1,2-Dibromoethane (EDB)	1.0	U	1.0		ppb v/v			08/18/15 17:50	
1,2-Dichlorobenzene	1.0	U	1.0	0.35	ppb v/v			08/18/15 17:50	
1,3-Dichlorobenzene	1.0	U	1.0		ppb v/v			08/18/15 17:50	
1,4-Dichlorobenzene	1.0	U	1.0		ppb v/v			08/18/15 17:50	
Dichlorodifluoromethane	0.72		2.5		ppb v/v			08/18/15 17:50	
1,1-Dichloroethane	1.0		1.0		ppb v/v			08/18/15 17:50	
1,2-Dichloroethane	1.0	U	1.0		ppb v/v			08/18/15 17:50	
1,1-Dichloroethene	1.0	U	1.0	0.17	ppb v/v			08/18/15 17:50	
1,2-Dichloropropane	1.0	U	1.0		ppb v/v			08/18/15 17:50	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	1.0	U	1.0		ppb v/v			08/18/15 17:50	
1,4-Dioxane	25	U	25		ppb v/v			08/18/15 17:50	
Ethylbenzene	0.34	J	1.0	0.34	ppb v/v			08/18/15 17:50	
Hexachlorobutadiene	1.0		1.0		ppb v/v			08/18/15 17:50	
Hexane	48		4.0		ppb v/v			08/18/15 17:50	
Isopropyl alcohol	25	U	25		ppb v/v			08/18/15 17:50	
Isopropylbenzene	4.0	U	4.0		ppb v/v			08/18/15 17:50	
Methylene Chloride	1.4	JB	2.5		ppb v/v			08/18/15 17:50	
4-Methyl-2-pentanone (MIBK)	2.5	U	2.5		ppb v/v			08/18/15 17:50	
Methyl tert-butyl ether	5.3		5.0		ppb v/v			08/18/15 17:50	
m-Xylene & p-Xylene	0.93		4.0		ppb v/v			08/18/15 17:50	
Naphthalene	2.5		2.5		ppb v/v			08/18/15 17:50	
o-Xylene	0.37		1.0		ppb v/v			08/18/15 17:50	
Styrene	1.0		1.0		ppb v/v			08/18/15 17:50	
1,1,2,2-Tetrachloroethane	1.0		1.0		ppb v/v			08/18/15 17:50	
Tetrachloroethene	1.0		1.0		ppb v/v			08/18/15 17:50	
Tetrahydrofuran	25		25		ppb v/v			08/18/15 17:50	
Toluene	4.2		1.0		ppb v/v			08/18/15 17:50	
trans-1,2-Dichloroethene	1.0	U	1.0		ppb v/v			08/18/15 17:50	
trans-1,3-Dichloropropene	1.0		1.0		ppb v/v			08/18/15 17:50	
1,2,4-Trichlorobenzene	10		10		ppb v/v			08/18/15 17:50	
1,1,1-Trichloroethane	1.0		1.0		ppb v/v			08/18/15 17:50	

TestAmerica Savannah

8/26/2015

Page 9 of 24

9

6

8

10

4 6

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP - Air Sampling Client Sample ID: VS-3 GB-5 5-ft TestAmerica Job ID: 680-115715-1

Lab Sample ID: 680-115715-3

Matrix: Air

Date Collected: 08/13/15 10:05 Date Received: 08/17/15 11:45

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U –	1.0	0.27	ppb v/v			08/18/15 17:50	1
Trichloroethene	1.0	U	1.0	0.18	ppb v/v			08/18/15 17:50	1
Trichlorofluoromethane	0.29	J	1.0	0.12	ppb v/v			08/18/15 17:50	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.16	ppb v/v			08/18/15 17:50	1
1,2,4-Trimethylbenzene	1.0	U	1.0	0.32	ppb v/v			08/18/15 17:50	1
1,3,5-Trimethylbenzene	1.0	U	1.0	0.33	ppb v/v			08/18/15 17:50	1
Vinyl acetate	25	U	25	0.70	ppb v/v			08/18/15 17:50	1
Vinyl bromide	1.0	U	1.0	0.18	ppb v/v			08/18/15 17:50	1
Vinvl chloride	5.6		1.0	0.36	ppb v/v			08/18/15 17:50	1

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP - Air Sampling

TestAmerica Job ID: 680-115715-1

Lab Sample ID: 680-115715-4

Matrix: Air

Client Sample ID: VS-4 GB-5 8-ft Date Collected: 08/13/15 10:31

Date Received: 08/17/15 11:45

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	91	U	91	25	ppb v/v			08/18/15 18:32	-
Benzene	17		3.6	1.0	ppb v/v			08/18/15 18:32	•
Benzyl chloride	15	U	15	1.4	ppb v/v			08/18/15 18:32	
Bromodichloromethane	3.6	U	3.6	0.80	ppb v/v			08/18/15 18:32	
Bromoform	3.6	U	3.6	0.87	ppb v/v			08/18/15 18:32	
Bromomethane	3.6	U	3.6	0.58	ppb v/v			08/18/15 18:32	•
2-Butanone (MEK)	18	U	18	3.6	ppb v/v			08/18/15 18:32	
Carbon disulfide	5.5	J	9.1	0.56	ppb v/v			08/18/15 18:32	
Carbon tetrachloride	3.6	U	3.6	0.69	ppb v/v			08/18/15 18:32	
Chlorobenzene	3.6	U	3.6	0.89	ppb v/v			08/18/15 18:32	
Chloroethane	15	U	15	0.64	ppb v/v			08/18/15 18:32	
Chloroform	3.6	U	3.6	0.69	ppb v/v			08/18/15 18:32	
Chloromethane	9.1	U	9.1	2.9	ppb v/v			08/18/15 18:32	· · · · · · · · ·
cis-1,2-Dichloroethene	3.6	U	3.6	1.1	ppb v/v			08/18/15 18:32	
cis-1,3-Dichloropropene	3.6	U	3.6	1.3	ppb v/v			08/18/15 18:32	
Cyclohexane	14		9.1	0.73	ppb v/v			08/18/15 18:32	
Dibromochloromethane	3.6	U	3.6	0.76	ppb v/v			08/18/15 18:32	
1,2-Dibromoethane (EDB)	3.6	U	3.6	0.80	ppb v/v			08/18/15 18:32	
1,2-Dichlorobenzene	3.6	U	3.6	1.3	ppb v/v			08/18/15 18:32	· · · · · · .
1,3-Dichlorobenzene	3.6	U	3.6		ppb v/v			08/18/15 18:32	
1,4-Dichlorobenzene	3.6	U	3.6		ppb v/v			08/18/15 18:32	
Dichlorodifluoromethane	3.1		9.1		ppb v/v			08/18/15 18:32	
1,1-Dichloroethane	3.6		3.6		ppb v/v			08/18/15 18:32	
1,2-Dichloroethane	3.6		3.6		ppb v/v			08/18/15 18:32	
1,1-Dichloroethene	3.6	Ü	3.6		ppb v/v			08/18/15 18:32	
1,2-Dichloropropane	3.6		3.6		ppb v/v			08/18/15 18:32	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	3.6		3.6		ppb v/v			08/18/15 18:32	
1,4-Dioxane	91		91		ppb v/v			08/18/15 18:32	
Ethylbenzene	3.6		3.6		ppb v/v			08/18/15 18:32	
Hexachlorobutadiene	3.6		3.6		ppb v/v			08/18/15 18:32	
Hexane	30		15		ppb v/v			08/18/15 18:32	· · · · · · .
Isopropyl alcohol	91	U	91		ppb v/v			08/18/15 18:32	
Isopropylbenzene	15		15		ppb v/v			08/18/15 18:32	
Methylene Chloride		JB	9.1		ppb v/v			08/18/15 18:32	
4-Methyl-2-pentanone (MIBK)	9.1		9.1		ppb v/v			08/18/15 18:32	
Methyl tert-butyl ether	27		18		ppb v/v			08/18/15 18:32	
m-Xylene & p-Xylene	15		15		ppb v/v			08/18/15 18:32	· · · · · · .
Naphthalene	9.1		9.1		ppb v/v			08/18/15 18:32	
o-Xylene	3.6		3.6		ppb v/v			08/18/15 18:32	
Styrene	3.6		3.6					08/18/15 18:32	
1,1,2,2-Tetrachloroethane	3.6		3.6		ppb v/v			08/18/15 18:32	
Tetrachloroethene	3.6		3.6		ppb v/v			08/18/15 18:32	
Tetrahydrofuran	91		91		ppb v/v			08/18/15 18:32	· · · · · .
Toluene	3.3		3.6		ppb v/v			08/18/15 18:32	
trans-1,2-Dichloroethene	3.6		3.6		ppb v/v			08/18/15 18:32	
trans-1,3-Dichloropropene	3.6		3.6		ppb v/v			08/18/15 18:32	· · · · · .
1,2,4-Trichlorobenzene	36		36		ppb v/v			08/18/15 18:32	
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane	3.6		3.6		ppb v/v			08/18/15 18:32	

TestAmerica Savannah

Page 11 of 24

8/26/2015

3

5

7

9

10

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP - Air Sampling

Client Sample ID: VS-4 GB-5 8-ft

TestAmerica Job ID: 680-115715-1

Lab Sample ID: 680-115715-4

Matrix: Air

Date Collected: 08/13/15 10:31 Date Received: 08/17/15 11:45

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	3.6	U –	3.6	0.98	ppb v/v			08/18/15 18:32	1
Trichloroethene	3.6	U	3.6	0.65	ppb v/v			08/18/15 18:32	1
Trichlorofluoromethane	3.6	U	3.6	0.44	ppb v/v			08/18/15 18:32	1
1,1,2-Trichloro-1,2,2-trifluoroethane	3.6	U	3.6	0.56	ppb v/v			08/18/15 18:32	1
1,2,4-Trimethylbenzene	3.6	U	3.6	1.1	ppb v/v			08/18/15 18:32	1
1,3,5-Trimethylbenzene	3.6	U	3.6	1.2	ppb v/v			08/18/15 18:32	1
Vinyl acetate	91	U	91	2.5	ppb v/v			08/18/15 18:32	1
Vinyl bromide	3.6	U	3.6	0.64	ppb v/v			08/18/15 18:32	1
Vinvl chloride	3.6	U	3.6	1.3	ppb v/v			08/18/15 18:32	1

7

8

9

TestAmerica Job ID: 680-115715-1

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP - Air Sampling

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Lab Sample ID: MB 140-3242/4

Matrix: Air

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 3242	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.0	U	5.0	1.4	ppb v/v			08/18/15 12:23	1
Benzene	0.20	U	0.20	0.056	ppb v/v			08/18/15 12:23	1
Benzyl chloride	0.80	U	0.80	0.078	ppb v/v			08/18/15 12:23	1
Bromodichloromethane	0.20	U	0.20	0.044	ppb v/v			08/18/15 12:23	1
Bromoform	0.20	U	0.20	0.048	ppb v/v			08/18/15 12:23	1
Bromomethane	0.20	U	0.20	0.032	ppb v/v			08/18/15 12:23	1
2-Butanone (MEK)	1.0	U	1.0	0.20	ppb v/v			08/18/15 12:23	1
Carbon disulfide	0.50	U	0.50	0.031	ppb v/v			08/18/15 12:23	1
Carbon tetrachloride	0.20	U	0.20	0.038	ppb v/v			08/18/15 12:23	1
Chlorobenzene	0.20	U	0.20	0.049	ppb v/v			08/18/15 12:23	1
Chloroethane	0.80	U	0.80	0.035	ppb v/v			08/18/15 12:23	1
Chloroform	0.20	U	0.20	0.038	ppb v/v			08/18/15 12:23	1
Chloromethane	0.50	U	0.50	0.16	ppb v/v			08/18/15 12:23	1
cis-1,2-Dichloroethene	0.20	U	0.20	0.060	ppb v/v			08/18/15 12:23	1
cis-1,3-Dichloropropene	0.20	U	0.20	0.074	ppb v/v			08/18/15 12:23	1
Cyclohexane	0.50	U	0.50	0.040	ppb v/v			08/18/15 12:23	1
Dibromochloromethane	0.20	U	0.20		ppb v/v			08/18/15 12:23	1
1,2-Dibromoethane (EDB)	0.20	U	0.20		ppb v/v			08/18/15 12:23	1
1,2-Dichlorobenzene	0.20		0.20		ppb v/v			08/18/15 12:23	
1,3-Dichlorobenzene	0.20		0.20		ppb v/v			08/18/15 12:23	1
1,4-Dichlorobenzene	0.20		0.20		ppb v/v			08/18/15 12:23	1
Dichlorodifluoromethane	0.50		0.50		ppb v/v			08/18/15 12:23	1
1,1-Dichloroethane	0.20		0.20		ppb v/v			08/18/15 12:23	1
1,2-Dichloroethane	0.20		0.20		ppb v/v			08/18/15 12:23	1
1,1-Dichloroethene	0.20		0.20		ppb v/v			08/18/15 12:23	1
1,2-Dichloropropane	0.20		0.20		ppb v/v			08/18/15 12:23	1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.20		0.20		ppb v/v			08/18/15 12:23	1
1,4-Dioxane	5.0		5.0		ppb v/v			08/18/15 12:23	1
Ethylbenzene	0.20		0.20		ppb v/v			08/18/15 12:23	1
Hexachlorobutadiene	0.20		0.20		ppb v/v			08/18/15 12:23	1
Hexane	0.80		0.80		ppb v/v			08/18/15 12:23	1
Isopropyl alcohol	5.0		5.0		ppb v/v			08/18/15 12:23	1
Isopropylbenzene	0.80		0.80		ppb v/v			08/18/15 12:23	1
Methylene Chloride	0.160		0.50		ppb v/v			08/18/15 12:23	
4-Methyl-2-pentanone (MIBK)	0.0519		0.50		ppb v/v			08/18/15 12:23	1
Methyl tert-butyl ether	1.0		1.0					08/18/15 12:23	1
					ppb v/v			08/18/15 12:23	
m-Xylene & p-Xylene	0.80 0.50		0.80 0.50						1
Naphthalene	0.30		0.30		ppb v/v ppb v/v			08/18/15 12:23 08/18/15 12:23	1
o-Xylene								08/18/15 12:23	1
Styrene	0.20		0.20		ppb v/v				1
1,1,2,2-Tetrachloroethane	0.20		0.20		ppb v/v			08/18/15 12:23	1
Tetrachloroethene	0.20		0.20		ppb v/v			08/18/15 12:23	1
Tetrahydrofuran	5.0		5.0		ppb v/v			08/18/15 12:23	1
Toluene	0.20		0.20		ppb v/v			08/18/15 12:23	1
trans-1,2-Dichloroethene	0.20		0.20		ppb v/v			08/18/15 12:23	1
trans-1,3-Dichloropropene	0.20		0.20		ppb v/v			08/18/15 12:23	1
1,2,4-Trichlorobenzene	2.0		2.0		ppb v/v			08/18/15 12:23	1
1,1,1-Trichloroethane	0.20	U	0.20	0.030	ppb v/v			08/18/15 12:23	•

TestAmerica Savannah

8/26/2015

Page 13 of 24

3

5

5

Ō

10

TestAmerica Job ID: 680-115715-1

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP - Air Sampling

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: MB 140-3242/4

Matrix: Air

Analysis Batch: 3242

Client Sample ID: Method Blank Prep Type: Total/NA

MR MR Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 1.1.2-Trichloroethane 0.20 U 0.20 0.054 ppb v/v 08/18/15 12:23 Trichloroethene 0.20 U 0.20 0.036 ppb v/v 08/18/15 12:23 Trichlorofluoromethane 0.20 U 0.20 0.024 ppb v/v 08/18/15 12:23 1,1,2-Trichloro-1,2,2-trifluoroethane 0.20 U 0.20 0.031 ppb v/v 08/18/15 12:23 1,2,4-Trimethylbenzene 0.20 U 0.20 0.063 ppb v/v 08/18/15 12:23 1,3,5-Trimethylbenzene 0.20 U 0.20 0.065 ppb v/v 08/18/15 12:23 5.0 U 5.0 0.14 ppb v/v 08/18/15 12:23 Vinyl acetate Vinyl bromide 0.20 0.035 ppb v/v 0.20 U 08/18/15 12:23 Vinyl chloride 0.20 U 0.20 0.071 ppb v/v 08/18/15 12:23

Lab Sample ID: LCS 140-3242/1002

Client Sample ID: Lab Control Sample

Matrix: Air Prep Type: Total/NA **Analysis Batch: 3242** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits 6.00 5.42 90 60 - 140 ppb v/v 2.00 1.86 93 70 - 130 ppb v/v 2.00 75 1.51 70 - 130ppb v/v 2.00 1.98 ppb v/v 99 70 - 130

Acetone Benzene Benzyl chloride Bromodichloromethane **Bromoform** 2.00 2 13 107 60 - 140ppb v/v Bromomethane 2.00 2.35 ppb v/v 117 70 - 130 2-Butanone (MEK) 2.00 1.47 74 60 - 140 ppb v/v Carbon disulfide 2.00 2.15 ppb v/v 108 70 - 130 Carbon tetrachloride 2.00 2.07 103 70 - 130 ppb v/v 85 Chlorobenzene 2.00 1.70 70 - 130ppb v/v Chloroethane 2.00 104 2 09 ppb v/v 70 - 130Chloroform 2.00 2.03 102 70 - 130ppb v/v Chloromethane 2.00 2.06 103 60 - 140 ppb v/v 2.00 101 70 - 130 cis-1,2-Dichloroethene 2.03 ppb v/v cis-1,3-Dichloropropene 2.00 1.78 ppb v/v 89 70 - 130 Cyclohexane 2.00 1.84 92 70 - 130 ppb v/v Dibromochloromethane 2.00 2.02 101 70 - 130ppb v/v 1.2-Dibromoethane (EDB) 2.00 1.73 87 70 - 130ppb v/v 1,2-Dichlorobenzene 2.00 1.60 ppb v/v 80 70 - 130 1,3-Dichlorobenzene 2.00 1.60 80 70 - 130 ppb v/v 79 1,4-Dichlorobenzene 2.00 70 - 130 1.59 ppb v/v Dichlorodifluoromethane 2.00 2.35 v/v dag 117 60 - 140 1,1-Dichloroethane 2.00 98 70 - 130 1.97 ppb v/v ppb v/v 1,2-Dichloroethane 2.00 1.84 92 70 - 130 2 00 106 70 - 130 1,1-Dichloroethene 2 12 ppb v/v 1,2-Dichloropropane 2.00 1.76 ppb v/v 88 70 - 1302.00 121 2.42 60 - 1401,2-Dichloro-1,1,2,2-tetrafluoroet ppb v/v hane 1.4-Dioxane 2.00 1.62 J 81 60 - 140ppb v/v 2.00 85 70 - 130 Ethylbenzene 1.71 ppb v/v 2.00 85 Hexachlorobutadiene 1.71 ppb v/v 60 - 1402.00 94 70 - 130 Hexane 1.89 ppb v/v 6.00 94 60 - 140 Isopropyl alcohol 5.62 ppb v/v 70 - 130 Isopropylbenzene 2.00 1.72 ppb v/v 86

TestAmerica Savannah

QC Sample Results

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP - Air Sampling

TestAmerica Job ID: 680-115715-1

7 in Camping

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 140-3242/1002

Matrix: Air

Analysis Batch: 3242

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS LCS			%Rec.	
Analyte	Added	Result Qualifier	Unit	D %Rec	Limits	
Methylene Chloride	2.00	1.96	ppb v/v	98	70 - 130	
4-Methyl-2-pentanone (MIBK)	2.00	1.40	ppb v/v	70	60 - 140	
Methyl tert-butyl ether	2.00	1.81	ppb v/v	90	60 - 140	
m-Xylene & p-Xylene	4.00	3.44	ppb v/v	86	70 - 130	
Naphthalene	2.00	1.55	ppb v/v	78	60 - 140	
o-Xylene	2.00	1.71	ppb v/v	85	70 - 130	
Styrene	2.00	1.70	ppb v/v	85	70 - 130	
1,1,2,2-Tetrachloroethane	2.00	1.64	ppb v/v	82	70 - 130	
Tetrachloroethene	2.00	1.86	ppb v/v	93	70 - 130	
Tetrahydrofuran	2.00	1.59 J	ppb v/v	80	60 - 140	
Toluene	2.00	1.78	ppb v/v	89	70 - 130	
trans-1,2-Dichloroethene	2.00	2.10	ppb v/v	105	70 - 130	
trans-1,3-Dichloropropene	2.00	1.63	ppb v/v	82	70 - 130	
1,2,4-Trichlorobenzene	2.00	1.55	ppb v/v	78	60 - 140	
1,1,1-Trichloroethane	2.00	2.15	ppb v/v	107	70 - 130	
1,1,2-Trichloroethane	2.00	1.78	ppb v/v	89	70 - 130	
Trichloroethene	2.00	1.96	ppb v/v	98	70 - 130	
Trichlorofluoromethane	2.00	2.56	ppb v/v	128	60 - 140	
1,1,2-Trichloro-1,2,2-trifluoroetha	2.00	2.12	ppb v/v	106	70 - 130	
ne 1,2,4-Trimethylbenzene	2.00	1.62	ppb v/v	81	70 - 130	
1,3,5-Trimethylbenzene	2.00	1.64	ppb v/v	82	70 - 130	
Vinyl acetate	2.00	1.59 J	ppb v/v	79	60 - 140	
Vinyl bromide	2.00	2.36	ppb v/v	118	60 - 140	
Vinyl chloride	2.00	2.14	ppb v/v	107	70 - 130	

QC Association Summary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP - Air Sampling

TestAmerica Job ID: 680-115715-1

Air - GC/MS VOA

Analysis Batch: 3242

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-115715-1	VS-1 GB-7 10-ft	Total/NA	Air	TO-15	
680-115715-2	VS-2 GB-7 5-ft	Total/NA	Air	TO-15	
680-115715-3	VS-3 GB-5 5-ft	Total/NA	Air	TO-15	
680-115715-4	VS-4 GB-5 8-ft	Total/NA	Air	TO-15	
LCS 140-3242/1002	Lab Control Sample	Total/NA	Air	TO-15	
MB 140-3242/4	Method Blank	Total/NA	Air	TO-15	

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP - Air Sampling

Lab Sample ID: 680-115715-1

Client Sample ID: VS-1 GB-7 10-ft Date Collected: 08/13/15 09:31

Matrix: Air

Date Received: 08/17/15 11:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	TO-15		1	200 mL	500 mL	3242	08/18/15 16:26	HMT	TAL KNX
	Instrumer	nt ID: MG								

Client Sample ID: VS-2 GB-7 5-ft Lab Sample ID: 680-115715-2

Date Collected: 08/13/15 09:50 Matrix: Air

Date Received: 08/17/15 11:45

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	TO-15		1	200 mL	500 mL	3242	08/18/15 17:08	HMT	TAL KNX
	Instrumer	nt ID: MG								

Client Sample ID: VS-3 GB-5 5-ft Lab Sample ID: 680-115715-3

Date Collected: 08/13/15 10:05 Matrix: Air

Date Received: 08/17/15 11:45

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	TO-15		1	40 mL	500 mL	3242	08/18/15 17:50	HMT	TAL KNX
	Instrume	nt ID: MG								

Client Sample ID: VS-4 GB-5 8-ft Lab Sample ID: 680-115715-4

Date Collected: 08/13/15 10:31 Matrix: Air

Date Received: 08/17/15 11:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	TO-15		1	11 mL	500 mL	3242	08/18/15 18:32	HMT	TAL KNX
	Instrume	nt ID: MG								

Laboratory References:

TAL KNX = TestAmerica Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

TestAmerica Savannah

TestAmerica Job ID: 680-115715-1

Client: Geotechnical & Environmental Consultants Project/Site: Macon MGP - Air Sampling

Laboratory: TestAmerica Savannah

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
401.4	AFCEE		SAVLAB	00.00.1=
A2LA	DoD ELAP		399.01	02-28-17
A2LA	ISO/IEC 17025		399.01	02-28-17
Alabama	State Program	4	41450	06-30-15 *
Arkansas DEQ	State Program	6	88-0692	01-31-16
California	State Program	9	2939	07-31-16
Colorado	State Program	8	N/A	12-31-15
Connecticut	State Program	1	PH-0161	03-31-17
Florida	NELAP	4	E87052	06-30-16
GA Dept. of Agriculture	State Program	4	N/A	06-12-17
Georgia	State Program	4	803	06-30-16
Guam	State Program	9	14-004r	04-16-16
Hawaii	State Program	9	N/A	06-30-16
Illinois	NELAP	5	200022	11-30-15
Indiana	State Program	5	N/A	06-30-15 *
lowa	State Program	7	353	06-30-17
Kentucky (DW)	State Program	4	90084	12-31-15
Kentucky (UST)	State Program	4	18	06-30-16
Kentucky (WW)	State Program	4	90084	12-31-15
Louisiana	NELAP	6	30690	06-30-15 *
Louisiana (DW)	NELAP	6	LA150014	12-31-15
Maine	State Program	1	GA00006	09-24-16
Maryland	State Program	3	250	12-31-15
Massachusetts	State Program	1	M-GA006	06-30-16
		5	9925	03-05-16
Michigan Michigan	State Program	4	9925 N/A	06-30-15 *
Mississippi Mentene	State Program			
Montana	State Program		CERT0081	12-31-15
Nebraska	State Program	7	TestAmerica-Savannah	06-30-16
New Jersey	NELAP	2	GA769	09-30-15
New Mexico	State Program	6	N/A	06-30-16
New York	NELAP	2	10842	03-31-16
North Carolina (DW)	State Program	4	13701	07-31-16
North Carolina (WW/SW)	State Program	4	269	12-31-15
Oklahoma	State Program	6	9984	08-31-15 *
Pennsylvania	NELAP	3	68-00474	06-30-16
Puerto Rico	State Program	2	GA00006	12-31-15
South Carolina	State Program	4	98001	06-30-15 *
Tennessee	State Program	4	TN02961	06-30-16
Texas	NELAP	6	T104704185-14-7	11-30-15
USDA	Federal		SAV 3-04	06-11-17
Virginia	NELAP	3	460161	06-14-16
Washington	State Program	10	C805	06-10-16
West Virginia (DW)	State Program	3	9950C	12-31-15
West Virginia DEP	State Program	3	094	06-30-16
Wisconsin	State Program	5	999819810	08-31-15 *
Wyoming	State Program	8	8TMS-L	06-30-16

Laboratory: TestAmerica Knoxville

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

TestAmerica Savannah

Page 18 of 24

^{*} Certification renewal pending - certification considered valid.

Certification Summary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP - Air Sampling

TestAmerica Job ID: 680-115715-1

Laboratory: TestAmerica Knoxville (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
	AFCEE		N/A	
Arkansas DEQ	State Program	6	88-0688	06-16-16
California	State Program	9	2423	06-30-16
Colorado	State Program	8	N/A	02-28-16
Connecticut	State Program	1	PH-0223	09-30-15
Florida	NELAP	4	E87177	06-30-16
Georgia	State Program	4	906	04-13-17
Hawaii	State Program	9	N/A	04-13-16
Kansas	NELAP	7	E-10349	10-31-15
Kentucky (DW)	State Program	4	90101	12-31-15
A-B	DoD ELAP		L2311	02-13-16
ouisiana.	NELAP	6	83979	06-30-16
₋ouisiana (DW)	NELAP	6	LA110001	12-31-15
Maryland	State Program	3	277	03-31-16
Michigan	State Program	5	9933	04-13-17
Nevada	State Program	9	TN00009	07-31-16
lew Jersey	NELAP	2	TN001	09-30-15
New York	NELAP	2	10781	03-31-16
North Carolina (DW)	State Program	4	21705	07-31-16
North Carolina (WW/SW)	State Program	4	64	12-31-15
Ohio VAP	State Program	5	CL0059	01-16-17
Oklahoma	State Program	6	9415	08-31-15
Pennsylvania	NELAP	3	68-00576	12-31-15
South Carolina	State Program	4	84001	06-30-15 *
ennessee	State Program	4	2014	04-13-17
Гехаѕ	NELAP	6	T104704380-TX	08-31-15
JSDA	Federal		P330-13-00260	08-29-16
Jtah	NELAP	8	QUAN3	07-31-16
/irginia	NELAP	3	460176	09-14-15
Vashington	State Program	10	C593	01-19-16
West Virginia (DW)	State Program	3	9955C	12-31-15
West Virginia DEP	State Program	3	345	04-30-16
Visconsin	State Program	5	998044300	08-31-15

^{*} Certification renewal pending - certification considered valid.

TestAmerica Savannah

Method Summary

Client: Geotechnical & Environmental Consultants

Project/Site: Macon MGP - Air Sampling

TestAmerica Job ID: 680-115715-1

Method	Method Description	Protocol	Laboratory
TO-15	Volatile Organic Compounds in Ambient Air	EPA	TAL KNX

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL KNX = TestAmerica Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

3

4

5

6

0

9

10

11

TALB240-680 (1008)

										<u>6</u>	0493H	(0103	E E		MELL S	-						: .		
	nericainc.com 58	291-3000 CX4-425	OF	STANDARD REPORT DELIVERY	* - F	EXPEDITED REPORT DELIVERY (SURCHARGE)	DATE DUE	NUMBER OF COOLERS SUBMITTED PER SHIPMENT, Pox	REMARKS					The second secon						DATE TIME	DATE			
1ber 99577	Website: www.testamericainc.com Phone: (912):354-7858 Fax: (912):352-0165	Rikethone 865-	PAGE	STAN		EXPEDITE DELIVERY (SURCHAF		NUMB	E 4 Samo				and the manifest manifest manifest management and management management management and management management management and management manageme							RELINQUISHED BY: (stanature)	SIGNATURE)			
Serial Number	er er	ス ^気 位	REQUIRED ANALYSIS						NUMBER OF CONTAINERS SUBMITTED				A company to the contract of t							TIME RELINQUISHED	TIME RECEIVED BY: (SIGNATURE)		LABORATORY REMARKS	
	TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404	Alternate Laboratory Name/Location SB 15 Middleb		SI	_LQ	< >	Ο Λ	5 SNOEND					in control of the con							DATE	DATE	SE ONLY	SAVANNAH & LOG NO. UAI	
	гору яесояр		CATION MATRIX	3 /:	V⊃IANI.	(G) B (∀Y	SOLID OR G OR G	OSITE (C AW) ODS (WA ODR SEM	AIR SOLIE POUE	X		*	×							RELINQUISHED BY: (SIGNATURE)	(Signature)	LABORATORY USE ONLY	CUSTODY SEAL NO.	
	ND CHAIN OF CUST		1-241 (STATE) G.P.	CT CONTRACT NO	2-SO(6) CLIENT FAX	cuenteman Cholder/ielolOorons.ilt			SAMPLE IDENTIFICATION	E-89 +1		がらいっ	5-5 8-5-5 5-5-6)	MYRY	ED TEMP		1731921D CO	(8)	TIME RELINQUISHEI	IME RECEIVED BY: (SIGNATURE)		TIME CUSTODY INTACT YES O	
	ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD	MENTAL TESTING			-7-		Todiston Blishwin	RK (if applicable)	SAMPLEII	-91 1-67	152 63	15-3, 68	VS-4 66		CUSTORY SEARLS INTACT	REACHER AT AMBIENT	DIED 8-17-15	1 LUNY FRONT TYPE THE YOUR	4 CANS 4 FLANS (R)	DATE TARRET			DATE	1
	ANALYSIS REC POSTAMORIO	THE LEADER IN ENVIRONMENTAL TESTING	PROJECT REFERENCE Maco ∩ MGP #	TAL (LAB) PROJECT MANAGER John Reginal JS	arrie Holderlie	11-4-11	CLENT ADDRESS	W SIHI WILL	SAMPLE E TIME	15 093!	0550	1005	1631							RELINQUISHED BX, (SIGNATURE)	RECEIVED BY: (SIGNATURE)		RECEIVED FOR LABORATORY BY: (SIGNATURE)	WANT DANCE
	<u> </u>	2 1 半	PROJEC Pose	影合		GLENT NAME のLENT NAME	V SEL	COMPAN	DATE	87878			> _	***************************************						RELINGUI	RECEIVE		RECEIVEI (SIGNATURE	1

Client: Geotechnical & Environmental Consultants

Job Number: 680-115715-1

Login Number: 115715 List Source: TestAmerica Savannah

List Number: 1

Creator: Barnett, Eddie T

Answer	Comment
N/A	
True	
True	
True	
N/A	
True	
N/A	
True	
N/A	
True	
True	
N/A	
	N/A True True True N/A True True True True True True True True

Client: Geotechnical & Environmental Consultants

Job Number: 680-115715-1

Login Number: 115715
List Source: TestAmerica Knoxville
List Number: 2
List Creation: 08/17/15 03:43 PM

Creator: Dameron, Bryan K

Creator: Dameron, Bryan K		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	N/A	
Cooler Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Not requested on COC.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	N/A	CHECKED IN LAB
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	N/A	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

TestAmerica Savannah

TestAmerica Knoxville - Air Canister Initial Pressure Check

Gauge ID: G1
Date: 8/17/2015

						Pressure @		
			Cleaning		Size			
Analyst	Sample ID	Asset #	Job	Cert	(L)	(-in Hg or +psig)	Time	Comments
AFB	680-115715-a-1	10102	3458	В	6	-1.6	1805	
AFB	680-115715-a-2	09934	3458	В	6	-2.6	1806	
AFB	680-115715-a-3	10103	3458	В	6	-4.7	1807	
AFB	680-115715-a-4	10727	3458	В	6	-4.5	1808	

APPENDIX E

Vapor Intrusion Screening Level (VISL) Calculator Worksheets

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.4, June 2015 RSLs

GB-5, 5-feet

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR SG	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ SG		Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

			Site Sub-slab or Exterior Soil Gas Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard
			Csg	Cia	CR	HQ
	CAS	Chemical Name	(ug/m ³)	(ug/m ³)	CK	пц
X	75-07-0	Acetaldehyde		_	224	
	67-64-1	Acetone				_
	75-86-5	Acetone Cyanohydrin		-		<u> </u>
	75-05-8	Acetonitrile				
	107-02-8	Acrolein		_	-	
	79-10-7	Acrylic Acid				-
	107-13-1	Acrylonitrile		-	-	
	309-00-2	Aldrin		_	-	
	107-18-6 107-05-1	Allyl Alcohol		() ()		-
		Allyl Chloride		-	_	
	7664-41-7 75-85-4	Ammonia		2.00	-	-
	12674-11-2	Amyl Alcohol, tert-		1-1		
	11104-28-2	Aroclor 1016 Aroclor 1221			-	
	11141-16-5			8##8		
		Aroclor 1232			-	
	53469-21-9 12672-29-6	Aroclor 1242 Aroclor 1248			-	
	11097-69-1	Aroclor 1248			-	
	11096-82-5	Aroclor 1254 Aroclor 1260			_	
	103-33-3				-	
Χ.	56-55-3	Azobenzene Benzíalanthracene			-	-
	71-43-2	Benzene	4.75.04			
	100-44-7	Benzyl Chloride	1.7E+01	5.10E-01	1.4E-06	1.6E-02
	92-52-4	Biphenyl, 1,1'-		-		
	108-60-1	Bis(2-chloro-1-methylethyl) ether			_	
	111-44-4	Bis(2-chloroethyl)ether				
	542-88-1	Bis(chloromethyl)ether			-	
	10294-34-5	Boron Trichloride			_	
	7637-07-2	Boron Trifluoride			_	
	107-04-0	Bromo-2-chloroethane, 1-			= =	
	108-86-1	Bromobenzene		_		
	74-97-5	Bromochloromethane				
	75-27-4	Bromodichloromethane				
	75-25-2	Bromoform		_		
	74-83-9	Bromomethane				
	106-99-0	Butadiene, 1,3-				
	78-92-2	Butyl alcohol, sec-			_ =	
	75-15-0	Carbon Disulfide	5.5E+00	1.65E-01	No IUR	2.3E-04
	56-23-5	Carbon Tetrachloride	0.02100	1.002-01	No lok	2.3E-04
	12789-03-6	Chlordane		_		
	7782-50-5	Chlorine				
	10049-04-4	Chlorine Dioxide		_	_	
	75-68-3	Chloro-1,1-difluoroethane, 1-		_	-	
	126-99-8	Chloro-1,3-butadiene, 2-		-	_	
	108-90-7	Chlorobenzene		<u> </u>	- 12	<u> </u>
	98-56-6	Chlorobenzotrifluoride, 4-			_	_
	75-45-6	Chlorodifluoromethane			_	207
	67-66-3	Chloroform				_
	74-87-3	Chloromethane		-	-	<u>=</u> /
	107-30-2	Chloromethyl Methyl Ether				_
	76-06-2	Chloropicrin		_	-	
	8007-45-2	Coke Oven Emissions			-	_
	98-82-8	Cumene		_	9-0	
X	57-12-5	Cyanide (CN-)			-	
	110-82-7	Cyclohexane	1.4E+01	4.20E-01	No IUR	6.7E-05
	108-94-1	Cyclohexanone		-		_

nhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator
IUR	Source*	RfC	Source*	mulcator
(ug/m ³) ⁻¹		(mg/m³)		i
2.20E-06	1	9.00E-03	1	- 1
2,20L-00		3.10E+01		
		2.00E-03	A X	
		6.00E-02 2.00E-05	1	
6 905 05		1.00E-03	1	
6.80E-05	i	2.00E-03	1	
4.90E-03	I	4 005 04		
0.005.00		1.00E-04	X	
6.00E-06	CA	1.00E-03	1	
		1.00E-01		
		3.00E-03	X	
2.00E-05	S			
5.70E-04	S			
3.10E-05				
1.10E-04	CA			Mut
7.80E-06	1	3.00E-02	1	
4.90E-05	CA	1.00E-03	Р	
		4.00E-04	Х	
1.00E-05	Н			
3.30E-04	1			
6.20E-02				
		2.00E-02	Р	
		1.30E-02	CA	
6.00E-04	X	1.002 02	- O/1	
0.002.01		6.00E-02		
		4.00E-02	X	
3.70E-05	CA	4.002-02	_^	
1.10E-06	1			
1.102.00		5.00E-03		
3.00E-05		2.00E-03	-	
3.00L=03		3.00E+01	P	
6.00E-06	1	7.00E-01	-	
		1.00E-01		
1.00E-04		7.00E-04	1	
		1.50E-04	A	
		2.00E-04	_!_	
2.005.24		5.00E+01	1	
3.00E-04		2.00E-02	1	
		5.00E-02	Р	
		3.00E-01	Р	
		5.00E+01	1	
2.30E-05		9.80E-02	Α	
-		9.00E-02	1	
6.90E-04	CA			
	2.500.00	4.00E-04	CA	
6.20E-04	1			Mut
		4.00E-01	1	
		8.00E-04	S	
		6.00E+00	1	
		7.00E-01	P	

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.4, June 2015 RSLs

GB-5, 5-feet

Parameter	Symbol	Value	Instructions	
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list	
Target Risk for Carcinogens	TCR SG	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)	
Target Hazard Quotient for Non-Carcinogens	THQ SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)	

		Site Sub-slab or Exterior Soil Gas Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard
CAS	Charical Name	Csg	Cia	CR	HQ
110-83-8	Chemical Name Cyclohexene	(ug/m ³)	(ug/m³)		
72-55-9	DDE, p,p'-				- Ser
96-12-8	Dibromo-3-chloropropane, 1,2-	_			
124-48-1	Dibromochloromethane				-
106-93-4	Dibromoethane, 1,2-				
74-95-3	Dibromomethane (Methylene Bromide)		===		
764-41-0	Dichloro-2-butene, 1,4-				
1476-11-5	Dichloro-2-butene, 1,4-				
110-57-6	Dichloro-2-butene, cis-1,4-				
95-50-1	Dichlorobenzene, 1,2-				
106-46-7	Dichlorobenzene, 1,4-			_	
75-71-8	Dichlorodifluoromethane	3.1E+00	9.30E-02	No IUR	8.9E-04
75-34-3	Dichloroethane, 1,1-	3. IE+00			
107-06-2	Dichloroethane, 1,1-		_	-	
75-35-4	Dichloroethylene, 1,1-		1-1		
78-87-5	Dichloropropane, 1,1-				
542-75-6	Dichloropropene, 1,2-				
77-73-6	Dicyclopentadiene				
75-37-6	Diffuoroethane, 1,1-				
94-58-6	Dihydrosafrole			-	
108-20-3			-		
	Diisopropyl Ether		-	-	
68-12-2	Dimethylformamide		120		
57-14-7	Dimethylhydrazine, 1,1-		-	-	
540-73-8	Dimethylhydrazine, 1,2-		_		
513-37-1	Dimethylvinylchloride		-	-	
123-91-1	Dioxane, 1,4-		-		
106-89-8	Epichlorohydrin			-	
106-88-7	Epoxybutane, 1,2-		-1		
111-15-9 110-80-5	Ethoxyethanol Acetate, 2- Ethoxyethanol 2-				
141-78-6			-	-	-
	Ethyl Acetate		_	-	
75-00-3	Ethyl Chloride (Chloroethane)		-	-	
97-63-2	Ethyl Methacrylate		_	-	-
100-41-4	Ethylbenzene			***	-
75-21-8	Ethylene Oxide	The second second	_	-	
151-56-4	Ethyleneimine		:-:	-	
50-00-0	Formaldehyde		-	_	-
64-18-6	Formic Acid				
98-01-1 765-34-4	Furfural		(=)		-
	Glycidyl				
76-44-8 1024-57-3	Heptachlor			-	-
	Heptachlor Epoxide		-	-	
39635-31-9	Heptachlorobiphenyl, 2,3,3',4,4',5,5'- (PCB 189)		5 — 5	-	_
118-74-1 38380-08-4	Hexachlorobenzene		121	_	
	Hexachlorobiphenyl, 2,3,3',4,4',5- (PCB 156)		(-	
69782-90-7 52663-72-6	Hexachlorobiphenyl, 2,3,3',4,4',5'- (PCB 157)		_	-	-
	Hexachlorobiphenyl, 2,3',4,4',5,5'- (PCB 167)		-	_	
32774-16-6	Hexachlorobiphenyl, 3,3',4,4',5,5'- (PCB 169)		-	_	
87-68-3 77-47-4	Hexachlorobutadiene			-	
	Hexachlorocyclopentadiene		-	-	
67-72-1	Hexachloroethane		-		
822-06-0	Hexamethylene Diisocyanate, 1,6-	2.05.04	0.005.04	No 1110	4 05 00
110-54-3	Hexane, N-	3.0E+01	9,00E-01	No IUR	1.2E-03
591-78-6 302-01-2	Hexanone, 2- Hvdrazine		-	-	
7647-01-0	Hydrogen Chloride		S=0	-	

Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator
IUR	Source*	RfC	Source*	
(ug/m ³)-1		(mg/m ³)		i
		1.00E+00	X	
9.70E-05	CA	11002.00		
6.00E-03	Р	2.00E-04	1	Mut
2.70E-05	CA	2.002.01		Wide
6.00E-04	i i	9.00E-03	1	
		4.00E-03	X	
4.20E-03	Р	7.002.00		
4.20E-03	P			
4.20E-03	P			
4.20L 00		2.00E-01	Н	
1.10E-05	CA	8.00E-01	1	
1.102.00	UA.	1.00E-01	X	
1.60E-06	CA	1.00E-01	_^	
2.60E-05	I	7.00E-03	P	
Z.UUE=U3		2.00E-01	I	
1.00E-05	CA			
4.00E-05	I	4.00E-03 2.00E-02	1	
4.UUE-UD				
		3.00E-04	X	
4 205 05	0.4	4.00E+01		
1.30E-05	CA	7.005.04	_	
		7.00E-01	P	
		3.00E-02	1	
		2.00E-06	X	
1.60E-01	CA			
1.30E-05	CA			
5.00E-06		3.00E-02	1	
1.20E-06	1	1.00E-03	1	
		2.00E-02		
		6.00E-02	P	
		2.00E-01	1	
		7.00E-02	Р	
		1.00E+01	1	
		3.00E-01	P	
2.50E-06	CA	1.00E+00	1	
8.80E-05	CA	3.00E-02	CA	
1.90E-02	CA			
1.30E-05	Ī	9.80E-03	Α	
	1	3.00E-04	Х	
		5.00E-02	Н	
		1.00E-03	Н	
1.30E-03	1			
2.60E-03	1			
1.10E-03	E	1.30E-03	E	
4.60E-04	Ī			
1.10E-03	E	1,30E-03	E	
1.10E-03	Ē	1.30E-03	E	
1.10E-03	E	1,30E-03	Ē	
1.10E+00	Ē	1.30E-06	E	
2.20E-05	ī	1.002-00		
		2.00E-04		
1.10E-05	CA	3.00E-02		
1.102-00	UA.	1.00E-05		
		7.00E-05		
4 00E 03	1	3.00E-02		
4.90E-03	I	3.00E-05	P	
		2.00E-02	Ī	

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.4, June 2015 RSLs

GB-5, 5-feet

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR SG	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

		Site Sub-slab or	Calculated	-VI	
	the second secon	Exterior Soil Gas	Indoor Air		VI Hazard
		Concentration	Concentration	Carcinogenic	VI Hazard
				Risk	
2000		Csg	Cia	CR	HQ
CAS	Chemical Name	(ug/m ³)	(ug/m³)		
74-90-8	Hydrogen Cyanide		S-0	_	-
7664-39-3	Hydrogen Fluoride			_	====
7783-06-4	Hydrogen Sulfide		(900)	-	
67-63-0	Isopropanol		-		
7439-97-6	Mercury (elemental)		1 - 2		
126-98-7	Methacrylonitrile			_	
67-56-1	Methanol		1970	_	_
110-49-6	Methoxyethanol Acetate, 2-		g = -0	-	_
109-86-4	Methoxyethanol, 2-			_	
96-33-3	Methyl Acrylate		-	_	_
78-93-3	Methyl Ethyl Ketone (2-Butanone)				
60-34-4	Methyl Hydrazine				
108-10-1	Methyl Isobutyl Ketone (4-methyl-2-pentanone)				
624-83-9	Methyl Isocvanate		-		-
80-62-6	Methyl Methacrylate				
25013-15-4	Methyl Styrene (Mixed Isomers)				
1634-04-4	Methyl tert-Butyl Ether (MTBE)	2.7E+01	8.10E-01	7.5E-08	
75-09-2					2.6E-04
	Methylene Chloride Mirex	2.9E+00	8.70E-02	8.6E-10	1.4E-04
2385-85-5			-		
64742-95-6	Naphtha, High Flash Aromatic (HFAN)				
91-20-3	Naphthalene		_	_	-
13463-39-3	Nickel Carbonyl		_	-	
98-95-3	Nitrobenzene		10-61	-	_
75-52-5	Nitromethane				_
79-46-9	Nitropropane, 2-			-	_ =
62-75-9	Nitrosodimethylamine, N-		_	_	-
924-16-3	Nitroso-di-N-butylamine, N-				-
10595-95-6	Nitrosomethylethylamine, N-		/r 1	_	-
111-84-2	Nonane, n-				_
32598-14-4	Pentachlorobiphenyl, 2,3,3',4,4'- (PCB 105)		(i—0)	-	_
74472-37-0	Pentachlorobiphenyl, 2,3,4,4',5- (PCB 114)		-		
31508-00-6	Pentachlorobiphenyl, 2,3',4,4',5- (PCB 118)				
65510-44-3	Pentachlorobiphenyl, 2',3,4,4',5- (PCB 123)		1944	jur -	22
57465-28-8	Pentachlorobiphenyl, 3.3', 4.4', 5- (PCB 126)		::	-	-
109-66-0	Pentane, n-				_
75-44-5	Phosgene		-	-	-
7803-51-2	Phosphine			20	
123-38-6	Propionaldehyde		_	_	_
103-65-1	Propvi benzene			_	
115-07-1	Propylene		_		
107-98-2	Propylene Glycol Monomethyl Ether	201		_	_
75-56-9	Propylene Oxide				
100-42-5	Styrene			_	
7446-11-9	Sulfur Trioxide				
1746-01-6	TCDD, 2,3,7,8-	_			
70362-50-4	Tetrachlorobiphenyl, 3,4,4',5- (PCB 81)		_	_	
630-20-6			_		
	Tetrachloroethane, 1,1,1,2-				
79-34-5	Tetrachloroethane, 1,1,2,2-				144
127-18-4	Tetrachloroethylene				-57
811-97-2	Tetrafluoroethane, 1,1,1,2-				
109-99-9	Tetrahydrofuran		-		
7550-45-0	Titanium Tetrachloride			-	
108-88-3	Toluene	3.3E+00	9.90E-02	No IUR	1.9E-05
76-13-1	Trichloro-1,2,2-trifluoroethane, 1,1,2-		-		-
120-82-1	Trichlorobenzene, 1,2,4-				-
71-55-6	Trichloroethane, 1,1,1-			-	-

Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator
IUR	Source*	RfC	Source*	
(ug/m ³) ⁻¹		(mg/m³)		i
		8.00E-04	1	100
		1.40E-02	CA	
		2.00E-03	1	
		2.00E-01	P	
		3.00E-04	i	
		3.00E-02	P	
		2.00E+01	1	
		1.00E-03	Р	
	li-	2.00E-02	1	
		2.00E-02	Р	
		5.00E+00	1	
1.00E-03	X	2.00E-05	Х	
		3.00E+00	1	
		1.00E-03	CA	
		7.00E-01	1	
		4.00E-02	H	
2.60E-07	CA	3.00E+00	i	
1.00E-08	i	6.00E-01	i	Mut
5.10E-03	CA			
		1.00E-01	Р	
3.40E-05	CA	3.00E-03		
2.60E-04	CA	1.40E-05	CA	
4.00E-05	i	9.00E-03	i	
8.80E-06	P	5.00E-03	P	
2.70E-03	Н	2.00E-02	T T	
1.40E-02		4.00E-05	X	Mut
1.60E-03	i	1,002.00	_^`	Wildt
6.30E-03	CA			
		2.00E-02	Р	
1.10E-03	Е	1.30E-03	E	
1.10E-03	Ē	1.30E-03	Ē	
1.10E-03	Ē	1.30E-03	Ē	
1.10E-03	Ē	1.30E-03	Ē	
3.80E+00	E	4.00E-07	Ē	
0.002700		1.00E+00	P	
		3.00E-04	i	
		3.00E-04		
		8.00E-03		
	-	1.00E+00	X	
		3.00E+00	CA	
		2.00E+00	I	
3.70E-06	- 1	3.00E-02	i	
U. 1 UL-UU		1.00E+00	I	
		1.00E-03	CA	
3.80E+01	CA	4.00E-08	CA	
1.10E-02	E	1.30E-04	E	
7.40E-06	ī	1.002-04		
5.80E-05	CA			
2.60E-07	I	4.00E-02		
2.00E=0/		8.00E+01		
		2.00E+00		
		1.00E-04	A	
		5.00E+00	1	
		3.00E+01	H	
		2.00E-03	P	
	L	5.00E+00		

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.4, June 2015 RSLs

GB-5, 5-feet

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR SG	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ SG	11	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

		Site Sub-slab or Exterior Soil Gas Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard
		Csg	Cia	CR	HQ
CAS	Chemical Name	(ug/m ³)	(ug/m³)	OK.	пц
79-00-5	Trichloroethane, 1,1,2-			-	
79-01-6	Trichloroethylene		5.224	-	
75-69-4	Trichlorofluoromethane				
96-18-4	Trichloropropane, 1,2,3-				<u> 1212</u>)
96-19-5	Trichloropropene, 1,2,3-			-	_
121-44-8	Triethylamine		7 - 2		-
526-73-8	Trimethylbenzene, 1,2,3-		3=01-	-	-
95-63-6	Trimethylbenzene, 1,2,4-		-		
108-05-4	Vinvl Acetate		_		-
593-60-2	Vinyl Bromide		-		_
75-01-4	Vinyl Chloride		-	<u>=</u>	_
108-38-3	Xylene, m-		_	-	-
95-47-6	Xylene, o-			_	
106-42-3	Xylene, P-		_	-	
1330-20-7	Xylenes			24	44
140-88-5	Ethyl Acrylate		2-3	_	_

Inhalation Unit Risk	IUR			Mutagenic	
IUR	Source*	RfC	Source*	i	
(ug/m ³)-1		(mg/m³)			
1.60E-05	1	2.00E-04	Х		
see note	1	2.00E-03	1	TCE	
		7.00E-01	Н		
		3.00E-04	-1	Mut	
		3.00E-04	Р		
		7.00E-03			
		5.00E-03	Р		
		7.00E-03	Р		
		2.00E-01	1		
3.20E-05	Н	3.00E-03			
4.40E-06	1	1.00E-01	1	Mut	
		1.00E-01	S		
		1.00E-01	S		
		1.00E-01	S		
		1.00E-01	1		
		8.00E-03	P		

Notes:

(1)	Inhalation Pathway Exposure Parameters (RME):	Units	Reside	ential	Commer	cial	Selected (I	
	Exposure Scenario		Symbol	Value	Symbol	Value	Symbol	Value
	Averaging time for carcinogens	(yrs)	ATC R SG	70	ATC_C_SG	70	ATC SG	70
	Averaging time for non-carcinogens	(yrs)	ATnc R SG	26	ATnc C SG	25	ATric SG	26
	Exposure duration	(yrs)	ED_R_SG	26	ED_C_SG	25	ED_SG	26
	Exposure frequency	(days/yr)	EF_R_SG	350	EF_C_SG	250	EF_SG	350
	Exposure time	(hr/day)	ET_R_SG	24	ET_C_SG	8	ET_SG	24
(2)	Generic Attenuation Factors:		Reside	ential	Commer	rcial	Selected (I	
	Source Medium of Vapors		Symbol	Value	Symbol	Value	Symbol	Value
	O	2.2	The second secon	Talle and the same of the same			Cyllibol	- uluc

(3) Formulas

Cia, target = MIN(Cia,c; Cia,nc)

Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR)

Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

(4) <u>Special Case Chemicals</u>
Trichloroethylene

Groundwater

Sub-Slab and Exterior Soil Gas

Residential Commercial

Symbol Value Symbol Value

 Symbol
 Value
 Symbol
 Value
 Symbol
 Value
 Symbol
 Value
 Symbol
 Value
 Symbol
 Value
 MIURTCE_SG
 1.00E-06
 IURTCE_SG
 1.00E-06
 IURTCE_SG
 1.00E-06
 IURTCE_SG
 3.10E-06
 IURTCE_SG
 3.10

0.001

AFgw_SG

AFss_SG

Selected (based on

0.001

0.03

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

72

AFgw_R_SG

0.001

Note: This section applies to trichloroethylene and other mutagenic chemicals, but not to vinyl chloride.

Age Cohort	Exposure Duration	Age-dependent adjustment factor
0 - 2 years	2	10
2 - 6 years	4	3
6 - 16 years	10	3
16 - 26 years	10	1

Mutagenic-mode-of-action (MMOA) adjustment factor

This factor is used in the equations for mutagenic chemicals.

AFgw_C_SG

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.4, June 2015 RSLs

GB-5, 5-feet

Parameter	Symbol	Value	Instructions	
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list	
Target Risk for Carcinogens	TCR SG	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)	
Target Hazard Quotient for Non-Carcinogens	THQ SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)	

		Site Sub-slab or Exterior Soil Gas Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard
		Csg	Cia	00	
CAS	Chemical Name	(ug/m³)	(ug/m³)	CR	HQ

Inhalation Unit Risk	IUR Source*	Reference Concentration	RFC	Mutagenic Indicator
IUR		RfC	Source*	
(ug/m ³)-1		(mg/m³)		i

Vinyl Chloride

See the Navigation Guide equation for Cia,c for vinyl chloride.

Notation:

I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at:

http://www.epa.gov/iris/subst/index.html

P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available online at:

http://hhpprtv.ornl.gov/pprtv.shtml

A = Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Risk Levels (MRLs). Available online at:

http://www.atsdr.cdc.gov/mrls/index.html

CA = California Environmental Protection Agency/Office of Environmental Health Hazard Assessment assessments. Available online at:

http://www.oehha.ca.gov/risk/ChemicalDB/index.asp

H = HEAST. EPA Superfund Health Effects Assessment Summary Tables (HEAST) database. Available online at:

http://epa-heast.oml.gov/heast.shtml

S = See RSL User Guide, Section 5

X = PPRTV Appendix

Mut = Chemical acts according to the mutagenic-mode-of-action, special exposure parameters apply (see footnote (4) above).

VC = Special exposure equation for vinyl chloride applies (see Navigation Guide for equation).

TCE = Special mutagenic and non-mutagenic IURs for trichloroethylene apply (see footnote (4) above).

Yellow highlighting indicates site-specific parameters that may be edited by the user.

Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be changed.

Pink highlighting indicates VI carcinogenic risk greater than the target risk for carcinogens (TCR) or VI Hazard greater than or equal to the target hazard quotient for non-carcinogens (THQ).

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.4, June 2015 RSLs

GB-5, 8-feet

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR_SG	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ_SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

			Site Sub-slab or Exterior Soil Gas	Calculated Indoor Air	VI Carcinogenic	VI Hazard
			Concentration	Concentration	Risk	VIIIazaiu
			Csg	Cia	CR	HQ
	CAS	Chemical Name	(ug/m ³)	(ug/m ³)	CR	HQ
х	75-07-0	Acetaldehyde	, ,	'		
	67-64-1	Acetone				
	75-86-5	Acetone Cyanohydrin				
	75-05-8	Acetonitrile				
	107-02-8	Acrolein				
	79-10-7	Acrylic Acid				
	107-13-1	Acrylonitrile				
	309-00-2	Aldrin				
	107-18-6	Allyl Alcohol				
	107-05-1	Allyl Chloride				
	7664-41-7	Ammonia				
	75-85-4	Amyl Alcohol, tert-				
	12674-11-2	Aroclor 1016				
	11104-28-2	Aroclor 1221				
	11141-16-5	Aroclor 1232				
	53469-21-9	Aroclor 1242				
	12672-29-6 11097-69-1	Aroclor 1248 Aroclor 1254				
	11097-69-1	Aroclor 1254 Aroclor 1260				
х	103-33-3	Azobenzene				
X	56-55-3	Benz[a]anthracene				
	71-43-2	Benzene	1.7E+01	5.10E-01	1.4E-06	1.6E-02
	100-44-7	Benzyl Chloride	1.7 = +01	3.10L-01	1.4L-00	1.0L-02
	92-52-4	Biphenyl, 1,1'-				
	108-60-1	Bis(2-chloro-1-methylethyl) ether				
	111-44-4	Bis(2-chloroethyl)ether				
	542-88-1	Bis(chloromethyl)ether				
	10294-34-5	Boron Trichloride				
	7637-07-2	Boron Trifluoride				
	107-04-0	Bromo-2-chloroethane, 1-				
	108-86-1	Bromobenzene				
	74-97-5	Bromochloromethane				
	75-27-4	Bromodichloromethane				
	75-25-2	Bromoform				
	74-83-9	Bromomethane		-		
	106-99-0	Butadiene, 1,3-				
	78-92-2	Butyl alcohol, sec-				
	75-15-0	Carbon Disulfide	5.5E+00	1.65E-01	No IUR	2.3E-04
	56-23-5	Carbon Tetrachloride				
	12789-03-6	Chlordane				
	7782-50-5	Chlorine				
	10049-04-4	Chlorine Dioxide				
	75-68-3	Chloro-1,1-difluoroethane, 1-				
	126-99-8	Chloro-1,3-butadiene, 2-				
	108-90-7	Chlorobenzene				
	98-56-6 75-45-6	Chlorobenzotrifluoride, 4- Chlorodifluoromethane				
	67-66-3	Chloroform				
	74-87-3	Chloromethane				
	107-30-2	Chloromethyl Methyl Ether				
	76-06-2	Chloropicrin				
	8007-45-2	Coke Oven Emissions				
	98-82-8	Cumene				
х	57-12-5	Cyanide (CN-)				
^	110-82-7	Cyclohexane	1.4E+01	4.20E-01	No IUR	6.7E-05
	108-94-1	Cyclohexanone	1.72101	4.20L-01		
		1-7				

Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator
IUR	Source*	RfC	Source*	a.oa.o.
(ug/m ³) ⁻¹		(mg/m ³)		i
2.20E-06	-	9.00E-03	ı	•
2.201-00	'	3.10E+01	A	
		2.00E-03	X	
		6.00E-02	î	
		2.00E-05	i	
		1.00E-03	i	
6.80E-05	ı	2.00E-03	ı	
4.90E-03	I			
		1.00E-04	Х	
6.00E-06	CA	1.00E-03		
		1.00E-01		
		3.00E-03	Χ	
2.00E-05	S			
5.70E-04	S			
3.10E-05	ı			
1.10E-04	CA			Mut
7.80E-06	ı	3.00E-02	ı	
4.90E-05	CA	1.00E-03	Р	
		4.00E-04	Х	
1.00E-05	H			
3.30E-04				
6.20E-02				
		2.00E-02	P	
		1.30E-02	CA	
6.00E-04	X	0.005.00		
		6.00E-02	l V	
0.705.05	0.4	4.00E-02	X	
3.70E-05	CA			
1.10E-06		E 00E 02		
3.00E-05	- 1	5.00E-03 2.00E-03		
3.00E-05	_ '	3.00E+01	P	
		7.00E-01	I	
6.00E-06	- 1	1.00E-01	<u> </u>	
1.00E-04	- 	7.00E-01	- i	
1.000-07	-	1.50E-04	A	
		2.00E-04	I	
		5.00E+01	i	
3.00E-04	1	2.00E-02	i	
		5.00E-02	P	
		3.00E-01	P	
		5.00E+01	i	
2.30E-05	- 1	9.80E-02	Α	
		9.00E-02		
6.90E-04	CA			
		4.00E-04	CA	
6.20E-04				Mut
		4.00E-01		
		8.00E-04	S	
		6.00E+00		
		7.00E-01	Р	

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.4, June 2015 RSLs

GB-5, 8-feet

Parameter	Symbol	Value	Instructions
Exposure Scenario Scenario		Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens TCR_SG		1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	azard Quotient for Non-Carcinogens THQ SG 1 Enter target hazard quotient for non-carcinogens (for comparison		Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

		Site Sub-slab or Exterior Soil Gas Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard
040	Oh and a lateral Name	Csg	Cia	CR	HQ
CAS	Chemical Name	(ug/m³)	(ug/m³)		
110-83-8	Cyclohexene				
72-55-9	DDE, p,p'-				
96-12-8 124-48-1	Dibromo-3-chloropropane, 1,2- Dibromochloromethane				
106-93-4					
74-95-3	Dibromoethane, 1,2- Dibromomethane (Methylene Bromide)				
764-41-0	Dichloro-2-butene, 1,4-				
1476-11-5	Dichloro-2-butene, r,4-				
110-57-6	Dichloro-2-butene, trans-1,4-				
95-50-1	Dichlorobenzene, 1.2-				
106-46-7	Dichlorobenzene, 1,4-				
75-71-8	Dichlorodifluoromethane	3.1E+00	9.30E-02	No IUR	8.9E-04
75-34-3	Dichloroethane, 1.1-	3.1L+00	9.30L-02	NOTOK	0.9L-04
107-06-2	Dichloroethane, 1,2-				
75-35-4	Dichloroethylene, 1,1-				
78-87-5	Dichloropropane, 1,2-				
542-75-6	Dichloropropene, 1,3-				-
77-73-6	Dicyclopentadiene				
75-37-6	Difluoroethane, 1,1-				-
94-58-6	Dihydrosafrole				-
108-20-3	Diisopropyl Ether				
68-12-2	Dimethylformamide				-
57-14-7	Dimethylhydrazine, 1,1-				
540-73-8	Dimethylhydrazine, 1,1				
513-37-1	Dimethylvinylchloride				
123-91-1	Dioxane, 1,4-				
106-89-8	Epichlorohydrin				
106-88-7	Epoxybutane, 1,2-				
111-15-9	Ethoxyethanol Acetate, 2-				
110-80-5	Ethoxyethanol, 2-				
141-78-6	Ethyl Acetate				
75-00-3	Ethyl Chloride (Chloroethane)		-		-
97-63-2	Ethyl Methacrylate				
100-41-4	Ethylbenzene				
75-21-8	Ethylene Oxide				
151-56-4	Ethyleneimine				-
50-00-0	Formaldehyde				-
64-18-6	Formic Acid		-		1
98-01-1	Furfural		-		1
765-34-4	Glycidyl				
76-44-8	Heptachlor				
1024-57-3	Heptachlor Epoxide				
39635-31-9	Heptachlorobiphenyl, 2,3,3',4,4',5,5'- (PCB 189)				
118-74-1	Hexachlorobenzene				
38380-08-4	Hexachlorobiphenyl, 2,3,3',4,4',5- (PCB 156)				
69782-90-7	Hexachlorobiphenyl, 2,3,3',4,4',5'- (PCB 157)				
52663-72-6	Hexachlorobiphenyl, 2,3',4,4',5,5'- (PCB 167)				
32774-16-6	Hexachlorobiphenyl, 3,3',4,4',5,5'- (PCB 169)				
87-68-3	Hexachlorobutadiene				
77-47-4	Hexachlorocyclopentadiene				
67-72-1	Hexachloroethane				
822-06-0	Hexamethylene Diisocyanate, 1,6-				
110-54-3	Hexane, N-	3.0E+01	9.00E-01	No IUR	1.2E-03
591-78-6	Hexanone, 2-				
302-01-2	Hydrazine				
7647-01-0	Hydrogen Chloride				

Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator
IUR	Source*	RfC	Source*	
(ug/m ³) ⁻¹		(mg/m ³)		i
(ug/III)		1.00E+00	Х	
9.70E-05	CA	1.000-	^	
6.00E-03	P	2.00E-04	- 1	Mut
2.70E-05	CA	2.00E-04	-	iviut
6.00E-04	I	9.00E-03		
6.00E-04		4.00E-03	X	
4.20E-03	P	4.00L-03		
4.20E-03	P			
4.20E-03	P			
4.20E-03	Г	2.00E-01	Н	
1.10E-05	CA	8.00E-01		
1.10E-05	CA	1.00E-01	X	
1.60E-06	CA	1.00E-01		
		7.005.00	P	
2.60E-05	ı	7.00E-03	I	
1.00E-05	C A	2.00E-01		
	CA	4.00E-03		
4.00E-06		2.00E-02	l V	
		3.00E-04	X	
		4.00E+01		
1.30E-05	CA			
		7.00E-01	P	
		3.00E-02		
_		2.00E-06	X	
1.60E-01	CA			
1.30E-05	CA			
5.00E-06		3.00E-02		
1.20E-06		1.00E-03	- 1	
		2.00E-02		
		6.00E-02	P	
		2.00E-01		
		7.00E-02	Р	
		1.00E+01		
		3.00E-01	Р	
2.50E-06	CA	1.00E+00		
8.80E-05	CA	3.00E-02	CA	
1.90E-02	CA			
1.30E-05		9.80E-03	Α	
		3.00E-04	X	
		5.00E-02	Н	
		1.00E-03	Н	
1.30E-03	ı			
2.60E-03				
1.10E-03	E	1.30E-03	E	
4.60E-04				
1.10E-03	Е	1.30E-03	Е	
1.10E-03	Е	1.30E-03	Е	
1.10E-03	Е	1.30E-03	Е	
1.10E+00	Е	1.30E-06	Е	
2.20E-05	Ī			
		2.00E-04		
1.10E-05	CA	3.00E-02	i	
	J/ (1.00E-05	i	
		7.00E-01	i	
		3.00E-02	i	
4.90E-03		3.00E-02	P	
		J.UUL-UJ		

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.4, June 2015 RSLs

GB-5, 8-feet

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR_SG	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ_SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

		Site Sub-slab or	Calculated	VI	
		Exterior Soil Gas	Indoor Air		VIII
				Carcinogenic	VI Hazard
		Concentration	Concentration	Risk	
		Csg	Cia	CR	НО
CAS	Chemical Name	(ug/m ³)	(ug/m³)	U	
74-90-8	Hydrogen Cyanide				
7664-39-3	Hydrogen Fluoride				
7783-06-4	Hydrogen Sulfide				
67-63-0	Isopropanol				
7439-97-6	Mercury (elemental)				
126-98-7	Methacrylonitrile				
67-56-1	Methanol				
110-49-6	Methoxyethanol Acetate, 2-				
109-86-4	Methoxyethanol, 2-				
96-33-3	Methyl Acrylate				
78-93-3	Methyl Ethyl Ketone (2-Butanone)				
60-34-4	Methyl Hydrazine				
108-10-1	Methyl Isobutyl Ketone (4-methyl-2-pentanone)				
624-83-9	Methyl Isocyanate				
80-62-6	Methyl Methacrylate				
25013-15-4	Methyl Styrene (Mixed Isomers)				
1634-04-4	Methyl tert-Butyl Ether (MTBE)	2.7E+01	8.10E-01	7.5E-08	2.6E-04
75-09-2	Methylene Chloride	2.9E+00	8.70E-02	8.6E-10	1.4E-04
2385-85-5	Mirex				
64742-95-6	Naphtha, High Flash Aromatic (HFAN)				
91-20-3	Naphthalene				
13463-39-3	Nickel Carbonyl				
98-95-3	Nitrobenzene				
75-52-5	Nitromethane				
79-46-9	Nitropropane, 2-				
62-75-9	Nitrosodimethylamine, N-				
924-16-3	Nitroso-di-N-butylamine, N-				
10595-95-6	Nitrosomethylethylamine, N-				
111-84-2	Nonane, n-				
32598-14-4	Pentachlorobiphenyl, 2,3,3',4,4'- (PCB 105)				
74472-37-0	Pentachlorobiphenyl, 2,3,4,4',5- (PCB 114)				
31508-00-6	Pentachlorobiphenyl, 2,3',4,4',5- (PCB 118)				
65510-44-3	Pentachlorobiphenyl, 2',3,4,4',5- (PCB 123)				
57465-28-8	Pentachlorobiphenyl, 3,3',4,4',5- (PCB 126)				
109-66-0	Pentane, n-				
75-44-5	Phosgene				
7803-51-2	Phosphine				
123-38-6	Propionaldehyde				
103-65-1	Propyl benzene				
115-07-1	Propylene				
107-98-2	Propylene Glycol Monomethyl Ether				
75-56-9	Propylene Oxide				
100-42-5	Styrene				
7446-11-9	Sulfur Trioxide				
1746-01-6	TCDD, 2,3,7,8-				
70362-50-4	Tetrachlorobiphenyl, 3,4,4',5- (PCB 81)				
630-20-6	Tetrachloroethane, 1,1,1,2-				
79-34-5	Tetrachloroethane, 1,1,2,2-				
127-18-4	Tetrachloroethylene				
811-97-2	Tetrafluoroethane, 1,1,1,2-				
109-99-9	Tetrahydrofuran				
7550-45-0	Titanium Tetrachloride				
108-88-3	Toluene	3.3E+00	9.90E-02	No IUR	1.9E-05
76-13-1	Trichloro-1,2,2-trifluoroethane, 1,1,2-	0.02100	0.00L 0L		
120-82-1	Trichlorobenzene, 1,2,4-				
71-55-6	Trichloroethane, 1,1,1-				
1 1 33-0	THOMOTOGRAME, 1,1,1-				

Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator
IUR	Source*	RfC	Source*	
(ug/m ³) ⁻¹		(mg/m ³)		i
		8.00E-04	I	
		1.40E-02	CA	
		2.00E-03	<u> </u>	
		2.00E-01	P	
		3.00E-04 3.00E-02	I P	
		2.00E+01	- i	
		1.00E-03	P	
		2.00E-02	i	
		2.00E-02	Р	
		5.00E+00		
1.00E-03	X	2.00E-05	X	
		3.00E+00		
		1.00E-03	CA	
		7.00E-01	- !	
2.60E-07	CA	4.00E-02 3.00E+00	H	
1.00E-08	I	6.00E-01	<u> </u>	Mut
5.10E-03	CA	0.00L-01		iviut
3.10L-03	- OA	1.00E-01	Р	
3.40E-05	CA	3.00E-03	i	
2.60E-04	CA	1.40E-05	CA	
4.00E-05	ı	9.00E-03	I	
8.80E-06	Р	5.00E-03	Р	
2.70E-03	Н	2.00E-02		
1.40E-02	!	4.00E-05	Х	Mut
1.60E-03				
6.30E-03	CA	2.00E-02	Р	
1.10E-03	Е	1.30E-03	E	
1.10E-03	Ē	1.30E-03	Ē	
1.10E-03	Ē	1.30E-03	Ē	
1.10E-03	E	1.30E-03	E	
3.80E+00	Е	4.00E-07	Е	
		1.00E+00	Р	
		3.00E-04		
		3.00E-04	I	
		8.00E-03	l V	
		1.00E+00	X	
		3.00E+00	CA I	<u> </u>
3.70E-06	- 1	2.00E+00 3.00E-02		
3.70L-00		1.00E+00	<u> </u>	
		1.00E-03	CA	
3.80E+01	CA	4.00E-08	CA	
1.10E-02	E	1.30E-04	E	
7.40E-06	ı			
5.80E-05	CA			
2.60E-07		4.00E-02		
		8.00E+01	<u> </u>	
		2.00E+00	1	
		1.00E-04	A	
		5.00E+00	H	
		3.00E+01 2.00E-03	P P	
		5.00E+00	ī	
		0.00LT00	· · ·	

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.4, June 2015 RSLs

GB-5, 8-feet

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR_SG	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ_SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

		Site Sub-slab or Exterior Soil Gas Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard
CAS	Chemical Name	Csg (ug/m³)	Cia (ug/m³)	CR	HQ
79-00-5	Trichloroethane, 1,1,2-	(ug/iii)	(ug/iii)		
79-01-6	Trichloroethylene				
75-69-4	Trichlorofluoromethane				
96-18-4	Trichloropropane, 1,2,3-				
96-19-5	Trichloropropene, 1,2,3-				-
121-44-8	Triethylamine				-
526-73-8	Trimethylbenzene, 1,2,3-				-
95-63-6	Trimethylbenzene, 1,2,4-		-		1
108-05-4	Vinyl Acetate				
593-60-2	Vinyl Bromide				
75-01-4	Vinyl Chloride				
108-38-3	Xylene, m-				
95-47-6	Xylene, o-				-
106-42-3	Xylene, P-				-
1330-20-7	Xylenes				
140-88-5	Ethyl Acrylate				

Inhalation Unit Risk	IUR Source*	Reference Concentration	RFC Source*	Mutagenic Indicator
(ug/m ³) ⁻¹		(mg/m ³)		i
1.60E-05		2.00E-04	X	
see note	-	2.00E-03		TCE
		7.00E-01	Ι	
		3.00E-04		Mut
		3.00E-04	Р	
		7.00E-03	ı	
		5.00E-03	Р	
		7.00E-03	Ρ	
		2.00E-01		
3.20E-05	Ι	3.00E-03		
4.40E-06	_	1.00E-01	_	Mut
		1.00E-01	S	
		1.00E-01	S	
		1.00E-01	S	
		1.00E-01	ı	
		8.00E-03	Р	

Notes:

(1)	Inhalation Pathway Exposure Parameters (RME):	Units	Reside	Residential		cial		Selected (based on scenario)	
	Exposure Scenario		Symbol	Value	Symbol	Value	Symbol	Value	
	Averaging time for carcinogens	(yrs)	ATc_R_SG	70	ATc_C_SG	70	ATc_SG	70	
	Averaging time for non-carcinogens	(yrs)	ATnc_R_SG	26	ATnc_C_SG	25	ATnc_SG	26	
	Exposure duration	(yrs)	ED_R_SG	26	ED_C_SG	25	ED_SG	26	
	Exposure frequency	(days/yr)	EF_R_SG	350	EF_C_SG	250	EF_SG	350	
	Exposure time	(hr/day)	ET_R_SG	24	ET_C_SG	8	ET_SG	24	
(2)	Generic Attenuation Factors:		Reside	ential	Commer	cial		(based on ario)	
	Source Medium of Vapors		Symbol	Value	Symbol	Value	Symbol	, Value	

(3) <u>Formulas</u>

Cia, target = MIN(Cia,c; Cia,nc)

Sub-Slab and Exterior Soil Gas

Cia, c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR)
Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

Special Case Chemicals (4)

Groundwater

Trichloroethylene

Resid	Residential		cial	Selected (ba-	ed (based on cenario)	
Symbol	Value	Symbol	Value	Symbol	Value	
mIURTCE_R_SG	1.00E-06	nIURTCE_C_SG	0.00E+00	mIURTCE_SG 1	1.00E-06	
IURTCE_R_SG	3.10E-06	IURTCE_C_SG	4.10E-06	IURTCE_SG 3	3.10E-06	

AFgw_C_SG 0.001

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

AFgw_R_SG

AFss_R_SG

0.001

Note: This section applies to trichloroethylene and other	
mutagenic chemicals, but not to vinyl chloride.	

Age Cohort	Exposure Duration	Age-dependent adjustment factor
0 - 2 years	2	10
2 - 6 years	4	3
6 - 16 years	10	3
16 - 26 years	10	1

Mutagenic-mode-of-action (MMOA) adjustment factor

72

This factor is used in the equations for mutagenic chemicals.

AFgw_SG AFss_SG

0.001

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.4, June 2015 RSLs

GB-5. 8-feet

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR_SG	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ_SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

		Site Sub-slab or	Calculated	VI	
		Exterior Soil Gas	Indoor Air	Carcinogenic	VI Hazard
		Concentration	Concentration	Risk	
		Csg	Cia	CD	110
CAS	Chemical Name	(ug/m ³)	(ug/m ³)	CR	HQ

Inhalation Unit Risk	Reference Concentration		RFC	Mutagenic Indicator	
IUR	Source*	RfC	Source*		
(ug/m ³) ⁻¹		(mg/m ³)		i	

Vinyl Chloride

See the Navigation Guide equation for Cia,c for vinyl chloride.

Notation:

I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at:

http://www.epa.gov/iris/subst/index.html

P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available online at:

http://hhpprtv.ornl.gov/pprtv.shtml

A = Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Risk Levels (MRLs). Available online at:

CA = California Environmental Protection Agency/Office of Environmental Health Hazard Assessment assessments. Available online at:

http://www.oehha.ca.gov/risk/ChemicalDB/index.asp

H = HEAST. EPA Superfund Health Effects Assessment Summary Tables (HEAST) database. Available online at:

S = See RSL User Guide, Section 5

X = PPRTV Appendix

Mut = Chemical acts according to the mutagenic-mode-of-action, special exposure parameters apply (see footnote (4) above).

VC = Special exposure equation for vinyl chloride applies (see Navigation Guide for equation).

TCE = Special mutagenic and non-mutagenic IURs for trichloroethylene apply (see footnote (4) above).

Yellow highlighting indicates site-specific parameters that may be edited by the user.

Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be changed.

Pink highlighting indicates VI carcinogenic risk greater than the target risk for carcinogens (TCR) or VI Hazard greater than or equal to the target hazard quotient for non-carcinogens (THQ).

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.4, June 2015 RSLs

GB-7, 5-feet

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR_SG	1.00E-06	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ_SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

			Site Sub-slab or Exterior Soil Gas Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard
			Csa	Cia		
C	AS	Chemical Name	(ug/m ³)	(ug/m³)	CR	HQ
x 75-07-0	Α0	Acetaldehyde	(ug/iii)	(ug/III)		
67-64-1		Acetone	1.0E+01	3.00E-01	No IUR	9.3E-06
75-86-5		Acetone Cyanohydrin	1102101			
75-05-8		Acetonitrile				
107-02-8		Acrolein				
79-10-7		Acrylic Acid				
107-13-1	1	Acrylonitrile				
309-00-2	2	Aldrin				
107-18-6	6	Allyl Alcohol				
107-05-1	1	Allyl Chloride				
7664-41-	-7	Ammonia				
75-85-4		Amyl Alcohol, tert-				
12674-1	1-2	Aroclor 1016				
11104-2		Aroclor 1221				
11141-1		Aroclor 1232				
53469-2		Aroclor 1242				
12672-2	9-6	Aroclor 1248				
11097-69		Aroclor 1254				
11096-83		Aroclor 1260				
x 103-33-3	3	Azobenzene				
56-55-3		Benz[a]anthracene				
71-43-2		Benzene	1.2E-01	3.60E-03	1.0E-08	1.2E-04
100-44-7		Benzyl Chloride				
92-52-4		Biphenyl, 1,1'-				
108-60-1		Bis(2-chloro-1-methylethyl) ether				
111-44-4		Bis(2-chloroethyl)ether				
542-88-1		Bis(chloromethyl)ether				
10294-3		Boron Trichloride				
7637-07-		Boron Trifluoride				
107-04-0		Bromo-2-chloroethane, 1-				
108-86-1		Bromobenzene				
74-97-5		Bromochloromethane				
75-27-4		Bromodichloromethane				
75-25-2		Bromoform				
74-83-9		Bromomethane				
106-99-0	0	Butadiene, 1,3-				
78-92-2		Butyl alcohol, sec-	4.05.00			
75-15-0		Carbon Disulfide	1.2E+00	3.60E-02	No IUR	4.9E-05
56-23-5	2.0	Carbon Tetrachloride	6.3E-02	1.89E-03	4.0E-09	1.8E-05
12789-0		Chloridane		-		
7782-50-		Chlorine Diovide				
10049-0- 75-68-3		Chlorine Dioxide Chloro-1,1-difluoroethane, 1-		<u></u>		
126-99-8		Chloro-1,3-butadiene, 2-		<u></u>		
					1	
108-90-7 98-56-6		Chlorobenzene Chlorobenzotrifluoride, 4-				
75-45-6		Chlorodifluoromethane				
67-66-3		Chloroform				
74-87-3		Chloromethane	1.3E+00	3.90E-02	No IUR	4.2E-04
107-30-2	2	Chloromethyl Methyl Ether	1.32700	3.90E-02	NO IOR	4.2E-04
76-06-2	۷	Chloropicrin				
8007-45	-2	Coke Oven Emissions				
98-82-8		Cumene				
x 57-12-5		Cyanide (CN-)				
110-82-7	7	Cyclohexane				
108-94-1		Cyclohexanone				
.00 07 1					ıl	

Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator
IUR	Source*	RfC	Source*	
(ug/m ³) ⁻¹		(mg/m ³)		i
2.20E-06		9.00E-03	1	
2.202 00		3.10E+01	A	
		2.00E-03	X	
		6.00E-02	-	
		2.00E-05	-	
		1.00E-03	ı	
6.80E-05		2.00E-03		
4.90E-03	- 1			
		1.00E-04	X	
6.00E-06	CA	1.00E-03		
		1.00E-01		
		3.00E-03	X	
2.00E-05	S			
5.70E-04	S			
3.10E-05	ı			
1.10E-04	CA			Mut
7.80E-06	ı	3.00E-02	ı	
4.90E-05	CA	1.00E-03	Р	
		4.00E-04	Χ	
1.00E-05	Н			
3.30E-04				
6.20E-02				
		2.00E-02	P	
		1.30E-02	CA	
6.00E-04	X			
		6.00E-02		
_		4.00E-02	X	
3.70E-05	CA			
1.10E-06		_		
		5.00E-03		
3.00E-05	ı	2.00E-03		
		3.00E+01	P	
0.005.00		7.00E-01	!	
6.00E-06		1.00E-01		
1.00E-04	I	7.00E-04	I	
		1.50E-04	Α	
		2.00E-04	<u> </u>	
2.005.04		5.00E+01		
3.00E-04		2.00E-02 5.00E-02	I P	
		3.00E-02	P	
		5.00E+01	I	
2.30E-05	- 1	9.80E-02	A	
2.30L-03	'	9.00E-02	I	
6.90E-04	CA	9.00L-02		
U.3UE-U4	CA	4.00E-04	CA	
6.20E-04	- 1	4.00E-04	CA	Mut
U.ZUE-U4		4.00E-01	1	iviUt
		8.00E-01	S	
		6.00E+00	<u> </u>	
		7.00E-01	P	

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.4, June 2015 RSLs

GB-7, 5-feet

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR_SG	1.00E-06	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ_SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

CAS			Site Sub-slab or	Calculated	VI	
Concentration Concentration Cis Ci						VI Hozord
CAS Chemical Name					•	VI Hazaru
CAS					KISK	
110.83.8 Cyclohexene	040	Oh and a st Name			CR	HQ
124.54.1 Dibromo-Schotopropane, 1,2-			(ug/m ⁺)	(ug/m ⁺)		
196-12-8 Dibrono-3-chioropropane, 1,2-						
124.48-1 Dibromochloromethane						
106-93-4 Dibromoethane, 1,2						
74-95-3 Dibromomethane (Methylene Bromide)						
T64-41-0 Dichloro-2-butnen, 1.4-						
1476-11-5 Dichloro-2-butnen, cisn-14-						
110-97-6 Dichlorobez-butene, trans-t,4-						
95-50-1 Dichlorobenzene, 1,2- 106-46-7 Dichlorobenzene, 1,4- 107-106-2 Dichlorobenzene, 1,4- 107-106-2 Dichlorobenzene, 1,2- 107-106-2 Dichloropropane, 1,2- 107-106-2 Dichloropropane, 1,2- 108-28-5 Dichloropropane, 1,2- 108-28-6 Dichloropropane, 1,3- 107-108-28-6 Dichloropropane, 1,3- 108-28-76-6 Dichloropropane, 1,3- 108-29-3 Discopropy Ether 108-29-3 Dimethylhydrazine, 1,1- 108-29-3 Dimethylhydrazine, 1,1- 108-29-3 Dimethylhydrazine, 1,1- 108-29-3 Dimethylhydrazine, 1,2- 108-29-3 Dimethylhydrazine, 1,2- 108-29-3 Discopropy Ether 108-29-8 Epichlorohydrin 108-29-8 Ethoxyethanol Acetate, 2- 111-15-9 Ethoxyethanol, 2- 111-15-9 Ethox						
106-46-7						
1,3E-04 1,3E-02 No IUR 1,3E-04 1,3E-04 1,3E-04 1,3E-04 1,3E-05 Dichlorosthane 1,1-1						
Trigority Trig			4.4E.04			
107-06-2 Dichloroethane, 1.2-			4.4E-U1			
75-35-4 Dichloroethylene, 1,1-						
TR-807-5 Dichloropropane, 1,2-						
542.75-6 Dichloropropene, 1,3-						
77.73-6 Dicyclopentadiene						
75-37-6 Diffuoroethane, 1,1-						
94-58-6 Dihydrosafrole						
108-20-3 Diisopropyl Ether						
68-12-2 Dimethylformamide						
57-14-7 Dimethylhydrazine, 1,1- 540-73-8 Dimethylhydrazine, 1,2-						
540-73-8 Dimethylhydrazine, 1,2-						
513-37-1 Dimethylvinylchloride </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
123-91-1 Dioxane, 1.4-						
106-89-8 Epichlorohydrin 106-88-7 Epoxybutane, 1,2- 106-88-7 Epoxybutane, 1,2- 106-89-5 Ethoxyethanol Acetate, 2- 107-80-5 Ethoxyethanol, 2- 141-78-6 Ethyl Acetate 141-78-6 Ethyl Methacrylate 141-78-6 Ethyl Methacrylate 141-78-6 Ethyl Methacrylate 107-80-2 Ethyl Methacrylate 107-80-2 Ethyl Methacrylate			2.5F-01			
106-88-7 Epoxybutane, 1,2-			2.56-01			
111-15-9						
110-80-5						
141-78-6 Ethyl Acetate						
1.7E-01 5.10E-03 No IUR 4.9E-07						
97-63-2 Ethyl Methacrylate			1.7F-01			
100-41-4 Ethylbenzene			1112 01			
75-21-8 Ethylene Oxide						
151-56-4 Ethyleneimine						
50-00-0 Formaldehyde						
64-18-6 Formic Acid						
98-01-1 Furfural						
765-34-4 Glycidyl						
76-44-8 Heptachlor 1024-57-3 Heptachlor Epoxide 39635-31-9 Heptachlorobiphenyl, 2,3,3',4,4',5,5'- (PCB 189)						
Heptachlorobiphenyl, 2,3,3',4,4',5,5'- (PCB 189)						
118-74-1 Hexachlorobenzene 38380-08-4 Hexachlorobiphenyl, 2,3,3,4,4',5- (PCB 156) 69782-90-7 Hexachlorobiphenyl, 2,3',4,4',5- (PCB 157) 52663-72-6 Hexachlorobiphenyl, 2,3',4,4',5.5- (PCB 167) 32774-16-6 Hexachlorobutadiene 87-68-3 Hexachlorobutadiene 77-47-4 Hexachlorocyclopentadiene 67-72-1 Hexachlorocyclopentadiene 822-06-0 Hexamethylene Diisocyanate, 1,6- 110-54-3 Hexane, N- 1.0E-01 3.00E-03 No IUR 4.1E-06 591-78-6 Hexanone, 2- 302-01-2 Hydrazine						-
38380-08-4 Hexachlorobiphenyl, 2,3,3',4,4',5- (PCB 156) 69782-90-7 Hexachlorobiphenyl, 2,3,3',4,4',5-' (PCB 157)	39635-31-9	Heptachlorobiphenyl, 2,3,3',4,4',5,5'- (PCB 189)				
38380-08-4 Hexachlorobiphenyl, 2,3,3',4,4',5- (PCB 156) 69782-90-7 Hexachlorobiphenyl, 2,3,3',4,4',5-' (PCB 157)						
69782-90-7 Hexachlorobiphenyl, 2,3,3',4,4',5'- (PCB 157) 52663-72-6 Hexachlorobiphenyl, 2,3',4,4',5,5'- (PCB 167) 32774-16-6 Hexachlorobiphenyl, 3,3',4,4',5,5'- (PCB 169) 87-68-3 Hexachlorobutadiene 67-772-1 Hexachlorocyclopentadiene 67-772-1 Hexachloroethane 822-06-0 Hexamethylene Diisocyanate, 1,6- 110-54-3 Hexane, N- 1.0E-01 3.00E-03 No IUR 4.1E-06 591-78-6 Hexanone, 2- 302-01-2 Hydrazine	38380-08-4	Hexachlorobiphenyl, 2,3,3',4,4',5- (PCB 156)				
32774-16-6 Hexachlorobiphenyl, 3,3',4,4',5,5'- (PCB 169)	69782-90-7					
32774-16-6 Hexachlorobiphenyl, 3,3',4,4',5,5'- (PCB 169) 87-68-3 Hexachlorobutadiene	52663-72-6	Hexachlorobiphenyl, 2,3',4,4',5,5'- (PCB 167)				
87-68-3 Hexachlorobutadiene 77-47-4 Hexachlorocyclopentadiene 67-72-1 Hexachlorocyclopentadiene 822-06-0 Hexamethylene Diisocyanate, 1,6- 110-54-3 Hexane, N- 1.0E-01 3.00E-03 No IUR 4.1E-06 591-78-6 Hexanone, 2- 302-01-2 Hydrazine	32774-16-6					
67-72-1 Hexachloroethane 822-06-0 Hexamethylene Diisocyanate, 1,6	87-68-3	Hexachlorobutadiene				
67-72-1 Hexachloroethane 822-06-0 Hexamethylene Diisocyanate, 1,6- 110-54-3 Hexane, N- 1.0E-01 3.00E-03 No IUR 4.1E-06 591-78-6 Hexanone, 2- 302-01-2 Hydrazine	77-47-4	Hexachlorocyclopentadiene				
822-06-0 Hexamethylene Diisocyanate, 1,6- 110-54-3 Hexane, N- 1.0E-01 3.00E-03 No IUR 4.1E-06 591-78-6 Hexanone, 2- <	67-72-1					
591-78-6 Hexanone, 2 302-01-2 Hydrazine	822-06-0	Hexamethylene Diisocyanate, 1,6-				
302-01-2 Hydrazine	110-54-3	Hexane, N-	1.0E-01	3.00E-03	No IUR	4.1E-06
	591-78-6	Hexanone, 2-				
7647-01-0 Hydrogen Chloride	302-01-2	Hydrazine				
	7647-01-0	Hydrogen Chloride				

Inhalation Unit Risk	IUR Source*	Reference Concentration	RFC Source*	Mutagenic Indicator
IUR	Source"	RfC	Source"	
(ug/m ³) ⁻¹		(mg/m ³)		i
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1.00E+00	Х	
9.70E-05	CA			
6.00E-03	P	2.00E-04		Mut
2.70E-05	CA		·	
6.00E-04	ī	9.00E-03	- 1	
		4.00E-03	X	
4.20E-03	Р			
4.20E-03	Р			
4.20E-03	Р			
		2.00E-01	Н	
1.10E-05	CA	8.00E-01	- 1	
		1.00E-01	Х	
1.60E-06	CA			
2.60E-05	i	7.00E-03	Р	
		2.00E-01	1	
1.00E-05	CA	4.00E-03	1	
4.00E-06		2.00E-02	- 1	
		3.00E-04	Х	
		4.00E+01	- 1	
1.30E-05	CA			
		7.00E-01	Р	
		3.00E-02	1	
		2.00E-06	Х	
1.60E-01	CA			
1.30E-05	CA			
5.00E-06	I	3.00E-02		
1.20E-06	I	1.00E-03		
		2.00E-02		
		6.00E-02	Р	
		2.00E-01		
		7.00E-02	Р	
		1.00E+01		
		3.00E-01	Р	
2.50E-06	CA	1.00E+00		
8.80E-05	CA	3.00E-02	CA	
1.90E-02	CA			
1.30E-05	i i	9.80E-03	Α	
		3.00E-04	X	
		5.00E-02	Н	
		1.00E-03	Н	
1.30E-03				
2.60E-03	ı			
1.10E-03	Е	1.30E-03	Е	
4.60E-04	ī			
1.10E-03	Ē	1.30E-03	Е	
1.10E-03	E	1.30E-03	E	
1.10E-03	E	1.30E-03	E	
1.10E+00	Е	1.30E-06	Е	
2.20E-05				
		2.00E-04	ı	
1.10E-05	CA	3.00E-02	i	
		1.00E-05	i	
		7.00E-01	i	
		3.00E-02	i	
4.90E-03	1	3.00E-05	Р	l I

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.4, June 2015 RSLs

GB-7, 5-feet

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR_SG	1.00E-06	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ_SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

		Site Sub-slab or	Calculated	VI	
		Exterior Soil Gas	Indoor Air		VIII
				Carcinogenic	VI Hazard
		Concentration	Concentration	Risk	
		Csg	Cia	CR	НО
CAS	Chemical Name	(ug/m³)	(ug/m³)		
74-90-8	Hydrogen Cyanide				
7664-39-3	Hydrogen Fluoride				
7783-06-4	Hydrogen Sulfide				
67-63-0	Isopropanol				
7439-97-6	Mercury (elemental)				
126-98-7	Methacrylonitrile				
67-56-1	Methanol				
110-49-6	Methoxyethanol Acetate, 2-				
109-86-4	Methoxyethanol, 2-				
96-33-3	Methyl Acrylate				
78-93-3	Methyl Ethyl Ketone (2-Butanone)	1.1E+00	3.30E-02	No IUR	6.3E-06
60-34-4	Methyl Hydrazine				
108-10-1	Methyl Isobutyl Ketone (4-methyl-2-pentanone)	4.8E-01	1.44E-02	No IUR	4.6E-06
624-83-9	Methyl Isocyanate				
80-62-6	Methyl Methacrylate				
25013-15-4	Methyl Styrene (Mixed Isomers)				
1634-04-4	Methyl tert-Butyl Ether (MTBE)				
75-09-2	Methylene Chloride	4.1E-01	1.23E-02	1.2E-10	2.0E-05
2385-85-5	Mirex				
64742-95-6	Naphtha, High Flash Aromatic (HFAN)				
91-20-3	Naphthalene				
13463-39-3	Nickel Carbonyl				
98-95-3	Nitrobenzene				
75-52-5	Nitromethane				
79-46-9	Nitropropane, 2-				
62-75-9	Nitrosodimethylamine, N-				
924-16-3	Nitroso-di-N-butylamine, N-				
10595-95-6	Nitrosomethylethylamine, N-				
111-84-2	Nonane, n-				
32598-14-4	Pentachlorobiphenyl, 2,3,3',4,4'- (PCB 105)				
74472-37-0	Pentachlorobiphenyl, 2,3,4,4',5- (PCB 114)				
31508-00-6	Pentachlorobiphenyl, 2,3',4,4',5- (PCB 118)				
65510-44-3	Pentachlorobiphenyl, 2',3,4,4',5- (PCB 123)				
57465-28-8	Pentachlorobiphenyl, 3,3',4,4',5- (PCB 126)				
109-66-0	Pentane, n-				
75-44-5	Phosgene				
7803-51-2	Phosphine				
123-38-6	Propionaldehyde				
103-65-1	Propyl benzene				
115-07-1	Propylene Observation Filters				
107-98-2	Propylene Glycol Monomethyl Ether				
75-56-9 100-42-5	Propylene Oxide				
	Styrene Sulfur Triavida				
7446-11-9	Sulfur Trioxide				
1746-01-6	TCDD, 2,3,7,8-				
70362-50-4 630-20-6	Tetrachlorobiphenyl, 3,4,4',5- (PCB 81) Tetrachloroethane, 1,1,1,2-				
79-34-5	Tetrachloroethane, 1,1,2,2-				
127-18-4	Tetrachloroethylene				
811-97-2	Tetrafluoroethane, 1,1,1,2-				
109-99-9	Tetrahudroethane, 1,1,1,2- Tetrahydrofuran	1.9E-01	5.70E-03	No IUR	2.7E-06
7550-45-0	Titanium Tetrachloride	1.9E-01	3./UE-U3	INU IUR	Z./E-U0
108-88-3	Toluene	2.4E-01	7.20E-03	No IUR	1.4E-06
76-13-1	Trichloro-1,2,2-trifluoroethane, 1,1,2-	6.2E-02	1.86E-03	No IUR	5.9E-08
120-82-1	Trichlorobenzene. 1.2.4-	0.25-02	1.00E-03	NO TUR	3.9E-06
71-55-6	Trichloroethane, 1,1,1-				
11-33-0	THOMOTOGRAME, 1,1,1-				

Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator
IUR	Source*	RfC	Source*	
(ug/m ³) ⁻¹		(mg/m ³)		i
		8.00E-04		
		1.40E-02	CA	
		2.00E-03		
		2.00E-01	P .	
		3.00E-04	I P	
		3.00E-02 2.00E+01	I	
		1.00E-03	P	
		2.00E-02	i	
		2.00E-02	P	
		5.00E+00	Ī	
1.00E-03	Х	2.00E-05	Х	
		3.00E+00		
		1.00E-03	CA	
		7.00E-01		
		4.00E-02	H	
2.60E-07	CA	3.00E+00	!	
1.00E-08		6.00E-01	I	Mut
5.10E-03	CA	4.005.04	P	
2.405.05	C A	1.00E-01	I	
3.40E-05 2.60E-04	CA CA	3.00E-03 1.40E-05	CA	
4.00E-05	I	9.00E-03	I	
8.80E-06	P	5.00E-03	P	
2.70E-03	Н	2.00E-02	- i	
1.40E-02	ï	4.00E-05	X	Mut
1.60E-03	i			····
6.30E-03	CA			
		2.00E-02	Р	
1.10E-03	E	1.30E-03	Е	
1.10E-03	E	1.30E-03	Е	
1.10E-03	Е	1.30E-03	Е	
1.10E-03	E	1.30E-03	E	
3.80E+00	E	4.00E-07	E	
		1.00E+00	P	
		3.00E-04	!	
		3.00E-04		
		8.00E-03 1.00E+00	X	
		3.00E+00	CA	
		2.00E+00	I	
3.70E-06	1	3.00E-02	i	
002 00		1.00E+00	i	
		1.00E-03	CA	
3.80E+01	CA	4.00E-08	CA	
1.10E-02	E	1.30E-04	E	
7.40E-06	ı			
5.80E-05	CA			
2.60E-07		4.00E-02		
		8.00E+01	!	
		2.00E+00	!	
		1.00E-04	A	
		5.00E+00	!_	
		3.00E+01 2.00E-03	H P	
—		2.00E-03 5.00E+00	I I	
L		3.00⊑+00		

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.4, June 2015 RSLs

GB-7, 5-feet

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR_SG	1.00E-06	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ_SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

		Site Sub-slab or Exterior Soil Gas Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard
CAS	Chemical Name	Csg (ug/m³)	Cia (ug/m³)	CR	HQ
79-00-5	Trichloroethane, 1.1.2-	(ug/III)			
79-00-5	Trichloroethylene				
	Trichlorofluoromethane	0.05.04	 C 00F 02	No ILID	0.55.00
75-69-4		2.3E-01	6.90E-03	No IUR	9.5E-06
96-18-4	Trichloropropane, 1,2,3-				
96-19-5	Trichloropropene, 1,2,3-				
121-44-8	Triethylamine				
526-73-8	Trimethylbenzene, 1,2,3-				
95-63-6	Trimethylbenzene, 1,2,4-	7.6E-02	2.28E-03	No IUR	3.1E-04
108-05-4	Vinyl Acetate				
593-60-2	Vinyl Bromide				
75-01-4	Vinyl Chloride				
108-38-3	Xylene, m-	2.1E-01	6.30E-03	No IUR	6.0E-05
95-47-6	Xylene, o-	7.1E-02	2.13E-03	No IUR	2.0E-05
106-42-3	Xylene, P-				-
1330-20-7	Xylenes				-
140-88-5	Ethyl Acrylate				1

Inhalation Unit Risk	IUR Source*	Reference Concentration	RFC Source*	Mutagenic Indicator
		RfC		
(ug/m ³) ⁻¹	(mg/m³)			i
1.60E-05		2.00E-04	X	
see note	-	2.00E-03		TCE
		7.00E-01	Ι	
		3.00E-04		Mut
		3.00E-04	Р	
		7.00E-03	ı	
		5.00E-03	Р	
		7.00E-03	Р	
		2.00E-01	_	
3.20E-05	Н	3.00E-03	_	
4.40E-06	ı	1.00E-01		Mut
		1.00E-01	S	
		1.00E-01	S	
		1.00E-01	S	
		1.00E-01	ı	
		8.00E-03	Р	

Notes:

(1)	Inhalation Pathway Exposure Parameters (RME):	Units	Units Residential		Commercial		Selected ((based on ario)
	Exposure Scenario		Symbol	Value	Symbol	Value	Symbol	Value
	Averaging time for carcinogens	(yrs)	ATc_R_SG	70	ATc_C_SG	70	ATc_SG	70
	Averaging time for non-carcinogens	(yrs)	ATnc_R_SG	26	ATnc_C_SG	25	ATnc_SG	26
	Exposure duration	(yrs)	ED_R_SG	26	ED_C_SG	25	ED_SG	26
	Exposure frequency	(days/yr)	EF_R_SG	350	EF_C_SG	250	EF_SG	350
	Exposure time	(hr/day)	ET_R_SG	24	ET_C_SG	8	ET_SG	24
(2)	Generic Attenuation Factors:		Reside	ntial	Commer	cial	Selected (
	Source Medium of Vapors		Symbol	Value	Symbol	Value	Symbol	Value

<u>Formulas</u> (3)

Cia, target = MIN(Cia,c; Cia,nc)

Sub-Slab and Exterior Soil Gas

Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR) Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

Special Case Chemicals (4)

Groundwater

Trichloroethylene

	Residential		Residential Commercial		Selected (ba scenar	
	Symbol	Value	Symbol	Value	Symbol	Value
ml	URTCE_R_SG	1.00E-06	nIURTCE_C_SG	0.00E+00	mIURTCE_SG	1.00E-06
I	URTCE_R_SG	3.10E-06	IURTCE_C_SG	4.10E-06	IURTCE_SG	3.10E-06

0.001

0.03

AFgw_SG AFss_SG

0.001

0.03

AFgw_C_SG

AFss_C_SG

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

AFgw_R_SG

AFss_R_SG

Note: This section applies to trichloroethylene and other	
mutagenic chemicals, but not to vinyl chloride.	

Age Cohort	Exposure Duration	Age-dependent adjustment factor
0 - 2 years	2	10
2 - 6 years	4	3
6 - 16 years	10	3
16 - 26 years	10	1

Mutagenic-mode-of-action (MMOA) adjustment factor

72

0.001

This factor is used in the equations for mutagenic chemicals.

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.4, June 2015 RSLs

GB-7. 5-feet

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR_SG	1.00E-06	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ_SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

		Site Sub-slab or	Calculated	VI	
		Exterior Soil Gas	Indoor Air	Carcinogenic	VI Hazard
		Concentration	Concentration	Risk	
		Csg	Cia	CD	110
CAS	Chemical Name	(ug/m ³)	(ug/m ³)	CR	HQ

Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator	
IUR	Source*	RfC	Source*		
(ug/m ³) ⁻¹		(mg/m ³)		i	

Vinyl Chloride

See the Navigation Guide equation for Cia,c for vinyl chloride.

Notation:

I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at:

http://www.epa.gov/iris/subst/index.html

P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available online at:

http://hhpprtv.ornl.gov/pprtv.shtml

A = Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Risk Levels (MRLs). Available online at:

http://www.oehha.ca.gov/risk/ChemicalDB/index.asp

CA = California Environmental Protection Agency/Office of Environmental Health Hazard Assessment assessments. Available online at:

H = HEAST. EPA Superfund Health Effects Assessment Summary Tables (HEAST) database. Available online at:

S = See RSL User Guide, Section 5

X = PPRTV Appendix

Mut = Chemical acts according to the mutagenic-mode-of-action, special exposure parameters apply (see footnote (4) above).

VC = Special exposure equation for vinyl chloride applies (see Navigation Guide for equation).

TCE = Special mutagenic and non-mutagenic IURs for trichloroethylene apply (see footnote (4) above).

Yellow highlighting indicates site-specific parameters that may be edited by the user.

Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be changed.

Pink highlighting indicates VI carcinogenic risk greater than the target risk for carcinogens (TCR) or VI Hazard greater than or equal to the target hazard quotient for non-carcinogens (THQ).

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.4, June 2015 RSLs

GB-7 10-feet

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR_SG	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

			Site Sub-slab or Exterior Soil Gas	Calculated Indoor Air	VI Carcinogenic	VI Hazard
			Concentration	Concentration	Risk	
			Csg	Cia	CR	HQ
	CAS	Chemical Name	(ug/m ³)	(ug/m³)	OK	1100
х	75-07-0	Acetaldehyde				
	67-64-1	Acetone	9.8E+00	2.94E-01	No IUR	9.1E-06
	75-86-5	Acetone Cyanohydrin				
	75-05-8	Acetonitrile				
	107-02-8	Acrolein				
	79-10-7	Acrylic Acid				
	107-13-1	Acrylonitrile				
	309-00-2	Aldrin				
	107-18-6	Allyl Alcohol				
	107-05-1	Allyl Chloride				
	7664-41-7	Ammonia				
	75-85-4	Amyl Alcohol, tert-				
	12674-11-2	Aroclor 1016				
	11104-28-2	Aroclor 1221				
	11141-16-5	Aroclor 1232				
	53469-21-9	Aroclor 1242				
	12672-29-6	Aroclor 1248				
	11097-69-1	Aroclor 1254				
	11096-82-5	Aroclor 1260				
	103-33-3	Azobenzene				
	56-55-3	Benz[a]anthracene				
	71-43-2	Benzene	1.6E-01	4.80E-03	1.3E-08	1.5E-04
	100-44-7	Benzyl Chloride				
	92-52-4	Biphenyl, 1,1'-				
	108-60-1	Bis(2-chloro-1-methylethyl) ether				
	111-44-4	Bis(2-chloroethyl)ether				
	542-88-1	Bis(chloromethyl)ether				
	10294-34-5	Boron Trichloride				
	7637-07-2	Boron Trifluoride				
	107-04-0	Bromo-2-chloroethane, 1-				
	108-86-1	Bromobenzene				
	74-97-5	Bromochloromethane				
	75-27-4	Bromodichloromethane				
	75-25-2	Bromoform				
	74-83-9	Bromomethane				
	106-99-0	Butadiene, 1,3-				
	78-92-2	Butyl alcohol, sec-				
	75-15-0	Carbon Disulfide	1.5E+00	4.50E-02	No IUR	6.2E-05
	56-23-5	Carbon Tetrachloride	7.9E-02	2.37E-03	5.1E-09	2.3E-05
	12789-03-6	Chlordane				
	7782-50-5	Chlorine				
	10049-04-4	Chlorine Dioxide				
	75-68-3	Chloro-1,1-difluoroethane, 1-				
	126-99-8	Chloro-1,3-butadiene, 2-				
	108-90-7	Chlorobenzene				
	98-56-6	Chlorobenzotrifluoride, 4-				
	75-45-6	Chlorodifluoromethane				
	67-66-3	Chloroform	4.45.00			
	74-87-3	Chloromethane	1.1E+00	3.30E-02	No IUR	3.5E-04
	107-30-2	Chloromethyl Methyl Ether				
	76-06-2	Chloropicrin				
	8007-45-2	Coke Oven Emissions				
	98-82-8	Cumene				
	57-12-5	Cyanide (CN-)				
	110-82-7	Cyclohexane				
L	108-94-1	Cyclohexanone				

Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator
IUR	Source*	RfC	Source*	
(ug/m ³) ⁻¹		(mg/m ³)		i
2.20E-06	- 1	9.00E-03	- 1	
		3.10E+01	A	
		2.00E-03	Х	
		6.00E-02	-	
		2.00E-05	- 1	
		1.00E-03		
6.80E-05		2.00E-03		
4.90E-03	I			
		1.00E-04	X	
6.00E-06	CA	1.00E-03		
		1.00E-01		
		3.00E-03	Х	
2.00E-05	S			
5.70E-04	S			
3.10E-05	ı			
1.10E-04	CA			Mut
7.80E-06	I	3.00E-02	ı	
4.90E-05	CA	1.00E-03	Р	
		4.00E-04	X	
1.00E-05	Н			
3.30E-04	I			
6.20E-02				
		2.00E-02	P	
		1.30E-02	CA	
6.00E-04	X			
		6.00E-02	!	
		4.00E-02	X	
3.70E-05	CA			
1.10E-06				
		5.00E-03	!	
3.00E-05	I	2.00E-03	I	
		3.00E+01	P	-
C 00F 0C		7.00E-01	<u> </u>	-
6.00E-06	<u> </u>	1.00E-01	I	
1.00E-04	ı	7.00E-04		
		1.50E-04	A I	-
		2.00E-04	<u> </u>	-
3.00E-04	-	5.00E+01		-
3.00E-04		2.00E-02 5.00E-02	P	1
		3.00E-02	P	
		5.00E+01	- i	
2.30E-05		9.80E-02	Ä	
Z.30L-03	'	9.00E-02	î	
6.90E-04	CA	3.00L-02		1
0.00L-04	- OA	4.00E-04	CA	
6.20E-04		4.00L-04	CA	Mut
0.20L-04	- 1	4.00E-01		iviut
		8.00E-01	S	
		6.00E+00		
		7.00E-01	P	

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.4, June 2015 RSLs

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR_SG	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

		Site Sub-slab or	Calculated	VI		
		Exterior Soil Gas	Indoor Air		VIIIamand	
				Carcinogenic	VI Hazard	
		Concentration	Concentration	Risk		
		Csg	Cia	CR	HQ	
CAS	Chemical Name	(ug/m ³)	(ug/m³)	J.		
110-83-8	Cyclohexene					
72-55-9	DDE, p,p'-		-		-	
96-12-8	Dibromo-3-chloropropane, 1,2-		-		-	
124-48-1	Dibromochloromethane				-	
106-93-4	Dibromoethane, 1,2-		-		-	
74-95-3	Dibromomethane (Methylene Bromide)					
764-41-0	Dichloro-2-butene, 1,4-				-	
1476-11-5	Dichloro-2-butene, cis-1,4-		-		-	
110-57-6	Dichloro-2-butene, trans-1,4-				-	
95-50-1	Dichlorobenzene, 1,2-					
106-46-7	Dichlorobenzene, 1,4-					
75-71-8	Dichlorodifluoromethane	4.2E-01	1.26E-02	No IUR	1.2E-04	
75-34-3	Dichloroethane, 1,1-					
107-06-2	Dichloroethane, 1,2-					
75-35-4	Dichloroethylene, 1,1-					
78-87-5	Dichloropropane, 1,2-					
542-75-6	Dichloropropene, 1,3-					
77-73-6	Dicyclopentadiene					
75-37-6	Difluoroethane, 1,1-				-	
94-58-6	Dihydrosafrole				-	
108-20-3	Diisopropyl Ether					
68-12-2	Dimethylformamide					
57-14-7	Dimethylhydrazine, 1,1-					
540-73-8	Dimethylhydrazine, 1,2-					
513-37-1	Dimethylvinylchloride					
123-91-1	Dioxane. 1.4-					
106-89-8	Epichlorohydrin					
106-88-7	Epoxybutane, 1,2-					
111-15-9	Ethoxyethanol Acetate, 2-					
110-80-5	Ethoxyethanol, 2-					
141-78-6	Ethyl Acetate					
75-00-3	Ethyl Chloride (Chloroethane)	2.0E-01	6.00E-03	No IUR	5.8E-07	
97-63-2	Ethyl Methacrylate	2.02 01				
100-41-4	Ethylbenzene					
75-21-8	Ethylene Oxide					
151-56-4	Ethyleneimine					
50-00-0	Formaldehyde				-	
64-18-6	Formic Acid					
98-01-1	Furfural				-	
765-34-4	Glycidyl					
76-44-8	Heptachlor					
1024-57-3	Heptachlor Epoxide					
39635-31-9	Heptachlorobiphenyl, 2,3,3',4,4',5,5'- (PCB 189)					
118-74-1	Hexachlorobenzene					
38380-08-4	Hexachlorobiphenyl, 2,3,3',4,4',5- (PCB 156)					
69782-90-7	Hexachlorobiphenyl, 2,3,3,4,4,5- (PCB 157)				-	
52663-72-6	Hexachlorobiphenyl, 2,3,3,4,4,5,5'- (PCB 137)					
32774-16-6	Hexachlorobiphenyl, 3,3',4,4',5,5'- (PCB 169)					
87-68-3	Hexachlorobutadiene					
77-47-4	Hexachlorocyclopentadiene					
67-72-1	Hexachloroethane					
822-06-0	Hexamethylene Diisocyanate, 1,6-					
110-54-3	Hexane. N-	7.2E-01	2.16E-02	No IUR	3.0E-05	
591-78-6	Hexanone, 2-	1.ZE-U1	Z. 10E-UZ	NO IUR	3.05-03	
302-01-2	Hydrazine				-	
7647-01-0	Hydrogen Chloride					
1041-01-0	I iyurugen onlonde					

Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator	
IUR	Source*	RfC	Source*		
(ug/m ³) ⁻¹		(mg/m ³)		i	
		1.00E+00	Х		
9.70E-05	CA				
6.00E-03	P	2.00E-04	- 1	Mut	
2.70E-05	CA	_			
6.00E-04		9.00E-03	l V		
4.20E-03	P	4.00E-03	Х		
4.20E-03 4.20E-03	P				
4.20E-03 4.20E-03	P				
4.20L-03	'	2.00E-01	Н		
1.10E-05	CA	8.00E-01	ï		
	- 0, (1.00E-01	X		
1.60E-06	CA				
2.60E-05	ī	7.00E-03	Р		
		2.00E-01	ı		
1.00E-05	CA	4.00E-03			
4.00E-06		2.00E-02			
		3.00E-04	X		
		4.00E+01	ı		
1.30E-05	CA				
		7.00E-01	P		
		3.00E-02			
4 005 04		2.00E-06	X		
1.60E-01	CA				
1.30E-05 5.00E-06	CA	2.005.02	1		
1.20E-06	<u> </u>	3.00E-02 1.00E-03	<u> </u>		
1.20E-00	- 1	2.00E-02	- 		
		6.00E-02	P		
		2.00E-01	i		
		7.00E-02	P		
		1.00E+01			
		3.00E-01	Р		
2.50E-06	CA	1.00E+00			
8.80E-05	CA	3.00E-02	CA		
1.90E-02	CA				
1.30E-05	- 1	9.80E-03	Α		
		3.00E-04	X		
		5.00E-02	H		
1 205 02		1.00E-03	Н		
1.30E-03 2.60E-03					
1.10E-03	E	1.30E-03	E		
4.60E-04		1.301-03			
1.10E-03	Ė	1.30E-03	Е		
1.10E-03	Ē	1.30E-03	Ē		
1.10E-03	Ē	1.30E-03	Ē		
1.10E+00	E	1.30E-06	E		
2.20E-05					
		2.00E-04			
1.10E-05	CA	3.00E-02			
		1.00E-05			
		7.00E-01	!		
		3.00E-02			
4.90E-03		3.00E-05	P		
L		2.00E-02	ı		

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.4, June 2015 RSLs

GB-7 10-feet

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR_SG	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

		Site Sub-slab or	Calculated	VI	
		Exterior Soil Gas	Indoor Air	Carcinogenic	VI Hazard
			Concentration	•	vi nazaro
		Concentration		Risk	
		Csg	Cia	CR	HQ
CAS	Chemical Name	(ug/m³)	(ug/m³)		,
74-90-8	Hydrogen Cyanide				-
7664-39-3	Hydrogen Fluoride				
7783-06-4	Hydrogen Sulfide				
67-63-0	Isopropanol				
7439-97-6	Mercury (elemental)				
126-98-7	Methacrylonitrile				
67-56-1	Methanol				
110-49-6	Methoxyethanol Acetate, 2-				
109-86-4	Methoxyethanol, 2-				
96-33-3	Methyl Acrylate	_			
78-93-3	Methyl Ethyl Ketone (2-Butanone)	9.2E-01	2.76E-02	No IUR	5.3E-06
60-34-4	Methyl Hydrazine	_			
108-10-1	Methyl Isobutyl Ketone (4-methyl-2-pentanone)	6.1E-01	1.83E-02	No IUR	5.8E-06
624-83-9	Methyl Isocyanate				
80-62-6	Methyl Methacrylate				
25013-15-4	Methyl Styrene (Mixed Isomers)				
1634-04-4	Methyl tert-Butyl Ether (MTBE)	_			
75-09-2	Methylene Chloride	3.2E-01	9.60E-03	9.5E-11	1.5E-05
2385-85-5	Mirex				
64742-95-6	Naphtha, High Flash Aromatic (HFAN)				
91-20-3	Naphthalene				
13463-39-3	Nickel Carbonyl				
98-95-3	Nitrobenzene				
75-52-5	Nitromethane				
79-46-9	Nitropropane, 2-				
62-75-9	Nitrosodimethylamine, N-				
924-16-3	Nitroso-di-N-butylamine, N-				
10595-95-6	Nitrosomethylethylamine, N-				
111-84-2	Nonane, n-				
32598-14-4	Pentachlorobiphenyl, 2,3,3',4,4'- (PCB 105)				
74472-37-0	Pentachlorobiphenyl, 2,3,4,4',5- (PCB 114)				
31508-00-6	Pentachlorobiphenyl, 2,3',4,4',5- (PCB 118)				
65510-44-3	Pentachlorobiphenyl, 2',3,4,4',5- (PCB 123)				
57465-28-8	Pentachlorobiphenyl, 3,3',4,4',5- (PCB 126)				
109-66-0	Pentane, n-				
75-44-5 7803-51-2	Phospene				
123-38-6	Phosphine Propionaldehyde				
103-65-1	Propyl benzene				
115-07-1	Propylene Propylene				
107-98-2	Propylene Glycol Monomethyl Ether				
75-56-9	Propylene Oxide				
100-42-5	Styrene				
7446-11-9	Sulfur Trioxide				
1746-01-6	TCDD, 2,3,7,8-				
70362-50-4	Tetrachlorobiphenyl, 3.4.4',5- (PCB 81)				
630-20-6	Tetrachloroethane, 1,1,1,2-				
79-34-5	Tetrachloroethane, 1,1,2,2-				
127-18-4	Tetrachloroethylene				
811-97-2	Tetrafluoroethane, 1,1,1,2-				
109-99-9	Tetrahydrofuran	1.0E-01	3.00E-03	No IUR	1.4E-06
7550-45-0	Titanium Tetrachloride	1.02-01	J.UUL-UJ		1. 7 L-00
108-88-3	Toluene	2.2E-01	6.60E-03	No IUR	1.3E-06
76-13-1	Trichloro-1,2,2-trifluoroethane, 1,1,2-	6.4E-02	1.92E-03	No IUR	6.1E-08
120-82-1	Trichlorobenzene, 1,2,4-	U.+L-UZ	1.02L=03		U. 1L=UU
71-55-6	Trichloroethane, 1,1,1-				
7 1 33-0	THOMOTOGRAME, 1,1,1-				

Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator
IUR	Source*	RfC	Source*	
(ug/m ³) ⁻¹		(mg/m ³)		i
(-5)		8.00E-04	1	
		1.40E-02	CA	
		2.00E-03	1	
		2.00E-01	Р	
		3.00E-04	I	
		3.00E-02	Р	
		2.00E+01		
		1.00E-03	P	
		2.00E-02		
		2.00E-02	P	
		5.00E+00		
1.00E-03	X	2.00E-05	X	
		3.00E+00		
		1.00E-03	CA	
		7.00E-01		
		4.00E-02	Н	
2.60E-07	CA	3.00E+00	1	
1.00E-08		6.00E-01	1	Mut
5.10E-03	CA			
		1.00E-01	Р	
3.40E-05	CA	3.00E-03		
2.60E-04	CA	1.40E-05	CA	
4.00E-05	ı	9.00E-03		
8.80E-06	Р	5.00E-03	Р	
2.70E-03	Н	2.00E-02	I	
1.40E-02		4.00E-05	Х	Mut
1.60E-03	- 1			
6.30E-03	CA			
		2.00E-02	P	
1.10E-03	E	1.30E-03	Е	
1.10E-03	E	1.30E-03	E	
1.10E-03	E	1.30E-03	E	
1.10E-03	E	1.30E-03	E	
3.80E+00	E	4.00E-07	E	
		1.00E+00	P	
		3.00E-04	l	
		3.00E-04	l	
		8.00E-03	l I	
		1.00E+00	X	
		3.00E+00	CA	
0.707		2.00E+00	!	
3.70E-06	I	3.00E-02	<u> </u>	
		1.00E+00	1	
0.005.0:		1.00E-03	CA	
3.80E+01	CA	4.00E-08	CA	
1.10E-02	Ę	1.30E-04	E	
7.40E-06	I			
5.80E-05	CA	4.005.00	<u> </u>	
2.60E-07		4.00E-02	!	
		8.00E+01	!	
		2.00E+00	1	
		1.00E-04	A	
		5.00E+00	<u>!</u>	
		3.00E+01	H	
		2.00E-03	P	
		5.00E+00	I	

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.4, June 2015 RSLs

GB-7 10-feet

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR_SG	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ_SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

		Site Sub-slab or Exterior Soil Gas Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard
		Csg	Cia	CR	HQ
CAS	Chemical Name	(ug/m ³)	(ug/m ³)		
79-00-5	Trichloroethane, 1,1,2-				
79-01-6	Trichloroethylene				
75-69-4	Trichlorofluoromethane	2.7E-01	8.10E-03	No IUR	1.1E-05
96-18-4	Trichloropropane, 1,2,3-				
96-19-5	Trichloropropene, 1,2,3-				
121-44-8	Triethylamine				
526-73-8	Trimethylbenzene, 1,2,3-				
95-63-6	Trimethylbenzene, 1,2,4-				
108-05-4	Vinyl Acetate				
593-60-2	Vinyl Bromide				
75-01-4	Vinyl Chloride	2.1E-01	6.30E-03	2.7E-08	6.0E-05
108-38-3	Xylene, m-	1.7E-01	5.10E-03	No IUR	4.9E-05
95-47-6	Xylene, o-	6.1E-02	1.83E-03	No IUR	1.8E-05
106-42-3	Xylene, P-				-
1330-20-7	Xylenes				-
140-88-5	Ethyl Acrylate				

Inhalation Unit Risk	IUR Source*	Reference Concentration	RFC Source*	Mutagenic Indicator
(ug/m ³) ⁻¹		(mg/m ³)		i
1.60E-05		2.00E-04	X	
see note	-	2.00E-03		TCE
		7.00E-01	Ι	
		3.00E-04		Mut
		3.00E-04	Р	
		7.00E-03	ı	
		5.00E-03	Р	
		7.00E-03	Ρ	
		2.00E-01		
3.20E-05	Ι	3.00E-03		
4.40E-06	_	1.00E-01		Mut
		1.00E-01	S	
		1.00E-01	S	
		1.00E-01	S	
		1.00E-01		
		8.00E-03	Р	

Notes:

(3)

(1)	Inhalation Pathway Exposure Parameters (RME):	Units	Residential		Residential Commercial		cial	Selected (bas scenario		
	Exposure Scenario		Sy	mbol	Value	Symbol	Value	S	ymbol	Value
	Averaging time for carcinogens	(yrs)	ATC	_R_SG	70	ATc_C_SG	70	ΑĪ	Tc_SG	70
	Averaging time for non-carcinogens	(yrs)	ATno	_R_SG	26	ATnc_C_SG	25	AT	nc_SG	26
	Exposure duration	(yrs)	ED_	_R_SG	26	ED_C_SG	25	E	D_SG	26
	Exposure frequency	(days/yr)	EF_	_R_SG	350	EF_C_SG	250	E	F_SG	350
	Exposure time	(hr/day)	ET_	_R_SG	24	ET_C_SG	8	E	T_SG	24
(2)	Generic Attenuation Factors:			Reside	ntial	Commer	cial	Se	elected (ba scenari	

Sub-Slab and Exterior Soil Gas

Groundwater

<u>Formulas</u> Cia, target = MIN(Cia,c; Cia,nc)

Source Medium of Vapors

Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR) Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

Special Case Chemicals (4) Trichloroethylene

Residential		Residential Commercial			ted (based on scenario)		
Symbol	Value	Symbol	Value	Symbol	Value		
mIURTCE_R_SG	1.00E-06	nIURTCE_C_SG	0.00E+00	mIURTCE_SG	1.00E-06		
IURTCE_R_SG	3.10E-06	IURTCE_C_SG	4.10E-06	IURTCE_SG :	3.10E-06		

Value

0.03

0.001

Symbol

AFgw_SG AFss_SG

Value

0.001

0.03

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

Symbol

AFgw_R_SG

AFss_R_SG

Value

0.001

Symbol

AFss_C_SG

AFgw_C_SG

Note: This section applies to trichloroethylene and other	Age Cohort	Exposure Duration
mutagenic chemicals, but not to vinyl chloride.	0 - 2 years	2
	2 - 6 years	4
	6 - 16 years	10
	16 - 26 vears	10

Mutagenic-mode-of-ac	otion (MMOA) adii	otmont footor	72	This factor is used in the equations for mutagenic chemica
	16 - 26 years	10	1	
	6 - 16 years	10	3	

Age-dependent adjustment

factor

10 3

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.4, June 2015 RSLs

GB-7 10-feet

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR_SG	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ_SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

		Site Sub-slab or	Calculated	VI	
		Exterior Soil Gas	Indoor Air	Carcinogenic	VI Hazard
		Concentration	Concentration	Risk	
		Csg	Cia	CD	110
CAS	Chemical Name	(ug/m ³)	(ug/m ³)	CR	HQ

Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator
IUR	Source*	RfC	Source*	
(ug/m ³) ⁻¹		(mg/m ³)		i

Vinyl Chloride

See the Navigation Guide equation for Cia,c for vinyl chloride.

Notation:

I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at:

http://www.epa.gov/iris/subst/index.html

P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available online at:

http://hhpprtv.ornl.gov/pprtv.shtml

A = Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Risk Levels (MRLs). Available online at:

CA = California Environmental Protection Agency/Office of Environmental Health Hazard Assessment assessments. Available online at:

http://www.oehha.ca.gov/risk/ChemicalDB/index.asp

H = HEAST. EPA Superfund Health Effects Assessment Summary Tables (HEAST) database. Available online at:

S = See RSL User Guide, Section 5

X = PPRTV Appendix

Mut = Chemical acts according to the mutagenic-mode-of-action, special exposure parameters apply (see footnote (4) above).

VC = Special exposure equation for vinyl chloride applies (see Navigation Guide for equation).

TCE = Special mutagenic and non-mutagenic IURs for trichloroethylene apply (see footnote (4) above).

Yellow highlighting indicates site-specific parameters that may be edited by the user.

Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be changed.

Pink highlighting indicates VI carcinogenic risk greater than the target risk for carcinogens (TCR) or VI Hazard greater than or equal to the target hazard quotient for non-carcinogens (THQ).

APPENDIX F Statistical Calculations

APPENDIX F Statistical Calculations

1	, A B C	D E UCL Statisti	F ics for Data	G H I J K Sets with Non-Detects	
1		OOL Oldiloli	ioo ioi bata	Colo Mili Holi Bolodo	
2	User Selected Options				
3	Date/Time of Computation	11/20/2015 10:56:45 AN	Λ		
4	From File	Arsenic Data 0 to 2-feet	0.00		
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9		10000000			
10	Arsenic				
11					
12			General :	Statistics	
13	Total N	Number of Observations	85	Number of Distinct Observations	73
14		Number of Detects	14	Number of Non-Detects	71
15	Nu	mber of Distinct Detects	13	Number of Distinct Non-Detects	61
16		Minimum Detect	2.5	Minimum Non-Detect	1.9
17		Maximum Detect	74.9	Maximum Non-Detect	6.6
18		Variance Detects	389.9	Percent Non-Detects	83.5
19		Mean Detects	11.32	SD Detects	19.7
20		Median Detects	4.15	CV Detects	1.7
21		Skewness Detects	3.037	Kurtosis Detects	9.4
22	N	Mean of Logged Detects	1.752	SD of Logged Detects	0.9
23				-	
24		Norma	I GOF Test	on Detects Only	
25	Sh	apiro Wilk Test Statistic	0.492	Shapiro Wilk GOF Test	
3		apiro Wilk Critical Value	0.874	Detected Data Not Normal at 5% Significance Leve	!
		Lilliefors Test Statistic	0.432	Lilliefors GOF Test	
28	5%	Lilliefors Critical Value	0.237	Detected Data Not Normal at 5% Significance Leve	1
29			Not Normal	at 5% Significance Level	
30					
31	Kaplan-Me	eier (KM) Statistics using	Normal C	ritical Values and other Nonparametric UCLs	
32		Mean	4.292	Standard Error of Mean	0.9
33		SD	8.359	95% KM (BCA) UCL	5.9
34		95% KM (t) UCL	5.892	95% KM (Percentile Bootstrap) UCL	6.0
35		95% KM (z) UCL	5.874	95% KM Bootstrap t UCL	10.0
36	90	% KM Chebyshev UCL	7.178	95% KM Chebyshev UCL	8.4
37	97.5	5% KM Chebyshev UCL	10.3	99% KM Chebyshev UCL	13.8
38				and the state of t	
39		Gamma GOF T	ests on De	tected Observations Only	
10		A-D Test Statistic	2.08	Anderson-Darling GOF Test	
11		5% A-D Critical Value	0.766	Detected Data Not Gamma Distributed at 5% Significance	e Leve
12		K-S Test Statistic	0.349	Kolmogrov-Smirnoff GOF	
13		5% K-S Critical Value	0.236	Detected Data Not Gamma Distributed at 5% Significance	e Leve
14		Detected Data Not Ga	amma Distr	ibuted at 5% Significance Level	
15					
16		Gamma S	tatistics on	Detected Data Only	
17		k hat (MLE)	0.87	k star (bias corrected MLE)	0.7
ن		Theta hat (MLE)	13.01	Theta star (bias corrected MLE)	15.4
19		nu hat (MLE)	24.36	nu star (bias corrected)	20.4
50	MLE	E Mean (bias corrected)	11.32	MLE Sd (bias corrected)	13.2
MINTER.					
51	1				

. 4. 1		F	G H I J K nu hat (KM)	L 44.83
53	k hat (KM)	0.264		50 500 5
54	Approximate Chi Square Value (44.83, α)	30.47	Adjusted Chi Square Value (44.83, β)	30.27
55	95% Gamma Approximate KM-UCL (use when n>=50)	6.315	95% Gamma Adjusted KM-UCL (use when n<50)	6.358
56	Commo POS S	tatietice uei	ng Imputed Non-Detects	
58	, <u>,</u>		NDs with many tied observations at multiple DLs	
59			detected data is small such as < 0.1	
60			o yield inflated values of UCLs and BTVs	
61			be computed using gamma distribution on KM estimates	1 07
62	Minimum	0.01	Mean	1.97
63	Maximum	74.9	Median	0.01
64	SD	8.827	CV	4.48
65	k hat (MLE)	0.196	k star (bias corrected MLE)	0.197
66	Theta hat (MLE)	10.06	Theta star (bias corrected MLE)	10.02
67	nu hat (MLE)	33.28	nu star (bias corrected)	33.44
68	MLE Mean (bias corrected)	1.97	MLE Sd (bias corrected)	4.442
69			Adjusted Level of Significance (β)	0.0472
70	Approximate Chi Square Value (33.44, α)	21.22	Adjusted Chi Square Value (33.44, β)	21.05
71	95% Gamma Approximate UCL (use when n>=50)	3.105	95% Gamma Adjusted UCL (use when n<50)	3.13
72				
73	Lognormal GOF	Test on De	tected Observations Only	
74	Shapiro Wilk Test Statistic	0.763	Shapiro Wilk GOF Test	
	5% Shapiro Wilk Critical Value	0.874	Detected Data Not Lognormal at 5% Significance Lev	el
75	Lilliefors Test Statistic	0.247	Lilliefors GOF Test	
76	5% Lilliefors Critical Value	0.237	Detected Data Not Lognormal at 5% Significance Lev	el
77			Il at 5% Significance Level	
3	Detected Data No.	ot Logiloinia	n at 0 % digitification bevol	
79	Legnermal DOS	Ctatiation I le	sing Imputed Non-Detects	
80			Mean in Log Scale	1.032
81	Mean in Original Scale	3.954		0.551
82	SD in Original Scale	8.45	SD in Log Scale	5.653
83	95% t UCL (assumes normality of ROS data)	5.478	95% Percentile Bootstrap UCL	14.45
84	95% BCA Bootstrap UCL	6.965	95% Bootstrap t UCL	14.45
85	95% H-UCL (Log ROS)	3.659		
86				
87		DL/2 Sta		
88	DL/2 Normal		DL/2 Log-Transformed	
89	Mean in Original Scale	4.106	Mean in Log Scale	1.101
90	SD in Original Scale	8.417	SD in Log Scale	0.514
91	95% t UCL (Assumes normality)	5.624	95% H-Stat UCL	3.808
92	DL/2 is not a recommended met	hod, provide	ed for comparisons and historical reasons	
93				
94	Nonparametr	ic Distribution	on Free UCL Statistics	
95			tribution at 5% Significance Level	
96	9	Suggested U	CL to Use	
97	95% KM (t) UCL	5.892	95% KM (% Bootstrap) UCL	6.044
98	93 % KW (y OCL	0.002	5070 (AT (70 B0000 ap) 00L	2,3 1,1
09	Males Oursestiene	ICI era ===	rided to help the user to select the most appropriate 95% U	CI
ر د				JL.
101			size, data distribution, and skewness.	2)
102			lation studies summarized in Singh, Maichle, and Lee (2006	
103	However, simulations results will not cover all Real Wor	1d data sets	; for additional insight the user may want to consult a statist	ician.
Control of the last				

	0		2	3	4
1	Date	Boring	Depth	Arsenic	D Arsenic
1	8/15/2015 12:00:00 AM		0-2	2.5	1 1
2	8/15/2015 12:00:00 AM		0-2	2.2	0
	8/15/2015 12:00:00 AM		2-4	3.1	1
3	8/15/2015 12:00:00 AM		2-4	6.5	
4	8/15/2015 12:00:00 AM		2-4	2.9	
5	8/15/2015 12:00:00 AM		2-4	3.1	1
6	8/15/2015 12:00:00 AM		2-4	3.6	1
7	8/15/2015 12:00:00 AM		2-4	1,9	0
8	8/15/2015 12:00:00 AM		2-4	2.7	1
9	8/15/2015 12:00:00 AM		2-4	4.7	1
10	8/15/2015 12:00:00 AM		2-4	3.3	1
11	8/25/2003 12:00:00 AM		0.5-1.5	5.6	0
12					0
13	8/25/2003 12:00:00 AM		0.5-2	6.33	
14	8/25/2003 12:00:00 AM		0.5-2	6.26	0
15	8/25/2003 12:00:00 AM		0.5-2	6.02	0
16	8/25/2003 12:00:00 AM		0.5-2	4.81	0
17	8/25/2003 12:00:00 AM		0.5-2	5.26	0
18	8/25/2003 12:00:00 AM		0.5-2	5.19	0
19	8/25/2003 12:00:00 AM		0.5-2	6.3	0
20	8/25/2003 12:00:00 AM	SB-20	0-2	31.5	1
21	8/25/2003 12:00:00 AM		0-2	5.34	0
22	8/25/2003 12:00:00 AM		0-2	5.56	0
23	8/25/2003 12:00:00 AM	SB-16	2-4	4.63	0
24	8/25/2003 12:00:00 AM	SB-17	2-4	5.16	0
?5	8/25/2003 12:00:00 AM	SB-19	2-4	4.32	0
26	8/25/2003 12:00:00 AM	SB-20	2-4	4.64	0
27	8/25/2003 12:00:00 AM	SB-24	2-4	5.44	0
28	8/25/2003 12:00:00 AM	SB-25	2-4	5.25	0
29	8/25/2003 12:00:00 AM	SB-26	2-4	5.11	0
30	8/25/2003 12:00:00 AM	SB-27	2-4	5.3	0
31	8/25/2003 12:00:00 AM	SB-41	2-4	4.75	0
32	2/13/2014 12:00:00 AM	GB-1	0.5-1	5.14	0
33	2/13/2014 12:00:00 AM	GB-10	0.5-1	5.02	0
34	2/13/2014 12:00:00 AM	GB-11	0.5-1	5.46	0
35	2/13/2014 12:00:00 AM	GB-12	0.5-1	5.67	0
36	2/13/2014 12:00:00 AM	GB-13	0.5-1	6.22) 1
37	2/13/2014 12:00:00 AM	GB-14	0,5-1	4.96	0
38	2/13/2014 12:00:00 AM	GB-15	0,5-1	7.59	1
39	2/13/2014 12:00:00 AM	GB-16	0.5-1	4.8	0
40	2/13/2014 12:00:00 AM	GB-17	0.5-1	5.1	0
41	2/13/2014 12:00:00 AM	GB-18	0.5-1	5.52	0
42	2/13/2014 12:00:00 AM	GB-19	0.5-1	5.77	0
43	2/13/2014 12:00:00 AM	GB-2	0.5-1	6.36	0
44	2/13/2014 12:00:00 AM	GB-20	0-6"	5.29	0
45	2/13/2014 12:00:00 AM	GB-21	0-6"	5.4	0
46	2/13/2014 12:00:00 AM	GB-22	0-6"	5.23	0
+7	2/13/2014 12:00:00 AM	GB-23	0-6"	5.03	0
48	2/13/2014 12:00:00 AM	GB-24	0-6"	5.39	0
49	2/13/2014 12:00:00 AM	GB-25	0-6"	4.78	0
50	2/13/2014 12:00:00 AM	GB-26	0-6"	5.4	0
51	2/13/2014 12:00:00 AM	·//	0-6"	74.9	1
3000 M 10000				****	,

,	0	1	2	3	4
	Date	Boring	Depth	Arsenic	D_Arsenic
52	2/13/2014 12:00:00 AM	GB-3	0-6"	6.22	0
53	2/13/2014 12:00:00 AM	GB-4	0-6"	5.78	0
54	2/13/2014 12:00:00 AM	GB-5	0-6"	6.42	0
3 5	2/13/2014 12:00:00 AM	GB-6	0-6"	6.11	0
56	2/13/2014 12:00:00 AM	GB-7	0-6"	5.77	0
57	2/13/2014 12:00:00 AM	GB-8	0-6"	5.27	0
58	2/13/2014 12:00:00 AM	GB-9	0-6"	5.69	0
59	2/13/2014 12:00:00 AM	GB-1	0.5-2	5.6	0
60	2/13/2014 12:00:00 AM	GB-10	0.5-2	5.22	0
61	2/13/2014 12:00:00 AM	GB-11	0.5-2	5.07	0
62	2/13/2014 12:00:00 AM	GB-12	0.5-2	5.49	0
63	2/13/2014 12:00:00 AM	GB-13	0.5-2	5.23	0
64	2/13/2014 12:00:00 AM	GB-14	0.5-2	5.73	0
65	2/13/2014 12:00:00 AM	GB-15	0.5-2	6.24	0
66	2/13/2014 12:00:00 AM	GB-16	0.5-2	5.33	0
67	2/13/2014 12:00:00 AM	GB-17	0.5-2	5.35	0
68	2/13/2014 12:00:00 AM	GB-18	0.5-2	5.89	1
69	2/13/2014 12:00:00 AM	GB-19	0.5-2	5.57	0
70	2/13/2014 12:00:00 AM	GB-2	0.5-2	5.16	0
71	2/13/2014 12:00:00 AM	GB-20	0.5-2	5.05	0
72	2/13/2014 12:00:00 AM	GB-21	0.5-2	5.66	0
73	2/13/2014 12:00:00 AM	GB-22	0.5-2	5.24	0
74	2/13/2014 12:00:00 AM	GB-23	0.5-2	5.27	0
75	2/13/2014 12:00:00 AM	GB-24	0.5-2	5.29	0
76	2/13/2014 12:00:00 AM	GB-25	0.5-2	4.83	0
77	2/13/2014 12:00:00 AM	GB-26	0.5-2	5.31	0
78	2/13/2014 12:00:00 AM	GB-27	0.5-2	5.24	0
79	2/13/2014 12:00:00 AM	GB-3	0.5-2	6.25	0
80	2/13/2014 12:00:00 AM	GB-4	0.5-2	6.25	0
81	2/13/2014 12:00:00 AM	GB-5	0.5-2	6.63	0
82	2/13/2014 12:00:00 AM	GB-6	0.5-2	6.16	0
83	2/13/2014 12:00:00 AM	GB-7	0.5-2	6.34	0
84	2/13/2014 12:00:00 AM	GB-8	0.5-2	5.28	0
85	2/13/2014 12:00:00 AM	GB-9	0.5-2	5.27	0

1	A B C	D E UCL Statistic	F cs for Data	G H I J K Sets with Non-Detects		
2				08-06-06- M64M34-04-04-05-05-05-05-05-05-05-05-05-05-05-05-05-		
3	User Selected Options					
4	Date/Time of Computation	11/20/2015 11:00:50 AM	1	a made de que inse		
4	From File	Arsenic Data 2 to 15-fee	t.xls			
6	Full Precision	OFF				
7	Confidence Coefficient	95%				
8	Number of Bootstrap Operations	2000				
9						
10	Arsenic					
11						
12			General S	Statistics		
13	Total I	Number of Observations	51	Number of Distinct Observations	33	
14		Number of Detects	29	Number of Non-Detects	22	
15	Nu	mber of Distinct Detects	20	Number of Distinct Non-Detects	17	
16		Minimum Detect	2.1	Minimum Non-Detect	1.9	
17		Maximum Detect	25	Maximum Non-Detect	5.53	
18		Variance Detects	20.37	Percent Non-Detects	43.1	
19		Mean Detects	4.685	SD Detects	4.51	
20		Median Detects	3.4	CV Detects	0.96	
21		Skewness Detects	3.688	Kurtosis Detects	15.3	
22		Mean of Logged Detects	1.333	SD of Logged Detects	0.56	
23						
24				on Detects Only		
25	Sh	apiro Wilk Test Statistic	0.541	Shapiro Wilk GOF Test		
3						
۷1		Lilliefors Test Statistic 0.293 Lilliefors GOF Test				
28	5%	6 Lilliefors Critical Value	0.165	Detected Data Not Normal at 5% Significance Leve	el	
29		Detected Data	Not Normal	at 5% Significance Level		
30		(ICM) Ob-M-M	Nave al O	itizal Values and other Neppersmetric LICLs		
31	каріап-іме			itical Values and other Nonparametric UCLs Standard Error of Mean	0.51	
32		Mean	3.619	95% KM (BCA) UCL	4.65	
33		SD SD	3.581	95% KM (Percentile Bootstrap) UCL	4.51	
34		95% KM (t) UCL	4.478 4.463	95% KM Bootstrap t UCL	5.49	
35	00	95% KM (z) UCL 0% KM Chebyshev UCL	5.157	95% KM Chebyshev UCL	5.85	
36		5% KM Chebyshev UCL	6.821	99% KM Chebyshev UCL	8.72	
37	97.0	3% KW Chebyshev OCL	0.021	3370 KM Gliebysliev GGE	0.72	
38		Gamma GOF T	ests on De	tected Observations Only		
39		A-D Test Statistic	2.325	Anderson-Darling GOF Test		
40		5% A-D Critical Value	0.755	Detected Data Not Gamma Distributed at 5% Significance	e Level	
41		K-S Test Statistic	0.251	Kolmogrov-Smirnoff GOF		
42		5% K-S Critical Value	0.164	Detected Data Not Gamma Distributed at 5% Significance	e Level	
43 44			5-40,000,000	ibuted at 5% Significance Level		
44 45						
45 46		Gamma S	tatistics on	Detected Data Only		
40 47		k hat (MLE)	2.518	k star (bias corrected MLE)	2.28	
75		Theta hat (MLE)	1.86	Theta star (bias corrected MLE)	2.05	
3 49		nu hat (MLE)	146.1	nu star (bias corrected)	132.3	
50	ML	E Mean (bias corrected)	4.685	MLE Sd (bias corrected)	3.10	
51						

400	A B C D E	S. F.	G H I J K	L 104.2
53	k hat (KM)	1.022	nu hat (KM)	81.08
54	Approximate Chi Square Value (104.21, α)	81.66	Adjusted Chi Square Value (104.21, β)	
55	95% Gamma Approximate KM-UCL (use when n>=50)	4.619	95% Gamma Adjusted KM-UCL (use when n<50)	4.652
56	Commo DOS S	tatietice usin	g Imputed Non-Detects	
			Ds with many tied observations at multiple DLs	
58			etected data is small such as < 0.1	
59				
60			yield inflated values of UCLs and BTVs	
61			be computed using gamma distribution on KM estimates Mean	2.875
62	Minimum	0.01	Median	2.3
63	Maximum	25	CV	1.389
64	SD	3.994		
65	k hat (MLE)	0.464	k star (bias corrected MLE)	0.45
66	Theta hat (MLE)	6.192	Theta star (bias corrected MLE)	6.388
67	nu hat (MLE)	47.36	nu star (bias corrected)	45.91
68	MLE Mean (bias corrected)	2.875	MLE Sd (bias corrected)	4.286
69			Adjusted Level of Significance (β)	0.045
70	Approximate Chi Square Value (45.91, α)	31.36	Adjusted Chi Square Value (45.91, β)	31.01
71	95% Gamma Approximate UCL (use when n>=50)	4.209	95% Gamma Adjusted UCL (use when n<50)	4.256
72				
73	Lognormal GOF	Test on Dete	ected Observations Only	
74	Shapiro Wilk Test Statistic	0.83	Shapiro Wilk GOF Test	
75	5% Shapiro Wilk Critical Value	0.926	Detected Data Not Lognormal at 5% Significance Lev	/el
76	Lilliefors Test Statistic	0.204	Lilliefors GOF Test	
77	5% Lilliefors Critical Value	0.165	Detected Data Not Lognormal at 5% Significance Lev	/el
7	Detected Data No	ot Lognormal	at 5% Significance Level	
19				
80	Lognormal ROS	Statistics Us	ing Imputed Non-Detects	
81	Mean in Original Scale	3.365	Mean in Log Scale	0.943
82	SD in Original Scale	3.724	SD in Log Scale	0.661
83	95% t UCL (assumes normality of ROS data)	4.239	95% Percentile Bootstrap UCL	4.322
84	95% BCA Bootstrap UCL	4.683	95% Bootstrap t UCL	5.247
85	95% H-UCL (Log ROS)	3.85		
86				
87		DL/2 Stati	stics	
88	DL/2 Normal		DL/2 Log-Transformed	
89	Mean in Original Scale	3.387	Mean in Log Scale	0.942
90	SD in Original Scale	3.727	SD in Log Scale	0.68
	95% t UCL (Assumes normality)	4.262	95% H-Stat UCL	3.922
91	A 24		d for comparisons and historical reasons	
92	DEE to flor a recommended men			
93	Nonparametr	ic Distributio	n Free UCL Statistics	
94			ibution at 5% Significance Level	
95	Data do not follow a Disc	JOINDIO DIGII		***
96	c	Suggested UC	CL to Use	
97		4.478	95% KM (% Bootstrap) UCL	4.516
98	95% KM (t) UCL	4.470	30 % (\W (\% DOOLS(rap) OCL	1.010
19		101 '	ded to help the upper to calcut the most appropriate 0E9/ 1	ICI
ن			ded to help the user to select the most appropriate 95% U	JL.
101			size, data distribution, and skewness.	6)
102			ation studies summarized in Singh, Maichle, and Lee (200	
103	However, simulations results will not cover all Real Wor	rld data sets;	for additional insight the user may want to consult a statis	ucian.

		1 .	1		· .
į.	0				
	Date	Boring	Interval	Arsenic	D_Arsenic
1	8/15/2015 12:00:00 AM	ļ.,,,,	3-5	2.5	0
2	8/15/2015 12:00:00 AM		3-5	3.9	1
3	8/15/2015 12:00:00 AM		3-5	2.4	1
4	8/15/2015 12:00:00 AM		4-6	3.4	1
5	8/15/2015 12:00:00 AM	GB-18	4-6	6	1
6	8/15/2015 12:00:00 AM		4-6	2.8	1
7	8/15/2015 12:00:00 AM	GB-26	4-6	2.6	1
8	8/15/2015 12:00:00 AM	SB-24	4-6	3.7	1
9	8/15/2015 12:00:00 AM	SB-25	4-6	2.5	1
10	8/15/2015 12:00:00 AM	SB-41	4-6	2.3	1
11	8/15/2015 12:00:00 AM	į	4-6	2.1	1
12	8/15/2015 12:00:00 AM	GB-11	8-10	2.7	0
13	8/15/2015 12:00:00 AM	GB-14	8-10	25	1
14	8/15/2015 12:00:00 AM	GB-19	8-10	2	0
15	8/15/2015 12:00:00 AM	GB-21	8-10	3.5	1
16	8/15/2015 12:00:00 AM	GB-27	8-10	2.4	1
17	8/15/2015 12:00:00 AM	GB-28	8-10	2	0
18	8/15/2015 12:00:00 AM		8-10	5.3	1
19	8/15/2015 12:00:00 AM	GB-5	8-10	6.4	1
20	8/15/2015 12:00:00 AM	GB-7	8-10	2	0
21	8/15/2015 12:00:00 AM	GB-9	8-10	2.8	1
22	8/15/2015 12:00:00 AM	SB-17	8-10	2	0
23	8/15/2015 12:00:00 AM	SB-24	8-10	3.4	1
24	8/15/2015 12:00:00 AM	SB-25	8-10	2.3	1
י5	8/15/2015 12:00:00 AM	SB-41	8-10	2.1	0
26	8/15/2015 12:00:00 AM	SB-42	8-10	3	1
27	8/15/2015 12:00:00 AM	GB-11	13-15	2.7	1
28	8/15/2015 12:00:00 AM	GB-14	13-15	6.3	1
29	8/15/2015 12:00:00 AM	GB-19	13-15	3.2	0
30	8/15/2015 12:00:00 AM	GB-21	13-15	3.5	1
31	8/15/2015 12:00:00 AM	GB-27	13-15	2.2	0
32	8/15/2015 12:00:00 AM	GB-28	13-15	5.2	1
33	8/15/2015 12:00:00 AM	GB-3	13-15	3.4	1
34	8/15/2015 12:00:00 AM	GB-5	13-15	2	0
35	8/15/2015 12:00:00 AM	GB-7	13-15	2.3	0
36	8/15/2015 12:00:00 AM	GB-9	13-15	2.3	1
37	8/15/2015 12:00:00 AM	SB-17	13-15	2.3	1
38	8/15/2015 12:00:00 AM	SB-24	13-15	1.9	0
39	8/15/2015 12:00:00 AM	SB-25	13-15	3.9	1
40	8/15/2015 12:00:00 AM	SB-41	13-15	2	0
41	8/15/2015 12:00:00 AM	SB-42	13-15	13	1
42	8/25/2003 12:00:00 AM	SB-15	4-8	5.09	0
43	8/25/2003 12:00:00 AM	SB-19	4-8	4.62	0
44	8/25/2003 12:00:00 AM	SB-20	4-8	5.24	0
45	8/25/2003 12:00:00 AM	SB-39	4-8	4.98	0
46	8/25/2003 12:00:00 AM	SB-19	8-11	4.74	0
+7	8/25/2003 12:00:00 AM	SB-24	8-12	5.32	0
48	8/25/2003 12:00:00 AM	SB-26	8-12	5.53	0
49	8/25/2003 12:00:00 AM	SB-27	8-12	7.47	1
50	8/25/2003 12:00:00 AM	SB-39	8-12.5	5.17	0
51	8/25/2003 12:00:00 AM	SB-20	9-13	4.15	0
emineration (Inches		1	<u> </u>		

	A	В	С	D	Е	Fww.	G H I J K	um En en
1					UCL Statist	ics for Data	Sets with Non-Detects	
2								
3		User Selec	cted Options	3				
4	Date	/Time of Co	mputation	11/20/2015	2:17:30 PM			
		From File Lead Data 0 to 2-feet.						
6		Full Precision OFF						
7		Confidence Coefficient 95%						
8	Number of	Bootstrap C	Operations	2000				
9								
10	Lead							
11						016	No. at a Maria	
12						General S		CE.
13			Total	Number of O		68	Number of Distinct Observations	65
14				50007-001-00-011-000-	r of Detects	64	Number of Non-Detects	4
15			Nu	mber of Dist		61	Number of Distinct Non-Detects	4 5.05
16					num Detect	5.85	Minimum Non-Detect Maximum Non-Detect	5.4
17					num Detect	465		5.8829
18					nce Detects	7321	Percent Non-Detects SD Detects	85.56
19					ean Detects	52.61	CV Detects	1.626
20					lian Detects	15.45	Kurtosis Detects	12.98
21					ess Detects	3.373	SD of Logged Detects	1.113
22			2	Mean of Log	ged Detects	3.226	SD of Logged Detects	1.113
23					Norma	I COE Toet	on Detects Only	
24			CI.	napiro Wilk T		0.565	Normal GOF Test on Detected Observations Only	,
25	-			% Shapiro V		0.565	Detected Data Not Normal at 5% Significance Leve	
-			5	1/E (est Statistic	0.292	Lilliefors GOF Test	1
21			E0	6 Lilliefors C		0.292	Detected Data Not Normal at 5% Significance Leve	1
28			37				at 5% Significance Level	
29	-			De	iccica Data	TVOC TVOTTILA	at 5 % digitilicance 25 voi	
30			Kanlan-Me	eier (KM) St	atistics using	n Normal Cr	itical Values and other Nonparametric UCLs	
31			rapian in	olor (ruin) oc	Mean	49.81	Standard Error of Mean	10.16
32					SD	83.11	95% KM (BCA) UCL	68.46
33				95%	KM (t) UCL	66.76	95% KM (Percentile Bootstrap) UCL	67.42
34					KM (z) UCL	66.52	95% KM Bootstrap t UCL	74.9
35			9	0% KM Chel	5.5	80.29	95% KM Chebyshev UCL	94.09
36 37				5% KM Chel	*	113.3	99% KM Chebyshev UCL	150.9
38					,		Substitute Automotive Control of	1100000000
39	4			Ga	mma GOF T	Tests on De	tected Observations Only	
40	-			A-D T	est Statistic	4.444	Anderson-Darling GOF Test	
41					ritical Value	0.789	Detected Data Not Gamma Distributed at 5% Significance	e Level
42					est Statistic	0.247	Kolmogrov-Smirnoff GOF	***************************************
43					ritical Value	0.116	Detected Data Not Gamma Distributed at 5% Significance	e Level
44							ibuted at 5% Significance Level	
					Gamma S	Statistics on	Detected Data Only	
45					k hat (MLE)	0.805	k star (bias corrected MLE)	0.778
45 46					a hat (MLE)	65.34	Theta star (bias corrected MLE)	67.64
45 46 47				11100				00.50
45 46 47					u hat (MLE)	103.1	nu star (bias corrected)	99.56
45 46 47 3 49			ML		u hat (MLE)	103.1 52.61	nu star (bias corrected) MLE Sd (bias corrected)	59.65
45 46 47			ML	n	u hat (MLE)			

	A B C D E k hat (KM)	F 0.359	G	Н		J	K nu hat (KM)	L 48.85
53	Approximate Chi Square Value (48.85, α)	33.8		^	djusted Chi S			33.53
54		71.98	O.F.		Adjusted KM	•		72.56
55 56	95% Gamma Approximate KM-UCL (use when n>=50)	71.90	30	770 Clairina	Aujusteu Niv	1-00L (d3c	Whom in loop	72.00
7	Gamma ROS	Statistics us	ing Imputed	d Non-Dete	ects			
58	GROS may not be used when data se	et has > 50%	NDs with r	nany tied ol	oservations a	t multiple D	Ls	
59	GROS may not be used v	vhen kstar of	detected d	ata is small	such as < 0	.1		
60	For such situations, GROS me	ethod tends t	o yield infla	ited values	of UCLs and	BTVs		
61	For gamma distributed detected data, BTVs ar	nd UCLs may	be compu	ted using g	amma distrib	oution on KN	A estimates	
62	Minimum	0.01					Mean	49.52
63	Maximum	465					Median	14.85
64	SD	83.9	CV					1.694
65	k hat (MLE)	0.551			k sta	ar (bias corr	ected MLE)	0.536
66	Theta hat (MLE)	89.92			Theta sta	ar (bias corr	ected MLE)	92.35
67	nu hat (MLE)	74.89				nu star (bias	s corrected)	72.92
68	MLE Mean (bias corrected)	49.52			N	ILE Sd (bias	s corrected)	67.62
69					Adjusted L	evel of Sign	ificance (β)	0.0465
70	Approximate Chi Square Value (72.92, α)	54.26		А	djusted Chi S	Square Valu	e (72.92, β)	53.91
The state of	95% Gamma Approximate UCL (use when n>=50)	66.55			nma Adjusted			66.98
71	constraints of the control of the co							100000000000000000000000000000000000000
72	Lognormal GOI	F Test on De	etected Obs	servations (Only			
73	Lilliefors Test Statistic	0.191	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Lilliefors (GOF Test		
74	5% Lilliefors Critical Value	0.111	Det	ected Data			gnificance Lev	/el
75	Detected Data N					iai at o /o oiç	J.III.00.100 20	
76	Detected Data I	ot Lognom	ar at 570 Oi	grillicarioc	LOVOI			
77	Lognormal ROS	Statistics I	leina Imput	ed Non-De	tects			
3	Mean in Original Scale	49.63	ong mpat	ou Hon Do		Mean i	n Log Scale	3.078
19	SD in Original Scale	83.83					n Log Scale	1.234
80	95% t UCL (assumes normality of ROS data)	66.59			05% De	ercentile Boo		67.76
81					33 70 F C		strap t UCL	74.76
82	95% BCA Bootstrap UCL	73.11				95 /6 0000	Strap (OCL	74.70
83	95% H-UCL (Log ROS)	64.13						
84		DI /0 OI						
85	P. O. H.	DL/2 Sta	atistics		DI /0 I T			(1)
86	DL/2 Normal	10.07			DL/2 Log-T			2.002
87	Mean in Original Scale	49.67					n Log Scale	3.093
88	SD in Original Scale	83.81					n Log Scale	1.205
89	95% t UCL (Assumes normality)	66.62					H-Stat UCL	62.75
90	DL/2 is not a recommended me	thod, provid	ed for com	parisons a	nd historical	reasons		
91								
92	Nonparame							
93	Data do not follow a Dis	scernible Dis	stribution a	t 5% Signif	icance Level		-	
94								
95		Suggested l	JCL to Use					
96	95% KM (Chebyshev) UCL	94.09						
97								
98	Note: Suggestions regarding the selection of a 95%	UCL are pro	vided to he	lp the user	to select the	most appro	priate 95% U	ICL.
20	Recommendations are base							
_ 3	These recommendations are based upon the result							
101	However, simulations results will not cover all Real Wo	orld data set	s; for addition	onal insight	the user ma	y want to co	onsult a statis	tician.
THE RESERVE OF THE PARTY OF THE								

•		· .			
	0	1	2	3	4
	Date	Boring	Depth	Lead	D_Lead
1	2/13/2014 12:00:00 AM		0-6"	8.76	1
2	2/13/2014 12:00:00 AM		0-6"	8.1	1
3	2/13/2014 12:00:00 AM		0-6"	9.21	1
4	2/13/2014 12:00:00 AM		0-6"	72.9	1
5	2/13/2014 12:00:00 AM		0-6"	32.4	1
6	2/13/2014 12:00:00 AM	GB-14	0-6"	62.8	1
7	2/13/2014 12:00:00 AM	GB-15	0-6"	95.1	1
8	2/13/2014 12:00:00 AM	GB-16	0-6"	5.85	1
9	2/13/2014 12:00:00 AM	GB-17	0-6"	9.56	1
10	2/13/2014 12:00:00 AM	GB-18	0-6"	171	1
11	2/13/2014 12:00:00 AM	GB-19	0-6"	19.3	1
12	2/13/2014 12:00:00 AM	GB-2	0-6"	12.4	1
13	2/13/2014 12:00:00 AM	GB-20	0-6"	5.29	0
14	2/13/2014 12:00:00 AM	GB-21	0-6"	5.4	0
15	2/13/2014 12:00:00 AM	GB-22	0-6"	38.4	1
16	2/13/2014 12:00:00 AM	GB-23	0-6"	19.3	1
17	2/13/2014 12:00:00 AM	GB-24	0-6"	211	1
18	2/13/2014 12:00:00 AM	GB-25	0-6"	7.65	1
19	2/13/2014 12:00:00 AM	GB-26	0-6"	95.5	1
20	2/13/2014 12:00:00 AM	GB-27	0-6"	172	1
Representation (1999)	2/13/2014 12:00:00 AM		0-6"	10.6	1
21	2/13/2014 12:00:00 AM		0-6"	13.9	1
22	2/13/2014 12:00:00 AM		0-6"	14.6	1
23	2/13/2014 12:00:00 AM		0-6"	14,6	1
24	2/13/2014 12:00:00 AM		0-6"	12,1	1
75	2/13/2014 12:00:00 AM		0-6"	8.77	1
26			0-6"	53.7	1
27	2/13/2014 12:00:00 AM		0.5-2	9.48	1
28	2/13/2014 12:00:00 AM				
29	2/13/2014 12:00:00 AM		0.5-2	12.1	1
30	2/13/2014 12:00:00 AM		0.5-2	465	
31	2/13/2014 12:00:00 AM		0.5-2	9.9	1
32	2/13/2014 12:00:00 AM		0.5-2	7.66	1
33	2/13/2014 12:00:00 AM		0.5-2	425	1
34	2/13/2014 12:00:00 AM		0.5-2	8.3	1
35	2/13/2014 12:00:00 AM	GB-16	0.5-2	119	1
36	2/13/2014 12:00:00 AM	GB-17	0.5-2	18.2	1
37	2/13/2014 12:00:00 AM	GB-18	0.5-2	147	1
38	2/13/2014 12:00:00 AM	GB-19	0.5-2	7.46	1
39	2/13/2014 12:00:00 AM	GB-2	0.5-2	20	1
40	2/13/2014 12:00:00 AM	GB-20	0.5-2	5.05	0
41	2/13/2014 12:00:00 AM	GB-21	0.5-2	7.14	1
42	2/13/2014 12:00:00 AM	GB-22	0.5-2	33.1	1
43	2/13/2014 12:00:00 AM	GB-23	0.5-2	9.28	1
44	2/13/2014 12:00:00 AM	GB-24	0.5-2	22.7	1
45	2/13/2014 12:00:00 AM	GB-25	0.5-2	71.4	1
46	2/13/2014 12:00:00 AM	GB-26	0.5-2	76.8	1
47	2/13/2014 12:00:00 AM		0.5-2	5.24	0
48	2/13/2014 12:00:00 AM	GB-3	0.5-2	15.2	1
49	2/13/2014 12:00:00 AM		0.5-2	11.9	1
50	2/13/2014 12:00:00 AM		0.5-2	13.2	1
	2/13/2014 12:00:00 AM		0.5-2	13.1	1
51					

	0	1	2	3	4
	Date	Boring	Depth	Lead	D_Lead
52	2/13/2014 12:00:00 AM	GB-7	0.5-2	15.1	1
53	2/13/2014 12:00:00 AM	GB-8	0.5-2	18.9	1
54	2/13/2014 12:00:00 AM	GB-9	0.5-2	37.8	1
7 5	8/25/2003 12:00:00 AM	SB-27	0.5-1.5	57.4	1
56	8/25/2003 12:00:00 AM	SB-14	0.5-2	13	1
57	8/25/2003 12:00:00 AM	SB-16	0.5-2	10.4	1
58	8/25/2003 12:00:00 AM	SB-17	0.5-2	16.8	1
59	8/25/2003 12:00:00 AM	SB-19	0.5-2	13.5	1
60	8/25/2003 12:00:00 AM	SB-25	0.5-2	67.3	1
61	8/25/2003 12:00:00 AM	SB-26	0.5-2	15.7	1
62	8/25/2003 12:00:00 AM	SB-39	0.5-2	8.97	1
63	8/25/2003 12:00:00 AM	SB-20	0-2	117	1
64	8/25/2003 12:00:00 AM	SB-24	0-2	151	1
65	8/25/2003 12:00:00 AM	SB-41	0-2	11.2	1
66	8/25/2003 12:00:00 AM	SB-45	0-2	58.5	1
67	8/15/2015 12:00:00 AM	SB-20	0-2	14	1
68	8/15/2015 12:00:00 AM	SB-25	0-2	38	1

No.	A B C	D E	F	G H I J K	- Law
1		UCL Statist	ics for Data	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	11/20/2015 2:23:40 PM			
	From File	Lead Data 2-15-feet.xls	5		
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9	1 - 2 - 3				
10	Lead				
11			General	Statistics	
12	Total	Number of Observations	71	Number of Distinct Observations	65
13	Total	Number of Detects	69	Number of Non-Detects	2
14	Nu	mber of Distinct Detects	63	Number of Distinct Non-Detects	2
15	ivu	Minimum Detect	1	Minimum Non-Detect	4
16		Maximum Detect	15	Maximum Non-Detect	4.74
17		Variance Detects	120000000000000000000000000000000000000	Percent Non-Detects	2.817
18		Mean Detects	122.3	SD Detects	266.8
19	7	Median Detects	35.6	CV Detects	2.181
20		Skewness Detects	4.497	Kurtosis Detects	24.14
21	 	Mean of Logged Detects	3.407	SD of Logged Detects	1.84
22		vican of Logged Dototo	0.107	52 1	
23		Norma	al GOF Tes	t on Detects Only	
24	Sh	apiro Wilk Test Statistic	0.483	Normal GOF Test on Detected Observations Onl	У
25		% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Leve	
		Lilliefors Test Statistic	0.345	Lilliefors GOF Test	
27	5%	6 Lilliefors Critical Value	0.107	Detected Data Not Normal at 5% Significance Leve	el
28		* 110 to 20 to 110 to 20		at 5% Significance Level	
30					
31	Kaplan-Me	eier (KM) Statistics using	g Normal C	ritical Values and other Nonparametric UCLs	
32		Mean	118.9	Standard Error of Mean	31.31
33		SD	261.9	95% KM (BCA) UCL	170.7
34	, "	95% KM (t) UCL	171.1	95% KM (Percentile Bootstrap) UCL	174.2
35		95% KM (z) UCL	170.4	95% KM Bootstrap t UCL	208.8
36	90)% KM Chebyshev UCL	212.9	95% KM Chebyshev UCL	255.4
37		5% KM Chebyshev UCL	314.5	99% KM Chebyshev UCL	430.5
38					
39		Gamma GOF	Tests on De	tected Observations Only	
40		A-D Test Statistic	1.55	Anderson-Darling GOF Test	
41		5% A-D Critical Value	0.826	Detected Data Not Gamma Distributed at 5% Significance	e Level
42		K-S Test Statistic	0.161	Kolmogrov-Smirnoff GOF	
43		5% K-S Critical Value	0.114	Detected Data Not Gamma Distributed at 5% Significance	e Level
44		Detected Data Not G	amma Dist	ributed at 5% Significance Level	
45					
46		Gamma S	Statistics on	Detected Data Only	
17		k hat (MLE)	0.46	k star (bias corrected MLE)	0.449
.8		Theta hat (MLE)	266.1	Theta star (bias corrected MLE)	272.3
49		nu hat (MLE)	63.44	nu star (bias corrected)	62.01
	ML	E Mean (bias corrected)	122.3	MLE Sd (bias corrected)	182.5
50					
50 51					

A	A B C D E	andre (Francis	G H I J K	L					
53	k hat (KM)	0.206	nu hat (KM)	29.28					
54	Approximate Chi Square Value (29.28, α)	17.93	Adjusted Chi Square Value (29.28, β)	17.75					
55	95% Gamma Approximate KM-UCL (use when n>=50)	194.2	95% Gamma Adjusted KM-UCL (use when n<50)	196.3					
56									
7			ng Imputed Non-Detects						
58			NDs with many tied observations at multiple DLs						
59			detected data is small such as < 0.1						
60	For such situations, GROS me	ethod tends to	yield inflated values of UCLs and BTVs						
61	For gamma distributed detected data, BTVs an	d UCLs may	be computed using gamma distribution on KM estimates						
62	Minimum	0.01	Mean	118.9					
63	Maximum	1800	Median	33.3					
64	SD	263.8	CV	2.219					
65	k hat (MLE)	0.41	k star (bias corrected MLE)	0.402					
66	Theta hat (MLE)	289.8	Theta star (bias corrected MLE)	295.5					
67	nu hat (MLE)	58.26	nu star (bias corrected)	57.14					
68	MLE Mean (bias corrected)	118.9	MLE Sd (bias corrected)	187.4					
69		Adjusted Level of Sig							
70	Approximate Chi Square Value (57.14, α)	40.76	Adjusted Chi Square Value (57.14, β)	40.47					
71	95% Gamma Approximate UCL (use when n>=50)	166.7	95% Gamma Adjusted UCL (use when n<50)	167.8					
72									
73	Lognormal GOF	Test on Det	rected Observations Only						
74	Lilliefors Test Statistic	0.0934	Lilliefors GOF Test						
75	5% Lilliefors Critical Value	0.107	107 Detected Data appear Lognormal at 5% Significance						
76		ear Lognorm	nal at 5% Significance Level						
77									
-3	Lognormal ROS	Statistics Us	sing Imputed Non-Detects						
	Mean in Original Scale	118.9	Mean in Log Scale	3.328					
79	SD in Original Scale	263.8	SD in Log Scale	1.872					
80	95% t UCL (assumes normality of ROS data)	171.1	95% Percentile Bootstrap UCL	174.6					
81	95% BCA Bootstrap UCL	205.2	95% Bootstrap t UCL	214.8					
82	95% H-UCL (Log ROS)	332.4	50200 660 660 660 F						
83	30% 11 332 (239 1.33)	00211							
84	LICEs using Lognormal Distribution and A	(M Estimates	s when Detected data are Lognormally Distributed						
85	KM Mean (logged)	3.318	95% H-UCL (KM -Log)	331.8					
86	KM SD (logged)	1.876	95% Critical H Value (KM-Log)	3.245					
87	KM Standard Error of Mean (logged)	0.224	CON CINICALLI VALUE (LILL 1997)						
88	Nivi Standard Error of Mean (logged)	0.224							
89		DL/2 Sta	tietice						
90	DL/2 Normal	DLIZ Gla	DL/2 Log-Transformed						
91		110	Mean in Log Scale	3.333					
92	Mean in Original Scale	119 263.8	SD in Log Scale	1.866					
93	SD in Original Scale		95% H-Stat UCL	328.4					
94	95% t UCL (Assumes normality)	171.1	ed for comparisons and historical reasons	020.4					
95	DLIZ IS NOT a recommended me	uiou, provide	eu foi compansons and mstondal reasons						
96	No. of the last of	de Distallant	on Free LICI Statistics						
97			on Free UCL Statistics						
98	Detected Data appear L	ognormai Dis	stributed at 5% Significance Level						
09			0.76.11-5						
J		Suggested U	CL to Use						
101	97.5% KM (Chebyshev) UCL	314.5							
102				101					
103			rided to help the user to select the most appropriate 95% ${ t L}$	JCL.					
104	Recommendations are base	ed upon data	size, data distribution, and skewness.						

1 S A	A B C D E F G H I J K L These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).
105 106	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.
107	

•		laninini manin	2	3	reside 4 estad
	Date	Boring	Depth	Lead	D_Lead
1	8/15/2015 12:00:00 AM		13-15	74	1
2	8/15/2015 12:00:00 AM		13-15	97	1
3	8/15/2015 12:00:00 AM	},	13-15	4.6	1
4	8/15/2015 12:00:00 AM		13-15	24	1
	8/15/2015 12:00:00 AM	ļ.,,,,_,,,,	13-15	64	1
5	8/15/2015 12:00:00 AM		13-15	950	1
6 7	8/15/2015 12:00:00 AM		13-15	12	1
	8/15/2015 12:00:00 AM	ļ	13-15	1	1
8	8/15/2015 12:00:00 AM		13-15	1.1	1
	8/15/2015 12:00:00 AM		13-15	1	1
10		SB-17	13-15	96	1
11		SB-24	13-15	86	<u>.</u> 1
12	8/15/2015 12:00:00 AM		13-15	64	1
13	8/15/2015 12:00:00 AM	_,	13-15	29	1
14	8/15/2015 12:00:00 AM		13-15	67	
15	8/15/2015 12:00:00 AM		2-4	55	1
16	8/15/2015 12:00:00 AM		2-4	200	······································
17	8/15/2015 12:00:00 AM		2-4	5.7	 1
18	8/15/2015 12:00:00 AM		2-4	110	
19	8/15/2015 12:00:00 AM		2-4	5.9	1
20	8/15/2015 12:00:00 AM		2-4	13	1
21	termination of the state of the	SB-24	2-4	75	
22	8/15/2015 12:00:00 AM		2-4	1800	1
23	8/15/2015 12:00:00 AM		2-4	39	
24	8/15/2015 12:00:00 AM	,	3-5	1.2	1
25	8/15/2015 12:00:00 AM 8/15/2015 12:00:00 AM		3-5	720	
26	8/15/2015 12:00:00 AM 8/15/2015 12:00:00 AM		3-5	100	
27	8/15/2015 12:00:00 AM		4-6	5.2	1
28			4-6	250	
29	8/15/2015 12:00:00 AM		4-6	98	· · · · · · · · · · · · · · · · · · ·
30	8/15/2015 12:00:00 AM		4-6	44	1
31	8/15/2015 12:00:00 AM			260	1
32	8/15/2015 12:00:00 AM 8/15/2015 12:00:00 AM		4-6 4-6	5	· · · · · · · · · · · · · · · · · · ·
33	8/15/2015 12:00:00 AM		4-6	190	······································
34				22	1
35	8/15/2015 12:00:00 AM		8-10	1.4	
36	8/15/2015 12:00:00 AM		ļ		1
37	8/15/2015 12:00:00 AM		8-10 8-10	360	1
38	8/15/2015 12:00:00 AM	***************************************	8-10 8-10	2,5 4,9	1 1
39	8/15/2015 12:00:00 AM	JAN J		4,9 110	1
40	8/15/2015 12:00:00 AM	5/1V*4***/,	8-10 8-10	110	
41	8/15/2015 12:00:00 AM	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		42	0
42	8/15/2015 12:00:00 AM		8-10		1
43	8/15/2015 12:00:00 AM		8-10	1.2	1
44	8/15/2015 12:00:00 AM		8-10	l	1
45	8/15/2015 12:00:00 AM		8-10	1.1	
46	8/15/2015 12:00:00 AM		8-10	8.3	1
47	8/15/2015 12:00:00 AM		8-10	82	
48	8/15/2015 12:00:00 AM		8-10	88	1
49	8/15/2015 12:00:00 AM		8-10	28	1
50	8/15/2015 12:00:00 AM		8-10	160	1
51	8/25/2003 12:00:00 AM	SB-45	10-12	425	1

	0	1	2	3	4
	Date	Boring	Depth	Lead	D_Lead
52	8/25/2003 12:00:00 AM	SB-16	2-4	7.94	1
53	8/25/2003 12:00:00 AM	SB-17	2-4	14.7	1
54	8/25/2003 12:00:00 AM	SB-19	2-4	21.6	1
55	8/25/2003 12:00:00 AM	SB-20	2-4	19.65	1
56	8/25/2003 12:00:00 AM	SB-24	2-4	80.9	1
57	8/25/2003 12:00:00 AM	SB-25	2-4	29.5	1
58	8/25/2003 12:00:00 AM	SB-26	2-4	89.3	1
59	8/25/2003 12:00:00 AM	SB-27	2-4	104	1
60	8/25/2003 12:00:00 AM	SB-41	2-4	7.25	1
61	8/25/2003 12:00:00 AM	SB-15	4-8	9.72	1
62	8/25/2003 12:00:00 AM	SB-19	4-8	11.2	1
63	8/25/2003 12:00:00 AM	SB-20	4-8	33.3	1
64	8/25/2003 12:00:00 AM	SB-39	4-8	68	1
65	8/25/2003 12:00:00 AM	SB-45	5-7	35.6	1
66	8/25/2003 12:00:00 AM	SB-19	8-11	4.74	0
67	8/25/2003 12:00:00 AM	SB-24	8-12	338	1
68	8/25/2003 12:00:00 AM	SB-26	8-12	20.1	1
69	8/25/2003 12:00:00 AM	SB-27	8-12	634	1
70	8/25/2003 12:00:00 AM	SB-39	8-12.5	23.1	1
71	8/25/2003 12:00:00 AM	SB-20	9-13	8.56	1

1	A	В	С	D	E	F	G	Н		J	К	L.	
1					UCL Statis	tics for Data	Sets with N	lon-Detects					
2													
3		User Selec	cted Options										
4	Date	e/Time of Co	mputation	2/14/2016	1:50:23 PM								
5			From File	New Benz	o(a)pyrene [ata 2 to 15-	feet.xls						
6		Ful	Precision	OFF									
7	(Confidence (Coefficient	95%									
8	Number of	f Bootstrap (Operations	2000									
9													
10	Benzo(a)p	yrene											
11							01-11-11						
12			T . 11		N .:	Service Strongers and	Statistics		Musuahas	of Diatinat (Observations	44	
13			l otal f		Observations	74			Number		Observations		
14					er of Detects				Nicosales		Non-Detects		
15			Nu		tinct Detects				Number		Non-Detects		
16				200,000	mum Detect	0.083					n Non-Detect n Non-Detect		
17					mum Detect					A A STATE OF THE S	Non-Detects		
18				W. C.	ince Detects	9.914				Percent	SD Detects		
19				14000	ean Detects	1.845							
20					dian Detects	0.67				16	CV Detects	1.0000000000	
21					ess Detects	2.324				1,550,500,000	tosis Detects	United States	
22	2			Mean of Log	ged Detects	-0.485				SD of Log	gged Detects	1.493	
23						10057		0-1-	· · · · · · · · · · · · · · · · · · ·				
24							t on Detects		Ob! W	W- 00F T			
25					Test Statistic				Shapiro Wi			·al	
26			5% Sh		Critical Value	0.908	De	etected Data		1/20	nificance Lev	/ei	
27					Test Statistic	0.355		-111 D-1-		GOF Test	mificance I o	.al	
28			59	E. F. STARLES TO THE STARLES TO THE	Critical Value etected Data	0.193		CONTINUE DESCRIPTION DE L'OCCUCADO	**************************************	ai at 5% Sig	nificance Lev	/ei	
29				U	elected Data	NOT NOTHE	ii at 5% Sigi	illicarice Le	vei				
30			Kanlan-Me	ier (KM) St	tatistics usin	a Normal C	critical Value	es and othe	r Nonnaran	netric UCLs	S		
31			rapian we	ioi (itivi) oi	Mean			o ana onio	. Honpaid.		rror of Mean	0.22	
32					SD	1.833				SHOWING METERS	/ (BCA) UCL	0.997	
33				95%	KM (t) UCL	0.951		ç	95% KM (Pe		otstrap) UCL	0.979	
34					KM (z) UCL	0.947					otstrap t UCL	1.385	
35 36			90		byshev UCL	1.245					ebyshev UCL	1.544	
37					byshev UCL	1.959			99	9% KM Che	ebyshev UCL	2.774	
38			HICKORY TO THE PARTY OF THE PAR		*		1						
39				G	amma GOF	Tests on D	etected Obs	ervations O	nly				
40				A-D T	Test Statistic	1.174		Ar	nderson-Da	rling GOF T	Гest		
41				5% A-D C	Critical Value	0.799	Detecte	d Data Not (Gamma Dis	tributed at 5	5% Significan	ce Level	
42				K-S	Test Statistic	0.222		ŀ	Colmogrov-S	Smirnoff GC	OF		
43				5% K-S C	Critical Value	0.199	Detecte	d Data Not (Gamma Dis	tributed at 5	5% Significan	ce Level	
44				Detected	Data Not C	Samma Dist	ributed at 5	% Significar	nce Level				
45													
46					Gamma	Statistics or	Detected D	Oata Only		101111		0.518	
47					k hat (MLE)	0.568		k star (bias corrected MLE)					
48					ta hat (MLE)	3.251							
49					nu hat (MLE)	23.84							
50			ML	E Mean (bia	s corrected)	1.845				MLE Sd (bia	as corrected)	2.563	
51													
52							eier (KM) St	atistics					
53					k hat (KM)	0.102					nu hat (KM)	15.07	

1	Α	В	С	D	E	F	G	Н		J K	L 7,000
54					ue (15.07, α)	7.311				Square Value (15.07, β)	7.203
55	95% G	iamma Appro	oximate KM-I	JCL (use v	vhen n>=50)	1.206	9	5% Gamn	na Adjusted Kl	M-UCL (use when n<50)	1.224
56											
57					amma ROS S					2200	
58		GI	William Charles I have							at multiple DLs	
59									all such as < 0		
60									es of UCLs and		
61		For gamma	distributed	detected d	ata, BTVs an	d UCLs may	be comp	uted using	gamma distri	bution on KM estimates	
62					Minimum	0.01				Mean	0.531
63					Maximum	11				Median	0.01
64					SD	1.847				CV	3.479
65					k hat (MLE)	0.253			ks	tar (bias corrected MLE)	0.252
66	Theta hat (MLE) 2.099									ar (bias corrected MLE)	2.109
67				r	nu hat (MLE)	37.44				nu star (bias corrected)	37.25
68			MLE	Mean (bia	s corrected)	0.531				MLE Sd (bias corrected)	1.058
69									Adjusted	Level of Significance (β)	0.0468
70		Appro	ximate Chi S	quare Valu	ue (37.25, α)	24.28			Adjusted Chi	Square Value (37.25, β)	24.07
71	95	% Gamma A	pproximate l	JCL (use v	vhen n>=50)	0.815		95% G	amma Adjuste	d UCL (use when n<50)	0.822
72											
73				Lo	gnormal GOF	Test on De	etected Ob	servation	s Only		
74			Sha	piro Wilk	Test Statistic	0.933			Shapiro Wi	lk GOF Test	
75					Critical Value	0.908	Dete	cted Data	appear Logno	rmal at 5% Significance	Level
76				•	Test Statistic	0.125			Lilliefors	GOF Test	
77			5%		Critical Value	0.193	Dete	cted Data	appear Logno	rmal at 5% Significance	Level
					ted Data app						
78											
79				Loc	normal ROS	Statistics L	Isina Impu	ted Non-I	Detects		
80					riginal Scale	0.539		DESCRIPTION OF SEVERAL MARKET		Mean in Log Scale	-3.271
81					riginal Scale	1.844				SD in Log Scale	2.137
82		95% t LIC	l (assumes		of ROS data)	0.897			95% P	ercentile Bootstrap UCL	0.921
83		0070100	13.90		otstrap UCL	1.055				95% Bootstrap t UCL	1.341
84					L (Log ROS)	0.916				The second secon	
85				70 70 11 001	L (LOG NOO)	0.010					
86		IICI e	ueina Loana	rmal Dietr	ribution and I	(M Estimate	s when C	etected d	lata are Logno	ormally Distributed	
87		UCLS	using Logic		ean (logged)	-2.074	oo whom b	otootoa o	idia dio Login	95% H-UCL (KM -Log)	0.453
88					SD (logged)	1.326			95% C	ritical H Value (KM-Log)	2.598
89		l/	'M Ctandard		ean (logged)	0.168			00700	modifi value (run 209)	
90			divi Stariuaru	LITOI OI WI	ean (logged)	0.100					
91						DL/2 Sta	atietice				
92			DL/2 N	ormal		DL12 00	21131103		DI /2 I og-7	ransformed	
93					riginal Scale	3.395			DL/Z LOg-1	Mean in Log Scale	-1.714
94					•	110700000000000000000000000000000000000				SD in Log Scale	1.635
95			050/ . 110		riginal Scale	23.83				95% H-Stat UCL	1.207
96					es normality)	8.009	ad for	mnorio	and blotonics		1.207
97			DL/2 is n	ot a recon	nmended me	uioa, provid	eu for cor	nparisons	and historica	i reasons	
98								01 01 11			
99					Nonparamet					-1	
100			D	etected D	ata appear L	ognormal D	stributed	at 5% Sig	nificance Leve	2 1	
101											
102						Suggested l	JCL to Use	Э			
103				95% KN	(BCA) UCL	0.997	1				
104											
105	Note	e: Suggestion								e most appropriate 95%	UCL.
-			Rec	ommendat	tions are base	ed upon data	size, data	distributi	on, and skewn	ess.	

	Α	В	С	D	E	F	G	Н	وموال مراسي	J	K	L
107	These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).											006).
108	Howev	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.										
109												

	0		2	3
	SAMPLE ID	DATE_SAMPLE	Benzo(a)pyrene	D_Benzo(a)pyrene
1	SB-16 2-4	2003 12:00:00 AM	0.37	_ (),)
2	SB-17 2-4	2003 12:00:00 AM	410	C
3	SB-19 2-4	2003 12:00:00 AM	0.38	O
4	SB-20 2-4	2003 12:00:00 AM	0.39	0
5	SB-24 2-4	2003 12:00:00 AM	0.29	1
6	SB-25 2-4	2003 12:00:00 AM	11	1
7	SB-26 2-4	2003 12:00:00 AM	0.37	0
8	SB-27 2-4	2003 12:00:00 AM	0.54	1
9	SB-41 2-4	2003 12:00:00 AM	0.36	0
mee	SB-42 2-4	2003 12:00:00 AM	5.6	1
10	SB-15 4-8	2003 12:00:00 AM	0.41	0
11	SB-19 4-8	2003 12:00:00 AM	0.37	0
12	SB-20 4-8	2003 12:00:00 AM	0.36	0
13	SB-39 4-8	2003 12:00:00 AM	0.38	0
14			0.36	0
15	SB-19 8-11	2003 12:00:00 AM		0
16	SB-24 8-12	2003 12:00:00 AM	0.38	
17	SB-26 8-12	2003 12:00:00 AM	0.37	0
18	SB-27 8-12	2003 12:00:00 AM	<u> </u>	1
19	SB-39 8-12.5	2003 12:00:00 AM	0.39	0
20	SB-20 9-13	2003 12:00:00 AM	0.37	0
21	GB-14 3-5	2015 12:47:00 PM	1.1	1
22	SB-24 4-6	5/2015 3:32:00 PM	1.9	1
23	SB-24 8-10	3/2015 3:38:00 PM	0.74	0
24	SB-24 13-15	3/2015 3:50:00 PM	0.14	1
25	SB-42 2-4	5/2015 4:02:00 PM	0.11	1
26	SB-42 4-6	5/2015 4:05:00 PM	0.056	0
27	SB-42 8-10	5/2015 4:10:00 PM	0.71	1
28	SB-42 13-15	3/2015 4:15:00 PM	0.058	0
29	GB-16 2-4	3/2015 1:29:00 PM	0.11	0
30	GB-16 4-6	3/2015 1:35:00 PM	0.07	0
31	GB-18 2-4	5/2015 3:05:00 PM	0.57	0
32	GB-14 8-10	2015 12:54:00 PM	0.97	0
33	GB-18 4-6	5/2015 3:15:00 PM	0.57	0
34	GB-3 8-10	7/2015 3:36:00 PM	0.12	1
35	GB-3 13-15	7/2015 3:42:00 PM	0.065	0
36	GB-5 8-10	7/2015 1:45:00 PM	0.068	0
20.00	GB-7 8-10	7/2015 9:54:00 AM	0.065	0
37	GB-7 13-15	2015 10:00:00 AM	0.083	1
38	GB-7 18	2015 10:06:00 AM	0.062	0
39	SB-17 8-10	7/2015 2:50:00 PM	0.32	1
40		7/2015 2:56:00 PM	10	- 1
41	SB-17 13-15			0
42	SB-20 0-2	7/2015 3:04:00 PM	0.06	1
43	GB-14 13-15	2015 12:59:00 PM	0.92	
44	SB-20 2-4	7/2015 3:04:00 PM	0.061	0
45	GB-19 8-10	2015 11:30:00 AM	0.077	0
46	GB-21 8-10	2015 10:45:00 AM	0.065	0
47	GB-28 2-4	5/2015 2:00:00 PM	0.074	0
48	GB-28 8-10	5/2015 2:20:00 PM	0.06	0
49	GB-28 13-15	5/2015 2:30:00 PM	0.25	1
50	SB-24 2-4	3/2015 3:25:00 PM	0.65	0
51	SB-41 4-6)/2015 9:20:00 AM	0.29	0

	0	1	2	3
	SAMPLE_ID	DATE_SAMPLE	Benzo(a)pyrene	D_Benzo(a)pyrene
52	SB-25 2-4	2015 10:56:00 AM	0.76	1
53	SB-25 4-6	2015 11:11:00 AM	0.064	0
54	SB-25 8-10	2015 11:17:00 AM	0.61	, 0
55	SB-25 13-15	2015 11:21:00 AM	0.12	1
56	GB-25 2-4	2015 11:39:00 AM	0.058	0
57	GB-25 4-6	2015 11:42:00 AM	0.12	1
58	GB-26 2-4	2015 12:20:00 PM	0.55	0
59	GB-26 4-6	2015 12:25:00 PM	0.29	0
60	GB-27 3-5	2015 12:33:00 PM	2.9	1
61	GB-27 8-10	2015 12:45:00 PM	0.57	0
62	SB-41 8-10)/2015 9:24:00 AM	0.29	0
63	GB-27 13-15	2015 12:48:00 PM	0.61	0
64	SB-41 13-15	0/2015 9:28:00 AM	0.29	0
65	GB-9 8-10	0/2015 9:57:00 AM	0.059	0
66	GB-9 13-15	2015 10:06:00 AM	0.065	0
67	GB-11 3-5	2015 10:31:00 AM	0.3	0
68	GB-11 8-10	2015 10:36:00 AM	0.3	0
69	GB-11 13-15	2015 10:41:00 AM	0.67	1
70	SB-25 0-2	2015 10:56:00 AM	0.59	0
71	GB-5 13-15	1/2015 3:08:00 PM	0.06	0
72	GB-5 18	1/2015 3:17:00 PM	0.061	0
73	GB-19 13-15	2015 11:30:00 AM	0.059	0
74	GB-21 13-15	2015 11:50:00 AM	0.058	0

				-	_	11	T.	1	1/	1
1	A B C	D UCI	E Statisti	F ics for Data	G Sets with N	H Ion-Detects	and the same of	J. J.	K	L
2										
3	User Selected Options					100000 <u>- 11 - 1</u>				
4	Date/Time of Computation	2/14/2016 2:10:	23 PM							
5	From File New Benzo(a)flouranthene Data 2 to 15-feet.xls									
6	Full Precision	OFF								
7	Confidence Coefficient	95%								
8	Number of Bootstrap Operations	2000								
9										
10	Benzo(b)flouranthene		10							
11										
12				General	Statistics					
13	Total I	Number of Obser	vations	74			Number	of Distinct Ob	servations	46
14		Number of [Detects	27				Number of N	on-Detects	47
15	Nu	mber of Distinct I	Detects	25			Number	of Distinct N	on-Detects	25
16		Minimum	Detect	0.043				Minimum 1	Non-Detect	0.041
17		Maximum	Detect	13				Maximum 1	Non-Detect	0.71
18		Variance [Detects	10.88				Percent N	on-Detects	63.51%
19		Mean I	Detects	1.87				5	SD Detects	3.299
20		Median I	Detects	0.47				(CV Detects	1.764
21		Skewness [Detects	2.768				Kurto	sis Detects	7.295
22	ľ	Mean of Logged [-0.416				SD of Logg	ed Detects	1.453	
23										
24			Norma	al GOF Tes	t on Detects					
25	Sh	napiro Wilk Test S	Statistic	0.563	Shapiro Wilk GOF Test					
26	5% Sh	apiro Wilk Critica	l Value	0.923	De	etected Data		al at 5% Signi	ificance Lev	rel
27		Lilliefors Test S		0.31				GOF Test		
28	5%	6 Lilliefors Critica	0.171	27.27		411 - 143 AND - 107 HOLD OF THE AND	al at 5% Signi	ificance Lev	rel 	
29		Detecte	ed Data	Not Norma	l at 5% Sigr	nificance Le	vel			
30										
31	Kaplan-Me	eier (KM) Statisti	T		ritical Value	es and othe				0.054
32			Mean	0.722				Standard Err	(BCA) UCL	0.254 1.18
33		050/ 1/14	SD	2.141			EO/ I/M /Do			1.149
34		95% KM (2.0	1.144				rcentile Boot 5% KM Boots	- 1	1.792
35	0	95% KM (0% KM Chebyshe		1.139				5% KM Cheb	SOURCE STREET	1.827
36	***	5% KM Chebyshe		1.483 2.306				9% KM Cheb	•	3.246
37	97.3	5% KWI Chebyshe	W UCL	2.300				770 KWI CHED	yanev ool	0.240
38		Gamm	GOF	Cests on De	etected Ohs	ervations O	nlv		3	
39		Gamma GOF Tests on Detected Observations Only A-D Test Statistic 1.202 Anderson-Darling GOF Test								
40		5% A-D Critica		0.799	Detected Data Not Gamma Distributed at 5% Significance Leve					
41		K-S Test S		0.176	Kolmogrov-Smirnoff GOF					
42		5% K-S Critica		0.177	Detected			stributed at 5		nce Level
			EDMEST CHESTS							
43	<u> </u>	etected data follo	ow Appi	. Gaiiiiia		- 0				
44	D	etected data foll	ow Appi	i. Gaiiiiia						
44 45	D					ata Only				
44 45 46	D	G	amma S		Detected D	ata Only	k st	ar (bias corre	ected MLE)	0.553
44 45 46 47	D	G k hat	amma S	Statistics or		ata Only		ar (bias corre ar (bias corre		0.553 3.385
44 45 46 47 48	D	G k hat Theta hat	amma S (MLE) (MLE)	0.594 3.149		ata Only	Theta st		ected MLE)	
44 45 46 47 48 49		G k hat Theta hat nu hat	amma S (MLE) (MLE) (MLE)	Statistics or 0.594		ata Only	Theta st	ar (bias corre	ected MLE) corrected)	3.385
44 45 46 47 48 49 50		G k hat Theta hat	amma S (MLE) (MLE) (MLE)	0.594 3.149 32.07		Data Only	Theta st	ar (bias corre nu star (bias	ected MLE) corrected)	3.385 29.84
44 45 46 47 48 49		G k hat Theta hat nu hat E Mean (bias cor	amma S (MLE) (MLE) (MLE) rected)	0.594 3.149 32.07 1.87			Theta st	ar (bias corre nu star (bias	ected MLE) corrected)	3.385 29.84

Park Town	A	В	С	D	Е	F	G	Н	1	J	К	L	
54	A		170	117703	Le (16.82, α)	8.543	G	20	djusted Chi	Square Value		8.426	
55	95% Ga	4100.000.000.000.000			when n>=50)	1.421						1.441	
56		4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
57				G	amma ROS	Statistics us	ing Impute	d Non-Det	ects				
58	GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs												
59			G	ROS may r	not be used w	vhen kstar o	f detected of	lata is smal	I such as < 0).1			
60				Maria Maria	ns, GROS me								
61		For gamma	distributed	detected d	ata, BTVs an	d UCLs ma	y be compu	ited using g	jamma distri	bution on KM e	estimates		
62					Minimum	0.01					Mean	0.689	
63			i i		Maximum	13					Median	0.01	
64					SD	2.165					CV	3.144	
65					k hat (MLE)	0.261			ks	ar (bias correc	ted MLE)	0.259	
66				The	a hat (MLE)	2.64	1000		Theta st	ar (bias correc	ted MLE)	2.656	
67					u hat (MLE)	38.61				nu star (bias c	corrected)	38.38	
68			MLE	Mean (bia	s corrected)	0.689				MLE Sd (bias c	corrected)	1.352	
69						0.000,000			Adjusted	Level of Signifi	cance (β)	0.0468	
70		Appro	ximate Chi S	Square Valu	ıe (38.38, α)	25.19		А	djusted Chi	Square Value ((38.38, β)	24.98	
71	95%	200		_3	hen n>=50)	1.049		95% Gar	nma Adjuste	d UCL (use wh	en n<50)	1.058	
72													
73				Log	gnormal GOF	Test on D	etected Ob	servations	Only				
74			Sh	apiro Wilk T	est Statistic	0.975			Shapiro Wi	lk GOF Test			
75		5% Shapiro Wilk Critical Value					Dete	Detected Data appear Lognormal at 5% Significance Lev				_evel	
76		Lilliefors Test Statistic				0.111			Lilliefors	GOF Test			
77	5% Lilliefors Critical Value 0.171 Detected Data appear Lognormal at 5% Significance Lev							_evel					
78				Detec	ted Data app	pear Lognor	mal at 5%	Significanc	e Level				
79													
80				Log	normal ROS	Statistics I	Jsing Imput	ed Non-De	tects				
81				Mean in Or	iginal Scale	0.699				Mean in L	og Scale	-2.749	
82				SD in Or	riginal Scale	2.162				SD in L	og Scale	2.125	
83		95% t UCL (assumes normality of ROS data)				1.118			95% P	ercentile Boots	trap UCL	1.161	
84			95	5% BCA Bo	otstrap UCL	1.284				95% Bootstr	rap t UCL	1.706	
85				95% H-UCL	(Log ROS)	1.488							
86								-					
87		UCLs	using Logn	ormal Distr	ibution and I	KM Estimat	es when D	etected dat	a are Logno	rmally Distrib	uted		
88				KM Me	ean (logged)	-2.046				95% H-UCL (KM -Log)	0.74	
89				KM	SD (logged)	1.562			95% C	ritical H Value	(KM-Log)	2.871	
90		K	M Standard	Error of Me	ean (logged)	0.195							
91													
92						DL/2 St	atistics						
93			DL/2 N	lormal			DL/2 Log-1				Transformed		
94				Mean in Or	iginal Scale	0.757				Mean in L	og Scale	-1.789	
95				SD in Or	iginal Scale	2.145				SD in L	og Scale	1.591	
96			95% t UC	CL (Assume	s normality)	1.173			- 10-0180	95% H-	Stat UCL	1.019	
97			DL/2 is r	not a recom	mended me	thod, provid	led for com	parisons a	nd historical	reasons	A.		
98													
99					Nonparamet							11 W	
100			Detect	ed Data ap	pear Approx	dimate Gam	ma Distribu	ited at 5%	Significance	Level			
101													
102						Suggested	UCL to Use						
103					KM (t) UCL	1.144		95	% GROS Ap	proximate Gan	nma UCL	1.049	
104		9	5% Approxi	imate Gamr	ma KM-UCL	1.421							
105													
106	Note:	Suggestion	s regarding	the selection	on of a 95% I	UCL are pro	ovided to he	lp the user	to select the	most appropr	iate 95% l	JCL.	

1	Α	В	С	D	E	F.	G	Н		J	К	L
107	Recommendations are based upon data size, data distribution, and skewness.											
108	These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).											
109	Howeve	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.										
110												

	0	1	2	3
	SAMPLE_ID	DATE_SAMPLED	Benzo(b)flouranthene	D_Benzo(b)flouranthene
1	SB-15 4-8	/2003 12:00:00 AM	0.41	C
2	SB-16 2-4	/2003 12:00:00 AM	0.37	C
3	SB-17 2-4	/2003 12:00:00 AM	0.41	C
4	SB-19 2-4	/2003 12:00:00 AM	0.38	0
5	SB-19 4-8	/2003 12:00:00 AM	0.37	0
6	SB-19 8-11	/2003 12:00:00 AM	0.36	0
7	SB-20 2-4	/2003 12:00:00 AM	0.39	0
8	SB-20 4-8	/2003 12:00:00 AM	0.36	0
9	SB-20 9-13	/2003 12:00:00 AM	0.37	C
10	SB-24 2-4	/2003 12:00:00 AM	3.2	1
11	SB-24 8-12	/2003 12:00:00 AM	0.38	0
12	SB-25 2-4	/2003 12:00:00 AM	12	1
13	SB-26 2-4	/2003 12:00:00 AM	0.37	0
	SB-26 8-12	/2003 12:00:00 AM	0.37	0
14	SB-27 2-4	/2003 12:00:00 AM	0.43	1
15	SB-27 8-12	/2003 12:00:00 AM	1	-1
16	SB-39 4-8	/2003 12:00:00 AM	0.38	0
17	SB-39 4-6 SB-39 8-12.5	/2003 12:00:00 AM	0.39	0
18				
19	SB-41 2-4	/2003 12:00:00 AM	0.36	0
20	SB-42 2-4	/2003 12:00:00 AM	4.9	-1
21	GB-14 3-5	/2015 12:47:00 PM	1.6	1
22	SB-24 4-6	6/2015 3:32:00 PM	2.4	1
23	SB-24 8-10	6/2015 3:38:00 PM	0.54	0
24	SB-24 13-15	6/2015 3:50:00 PM	0.22	1
25	SB-42 2-4	6/2015 4:02:00 PM	0.16	1
26	SB-42 4-6	6/2015 4:05:00 PM	0.041	0
27	SB-42 8-10	6/2015 4:10:00 PM	0.94	1
28	SB-42 13-15	6/2015 4:15:00 PM	0.043	0
29	GB-16 2-4	6/2015 1:29:00 PM	0.079	0
30	GB-16 4-6	6/2015 1:35:00 PM	0.051	0
31	GB-18 2-4	6/2015 3:05:00 PM	0.47	1
32	GB-14 8-10	/2015 12:54:00 PM	0.71	0
33	GB-18 4-6	6/2015 3:15:00 PM	0.42	0
34	GB-3 8-10	7/2015 3:36:00 PM	0.27	1
35	GB-3 13-15	7/2015 3:42:00 PM	0.047	0
36	GB-5 8-10	7/2015 1:45:00 PM	0.05	0
37	GB-7 8-10	7/2015 9:54:00 AM	0.047	0
38	GB-7 13-15	/2015 10:00:00 AM	0.13	1
39	GB-7 18	/2015 10:06:00 AM	0.071	1
40	SB-17 8-10	7/2015 2:50:00 PM	0.45	1
	SB-17 13-15	7/2015 2:56:00 PM	13	1
41	SB-20 0-2	7/2015 3:04:00 PM	0.044	0
42	GB-14 13-15	/2015 12:59:00 PM	1.3	1
43	SB-20 2-4	7/2015 3:04:00 PM	0.045	0
44	GB-19 8-10	/2015 11:30:00 AM	0.045	0
45	20 10 10 10 1	/2015 11:30:00 AM	0.036	0
46	GB-21 8-10			0
47	GB-28 2-4	6/2015 2:00:00 PM	0.054	
48	GB-28 8-10	6/2015 2:20:00 PM	0.044	0
49	GB-28 13-15	6/2015 2:30:00 PM	0.43	1
50	SB-24 2-4	6/2015 3:25:00 PM	0.57	1
51	SB-41 4-6	0/2015 9:20:00 AM	0.21	0

	0	1	2	3
	SAMPLE_ID	DATE_SAMPLED	Benzo(b)flouranthene	D_Benzo(b)flouranthene
52	SB-25 2-4	/2015 10:56:00 AM	0.95	1
53	SB-25 4-6	/2015 11:11:00 AM	0.047	0
54	SB-25 8-10	/2015 11:17:00 AM	0.45	0
55	SB-25 13-15	/2015 11:21:00 AM	0.16	1
56	GB-25 2-4	/2015 11:39:00 AM	0.042	0
57	GB-25 4-6	/2015 11:42:00 AM	0.18	1
58	GB-26 2-4	/2015 12:20:00 PM	0.4	0
59	GB-26 4-6	/2015 12:25:00 PM	0.26	1
60	GB-27 3-5	/2015 12:33:00 PM	3.8	1
61	GB-27 8-10	/2015 12:45:00 PM	0.42	0
62	SB-41 8-10	0/2015 9:24:00 AM	0.21	0
63	GB-27 13-15	/2015 12:48:00 PM	0.46	1
64	SB-41 13-15	0/2015 9:28:00 AM	0.21	0
65	GB-9 8-10	0/2015 9:57:00 AM	0.043	0
66	GB-9 13-15	/2015 10:06:00 AM	0.048	0
67	GB-11 3-5	/2015 10:31:00 AM	0.22	0
68	GB-11 8-10	/2015 10:36:00 AM	0.22	0
69	GB-11 13-15	/2015 10:41:00 AM	1.1	1
70	SB-25 0-2	/2015 10:56:00 AM	0.43	0
71	GB-5 13-15	4/2015 3:08:00 PM	0.044	0
72	GB-5 18	4/2015 3:17:00 PM	0.044	0
73	GB-19 13-15	/2015 11:30:00 AM	0.043	0
74	GB-21 13-15	/2015 11:50:00 AM	0.043	1