

Environmental International Corporation

161 Kimball Bridge Road, Suite 100, Alpharetta, GA 30009 Phone: 770-772-7100, Fax: 770-772-0555 Website:www.eicusa.com

August 28, 2015

Mr. Jason Metzger Georgia Department of Natural Resources Environmental Protection Division Response and Remediation Program 2 Martin Luther King, Jr. Drive, S.E. Suite 1054 East Tower Atlanta, Georgia 30334-9000

Subject:

Eighth VIRP Semi-annual Progress Report

VOPAK Terminal Savannah

HSI Site No. 10464

Turner and Hart Street, Savannah, Chatham County, Georgia

Tax Parcel: 1-0618-01-003L

Dear Mr. Metzger:

On behalf of VOPAK Terminal Savannah, Inc. Environmental International Corporation (EIC) is pleased to submit the attached Eighth VIRP Semi-annual Progress Report for the above referenced site.

Enclosed are the following:

- 1. One signed and sealed certification page for the Semiannual Report.
- 2. One bound paper copy of the Eighth VIRP Semi-annual Progress Report.
- 3. Two Compact Discs each with the report in searchable PDF format.

If you have any questions regarding this submittal, please contact Mr. Branden Jones of VOPAK at 912-964-1811 extn. 10114, or me at the above location.

Sincerely,

ENVIRONMENTAL INTERNATIONAL CORPORATION

Raj Mahadevaiah, P.E., C.G.W.P.

President & CEO

Cc: Branden Jones, VOPAK

Chris Novack, GPA

CERTIFICATION AND SUPPORTING DOCUMENTATIONS

Eighth VIRP Semi-annual Progress Report VOPAK Terminal Savannah HSI Site No. 10464 Auguest 28, 2015

'I certify under penalty of law that the accompanying report referenced above and all attachments were prepared by me or under my direct supervision in accordance with the Voluntary Remediation Program Act (O.C.G.A. Section 12-8-101, et seq.). I am a professional engineer who is registered with the Georgia State Board of Registration for Professional Engineers and Land Surveyors/Georgia State Board of Registration for Professional Geologists and I have the necessary experience and am in charge of the investigation and remediation of this release of regulated substances.

Furthermore, to document my direct oversight of the Voluntary Investigation and Remediation Plan (VIRP) development, implementation of corrective action, and long term monitoring, I have attached a monthly summary of hours invoiced and description of services provided by me to the Voluntary Remediation Program participant since the previous submittal to the Georgia Environmental Protection Division.

The information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Basavaraj Mahadevaiah, GA PE No. 23198 Environmental International Corporation 770-772-7100, ext. 223

Signature and

Date

PCE REMEDIATION, HSI SITE 10464, VOPAK TERMINAL SAVANNAH SAVANNAH, GEORGIA

EIGHTH VIRP SEMI-ANNUAL PROGRESS REPORT

Friday, August 28, 2015

Submitted To:

GEORGIA ENVIRONMENTAL PROTECTION DIVISION

Georgia Department of Natural Resources Environmental Protection Division Response and Remediation Program Suite 1054 East Tower 2 Martin Luther King Jr. Drive, S.E. Atlanta, Georgia 30334

Prepared for: **VOPAK TERMINAL SAVANNAH**

P.O. Box 7390 Savannah, Georgia 31418-7390

Prepared by:

ENVIRONMENTAL INTERNATIONAL CORPORATION

161 Kimball Bridge Road, Suite 100, Alpharetta, GA 30009, USA Phone 770.772.7100 • Fax 770.772.0555

http://www.eicusa.com

Table of Contents

LIST	OF TABLES	iv
LIST	OF FIGURES	v
LIST	OF ATTACHMENTS	vi
1.0	INTRODUCTION	1
1.1	Primary Objectives	1
2.0	EPD COMMENT LETTERS	2
2.1	EPD Comment Letter dated July 29, 2015	2
2.1.1	EPD Comment 1	2
2.1.2	EPD Comment 2	3
2.1.3	EPD Comment 3	3
2.1.4	EPD Comment 4	4
3.0	SITE CONCEPTUAL MODEL	5
4.0	GROUNDWATER MONITORING	6
4.1	Groundwater Monitoring Objective	6
4.2	Groundwater Monitoring Field Program	7
4.2.1	Sampling Protocol	7
4.2.2	Site Access	7
4.2.3	Groundwater Gauging	8
4.2.4	Groundwater Sampling Field Procedures	8
4.2.5	Sample Custody and Laboratory Analysis	9
4.3	Quality Assurance and Quality Control	9
4.4	Data Evaluation	10
4.4.1	Groundwater Potentiometric Map	10

4.4.2	Horizontal Extent of COC Plumes	10
4.4.2.1	CVOC Plume	11
4.4.2.2	VOC Plume	13
4.4.3	Vertical Extent of COC Plumes	15
5.0	REMEDIAL PROGRESS	16
5.1	COC Degradation	16
5.1.1	CVOC Plume	16
5.1.2	VOC Plume	16
5.2	COC Trends in Individual Wells	17
5.3	Remedial Progress	17
5.4	Final Remediation Plan	17
5.5	Updated Schedule and Timeline	
6.0	SUMMARY	19
7.0	SUMMARY OF HOURS	20
8 N	REFERENCES	21

LIST OF TABLES

4-1:	March/April Well Gauging Data, VOPAK Terminal Savannah, Savannah, Georgia
4-2:	March/April Well Purging Data, VOPAK Terminal Savannah, Savannah, Georgia
4-3:	Groundwater Natural Attenuation Parameters, VOPAK Terminal Savannah, Savannah,
	Georgia
4-4:	CVOCs and VOCs Concentrations in Groundwater, VOPAK Terminal Savannah,
	Savannah, Georgia
4-5:	Historical Groundwater Elevation Table, VOPAK Terminal Savannah, Savannah,
	Georgia

LIST OF FIGURES

LIST OF ATTACHMENTS

- A. March/April 2015 EIC Well Purging and Sampling Data Field Logs
- B. Lab Analytical Results for Groundwater Samples March/April 2015
- C. Monthly Summary of Hours Invoiced (Mar. 2015 Aug. 2015)

SECTION

1.0 INTRODUCTION

On behalf of VOPAK Terminal Savannah, Inc. (VOPAK), Environmental International Corporation (EIC) is pleased to submit the Eighth VIRP Semi-annual Progress Report for review by the Georgia Environmental Protection Division Response and Remediation Program (EPD). This report was prepared as specified in the April 2, 2011 "Revised Voluntary Investigation and Remediation Plan (VIRP) and Application" that was approved by the EPD on August 31, 2011 under the Voluntary Remediation Program (VRP) (EIC, 2011a).

1.1 Primary Objectives

The primary objective of this report is to present a compilation of tasks completed and findings determined by EIC during the six-month period from March 2015 through August 2015. This report documents the following subjects:

- Responses to the July 29, 2015 EPD comment letter
- Revision of the Site Conceptual Model
- Further evaluation of COC trends
- Evaluation MNA goals and the development of a remedial strategy

The following sections describe each task related to these subjects.

SECTION 2

2.0 EPD COMMENT LETTERS

2.1 EPD Comment Letter dated July 29, 2015

EIC received a copy of the July 29, 2015 EPD comment letter from VOPAK on August 4, 2015 and has prepared the following responses on behalf of VOPAK.

2.1.1 EPD Comment 1

EPD concurs that natural attenuation is occurring at the site and that data collected after enrollment in the VRP has expanded the known footprint of the plume. However, we do not agree that this is the reason that the property will not meet Type 1 through 4 RRS within the 5-year timeframe, as implied in Section 5.3 of the Report. Since enrollment, EPD has indicated that meeting these cleanup goals within the prescribed timeframe was unlikely based on data from wells such as LAW-PZ-8R, MW-29, and PAN-MW-9, all of which have been sampled consistently before and after enrollment. EPD expects the forthcoming report(s) to evaluate the VTRP timeline, consider alternatives to reach risk reduction standards (RRS), and provide a final remediation plan, such as active corrective action or certification to Type 5 RRS with Uniform Environmental Covenants (UECs) to address exposure pathways. EPD is eager to work with VOPAK in developing a path to certification.

Response to EPD Comment 1:

VOPAK understands that natural attenuation alone may be insufficient in reaching the RRS within the 5-year time frame. Referring to the April 2015 groundwater analytical data, however, it is apparent that the CVOC plume has substantially reduced in size at the leading edge. Consequently, CVOCs in only MW-29 appear to be recalcitrant – but at very low ppbs. VOPAK will review analytical data from the next sampling event - scheduled for October 2015 - to verify whether the areal extent of the CVOC is further reduced. Based on that finding, VOPAK will evaluate the need for contingency remedial measures for localized

treatment, request a time extension to reach remedial end points, or explore Type 5 RRS with UECs to address exposure pathways.

2.1.2 EPD Comment 2

EPD has previously noted concern over the possibility that contaminated groundwater is discharging to the Savannah River (or the Tidal Flat) as a pathway that could create ecological risks associated with concentrations in surface water or sediment. There is no groundwater data available for the small area between two higher concentration monitoring wells (MW-32 and PAN-MW-9) and the Tidal Flat, and thus no evidence that contaminated groundwater is not discharging to the Tidal Flat. Additionally, Figure 4-6 and 4-7 indicate two discrete plumes of DCE and VC, respectively, at these wells and MW-16, though there is no evidence that these plumes are not connected. Additional monitoring well(s) or sediment sampling may be necessary to better delineate the plume and characterize ecological risks.

Response to EPD Comment 2:

As discussed in the updated site conceptual model (Appendix A), it appears that the area previously presumed to be a tidal flat in previous maps is actually a narrow area that functions as a drainage channel or an inlet depending on the river tides. The retaining wall (labeled on the site figures as a concrete bulkhead) equipped with a sluice gate and the tides in the Savannah River affect the fluid flow hydrodynamics in this localized area. EIC is currently compiling additional supporting material from various sources to substantiate this finding. As stated in the aforementioned EIC's response to EPD Comment 1, the CVOC plume has also substantially reduced in size at the leading edge. Consequently, EIC is developing a detailed work plan to evaluate whether potential ecological risks are present from the contaminated groundwater that may migrate to the Savannah River. Prior to the preparation of a work plan, EIC proposes a meeting with EPD to discuss the plan objectives and scope of work.

2.1.3 EPD Comment 3

EPD anticipates reviewing VOPAK's assessment of potential preferential flow through utility trenches, such as the large stormwater conveyance pipe discharging to the Tidal Flat near MW-32, as well as the hydraulic and transport evaluation of the sheet pile wall.

Response to EPD Comment 3:

As noted in the updated site conceptual model (Appendix A), EIC has provided detailed schematics of the retaining wall and other related substructures. In addition, VOPAK is evaluating the feasibility of performing a flow-net analysis to determine fluid flow pathways.

2.1.4 EPD Comment 4

EPD anticipates reviewing the forthcoming vapor intrusion study, indicated to assess potential risks to existing and potential future structures as well as an assessment of potential risks to construction workers in areas of shallow groundwater. Risks to construction workers are associated with incidental contact and possible ingestion of contaminated groundwater during subsurface work. Any risks associated with these pathways will need to be addressed in an institutional control.

Response to EPD Comment 4:

A work plan for vapor intrusion study to evaluate the potential risks to structures and construction workers is currently under preparation. VOPAK will submit the plan to EPD for concurrence of the scope of work. Upon EPD approval, VOPAK will complete the study and submit the results in a subsequent semiannual report.

SECTION 3

3.0 SITE CONCEPTUAL MODEL

VOPAK Terminal Savannah, Inc. (VOPAK) submitted a preliminary site conceptual model (SCM) of the area affected by a tetrachloroethene/perchloroethene (PCE) plume as a part of the VIRP. A SCM is typically updated as additional material is progressively gained during the implementation of the VIRP.

In the Sixth VIRP Semi-annual Progress Report submitted on August 29, 2014 (EIC, 2014), VOPAK included a revised SCM. Subsequently, EIC has compiled additional data to further define the site characteristics and potential fluid flow hydrodynamics. The updated SCM is included as Appendix A. In Preparing the 2015 SCM Report, EIC made significant revisions to the groundwater hydrology section of the 2014 SCM Report regarding fluid flow hydrodynamics, COC plume delineation, and COC concentration trend analysis.

SECTION

4

4.0 GROUNDWATER MONITORING

The semi-annual groundwater monitoring (sampling) event documented in this section was conducted from March 30, to April 2, 2015. This was the second semi-annual sampling event of the VIRP program following EPD's approval of semi-annual sampling, as opposed to quarterly sampling that EIC previously conducted at the site.

The sampling event entailed the collection of groundwater samples, for laboratory analysis of constituents (or contaminants) of concern (COCs), from wells within the previously established area of concern. COCs that EIC monitored included dissolved chlorinated volatile organic compounds (CVOCs) and volatile organic compounds (VOCs) contamination.

During this event, all available monitoring wells and two selected former injection wells within and adjacent to the CVOC/VOC contaminant plumes were utilized for groundwater sampling. Accordingly, EIC collected groundwater samples for CVOC/VOC analysis from a total of 25 wells.

The analytical data from the March/April 2015 sampling event was compared to the first quarterly sampling event (EIC, 2011b) and all other subsequent sampling events (EIC, 2012a, 2012b, 2012c, 2012d, 2013a, 2013b, 2013c, 2014a, 2014b, and 2015) to track prevailing contaminant concentration trends. A statistical analysis of these trends is documented in the 2015 Site Conceptual Model (SCM) Report, submitted as Appendix A of this report.

The following subsections describe the results of the seventh groundwater monitoring event.

4.1 Groundwater Monitoring Objective

During the March/April 2015 groundwater monitoring event, the primary objective was to meet the following goals set forth in the VIRP.

- Review plume stability.
- Track natural attenuation of COCs by monitoring the groundwater concentrations of VOCs/CVOCs within the existing plume.
- Determine if the prevailing groundwater contaminant concentrations meet or are trending towards meeting the established RRS.
- Determine if the horizontal and vertical extents of the COC on all impacted properties have been and remain defined, respectively.
- Determine if conditions throughout the plume promote natural attenuation.

The following sections outline the tasks performed by EIC to meet this objective.

4.2 Groundwater Monitoring Field Program

During the March/April 2015 groundwater monitoring event, EIC conducted groundwater monitoring utilizing 22 shallow monitoring wells, two shallow injection wells, and one deep monitoring well. The site layout is illustrated in Figure 4-1. The following sub-sections describe EIC's technical approach regarding this event.

4.2.1 Sampling Protocol

The groundwater sampling program was conducted in accordance with the current U.S. Region 4 EPA groundwater sampling procedure "Field Branches Quality System and Technical Procedures" (FBQSTP) per EPD regulations. Each monitoring well was gauged, purged, and sampled following the "low-flow" purge technique established in the standard operating procedure (SOP) SESDPROC-301-R3 under the FBQSTP (EPA, 2013).

4.2.2 Site Access

Prior to EIC's site visit, EIC coordinated with the Georgia Ports Authority (GPA) and GAF Materials Corp. (GAF) in gaining access during the sampling event to collect groundwater samples from a total of seven off-site monitoring wells consisting of MW-17R, MW-28, MW-32, MW-34, MW-35, MW-36, and MW-37. Monitoring wells MW-28 and MW-37 are located on GAF property and wells MW-17R, MW-32, MW-34, MW-35, and MW-36 are located on GPA property.

4.2.3 Groundwater Gauging

Prior to sampling, EIC gauged each well with a Solinst Model 122 interface meter ("oil/water interface probe") to determine the static depth to groundwater. The gauging data is tabulated in Table 4-1. In preparing this table, EIC utilized top-of-casing (TOC) elevations from the multiple well surveys to calculate the groundwater elevation data regarding this event. From Table 4-1, EIC noted that, while gauging IW-1R, the oil/water interface probe detected a light non-aqueous phase liquid (LNAPL). Upon retrieval of the probe, EIC observed a clear oily substance which resembled the lactate injection fluid that had been previously utilized at the site. The LNAPL was evacuated from the well via handbailing, the groundwater level was allowed to equilibrate, and EIC then gauged the well again prior to sampling.

4.2.4 Groundwater Sampling Field Procedures

Prior to EIC initiating field sampling activities, EIC obtained a 55-gallon drum from VOPAK to containerize purged groundwater. During the March/April 2015 event, the 55-gallon drum was placed on the west shoulder of the Hart Street, which lies between Tank Farm #2 and Tank Farm #3, near well MW-27. EIC placed a non-hazardous waste label on the drum and marked the contents on it as investigative derived waste ("IDW") well purge water and the accumulation date with a black permanent marker. The drum was later disposed of by VOPAK.

At each well-head designated for sampling, EIC monitored VOC air concentrations in parts per million (ppm) with a calibrated photoionization detector. A total of three measurements were taken at each well to document VOC concentrations in the ambient air within two feet of and outside the outer well casing, air between the inner well casing and the outer protective casing or vault, and air within the inner well casing once the well cap was removed. The VOC concentrations observed during the second quarter of 2014 were recorded on EIC's March/April 2015 EIC Well Purging and Sampling Data Field Logs (Attachment A).

EIC followed the "low-flow" purge technique, noted in Section 4.2.1, to conduct all groundwater sampling. EIC used a peristaltic pump with disposable 1/4-inch ID Teflon-lined tubing and a 6-inch segment of 3/16-inch ID silicon tubing at the pump head to purge each well until groundwater quality parameters reached stabilization prior to sampling. The length of Teflon-tubing necessary to place the intake at the center of the wetted screened interval was determined from water levels and available well construction data noted in EIC well purging and sampling data field logs (Attachment A).

Groundwater stabilization parameters were monitored via direct pumping to a multi-parameter field water quality field meter equipped with a flow-through cell. These parameters were recorded at approximately five minute intervals on EIC field logs (Attachment A). Additionally, purge volumes and depth-to-water (DTW) measurements were recorded at the same five-minute intervals when

possible. At each well, the pumping rate and tubing depth were adjusted accordingly if excessive drawdown was observed. In 1-inch and ³/₄-inch diameter wells, where downhole assembly constricted the access for the interface probe, the depth to water could not be gauged during purging. In these wells gauging was performed only just prior to inserting the tubing and immediately after the tubing was removed.

EIC considered that stabilization was reached when 3 consecutive stabilization parameter readings were within \pm 0.1 for pH and \pm 5% for specific conductivity. Reasonable attempts were made at each well to reach 0.2 mg/L dissolved oxygen (DO) and a turbidity reading below 10 Nephelometric Turbidity Units (NTUs) prior to sampling. Groundwater quality field parameters (Temperature, pH, oxygen reduction potential (ORP), conductivity, turbidity, and DO) after stabilization and prior to sample collection are summarized in Table 4-3. Note, however, that during the March/April 2015 sampling event, the turbidity levels at 9 wells could not be lowered below 10 NTUs and the DO levels could not be lowered below 0.2 mg/L at any of the wells sampled. All samples were collected using the "soda straw method" specified in SOP SESDPROC-301-R3.

4.2.5 Sample Custody and Laboratory Analysis

Immediately after each sample set was collected, the sample bottles were sealed and labeled in the field. Each sample set was then placed in padded sealable plastic bags to prevent breakage and stored with ice in insulated cooler containers provided by the laboratory. Complete and signed chain of custody forms accompanied all samples. EIC delivered and relinquished the samples to Test America Laboratories, a Georgia-certified laboratory located in Savannah, Georgia, prior to returning to EIC headquarters.

The laboratory conducted analysis of volatile organic compounds via EPA method 8260B. The laboratory report for the March/April 2015 event is included as Attachment B. The results of COC analysis of samples collected during this event, along with historical COC analytical data, are summarized in Table 4-4.

4.3 Quality Assurance and Quality Control

For quality assurance and quality control purposes during the groundwater sampling process, EIC submitted one trip blank set, provided by the laboratory, with each sample container with CVOC/VOC samples for analysis via EPA Method 8260B. The trip blanks were kept in the same thermal cooler as the collected CVOC/VOC samples over the entire period these samples were in the cooler until they were relinquished to the laboratory along with the CVOC/VOC samples.

To prevent cross-contamination, new disposable 1/4-inch inner diameter and 3/8-inch outer diameter Teflon-lined tubing was used to collect samples at each well, which was later properly disposed of. EIC's oil/water interface meter, 2,000 mL cylinder, and Teflon tubing cutter were field decontaminated prior to use and between sampling locations by washing with a phosphate-free detergent solution and rinsing with pressurized de-ionized (DI) water. After each sample was collected, the water quality parameters instrument was also decontaminated with DI water.

4.4 Data Evaluation

EIC conducted an evaluation of the data compiled from field measurements and laboratory analyses to determine the groundwater potentiometric surface, the horizontal and the vertical extent of the prevailing contaminant plumes based on the March/April 2015 monitoring event. Data from the sampling event was compared with the data from the baseline and each of the eleven subsequent quarterly sampling events to develop a strategy to reach remedial end points.

4.4.1 Groundwater Potentiometric Map

Table 4-5 tabulates the historical groundwater elevations for all gauging events at the site since groundwater monitoring was initiated under the VIRP. From this table, it is apparent that during the March/April 2015 gauging event, the overall potentiometric surface was similar in elevation to the previous two March/April gauging events. In general, the potentiometric surface elevation at the site during the March/April 2015 event was slightly above the global average groundwater elevation. As compared to the previous March/April gauging events, the average groundwater potentiometric surface elevation for the 2015 gauging event was neither the highest nor lowest observed since the inception of the VIRP program.

Figure 4-2 illustrates the March/April 2015 potentiometric surface map. Referring to Figure 4-2, the prevailing groundwater flow direction in the vicinity of the COC plume footprint remains from the southwest to the northeast. Of note, in this potentiometric surface contains an anomaly in the area of well MW-32. The groundwater elevation measured during the March/April event was the highest ever recorded at MW-32 since the approval of the VIRP.

4.4.2 Horizontal Extent of COC Plumes

Figure 4-3 illustrates a summary of the analytical results of the monitored COCs from the March/April 2015 sampling event for each well sampled. Figures 4-4 through 4-11 illustrate each of the eight monitored COC plumes. Table 4-4 lists a compilation of available analytical results since September 1997. The following sub-sections describe a spatial and temporal analysis of the COC plumes.

4.4.2.1 CVOC Plume

The CVOC plume consists of Perchloroethylene (PCE), Trichlorethylene (TCE), Cis-1, 2 Dichloroethylene (DCE), and Vinyl Chloride (VC). Based on current analytical results, it is apparent that the overall extent and concentration of the CVOC plume at the site has significantly decreased since the inception of the VIRP sampling program in October 2011. However, residual CVOC contamination is present in certain areas. The following subsections describe spatial and temporal changes of individual CVOC constituents since October 2011.

PCE Plume:

Figure 4-4 illustrates the horizontal extent of the PCE plume during the March/April 2015 sampling event. The current PCE plume is composed of two distinctly separated areas of contamination, with the peak concentration of the first area centered near IW-1R at the up-gradient southwestern end of the original CVOC plume footprint, and the peak concentration of the second area centered near MW-29 near the down-gradient northeastern end of the original CVOC plume footprint.

Within the up-gradient portion of the original CVOC plume footprint, the peak PCE concentration in IW-1R increased from $170 \,\mu\text{g}/\text{L}$ to $310 \,\mu\text{g}/\text{L}$ from October 2014 to March/April 2015 respectively. However, no significant changes in concentrations at the surrounding wells were observed. It is noteworthy that in April 2014 the concentration at IW-1R was also found to be $310 \,\mu\text{g}/\text{L}$.

Within the down-gradient portion of the original CVOC plume footprint, the overall extent and concentrations in this area has fluctuated since the first VIRP sampling event in October 2011, however, overall there has been a decreasing concentrations trend. In particular, the PCE concentration at MW-32 has sharply decreased from 1,900 μ g/L to below laboratory method detection limits (MDLs) from October 2014 to March/April 2015, respectively. However, during the same time interval, the PCE concentration slightly increased in MW-29 from 74 μ g/L to 160 μ g/L.

In summary, the overall extents of the PCE plume have reduced substantially or remained stable over time and concentrations are decreasing and trending towards RRS values. Clearly, MNA is effective in reducing the PCE mass concentrations especially at the leading edge.

TCE Plume:

Figure 4-5 illustrates the horizontal extent of the TCE plume during the March/April 2015 sampling event. Similar to the PCE footprint, the TCE plume is also composed of two distinct areas of contamination. The up-gradient area of peak concentration is centered near IW-1R. The areal extent of PCE in this area reduced slightly since the October 2014 sampling event and the PCE concentration

in IW-1R reduced from 190 μ g/L to 150 μ g/L. There were also other slight reductions in concentration near the adjacent monitoring wells, such as at wells IW-18 and MW-37 and the downgradient well MW-33. These reductions effectively split the TCE plume into two pockets of plume.

In April 2015, the peak concentration of down-gradient TCE plume was centered near well MW-29. This area of the plume had a significant reduction in concentration and horizontal extent as compared to the previous October 2014 and other previous sampling events. The most significant areas of reduction occurred near wells MW-32 and PAN-MW-9. The TCE concentrations MW-32 and PAN-MW-9 reduced from 680 and 35 μ g/L to <0.48 and 4.9 μ g/L respectively. However, concentrations increased in MW-29 from 55 to 90 μ g/L.

In summary, the overall extents of the TCE plume have reduced or remained stable over time and concentrations are decreasing and trending towards RRS values. Considering that TCE is produced from the reductive dechlorination of PCE, substantial reduction in concentration relative to the original foot-print is indicative that MNA is effective in reducing the TCE concentrations.

DCE Plume:

Figure 4-6 illustrates the horizontal extent of the DCE plume during the March/April 2015 sampling event. During the March/April 2015 event the DCE concentration in LAW-PZ-8R decreased significantly from 15,000 μ g/L in October 2014 to 4,100 μ g/L. The concentrations near the upgradient portion of the DCE plume have been decreasing significantly over time and the DCE concentrations measured during March/April 2015 indicate a continuation of that trend.

The overall plume extent had significant decreases in concentration since the October 2014 and previous sampling events as well; such as near wells IW-1R, IW-18, MW-24R, and MW-32. It is notable that the concentration near MW-32 was below MDLs for DCE during the March/April 2015 sampling event.

In summary, the overall extent of the DCE plume has reduced or has remained stable over time and concentrations are decreasing and trending towards RRS values. Considering that DCE is a second step daughter product from the reductive dechlorination of PCE, substantial reduction in concentration relative to the original footprint is indicative that the MNA is effective in reducing the DCE concentrations.

VC Plume:

Figure 4-7 illustrates the horizontal extent of the VC plume during the March/April 2015 sampling event. Referring to historical analytical data, the March/April 2015 VC plume concentrations data

indicates that VC concentrations are decreasing over time or remaining stable. The most notable areas of decreased concentrations were in wells IW-18, LAW-PZ-8R, MW-32, and MW-33.

The mid to down-gradient portion of the VC plume was characterized by both reductions and increases in VC concentrations. The concentrations in MW-32 and MW-33 reduced from 100 and 440 μ g/L to <0.50 and 100 μ g/L from the October 2014 to March/April 2015 sampling event, respectively. Whereas, at well MW-29 the concentration increased from 660 to 790 μ g/L from the October 2014 to March/April 2015 sampling event. Due to the reductions in concentration in wells MW-32 and MW-33, the VC plume footprint decreased significantly.

In summary, the VC plume has significantly reduced in both areal extent and in concentration relative to the original footprint and continues to trend towards RRS values. This indicates that MNA is effective in reducing VC concentrations.

4.4.2.2 VOC Plume

The COCs monitored within the VOC plume consists of Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX). Since the first VIRP sampling event, conducted in October 2011, the VOC plume concentrations within the original VOC plume footprint have declined substantially. The following subsections describe spatial and temporal changes of individual VOC constituents since VIRP sampling was initiated in October 2011.

Benzene Plume:

Figure 4-8 illustrates the horizontal extent of the benzene plume from the March/April 2015 sampling event. The benzene plume is composed of two isolated areas of contamination near the up-gradient and down-gradient portions of the original VOC plume footprint. The up-gradient benzene plume continues to maintain stability and decreased significantly in LAW-PZ-8R from 3,400 to 1,100 μ g/L from the October 2014 to March/April 2015 sampling event, respectively. However, the concentration in IW-18 increased from 170 to 350 μ g/L.

The down-gradient plume, centered in MW-29, has remained relatively stable over time as compared to the original footprint. The most notable change in the down-gradient Benzene concentration was observed in MW-32 where the concentration decreased from $8.3~\mu g/L$ to below MDLs. In summary, the Benzene plume has reduced significantly in concentration and extent as compared to the original plume footprint and continues to trend towards RRS values.

Toluene Plume:

Figure 4-9 illustrates the horizontal extent of the toluene plume from the March/April 2015 sampling event. In the previous October 2014 sampling event, the toluene concentration in LAW-PZ-8R increased to 800 μ g/L. However, during the March/April 2015 event, Toluene concentrations Toluene reduced to below MDLs or to <480 μ g/L. Additionally, concentrations in IW-1R decreased from 320 to 260 μ g/L. As such, it is apparent that the toluene plume continues to decrease in concentration and has remained below RRS values since the initiation of the VIRP program.

Ethylbenzene Plume:

Figure 4-10 illustrates the horizontal extent of the ethylbenzene plume from the March/April 2015 sampling event. In the previous progress report, EIC noted that concentrations of Ethylbenzene in the up-gradient plume increased sharply from the April to October 2014 sampling events (EIC, 2015). During the March/April 2015 sampling event, however, Ethylbenzene concentrations in LAW-PZ-8R decreased from 13,000 to 6,900 μ g/L. Other concentrations in the up-gradient plume remained relatively stable, however, concentrations at MW-26R increased from 25 to 760 μ g/L.

Concentrations in the down-gradient plume increased from 1,800 to 3,300 between the October 2014 and March/April 2015 sampling events. However, Ethylbenzene concentrations decreased in PAN-MW-9 and MW-32 from 650 and 36 μ g/L to 580 and <0.33 μ g/L respectively.

In summary, the Ethylbenzene plume has significantly reduced in concentration and extent in comparison to the original plume footprint and continues to trend towards RRS values. This indicates that MNA is effective in reducing Ethylbenzene concentrations.

Total Xylenes Plume:

Figure 4-11 illustrates the horizontal extent of the Total Xylenes plume from the March/April 2015 sampling event. Similar to Ethylbenzene, Total Xylenes within the up-gradient plume increased sharply between the April and the October 2014 sampling events (EIC, 2015). The up-gradient Total Xylenes plume was centered near LAW-PZ-8R in April 2015, and has remained relatively stable in concentration and extent with some variation, as compared to the original plume footprint. However, during the March/April 2015 sampling event, Total Xylenes concentrations sharply decreased in LAW-PZ-8R and IW-1R. Between the October 2014 to March/April 2015 sampling events, the Total Xylenes concentrations in wells LAW-PZ-8R and IW-1R decreased significantly - from 180,000 and 19,000 μg/L to 87,000 and 17,000 μg/L respectively. Also, similar to the Benzene and Ethylbenzene plumes, concentrations of Total Xylenes increased in wells IW-18 and MW-26R. Since the last

sampling event, Total Xylenes concentrations increased in wells IW-18 and MW-26R from 1,100 and $400 \mu g/L$ to 1,300 and 11,000 $\mu g/L$, respectively.

The down-gradient Total Xylenes plume is centered near MW-29 and has remained relatively stable over time in both concentration and extent as compared to the original plume footprint. The overall down-gradient plume concentrations decreased between October 2014 and March/April 2015- most notably in PAN-MW-9. From the October 2014 to March/April 2015, the concentration at PAN-MW-9 decreased from 1,800 to 1,400 µg/L respectively. Other smaller decreases in concentration were observed in wells MW-32 and MW-33. This slightly reduced the overall extent of the down-gradient Total Xylenes plume. In summary, the Total Xylenes plume has significantly reduced in concentration and extent as compared to the original plume footprint and remains stable in concentration and extent.

4.4.3 Vertical Extent of COC Plumes

The historical groundwater sampling results of samples from the single deep well MW-14 within the original COCs footprint through March/April 2015 are tabulated in Table 4-4. Since the redevelopment and integration of well MW-14 into the regular CVOC and VOC sampling schedule in October 2013 through April 2015, EIC confirmed that all monitored COC concentrations in the well have remained below delineation standards and all but one parameter were below MDLs. In the EPD comment letter to VOPAK dated April 3, 2014, the Georgia EPD concurred with EIC that vertical delineation is complete.

5.0 REMEDIAL PROGRESS

To determine the remedial progress, EIC performed a spatial and temporal analysis of the COC plumes and an evaluation of COC trends in individual wells. The following subsections discuss the remedial progress.

5.1 COC Degradation

The spatial and temporal analysis of the plume, discussed in Section 4, provides a clear insight into the overall remedial progress and the plume stability. The following subsections discuss the degradation of the COCs.

5.1.1 CVOC Plume

As discussed in the previous report, the prevailing PCE, TCE, DCE, and VC plumes have degraded significantly in comparison to the original plume footprints (EIC, 2015). Since the inception of the VIRP program and subsequent first sampling event in October 2011, EIC has delineated the leading edge of each CVOC plume.

Referring to the March/April 2015 analytical data, the following monitoring wells exceed RRS values as of the time of the March/April 2015 groundwater monitoring event; PCE (IW-1R, IW-18, MW-26R, MW-28, MW-29, MW-37, LAW-PZ-8R, and PAN-MW-9), TCE (IW-1R and MW-29), DCE (IW-1R, LAW-PZ-8R, MW-29, and PAN-MW-9), and VC (IW-1R, IW-18, MW-16, MW-24R, MW-26R, MW-27, MW-28, MW-29, MW-33, MW-37, LAW-PZ-8R, and PAN-MW-9)

5.1.2 VOC Plume

Following a similar trend as the CVOC plume, the VOC plume has also reduced substantially in the center and at the leading edge of the VOC baseline footprint. This has resulted in an isolated pocket

of VOC plume at well LAW-PZ-8R in the trailing edge of the original VOC footprint. EIC has delineated the leading edge of each VOC plume.

Referring to the March/April 2015 analytical data, it is apparent that the following monitoring wells exceed RRS concentrations for VOCs; benzene (IW-1R, IW-18, LAW-PZ-8R, MW-26R, MW-29, and PAN-MW-9), ethylbenzene (IW-1R, LAW-PZ-8R, MW-26R, and MW-29), and total xylenes (IW-1R, LAW-PZ-8R, and MW-26R).

5.2 COC Trends in Individual Wells

Pursuant to EPD's requirement, discussed in the Seventh VIRP Semiannual Progress Report, EIC prepared trend graphs for each constituent for select wells (EIC, 2015). These trend graphs are presented as Figures 5-1 through 5-13.

In general, all graphs illustrate the initial increase in PCE concentrations but then a gradual decline in concentrations during subsequent sampling events. By contrast, the degradation products of PCE have increased in some areas and remained persistent in other areas of the PCE footprint – confirming natural attenuation of PCE. A more detailed analysis of fluid flow hydrodynamics as well as fate and transport evaluation of CVOC and VOC concentrations is included in the revised site conceptual model (Appendix A).

5.3 Remedial Progress

In the previous report, VOPAK notified EPD that the CVOC foot-print had expanded after additional pockets of CVOCs were discovered from new wells that replaced damaged or missing wells. The CVOC concentrations, however, rapidly declined since the previous semi-annual sampling event. Also, the areal extent of PCE is now confined to two small areas within the original footprint. VOPAK will verify this trend in the based on the analytical data from the next sampling event scheduled for October 2015. VOPAK will then evaluate the contingency remedial measures that may be required for localized treatment, request a time extension to reach remedial end points, or explore Type 5 RRS with UECs to address exposure pathways.

5.4 Final Remediation Plan

Although recent data indicates substantial remedial progress, VOPAK is considering multiple options in finalizing its remedial plan. However, data from the next sampling event scheduled in October 2015 is critical in verifying whether the recent reduction in the leading edge can be reconfirmed and to select the most cost-effective remedial option. Nevertheless, VOPAK is pursuing the following tasks:

- 1. Using modeling, statistical analysis, or projections, amend the estimate the time needed to reach remedial end points based on the MNA trends relative to the current COC footprint.
- 2. Conduct Microcosm Testing and Evaluation to determine whether amendments of some of the key parameters support enhanced attenuation option.
- 3. Conduct an evaluation of the potential for treatment of an isolated pocket of COCs using a treatment train.
- 4. Evaluate the feasibility of performing a flow-net analysis to determine fluid flow hydrodynamics along the bulkhead and the sheet pile in the adjacent area.
- 5. Conduct an evaluation of other options to reach remedial end points within the VIRP deadline or extend the deadline with EPD concurrence.

5.5 Updated Schedule and Timeline

Based on the aforementioned findings, VOPAK is deferring the preparation of a final remediation plan, updated schedule, and cost estimate until the analytical data is available from the October 2015 semiannual sampling event.

SECTION 6

6.0 SUMMARY

On behalf of VOPAK, EIC has addressed the comments noted in EPD's letter dated July 29, 2015. EIC has updated the SCM based on new information obtained regarding site conditions and fluid flow hydrodynamics. Data from the recent March/April 2015 sampling event, indicates that the natural attenuation continues to be viable.

As discussed in the previous Seventh VIRP Semiannual Progress Report, pockets of contamination were discovered following the initiation of the VIRP program (EIC, 2015). These additional areas of contamination presents a challenge in reaching remedial end points within the regulatory deadline of August 31, 2016 established in the VIRP. Nevertheless, MNA has successfully attenuated the COCs in a substantial area encompassing the center of the baseline plume footprint, resulting in isolated individual pockets of plumes at the leading and trailing edges.

Data from recent sampling event, a substantial reduction in COC concentrations at the leading edge.

Nevertheless, data from the next sampling event scheduled in October 2015 is critical in verifying whether the recent reduction in the leading edge can be reconfirmed and to select the most cost-effective remedial option. Based on the results of the October 2015 sampling event, VOPAK will explore multiple options in finalizing contingency plans.

SECTION

7

7.0 SUMMARY OF HOURS

A monthly summary of hours invoiced for the aforementioned tasks during the period from March 2015 through August 2015 are summarized in Attachment C.

8.0 REFERENCES

Environmental International Corporation (EIC), 2011a. Revised VRP Application. Savannah, Georgia, April 2011.

EIC, 2012a. Report on First Quarter 2012 Monitored Natural Attenuation (MNA) Ground Water Monitoring in CVOC/VOC Plumes, VOPAK Terminal Savannah Inc., Savannah, Georgia, February 2012.

EIC, 2012b. Report on Second Quarter 2012 Monitored Natural Attenuation (MNA) Ground Water Monitoring in CVOC/VOC Plumes, VOPAK Terminal Savannah Inc., Savannah, Georgia. Savannah, Georgia, May 2012.

EIC, 2012c. Report on Third Quarter 2012 Monitored Natural Attenuation (MNA) Ground Water Monitoring in CVOC/VOC Plumes, VOPAK Terminal Savannah Inc., Savannah, Georgia. Savannah, Georgia, August 2012.

EIC, 2012d. Report on Fourth Quarter 2012 Monitored Natural Attenuation (MNA) Ground Water Monitoring in CVOC/VOC Plumes, VOPAK Terminal Savannah Inc., Savannah, Georgia, February 2013.

EIC, 2013a. Report on First Quarter 2013 Monitored Natural Attenuation (MNA) Ground Water Monitoring in CVOC/VOC Plumes, VOPAK Terminal Savannah Inc., Savannah, Georgia. Savannah, Georgia, February 2013.

EIC, 2013b. Report on Second Quarter 2013 Monitored Natural Attenuation (MNA) Ground Water Monitoring in CVOC/VOC Plumes, VOPAK Terminal Savannah Inc., Savannah, Georgia. Savannah, Georgia, August 2013.

EIC, 2013c. Report on Third Quarter 2013 Monitored Natural Attenuation (MNA) Ground Water Monitoring in CVOC/VOC Plumes, VOPAK Terminal Savannah Inc., Savannah, Georgia. Savannah, Georgia, August 2013.

EIC, 2014a. Fifth VTRP Semi-annual Progress Report, VOPAK Terminal Savannah Inc., Savannah, Georgia. Savannah, Georgia, February 2014.

EIC, 2014b. Sixth VIRP Semi-annual Progress Report, VOPAK Terminal Savannah Inc., Savannah, Georgia. Savannah, Georgia, August 2014.

EIC, 2015. Seventh VIRP Semi-annual Progress Report, VOPAK Terminal Savannah Inc., Savannah, Georgia. Savannah, Georgia, February 2015.

U. S. Environmental Protection Agency (EPA) 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater, EPA/600/R-98/128, Environmental Protection Agency, Office of Research and Development. Washington, DC 20460. September 1998

EPA, 2013. Groundwater Sampling, Operating Procedure, Number SESDPROC-301-R3, Region 4, U.S. Environmental Protection Agency, Science and Ecosystem Support Division. Athens, Georgia. March 6, 2013.

State of Georgia (GA), 2011. Water Wells Standard Act of 1985 O.C.G.A. § 12-5-120 (2011). Atlanta, Georgia. October 29, 2010.

VOPAK TERMINAL SAVANNAH, SAVANNAH, GEORGIA

EIGHTH SEMI-ANNUAL PROGRESS REPORT

TABLES

Table 4-1: April 2015 Well Gauging Data VOPAK Terminal Savannah, Savannah, Georgia

VOI AIX Terrimiai Savarniari, Savarniari, Scorgia													
Well ID # (Well Diameter, in.)	Gauging Date	TOC Elevation* (ft.)	DTP (ft.)	DTW** (ft.)	Groundwater Surface Elevation (ft.)	Notes							
IW-1R (1)	4/2/2015	UNK	ND	3.4	NA	Contact with clear oily substance, used mini bailer to clear							
IW-18 (1)	4/2/2015	10.07	ND	3.18	6.89								
LAW-PZ-8R (1)	4/2/2015	9.22	ND	1.53	7.69								
MW-14 (2)	4/1/2015	8.86	ND	6.48	2.38								
MW-16 (1)	4/2/2015	17.01	ND	12.03	4.98	Tubing hit refusal few times when inserted, small bubbles in tubing							
MW-17R (1)	3/31/2015	15.89	ND	10.93	4.96								
MW-18R (1)	3/30/2015	14.12	ND	6.18	7.94								
MW-19 (1)	3/30/2015	14.91	ND	6.69	8.22								
MW-23 (1)	3/30/2015	10.39	ND	3.42	6.97								
MW-24R (1)	4/1/2015	11.81	ND	5.45	6.36								
MW-25 (1)	3/30/2015	14.76	ND	6.51	8.25								
MW-26R (1)	4/2/2015	10.59	ND	3.12	7.47								
MW-27 (1)	3/30/2015	9.38	ND	4.08	5.30								
MW-28 (1)	3/31/2015	UNK	ND	4.12	NA								
MW-29 (0.75)	4/1/2015	11.73	ND	6.04	5.69								
MW-30 (2)	4/2/2015	11.23	ND	5.05	6.18								
MW-31 (2)	3/30/2015	9.67	ND	4.48	5.19								
MW-32 (2)	3/31/2015	11.70	ND	5.49	6.21								
MW-33 (2)	4/2/2015	8.96	ND	2.38	6.58	Distinct yellow color in cylinder and sample tube							
MW-34 (2)	3/31/2015	10.81	ND	3.28	7.53	Water in vault							
MW-35 (2)	3/31/2015	10.40	ND	5.47	4.93								
MW-36 (2)	3/31/2015	10.42	ND	6.48	3.94								
MW-37 (2)	3/31/2015	11.57	ND	3.97	7.60								
PAN-MW-9 (2)	4/1/2015	12.59	ND	6.49	6.10								
PAN-MW-10 (2)	4/1/2015	13.81	ND	8.24	5.57								

Notes:

ID = Identity

TOC = Top of Casing

UNK = Unknown

NM = Not Measured

ND = Not Detected

^{*} TOC elevations are based on well surveys conducted by EMC Engineering on June 30, 2011, January 24, 2013, and on January 20, 2014 and are of the NGVD 29 Datum convention

^{**} DTW measurements were recorded by EIC from 3/30/2015 to 4/2/2015 prior to purging using a Solinst Oil/Water Interface Meter (probe), Model: 122

Table 4-2: March/April Well Purging Data VOPAK Terminal Savannah, Savannah, Georgia

Well ID # (Well Diameter, in.)	Date of Purge	Purge Time (minutes)	Total Purge Volume (mL)	Average Purge Rate (mL/minute)	Initial Tubing Intake Depth below TOC* (ft.)	Final Tubing Intake Depth below TOC (ft.)
IW-1R (1)	4/2/2015	15	1,120	75	14.0	14.0
IW-18 (1)	4/2/2015	20	1,280	64	15.0	15.0
LAW-PZ-8R (1)	4/2/2015	35	3,140	90	6.0	6.0
MW-14 (2)	4/1/2015	20	1,280	64	45.0	45.0
MW-16 (1)	4/2/2015	20	840	42	13.0	13.0
MW-17R (1)	3/31/2015	20	880	44	17.5	17.5
MW-18R (1)	3/30/2015	30	4,200	140	11.5	11.5
MW-19 (1)	3/30/2015	20	2,980	149	13.0	13.0
MW-23 (1)	3/30/2015	30	3,020	101	8.5	8.5
MW-24R (1)	4/1/2015	35	2,830	81	14.0	14.0
MW-25 (1)	3/30/2015	30	4,100	137	14.0	14.0
MW-26R (1)	4/2/2015	15	1,180	79	9.5	9.5
MW-27 (1)	3/30/2015	15	880	59	10.5	10.5
MW-28 (1)	3/31/2015	15	780	52	9.0	9.0
MW-29 (0.75)	4/1/2015	40	1,940	49	18.0	18.0
MW-30 (2)	4/2/2015	30	3,500	117	10.0	10.0
MW-31 (2)	3/30/2015	15	2,000	133	15.0	15.0
MW-32 (2)	3/31/2015	15	2,000	133	11.0	11.0
MW-33 (2)	4/2/2015	15	1,980	132	10.5	10.5
MW-34 (2)	3/31/2015	15	2,400	160	11.0	11.0
MW-35 (2)	3/31/2015	15	1,740	116	10.0	10.0
MW-36 (2)	3/31/2015	15	1,540	103	11.0	11.0
MW-37 (2)	3/31/2015	15	2,150	143	10.0	10.0
PAN-MW-9 (2)	4/1/2015	15	920	61	10.0	10.0
PAN-MW-10 (2)	4/1/2015	15	2,200	147	12.5	12.5

Notes:

ID = Identity

mL = Milliliter

TOC = Well Top of Casing

^{*} During well purging, the Teflon-lined tubing was lowered as needed when the water level fell to the depth of the intake, causing air to be recovered.

Table 4-3: Groundwater Natural Attenuation Parameters VOPAK Terminal Savannah, Savannah, Georgia

	Groundwater Quality Field Parameters												
Well ID # (Well Diameter, in.)	Temp (Celcius)	pH (SU)	ORP (mV)	Specific Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)							
IW-1R (1)	25.2	4.14	102	0.52	4.6	0.39							
IW-18 (1)	25.23	5.14	-2	0.736	157.0	0.61							
LAW-PZ-8R (1)	23.36	5.53	-36	0.813	116.0	0.31							
MW-14 (2)	19.43	7.01	-75	0.477	0.0	1.62							
MW-16 (1)	21.50	5.55	5	0.489	0.0	0.64							
MW-17R (1)	28.74	5.93	-50	0.405	3.3	0.76							
MW-18R (1)	16.71	3.91	291	0.300	24.8	1.90							
MW-19 (1)	17.38	6.33	-28	1.060	0.0	0.90							
MW-23 (1)	18.61	6.33	35	1.040	41.9	0.75							
MW-24R (1)	16.43	4.60	56	0.468	0.0	0.90							
MW-25 (1)	19.24	6.00	-79	0.693	10.1	0.70							
MW-26R (1)	21.84	5.57	7	0.621	15.7	0.83							
MW-27 (1)	22.93	6.15	51	0.391	0.0	1.00							
MW-28 (1)	18.22	6.30	203	0.390	0.0	1.83							
MW-29 (0.75)	21.22	4.44	43	1.240	79.0	0.62							
MW-30 (2)	22.87	4.14	111	0.286	0.0	0.43							
MW-31 (2)	21.51	6.52	33	0.864	0.0	0.63							
MW-32 (2)	23.48	6.47	-38	0.719	27.5	1.47							
MW-33 (2)	23.61	4.97	45	0.399	41.1	0.48							
MW-34 (2)	20.11	4.33	201	0.178	0.0	1.03							
MW-35 (2)	23.39	6.58	-132	0.616	0.0	0.73							
MW-36 (2)	24.81	6.38	-128	1.370	0.0	0.79							
MW-37 (2)	17.42	5.31	40	0.324	0.0	0.71							
PAN-MW-9 (2)	17.62	4.75	24	0.602	5.4	0.76							
PAN-MW-10 (2)	18.42	5.68	143	0.541	0.0	2.33							

Notes:

Field parameters were recorded by EIC from 10/13/2014 to 10/17/2014 after parameters had stabilized and prior to sample collection.

Parameters were measured with a Horiba U-52 Water Quality Meter with a Flow-Through Cell.

ID= Identity

SU= Standard Unit

mV= Millivolts

mS/cm= Microsiemens per centimeter

NTU= Nephelometric Turbidity Unit

mg/L= Milligrams per liter

Table 4-4: Concentrations of CVOCs and VOCs in Groundwater VOPAK Terminal Savannah, Savannah, Georgia

		D.C.						annan, Sa				— .						
EPA Test Method: 8260B Unit Site-Specific Type 4 RRS Values (ug/L)		PCE		TCE		DCE		VC		Benzene Toluene				Ethylben		Xylenes		
		μg/L 5		µg/L 38		μg/L 1022		μg/L 3		μg/L		μg/L		μg/L		μg/L		
										9	9			700		10000		
Well ID	Sample Date	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	
	Apr-14	310		210		13,000		640		130		300		2,900		25,000		
IW-1R	Oct-14	170		190		11,000		450		130	J	320		2,200		19,000		
	Apr-15	310		150	J	9,900		440 220		110	J	260		2,300		17,000 93		
	Oct-11 Jan-12	55 48		58 43	ī	4,400 4,800		220		36 29		7.3 <50	J	38	I	86		
	Apr-12	44	J	46	J	4,500		210		25	J	<50		24	J	55	J	
	Jul-12	31	I	33	J	4,500		160		21	J	<50		29	I	92	I	
	Oct-12	36	I	37	I	5,200		320		24	I	<50		31	I	110	,	
	Jan-13	43	J	44	I	6,000		310		25	I	<50		40	I	170		
IW-18	Apr-13	42		37		6,000		410		26	,	13		49		270		
	Jul-13	27		31		5,900		770		30		21		110		1,000		
	Oct-13	29		26		6,400		670		26		12		56		510		
	Jan-14	19		28		5,300		1,900		60		24		100		810		
	Apr-14	39		34		7,400		1,100		73		35		220		1,900		
	Oct-14	11	J	12	J	2,900		1,500		170		28	J	130		1,100		
	Apr-15	<7.4		8.4	J	920		830		350		14		180		1,300		
	Sep-97	50/500		NR		NR		350/<500		NS		NS		NS		NS		
	Dec-98	<1000		NR		NR		<1,000		<1000		<1000		4,300		5,600		
	Nov-99	NS		NS		NS		NS		NS		NS		NS		NS		
	Dec-99	NS		NS		NS		NS		NS		NS		NS		NS		
	Oct-00	<250		<250		1,800		890		<250		<250		5,100		59,000		
	Jun-01	<1200		<1200		3,900		670		69	J	220	J	5,700		64,000	-	
	Nov-01	NS		NS		NS		NS		NS		NS		NS		NS	-	
	Oct-02	NS		NS NS		NS		NS		NS NS		NS NS		NS		NS NS		
	Aug-03 Oct-03	NS 70	т.	NS 18	т	NS 350		NS 120		NS 42	ī	<100		NS 3,700		42,000		
	Mar-04	NS	J	NS NS	J	NS		NS		NS NS	J	NS		NS		42,000 NS	+	
	Jul-04	NS		NS NS		NS		NS		NS NS		NS		NS		NS		
	Sep-04	NS		NS		NS		NS		NS		NS		NS		NS		
	May-05	NS		NS		NS		NS		NS		NS		NS		NS		
	Aug-05	NS		NS		NS		NS		NS		NS		NS		NS		
	Jun-06	NS		NS		NS		NS		NS		NS		NS		NS		
	Oct-06	300		<100		31,000		1,700		190		1,200		6,100		84,000		
	Dec-06	240		72		12,000		630		47		410		3,000		41,000		
LAW-PZ-8 /	Mar-07	<250		<250		16,000		1,200		< 500		760		5,000		70,000		
LAW-PZ-8R	Sep-07	240		<100		18,000		1,200		310		720		4,400		54,000		
	May-08	380		34		6,900		660		450		330		6,500		94,000		
	Dec-08	570		52		4,600		360		290		290		4,900		55,000		
	Apr-09	510		<250		<250		560		320		280		3,800		48,000		
	Sep-09	99		34		4,500		470		390		260		4,100		47,000	-	
	Apr-10 Oct-11	240 150	-	49 28	т	5,100 22,000		480 1,500		NS 1,600		NS 1,100	1	NS 8,000	1	NS 73,000	-	
	Jan-12	130	J	<500	J	17,000	\vdash	1,600		1,700		930		7,500	1 1	88,000	-	
	Apr-12	99	J	<500	+	17,000	+	1,800		2,300		1,100		7,500	1	110,000	-	
	Jul-12	110	J	<500		16,000		1,200		2,000		820		7,100	+	91,000	+	
	Oct-12	83	,	<500		8,000		870		1,300		530		7,300		100,000	+	
	Jan-13	99		<500		13,000		1,100		2,000		800	1	7,500		100,000	1	
	Apr-13	71		12		9,100		960		1,400		570		7,200		110,000		
	Jul-13	30		5.6	J	11,000		990		1,900		650		7,600		110,000		
	Oct-13	44		8.5	J	8,500		830		1,500		510		6,800		110,000		
	Jan-14	38		<1.9		7,200		980		1,200		370		4,000		88,000		
	Apr-14	22		8.6	J	7,400		840		1,200		400		4,900		58,000		
	Oct-14	<150		<130		15,000		1,900		3,400		1,100		13,000		180,000		
	Apr-15	<740	1	<480	1 7	4,100	1 7	< 500		1,100	ш Т	<480		6,900	l I	87,000	1	

Table 4-4: Concentrations of CVOCs and VOCs in Groundwater VOPAK Terminal Savannah, Savannah, Georgia

EFA Test Met	EPA Test Method: 8260B			TCE		DCE	VC	Benzer	Toluene Ethylbenzene				Xylenes				
Unit Site-Specific Type 4 RRS Values (ug/L)		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L	e	μg/L		μg/L	
				38		1022		3		9	9		5241			10000	
Well ID	Sample Date	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
	Feb-91	NS		NS		NS		NS		NS		NS		NS	1	NS	Т
	Jul-91	NS		NS		NS		NS		NS		NS		NS		NS	
	Jun-96	NS		NS		NS		NS		NS		NS		NS		NS	
	Sep-97	33		NR		NR		<5		NS		NS		NS		NS	
+	Dec-98 Nov-99	<1 <5		NR <5		NR <2		<1 <2		<1 NS		<1 NS		2.9 NS		1.4 NS	+
+	Dec-99	NS		NS		NS		NS		NS NS		NS NS		NS NS		NS NS	-
	Oct-00	<1		<1		<1		<1		<1		<1		<1		<2	1
	Jun-01	<5		<5		<5		<2		<5		<5		<5		<10	
	Nov-01	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-02	NS		NS		NS		NS		NS		NS		NS		NS	
	Aug-03	<5 No.		<5 NO		<5		<2		<5 NG		<5 No.		<5 NO		<10	_
-	Oct-03 Mar-04	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
+	Jul-04	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	-
-	Sep-04	NS		NS		NS		NS		NS		NS		NS		NS	+
	May-05	NS		NS		NS		NS		NS		NS		NS		NS	
	Aug-05	NS		NS		NS		NS		NS		NS		NS		NS	
	Jun-06	<5		<5		<5		<2		<10		<5		<5		<5	
N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Oct-06	<2	1	<2		<2		<2		<2		<2		<2		<5	4
MW-14	Dec-06	<2		<2 <5		<2		<2 <2		<2		<2 <5		<2	+	<5 <5	+
	Mar-07 Sep-07	<5 <2		<5 <2		<5 <2		<2		<10 <2		<5 <2		<5 <2		<5 <5	+
	May-08	<2		<2		<2		<2		NS		<2		<2		<5	+
	Dec-08	<5		<5		<5		<2		<5		<5		<5		<5	+
	Apr-09	<5		<5		<5		<2		<5		<5		<5		<5	
	Sep-09	<2		<2		<2		<2		<2		<2		<2		<2	
	Apr-10	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-11	NL		NL		NL		NL		NL		NL		NL		NL	
	Jan-12	NL NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL NL	+
-	Apr-12 Jul-12	NL NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL		NL	+
-	Oct-12	NL		NL		NL		NL		NL		NL		NL		NL	+
	Jan-13	NL		NL		NL		NL		NL		NL		NL		NL	1
	Apr-13	NS		NS		NS		NS		NS		NS		NS		NS	
	Jul-13	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-13	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		3.5		< 0.19		< 0.20	
	Jan-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	
+	Apr-14 Oct-14	<0.16 <0.15		<0.19		<0.21		<0.19		<0.16 <0.25		<0.14		<0.19 <0.33		<0.20	+
+	Apr-15	< 0.74		<0.13		< 0.41		<0.16		< 0.43		<0.48		<0.33		<0.23	_
	Feb-91	NS		NS		NS		NS		NS		NS		NS		NS	+
	Jul-91	NS		NS		NS		NS		NS		NS		NS		NS	+
	Jun-96	NS		NS		NS		NS		NS		NS		NS		NS	
	Sep-97	NS		NS		NS		NS		NS		NS		NS		NS	
	Dec-98	NS		NS		NS		NS		NS		NS		NS		NS	
	Nov-99	NS		NS		NS		NS		NS		NS		NS		NS	+
	Dec-99 Oct-00	NS NS	1	NS NS		NS NS		NS NS		NS NS		NS NS	-	NS NS		NS NS	+
	Jun-01	<5	1	<5		<5		<2		<5		<5		<5		<10	+
	Nov-01	NS		NS		NS		NS		NS		NS		NS		NS	1
	Oct-02	NS		NS		NS		NS		NS		NS		NS		NS	
	Aug-03	5.3	_	14		<5		NS		<5		<5		<5		<10	
	Oct-03	NS	1	NS		NS		NS		NS		NS		NS		NS	4
	Mar-04 Jul-04	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+	NS NS	+
	Jui-04 Sep-04	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	May-05	NS		NS NS		NS		NS		NS		NS		NS		NS	+
MW-15*	Aug-05	NS		NS		NS		NS		NS		NS		NS		NS	1
	Oct-03	NS		NS		NS		NS		NS		NS		NS		NS	
	Mar-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Jul-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Sep-04 May 05	NS		NS NC		NS NS		NS Ne		NS NC		NS NC		NS NC	+	NS NS	+
	May-05 Aug-05	NS NS	1	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Jun-06	<5	1	<5		<5		<2		<10		<5		<5		<5	+
	Oct-06	<2		<2		<2		<2		<2		<2		<2		<5	1
	Dec-06	12		12		4		<2		<2		<2		<2		<5	1
	Mar-07	<5		<5		<5		<2		<10		<5		<5		<5	
	Sep-07	<3		4		3		<2		<2		<2		<2		<5	1
	May-08	NS	1	NS		NS		NS		NS		NS		NS		NS	4
	Dec-08	NS <5		NS <5		NS <5		NS <2		NS <5		NS <5		NS <5	+	NS <5	+
	Apr-09 Sep-09	<5 NS	1	<5 NS		<5 NS		×2 NS		<5 NS		<5 NS		<5 NS		<5 NS	+
	Apr-10	<5	1	<5		<5		17		NS		NS		NS		NS	+
	Apr-11	69	+	39		2,200		150		34		8.3	J	26		86	+

Table 4-4: Concentrations of CVOCs and VOCs in Groundwater VOPAK Terminal Savannah, Savannah, Georgia

					, AIX			annah, Sa	· v aiii								
EPA Test Mo		PCE		TCE		DCE		VC		Benzer		Toluen	e	Ethylben		Xylene	
Site-Specific	Unit	μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L	'	μg/L	
	alues (ug/L)	5		38		1022		3		9		5241		700		10000)
Well ID	Sample Date	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Fla
	Oct-00	NS		<1		110		2.2		<1		<1		<1		<2	
	Jun-01 Nov-01	<5		<5 NS		NS		<2 NC		<5		<5		<5		<10 NS	
	Oct-02	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	
	Aug-03	<5		<5		33		<2		<5		<5		<5		<10	
	Oct-03	NS		NS		NS		NS		NS		NS		NS		NS	
	Mar-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Jul-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Sep-04	NS		NS		NS		NS		NS		NS		NS		NS	
	May-05	NS		NS		NS		NS		NS		NS		NS		NS	
	Aug-05 Jun-06	NS <5		NS <5		NS 36		NS <2		NS <10		NS <5		NS <5		NS <5	
	Oct-06	<2		12		120		4		<2		<2		<2		7	
	Dec-06	<2		24		120		8		<2		<2		<2		<5	
	Mar-07	9		71		320		25		<10		<5		<5		<5	
	Sep-07	<2		<2		260		63		<2		<2		<2		<5	
MW-16	May-08	<2		<2		61		53		<2		<2		6		<5	
	Dec-08	<5		<5		60		49		<5		<5		<5		<5	
	Apr-09	<5		<5		78		82		<5		<5		<5		<5	
	Sep-09	<2 <5		4.1 <5		78 89		69 83		<2 NS		<2 NS		<2 NS		<5 NS	-
	Apr-10 Oct-11	0.57	J	0.66	I	160		77		0.52	J	<1		0.3	J	1.9	J
	Jan-12	0.67	J	0.94	J	130		85		0.44	J	0.42	J	0.12	J	1.3	J
	Apr-12	<1		0.94	J	140		200		0.74	J	0.33	J	1.7		21	
	Jul-12	0.28	J	0.63	J	87		48		0.41	J	<1		0.23	J	1.1	J
	Oct-12	<2		0.37	J	200		94		<2		<2		0.52	J	1.7	J
	Jan-13	<1		<1		120		78		0.27	J	<1		0.49	J	1.4	J
	Apr-13	< 0.22		0.6	J	140		85		0.42	J	0.24	J	2.1		8	
	Jul-13	< 0.16		< 0.19		320		100		< 0.16		< 0.14		< 0.19		< 0.20	
	Oct-13 Jan-14	0.58 <0.16	J	1.1 <0.19		110 170		86 180		0.83 1.5		<0.14		1.2 <0.19		5.6 <0.20	-
	Apr-14	<0.16		1.1		310		160		2		<0.14		8.3		4.1	+
	Oct-14	<0.15		0.34	ī	130		81		1.3		<0.33		<0.11		<0.20	
	Apr-15	<1.5		6		210		120		2.7		< 0.96		3.4		1.3	J
	Oct-00	NS		<1		<1		<1		<1		<1		<1		<2	
	Jun-01	<5		<5		<5		<2		<5		<5		<5		<10	
	Nov-01	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-02	NS		NS		NS		NS		NS		NS		NS		NS	
	Aug-03	<5		<5 NG		<5		<2 NG		<5 NG		<5		<5 NG		<10	-
	Oct-03 Mar-04	NS <5		NS <5		NS <5		NS <2		NS <10		NS <5		NS <5		NS <5	
	Jul-04	<5		<5		<5		<2		<10		<5		<5		<5	
	Sep-04	<5		<5		<5		<2		<10		5		<5		<5	+
	May-05	NS		NS		NS		NS		NS		NS		NS		NS	1
	Aug-05	NS		NS		NS		NS		NS		NS		NS		NS	Ĺ
	Jun-06	<5		<5		<5		<2		<10		<5		<5		<5	
	Oct-06	<5		<5		<5		<2		<10		8		<5		<5	
	Dec-06	<2		<2		<2		<2		<2		<2		7		<5	
	Mar-07 Sep-07	<5 <2	-	<5 <2		<5 <2	-	<2 <2		<10	 	<5 <2	\vdash	<5 <2		<5 <5	
MW-17/	May-08	<2		<2		<2	-	<2		<2		<2		4		27	
MW-17R	Dec-08	<5		<5		<5		<2		<5		<5		<5		<5	+
	Apr-09	<5		<5		<5		<2		<5		<5		<5		<5	1
	Sep-09	<2		<2		<2		<2		<2		<2		<2		<5	1
	Apr-10	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-11	<1		<1		0.2	J	<1		0.39	J	<1		0.55	J	<2	L
	Jan-12	<1		<1		<1		<1		0.44	J	0.35	J	1.5		0.65	1
	Apr-12	<1		0.13	J	2.8		0.19	J	0.48	J	<1		0.7	J	0.22	
	Jul-12 Oct-12	1.3 16		1.2 5.2		9.2	-	<1		0.29 <1	J	<1 <1	\vdash	0.62 1.4	J	0.28]
	Jan-13	<1		5.2 <1		<1		<1		<1		<1		0.84	J	<2	+-
	Apr-13	4.1		1.3		1.6	 	<0.30		0.18	J	<0.15		1.2	J	0.33	
	Jul-13	<0.16		<0.19		<0.21		<0.19		<0.16	,	<0.13		1.5		<0.20	+
	Oct-13	< 0.16		<0.19		<0.21		<0.19		<0.16		<0.14		0.83	J	<0.20	+
	Jan-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	
	Apr-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		0.95	J	< 0.20	
	Oct-14	< 0.15		< 0.13		< 0.15		< 0.18		< 0.25		< 0.33		0.66	J	< 0.20	
	Apr-15	< 0.74		< 0.48		< 0.41		< 0.50		< 0.43		< 0.48		0.79		< 0.23	

Table 4-4: Concentrations of CVOCs and VOCs in Groundwater VOPAK Terminal Savannah, Savannah, Georgia

								annan, Sa									
EPA Test M		PCE		TCE		DCE		VC		Benzer		Toluer		Ethylben:	zene	Xylene	
Site-Specific		μg/L 5		μg/L 38		μg/L 1022		μg/L 3		μg/L 9	'	μg/L 5241		μg/L 700		μg/L 10000	
Well ID	Sample	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
wen ib	Date		1 mg		11mg		Tiag		1 mg		Ting		Ting		Ting		Ting
	Jun-01	<5		<5		<5		<2 NG		<5		<5		<5 NG		<10	_
	Nov-01 Oct-02	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	_
	Aug-03	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-03	<1		<1		<1		<1		<1		<1		2		22	
	Mar-04	<5		<5		<5		<2		<10		<5		<5		<5	
	Jul-04	<5		<5		<5		<2		<10		<5		<5		<5	
	Sep-04	<5		<5		<5		<2		<10		< 5		<5		< 5	
	May-05	NS		NS		NS		NS		NS		NS		NS		NS	+
	Aug-05 Jun-06	NS <5		NS <5		NS <5		NS <2		NS <10		NS <5		NS <5		NS <5	+-
	Oct-06	<5		<5		<5		<2		<10		<5		<5		<5	+-
	Dec-06	<2		<2		<2		<2		<2		<2		<2		<5	_
	Mar-07	<5		<5		<5		<2		<10		<5		<5		<5	
	Sep-07	<2		<2		<2		<2		<2		<2		<2		<5	
MW-18/	May-08	<2		<2		<2		<2		<2		<2		2		16	
MW18R	Dec-08	<5		<5		<5	-	<2		<5		<5	-	<5		<5	_
	Apr-09 Sep-09	<5 <2	-	<5 <2		<5 <2	-	<2 <2		<5 <2		<5 <2		<5 <2	-	<5 <5	+
	Apr-10	<5		<5		<5		<2		NS NS		NS		NS NS		NS NS	+-
	Oct-11	<1		<1		<1		<1		<1		<1		<1		<2	
	Jan-12	<1		<1		<1		<1		<1		<1		<1		<2	
	Apr-12	<1		<1		<1		<1		<1		<1		<1		<2	
	Jul-12	<1		<1		<1		<1		<1		<1		<1		<2	
	Oct-12	<1		<1		<1		<1		<1		<1		<1		<2	4-
	Jan-13	<0.22		<0.20		<0.13		<0.30		<0.18		<0.15		<1 <0.097		<2	+
	Apr-13 Jul-13	<0.22		<0.20		<0.13		<0.19		<0.18		<0.15		<0.097		<0.31	+
	Oct-13	<0.16		<0.19		<0.21		<0.19		<0.16		<0.14		<0.19		<0.20	+-
	Jan-14	< 0.16		< 0.19		< 0.21		<0.19		<0.16		<0.14		<0.19		< 0.20	+
	Apr-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	
	Oct-14	< 0.15		< 0.13		< 0.15		< 0.18		< 0.25		< 0.33		< 0.11		< 0.20	
	Apr-15	< 0.74		< 0.48		< 0.41		< 0.50		< 0.43		< 0.48		< 0.33		< 0.23	
	Jun-01	<5 >70		<5 NG		<5 NO		<2		<5 NG		<5 NO		<5 NO		<10	_
	Nov-01 Oct-02	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Aug-03	<5		<5		<5		<2		NS NS		NS NS		NS NS		NS NS	+
	Aug-03	NS		NS		NS		NS		NS		NS		NS		NS	+
	Oct-03	NS		NS		NS		NS		NS		NS		NS		NS	+
	Mar-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Jul-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Sep-04	NS		NS		NS		NS		NS		NS		NS		NS	
	May-05	NS		NS NS		NS		NS		NS		NS		NS		NS	_
	Aug-05 Jun-06	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Oct-06	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	1	NS NS	+
	Dec-06	NS		NS		NS		NS		NS		NS	1	NS		NS	+
	Mar-07	NS		NS		NS		NS		NS		NS		NS		NS	
	Sep-07	<2		<2		<2		<2		<2		<2		<2		<5	_
MW-19	May-08	NS		NS		NS	-	NS		NS		NS	-	NS		NS	+
	Dec-08 Apr-09	NS <5	-	NS <5		NS <5	-	NS <2		NS <5		NS <5		NS <5	-	NS <5	+
	Sep-09	NS		NS		NS		NS NS		NS NS		NS		NS NS		NS NS	+
	Apr-10	<5		<5		<5	 	<2		NS		NS		NS		NS	+-
	Oct-11	<1		<1		<1	İ	<1		<1		<1		<1		<2	\top
	Jan-12	<1		<1		<1		<1		<1		<1		<1		<2	
	Apr-12	<1		<1		0.22	J	<1		<1		<1		1.7		12	4
	Jul-12	<1		<1		<1		<1		<1		<1		<1		<2	4
	Oct-12	<1		<1		<1		<1		<1		<1		<1		<2	+
	Jan-13 Apr-13	<0.22	-	<0.20		<1 0.14	J	<0.30		<0.18		<0.15		<1 0.21	ī	<2 0.41]
	Jul-13	<0.22		<0.20		<0.21	J	<0.30		<0.18		<0.15		<0.19	J	<0.20	+-
	Oct-13	< 0.16		<0.19		< 0.21		<0.19		<0.16		<0.14		<0.19		<0.20	+
	Jan-14	< 0.16		< 0.19		< 0.21	İ	< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	T
	Apr-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	
	Oct-14	< 0.15		< 0.13		< 0.15		< 0.18		< 0.25		< 0.33		< 0.11		< 0.20	
	Apr-15	< 0.74		< 0.48		< 0.41		< 0.50		< 0.43		< 0.48		< 0.33		< 0.23	

Table 4-4: Concentrations of CVOCs and VOCs in Groundwater VOPAK Terminal Savannah, Savannah, Georgia

EPA Test Me	thod: 8260B	PCE		TCE		DCE		VC	ivaiii	Benzer		Toluen	e	Ethylben	zene	Xylene	ee
LITT Test Me	Unit	μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L	
Site-Specific Va	Type 4 RRS dues (ug/L)	5		38		1022		3		9		5241		700		10000	
Well ID	Sample Date	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
	Jun-01	<5		<5		<5		<2		<5		<5		<5		<10	
	Nov-01 Oct-02	NS		NS NC		NS		NS NC		NS NE		NS NC		NS		NS NS	+
	Aug-03	NS <5		NS <5		NS <5		NS <2		NS <5		NS <5		NS <5		<10	+-
	Oct-03	NS		NS		NS		NS		NS		NS		NS		NS	+-
	Mar-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Jul-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Sep-04 May-05	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+-
	Aug-05	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+-
	Jun-06	NS		NS		NS		NS		NS		NS		NS		NS	+
	Oct-06	NS		NS		NS		NS		NS		NS		NS		NS	
	Dec-06	NS		NS		NS		NS		NS		NS		NS		NS	
	Mar-07	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Sep-07 May-08	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
MW-20	Dec-08	NS		NS		NS		NS		NS		NS		NS		NS	+
	Apr-09	NS		NS		NS		NS		NS		NS		NS		NS	
	Sep-09	NS		NS		NS		NS		NS		NS		NS		NS	\Box
	Apr-10	NS		NS		NS		NS		NS		NS		NS		NS	\perp
	Oct-11 Jan-12	NL NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL NL	+-1
	Apr-12	NL		NL		NL		NL		NL		NL		NL		NL	+-1
	Jul-12	NL		NL		NL		NL		NL		NL		NL		NL	
	Oct-12	NL		NL		NL		NL		NL		NL		NL		NL	
	Jan-13	NL		NL		NL		NL		NL		NL		NL		NL	
	Apr-13 Jul-13	NL NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL NL	+-
	Oct-13	NL		NL		NL		NL		NL		NL		NL		NL	+-
	Jan-14	NL		NL		NL		NL		NL		NL		NL		NL	
	Apr-14	NL		NL		NL		NL		NL		NL		NL		NL	
	Oct-14	NL		NL		NL		NL		NL		NL		NL		NL	
	Apr-15 Jun-01	NL <5		NL <5		NL <5		NL <2		NL <5		NL <5		NL <5		NL <10	+
	Nov-01	NS		NS		NS		NS		NS		NS		NS		NS	+-1
	Oct-02	NS		NS		NS		NS		NS		NS		NS		NS	
	Aug-03	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-03	120		1.8		<1		<1		<1		<1		4.2		38	
	Mar-04 Jul-04	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+-1
	Sep-04	NS		NS		NS		NS		NS		NS		NS		NS	+-
	May-05	<2		<2		<2		<2		<2		<2		<2		<5	
	Aug-05	<5		<5		<5		<2		<5		<5		<5		<5	
	Jun-06 Oct-06	12 <2	$\vdash \vdash \mid$	<5 <5		<5 <2		<2 <2		<10 <2		<5 <2		<5 <2		<5 <5	+
	Dec-06	<2		<2		<2		<2		<2		<2		<2		<5 <5	+
	Mar-07	<5		<5		<5		<2		<10		<5		<5		<5	+
	Sep-07	<2		<2		<2		<2		<2		<2		<2		<5	
N. 637' 24	May-08	NS		NS		NS		NS		NS		NS		NS		NS	+
MW-21	Dec-08 Apr-09	NS NS		NS NS		NS NS		NS NS		NS NS	\vdash	NS NS		NS NS		NS NS	+
	Sep-09	NS		NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Apr-10	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-11	NL		NL		NL		NL		NL		NL		NL		NL	
	Jan-12	NL		NL		NL		NL		NL		NL NL		NL		NL	+
	Apr-12 Jul-12	NL NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL NL	+
	Oct-12	NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL		NL	+
	Jan-13	NL		NL		NL		NL		NL		NL		NL		NL	
	Apr-13	NL		NL		NL		NL		NL		NL		NL		NL	
	Jul-13	NL		NL		NL		NL		NL		NL		NL		NL	+
	Oct-13 Jan-14	NL NL	\vdash	NL NL		NL NL	\vdash	NL NL		NL NL		NL NL		NL NL		NL NL	+
	Jan-14 Apr-14	NL NL		NL NL		NL NL		NL NL		NL NL	\vdash	NL NL		NL NL		NL NL	+
	Oct-14	NL		NL		NL		NL		NL		NL		NL		NL	+
	Apr-15	NL		NL		NL		NL		NL		NL		NL		NL	

Table 4-4: Concentrations of CVOCs and VOCs in Groundwater VOPAK Terminal Savannah, Savannah, Georgia

EPA Test Me	thod: 9260D	PCE		TCE	- 20 4	DCE		VC		Benzer		Toluen	10	Ethylbena	zeno	Xylene	00
EFA Test Me	Unit	μg/L		μg/L		μg/L		νC μg/L		μg/L		μg/L		Ethylbenz μg/L	zene	Aylene μg/L	
Site-Specific Va		5		38		1022		3		9		5241		700		10000	
Well ID	Sample Date	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
	Jun-01	8,700		900		3,100		380		<500		<500		600		83	J
	Nov-01	NS		NS		NS		NS		NS		NS		NS		NS	₩
	Oct-02 Aug-03	NS 1,000		NS 480		930		NS <100		NS <250		NS <250		NS <250		NS <500	-
	Oct-03	NS		NS NS		NS NS		NS NS		NS		NS NS		NS		NS NS	+
	Mar-04	7,600		700		2,300		210		<10		<5		2,300		<50	+
	Jul-04	7,000		71		310		36		<10		<5		14		<22	
	Sep-04	7,200		<250		610		<100		< 500		<250		<250		<250	
	May-05	5,700		220		840		<100		<100		<100		<100		<250	_
	Aug-05 Jun-06	2,400 680		47 71		240 3,300		37 140		<5 <250		<5 <130		<5 150		10 <130	-
	Oct-06	2,600		<130		490		89		<250		<130		<130		<130	+
	Dec-06	3,200		60		480		100		<2		<2		20		18	1
	Mar-07	3,400		<130		730		100		<250		<130		<130		<130	
	Sep-07	NS		NS		NS		NS		NS		NS		NS		NS	
MW-22/	May-08	6,900		89		930		270		2		<2		10 7		26	+
MW-22R	Dec-08 Apr-09	4,400 1,900		100 88		2,100 1,700		300 280		<5 <5		<5 <5		7		12 22	+-
	Sep-09	3,000		88		1,000		220		4.1		<2		9.2		12	+
	Apr-10	NS		NS		NS		NS		NS		NS		NS		NS	_
	Oct-11	NU		NU		NU		NU		NU		NU		NU		NU	
	Jan-12	NU		NU		NU		NU		NU		NU		NU		NU	
	Apr-12	NU		NU		NU		NU		NU		NU		NU		NU	
	Jul-12 Oct-12	NU NU		NU NU		NU NU		NU NU		NU NU		NU NU		NU NU		NU NU	_
	Jan-13	NU		NU		NU		NU		NU		NU		NU		NU	+
	Apr-13	NU		NU		NU		NU		NU		NU		NU		NU	
	Jul-13	NU		NU		NU		NU		NU		NU		NU		NU	
	Oct-13	NU		NU		NU		NU		NU		NU		NU		NU	
	Jan-14	NU		NU		NU NU		NU		NU NU		NU		NU NU		NU	_
	Apr-14 Oct-14	NU NU		NU NU		NU		NU NU		NU NU		NU NU		NU NU		NU NU	-
	Apr-15	NU		NU		NU		NU		NU		NU		NU		NU	+
	Jun-01	<5		<5		<5		<2		<5		<5		<5		<10	+
	Nov-01	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-02	NS		NS		NS		NS		NS		NS		NS		NS	
	Aug-03	<5 NG		<5 No		<5 NG		<2		<5 NG		<5 No.		<5 NG		<10	
	Oct-03 Mar-04	NS 760		NS 2,300		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	_
	Jul-04	NS		NS		NS		NS		NS		NS		NS		NS	+
	Sep-04	NS		NS		NS		NS		NS		NS		NS		NS	_
	May-05	NS		NS		NS		NS		NS		NS		NS		NS	
	Aug-05	NS		NS		NS		NS		NS		NS		NS		NS	\perp
	Jun-06	NS		NS NC		NS NC		NS NC		NS		NS		NS		NS NC	+
	Oct-06 Dec-06	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+-
	Mar-07	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Sep-07	<2		<2		<2		<2		<2		<2		<2		<5	1
	May-08	NS		NS		NS		NS		NS		NS		NS		NS	
MW-23	Dec-08	NS		NS		NS		NS		NS		NS		NS		NS	
	Apr-09	<2 NE		<2 NC		<5		<2 NC		<5		<5		<5		<5	+
	Sep-09 Apr-10	NS <5		NS <5		NS <5		NS <2		NS NS		NS NS		NS NS		NS NS	+-
	Oct-11	<1		<1		<1		<1		<1		<1		<1		<2	+
	Jan-12	<1		<1		<1		<1		<1		<1		<1		<2	+
	Apr-12	<1		<1		<1		<1		<1		<1		<1		<2	
	Jul-12	<1		<1		<1		<1		<1		<1		<1		<2	\perp
	Oct-12	<1	\vdash	<1		<1		<1		<1	\vdash	<1		<1		<2	+
	Jan-13	<0.22	\vdash	<0.20		<0.13		<0.30		<0.18	\vdash	<0.15	-	<1 0.23	т	<2 0.42	т
	Apr-13 Jul-13	<0.22		<0.20		<0.13		<0.19		<0.18	+	<0.15		<0.19	J	<0.20	J
	Oct-13	<0.16		<0.19		< 0.21		<0.19		<0.16		<0.14		<0.19		< 0.20	+
	Jan-14	< 0.16		< 0.19		< 0.21		< 0.19	L	< 0.16		< 0.14		< 0.19		< 0.20	1
	Apr-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	
	Oct-14	< 0.15		< 0.13		< 0.15		< 0.18		< 0.25		< 0.33		< 0.11		< 0.20	1_
	Apr-15	< 0.74		< 0.48		< 0.41		< 0.50		< 0.43		< 0.48		< 0.33		< 0.23	

Table 4-4: Concentrations of CVOCs and VOCs in Groundwater VOPAK Terminal Savannah, Savannah, Georgia

										nan, Geo							
EPA Test M		PCE		TCE		DCE		VC		Benzer		Toluen		Ethylben:		Xylene	
Site-Specific	Unit Type 4 RRS	μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L	
-	alues (ug/L)	5		38		1022		3		9		5241		700		10000	0
Well ID	Sample Date	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Fla
	Nov-01	400		95		240		50		<12		<12		<12		<25	
	Oct-02	NS 97		NS 51		NS 100		NS 22		NS 52		NS <10		NS <10		NS <20	
	Aug-03 Oct-03	NS NS		51 NS		NS		NS NS		NS NS		NS NS		NS NS		NS	
	Mar-04	NS		NS		NS		NS NS		NS		NS		NS	-	NS	
	Jul-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Sep-04	NS		NS		NS		NS		NS		NS		NS		NS	
	May-05	NS		NS		NS		NS		NS		NS		NS		NS	
	Aug-05	NS		NS		NS		NS		NS		NS		NS		NS	
	Jun-06	1,300		180		500		49		11		<5		5		28	
	Oct-06	580		150		590		33		<20		<20		<20		<50	
	Dec-06	1,110		680		990		68		13		<2		10		35	
	Mar-07	130		200		770		17		14		<5		<5		12	
	Sep-07	62		37		820		20		12		<2		2		7	
MW-24/	May-08 Dec-08	130 110	\vdash	24 25	\vdash	82 340	-	9 12		16 15	\vdash	<2 <5		<2 <5		11 <5	-
MW-24/ MW-24R	Apr-09	93	\vdash	22		240		18		12		<5 <5		<5 <5		<5 <5	+
2710	Sep-09	57	\vdash	20		120	1	47		10		<2		<2		<5	+
	Apr-10	35		10		150		<2		NS		NS		NS		NS	+
	Oct-11	12		5.8		180		25		10		<5		1.4	J	4.2	T
	Jan-12	7.5		3.9		160		16		8.2		0.4	J	0.98	J	11	
	Apr-12	6.8		4.7		230		7.4		11		1.8	J	16		230	
	Jul-12	6.7		3.6		220		9.2		7.6		<2		<2		<4	
	Oct-12	6		3.4	J	320		54		8.1		<5		3.4	J	20	
	Jan-13	3	J	2.1	J	410		71		6.9		<5		4	J	22	
	Apr-13	3.5		2.8		540		64		6.2		0.71	J	4.4		26	
	Jul-13	5.3		5.4		800		140		8.2		1.2		11		58	
	Oct-13	3.3		2.2		450 570		43 <0.19		6.1		<0.14	J	0.79 <0.19	J	6.3 2.7	-
	Jan-14 Apr-14	2.6		1.8		500		<0.19		5.8		0.48	I	0.45	J	2.7	+
	Oct-14	1.7	ī	< 0.65		360		38		5.6		<1.7	J	1.3	J	<1.0	+
	Apr-15	<3.7	,	<2.4		300		16		3.9	T	<2.4		<1.7	,	<1.2	+
	Nov-01	<5		<5		<5		<10		<5	,	<5		<5		<10	
	Oct-02	NS		NS		NS		NS		NS		NS		NS		NS	
	Aug-03	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-03	NS		NS		NS		NS		NS		NS		NS		NS	
	Mar-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Jul-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Sep-04	NS		NS		NS		NS		NS		NS		NS		NS	
	May-05	NS		NS		NS		NS		NS		NS		NS		NS	4
	Aug-05	NS	-	NS	-	NS	-	NS	-	NS	-	NS		NS		NS	+
	Jun-06	NS	-	NS	-	NS	-	NS NE	-	NS	-	NS		NS		NS	-
	Oct-06 Dec-06	NS NS		NS NS	\vdash	NS NS	1	NS NS		NS NS	\vdash	NS NS	\vdash	NS NS	+	NS NS	+
	Mar-07	NS NS		NS NS		NS NS	1	NS NS		NS NS		NS NS		NS NS		NS NS	+
	Sep-07	<2		<2		<2		<2		<2		<2		<2		<5	+
	May-08	NS		NS		NS	1	NS		NS		NS		NS		NS	
MINIOT	Dec-08	NS		NS		NS		NS		NS		NS		NS		NS	T
MW-25	Apr-09	<5		<2		<5		<5		<5		<5		<5		<5	T
	Sep-09	NS		NS		NS		NS		NS		NS		NS		NS	I
	Apr-10	<5		<5		<5		<2		NS		NS		NS		NS	
	Oct-11	<1		<1		<1	1	<1		<1		<1		0.72	J	8.7	
	Jan-12	<1		<1		0.21	J	<1		<1		<1		<1		<2	1
	Apr-12	0.27	J	<1		0.57	J	<1		<1		<1		3.2		20	-
	Jul-12	<1	-	<1	-	<1	-	<1	-	<1	-	<1		<1		<2	+
	Oct-12	<1		<1	\vdash	<1	1	<1		<1	\vdash	<1	\vdash	<1	+	<2	\perp
	Jan-13	<0.22	\vdash	<0.20	\vdash	<0.13	-	<0.30		<0.18	\vdash	<1 <0.15	\vdash	<0.097		<0.31	+
	Apr-13 Jul-13	<0.22		<0.20		<0.13	1	<0.30		<0.18		<0.15		<0.09/		<0.31	+
	Oct-13	< 0.16		<0.19		<0.21		<0.19		<0.16		< 0.14		<0.19		<0.20	+
	Jan-14	<0.16		<0.19		<0.21		<0.19		<0.16		<0.14		<0.19		<0.20	+
	Apr-14	< 0.16		< 0.19		<0.21		<0.19		< 0.16		<0.14		< 0.19		< 0.20	
	Oct-14	< 0.15		< 0.13		< 0.15		< 0.18		< 0.25		< 0.33		< 0.11		< 0.20	\top
	Apr-15	< 0.74		< 0.48		< 0.41	1	< 0.50	1	< 0.43		< 0.48		< 0.33		< 0.23	+

Table 4-4: Concentrations of CVOCs and VOCs in Groundwater VOPAK Terminal Savannah, Savannah, Georgia

EPA Test Me	ethod: 8260B	PCE		TCE		DCE		VC		Benzer		Toluen	ie.	Ethylben	zene	Xylen	es
LIN Test inc	Unit	μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L	
Site-Specific Va	Type 4 RRS alues (ug/L)	5		38		1022		3		9		5241		700		10000	
Well ID	Sample Date	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
	Nov-01	2,400		100		1,100		210		<100		<100		<100		<200	
	Oct-02	NS 300		NS		NS 100		NS 38		NS		NS		NS		NS	
	Aug-03 Oct-03	NS NS		14 NS		180 NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Mar-04	NS		NS		NS		NS		NS		NS		NS		NS	+
	Jul-04	NS		NS		NS		NS		NS		NS		NS		NS	+
	Sep-04	NS		NS		NS		NS		NS		NS		NS		NS	
	May-05	120		8		120		28		17		<2		<2		< 5	
	Aug-05	420 NS		NS NS		210 NS		47 NS		35 NS		<5 NS		<5 NS		6 NS	-
	Jun-06 Oct-06	<2		2		2,800		330		16		45		380		2,700	+
	Dec-06	6		4		5,100		560		20		83		1,500		13,000	+
	Mar-07	<5		<5		2,600		580		17		45		1,100		6,900	
	Sep-07	<2		<2		240		240		9		4		71		250	
	May-08	5		<2		410		83		12		10		260		1,300	-
MW-26/ MW-26R	Dec-08	<5 <5		<5 <5		14 200		19 76		<5 14		5 21		23 310	+	120 2,700	+
W - ∠0K	Apr-09 Sep-09	<5 <2.		<5 <2		150		62		4.4		3.8		63		380	+
	Apr-10	<5		<5		93		48		NS		NS		NS		NS	+
	Oct-11	<1		0.89	J	43		34		7.2		1.4		35		110	
	Jan-12	<25		5	J	390		130		29		59		650		6,100	
	Apr-12	<25		5.5	J	350		140		22	J	54		610		7,200	
	Jul-12	<5 <50		<5 <50		43 210		40 63		21 35	т	15 37	т .	270		2,000	
	Oct-12 Jan-13	27	J	21	ī	1,500		220		64	J	140	J	390 2,000		4,200 2,400	_
	Apr-13	5	I	3.2	I	340		94		56		40		650		8,300	+
	Jul-13	<1.6		<1.9	,	19		12		75		18		450		5,500	
	Oct-13	<1.6		<1.9		150		53		33		10	J	160		2,300	
	Jan-14	<1.6		<1.9		68		<1.9		110		11		200		7,200	
	Apr-14 Oct-14	<0.75		<1.9 4.1	т т	7.2		11 7.3		110 19		<1.4 <1.1		64 25		5,600 400	
	Apr-15	<74		<48	J	<41		<50		180		63	ī	760		11,000	-
	Nov-01	<5		<5		<5		<2		<5		<5	J	<5		<10	-
	Oct-02	NS		NS		NS		NS		NS		NS		NS		NS	
	Aug-03	<5		<5		<5		<2		<5		<5		<5		<10	
	Oct-03	NS		NS		NS		NS		NS		NS		NS		NS	
	Mar-04 Jul-04	NS NS		NS NS		NS		NS NS		NS NS		NS NS		NS		NS NS	-
	Jul-04 Sep-04	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	May-05	NS		NS		NS		NS		NS		NS		NS		NS	+
	Aug-05	NS		NS		NS		NS		NS		NS		NS		NS	
	Jun-06	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-06	NS		NS		NS		NS		NS		NS		NS		NS	
	Dec-06 Mar-07	NS NS		NS NS		NS NS		NS NS	\vdash	NS NS	\vdash	NS NS		NS NS		NS NS	-
	Sep-07	3		2		350		NS 5		<2		<2		<2		NS <5	+
	May-08	NS		NS		NS		NS		NS		NS		NS		NS	1
MW-27	Dec-08	NS		NS		NS		NS		NS		NS		NS		NS	
11111-27	Apr-09	<5		<5		40		22		<5		<5		<5	\Box	<5	
	Sep-09	NS		NS		NS		NS	\vdash	NS	\vdash	NS		NS	1-1	NS	-
	Apr-10 Oct-11	<5 0.86	J	<5 1.6	J	<5 8.3		92 200	\vdash	NS 0.63	J	NS <2		NS 0.29	т	NS 3.4	J
	Jan-12	0.17	J	0.42	J	1.8		19		<1	J	<1		<1	J	<2	+ ,
	Apr-12	0.26	J	0.4	J	1.7		15		<1		<1		<1		<2	1
	Jul-12	<1		0.26	J	1.4		21		<1		<1		<1		<2	
	Oct-12	<1		0.33	J	1.1		16		<1		<1		<1		<2	_
	Jan-13	0.36 <0.22	J	0.88	J	2.1	т	6.5		<0.18		<0.15		<1 0.35	т .	<2	+
	Apr-13 Jul-13	<0.22		0.33	J	2.6	J	6.5		<0.18	+	<0.15		<0.19	J	3.9 <0.20	+
	Oct-13	<0.16		< 0.19	,	<0.21		2.9		<0.16		<0.14		<0.19		<0.20	+
	Jan-14	< 0.16		< 0.19		2.1		13		<0.16		< 0.14		< 0.19		< 0.20	
	Apr-14	< 0.16		< 0.19		1.9		9.7		< 0.16		< 0.14		< 0.19		< 0.20	
	Oct-14	< 0.15		< 0.13		2.2		12		< 0.25		< 0.33		< 0.11		< 0.20	_
	Apr-15	< 0.74		< 0.48		0.79	J	4.7		< 0.43		< 0.48		< 0.33		< 0.23	

Table 4-4: Concentrations of CVOCs and VOCs in Groundwater VOPAK Terminal Savannah, Savannah, Georgia

EPA Test Me	ethod: 8260B	PCE		TCE		DCE	-	annah, Sa VC	.vu	Benzen		Toluen	ie	Ethylben	zene	Xylene	es
	Unit	μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/I		μg/L	,
Site-Specific Va	dues (ug/L)	5		38		1022		3		9		5241		700		10000)
Well ID	Sample Date	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
	Oct-02	<5		<5		<5		<2		<5		<5		<5		<10	
	Aug-03	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-03 Mar-04	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Jul-04	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+-
	Sep-04	NS		NS		NS		NS		NS		NS		NS		NS	+
	May-05	NS		NS		NS		NS		NS		NS		NS		NS	1
	Aug-05	NS		NS		NS		NS		NS		NS		NS		NS	
	Jun-06	NS		NS		NS		NS		NS		NS		NS		NS	+
	Oct-06 Dec-06	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+-
	Mar-07	NS		NS		NS		NS		NS		NS		NS		NS	+
	Sep-07	NS		NS		NS		NS		NS		NS		NS		NS	
	May-08	NS		NS		NS		NS		NS		NS		NS		NS	
MW-28	Dec-08	NS NS		NS NS		NS NC		NS NC		NS NS		NS		NS NS		NS NS	+
M w - 28	Apr-09 Sep-09	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Apr-10	NS		NS		NS		NS		NS		NS		NS		NS	+
	Oct-11	NL		NL		NL		NL		NL		NL		NL		NL	
	Jan-12	NL	1	NL		NL		NL		NL		NL		NL		NL	4
	Apr-12 Jul-12	NL NL		NL NL		NL NL		NL NL		NL NL		NL NL	-	NL NL		NL NL	+
	Oct-12	NL NL	1	NL NL		NL NL		NL NL		NL NL		NL NL	1	NL NL		NL NL	+
	Jan-13	NL		NL		NL		NL		NL		NL		NL		NL	\pm
	Apr-13	NL		NL		NL		NL		NL		NL		NL		NL	
	Jul-13	NL		NL		NL		NL		NL		NL		NL		NL	+
	Oct-13 Jan-14	NL NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL NL	+-
	Apr-14	NL		NL		NL		NL		NL		NL		NL		NL	+
	Oct-14	2.3		0.44	J	14		3.4		0.82	J	< 0.33		0.27	J	2.2	1
	Apr-15	5.8		1.1		33		8.1		1.6		< 0.48		< 0.33		< 0.23	
	Oct-06	1,500		340		1,500		24		2		<2 NG		67	-	51	
	Dec-06 Mar-07	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Sep-07	2,300		320		1,700		64		3		<2		63		57	+
	May-08	NS		NS		NS		NS		NS		NS		NS		NS	
	Dec-08	NS		NS		NS		NS		NS		NS		NS		NS	
	Apr-09 Sep-09	1,100 NS		320 NS		2,100 NS		74 NS		<5 NS		<5 NS		35 NS		98 NS	+
	Apr-10	500		300		3,200		150		NS		NS		NS		NS	+
	Oct-11	180		72		2,300		220		<20		<20		1,300		2,800	
MW-29	Jan-12	200		77		2,500		280		<20		<20		1,100		2,500	
	Apr-12 Jul-12	100 110		62 54		1,900 1,900		200		6.3	J	7.6 <20	J	950 510	-	2,100 1,000	
	Oct-12	71		44		1,600		110		<20	J	<20		200		370	+
	Jan-13	110		41		1,300		140		6	J	6.7	J	1,300		2,900	+
	Apr-13	130		76		2,500		490		11		4.1		750		1,500	
	Jul-13	120		69		2,800		460		15		5.4	J	800		1,700	
	Oct-13 Jan-14	140 330		66 110		6,100 5,900		760 790		20		10 20	J	1,200 3,100		2,500 6,600	+-
	Apr-14	200		150		8,400		880		25		21		1,900		4,000	+
	Oct-14	74		55		4,300		660		<13		21	J	1,800		4,300	
	Apr-15	160	1	90	-	5,900		790		<22		25	J	3,300		7,300	4—
	Oct-11 Jan-12	0.51	J	0.55 0.46	J	13 13		2.9 3.1		0.55	J	<1	-	<1		<2 0.58	J
	Apr-12	0.19	J	0.43	J	9.4		2.6		0.44	J	<1	1	<1		<2	+
	Jul-12	0.45	J	0.45	J	7.7		2.4		0.43	J	<1		<1		<2	
	Oct-12	<1	1	0.4	J	11		3.6		0.54	J	<1	1	<1	+	<2	+
MW-30	Jan-13 Apr-13	0.2	J	0.38	J	9.4 7.8		3.1 4.5		0.54	J	<0.15	1	<0.097		<0.31	+-
111 11 -30	Jul-13	<0.16	,	<0.19	J	11		<0.19		1.8	J	< 0.14		<0.097		2.6	+
	Oct-13	< 0.16		< 0.19		6.2		2.5		< 0.16		< 0.14		< 0.19		< 0.20	
	Jan-14	<0.16		<0.19	<u> </u>	5.6		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	4
	Apr-14 Oct 14	0.4	J	0.4 <0.13	J	5 2.3		<0.19		0.48	J	<0.14		<0.11	J	<0.20	+-
	Oct-14 Apr-15	<0.74	J	<0.13		1.7		0.88	J	<0.43	J	<0.33	1	<0.11		<0.20 1.3	+
	Oct-11	<1	1	<1		<1		<1	,	<1		<1		<1		0.24	J
	Jan-12	<1		<1		<1		<1		<1		<1		<1		0.21	J
	Apr-12	<1		<1		<1	 	<1	 	<1	 	<1	-	0.33	J	2.4	
	Jul-12 Oct-12	<1	1	<1 <1		<1		<1		<1		<1	1	<1 <1		<2 <2	+-
	Jan-13	<1		<1		<1		<1		<1		<1		<1		<2	+
MW-31	Apr-13	< 0.22		< 0.20		< 0.13		< 0.30		< 0.18		< 0.15		< 0.097		< 0.31	
	Jul-13	< 0.16		<0.19		< 0.21		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	
	Oct-13	NA <0.16	1	NA <0.19		NA <0.21		NA <0.19		NA <0.16		NA <0.14		NA <0.19		NA <0.20	+
	Jan-14 Apr-14	<0.16	1	<0.19		<0.21		<0.19		<0.16		<0.14	1	<0.19		<0.20	+
	Oct-14	<0.15	1	<0.13		0.43	J	< 0.18		< 0.25		< 0.33		0.33	J	< 0.20	\pm
														< 0.33		< 0.23	

Table 4-4: Concentrations of CVOCs and VOCs in Groundwater VOPAK Terminal Savannah, Savannah, Georgia

DD 1 7 3 5		DOD						annan, S								** .	
EPA Test Me		PCE		TCE		DCE		VC		Benzei		Toluen		Ethylben		Xylene	
	Unit	μg/L		μg/L		μg/L	•	μg/L		μg/L		μg/L		μg/L		μg/L	-
Site-Specific Va	Type 4 RRS lues (ug/L)	5		38		1022		3		9		5241		700		10000)
Well ID	Sample Date	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
	Oct-11	7.2	J	11		1,500		35		<10		<10		31		35	
	Jan-12	130		61		2,100		53		<20		<20		45		56	
	Apr-12	210		100		2,000		54		<20		<20		28		22	J
	Jul-12	200		140		1,100		40		<10		<10		17		16	J
	Oct-12	1,700		470		1,700		110		<10		<10		54		26	
	Jan-13	2,800		530		940		93		<20		<20		61		27	J
MW-32	Apr-13	2,800		520		980		120		0.94	J	2.8		75		42	
	Jul-13	2,200		570		750		96		<1.6		<1.4		66		40	
	Oct-13	6,200		1,300		1,600		220		<1.6		7.2	J	160		110	
	Jan-14	6,500		1,300		1,600		230		<1.6		<1.4		180		170	
	Apr-14	6,000		1,500		2,200		230		<1.6		<1.4		200		130	
	Oct-14	1,900		680		1,100		100		8.3	J	<6.6		36		29	J
	Apr-15	< 0.74		< 0.48		< 0.41		< 0.50		< 0.43		< 0.42		< 0.33		< 0.23	
	Oct-11	5,200		3,200		16,000	_	840		<200		<200		370		2,200	
	Jan-12	1,100		190		4,100	_	370		<50		<50		94		450	
	Apr-12	13		11		1,800		390		12		9.3	J	46	_	390	
	Jul-12	40	J	35	J	3,000		290		<50		<50		34	J	88	J
	Oct-12	37		35		2,300		330		<20	_	<20		28		70	
3 5007 00	Jan-13	5.9		9.9		390		130		1.7	J	2.3		7.3		15	\perp
MW-33	Apr-13	1.2		4.7		380		130		1.3	-	1.5		5.3	_	12	\perp
	Jul-13	15		5.1	J	500	-	220		<1.6		<1.4		8.9	J	24	+
	Oct-13	1.2		4.8 <1.9		800		480 300	-	1.8	-	2		9		26	+
	Jan-14	<1.6 <1.6		8.4		340 360	-	140		<1.6 <1.6		<1.4 <1.4		16 7		40 25	+
	Apr-14				J	390		440	-		-		ī		J		+
	Oct-14	<0.74	J	9.7 2.8		150		100		<1.3 1.7	-	3.5 1.7	J	9.4		37 11	+
	Apr-15 Oct-11	2.2		1.7		44	+	14		1.6		<1.7		3.1 <1		<2	+
	Jan-12	13		4.4		80		8.8		3.6		<1		<1		<2	+-
	Apr-12	4.3		2.2		64		16		2.3	1	<1		<1		<2	+-1
	Jul-12	2.3		1.3		35		7.8		1.3		<1		<1		<2	+-
	Oct-12	4.9		1.8		45		8.6		1.8		<1		<1		<2	+-
	Jan-13	8.6		2.5		43		8.4		1.9		<1		<1		<2	+
MW-34	Apr-13	2.7		0.91	1	19		5.7		0.76	ī	<0.15		< 0.097		< 0.31	+-
	Jul-13	3		1	I	24		0.19		1.1	3	<0.14		< 0.19		< 0.20	+
	Oct-13	6.1		3.1		36		9.8		1.3		< 0.14		< 0.19		< 0.20	
	Jan-14	2.4		< 0.19		14		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	+
	Apr-14	0.51	J	< 0.19		4.2		< 0.19		0.26	J	< 0.14		< 0.19		< 0.20	
	Oct-14	1.1		0.23	J	5.1		1.8		< 0.25		< 0.33		0.17	J	< 0.20	
	Apr-15	2.7		0.52	J	9.9		2.6		0.47	J	< 0.48		< 0.33		< 0.23	
	Jan-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	
MW-35	Apr-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	
IVI W-35	Oct-14	< 0.15		< 0.13		0.16	J	< 0.18		< 0.25		< 0.33		0.11	J	<.20	\top
	Apr-15	< 0.74		< 0.48		< 0.41		< 0.50		< 0.43		< 0.48		< 0.33		< 0.23	
	Jan-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	T = 1
MW-36	Apr-14	< 0.16		< 0.19		0.33	J	< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	
W - 30	Oct-14	< 0.15		< 0.13		0.6	J	< 0.18		< 0.25		< 0.33		< 0.11		< 0.20	
	Apr-15	< 0.74		< 0.48		0.59	J	< 0.50		< 0.43		< 0.48		< 0.33		< 0.23	
	Jan-14	30		16		860		130		14		< 0.14		< 0.19		1.9	
MW-37	Apr-14	22		11		690		< 0.19		16		< 0.14		1.8		3.8	
W W-3/	Oct-14	36		12		370		93		10		0.91	J	0.83	J	2.4	J
	Apr-15	19	$\perp \!\!\! \perp$	8.5	\Box	350	\perp	65	\perp	6.4		< 0.96	L	< 0.66	┖	0.77	J

Table 4-4: Concentrations of CVOCs and VOCs in Groundwater VOPAK Terminal Savannah, Savannah, Georgia

Columb	DCE	VC μg/L 3 Result Flag < 30 < 30 < 2500 < 500 < 2500 < 400 < 100 < 200 < 200 NS 35 35	Benzene μg/L 9 Result Flag NS NS NS NS NS < 250 NS < 100 < 500 < 500	Toluene μg/L 5241	Ethylbenzene	Xylenes μg/L 10000 Result Flag NS NS NS NS NS NS
Site-Specific Type 4 RRS Values (ug/L) Sample Date Result Flag Result Flag Flag Jul-91 9,200 430 350 300 360	1022 Result Flag	3 Result Flag < 30 < 30 < 2500 < 2500 < 250 < 400 < 100 < 200 < 200 NS 35	9 Result Flag NS	S241 Result Flag NS NS NS NS NS S250 NS S400 S	700 Result Flag NS	Result Flag NS NS NS NS NS
Feb-91	< 5 < 5 < 2,500 NR NR NR < 400 130 100 J < 500 NS 300 170 < 250 220	< 30 < 30 < 2500 < 500 < 250 < 400 < 100 < 200 < 200 NS	NS NS NS NS NS < 250 NS < 100 < 500	NS NS NS NS < 250 NS < 100	NS NS NS NS 2,400	NS NS NS
Jul-91 9,200 430 Jun-96 3,040 < 2500 Sep-97 8,100 NR Dec-98 7,400 NR Dec-99 9,100 < 1000 Oct-00 8,000 360 Jun-01 9,800 260 J Aug-03 2,400 < 500 Oct-03 NS NS Mar-04 6,900 440 Jul-04 3,200 270 Sep-04 6,000 360 May-05 1,100 320 Aug-05 80 9 Jun-06 1,600 480 Oct-06 1,500 300 Dec-06 1,900 640 Mar-07 600 370 Sep-07 1,500 450 May-08 510 190 Dec-08 540 150 Sep-09 440 150	< 5 < 2,500 NR NR NR < 400 130 100 J < 500 NS 300 170 < 250 220	< 30 < 2500 < 500 < 500 < 2550 < 400 < 100 < 200 < 200 NS 35	NS NS NS < 250 NS < 100 < 500	NS NS NS < 250 NS < 100	NS NS NS 2,400	NS NS
Jun-96 3,040 < 2500	< 2,500 NR NR NR 130 100 J < 500 NS 300 170 < 250 220	< 2500 < 500 < 500 < 250 < 400 < 100 < 200 < 200 NS 35	NS NS < 250 NS < 100 < 500	NS NS < 250 NS < 100	NS NS 2,400	NS
Sep-97 8,100 NR Dec-98 7,400 NR Dec-99 9,100 < 1000 Oct-00 8,000 360 Jun-01 9,800 260 J Aug-03 2,400 < 500 Otr-03 NS NS Mar-04 6,900 440 Jul-04 3,200 270 Sep-04 6,000 360 May-05 1,100 320 Aug-05 80 9 Jun-06 1,600 480 Oct-06 1,500 300 Dec-06 1,900 640 May-07 1,500 450 May-08 510 190 Dec-08 540 150 Sep-09 440 150	NR NR < 400 130 100 J < 500 NS 300 170 < 250 220	< 500 < 250 < 400 < 100 < 200 < 200 NS 35	NS < 250 NS < 100 < 500	NS < 250 NS < 100	NS 2,400	
Dec-98 7,400 NR Dec-99 9,100 < 1000 Oct-00 8,000 360 Jun-01 9,800 260 J Aug-03 2,400 < 500 Oct-03 NS NS Mar-04 6,900 4440 Jul-04 3,200 270 Sep-04 6,000 360 May-05 1,100 320 Aug-05 80 9 Jun-06 1,600 480 Oct-06 1,500 300 Dec-06 1,900 640 May-08 510 190 Dec-08 540 150 Apr-09 460 150 Sep-09 440 150	NR < 400 130 100 J < 500 NS 300 170 < 250 220	< 250 < 400 < 100 < 200 < 200 NS 35	< 250 NS < 100 < 500	< 250 NS < 100	2,400	
Oct-00 8,000 360 Jun-01 9,800 260 J	130 J 00 J < 500 NS 300 170 < 250 220	< 100 < 200 < 200 NS 35	< 100 < 500	< 100	NIS	5,200
Jun-01 9,800 260 J Aug-03 2,400 < 500 Oct-03 NS NS Mar-04 6,900 440 Jul-04 3,200 270 Sep-04 6,000 360 May-05 1,100 320 Aug-05 80 9 Jun-06 1,600 480 Oct-06 1,500 300 Dec-06 1,900 640 May-07 1,500 450 May-08 510 190 Dec-08 540 150 Sep-09 440 150	100 J < 500 NS 300 170 < 250 220	< 200 < 200 NS 35	< 500			NS
Aug.03 2,400 < 500 Oct-03 NS NS Mar-04 6,900 4440 Jul-04 3,200 270 Sep.04 6,000 360 May-05 1,100 320 Aug.05 80 9 Jun-06 1,600 480 Oct-06 1,500 300 Dec-06 1,900 640 May-07 1,500 450 May-08 510 190 Dec-08 540 150 Sep.07 460 150 Sep.09 440 150	< 500 NS 300 170 < 250 220	< 200 NS 35			3,900	8,600
PAN-MW-9 PAN-MW-9 Oct-03 NS NS NS NS Mar-04 6,900 440 3,200 270 360 May-05 1,100 320 Aug-05 80 9 Jun-06 1,600 480 Oct-06 1,500 0ct-06 1,500 0ct-06 1,500 0ct-06 1,500 0ct-06 1,500 0ct-06 1,500 0ct-06 1,500	NS 300 170 < 250 220	NS 35	< 500	< 500 < 500	3,700 1,100	8,500 2,000
Mar.04 6,900 440 Jul-04 3,200 270	300 170 < 250 220	35	NS	NS NS	NS NS	NS
Sep.04 6,000 360 May-05 1,100 320 Aug-05 80 9 Jun-06 1,600 480 Oct-06 1,500 300 Dec-06 1,900 640 Mar-07 600 370 Sep-07 1,500 450 May-08 510 190 Dec-08 540 150 Apr-09 460 150 Sep-09 440 150	< 250 220		< 50	< 25	3,100	7,300
PAN-MW-9 May-05 1,100 320 Aug-05 80 9 Jun-06 1,600 480 Oct-06 1,500 300 Dec-06 1,900 640 Mar-07 600 370 Sep-07 1,500 450 May-08 510 190 Dec-08 540 150 Apr-09 460 150 Sep-09 440 150	220	14	< 10	< 5	8,400	22,000
PAN-MW-9 Aug.05 80 9 Jun-06 1,600 480 Oct-06 1,500 300 Dec-06 1,900 640 Mar-07 600 370 Sep-07 1,500 450 May-08 510 190 Dec-08 540 150 Apr-09 460 150 Sep-09 440 150		< 100	< 500	< 250	2,200	5,100
PAN-MW-9 PAN-MW	5	< 100 < 2	< 100 <2	< 100 < 5	6,000	16,000
PAN-MW-9 PAN-MW-9 PAN-MW-9 PAN-MW-9 Rep-07 Apr-09 Dec-06 Apr-09 550	< 40	< 200	< 100	730	150 1,800	
PAN-MW-9 Mar-07 600 370 Sep-07 1,500 450 May-08 510 190 Dec-08 540 150 Apr-09 460 150 Sep-09 440 150	990	< 40	< 200	< 100	990	2,600
PAN-MW-9 Sep-07 1,500 450 May-08 510 Dec-08 540 Apr-09 460 150 Sep-09 440 150	600	23	< 2	< 2	1,800	4,900
Sep-07 1,500 450 May-08 510 190 Dec-08 540 150 Apr-09 460 150 Sep-09 440 150	680	< 40	< 200	< 100	4,500	12,000
Dec-08 540 150 Apr-09 460 150 Sep-09 440 150	880	< 40	< 40	< 40	1,900	5,400
Apr-09 460 150 Sep-09 440 150	590 500	18 25	< 2 < 5	3 < 5	8,800 3,900	24,000 11,000
Sep-09 440 150	780	< 40	< 100	< 100	2,400	6,300
10 70 10	730	49	< 10	< 10	2,300	6,100
Apr-10 710 140	530	93	NS	NS	NS	NS
Oct-11 350 1,100	780	62	< 50	< 50	1,900	4,200
Jan-12 690 770 Apr-12 280 1,300	820 1,100	55 45	< 20 < 20	< 20 < 20	2,000 1,900	5,800 5,500
Jul-12 37 1,200	1,300	65	< 25	< 25	890	2,600
Oct-12 210 1,200	1,800	110	< 25	< 25	1,800	4,900
Jan-13 540 480	1,200	69	< 25	< 25	1,100	3,500
Apr-13 240 500	1,400	120	2.8 J	3.4 J	1,000	3,700
Jul-13 55 790 Oct-13 29 440	1,200 2,500	88 76	< 1.6 1.1	< 1.4 1.5	760 1,000	2,200
Jan-14 17 300	2,100	190	< 1.6	< 1.4	1,100	2,600 2,700
Apr-14 22 190	2,000	140	<1.6	<1.4	960	2,400
Oct-14 17 35	1,900	130	4.4 J	<3.3	650	1,800
Apr-15 <7.4 4.9 J	2,000	130	5.2 J	<4.8	580	1,400
Feb-91 37 < 5 Sep-97 10 NR	< 5 NR	< 30 < 5	NS NS	NS NS	NS NS	NS NS
Sep-97 10 NR	NR NR	< 1	NS < 1	NS < 1	NS < 1	NS < 1
Nov-99 < 5 < 5	< 2	< 2	NS	NS	NS	NS
Oct-00 < 1 < 1	< 1	< 1	< 1	< 1	< 1	< 2
Jun-01 < 5 < 5	< 5	< 2	< 5	< 5	< 5	< 10
Aug-03 < 5 < 5 Sep-07 < 2 < 2	< 5 < 2	< 2 < 2	< 5 < 2	< 5 < 2	< 5 < 2	< 10 < 5
Sep-07 < 2 < 2 Apr-09 < 5 < 5	< 5	< 2	< 5	< 5	< 5	< 5
Apr-10 < 5 < 5	< 5	< 2	NS	NS	NS	NS
Oct-11 0.79 J 2.6	1.3	< 1	< 1	3.7	< 1	9.9
PAN-MW-10 Jan-12 < 1 0.21 J	3.7	0.2 J	0.28 J	1.2	< 1	17
Apr-12 < 1 < 1 Jul-12 < 1 < 1	0.71 J 0.29 J	< 1	< 1	< 1	< 1 < 1	< 2 < 2
Jul-12 <1 <1 Oct-12 <1 <1	0.29 J 1.4	< 1	< 1	< 1	<1	< 2
Jan-13 <1 <1	1.2	< 1	< 1	< 1	< 1	< 2
Apr-13 < 0.22 < 0.20	0.82 J	< 0.30	< 0.18	< 0.097	< 0.15	< 0.31
Jul-13 < 0.16 < 0.19	< 0.21	< 0.19	< 0.16	<0.19	< 0.14	< 0.20
Oct-13 < 0.16 < 0.19	0.76	< 0.19	< 0.16 < 0.16	< 0.19	< 0.14	< 0.20
Jan-14 < 0.16 < 0.19 Apr-14 < 0.16 < 0.19	1.3	< 0.19		<0.10	2044	
Apr-14 <0.16 <0.19 Oct-14 <0.15 <0.13	< 0.21	< 0.10		<0.19	< 0.14	
Apr-15 <0.74 <0.48	<0.21 0.34 J	<0.19 <0.18	< 0.16 < 0.16 < 0.25	<0.19 <0.19 <0.11	< 0.14 <0.14 <0.33	< 0.20 <0.20 <0.20

Notes:

0.79 = Concentration above Minimum Detection Limit (MDL)

39 = Concentration above RRS
NR = Not Reported by Laboratory
NS = Not Sampled
NL = Not Located
NU = Not Uscable due to siltation
NA = Not Avaliable
All data prior to October 2011 tabulated by ERM

Table 4-5: Historical Groundwater Elevation Table VOPAK Terminal Savannah, Savannah, Georgia

Well ID#				Ground	dwater P	otention	metric S	urface	Elevatio	n (ft.)				MW	MW	MW	MW	MW
(Well Diameter, in.)	Oct-11	Jan-12	Apr-12	Jul-12	Oct-12	Jan-13	Apr-13	Jul-13	Oct-13	Jan-14	Apr-14	Oct-14	Apr-15	Min.*	Max.*	Range*	Avg.*	Var.*
IW-1R (1)	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NS	NS	NS	NA	NA	NA	NA	NA
IW-18 (1)	7.15	6.36	5.52	6.39	6.30	6.22	7.28	7.44	6.77	6.73	7.20	7.02	6.89	5.52	7.44	1.92	6.71	0.29
LAW-PZ-8R (1)	7.75	7.08	7.36	7.65	6.79	6.78	7.83	8.22	7.10	7.63	7.15	6.17	7.69	6.17	8.22	2.05	7.32	0.30
MW-14 (2)* ²	NL	NL	NL	NL	NL	NL	NL	NL	3.65	2.14	2.27	2.80	2.38	2.14	3.65	1.51	2.65	0.37
MW-16 (1)	5.67	4.36	4.31	5.24	4.34	4.04	4.72	4.91	5.15	4.40	5.09	4.70	4.98	4.04	5.67	1.63	4.76	0.22
MW-17R (1)	3.93	2.49	3.59	4.34	4.86	4.79	5.15	5.32	5.21	5.32	5.95	4.58	4.96	2.49	5.95	3.46	4.65	0.81
MW-18R (1)	7.65	6.81	7.32	7.58	6.92	6.76	7.80	8.03	7.15	7.55	8.02	7.58	7.94	6.76	8.03	1.27	7.47	0.20
MW-19 (1)	8.11	7.29	7.91	7.98	7.78	7.17	7.97	8.12	7.53	7.86	8.55	7.95	8.22	7.17	8.55	1.38	7.88	0.14
MW-23 (1)	6.39	5.65	6.51	6.25	6.18	5.71	6.34	5.63	6.19	6.19	7.43	5.63	6.97	5.63	7.43	1.80	6.24	0.29
MW-24R (1)	5.86	5.30	5.80	5.60	5.39	5.22	5.92	5.00	5.49	5.91	6.44	6.16	6.36	5.00	6.44	1.44	5.73	0.20
MW-25 (1)	7.91	7.14	7.81	7.93	7.64	7.12	8.05	8.20	7.41	7.84	8.43	7.96	8.25	7.12	8.43	1.31	7.82	0.16
MW-26R (1)	7.39	6.48	7.17	7.21	6.58	6.41	7.44	8.09	7.88	7.48	8.00	7.67	7.47	6.41	8.09	1.68	7.33	0.31
MW-27 (1)	5.06	4.10	4.89	4.77	4.42	4.30	4.66	4.47	4.58	4.61	5.66	5.45	5.30	4.10	5.66	1.56	4.79	0.22
MW-28 (2)	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NS	NS	NA	NA	NA	NA	NA
MW-29 (0.75)	5.71	5.01	5.38	5.27	4.91	4.67	5.48	5.12	5.21	5.43	5.83	5.91	5.69	4.67	5.91	1.24	5.36	0.14
MW-30 (2)	6.28	5.60	5.99	6.09	5.75	5.29	6.18	6.27	6.76	6.23	6.63	6.28	6.18	5.29	6.76	1.47	6.12	0.16
MW-31 (2)	4.41	3.94	4.17	4.48	4.26	3.92	4.42	4.32	NG	4.47	5.05	5.11	5.19	3.92	5.19	1.27	4.48	0.18
MW-32 (2)	5.23	4.53	5.24	5.49	5.00	4.75	5.32	5.15	5.04	5.23	5.73	5.60	6.21	4.53	6.21	1.68	5.27	0.18
MW-33 (2)	6.54	5.67	6.17	5.90	5.05	5.07	6.60	6.41	7.07	6.24	7.02	6.48	6.58	5.05	7.07	2.02	6.22	0.41
MW-34 (2)	7.40	6.81	7.00	7.29	6.53	6.53	7.52	7.73	6.86	7.41	7.94	7.69	7.53	6.53	7.94	1.41	7.25	0.21
MW-35 (2)	NI	NI	NI	NI	NI	NI	NI	NI	NI	4.77	4.73	4.91	4.93	4.73	4.93	0.20	4.84	0.01
MW-36 (2)	NI	NI	NI	NI	NI	NI	NI	NI	NI	1.89	3.44	3.71	3.94	1.89	3.94	2.05	3.25	0.86
MW-37 (2)	NI	NI	NI	NI	NI	NI	NI	NI	NI	7.42	7.88	7.77	7.60	7.42	7.88	0.46	7.67	0.04
PAN-MW-10 (2)	3.45	2.47	2.94	3.51	3.19	3.35	3.43	3.82	3.53	3.50	4.13	4.37	6.10	2.47	6.10	3.63	3.68	0.76
PAN-MW-9 (2)	6.24	5.39	5.74	5.98	5.54	5.32	6.07	5.86	5.93	6.23	6.57	6.41	5.57	5.32	6.57	1.25	5.91	0.15
Event Min.*3	3.45	2.47	2.94	3.51	3.19	3.35	3.43	3.82	3.53	1.89	3.44	3.71	3.94	Globa	l Min.*⁴		1.89	
Event Max.*3	8.11	7.29	7.91	7.98	7.78	7.17	8.05	8.22	7.88	7.86	8.55	7.96	8.25	Global	Max.*4		8.55	
Event Range*3	4.66	4.82	4.97	4.47	4.59	3.82	4.62	4.40	4.35	5.97	5.11	4.25	4.31	Global	Range* ⁴		6.66	
Event Avg.*3	6.22	5.39	5.83	6.05	5.65	5.44	6.22	6.22	6.16	5.92	6.49	6.14	6.39	Global	l Avg.*⁴		6.01	
Event Var.*3	1.88	2.14	2.03	1.69	1.50	1.32	1.90	2.30	1.43	2.46	2.04	1.63	1.50	Globa	l Var.* ⁴		2.04	

Notes:

NI - Not Installed

NS - Not Surveyed, TOC elevation information is not available for well

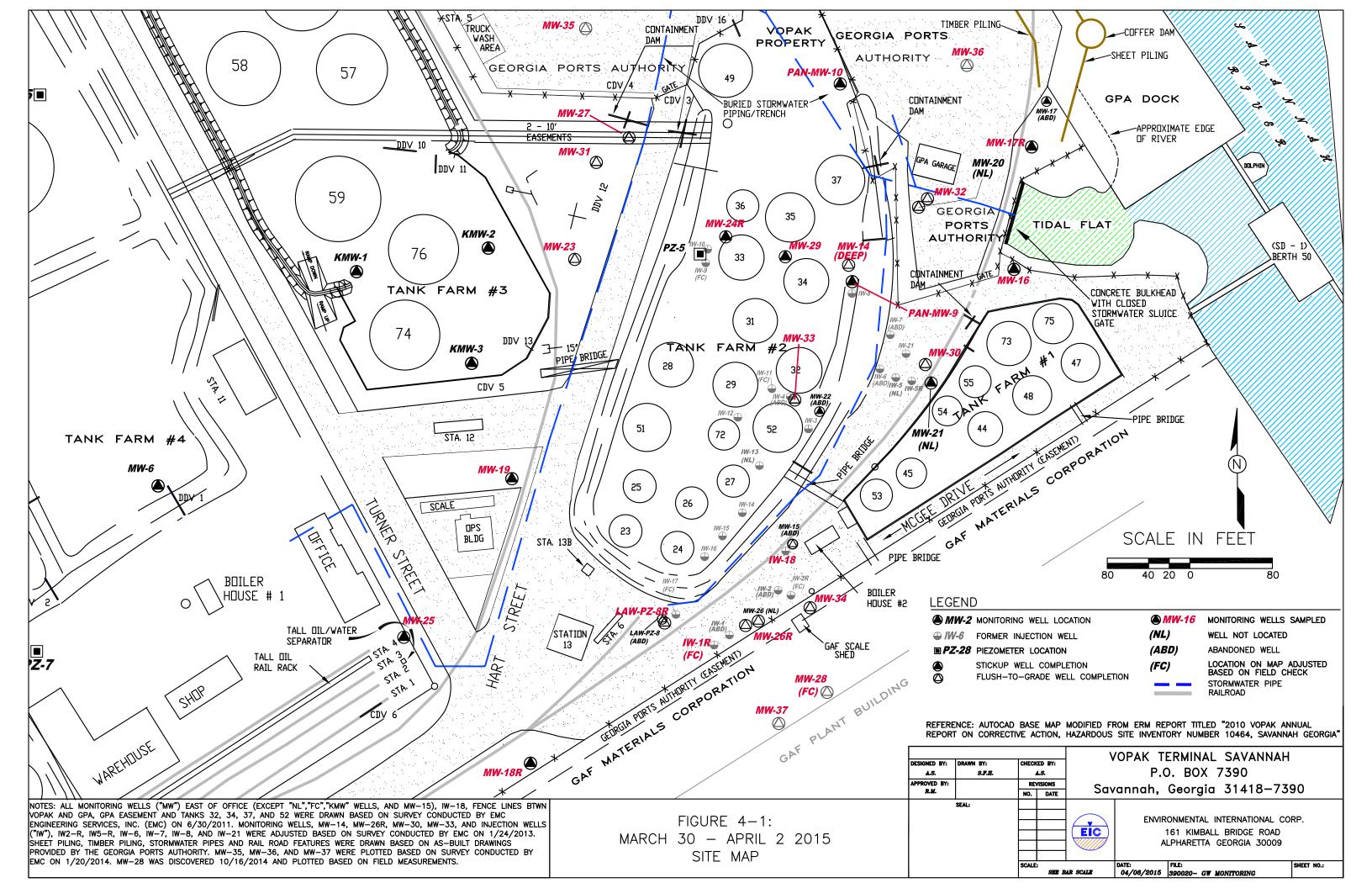
NL - Not Located

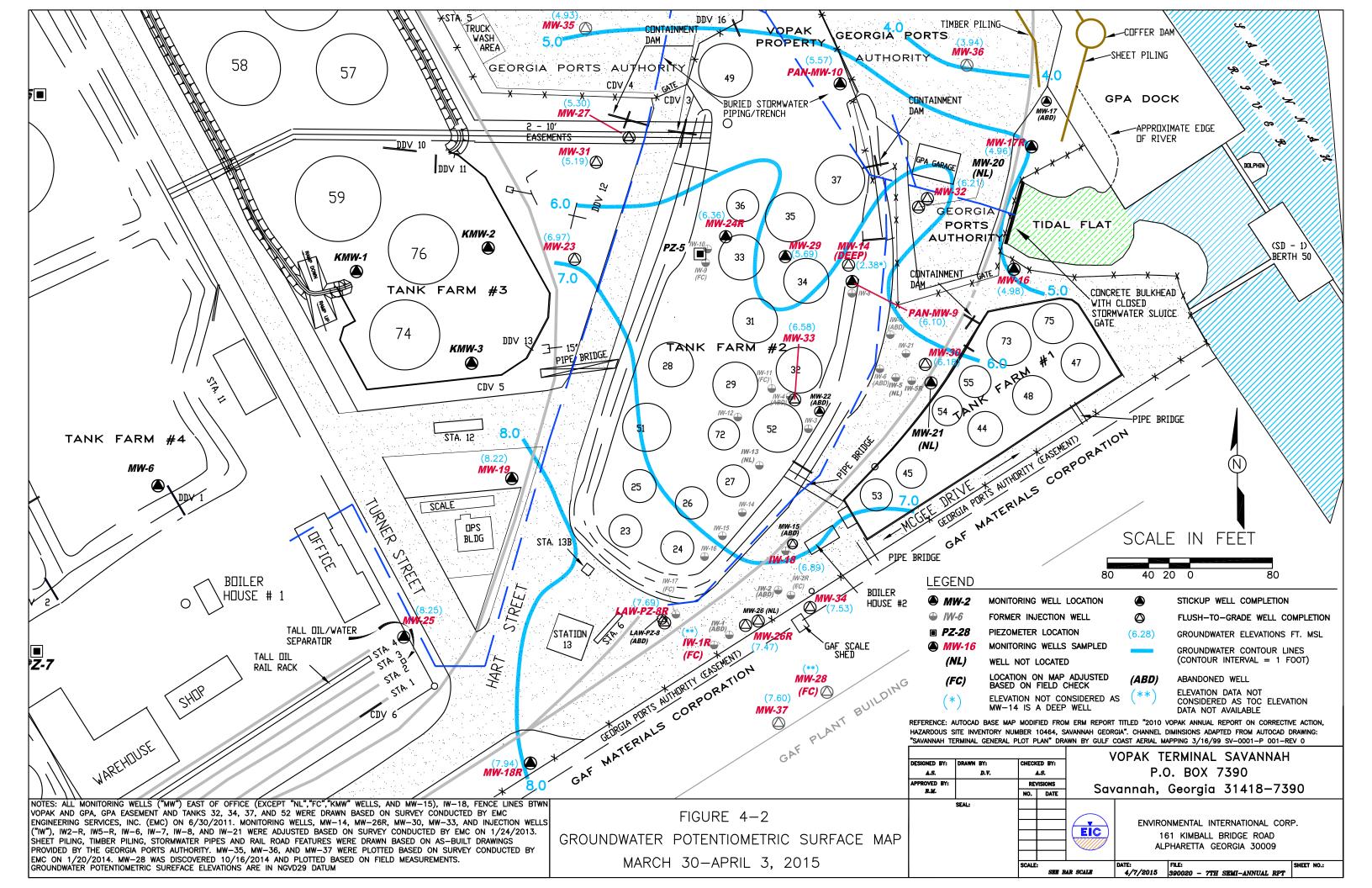
NA - Not Applicable

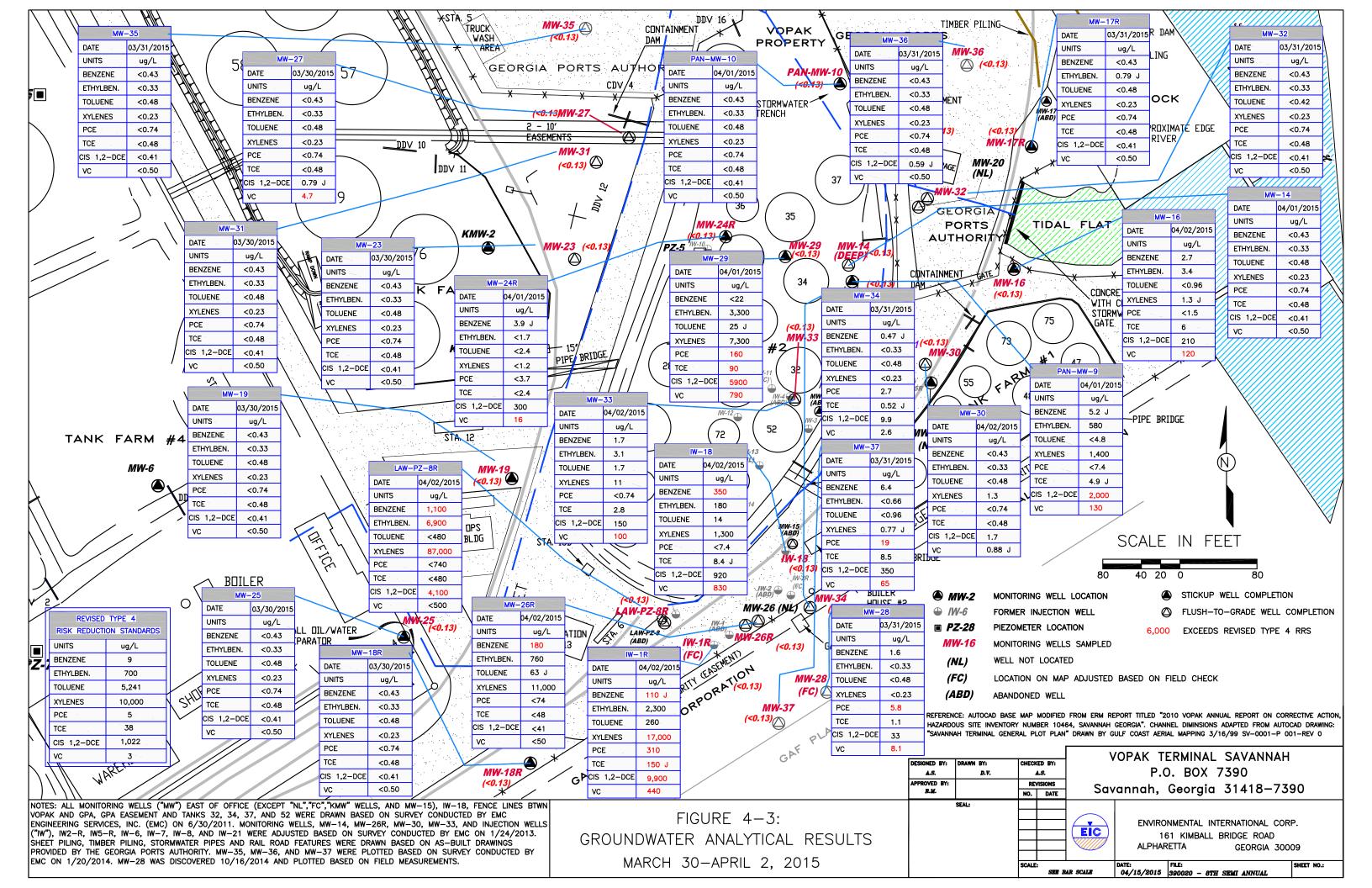
NG - Not Gauged

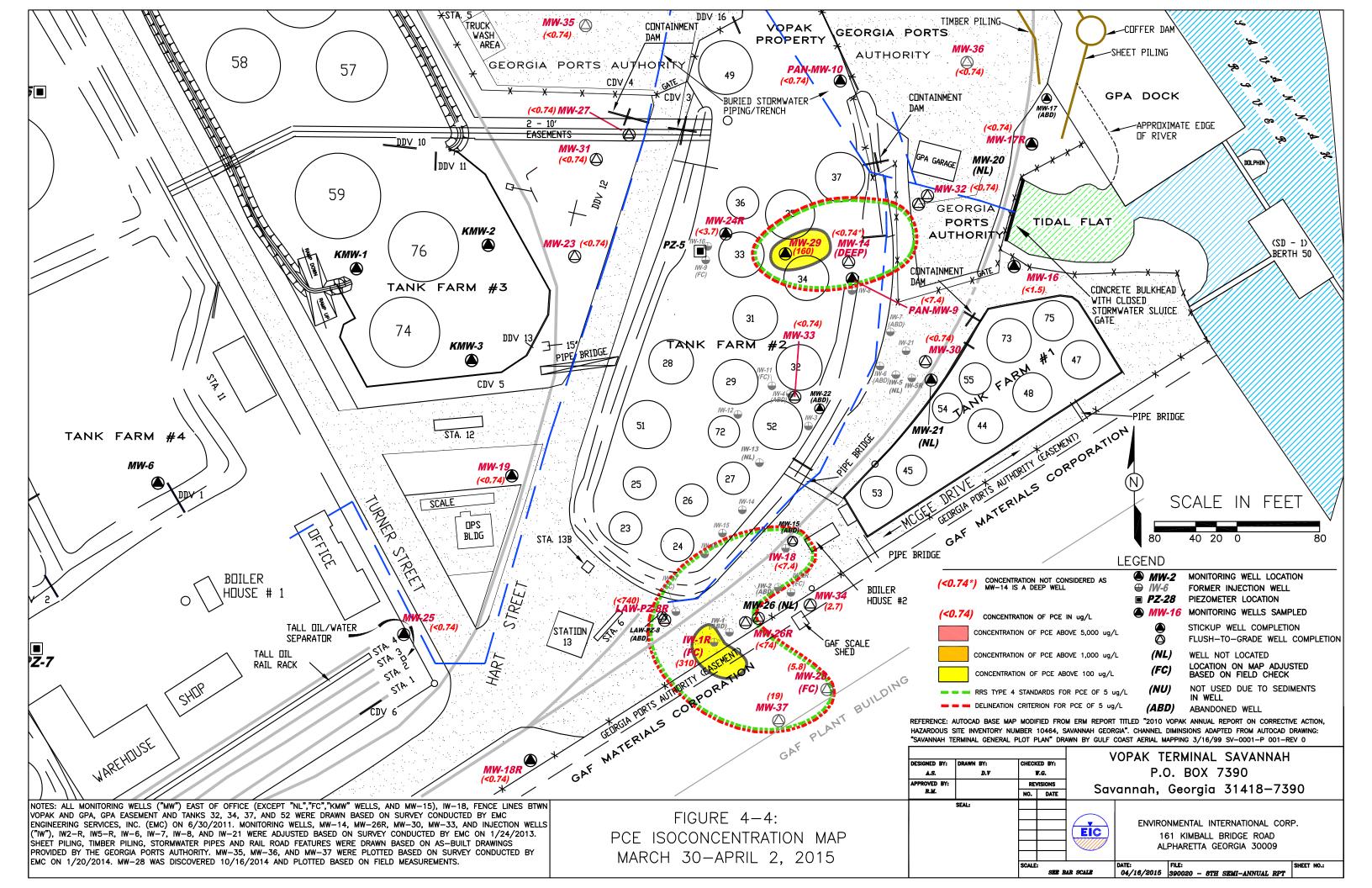
^{* =} Event Min, Max, Range, Avg., and Var. - are the minimum, maximum, range, average, and total variance for each respective groundwater gauging event.

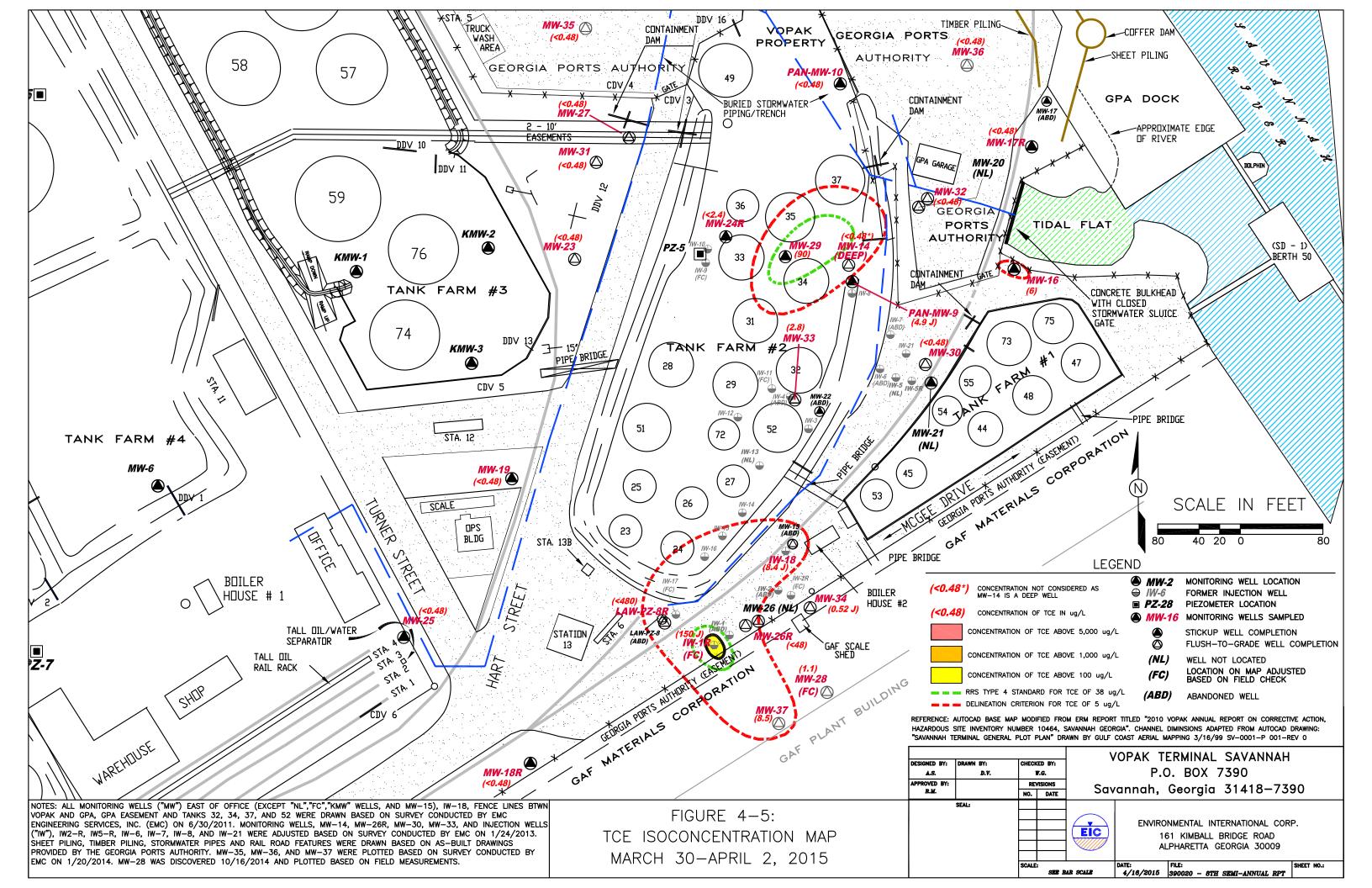
^{*2 =} MW-14 is considered a deep well at the Site and is not considered for the shallow potentiometric surface at the Site

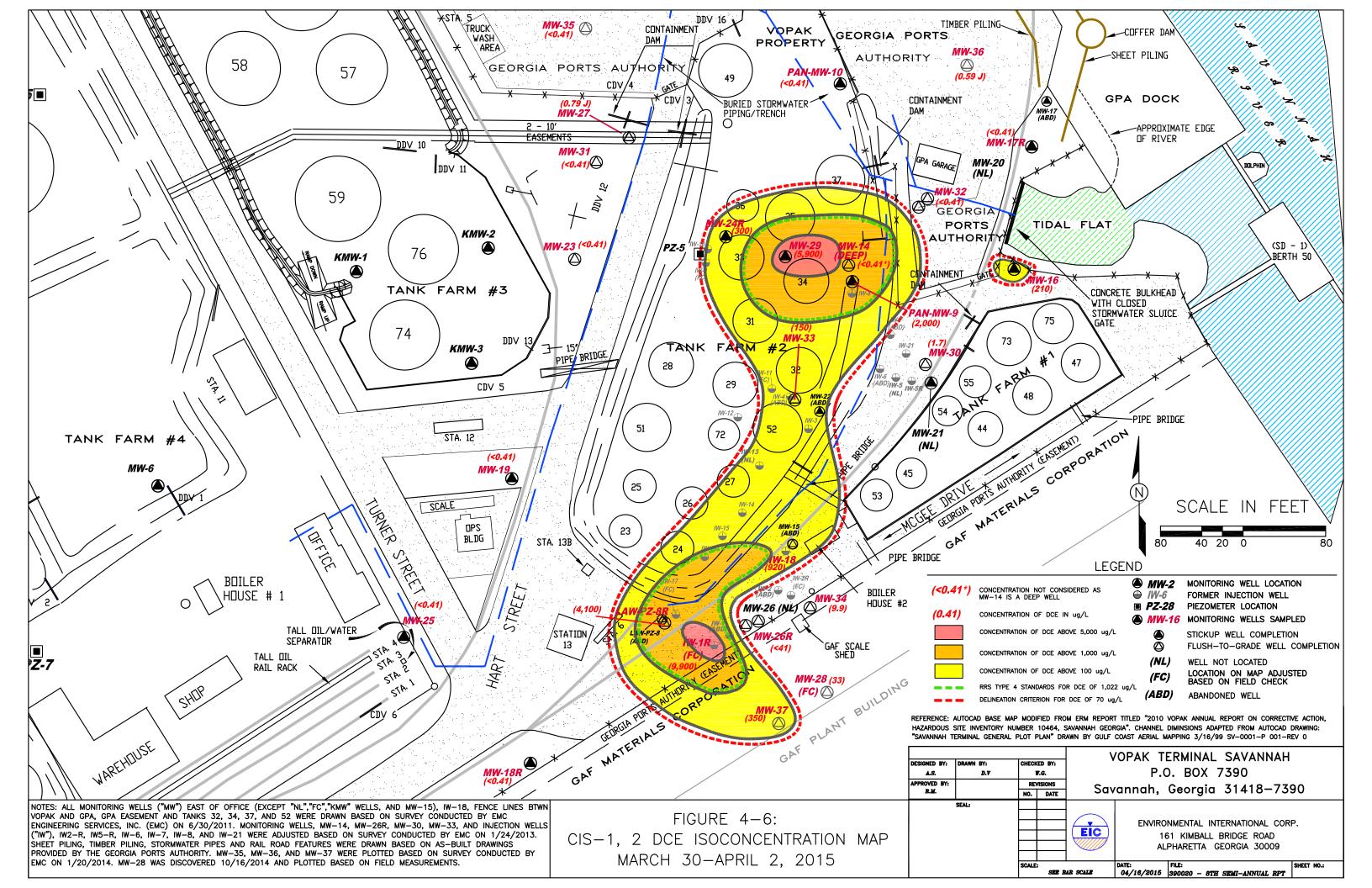

^{*3 =} MW Min., Max., Range, Avg., and Var. - are the minimum, maximum, range, average, and total variance for each monitoring well throughout all gauging events from October 2011 to April 2015 where available.

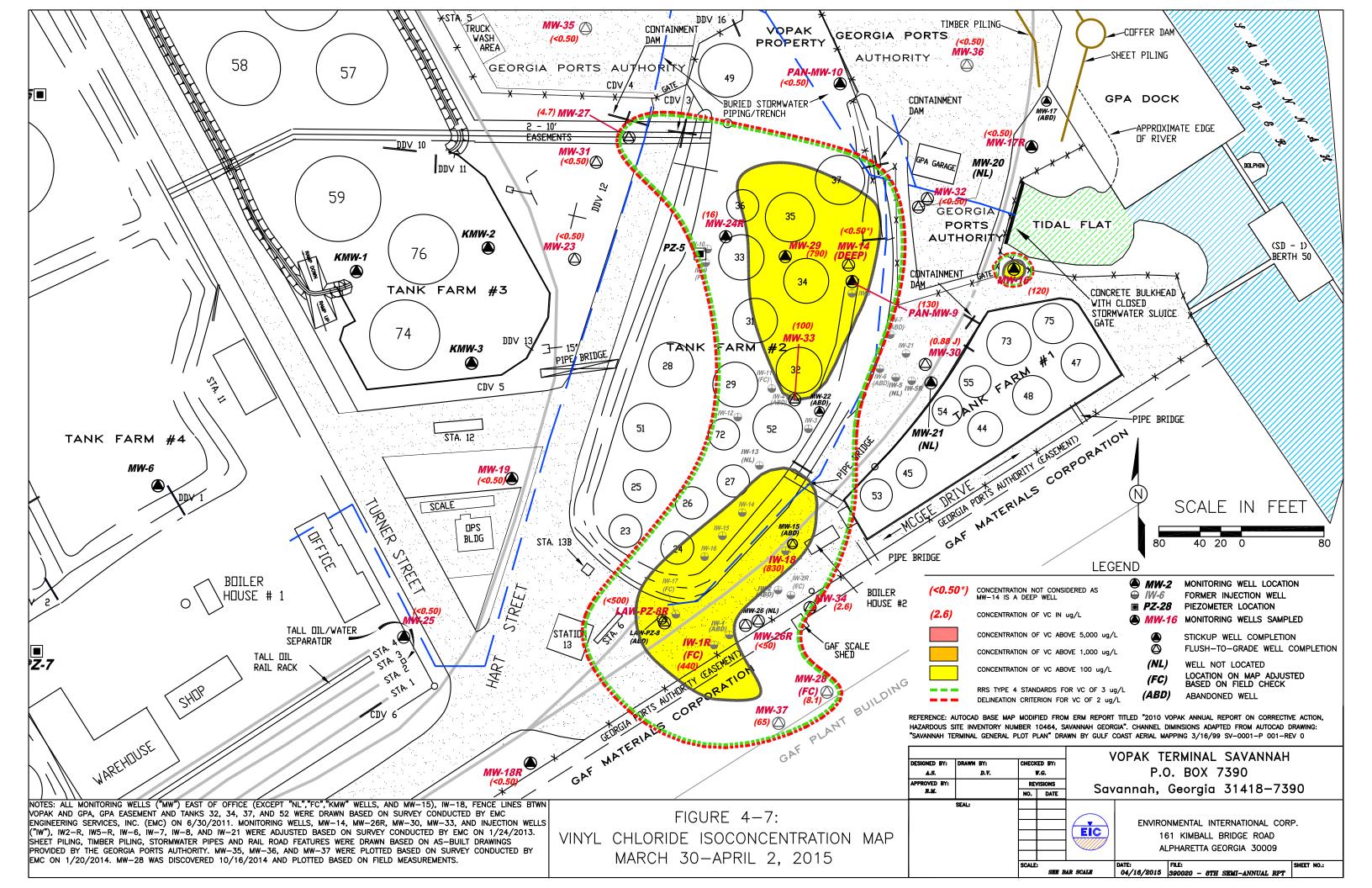

^{*4=} Global Min., Max., Range, Avg., and Var.- are the minimum, maximum, range, average, and total variance for all monitoring wells throughout all events from October 2011 to April 2015

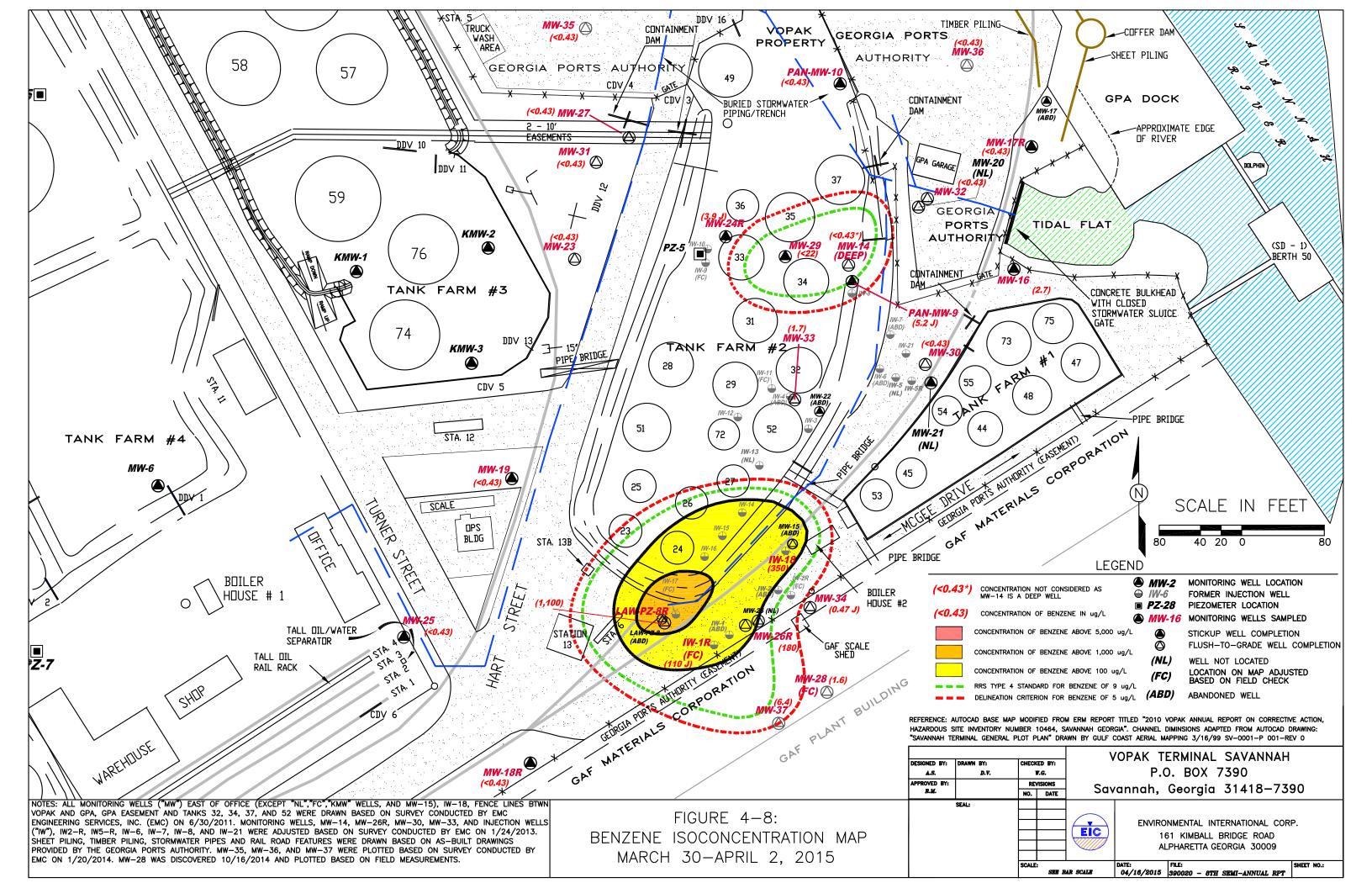

VOPAK TERMINAL SAVANNAH, SAVANNAH, GEORGIA

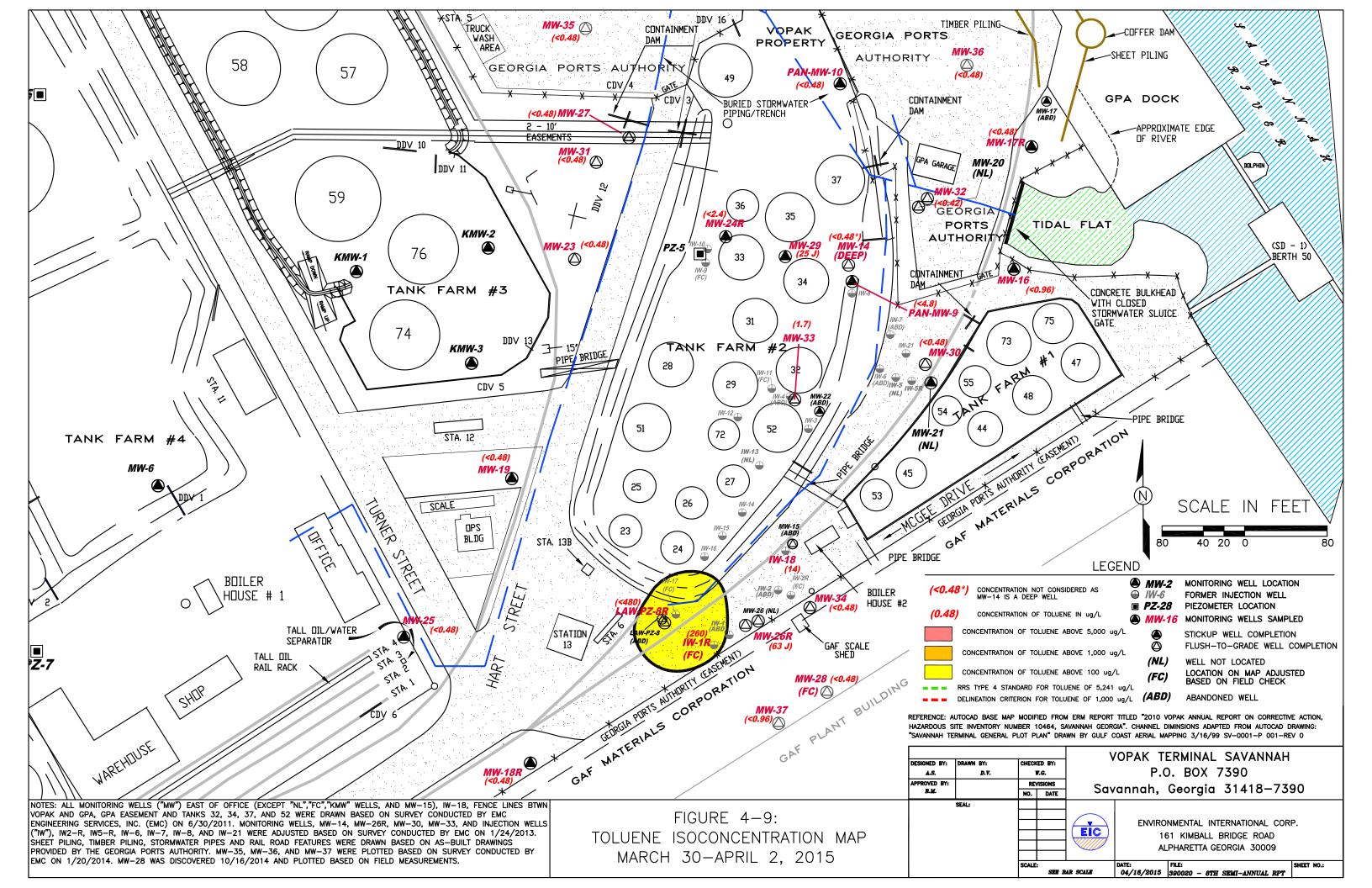

EIGHTH SEMI-ANNUAL PROGRESS REPORT

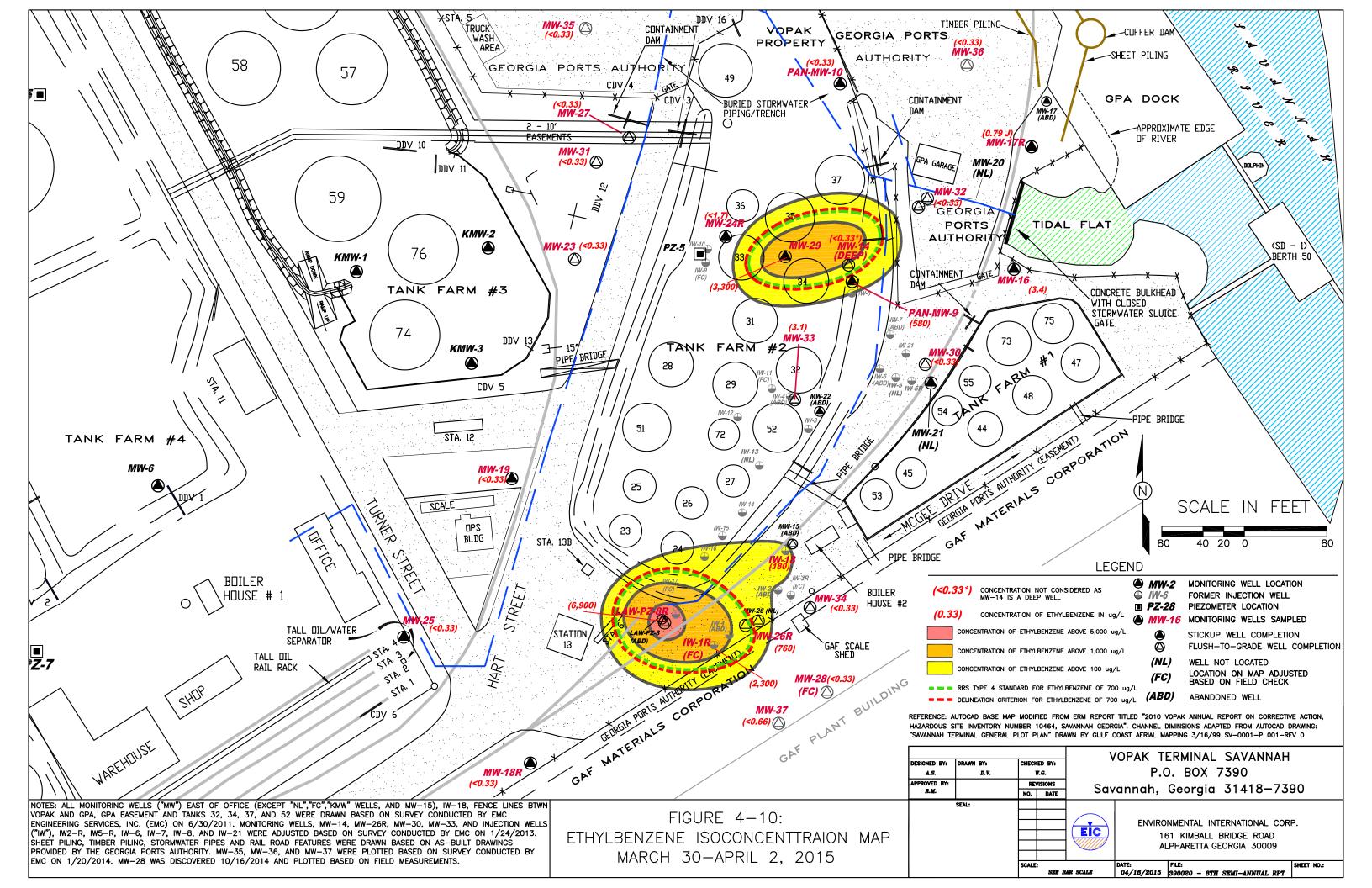

FIGURES

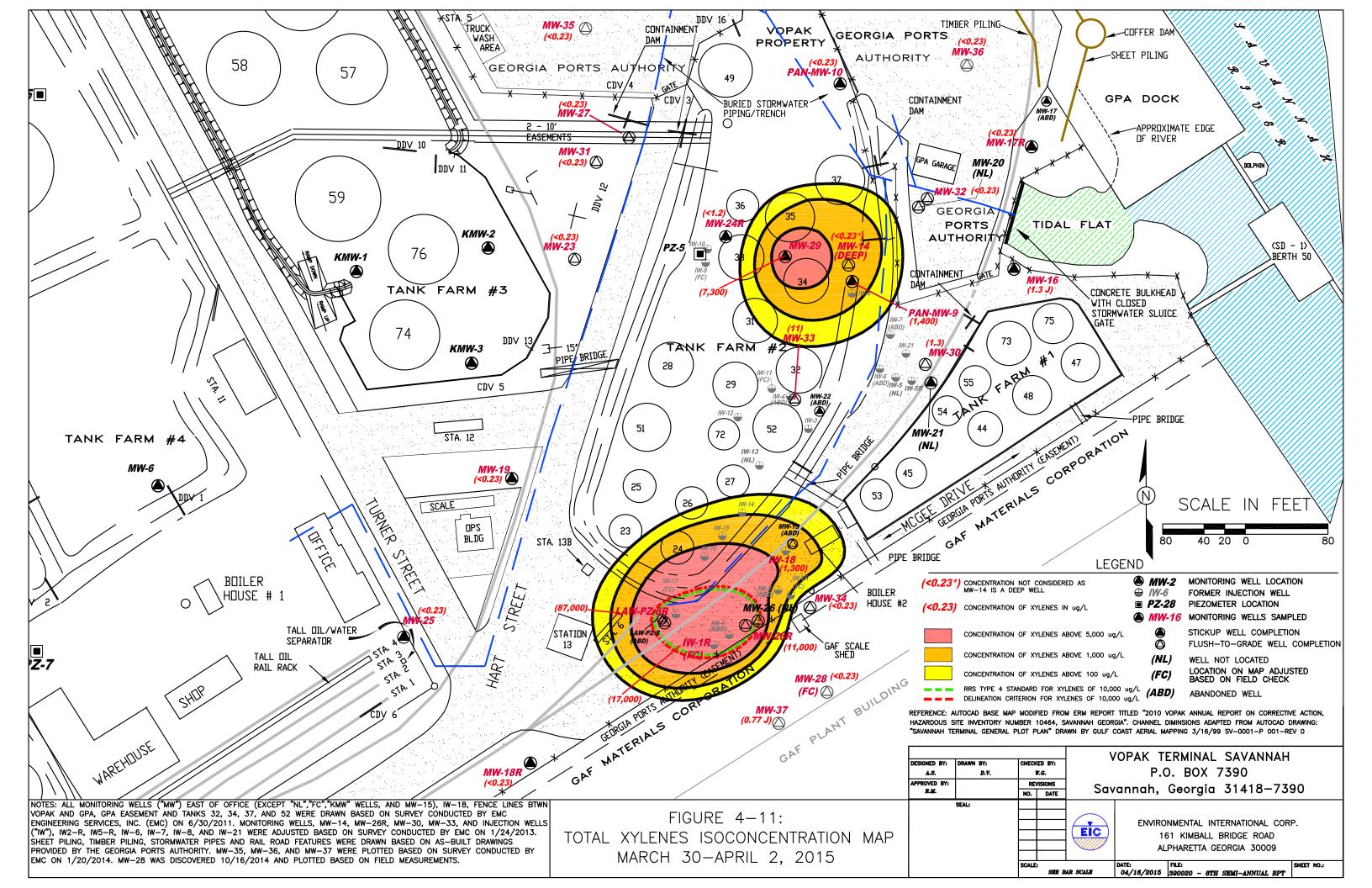


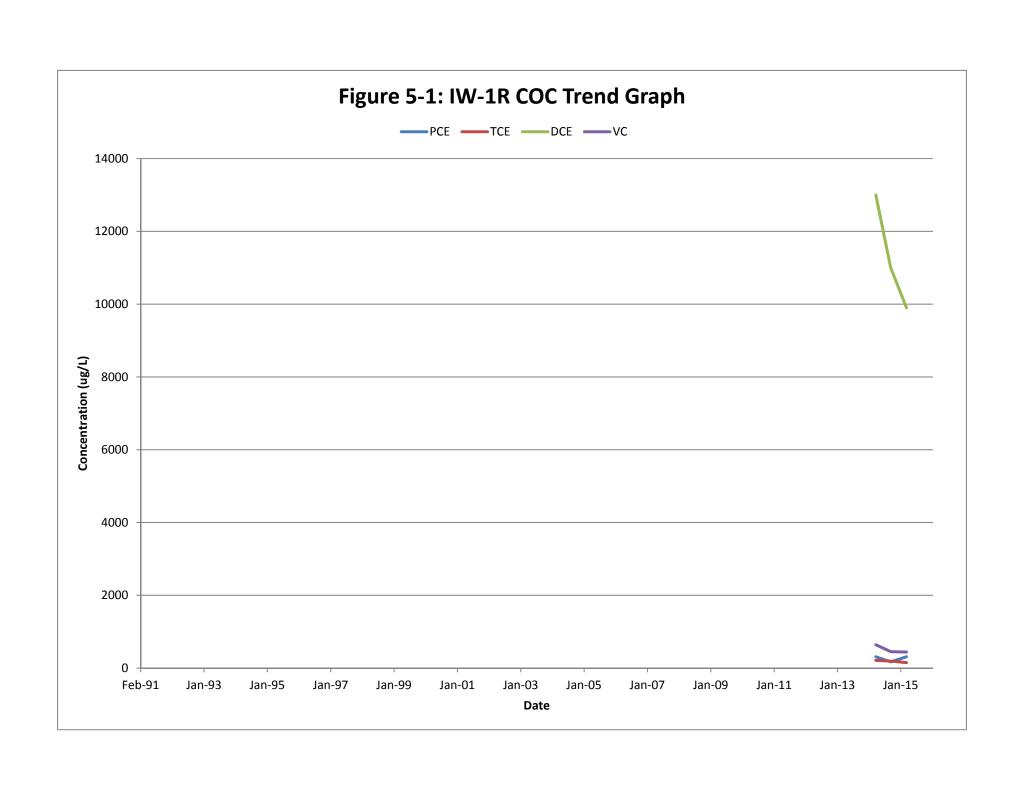


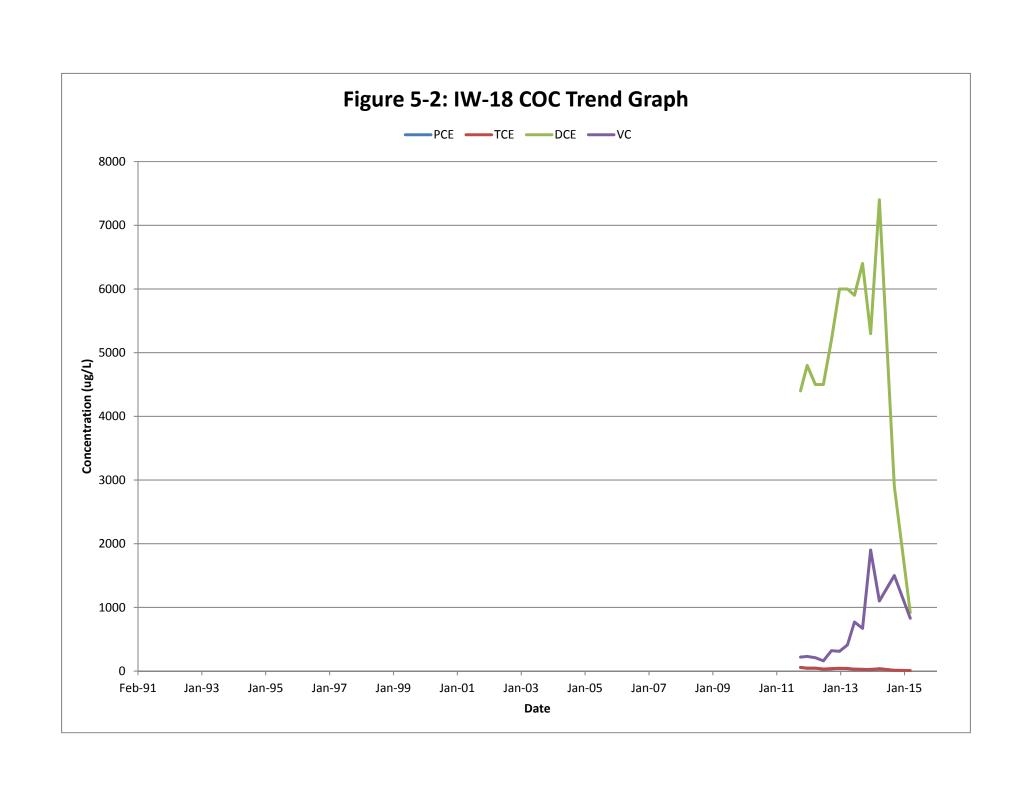


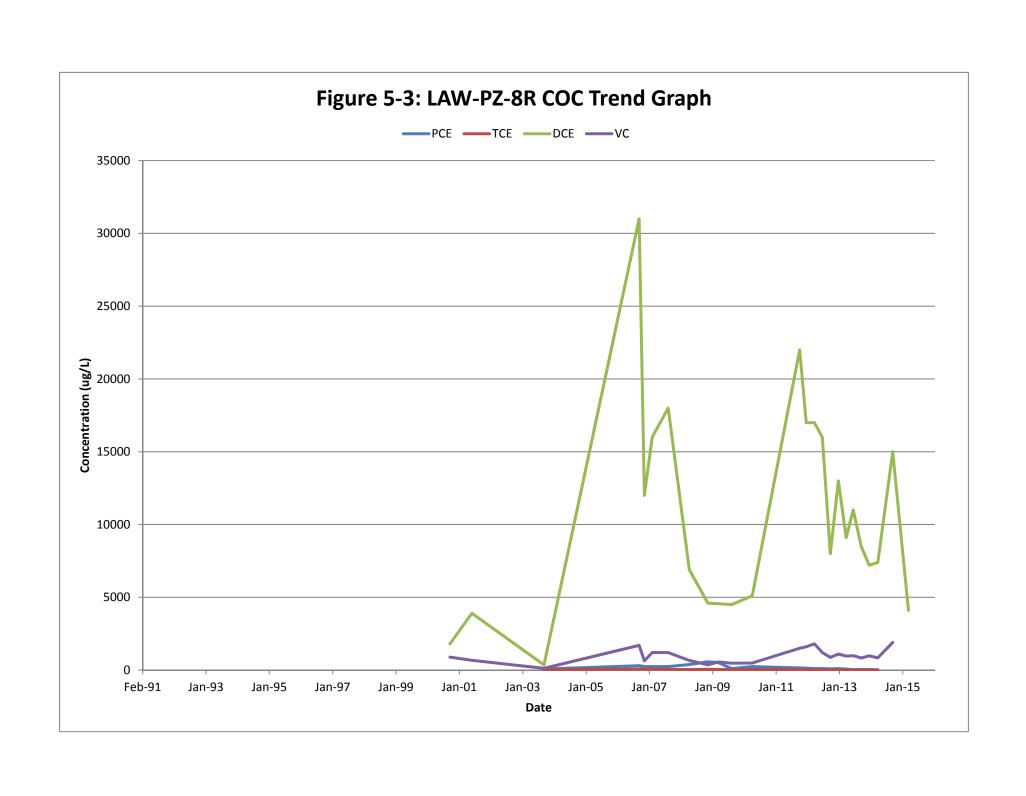


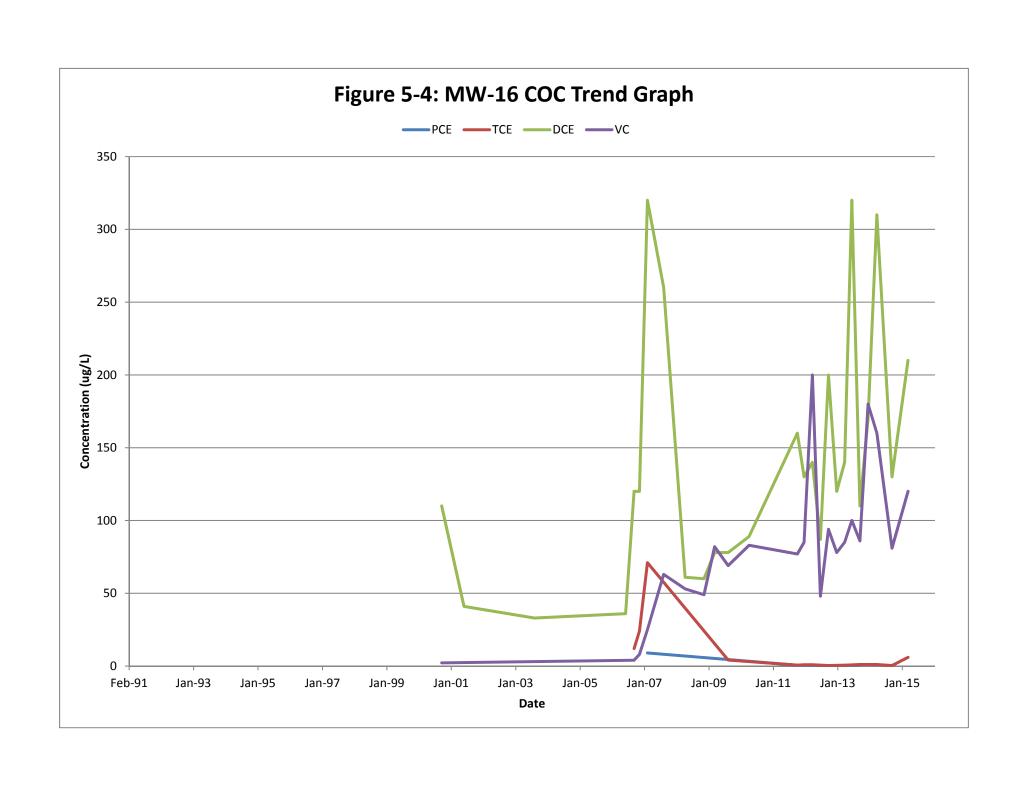


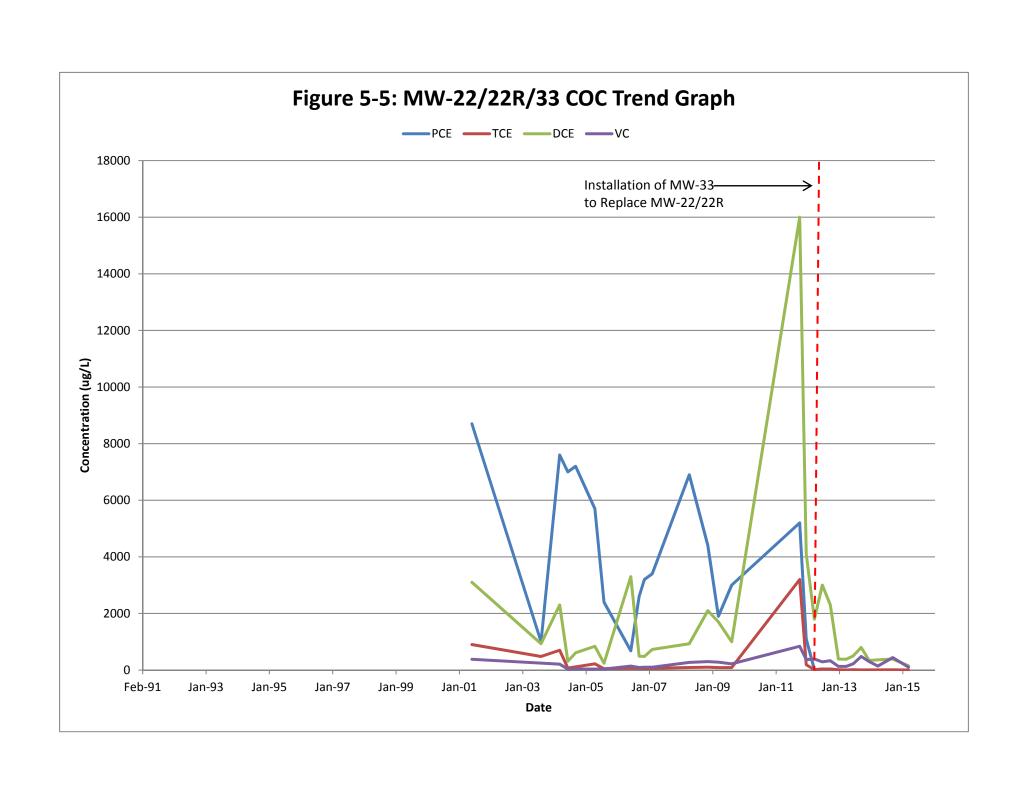


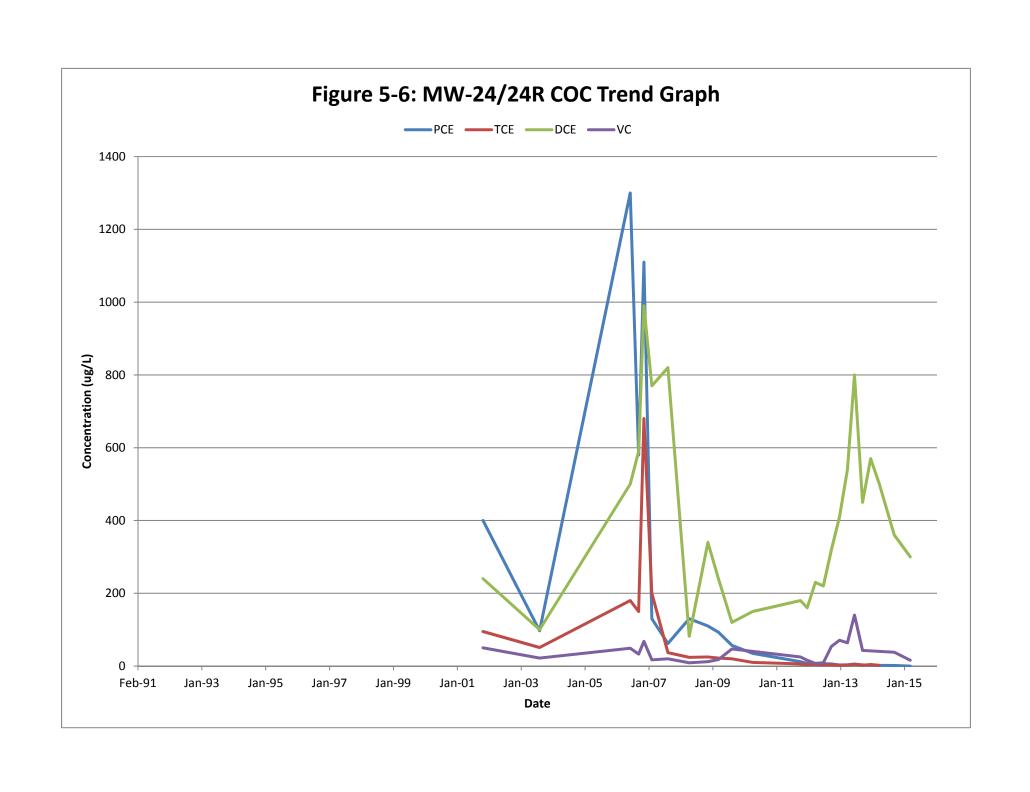


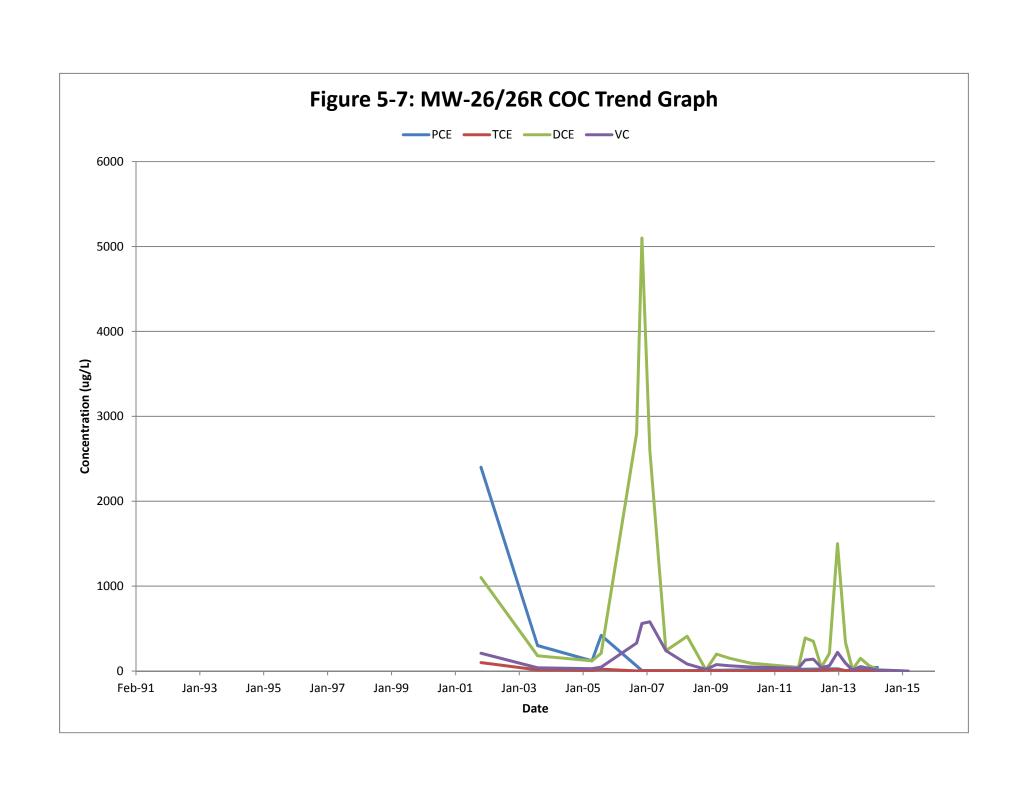


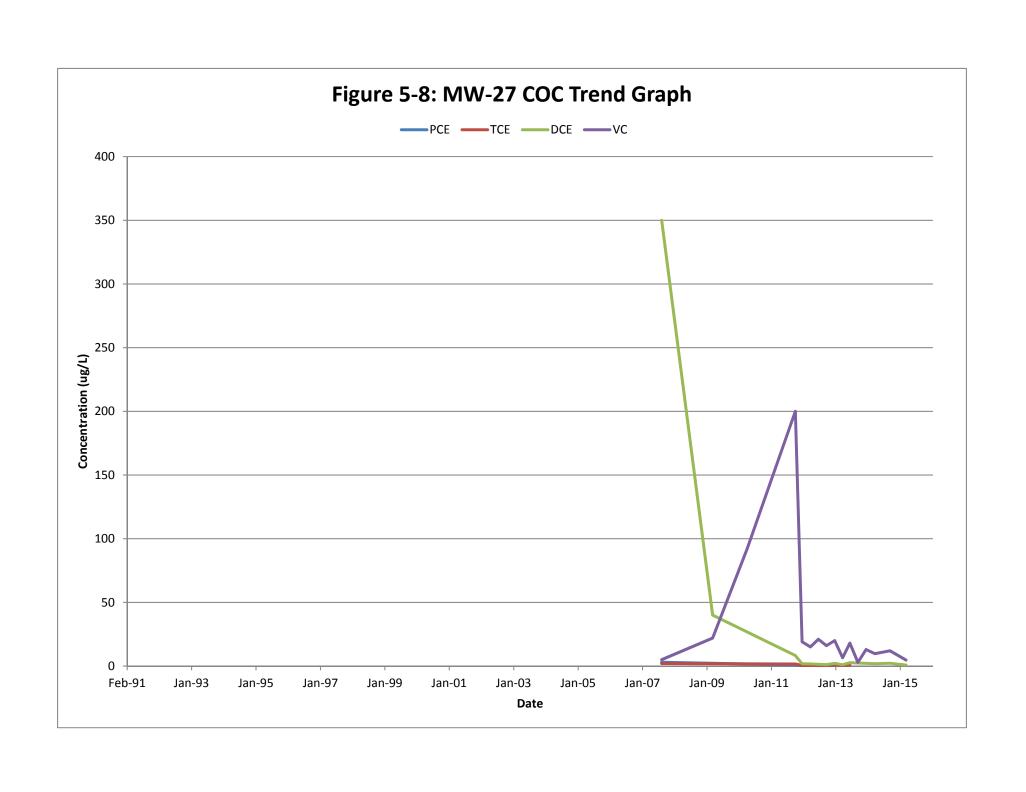


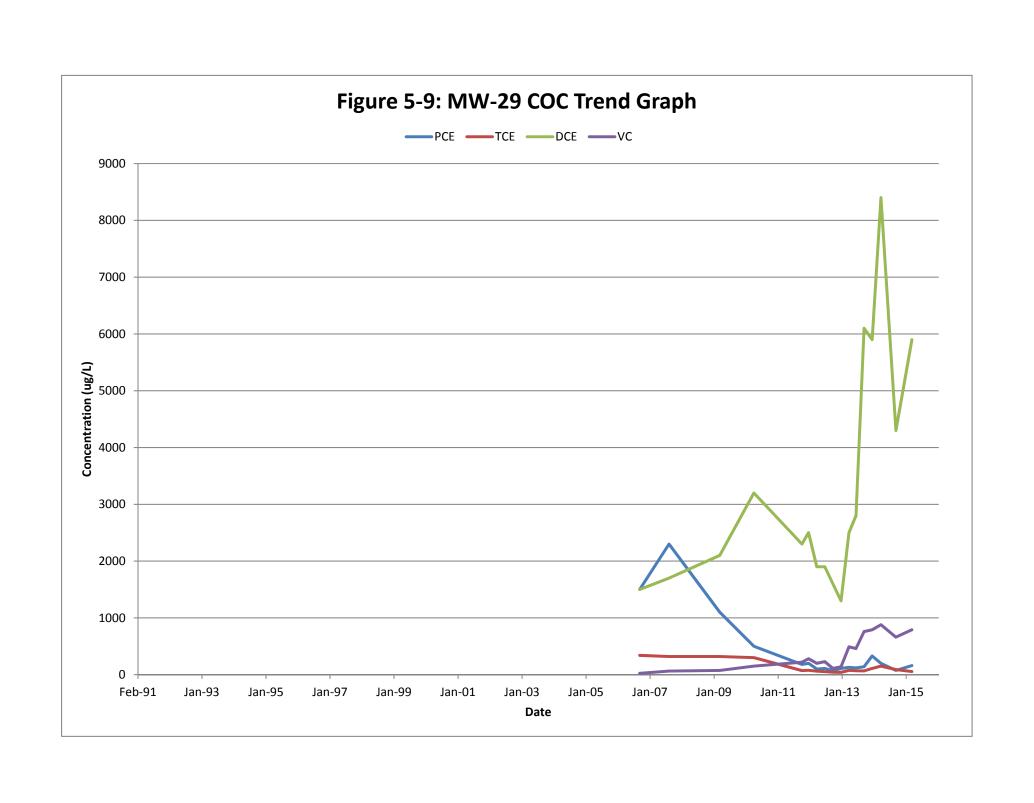


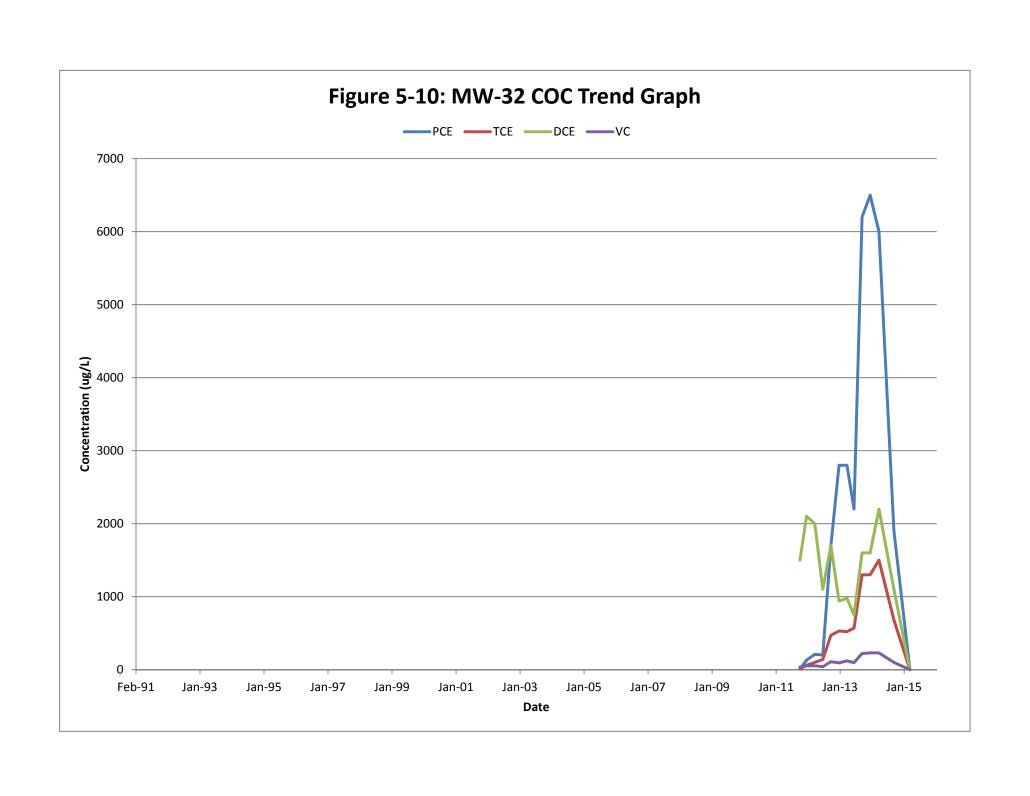


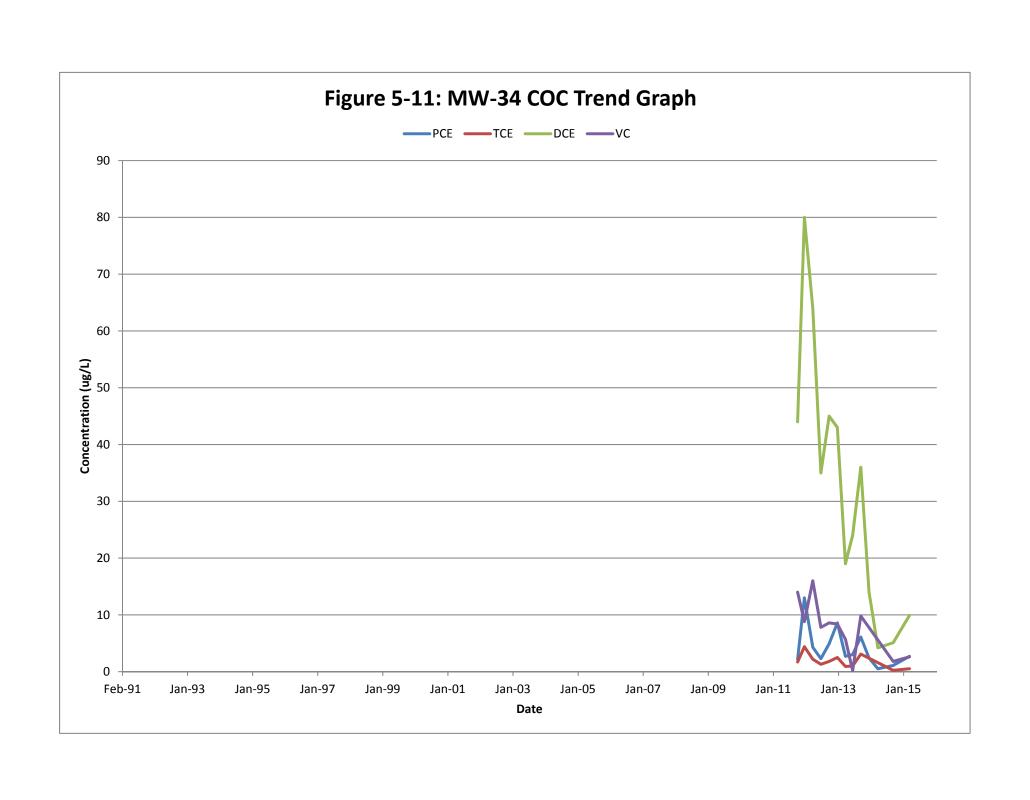


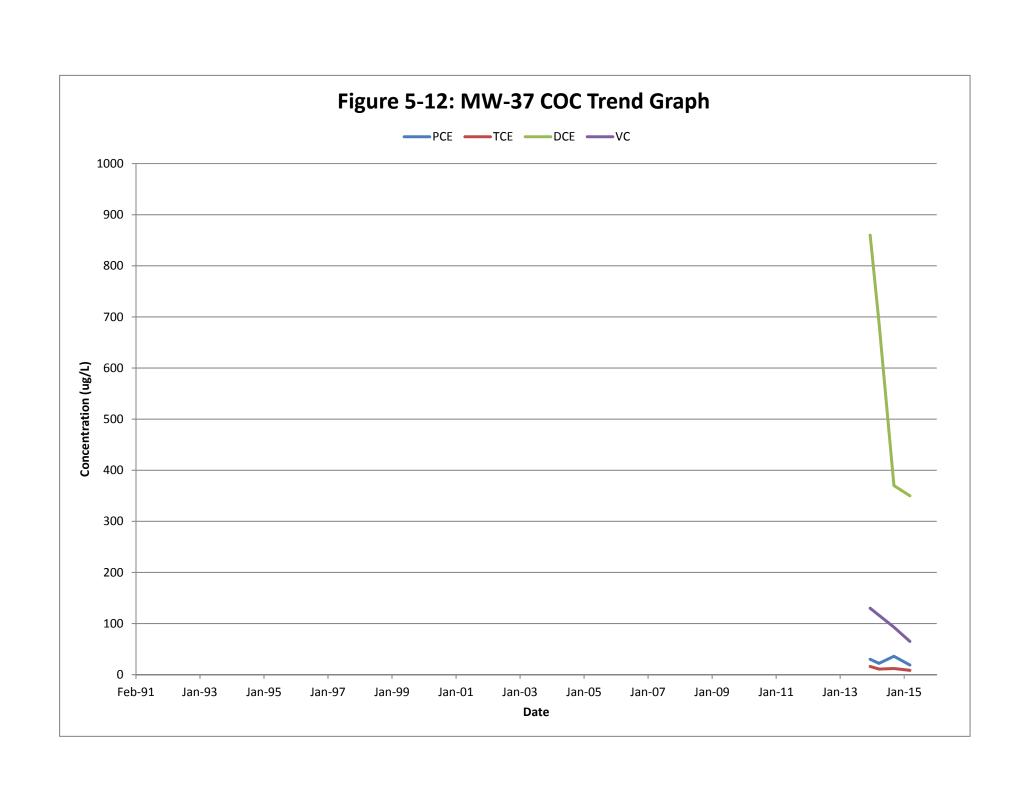


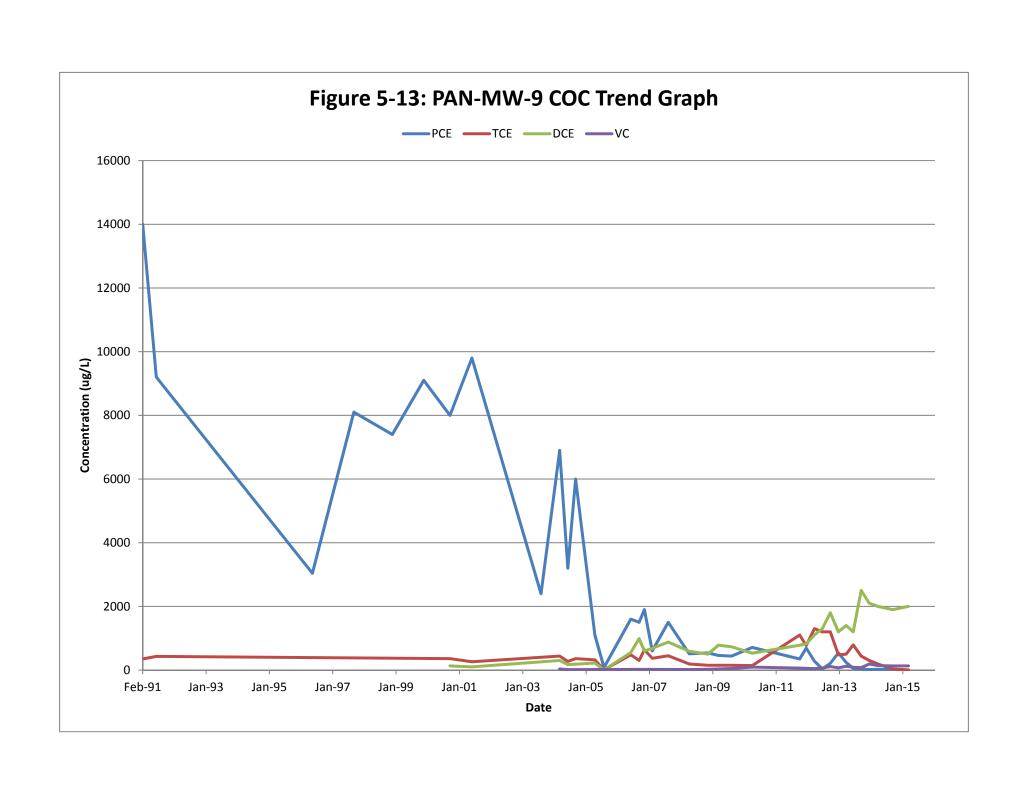












VOPAK TERMINAL SAVANNAH, SAVANNAH, GEORGIA

EIGHTH SEMI-ANNUAL PROGRESS REPORT

ATTACHMENT A

ENV/IDO	AIRECRIT	A	TDNA.	TION	IAL COE	, DOD	ATION	, ,				/-)
	NMENTA URGING						AHON		WELL/SAMP	LE NO:	MW-1)F
DATE: 4/	-, , 	AND 3			: VOPAK Sav		 		PROJECT NO:		1010 0-1	4	
	ONDITIONS:	-	30 F	1 IVAIVIL	LVant		Ða	coly con	_II	330020			
SAMPLE TYP			JNDWATE			TEWATE		SURFACE W		OTHE	R		
WELL DIAME		1			4 6			BGS WELL SCR		39.44		49.57 FT.	
	ER LEVEL (B)		<u> </u>		TIME: 14	Clu	180-	BTOC WELL SC			11. to		
	TOTAL WELL				1.1	L Z.L.		LL DEPTH (BTO			IGHT OF STI		FT.
	EVICE: Pegasi			ump	7 11/11/23		DEDICA		SPOSABLE		NTAMINATED		
	EVICE: 1/4" T					一片	DEDICA		SPOSABLE	=	NTAMINATED		
EQUIP. DEC		CONOX V			OPROPANOL	TX		ON 1 RINSE		ION FINAL		AIR DRY	
	NOX WASH		ST/DEION				OLVENT		VATER WASH		P WATER FIN		
	DINGS (ppm):		ACKGROU					I OUTER CAP:Д			ATH INNER C		
	PRESERVAT		X LAB P				PRESERV			52.12	, , , , , , , , , , , , , , , , , , ,		
	PARAMETER				<u> </u>] / 1000	.,,,						
	RY PERFORMI			Americ	· a		WATER A	NALYZER MODE	EL: Horiba II-52		SERIAL #	UDRU5DA9	
LABORATOR	T		1010. 1000	71110110	<u> </u>	T	WATERA	10 (212211 10002	Toribu o oz	1	T CERTIFICATION	REMARKS	
TIME	VOLUME PURGED (mL)	TEMF (°C)	,	Н	ORP (mV		C. COND. IS/cm)	TURBIDITY (NTU)	DISS. OXYGEN (mg/L)	I. DTW (FT)	(0	COLOR, ODOR, ETC.)	
13,00	0	20,0	5	94	Ø	0.1	135	0,0	4.33	6.73	(tor	-	
18:05	340	199		5,75	-56		383	0, 0	3.51	5.81			
18:10	640	19,7		.01	69		121	0.0	3.02	5,84			
13:15	180	12.6		BF	-74		460	0,0	2.00	6.86			
19:20	1280	19.4		7.0	-76	0	422	0.9	167	600			
10,0	1200	,,,,	3 39	* 15		1	17:5		1,1,5	1,,,,,			

	***************************************											***************************************	
-						<u> </u>		٠.				×	
		-											
						-				1			
						 							
COMMENTS	:				1	SAMP	LE COLLE	CTION TIME:	19/23	1	I.		
	•						ARED BY:		delua				
* Deservations					o oso within d			· · · · · · · · · · · · · · · · · · ·		stant			
								5% for specific co a turbidity reading					
	er Sampling Op			_			-	-	j below 10 1410 a	s per me			
Length of tub	ing cut (ft)		47	\neg									
	depth (ft.) BTC	···	42	\dashv									
<u> </u>	depth (ft.) BTO		7/	\dashv									
Initial pump s			212	}									
<u> </u>	peed was initia	dized	10.	—									
<u> </u>	at flow into cyl		17:5	-									
<u> </u>			2,19	\dashv									
	roll of tubing at			\dashv									
Three well vo													
2,000 mL vol	ume poured in	to bucket:									T	1	
	Time										ļ]	
Cummula	ative Volume (r	nL)											

Additional remarks:

	- /		1
PAGE	- [OF	-/

					PORATION					PAGE	OF
WELL PA	URGING A	AND SAN	PLING D	ATA LOG	<u> </u>		WELL/SAMPL	E NO:	MW-18R		
DATE: 3/	30/15	PR	OJECT NAME	: VOPAK Sava	nnah		PROJECT NO: 3	90020			
WEATHER C	~ / / /	301-	Win 4	DVU	91	,					
SAMPLE TYP	E:	X GROUND			EWATER	SURFACE WA	ATER	OTHER	₹		
WELL DIAME		X 1 🗆		4	OTHER	BGS WELL SCRE	EN INTERVAL:	3.00	FT. to	13.00 FT.	
	ER LEVEL (B1		<i>₽</i> =T.	TIME: 8	<u> </u>	BTOC WELL SCF	REEN INTERVAL:	6.66	FT. to	<u>16.66</u> FT.	
		DEPTH (BTC	<u> </u>			LL DEPTH (BTO		FT. HEI	IGHT OF STICK-	-UP: 3.66	FT.
		us Alexis Peris			DEDICA		POSABLE		NTAMINATED		
		eflon lined tub			DEDICA		POSABLE		NTAMINATED		
		CONOX WASI		PROPANOL	X DIST/DEK			ON FINAL F		B DBA	
EQUIP. DECC			EION 2 RINS		HER SOLVENT		ATER WASH		P WATER FINAL		
	NOX WASH		SROUND: 1			OUTER CAP:			ATH INNER CAP		
	DINGS (ppm):						<u></u>	DENEZ	ATT INNER OAT		
	PRESERVAT		LAB PRESER		FIELD PRESERV						
					FE D, 6010C, 903				050141 # 117	20115040	
LABORATOR	RY PERFORM	ING ANALYSIS	: Test Americ	a I	WATER A	NALYZER MODE	L: Horiba U-52		SERIAL# UI		
TIME	VOLUME PURGED (mL)	TEMP (°C)	рН	ORP (mV)	SPEC. COND. (mS/cm)	TURBIDITY (NTU)	DISS. OXYGEN. (mg/L)	DTW (FT)	(COI	REMARKS LOR, ODOR, ETC.)	
975	6	15,34	4.81	187	0-319	46-1	4.33	NA			
9:20	900	16.12	3.86	261	0-309	47.	d . 48	NIT			
9.7.5	1540	16.47	3.97	262	7.30	170	1.81	NA			
1,2	· · · · · · · · · · · · · · · · · · ·	-	412	259	0,305	22.7	1.49	NM			
3,70	2100	16.57	7.94			カップ	2,20	MA			
3,70	2706	-		274	0 304	(2)	2.20	MA			
9,40	7580	16.27	3.90 3.91	700	0.307	0/-	 	418			
10:45	4200	10131	7/4/	291	0,700	24.6	1.90				
<u> </u>								6.48			
							* "				
}											
											-,
								,			
							L				
COMMENTS	:				SAMPLE COLLE		giy q				
					PREPARED BY:	5418	Inli				
* Parameters	are stabilized	when 3 conse	cutive reading	s are within ±	0.1 FOR pH and ±	: 5% for specific co	enductivity is const	tant.			
Reasonable	attempts mus	t be made to re	each a 0.2 mg	/L dissolved ox	ygen reading and	a turbidity reading	below 10 NTU as	per the			
					ESDPROC-301-R						
	, , ,										
Length of tub	ing cut (ft.)		20								
Initial tubing	depth (ft.) BTC		7_								
Final tubing	depth (ft.) BTC	C	12								
Initial pump s	speed	3	70								
Time pump s	peed was initi		TI.								
	at flow into cy		71								
	roll of tubing a										
Three well vo											
111100 11011 11	Jiamo (ma)	L									
2 000 ml voi	lume poured ir	nto bucket									
2,000 IIIL VOI	Time	10 bucket	1 1								
Cummula	ative Volume (5
Cummula	anve voidine (""-/ L\	<u> </u>				1		L		
		n at 0	141 (11-	ex to no	. کم اید د	مادر	Turl	prfilio	OUL Wal	_h.
Additional re	. —	1 + 1) A	1111 44	110, 1	ex to No	MESSI	umbs.	1 0()	4. 4.1	C . O. of 1631	1- VIL
	M Juck	(एथ	on ton	A LAC			, , , , , , , , , , , , , , , , , , , ,				
		7.71		1:0							
-(1.50	mple	notthe	600	(47)							
_											

		PAGEOF	
ELL/SAMPL	E NO:	MW-25	
OJECT NO: 39	90020		
nd			
R	OTHER	R	
INTERVAL:	6.40	FT. to <u>16.40</u> FT.	
N INTERVAL:	9.67	Z FT. to <u>19.67</u> FT.	
17.91	FT. HE	GHT OF STICK-UP: 3.27 FT.	
SABLE	DECO	NTAMINATED	
SABLE	DECO	NTAMINATED	
DIST/DEIG	ON FINAL I	RINSE X AIR DRY	
R WASH	TAI	P WATER FINAL RINSE	
Ψ	BENEA	ATH INNER CAP: 1 M	
oriba U-52		SERIAL # UDRU5DA9	
		REMARKS	
SS. OXYGEN. (mg/L)	DTW (FT)	(COLOR, ODOR, ETC.)	
1.76	M	Tan colo in ught	
1,24	NA		
0.84	NA		
0.76	NA		
0.68	NA		
0-64	NA	Pump reversel flowdirect	TOV
0.70	6.98		
		11-74	
111 1	k		
11000	<u>, </u>		
anya	<u>n/</u>		
ctivity is const			
ow 10 NTU as	per the		

WELL/SAMPLE NO:

PROJECT NO: 390020

DISS. OXYGEN

WINA

lray-

WATER ANALYZER MODEL: Horiba U-52

TURBIDITY

(NTU)

50.3

90.4

23.8

17. R

1001

SURFACE WATER

BGS WELL SCREEN INTERVAL:

BTOC WELL SCREEN INTERVAL:

DISPOSABLE

X DISPOSABLE

TAP WATER WASH

*Parameters are stabilized when 3 consecutive readings are within ± 0.1 FOR pH and ± 5% for specific conductivity is constant. Reasonable attempts must be made to reach a 0.2 mg/L dissolved oxygen reading and a turbidity reading below 10 NTU as per the Groundwater Sampling Operating Procedure, US EPA, Region 4, # SESDPROC-301-R3.

ENVIRONMENTAL INTERNATIONAL CORPORATION

Of or cast

DIST/DEION 2 RINSE

BACKGROUND: MM

5.45

5.84

5.97

6,00

95

X LAB PRESERVED

PROJECT NAME: VOPAK Savannah

4

17.93

FT. TIME:

SOPROPANOL

ORP

66

-79

(mV)

01

OTHER

FT. MEASURED TOTAL WELL DEPTH (BTOC

DEDICATED

DEDICATED

X DIST/DEION 1 RINSE

6

10:33

OTHER SOLVENT

FIELD PRESERVED

SPEC, COND.

(mS/cm)

0.627

0.686

0 . 695

17.693

0.694

0.193

SAMPLE COLLECTION TIME:

PREPARED BY:

0.635

WELL PURGING AND SAMPLING DATA LOG

X

X GROUNDWATER

6,51

1 2

DATE: 3/30/17

WEATHER CONDITIONS:

WELL DIAMETER (IN.)

INITIAL WATER LEVEL (BTOC):

HISTORICAL TOTAL WELL DEPTH (BTOC):

SAMPLING DEVICE: 1/4" Teflon lined tubing

PURGING DEVICE: Pegasus Alexis Peristaltic Pump

X ALCONOX WASH

LABORATORY PERFORMING ANALYSIS: Test America

TEMP

(°C)

19,40

14.24

SAMPLE TYPE:

EQUIP. DECON.

10.44

COMMENTS:

LIQUINOX WASH

PID/FID READINGS (ppm):

CONTAINER PRESERVATION:

ANALYTICAL PARAMETERS: 8260 B

VOLUME

PURGED

(mL)

780

1430

<u>2100</u>

4100

11:04 9870

Length of tubing cut (ft.)	J Q O
Initial tubing depth (ft.) BTOC	14
Final tubing depth (ft.) BTOC	14
Initial pump speed	3-70.
Time pump speed was initialized	10:40
Pump speed at flow into cylinder	3.40
Started new roll of tubing at	~
Three well volume (mL)	$\overline{}$

0.000 -				
2,000 п	nL volume	poured	IUIO	Ducket.

Time	10:28	11(1)			
Cummulative Volume (mL)	3000	4000			

Additional remarks:	4+	11:14	Pump Pos to	flow	was Labali	120	tised. L	corrected reading	Immec	lrately
		<u> </u>								

ENVIRO	NMENT	AI INTER	ANATION	NAL COF	RPORATION	i de la companya de l			PAGE_	:1
	URGING						WELL/SAMPI	E NO:	MW-28	
DATE: 3/3				E: VOPAK Sav			PROJECT NO: 3		14144-20	
WEATHER C		60° F		- S Ry	varinan		TROSEOT NO. C	30020		
SAMPLE TYP		X GROUND			TEWATER	SURFACE W	ATER	OTHE	B	
WELL DIAME		X 1		4 6		BGS WELL SCRI			FT. to 13.71 FT.	
	ER LEVEL (BT				32	4	REEN INTERVAL:		FT. to FT.	
***	TOTAL WELL				SURED TOTAL WI	L			IGHT OF STICK-UP: -0.125	FT.
	EVICE: Pegasu				DEDICA		SPOSABLE		NTAMINATED	
	EVICE: 1/4" T				DEDICA		SPOSABLE		NTAMINATED	
EQUIP. DEC		CONOX WAS		OPROPANOL				ON FINAL		
	NOX WASH	-	DEION 2 RINS		THER SOLVENT		VATER WASH		P WATER FINAL RINSE	
	DINGS (ppm):			Del)		H OUTER CAP:	0-0	BENE/	ATH INNER CAP: D-D	
***	PRESERVAT		LAB PRESEI	RVED	FIELD PRESERV					
	PARAMETER				1					
-	RY PERFORMI		S: Test Americ	ca ca	WATER A	ANALYZER MODE	L: Horiba U-52		SERIAL # UDRU5DA9	
			Ī		T ,		<u> </u>		REMARKS	
TIME	VOLUME PURGED (mL)	TEMP (°C)	рH	ORP (mV)	SPEC. COND. (mS/cm)	TURBIDITY (NTU)	DISS. OXYGEN (mg/L)	DTW (FT)	(COLOR, ODOR, ETC.)	
10103	0	19.43	6,70	194	0.431	D. 0	2,59	NIA	Tay Color	
10.08	280	18.49	6,40	101	0.415	0.0	2,10	NA	•	
10:13	520	18.31	6.31	203	0.402	0,0	1,9.0	MA		
10:12	790	19.22	6.30	203	0.399	Din	1.83	NH		
		1012	3					5.03		
			,							
COMMENTS	:				SAMPLE COLLE		10:20			
					PREPARED BY:	5 Heli	nly			
Reasonable	attempts mus	t be made to r	each a 0.2 mg	/L dissolved o	± 0.1 FOR pH and : exygen reading and SESDPROC-301-F	d a turbidity reading				
Length of tub	ing cut (ft.)		2. 49							
Initial tubing	depth (ft.) BTO	c	4							
	depth (ft.) BTO		à							
Initial pump s	peed	1	95				•			
Time pump s	peed was initia		<u></u>							
Pump speed	at flow into cyl	inder	1.47							
Started new r	roll of tubing at		"', 7							
Three well vo										
2,000 mL vol	ume poured in	to bucket:								
-	Time									
Cummula	ative Volume (r	nL)								

Additional remarks:

		1	
	1	,	
PAGE		OF	

WELLSAMPLE NO. MW-32 DETE \$ - 1	ENVIRO	NMENT	AL INTE	RNATIO	NAL COR	PORATION	1				PAGE /	/ OF
DATE 1	WELL P	URGING	AND SAN	IPLING I	DATA LOG	}	*	WELL/SAMPI	E NO:	MW-32	Transaction of the Control of the Co	
WEATHER CONDITIONS					-							
SAMPLE PYPE			I				765 8	1.1100201.110.1				
MELL DIMENTER (RN) 1 2 2 4 6 0 0 0 0 0 0 0 0 0			*******				SUPEACEM	/ATED	□ OTHE	:D		
MITTAL MYTTER LEVEL (1970): \$\frac{\text{L}}{\text{Q}}\$ \text{T} MEX T M							1				O FT	
HISTORICAL TOTAL, WELL DEPTH (STOC)					1		4					
PURDING DEVICE: Prepare An Annies Periodatio Purio SMPLING DEVICE: INT Tetlor intered tubring DEDICATED TAR UNTERWASH DEDICATED TAR UNTERWA												
SAMPLING DEVICE. 14" Tright inter labring EQUIP DECON ALCONOX WASH ISDPROPANOL			<u>-</u>		FI. MEAS						0.42	FT. BGS
EQUIP DECON												
DISTOREDNOS (BORD): BACKGROUND: BENEATH UTTER AP WATER WASH TAP WATER FINAL RINSE												
PIDRID READINGS (ppn): BACKGROUND: BENEATH OUTER CAP: BENEATH OUTER CAP: BENEATH INNER CAP: CONTAINER PRESERVATION: Like Interest the second of the second o	EQUIP. DEC	ON. X AL	CONOX WAS	H [] IS	OPROPANOL	X DIST/DE	ON 1 RINSE	☐ DIST/DEI	ON FINAL	RINSE X AIR DR	Y	
COMMENTS:				DEION 2 RINS	SE 01	THER SOLVENT	TAP V	VATER WASH	TA	P WATER FINAL RIN	SE	
ANALYTICAL PARAMETERS 8280 B. SORDA 310.1, 9558A, SM 5800 FE D, R010C, SOSA ANZOGAX LABORATORY PERFORMING ANALYSIS TISS A manifeat TIME VOLUME TIME PURGED PURGED PURGED PURGED 17.3.0 D 2.9, 78 6.96 - 76 9.7, 76 0, 0 2, 70 1, 77 17.3.0 D 2.9, 78 6.96 - 76 9.7, 76 0, 0 2, 70 1, 77 17.3.0 D 2.9, 78 7, 20 - 41 0, 74 2, 0 0 1, 79 1, 9 2.7, 0 1, 77 17.3.0 D 2.9, 78 7, 20 - 41 0, 74 2, 0 0 1, 79 1, 9 2.7, 0 1, 79 1, 9 1, 9 1, 9 1, 10	PID/FID REA	DINGS (ppm):	BACK	GROUND:		BENEAT	HOUTER CAP: _		BENE	ATH INNER CAP:		
DADRATORY PERFORMING ANALYSIS: Tost America WATER ANALYZER MODEL: Horiba U-52 SERIAL # UDRUDD9	CONTAINER	PRESERVAT	ION: X	LAB PRESE	RVED	FIELD PRESER	VED					
TIME VOLUME PURCED (C) pH ORP (mV) SPEC COND (mS/cm) (VITU) DISS, OXYGEN (mg/L) (FT) (COLOR, ODOR, ETC.) 17.10	ANALYTICAL	. PARAMETER	RS: 8260 B, 90	60A, 310.1, 9	056A, SM 3500	FE D, 6010C, 90	34, AM20GAX					
TIME PURCED (C) PH ORP (mly SPEC. COND (mg/s) TURBIDITY (Mg/s) (FT) (COLOR ODOR, ETC.) 7.\C 9	LABORATOR	Y PERFORM	NG ANALYSIS	3: Test Americ	a	WATER A	ANALYZER MODE	EL: Horiba U-52		SERIAL # UDRUS	DA9	
Time		VOLUME								RE	MARKS	
Title 130 73 740 747	TIME	PURGED	l .	pН	ORP (mV)			1	I	(COLOR,	ODOR, ETC.)	
Title Titl	17.30	D	70 73	6.26	-36	9.736	0.0	2.70	5 75			
COMMENTS: SAMPLE COLLECTION TIME: PREPARED BY: Parameters are stabilized when 3 consecutive readings are within £ 0.1 FOR pH and £ 5% for specific conductivity is constant. Reasonable attempts must be made to reach a 0.2 mg/L dissolved oxygen reading and a furbidity reading below 10 NTU as per the Groundwater Sampling Operating Procedure, US EPA, Region 4, # SESDPROC-301-R3. Length of fubing depth (ft.) BTOC Intidia funds peed was initiatized Pump speed was initiatized Pump speed was initiatized Time well volume (mL) 2,000 mL volume poured into bucket Time Cummulative Volume (mL) 2,000 mL volume poured into bucket Time Cummulative Volume (mL) 2,000 mL volume poured into bucket Time Cummulative Volume (mL) 2,000 mL volume poured into bucket	12:				~47			1.10			***************************************	
COMMENTS: Parameters are stabilized when 3 consecutive readings are within ± 0.1 FOR pH and ± 5% for specific conductivity is constant. Reasonable attempts must be made to reach a 0.2 mg/L dissolved oxygen reading and a turbidity reading below 10 NTU as per the Groundwater Sampling Operating Procedure, US EPA, Region 4, # SESDPROC-301-R3. Langth of tubing out (ft.) Initial tubing depth (ft.) BTOC Initial tubing depth (ft.) BTOC Initial pump speed was initialized Pump speed at flow into cylinder Started new roll of tubing at Three well volume (mL) 2,000 mL volume poured into bucket: Time Light of volume (mL) 2,000 mL volume poured into bucket: Time Cummulative Volume (mL) 2,000 mL volume poured into bucket:	H-7-				-Un						***************************************	
COMMENTS: SAMPLE COLLECTION TIME: Perameters are stabilized when 3 consecutive readings are within ± 0.1 FOR pH and ± 5% for specific conductivity is constant. Reasonable attempts must be made to reach a 0.2 mg/l. dissolved oxygen reading and a turbidity reading below 10 NTU as per the Groundwater Sampling Operating Procedure, US EPA, Region 4, # SESDPROC-301-R3. Length of tubing out (ft.) Initial tubing depth (ft.) BTOC I // Initial pump speed 3, 0) Time pump speed was initialized 13, 22 Pump speed at flow into cylinder Started new roll of tubing at Three well volume (mt.) 2,00 mt. volume poured into bucket: Time 1,7:46 Cummulative Volume (mt.) Additional remarks:						0770		1 71	* _	a! A		
PREPARED BY: PR	1, 10	L094	20,47	10,47	10	0011	2015	1.12	400	0~1		
PREPARED BY: PR												
PREPARED BY: PR												
PREPARED BY: PR												
PREPARED BY: PR												
PREPARED BY: PR												
PREPARED BY: PR												
PREPARED BY: PR											Mich.	
PREPARED BY: PR					1							
PREPARED BY: PR												
PREPARED BY: PR												
PREPARED BY: PR												
PREPARED BY: PR												
PREPARED BY: PR	COMMENTS				L	CAMPLE COLLE	CTION TIME.	1				
* Parameters are stabilized when 3 consecutive readings are within ± 0.1 FOR pH and ± 5% for specific conductivity is constant. Reasonable attempts must be made to reach a 0.2 mg/L dissolved oxygen reading and a turbidity reading below 10 NTU as per the Groundwater Sampling Operating Procedure, US EPA, Region 4, # SESDPROC-301-R3. Length of tubing cut (ft.) Initial tubing depth (ft.) BTOC Initial tubing depth (ft.) BTOC Initial pump speed as flow into cylinder Started new roll of tubing at Three well volume (mL) 2,000 mL volume poured into bucket: Time 1,7,46 Cummulative Volume (mL) Additional remarks:	COMMENTS.								50_			
Reasonable attempts must be made to reach a 0.2 mg/L dissolved oxygen reading and a turbidity reading below 10 NTU as per the Groundwater Sampling Operating Procedure, US EPA, Region 4, # SESDPROC-301-R3. Length of tubing cut (ft.) Initial tubing depth (ft.) BTOC Initial pump speed Initial pump speed was initialized Initial pump speed at flow into cylinder Started new roll of tubing at Three well volume (mL) 2,000 mL volume poured into bucket: Time Cummulative Volume (mL) Additional remarks:	L					PREPARED BY:	<u>\$4</u>	Clean				
Groundwater Sampling Operating Procedure, US EPA, Region 4, # SESDPROC-301-R3. Length of tubing cut (ft.) Initial tubing depth (ft.) BTOC Initial pump speed Initial pump speed Initial pump speed at flow into cylinder Started new roll of tubing at Three well volume (mL) 2,000 mL volume poured into bucket: Time Cummulative Volume (mL) Additional remarks:	* Parameters	are stabilized	when 3 consec	cutive reading	s are within ±0	0.1 FOR pH and ±	5% for specific co	onductivity is const	ant.			
Length of tubing cut (ft.) Initial tubing depth (ft.) BTOC I/ Final tubing depth (ft.) BTOC I/ Initial pump speed 3,0) Time pump speed was initialized 17,22 Pump speed at flow into cylinder Started new roll of tubing at Three well volume (mL) 2,000 mL volume poured into bucket: Time 17,46 Cummulative Volume (mL) Additional remarks:	Reasonable	attempts must	be made to re	ach a 0.2 mg	L dissolved oxy	gen reading and	a turbidity reading	below 10 NTU as	per the			
Initial tubing depth (ft.) BTOC Final tubing depth (ft.) BTOC U Initial pump speed I O) Time pump speed was initialized Pump speed at flow into cylinder Started new roll of tubing at Three well volume (mL) 2,000 mL volume poured into bucket: Time I 7,46 Cummulative Volume (mL) Additional remarks:	Groundwate	r Sampling Op	erating Proced	fure, US EPA,	Region 4, # SE	SDPROC-301-R	3.					
Initial tubing depth (ft.) BTOC Final tubing depth (ft.) BTOC Initial pump speed Initial pump speed Initial pump speed												
Final tubing depth (ft.) BTOC Initial pump speed 3.0 Time pump speed was initialized 13.2 Pump speed at flow into cylinder Started new roll of tubing at Three well volume (mL) 2,000 mL volume poured into bucket: Time Cummulative Volume (mL) Additional remarks:	Length of tubi	ng cut (ft.)	1	05								
Initial pump speed Time pump speed was initialized Pump speed at flow into cylinder Started new roll of tubing at Three well volume (mL) 2,000 mL volume poured into bucket: Time Cummulative Volume (mL) Additional remarks:	Initial tubing o	lepth (ft.) BTO	С	1/								
Initial pump speed Time pump speed was initialized Pump speed at flow into cylinder Started new roll of tubing at Three well volume (mL) 2,000 mL volume poured into bucket: Time Cummulative Volume (mL) Additional remarks:	Final tubing d	epth (ft.) BTO	2	v(
Time pump speed was initialized Pump speed at flow into cylinder 3,0 \ Started new roll of tubing at Three well volume (mL) 2,000 mL volume poured into bucket: Time Cummulative Volume (mL) Additional remarks:	Initial pump sp	peed	7	0)								
Pump speed at flow into cylinder Started new roll of tubing at Three well volume (mL) 2,000 mL volume poured into bucket: Time Cummulative Volume (mL) Additional remarks:	Time pump sp	eed was initia	\ > .	<u> </u>								
Started new roll of tubing at Three well volume (mL) 2,000 mL volume poured into bucket: Time \ \ 7; \(\) \ Cummulative Volume (mL) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			. 	1								
Three well volume (mL) 2,000 mL volume poured into bucket: Time \ \ 7.46				101								
2,000 mL volume poured into bucket: Time \ \ 7.46 \ Cummulative Volume (mL) \ 2.000 \ Additional remarks:												
Time 17:46 Cummulative Volume (mL) 2.800	Three well vol	ume (mL)										
Cummulative Volume (mL) 2900	2,000 mL volu	me poured int	o bucket:									
Cummulative Volume (mL) 2000 Additional remarks:		Time	17:	46								
Additional remarks:	Cummula	tive Volume (n										
	•	·			<u>-</u>							
	Additional row	narke:										
AND THE RESERVE OF THE PERSON	Additional tell							*****				
314 · · · · · · · · · · · · · · · · · · ·					,							
3.6 ·				19.18						12.00		
				356 1 80								

					PORATION	1				PAGE /	_of/
				DATA LOC			WELL/SAMPI	LE NO:	MW-35		
DATE: "> ~ 1		PF	ROJECT NAM	E: VOPAK Sav			PROJECT NO: 3	390020			
WEATHER C		<i>W</i> /\		Cier	760F						
SAMPLE TYP		X GROUND			TEWATER	SURFACE W	/ATER	OTHE	R		
WELL DIAME	· · · · ·	☐ 1 LX		4 6	OTHER	BGS WELL SCF	REEN INTERVAL:	<u>5.63</u>	FT. to <u>15.6</u>	33 FT.	
		TOC): 5 , 1		TIME:		BTOC WELL SO	REEN INTERVAL	<u>5.3</u> :	2 FT. to	<u>15.32</u> FT.	
HISTORICAL	TOTAL WEL	L DEPTH (BT	OC): 15.32	FT. MEAS	URED TOTAL W	ELL DEPTH (BTC)(FT. HE	EIGHT OF STICK-UP:	-0.31	FT. BGS
		us Alexis Peris	<u>'</u>		DEDICA		SPOSABLE	DECO	NTAMINATED		
		eflon lined tub			DEDICA		SPOSABLE		NTAMINATED		
EQUIP. DEC		CONOX WAS		OPROPANOL	X DIST/DEI	ON 1 RINSE	☐ DIST/DEI	ON FINAL	RINSE X AIR DE	ťΥ	
\vdash	NOX WASH		DEION 2 RINS		HER SOLVENT		VATER WASH	ТА	P WATER FINAL RIN	SE	
PID/FID REAL			GROUND: Λ		***************************************	HOUTER CAP: 1	√w	BENE	ATH INNER CAP: <u>(\frac{\frac{1}{2}}{2})</u>	<u>1 </u>	
	PRESERVAT		LAB PRESE	RVED	FIELD PRESERY	/ED	***************************************		***************************************	15.	
ANALYTICAL				44.10		Province.					
LABORATOR	Y PERFORM	ING ANALYSI	S: Test Americ	a	WATER A	NALYZER MODE	L: Horiba U-52		SERIAL # UDRUS	DA9	
TIME	VOLUME PURGED (mL)	TEMP (°C)	pН	ORP (mV)	SPEC. COND. (mS/cm)	TURBIDITY (NTU)	DISS. OXYGEN. (mg/L)	DTW (FT)		MARKS ODOR, ETC.)	
14153	0	24.55	6.26	~1	0,605	40,5	1.69	C CI.			
14759	600	2363	6.58	-107	0.612	Q.O	1.09	13.7			
15104	1.60	23,00	6,56	-125	0.617	D ₁ O	0.34	307	****		
1504	1740	13.39	6,58	-137	A / 1 /	0-0	1 7 7	3.24			~~~~
17.10	1110	dr 2	P 40 ()	100	0.016	0.0	 (-1)	2-74			
			*******						=		
			¥								
	*******		***			1,000					····
· · · · ·	*****					277711					
			***************************************						V- VI.		

			¥	,.,							
COMMENTS:				L	SAMPLE COLLE	CTION TIME:	10.1				
					PREPARED BY:	SHPO	17-14				
* Parameters	ere stabilized	when 3 conse	utivo roadina				anductivity is const				
Reasonable	attempts must	be made to re	ach a 0.2 mg/	L dissolved oxy		a turbidity reading	below 10 NTU as				
Length of tubir	ng cut (ft.)		ره								
Initial tubing d	epth (ft.) BTO	c 1	0		(rir ten	Shall	Plua of	2 (14:43		
Final tubing de	epth (ft.) BTO	2 1	0	\mathcal{Y}^{\prime}	, V V 1 3 3.) (- (Lead on				
Initial pump sp	eed	7	15								
Time pump sp	eed was initia	lized \	1545	Ţ.	elter	m 1	0 - 000	الحصا	14:40		
Pump speed a	t flow into cyli		()_	· ·	, 40, 0	, (⁾	c (or while	(0 X	· · · (D		
Started new ro	Il of tubing at		ies -	וומ	150 Come	C^{-1}					
Three well volu	ume (mL)			011	(2) Come	4 1911					
2,000 mL volui	me poured into	o bucket:									
	Time							T			
Cummulat	ive Volume (m	ıL)									
Additional rem	arks: R	etrie ve	710()_	Fron	well -	- un acc	e to re	4(1en			
				4-1		***************************************					

.

					PORATION		Andrew		· · · · · · · · · · · · · · · · · · ·	SEO	F
NELL PL	JRGING A	AND SAM	IPLING D	ATA LOG	j		WELL/SAMPL	E NO:	MW-36		
ATE: 3-4	31-15	PR		: VOPAK Sava	nnah		PROJECT NO: 3	90020			
VEATHER CO	ONDITIONS:	w mach	1 74	10 P	inty 100	444					
SAMPLE TYP	E: [X GROUND	WATER	☐ WAST	EWATER	SURFACE W	ATER	OTHE	R		
WELL DIAME	TER (IN.)	□ 1 X	2 🗌	4 📗 6	OTHER	BGS WELL SCRI	EEN INTERVAL:	<u>5.55</u>	FT. to <u>15.55</u> F	T.	
NITIAL WATE	ER LEVEL (B)	roc): 6.4	⊗ -⊤.	TIME: (51,35	BTOC WELL SCI	REEN INTERVAL:	<u>5.43</u>	3 FT. to <u>15.43</u>	FT.	
		DEPTH (BTC		FT. MEAS	URED TOTAL WE	LL DEPTH (BTO	C	FT. HE	IGHT OF STICK-UP:	-0.125 F	FT. BGS
PURGING DE	VICE: Pegası	ıs Alexis Peris	taltic Pump		DEDICA	TED DIS	SPOSABLE	DECO	NTAMINATED		
SAMPLING D	EVICE: 1/4" T	eflon lined tub	ing		DEDICA	TED X DIS	SPOSABLE	DECO	NTAMINATED		
EQUIP. DECC	ON. X AL	CONOX WAS	H IS	OPROPANOL	X DIST/DEI	ON 1 RINSE	DIST/DEI	ON FINAL	RINSE X AIR DRY		
LIQUIN	NOX WASH	DIST/E	DEION 2 RINS	SE OT	HER SOLVENT	TAP W	VATER WASH	TA	P WATER FINAL RINSE		
PID/FID READ	DINGS (ppm):	BACK	GROUND:		BENEATH	OUTER CAP: _		BENE	ATH INNER CAP:		
	PRESERVAT		LAB PRESER		FIELD PRESER\						
	PARAMETER										
		NG ANALYSIS	S: Test Americ	a	WATER A	NALYZER MODE	L: Horiba U-52		SERIAL # UDRU5DA9		
									REMARK	(S	
TIME	VOLUME PURGED (mL)	TEMP (°C)	рН	ORP (mV)	SPEC. COND. (mS/cm)	TURBIDITY (NTU)	DISS. OXYGEN. (mg/L)	DTW (FT)	(COLOR, ODOI	R, ETC.)	
17147	7	26,40	6.34	-44	1.34	D. P	1, 78	6,69	ist Pull is cle	0/ 1-	Kr.h.
15:52			6.38	-117	1,37	0.0		6.74	1000 13 010	- /-1	win
		24.91	6.3h	-124	1,37		0.94	6,78			
	1540	24.91		~128	1.37	0,6 0.0		6.80			
160,02	1590	1 2 M. GI	h. 78	- (20	1,)15	(6) (5)	0.79	0.00			
					;						
COMMENTS:					SAMPLE COLLE	CTION TIME: \	6105				
					PREPARED BY:	SHE	m-				
* Parameters	are stabilized	when 3 conse	cutive reading	s are within ±	0.1 FOR pH and ±	5% for specific co	onductivity is const	ant.			
Reasonable	attempts mus	t be made to r	each a 0.2 mg	/L dissolved ox	ygen reading and	a turbidity reading	below 10 NTU as	per the			
Groundwate	r Sampling O	perating Proce	dure, US EPA	, Region 4, # S	ESDPROC-301-R	3.					
			Λ								
Length of tubi	ing cut (ft.)		av								
Initial tubing o	depth (ft.) BTC	С	11								
Final tubing d	lepth (ft.) BTO	C	i i								
Initial pump s	peed		2AI								
Time pump sp	peed was initia	alized	41								
Pump speed	at flow into cy	linder	3-01								
Started new r	oll of tubing a										
Three well vo			_								
2 000 ml vet	ume poured ir	ito pricket.									
FIGOR HIE VOIL	Time			<u> </u>	<u> </u>		T				
Cummula	ative Volume (ml \		-			+ +				
Guinmula	arive volulile (/					<u> </u>		<u> </u>		
Additional rer	marks:										

	URGING	, constant					WELL/SAMPL	E NO:	MW-3	37	
ATE: 3	-31 -1		OJECT NAME		annah		PROJECT NO: 3	90020			
	CONDITIONS:	05°F	<u>clew</u>	sties							
AMPLE TY		X GROUND			TEWATER	SURFACE \		OTHE			
/ELL DIAMI		☐ 1 X			OTHER		REEN INTERVAL:	<u>5.15</u>		<u>15.15</u> FT.	
	ER LEVEL (B		142 FT		97		CREEN INTERVAL:		FT. to		
	TOTAL WELI	···········		FT. MEAS		WELL DEPTH (BT			IGHT OF STI		FT. E
	EVICE: Pegasi						ISPOSABLE	=	NTAMINATED		
	DEVICE: 1/4" T						ISPOSABLE		NTAMINATED		
QUIP. DEC		CONOX WASI		PROPANOL		EION 1 RINSE		process	RINSE X	··········	
	NOX WASH		DEION 2 RINS		THER SOLVEN		WATER WASH		P WATER FIN		
	DINGS (ppm):		GROUND:			TH OUTER CAP:	<u> </u>	BENE	ATH INNER C	AP: <u> </u>	
	PRESERVAT		LAB PRESER	VED _	FIELD PRESE	RVED				70000	
	PARAMETER		. T (A)		lu/a TE				055111		
RORATOR	RY PERFORMI	NG ANALYSIS	S: Test America	1	WATE	R ANALYZER MOD	EL: Horiba U-52	1	SERIAL#	UDRU5DA9	
TIME	VOLUME PURGED (mL)	TEMP (°C)	pН	ORP (mV)	SPEC. CONI (mS/cm)	D. TURBIDITY (NTU)	DISS. OXYGEN. (mg/L)	DTW (FT)	(0	REMARKS COLOR, ODOR, ETC.)	
11:49	v	16172	4,30	85	0.314	0,0	1,95	4.99			
11553	700	17,93	5.28	53	0.724	0.0	1119,	4.08			
11150	1400	12.80	5.24	47	0,724	0.0	P184	90,7			
2103	7150	12,92	5.31	40	0.324	0.0	0.71	403			
		, ,	,	,	`						
	·										
OMMENTS	:					LECTION TIME:	12:05				
					PREPARED B	<u>Υ:</u> <u>ζ</u>	Hem				le e
leasonable Groundwate	attempts must	be made to re	ach a 0.2 mg/l	_ dissolved ox	ygen reading an	d a turbidity readin	onductivity is consta g below 10 NTU as	per the	1.6	Δ	
tial tubing nal tubing o tial pump s	depth (ft.) BTO	c (Enk	0+ 18	4++ Vs	ill of	- +40	m	
	at flow into cyli		10								
tarted new r	oll of tubing at		-								
ree well vo	lume (mL)										
000 mL vol	ume poured int	o bucket:									
	Time	15,	0 L								
Cummula	ative Volume (n	IL) ZO	00								

VOPAK TERMINAL SAVANNAH, SAVANNAH, GEORGIA

EIGHTH SEMI-ANNUAL PROGRESS REPORT

ATTACHMENT B

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-111248-1

Client Project/Site: VoPak, Savannah/390020

For:

Environmental International Corporation 161 Kimball Bridge Road Suite 100 Alpharetta, Georgia 30009

Attn: Stephen Helmly

Authorized for release by: 4/10/2015 5:45:05 PM

Sheila Hoffman, Project Manager II (912)354-7858 e.3004

Sheli Hoffman

sheila.hoffman@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Sample Summary

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

TestAmerica Job ID: 680-111248-1

04/02/15 15:37	04/02/15 15:37
04/02/15 16:57	
04/01/15 18:23 04/03/15 08:30	04/02/15 12:36
	04/02/15 16:57
04/02/15 11:21 04/03/15 08:30	04/01/15 18:23
0-702/13 11.21 0-703/13 00.30	04/02/15 11:21
03/31/15 16:58 04/03/15 08:30	03/31/15 16:58
03/30/15 09:49 04/03/15 08:30	03/30/15 09:49
03/30/15 12:23 04/03/15 08:30	03/30/15 12:23
03/30/15 14:29 04/03/15 08:30	03/30/15 14:29

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-111248-1	IW-1R	Water	04/02/15 15:37	04/03/15 08:30
680-111248-2	IW-18	Water	04/02/15 12:36	04/03/15 08:30
680-111248-3	LAW-PZ-8R	Water	04/02/15 16:57	04/03/15 08:30
680-111248-4	MW-14	Water	04/01/15 18:23	04/03/15 08:30
680-111248-5	MW-16	Water	04/02/15 11:21	04/03/15 08:30
680-111248-6	MW-17R	Water	03/31/15 16:58	04/03/15 08:30
680-111248-7	MW-18R	Water	03/30/15 09:49	04/03/15 08:30
680-111248-8	MW-19	Water	03/30/15 12:23	04/03/15 08:30
680-111248-9	MW-23	Water	03/30/15 14:29	04/03/15 08:30
680-111248-10	MW-24R	Water	04/01/15 10:33	04/03/15 08:30
680-111248-11	MW-25	Water	03/30/15 11:23	04/03/15 08:30
680-111248-12	MW-26R	Water	04/02/15 10:05	04/03/15 08:30
680-111248-13	MW-27	Water	03/30/15 16:18	04/03/15 08:30
680-111248-14	MW-28	Water	03/31/15 10:20	04/03/15 08:30
680-111248-15	MW-29	Water	04/01/15 17:43	04/03/15 08:30
680-111248-16	MW-30	Water	04/02/15 18:13	04/03/15 08:30
680-111248-17	MW-31	Water	03/30/15 15:35	04/03/15 08:30
680-111248-18	MW-32	Water	03/31/15 17:50	04/03/15 08:30
680-111248-19	MW-33	Water	04/02/15 13:27	04/03/15 08:30
680-111248-20	MW-34	Water	03/31/15 11:17	04/03/15 08:30
680-111248-21	MW-35	Water	03/31/15 15:12	04/03/15 08:30
680-111248-22	MW-36	Water	03/31/15 16:05	04/03/15 08:30
680-111248-23	MW-37	Water	03/31/15 12:05	04/03/15 08:30
680-111248-24	PAN-MW-9	Water	04/01/15 18:58	04/03/15 08:30
680-111248-25	PAN-MW-10	Water	04/01/15 09:20	04/03/15 08:30
680-111248-26	Trip Blank	Water	03/30/15 00:00	04/03/15 08:30

Method Summary

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

TestAmerica Job ID: 680-111248-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

9

3

4

5

6

0

9

10

46

Definitions/Glossary

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Quality Control

Relative error ratio

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Job ID: 680-111248-1

Qualifiers

GC/MS VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

QC

RL

RER

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit

TestAmerica Savannah

Case Narrative

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

TestAmerica Job ID: 680-111248-1

Job ID: 680-111248-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE

Client: Environmental International Corporation

Project: VoPak, Savannah/390020

Report Number: 680-111248-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 04/03/2015; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 6.6 C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples IW-1R (680-111248-1), IW-18 (680-111248-2), LAW-PZ-8R (680-111248-3), MW-14 (680-111248-4), MW-16 (680-111248-5), MW-17R (680-111248-6), MW-18R (680-111248-7), MW-19 (680-111248-8), MW-23 (680-111248-9), MW-24R (680-111248-10), MW-25 (680-111248-11), MW-26R (680-111248-12), MW-27 (680-111248-13), MW-28 (680-111248-14), MW-29 (680-111248-15), MW-30 (680-111248-16), MW-31 (680-111248-17), MW-32 (680-111248-18), MW-33 (680-111248-19), MW-34 (680-111248-20), MW-35 (680-111248-21), MW-36 (680-111248-22), MW-37 (680-111248-23), PAN-MW-9 (680-111248-24), PAN-MW-10 (680-111248-25) and Trip Blank (680-111248-26) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 04/09/2015 and 04/10/2015.

Samples IW-1R (680-111248-1)[200X], IW-18 (680-111248-2)[10X], LAW-PZ-8R (680-111248-3)[1000X], MW-16 (680-111248-5)[2X], MW-24R (680-111248-10)[5X], MW-26R (680-111248-12)[100X], MW-29 (680-111248-15)[50X], MW-37 (680-111248-23)[2X] and PAN-MW-9 (680-111248-24)[10X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

O

7

8

4.0

11

14

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Client Sample ID: IW-1R

Lab Sample ID: 680-111248-1

Lab Sample ID: 680-111248-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	440		200	100	ug/L	200	-	8260B	Total/NA
cis-1,2-Dichloroethene	9900		200	82	ug/L	200		8260B	Total/NA
Benzene	110	J	200	86	ug/L	200		8260B	Total/NA
Trichloroethene	150	J	200	96	ug/L	200		8260B	Total/NA
Toluene	260		200	96	ug/L	200		8260B	Total/NA
Tetrachloroethene	310		200	150	ug/L	200		8260B	Total/NA
Chlorobenzene	920		200	52	ug/L	200		8260B	Total/NA
Ethylbenzene	2300		200	66	ug/L	200		8260B	Total/NA
Xylenes, Total	17000		200	46	ug/L	200		8260B	Total/NA
1,3-Dichlorobenzene	110	J	200	86	ug/L	200		8260B	Total/NA
1,4-Dichlorobenzene	820		200	92	ug/L	200		8260B	Total/NA
1,2-Dichlorobenzene	200		200	74	ug/L	200		8260B	Total/NA
1,2,4-Trichlorobenzene	1000		1000	500	ug/L	200		8260B	Total/NA

Client Sample ID: IW-18

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	830		10	5.0	ug/L	10	_	8260B	Total/NA
trans-1,2-Dichloroethene	4.4	J	10	3.7	ug/L	10		8260B	Total/NA
cis-1,2-Dichloroethene	920		10	4.1	ug/L	10		8260B	Total/NA
Benzene	350		10	4.3	ug/L	10		8260B	Total/NA
Trichloroethene	8.4	J	10	4.8	ug/L	10		8260B	Total/NA
Toluene	14		10	4.8	ug/L	10		8260B	Total/NA
Chlorobenzene	960		10	2.6	ug/L	10		8260B	Total/NA
Ethylbenzene	180		10	3.3	ug/L	10		8260B	Total/NA
Xylenes, Total	1300		10	2.3	ug/L	10		8260B	Total/NA
Isopropylbenzene	4.5	J	10	3.5	ug/L	10		8260B	Total/NA
1,3-Dichlorobenzene	7.4	J	10	4.3	ug/L	10		8260B	Total/NA
1,4-Dichlorobenzene	31		10	4.6	ug/L	10		8260B	Total/NA
1,2-Dichlorobenzene	7.0	J	10	3.7	ug/L	10		8260B	Total/NA

Client Sample ID: LAW-PZ-8R

 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	4100		1000	410	ug/L	1000	_	8260B	Total/NA
Benzene	1100		1000	430	ug/L	1000		8260B	Total/NA
Chlorobenzene	3700		1000	260	ug/L	1000		8260B	Total/NA
Ethylbenzene	6900		1000	330	ug/L	1000		8260B	Total/NA
Xylenes, Total	87000		1000	230	ug/L	1000		8260B	Total/NA
1,4-Dichlorobenzene	960	J	1000	460	ug/L	1000		8260B	Total/NA

Client Sample ID: MW-14

Lab Sample ID: 680-111248-4

Lab Sample ID: 680-111248-3

No Detections.

Client Sample ID: MW-16 Lab Sample ID: 680-111248-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	120		2.0	1.0	ug/L	2	_	8260B	Total/NA
1,1-Dichloroethene	0.90	J	2.0	0.72	ug/L	2		8260B	Total/NA
trans-1,2-Dichloroethene	1.0	J	2.0	0.74	ug/L	2		8260B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Savannah

Page 6 of 70

E

6

8

9

11

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-16 (Continued)

Lab Sample ID: 680-111248-5

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	210	2.0	0.82	ug/L	2	_	8260B	Total/NA
Benzene	2.7	2.0	0.86	ug/L	2		8260B	Total/NA
Trichloroethene	6.0	2.0	0.96	ug/L	2		8260B	Total/NA
Chlorobenzene	17	2.0	0.52	ug/L	2		8260B	Total/NA
Ethylbenzene	3.4	2.0	0.66	ug/L	2		8260B	Total/NA
Xylenes, Total	1.3 J	2.0	0.46	ug/L	2		8260B	Total/NA
1,3-Dichlorobenzene	3.9	2.0	0.86	ug/L	2		8260B	Total/NA
1,4-Dichlorobenzene	8.3	2.0	0.92	ug/L	2		8260B	Total/NA
1,2-Dichlorobenzene	1.1 J	2.0	0.74	ug/L	2		8260B	Total/NA

Client Sample ID: MW-17R

Lab Sample ID: 680-111248-6

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Acetone	8.1 J	10	7.0 ug/L		8260B	Total/NA
Ethylbenzene	0.79 J	1.0	0.33 ug/L	1	8260B	Total/NA
Isopropylbenzene	57	1.0	0.35 ug/L	1	8260B	Total/NA

Client Sample ID: MW-18R

Lab Sample	ID: 680-111248-7
-------------------	------------------

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Meth	od Prep Type
1,1-Dichloroethene	0.48 J	1.0	0.36 ug/L	1 8260	ib i otai/ina

Client Sample ID: MW-19 Lab Sample ID: 680-111248-8

No Detections.

Client Sample ID: MW-23 Lab Sample ID: 680-111248-9

No Detections.

Client Sample ID: MW-24R Lab Sample ID: 680-111248-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	16		5.0	2.5	ug/L	5	_	8260B	Total/NA
Methyl tert-butyl ether	130		50	1.5	ug/L	5		8260B	Total/NA
cis-1,2-Dichloroethene	300		5.0	2.1	ug/L	5		8260B	Total/NA
2-Butanone	23	J	50	17	ug/L	5		8260B	Total/NA
Benzene	3.9	J	5.0	2.2	ug/L	5		8260B	Total/NA

Client Sample ID: MW-25 Lab Sample ID: 680-111248-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cyclohexane	0.42	J	1.0	0.39	ug/L	1	_	8260B	Total/NA
Isopropylbenzene	1.0		1.0	0.35	ug/L	1		8260B	Total/NA

Client Sample ID: MW-26R Lab Sample ID: 680-111248-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	180		100	43	ug/L	100	_	8260B	Total/NA
Toluene	63	J	100	48	ug/L	100		8260B	Total/NA
Chlorobenzene	490		100	26	ug/L	100		8260B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Savannah

4/10/2015

Client: Environmental International Corporation

Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-26R (Continued)

Lab Sample ID: 680-111248-12

Analyte	Result Qualifier	RL MDL	Unit	Dil Fac	D Method	Prep Type
Ethylbenzene	760	100 33	ug/L	100	8260B	Total/NA
Xylenes, Total	11000	100 23	ug/L	100	8260B	Total/NA

Client Sample ID: MW-27 Lab Sample ID: 680-111248-13

Analyte	Result Qua	alifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	4.7	1.0	0.50	ug/L	1	_	8260B	Total/NA
Methyl tert-butyl ether	0.40 J	10	0.30	ug/L	1		8260B	Total/NA
cis-1,2-Dichloroethene	0.79 J	1.0	0.41	ug/L	1		8260B	Total/NA
Chlorobenzene	3.0	1.0	0.26	ug/L	1		8260B	Total/NA

Client Sample ID: MW-28 Lab Sample ID: 680-111248-14

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	8.1		1.0	0.50	ug/L	1	_	8260B	Total/NA
cis-1,2-Dichloroethene	33		1.0	0.41	ug/L	1		8260B	Total/NA
Benzene	1.6		1.0	0.43	ug/L	1		8260B	Total/NA
Trichloroethene	1.1		1.0	0.48	ug/L	1		8260B	Total/NA
Tetrachloroethene	5.8		1.0	0.74	ug/L	1		8260B	Total/NA
Chlorobenzene	8.2		1.0	0.26	ug/L	1		8260B	Total/NA
1,4-Dichlorobenzene	1.8		1.0	0.46	ug/L	1		8260B	Total/NA
1,2-Dichlorobenzene	0.39 J	J	1.0	0.37	ug/L	1		8260B	Total/NA

Client Sample ID: MW-29 Lab Sample ID: 680-111248-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	790		50	25	ug/L	50	_	8260B	Total/NA
1,1-Dichloroethene	18	J	50	18	ug/L	50		8260B	Total/NA
cis-1,2-Dichloroethene	5900		50	21	ug/L	50		8260B	Total/NA
Trichloroethene	90		50	24	ug/L	50		8260B	Total/NA
Toluene	25	J	50	24	ug/L	50		8260B	Total/NA
Tetrachloroethene	160		50	37	ug/L	50		8260B	Total/NA
Chlorobenzene	170		50	13	ug/L	50		8260B	Total/NA
Ethylbenzene	3300		50	17	ug/L	50		8260B	Total/NA
Xylenes, Total	7300		50	12	ug/L	50		8260B	Total/NA
Isopropylbenzene	100		50	18	ug/L	50		8260B	Total/NA
1,3-Dichlorobenzene	58		50	22	ug/L	50		8260B	Total/NA
1,4-Dichlorobenzene	180		50	23	ug/L	50		8260B	Total/NA
1,2-Dichlorobenzene	35	J	50	19	ug/L	50		8260B	Total/NA
1,2,4-Trichlorobenzene	160	J	250	130	ug/L	50		8260B	Total/NA

Client Sample ID: MW-30 Lab Sample ID: 680-111248-16

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	0.88	J	1.0	0.50	ug/L	1	_	8260B	Total/NA
cis-1,2-Dichloroethene	1.7		1.0	0.41	ug/L	1		8260B	Total/NA
Chlorobenzene	0.72	J	1.0	0.26	ug/L	1		8260B	Total/NA
Xylenes, Total	1.3		1.0	0.23	ug/L	1		8260B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Savannah

4/10/2015

Client: Environmental International Corporation

Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-31 Lab Sample ID: 680-111248-17

No Detections.

Client Sample ID: MW-32 Lab Sample ID: 680-111248-18

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Trichlorofluoromethane	0.73 J	1.0	0.42 ug/L	1 8260B	Total/NA

Client Sample ID: MW-33 Lab Sample ID: 680-111248-19

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	100		1.0	0.50	ug/L	1	_	8260B	Total/NA
1,1-Dichloroethene	0.60	J	1.0	0.36	ug/L	1		8260B	Total/NA
trans-1,2-Dichloroethene	2.2		1.0	0.37	ug/L	1		8260B	Total/NA
cis-1,2-Dichloroethene	150		1.0	0.41	ug/L	1		8260B	Total/NA
Benzene	1.7		1.0	0.43	ug/L	1		8260B	Total/NA
Trichloroethene	2.8		1.0	0.48	ug/L	1		8260B	Total/NA
Toluene	1.7		1.0	0.48	ug/L	1		8260B	Total/NA
Chlorobenzene	47		1.0	0.26	ug/L	1		8260B	Total/NA
Ethylbenzene	3.1		1.0	0.33	ug/L	1		8260B	Total/NA
Xylenes, Total	11		1.0	0.23	ug/L	1		8260B	Total/NA
1,3-Dichlorobenzene	22		1.0	0.43	ug/L	1		8260B	Total/NA
1,4-Dichlorobenzene	93		1.0	0.46	ug/L	1		8260B	Total/NA
1,2-Dichlorobenzene	9.2		1.0	0.37	ug/L	1		8260B	Total/NA
1,2,4-Trichlorobenzene	36		5.0	2.5	ug/L	1		8260B	Total/NA

Client Sample ID: MW-34 Lab Sample ID: 680-111248-20

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	2.6		1.0	0.50	ug/L	1	_	8260B	Total/NA
cis-1,2-Dichloroethene	9.9		1.0	0.41	ug/L	1		8260B	Total/NA
Benzene	0.47	J	1.0	0.43	ug/L	1		8260B	Total/NA
Trichloroethene	0.52	J	1.0	0.48	ug/L	1		8260B	Total/NA
Tetrachloroethene	2.7		1.0	0.74	ug/L	1		8260B	Total/NA
Chlorobenzene	2.3		1.0	0.26	ug/L	1		8260B	Total/NA
1,4-Dichlorobenzene	0.67	J	1.0	0.46	ug/L	1		8260B	Total/NA

Client Sample ID: MW-35 Lab Sample ID: 680-111248-21

No Detections.

Client Sample ID: MW-36 Lab Sample ID: 680-111248-22

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
cis-1,2-Dichloroethene	0.59 J	1.0	0.41 ug/L	1	Total/NA

Client Sample ID: MW-37 Lab Sample ID: 680-111248-23

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	65		2.0	1.0	ug/L		_	8260B	Total/NA
1,1-Dichloroethene	1.8	J	2.0	0.72	ug/L	2		8260B	Total/NA
trans-1,2-Dichloroethene	1.0	J	2.0	0.74	ug/L	2		8260B	Total/NA
cis-1.2-Dichloroethene	350		2.0	0.82	ua/L	2		8260B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Savannah

4/10/2015

Page 9 of 70

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Lab Sample ID: 680-111248-23

Lab Sample ID: 680-111248-24

Client	t Sample	ID: N	MW-37	(Contin	ued)

Analyte	Result Qualific	er RL	MDL	Unit	Dil Fac	D Metho	od Prep Type
Benzene	6.4	2.0	0.86	ug/L	2	8260E	Total/NA
Trichloroethene	8.5	2.0	0.96	ug/L	2	8260E	B Total/NA
Tetrachloroethene	19	2.0	1.5	ug/L	2	8260E	B Total/NA
Chlorobenzene	68	2.0	0.52	ug/L	2	8260E	B Total/NA
Xylenes, Total	0.77 J	2.0	0.46	ug/L	2	8260E	B Total/NA
Isopropylbenzene	1.1 J	2.0	0.70	ug/L	2	8260E	B Total/NA
1,3-Dichlorobenzene	7.4	2.0	0.86	ug/L	2	8260E	B Total/NA
1,4-Dichlorobenzene	46	2.0	0.92	ug/L	2	8260E	B Total/NA
1,2-Dichlorobenzene	13	2.0	0.74	ug/L	2	8260E	B Total/NA
1,2,4-Trichlorobenzene	56	10	5.0	ug/L	2	8260E	B Total/NA

Client Sample ID: PAN-MW-9

<u> </u>									
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	130		10	5.0	ug/L	10	_	8260B	Total/NA
1,1-Dichloroethene	6.7	J	10	3.6	ug/L	10		8260B	Total/NA
cis-1,2-Dichloroethene	2000		10	4.1	ug/L	10		8260B	Total/NA
Benzene	5.2	J	10	4.3	ug/L	10		8260B	Total/NA
Trichloroethene	4.9	J	10	4.8	ug/L	10		8260B	Total/NA
Chlorobenzene	33		10	2.6	ug/L	10		8260B	Total/NA
Ethylbenzene	580		10	3.3	ug/L	10		8260B	Total/NA
Xylenes, Total	1400		10	2.3	ug/L	10		8260B	Total/NA
Isopropylbenzene	32		10	3.5	ug/L	10		8260B	Total/NA
1,3-Dichlorobenzene	8.5	J	10	4.3	ug/L	10		8260B	Total/NA
1,4-Dichlorobenzene	28		10	4.6	ug/L	10		8260B	Total/NA
1,2-Dichlorobenzene	5.3	J	10	3.7	ug/L	10		8260B	Total/NA

Client Sample ID: PAN-MW-10

No Detections.

Client Sample ID: Trip Blank

No Detections.

Lab Sample ID: 680-111248-26

Lab Sample ID: 680-111248-25

This Detection Summary does not include radiochemical test results.

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Client Sample ID: IW-1R

Lab Sample ID: 680-111248-1

Matrix: Water

Date Collected: 04/02/15 15:37 Date Received: 04/03/15 08:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	<120		200	120	ug/L			04/09/15 17:00	20
Chloromethane	<80		200	80	ug/L			04/09/15 17:00	20
/inyl chloride	440		200	100	ug/L			04/09/15 17:00	20
Bromomethane	<500		1000	500	ug/L			04/09/15 17:00	20
Chloroethane	<500		1000	500	ug/L			04/09/15 17:00	20
Trichlorofluoromethane	<84		200	84	ug/L			04/09/15 17:00	20
1,1-Dichloroethene	<72		200	72	ug/L			04/09/15 17:00	20
1,1,2-Trichloro-1,2,2-trifluoroethane	<72		200	72	ug/L			04/09/15 17:00	20
Acetone	<1400		2000	1400	ug/L			04/09/15 17:00	20
Carbon disulfide	<200		400	200	ug/L			04/09/15 17:00	20
Methyl acetate	<360		1000	360	ug/L			04/09/15 17:00	20
Methylene Chloride	<500		1000	500	ug/L			04/09/15 17:00	20
rans-1,2-Dichloroethene	<74		200	74	ug/L			04/09/15 17:00	20
Methyl tert-butyl ether	<60		2000	60	ug/L			04/09/15 17:00	20
1,1-Dichloroethane	<76		200	76	ug/L			04/09/15 17:00	20
cis-1,2-Dichloroethene	9900		200	82	ug/L			04/09/15 17:00	20
2-Butanone	<680		2000	680	ug/L			04/09/15 17:00	20
Chloroform	<100		200	100	ug/L			04/09/15 17:00	20
1,1,1-Trichloroethane	<74		200	74	ug/L			04/09/15 17:00	20
Cyclohexane	<78		200	78	ug/L			04/09/15 17:00	20
Carbon tetrachloride	<66		200	66	ug/L			04/09/15 17:00	20
Benzene	110		200	86	ug/L			04/09/15 17:00	20
1,2-Dichloroethane	<100		200	100	ug/L			04/09/15 17:00	20
Trichloroethene	150	J	200		ug/L			04/09/15 17:00	20
Methylcyclohexane	<86		200		ug/L			04/09/15 17:00	20
1,2-Dichloropropane	<130		200		ug/L			04/09/15 17:00	20
Bromodichloromethane	<88		200		ug/L			04/09/15 17:00	20
cis-1,3-Dichloropropene	<80		200	80	ug/L			04/09/15 17:00	20
4-Methyl-2-pentanone	<420		2000	420	ug/L			04/09/15 17:00	20
Toluene	260		200	96	ug/L			04/09/15 17:00	20
rans-1,3-Dichloropropene	<84		200	84	ug/L			04/09/15 17:00	20
1,1,2-Trichloroethane	<66		200	66	ug/L			04/09/15 17:00	20
Tetrachloroethene	310		200	150	ug/L			04/09/15 17:00	20
2-Hexanone	<400		2000		ug/L			04/09/15 17:00	20
Dibromochloromethane	<64		200	64	ug/L			04/09/15 17:00	20
1,2-Dibromoethane	<88		200	88	ug/L			04/09/15 17:00	20
Chlorobenzene	920		200		ug/L			04/09/15 17:00	20
Ethylbenzene	2300		200		ug/L			04/09/15 17:00	20
Kylenes, Total	17000		200	46	ug/L			04/09/15 17:00	20
Styrene	<54		200		ug/L			04/09/15 17:00	20
Bromoform	<86		200		ug/L			04/09/15 17:00	20
sopropylbenzene	<70		200		ug/L			04/09/15 17:00	20
1,1,2,2-Tetrachloroethane	<120		200		ug/L			04/09/15 17:00	20
1,3-Dichlorobenzene	110	J	200		ug/L			04/09/15 17:00	20
1,4-Dichlorobenzene	820	-	200		ug/L			04/09/15 17:00	20
1,2-Dichlorobenzene	200		200		ug/L			04/09/15 17:00	20
1,2-Dibromo-3-Chloropropane	<220		1000		ug/L			04/09/15 17:00	20
1,2,4-Trichlorobenzene	1000		1000		ug/L			04/09/15 17:00	20

TestAmerica Savannah

2

4

^

9

10

12

L

Client Sample Results

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

TestAmerica Job ID: 680-111248-1

Lab Sample ID: 680-111248-1

Matrix: Water

Client Sample ID: IW-1R

Date Collected: 04/02/15 15:37 Date Received: 04/03/15 08:30

Surrogate	%Recovery Qual	lifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101	70 - 130		04/09/15 17:00	200
1,2-Dichloroethane-d4 (Surr)	93	70 - 130		04/09/15 17:00	200
Dibromofluoromethane (Surr)	98	70 - 130		04/09/15 17:00	200
4-Bromofluorobenzene (Surr)	92	70 - 130		04/09/15 17:00	200

Client Sample ID: IW-18 Lab Sample ID: 680-111248-2

Date Collected: 04/02/15 12:36 Matrix: Water

Date Received: 04/03/15 08:30

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<6.0		10	6.0	ug/L			04/10/15 12:49	10
Chloromethane	<4.0		10	4.0	ug/L			04/10/15 12:49	10
Vinyl chloride	830		10	5.0	ug/L			04/10/15 12:49	10
Bromomethane	<25		50	25	ug/L			04/10/15 12:49	10
Chloroethane	<25		50	25	ug/L			04/10/15 12:49	10
Trichlorofluoromethane	<4.2		10	4.2	ug/L			04/10/15 12:49	10
1,1-Dichloroethene	<3.6		10	3.6	ug/L			04/10/15 12:49	10
1,1,2-Trichloro-1,2,2-trifluoroethane	<3.6		10	3.6	ug/L			04/10/15 12:49	10
Acetone	<70		100	70	ug/L			04/10/15 12:49	10
Carbon disulfide	<10		20	10	ug/L			04/10/15 12:49	10
Methyl acetate	<18		50	18	ug/L			04/10/15 12:49	10
Methylene Chloride	<25		50	25	ug/L			04/10/15 12:49	10
trans-1,2-Dichloroethene	4.4	J	10	3.7	ug/L			04/10/15 12:49	10
Methyl tert-butyl ether	<3.0		100	3.0	ug/L			04/10/15 12:49	10
1,1-Dichloroethane	<3.8		10	3.8	ug/L			04/10/15 12:49	10
cis-1,2-Dichloroethene	920		10	4.1	ug/L			04/10/15 12:49	10
2-Butanone	<34		100	34	ug/L			04/10/15 12:49	10
Chloroform	<5.0		10	5.0	ug/L			04/10/15 12:49	10
1,1,1-Trichloroethane	<3.7		10	3.7	ug/L			04/10/15 12:49	10
Cyclohexane	<3.9		10	3.9	ug/L			04/10/15 12:49	10
Carbon tetrachloride	<3.3		10	3.3	ug/L			04/10/15 12:49	10
Benzene	350		10		ug/L			04/10/15 12:49	10
1,2-Dichloroethane	<5.0		10	5.0	ug/L			04/10/15 12:49	10
Trichloroethene	8.4	J	10	4.8	ug/L			04/10/15 12:49	10
Methylcyclohexane	<4.3		10	4.3	ug/L			04/10/15 12:49	10
1,2-Dichloropropane	<6.7		10	6.7	ug/L			04/10/15 12:49	10
Bromodichloromethane	<4.4		10	4.4	ug/L			04/10/15 12:49	10
cis-1,3-Dichloropropene	<4.0		10	4.0	ug/L			04/10/15 12:49	10
4-Methyl-2-pentanone	<21		100	21	ug/L			04/10/15 12:49	10
Toluene	14		10	4.8	ug/L			04/10/15 12:49	10
trans-1,3-Dichloropropene	<4.2		10	4.2	ug/L			04/10/15 12:49	10
1,1,2-Trichloroethane	<3.3		10		ug/L			04/10/15 12:49	10
Tetrachloroethene	<7.4		10	7.4	ug/L			04/10/15 12:49	10
2-Hexanone	<20		100	20	ug/L			04/10/15 12:49	10
Dibromochloromethane	<3.2		10		ug/L			04/10/15 12:49	10
1,2-Dibromoethane	<4.4		10		ug/L			04/10/15 12:49	10
Chlorobenzene	960		10		ug/L			04/10/15 12:49	10
Ethylbenzene	180		10		ug/L			04/10/15 12:49	10
Xylenes, Total	1300		10		ug/L			04/10/15 12:49	10

TestAmerica Savannah

2

3

5

0

8

9

11

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Client Sample ID: IW-18 Lab Sample ID: 680-111248-2

Date Collected: 04/02/15 12:36 Matrix: Water Date Received: 04/03/15 08:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	<2.7		10	2.7	ug/L			04/10/15 12:49	10
Bromoform	<4.3		10	4.3	ug/L			04/10/15 12:49	10
Isopropylbenzene	4.5	J	10	3.5	ug/L			04/10/15 12:49	10
1,1,2,2-Tetrachloroethane	<6.2		10	6.2	ug/L			04/10/15 12:49	10
1,3-Dichlorobenzene	7.4	J	10	4.3	ug/L			04/10/15 12:49	10
1,4-Dichlorobenzene	31		10	4.6	ug/L			04/10/15 12:49	10
1,2-Dichlorobenzene	7.0	J	10	3.7	ug/L			04/10/15 12:49	10
1,2-Dibromo-3-Chloropropane	<11		50	11	ug/L			04/10/15 12:49	10
1,2,4-Trichlorobenzene	<25		50	25	ug/L			04/10/15 12:49	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103		70 - 130			-		04/10/15 12:49	10
1,2-Dichloroethane-d4 (Surr)	93		70 - 130					04/10/15 12:49	10
Dibromofluoromethane (Surr)	106		70 - 130					04/10/15 12:49	10
4-Bromofluorobenzene (Surr)	99		70 - 130					04/10/15 12:49	10

Client Sample ID: LAW-PZ-8R Lab Sample ID: 680-111248-3

Date Collected: 04/02/15 16:57 Matrix: Water

Date Received: 04/03/15 08:30

Analyte	Result Qualifier	· RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<600	1000	600	ug/L			04/09/15 17:22	1000
Chloromethane	<400	1000	400	ug/L			04/09/15 17:22	1000
Vinyl chloride	<500	1000	500	ug/L			04/09/15 17:22	1000
Bromomethane	<2500	5000	2500	ug/L			04/09/15 17:22	1000
Chloroethane	<2500	5000	2500	ug/L			04/09/15 17:22	1000
Trichlorofluoromethane	<420	1000	420	ug/L			04/09/15 17:22	1000
1,1-Dichloroethene	<360	1000	360	ug/L			04/09/15 17:22	1000
1,1,2-Trichloro-1,2,2-trifluoroethane	<360	1000	360	ug/L			04/09/15 17:22	1000
Acetone	<7000	10000	7000	ug/L			04/09/15 17:22	1000
Carbon disulfide	<1000	2000	1000	ug/L			04/09/15 17:22	1000
Methyl acetate	<1800	5000	1800	ug/L			04/09/15 17:22	1000
Methylene Chloride	<2500	5000	2500	ug/L			04/09/15 17:22	1000
trans-1,2-Dichloroethene	<370	1000	370	ug/L			04/09/15 17:22	1000
Methyl tert-butyl ether	<300	10000	300	ug/L			04/09/15 17:22	1000
1,1-Dichloroethane	<380	1000	380	ug/L			04/09/15 17:22	1000
cis-1,2-Dichloroethene	4100	1000	410	ug/L			04/09/15 17:22	1000
2-Butanone	<3400	10000	3400	ug/L			04/09/15 17:22	1000
Chloroform	<500	1000	500	ug/L			04/09/15 17:22	1000
1,1,1-Trichloroethane	<370	1000	370	ug/L			04/09/15 17:22	1000
Cyclohexane	<390	1000	390	ug/L			04/09/15 17:22	1000
Carbon tetrachloride	<330	1000	330	ug/L			04/09/15 17:22	1000
Benzene	1100	1000	430	ug/L			04/09/15 17:22	1000
1,2-Dichloroethane	<500	1000	500	ug/L			04/09/15 17:22	1000
Trichloroethene	<480	1000	480	ug/L			04/09/15 17:22	1000
Methylcyclohexane	<430	1000	430	ug/L			04/09/15 17:22	1000
1,2-Dichloropropane	<670	1000	670	ug/L			04/09/15 17:22	1000
Bromodichloromethane	<440	1000	440	ug/L			04/09/15 17:22	1000
cis-1,3-Dichloropropene	<400	1000	400	ug/L			04/09/15 17:22	1000

TestAmerica Savannah

Page 13 of 70

Client: Environmental International Corporation

Project/Site: VoPak, Savannah/390020

Client Sample ID: LAW-PZ-8R

Date Collected: 04/02/15 16:57 Date Received: 04/03/15 08:30 Lab Sample ID: 680-111248-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methyl-2-pentanone	<2100		10000	2100	ug/L			04/09/15 17:22	1000
Toluene	<480		1000	480	ug/L			04/09/15 17:22	1000
trans-1,3-Dichloropropene	<420		1000	420	ug/L			04/09/15 17:22	1000
1,1,2-Trichloroethane	<330		1000	330	ug/L			04/09/15 17:22	1000
Tetrachloroethene	<740		1000	740	ug/L			04/09/15 17:22	1000
2-Hexanone	<2000		10000	2000	ug/L			04/09/15 17:22	1000
Dibromochloromethane	<320		1000	320	ug/L			04/09/15 17:22	1000
1,2-Dibromoethane	<440		1000	440	ug/L			04/09/15 17:22	1000
Chlorobenzene	3700		1000	260	ug/L			04/09/15 17:22	1000
Ethylbenzene	6900		1000	330	ug/L			04/09/15 17:22	1000
Xylenes, Total	87000		1000	230	ug/L			04/09/15 17:22	1000
Styrene	<270		1000	270	ug/L			04/09/15 17:22	1000
Bromoform	<430		1000	430	ug/L			04/09/15 17:22	1000
Isopropylbenzene	<350		1000	350	ug/L			04/09/15 17:22	1000
1,1,2,2-Tetrachloroethane	<620		1000	620	ug/L			04/09/15 17:22	1000
1,3-Dichlorobenzene	<430		1000	430	ug/L			04/09/15 17:22	1000
1,4-Dichlorobenzene	960	J	1000	460	ug/L			04/09/15 17:22	1000
1,2-Dichlorobenzene	<370		1000	370	ug/L			04/09/15 17:22	1000
1,2-Dibromo-3-Chloropropane	<1100		5000	1100	ug/L			04/09/15 17:22	1000
1,2,4-Trichlorobenzene	<2500		5000	2500	ug/L			04/09/15 17:22	1000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		70 - 130			_		04/09/15 17:22	1000
1,2-Dichloroethane-d4 (Surr)	93		70 - 130					04/09/15 17:22	1000
Dibromofluoromethane (Surr)	98		70 - 130					04/09/15 17:22	1000
4-Bromofluorobenzene (Surr)	92		70 - 130					04/09/15 17:22	1000

Client Sample ID: MW-14 Lab Sample ID: 680-111248-4 Date Collected: 04/01/15 18:23 Matrix: Water

Date Received: 04/03/15 08:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.60	1.0	0.60	ug/L			04/09/15 11:38	1
Chloromethane	<0.40	1.0	0.40	ug/L			04/09/15 11:38	1
Vinyl chloride	<0.50	1.0	0.50	ug/L			04/09/15 11:38	1
Bromomethane	<2.5	5.0	2.5	ug/L			04/09/15 11:38	1
Chloroethane	<2.5	5.0	2.5	ug/L			04/09/15 11:38	1
Trichlorofluoromethane	<0.42	1.0	0.42	ug/L			04/09/15 11:38	1
1,1-Dichloroethene	<0.36	1.0	0.36	ug/L			04/09/15 11:38	1
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36	1.0	0.36	ug/L			04/09/15 11:38	1
Acetone	<7.0	10	7.0	ug/L			04/09/15 11:38	1
Carbon disulfide	<1.0	2.0	1.0	ug/L			04/09/15 11:38	1
Methyl acetate	<1.8	5.0	1.8	ug/L			04/09/15 11:38	1
Methylene Chloride	<2.5	5.0	2.5	ug/L			04/09/15 11:38	1
trans-1,2-Dichloroethene	<0.37	1.0	0.37	ug/L			04/09/15 11:38	1
Methyl tert-butyl ether	<0.30	10	0.30	ug/L			04/09/15 11:38	1
1,1-Dichloroethane	<0.38	1.0	0.38	ug/L			04/09/15 11:38	1
cis-1,2-Dichloroethene	<0.41	1.0	0.41	ug/L			04/09/15 11:38	1
2-Butanone	<3.4	10	3.4	ug/L			04/09/15 11:38	1

TestAmerica Savannah

Page 14 of 70

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-14

Date Received: 04/03/15 08:30

Lab Sample ID: 680-111248-4 Date Collected: 04/01/15 18:23

Matrix: Water Date Received: 04/03/15 08:30

Analyte	Result Qu	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	<0.50	1.0	0.50	ug/L			04/09/15 11:38	1
1,1,1-Trichloroethane	<0.37	1.0	0.37	ug/L			04/09/15 11:38	1
Cyclohexane	<0.39	1.0	0.39	ug/L			04/09/15 11:38	1
Carbon tetrachloride	<0.33	1.0	0.33	ug/L			04/09/15 11:38	1
Benzene	<0.43	1.0	0.43	ug/L			04/09/15 11:38	1
1,2-Dichloroethane	<0.50	1.0	0.50	ug/L			04/09/15 11:38	1
Trichloroethene	<0.48	1.0	0.48	ug/L			04/09/15 11:38	1
Methylcyclohexane	<0.43	1.0	0.43	ug/L			04/09/15 11:38	1
1,2-Dichloropropane	<0.67	1.0	0.67	ug/L			04/09/15 11:38	1
Bromodichloromethane	<0.44	1.0	0.44	ug/L			04/09/15 11:38	1
cis-1,3-Dichloropropene	<0.40	1.0	0.40	ug/L			04/09/15 11:38	1
4-Methyl-2-pentanone	<2.1	10	2.1	ug/L			04/09/15 11:38	1
Toluene	<0.48	1.0	0.48	ug/L			04/09/15 11:38	1
trans-1,3-Dichloropropene	<0.42	1.0	0.42	ug/L			04/09/15 11:38	1
1,1,2-Trichloroethane	<0.33	1.0	0.33	ug/L			04/09/15 11:38	1
Tetrachloroethene	<0.74	1.0	0.74	ug/L			04/09/15 11:38	1
2-Hexanone	<2.0	10	2.0	ug/L			04/09/15 11:38	1
Dibromochloromethane	<0.32	1.0	0.32	ug/L			04/09/15 11:38	1
1,2-Dibromoethane	<0.44	1.0	0.44	ug/L			04/09/15 11:38	1
Chlorobenzene	<0.26	1.0	0.26	ug/L			04/09/15 11:38	1
Ethylbenzene	<0.33	1.0	0.33	ug/L			04/09/15 11:38	1
Xylenes, Total	<0.23	1.0	0.23	ug/L			04/09/15 11:38	1
Styrene	<0.27	1.0	0.27	ug/L			04/09/15 11:38	1
Bromoform	< 0.43	1.0	0.43	ug/L			04/09/15 11:38	1
Isopropylbenzene	<0.35	1.0	0.35	ug/L			04/09/15 11:38	1
1,1,2,2-Tetrachloroethane	<0.62	1.0	0.62	ug/L			04/09/15 11:38	1
1,3-Dichlorobenzene	<0.43	1.0	0.43	ug/L			04/09/15 11:38	1
1,4-Dichlorobenzene	<0.46	1.0	0.46	ug/L			04/09/15 11:38	1
1,2-Dichlorobenzene	<0.37	1.0	0.37	ug/L			04/09/15 11:38	1
1,2-Dibromo-3-Chloropropane	<1.1	5.0	1.1	ug/L			04/09/15 11:38	1
1,2,4-Trichlorobenzene	<2.5	5.0	2.5	ug/L			04/09/15 11:38	1
Surrogate	%Recovery Qu	ualifier Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzea	DII Fac	
Toluene-d8 (Surr)	102		70 - 130		04/09/15 11:38	1	
1,2-Dichloroethane-d4 (Surr)	91		70 - 130		04/09/15 11:38	1	
Dibromofluoromethane (Surr)	98		70 - 130		04/09/15 11:38	1	
4-Bromofluorobenzene (Surr)	94		70 - 130		04/09/15 11:38	1	

Client Sample ID: MW-16 Lab Sample ID: 680-111248-5 Date Collected: 04/02/15 11:21 Matrix: Water

Method: 8260B - Volatile Orga	nic Compounds (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<1.2		2.0	1.2	ug/L			04/10/15 11:46	2
Chloromethane	<0.80		2.0	0.80	ug/L			04/10/15 11:46	2
Vinyl chloride	120		2.0	1.0	ug/L			04/10/15 11:46	2
Bromomethane	<5.0		10	5.0	ug/L			04/10/15 11:46	2
Chloroethane	<5.0		10	5.0	ug/L			04/10/15 11:46	2
Trichlorofluoromethane	<0.84		2.0	0.84	ug/L			04/10/15 11:46	2

TestAmerica Savannah

Page 15 of 70

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-16

Lab Sample ID: 680-111248-5

Matrix: Water

Date Collected: 04/02/15 11:21 Date Received: 04/03/15 08:30

Surrogate

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

4-Bromofluorobenzene (Surr)

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.90	J	2.0	0.72	ug/L			04/10/15 11:46	2
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.72		2.0	0.72	ug/L			04/10/15 11:46	2
Acetone	<14		20	14	ug/L			04/10/15 11:46	2
Carbon disulfide	<2.0		4.0	2.0	ug/L			04/10/15 11:46	2
Methyl acetate	<3.6		10	3.6	ug/L			04/10/15 11:46	2
Methylene Chloride	<5.0		10	5.0	ug/L			04/10/15 11:46	2
trans-1,2-Dichloroethene	1.0	J	2.0	0.74	ug/L			04/10/15 11:46	2
Methyl tert-butyl ether	<0.60		20	0.60	ug/L			04/10/15 11:46	2
1,1-Dichloroethane	<0.76		2.0	0.76	ug/L			04/10/15 11:46	2
cis-1,2-Dichloroethene	210		2.0	0.82	ug/L			04/10/15 11:46	2
2-Butanone	<6.8		20	6.8	ug/L			04/10/15 11:46	2
Chloroform	<1.0		2.0	1.0	ug/L			04/10/15 11:46	2
1,1,1-Trichloroethane	<0.74		2.0	0.74	ug/L			04/10/15 11:46	2
Cyclohexane	<0.78		2.0	0.78	ug/L			04/10/15 11:46	2
Carbon tetrachloride	<0.66		2.0	0.66	ug/L			04/10/15 11:46	2
Benzene	2.7		2.0	0.86	ug/L			04/10/15 11:46	2
1,2-Dichloroethane	<1.0		2.0	1.0	ug/L			04/10/15 11:46	2
Trichloroethene	6.0		2.0	0.96	ug/L			04/10/15 11:46	2
Methylcyclohexane	<0.86		2.0	0.86	ug/L			04/10/15 11:46	2
1,2-Dichloropropane	<1.3		2.0	1.3	ug/L			04/10/15 11:46	2
Bromodichloromethane	<0.88		2.0	0.88	ug/L			04/10/15 11:46	2
cis-1,3-Dichloropropene	<0.80		2.0	0.80	ug/L			04/10/15 11:46	2
4-Methyl-2-pentanone	<4.2		20	4.2	ug/L			04/10/15 11:46	2
Toluene	<0.96		2.0	0.96	ug/L			04/10/15 11:46	2
trans-1,3-Dichloropropene	<0.84		2.0	0.84	ug/L			04/10/15 11:46	2
1,1,2-Trichloroethane	<0.66		2.0	0.66	ug/L			04/10/15 11:46	2
Tetrachloroethene	<1.5		2.0	1.5	ug/L			04/10/15 11:46	2
2-Hexanone	<4.0		20	4.0	ug/L			04/10/15 11:46	2
Dibromochloromethane	<0.64		2.0	0.64	ug/L			04/10/15 11:46	2
1,2-Dibromoethane	<0.88		2.0	0.88	ug/L			04/10/15 11:46	2
Chlorobenzene	17		2.0	0.52	ug/L			04/10/15 11:46	2
Ethylbenzene	3.4		2.0	0.66	ug/L			04/10/15 11:46	2
Xylenes, Total	1.3	J	2.0	0.46	ug/L			04/10/15 11:46	2
Styrene	<0.54		2.0	0.54	ug/L			04/10/15 11:46	2
Bromoform	<0.86		2.0	0.86	ug/L			04/10/15 11:46	2
Isopropylbenzene	<0.70		2.0	0.70	ug/L			04/10/15 11:46	2
1,1,2,2-Tetrachloroethane	<1.2		2.0		ug/L			04/10/15 11:46	2
1,3-Dichlorobenzene	3.9		2.0		ug/L			04/10/15 11:46	2
1,4-Dichlorobenzene	8.3		2.0		ug/L			04/10/15 11:46	2
1,2-Dichlorobenzene	1.1	J	2.0		ug/L			04/10/15 11:46	2
1,2-Dibromo-3-Chloropropane	<2.2		10		ug/L			04/10/15 11:46	2
1,2,4-Trichlorobenzene	<5.0		10		ug/L			04/10/15 11:46	2

TestAmerica Savannah

Analyzed

04/10/15 11:46

04/10/15 11:46

04/10/15 11:46

04/10/15 11:46

Prepared

Limits

70 - 130

70 - 130

70 - 130

70 - 130

%Recovery Qualifier

103

95

106

96

Dil Fac

2

2

2

2

_

7

9

10

12

L

Client: Environmental International Corporation

Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-17R

Date Collected: 03/31/15 16:58 Date Received: 04/03/15 08:30

Lab Sample ID: 680-111248-6

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.60	1.0	0.60	ug/L			04/09/15 12:21	1
Chloromethane	<0.40	1.0	0.40	ug/L			04/09/15 12:21	1
Vinyl chloride	<0.50	1.0	0.50	ug/L			04/09/15 12:21	1
Bromomethane	<2.5	5.0	2.5	ug/L			04/09/15 12:21	1
Chloroethane	<2.5	5.0	2.5	ug/L			04/09/15 12:21	1
Trichlorofluoromethane	<0.42	1.0	0.42	ug/L			04/09/15 12:21	1
1,1-Dichloroethene	<0.36	1.0	0.36	ug/L			04/09/15 12:21	1
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36	1.0	0.36	ug/L			04/09/15 12:21	1
Acetone	8.1 J	10	7.0	ug/L			04/09/15 12:21	1
Carbon disulfide	<1.0	2.0	1.0	ug/L			04/09/15 12:21	1
Methyl acetate	<1.8	5.0	1.8	ug/L			04/09/15 12:21	1
Methylene Chloride	<2.5	5.0	2.5	ug/L			04/09/15 12:21	1
trans-1,2-Dichloroethene	<0.37	1.0	0.37	ug/L			04/09/15 12:21	1
Methyl tert-butyl ether	<0.30	10	0.30	ug/L			04/09/15 12:21	1
1,1-Dichloroethane	<0.38	1.0	0.38	ug/L			04/09/15 12:21	1
cis-1,2-Dichloroethene	<0.41	1.0	0.41	ug/L			04/09/15 12:21	1
2-Butanone	<3.4	10	3.4	ug/L			04/09/15 12:21	1
Chloroform	<0.50	1.0	0.50	ug/L			04/09/15 12:21	1
1,1,1-Trichloroethane	<0.37	1.0	0.37	ug/L			04/09/15 12:21	1
Cyclohexane	<0.39	1.0	0.39	ug/L			04/09/15 12:21	1
Carbon tetrachloride	<0.33	1.0	0.33	ug/L			04/09/15 12:21	1
Benzene	<0.43	1.0	0.43	ug/L			04/09/15 12:21	1
1,2-Dichloroethane	<0.50	1.0	0.50	ug/L			04/09/15 12:21	1
Trichloroethene	<0.48	1.0	0.48	ug/L			04/09/15 12:21	1
Methylcyclohexane	<0.43	1.0	0.43	ug/L			04/09/15 12:21	1
1,2-Dichloropropane	<0.67	1.0	0.67	ug/L			04/09/15 12:21	1
Bromodichloromethane	<0.44	1.0	0.44	ug/L			04/09/15 12:21	1
cis-1,3-Dichloropropene	<0.40	1.0	0.40	ug/L			04/09/15 12:21	1
4-Methyl-2-pentanone	<2.1	10	2.1	ug/L			04/09/15 12:21	1
Toluene	<0.48	1.0	0.48	ug/L			04/09/15 12:21	1
trans-1,3-Dichloropropene	<0.42	1.0	0.42	ug/L			04/09/15 12:21	1
1,1,2-Trichloroethane	<0.33	1.0	0.33	ug/L			04/09/15 12:21	1
Tetrachloroethene	<0.74	1.0	0.74	ug/L			04/09/15 12:21	1
2-Hexanone	<2.0	10	2.0	ug/L			04/09/15 12:21	1
Dibromochloromethane	<0.32	1.0	0.32	ug/L			04/09/15 12:21	1
1,2-Dibromoethane	<0.44	1.0	0.44	ug/L			04/09/15 12:21	1
Chlorobenzene	<0.26	1.0	0.26	ug/L			04/09/15 12:21	1
Ethylbenzene	0.79 J	1.0	0.33	ug/L			04/09/15 12:21	1
Xylenes, Total	<0.23	1.0	0.23	ug/L			04/09/15 12:21	1
Styrene	<0.27	1.0	0.27	ug/L			04/09/15 12:21	1
Bromoform	<0.43	1.0	0.43	ug/L			04/09/15 12:21	1
Isopropylbenzene	57	1.0	0.35	ug/L			04/09/15 12:21	1
1,1,2,2-Tetrachloroethane	<0.62	1.0	0.62	ug/L			04/09/15 12:21	1
1,3-Dichlorobenzene	<0.43	1.0	0.43	ug/L			04/09/15 12:21	1
1,4-Dichlorobenzene	<0.46	1.0	0.46	ug/L			04/09/15 12:21	1
1,2-Dichlorobenzene	<0.37	1.0	0.37	ug/L			04/09/15 12:21	1
1,2-Dibromo-3-Chloropropane	<1.1	5.0	1.1	ug/L			04/09/15 12:21	1
1,2,4-Trichlorobenzene	<2.5	5.0	2.5	ug/L			04/09/15 12:21	1

Client Sample Results

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

TestAmerica Job ID: 680-111248-1

Lab Sample ID: 680-111248-6

Matrix: Water

Client Sample ID: MW-17R

Date Collected: 03/31/15 16:58 Date Received: 04/03/15 08:30

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101	70 - 130		04/09/15 12:21	1
1,2-Dichloroethane-d4 (Surr)	91	70 - 130		04/09/15 12:21	1
Dibromofluoromethane (Surr)	99	70 - 130		04/09/15 12:21	1
4-Bromofluorobenzene (Surr)	95	70 - 130		04/09/15 12:21	1

Client Sample ID: MW-18R Lab Sample ID: 680-111248-7

Date Collected: 03/30/15 09:49 Matrix: Water

Date Collected: 03/30/15 09:49

Date Received: 04/03/15 08:30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.60		1.0	0.60	ug/L			04/09/15 12:42	1
Chloromethane	<0.40		1.0	0.40	ug/L			04/09/15 12:42	1
Vinyl chloride	<0.50		1.0	0.50	ug/L			04/09/15 12:42	1
Bromomethane	<2.5		5.0	2.5	ug/L			04/09/15 12:42	1
Chloroethane	<2.5		5.0	2.5	ug/L			04/09/15 12:42	1
Trichlorofluoromethane	<0.42		1.0	0.42	ug/L			04/09/15 12:42	1
1,1-Dichloroethene	0.48	J	1.0	0.36	ug/L			04/09/15 12:42	1
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36		1.0	0.36	ug/L			04/09/15 12:42	1
Acetone	<7.0		10	7.0	ug/L			04/09/15 12:42	1
Carbon disulfide	<1.0		2.0	1.0	ug/L			04/09/15 12:42	1
Methyl acetate	<1.8		5.0	1.8	ug/L			04/09/15 12:42	1
Methylene Chloride	<2.5		5.0	2.5	ug/L			04/09/15 12:42	1
trans-1,2-Dichloroethene	<0.37		1.0	0.37	ug/L			04/09/15 12:42	1
Methyl tert-butyl ether	<0.30		10	0.30	ug/L			04/09/15 12:42	1
1,1-Dichloroethane	<0.38		1.0	0.38	ug/L			04/09/15 12:42	1
cis-1,2-Dichloroethene	<0.41		1.0	0.41	ug/L			04/09/15 12:42	1
2-Butanone	<3.4		10	3.4	ug/L			04/09/15 12:42	1
Chloroform	<0.50		1.0	0.50	ug/L			04/09/15 12:42	1
1,1,1-Trichloroethane	<0.37		1.0	0.37	ug/L			04/09/15 12:42	1
Cyclohexane	<0.39		1.0	0.39	ug/L			04/09/15 12:42	1
Carbon tetrachloride	<0.33		1.0	0.33	ug/L			04/09/15 12:42	1
Benzene	<0.43		1.0	0.43	ug/L			04/09/15 12:42	1
1,2-Dichloroethane	<0.50		1.0	0.50	ug/L			04/09/15 12:42	1
Trichloroethene	<0.48		1.0	0.48	ug/L			04/09/15 12:42	1
Methylcyclohexane	<0.43		1.0	0.43	ug/L			04/09/15 12:42	1
1,2-Dichloropropane	<0.67		1.0	0.67	ug/L			04/09/15 12:42	1
Bromodichloromethane	<0.44		1.0	0.44	ug/L			04/09/15 12:42	1
cis-1,3-Dichloropropene	<0.40		1.0	0.40	ug/L			04/09/15 12:42	1
4-Methyl-2-pentanone	<2.1		10	2.1	ug/L			04/09/15 12:42	1
Toluene	<0.48		1.0	0.48	ug/L			04/09/15 12:42	1
trans-1,3-Dichloropropene	<0.42		1.0	0.42	ug/L			04/09/15 12:42	1
1,1,2-Trichloroethane	<0.33		1.0	0.33	ug/L			04/09/15 12:42	1
Tetrachloroethene	<0.74		1.0	0.74	ug/L			04/09/15 12:42	1
2-Hexanone	<2.0		10	2.0	ug/L			04/09/15 12:42	1
Dibromochloromethane	<0.32		1.0	0.32	ug/L			04/09/15 12:42	1
1,2-Dibromoethane	<0.44		1.0	0.44	ug/L			04/09/15 12:42	1
Chlorobenzene	<0.26		1.0	0.26	ug/L			04/09/15 12:42	1
Ethylbenzene	<0.33		1.0	0.33	ug/L			04/09/15 12:42	1
Xylenes, Total	<0.23		1.0	0.23	ug/L			04/09/15 12:42	1

TestAmerica Savannah

4/10/2015

3

5

6

8

9

11

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Lab Sample ID: 680-111248-7

Matrix: Water

Date Collected: 03/30/15 09:49 Date Received: 04/03/15 08:30

Client Sample ID: MW-18R

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	<0.27		1.0	0.27	ug/L			04/09/15 12:42	1
Bromoform	<0.43		1.0	0.43	ug/L			04/09/15 12:42	1
Isopropylbenzene	<0.35		1.0	0.35	ug/L			04/09/15 12:42	1
1,1,2,2-Tetrachloroethane	<0.62		1.0	0.62	ug/L			04/09/15 12:42	1
1,3-Dichlorobenzene	<0.43		1.0	0.43	ug/L			04/09/15 12:42	1
1,4-Dichlorobenzene	<0.46		1.0	0.46	ug/L			04/09/15 12:42	1
1,2-Dichlorobenzene	<0.37		1.0	0.37	ug/L			04/09/15 12:42	1
1,2-Dibromo-3-Chloropropane	<1.1		5.0	1.1	ug/L			04/09/15 12:42	1
1,2,4-Trichlorobenzene	<2.5		5.0	2.5	ug/L			04/09/15 12:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		70 - 130			-		04/09/15 12:42	1
1,2-Dichloroethane-d4 (Surr)	93		70 - 130					04/09/15 12:42	1
Dibromofluoromethane (Surr)	98		70 - 130					04/09/15 12:42	1
4-Bromofluorobenzene (Surr)	92		70 - 130					04/09/15 12:42	1

Client Sample ID: MW-19 Lab Sample ID: 680-111248-8

Date Collected: 03/30/15 12:23 Matrix: Water

Date Received: 04/03/15 08:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.60	1.0	0.60	ug/L			04/09/15 13:04	1
Chloromethane	<0.40	1.0	0.40	ug/L			04/09/15 13:04	1
Vinyl chloride	<0.50	1.0	0.50	ug/L			04/09/15 13:04	1
Bromomethane	<2.5	5.0	2.5	ug/L			04/09/15 13:04	1
Chloroethane	<2.5	5.0	2.5	ug/L			04/09/15 13:04	1
Trichlorofluoromethane	<0.42	1.0	0.42	ug/L			04/09/15 13:04	1
1,1-Dichloroethene	<0.36	1.0	0.36	ug/L			04/09/15 13:04	1
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36	1.0	0.36	ug/L			04/09/15 13:04	1
Acetone	<7.0	10	7.0	ug/L			04/09/15 13:04	1
Carbon disulfide	<1.0	2.0	1.0	ug/L			04/09/15 13:04	1
Methyl acetate	<1.8	5.0	1.8	ug/L			04/09/15 13:04	1
Methylene Chloride	<2.5	5.0	2.5	ug/L			04/09/15 13:04	1
trans-1,2-Dichloroethene	<0.37	1.0	0.37	ug/L			04/09/15 13:04	1
Methyl tert-butyl ether	<0.30	10	0.30	ug/L			04/09/15 13:04	1
1,1-Dichloroethane	<0.38	1.0	0.38	ug/L			04/09/15 13:04	1
cis-1,2-Dichloroethene	<0.41	1.0	0.41	ug/L			04/09/15 13:04	1
2-Butanone	<3.4	10	3.4	ug/L			04/09/15 13:04	1
Chloroform	<0.50	1.0	0.50	ug/L			04/09/15 13:04	1
1,1,1-Trichloroethane	<0.37	1.0	0.37	ug/L			04/09/15 13:04	1
Cyclohexane	<0.39	1.0	0.39	ug/L			04/09/15 13:04	1
Carbon tetrachloride	<0.33	1.0	0.33	ug/L			04/09/15 13:04	1
Benzene	<0.43	1.0	0.43	ug/L			04/09/15 13:04	1
1,2-Dichloroethane	<0.50	1.0	0.50	ug/L			04/09/15 13:04	1
Trichloroethene	<0.48	1.0	0.48	ug/L			04/09/15 13:04	1
Methylcyclohexane	<0.43	1.0	0.43	ug/L			04/09/15 13:04	1
1,2-Dichloropropane	<0.67	1.0	0.67	ug/L			04/09/15 13:04	1
Bromodichloromethane	<0.44	1.0	0.44	ug/L			04/09/15 13:04	1
cis-1,3-Dichloropropene	<0.40	1.0	0.40	ug/L			04/09/15 13:04	1

TestAmerica Savannah

4/10/2015

Page 19 of 70

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-19

Lab Sample ID: 680-111248-8 Date Collected: 03/30/15 12:23

Matrix: Water Date Received: 04/03/15 08:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methyl-2-pentanone	<2.1		10	2.1	ug/L			04/09/15 13:04	1
Toluene	<0.48		1.0	0.48	ug/L			04/09/15 13:04	1
trans-1,3-Dichloropropene	<0.42		1.0	0.42	ug/L			04/09/15 13:04	1
1,1,2-Trichloroethane	<0.33		1.0	0.33	ug/L			04/09/15 13:04	1
Tetrachloroethene	<0.74		1.0	0.74	ug/L			04/09/15 13:04	1
2-Hexanone	<2.0		10	2.0	ug/L			04/09/15 13:04	1
Dibromochloromethane	<0.32		1.0	0.32	ug/L			04/09/15 13:04	1
1,2-Dibromoethane	<0.44		1.0	0.44	ug/L			04/09/15 13:04	1
Chlorobenzene	<0.26		1.0	0.26	ug/L			04/09/15 13:04	1
Ethylbenzene	<0.33		1.0	0.33	ug/L			04/09/15 13:04	1
Xylenes, Total	<0.23		1.0	0.23	ug/L			04/09/15 13:04	1
Styrene	<0.27		1.0	0.27	ug/L			04/09/15 13:04	1
Bromoform	<0.43		1.0	0.43	ug/L			04/09/15 13:04	1
Isopropylbenzene	<0.35		1.0	0.35	ug/L			04/09/15 13:04	1
1,1,2,2-Tetrachloroethane	<0.62		1.0	0.62	ug/L			04/09/15 13:04	1
1,3-Dichlorobenzene	<0.43		1.0	0.43	ug/L			04/09/15 13:04	1
1,4-Dichlorobenzene	<0.46		1.0	0.46	ug/L			04/09/15 13:04	1
1,2-Dichlorobenzene	<0.37		1.0	0.37	ug/L			04/09/15 13:04	1
1,2-Dibromo-3-Chloropropane	<1.1		5.0	1.1	ug/L			04/09/15 13:04	1
1,2,4-Trichlorobenzene	<2.5		5.0	2.5	ug/L			04/09/15 13:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		70 - 130			_		04/09/15 13:04	1
1,2-Dichloroethane-d4 (Surr)	91		70 - 130					04/09/15 13:04	1
Dibromofluoromethane (Surr)	99		70 - 130					04/09/15 13:04	1
4-Bromofluorobenzene (Surr)	95		70 - 130					04/09/15 13:04	1

Client Sample ID: MW-23 Lab Sample ID: 680-111248-9 Date Collected: 03/30/15 14:29 Matrix: Water

Date Received: 04/03/15 08:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.60		1.0	0.60	ug/L			04/09/15 13:25	1
Chloromethane	<0.40		1.0	0.40	ug/L			04/09/15 13:25	1
Vinyl chloride	<0.50		1.0	0.50	ug/L			04/09/15 13:25	1
Bromomethane	<2.5		5.0	2.5	ug/L			04/09/15 13:25	1
Chloroethane	<2.5		5.0	2.5	ug/L			04/09/15 13:25	1
Trichlorofluoromethane	<0.42		1.0	0.42	ug/L			04/09/15 13:25	1
1,1-Dichloroethene	<0.36		1.0	0.36	ug/L			04/09/15 13:25	1
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36		1.0	0.36	ug/L			04/09/15 13:25	1
Acetone	<7.0		10	7.0	ug/L			04/09/15 13:25	1
Carbon disulfide	<1.0		2.0	1.0	ug/L			04/09/15 13:25	1
Methyl acetate	<1.8		5.0	1.8	ug/L			04/09/15 13:25	1
Methylene Chloride	<2.5		5.0	2.5	ug/L			04/09/15 13:25	1
trans-1,2-Dichloroethene	<0.37		1.0	0.37	ug/L			04/09/15 13:25	1
Methyl tert-butyl ether	<0.30		10	0.30	ug/L			04/09/15 13:25	1
1,1-Dichloroethane	<0.38		1.0	0.38	ug/L			04/09/15 13:25	1
cis-1,2-Dichloroethene	<0.41		1.0	0.41	ug/L			04/09/15 13:25	1
2-Butanone	<3.4		10	3.4	ug/L			04/09/15 13:25	1

TestAmerica Savannah

Page 20 of 70

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Lab Sample ID: 680-111248-9

Matrix: Water

Client Sample ID: MW-23

Date Collected: 03/30/15 14:29 Date Received: 04/03/15 08:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	<0.50	1.0	0.50	ug/L			04/09/15 13:25	1
1,1,1-Trichloroethane	<0.37	1.0	0.37	ug/L			04/09/15 13:25	1
Cyclohexane	<0.39	1.0	0.39	ug/L			04/09/15 13:25	1
Carbon tetrachloride	<0.33	1.0	0.33	ug/L			04/09/15 13:25	1
Benzene	<0.43	1.0	0.43	ug/L			04/09/15 13:25	1
1,2-Dichloroethane	<0.50	1.0	0.50	ug/L			04/09/15 13:25	1
Trichloroethene	<0.48	1.0	0.48	ug/L			04/09/15 13:25	1
Methylcyclohexane	<0.43	1.0	0.43	ug/L			04/09/15 13:25	1
1,2-Dichloropropane	<0.67	1.0	0.67	ug/L			04/09/15 13:25	1
Bromodichloromethane	<0.44	1.0	0.44	ug/L			04/09/15 13:25	1
cis-1,3-Dichloropropene	<0.40	1.0	0.40	ug/L			04/09/15 13:25	1
4-Methyl-2-pentanone	<2.1	10	2.1	ug/L			04/09/15 13:25	1
Toluene	<0.48	1.0	0.48	ug/L			04/09/15 13:25	1
trans-1,3-Dichloropropene	<0.42	1.0	0.42	ug/L			04/09/15 13:25	1
1,1,2-Trichloroethane	<0.33	1.0	0.33	ug/L			04/09/15 13:25	1
Tetrachloroethene	<0.74	1.0	0.74	ug/L			04/09/15 13:25	1
2-Hexanone	<2.0	10	2.0	ug/L			04/09/15 13:25	1
Dibromochloromethane	<0.32	1.0	0.32	ug/L			04/09/15 13:25	1
1,2-Dibromoethane	<0.44	1.0	0.44	ug/L			04/09/15 13:25	1
Chlorobenzene	<0.26	1.0	0.26	ug/L			04/09/15 13:25	1
Ethylbenzene	<0.33	1.0	0.33	ug/L			04/09/15 13:25	1
Xylenes, Total	<0.23	1.0	0.23	ug/L			04/09/15 13:25	1
Styrene	<0.27	1.0	0.27	ug/L			04/09/15 13:25	1
Bromoform	<0.43	1.0	0.43	ug/L			04/09/15 13:25	1
Isopropylbenzene	<0.35	1.0	0.35	ug/L			04/09/15 13:25	1
1,1,2,2-Tetrachloroethane	<0.62	1.0	0.62	ug/L			04/09/15 13:25	1
1,3-Dichlorobenzene	<0.43	1.0	0.43	ug/L			04/09/15 13:25	1
1,4-Dichlorobenzene	<0.46	1.0	0.46	ug/L			04/09/15 13:25	1
1,2-Dichlorobenzene	<0.37	1.0	0.37	ug/L			04/09/15 13:25	1
1,2-Dibromo-3-Chloropropane	<1.1	5.0	1.1	ug/L			04/09/15 13:25	1
1,2,4-Trichlorobenzene	<2.5	5.0	2.5	ug/L			04/09/15 13:25	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101	70 - 130					04/09/15 13:25	1
1,2-Dichloroethane-d4 (Surr)	93	70 - 130					04/09/15 13:25	1
Dibromofluoromethane (Surr)	99	70 - 130					04/09/15 13:25	1

Client Sample ID: MW-24R Lab Sample ID: 680-111248-10

70 - 130

Date Collected: 04/01/15 10:33 Matrix: Water Date Received: 04/03/15 08:30

4-Bromofluorobenzene (Surr)

93

Method: 8260B - Volatile Organic Co	mpounds	(GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<3.0		5.0	3.0	ug/L			04/10/15 12:28	5
Chloromethane	<2.0		5.0	2.0	ug/L			04/10/15 12:28	5
Vinyl chloride	16		5.0	2.5	ug/L			04/10/15 12:28	5
Bromomethane	<13		25	13	ug/L			04/10/15 12:28	5
Chloroethane	<13		25	13	ug/L			04/10/15 12:28	5
Trichlorofluoromethane	<2.1		5.0	2.1	ug/L			04/10/15 12:28	5

TestAmerica Savannah

04/09/15 13:25

Page 21 of 70

Client: Environmental International Corporation

Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-24R Lab Sample ID: 680-111248-10

Date Collected: 04/01/15 10:33 **Matrix: Water** Date Received: 04/03/15 08:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1-Dichloroethene	<1.8	5.0	1.8	ug/L			04/10/15 12:28	
1,1,2-Trichloro-1,2,2-trifluoroethane	<1.8	5.0	1.8	ug/L			04/10/15 12:28	
Acetone	<35	50	35	ug/L			04/10/15 12:28	
Carbon disulfide	<5.0	10	5.0	ug/L			04/10/15 12:28	
Methyl acetate	<9.0	25	9.0	ug/L			04/10/15 12:28	
Methylene Chloride	<13	25	13	ug/L			04/10/15 12:28	
trans-1,2-Dichloroethene	<1.9	5.0	1.9	ug/L			04/10/15 12:28	
Methyl tert-butyl ether	130	50	1.5	ug/L			04/10/15 12:28	
1,1-Dichloroethane	<1.9	5.0	1.9	ug/L			04/10/15 12:28	
cis-1,2-Dichloroethene	300	5.0	2.1	ug/L			04/10/15 12:28	;
2-Butanone	23 J	50	17	ug/L			04/10/15 12:28	
Chloroform	<2.5	5.0	2.5	ug/L			04/10/15 12:28	
1,1,1-Trichloroethane	<1.9	5.0	1.9	ug/L			04/10/15 12:28	;
Cyclohexane	<2.0	5.0	2.0	ug/L			04/10/15 12:28	
Carbon tetrachloride	<1.7	5.0	1.7	ug/L			04/10/15 12:28	
Benzene	3.9 J	5.0	2.2	ug/L			04/10/15 12:28	;
1,2-Dichloroethane	<2.5	5.0	2.5	ug/L			04/10/15 12:28	
Trichloroethene	<2.4	5.0	2.4	ug/L			04/10/15 12:28	
Methylcyclohexane	<2.2	5.0	2.2	ug/L			04/10/15 12:28	
1,2-Dichloropropane	<3.4	5.0	3.4	ug/L			04/10/15 12:28	
Bromodichloromethane	<2.2	5.0	2.2	ug/L			04/10/15 12:28	
cis-1,3-Dichloropropene	<2.0	5.0	2.0	ug/L			04/10/15 12:28	
4-Methyl-2-pentanone	<11	50	11	ug/L			04/10/15 12:28	;
Toluene	<2.4	5.0	2.4	ug/L			04/10/15 12:28	
trans-1,3-Dichloropropene	<2.1	5.0	2.1	ug/L			04/10/15 12:28	
1,1,2-Trichloroethane	<1.7	5.0	1.7	ug/L			04/10/15 12:28	
Tetrachloroethene	<3.7	5.0	3.7	ug/L			04/10/15 12:28	
2-Hexanone	<10	50	10	ug/L			04/10/15 12:28	
Dibromochloromethane	<1.6	5.0	1.6	ug/L			04/10/15 12:28	
1,2-Dibromoethane	<2.2	5.0	2.2	ug/L			04/10/15 12:28	
Chlorobenzene	<1.3	5.0	1.3	ug/L			04/10/15 12:28	
Ethylbenzene	<1.7	5.0	1.7	ug/L			04/10/15 12:28	
Xylenes, Total	<1.2	5.0	1.2	ug/L			04/10/15 12:28	
Styrene	<1.4	5.0	1.4	ug/L			04/10/15 12:28	
Bromoform	<2.2	5.0	2.2	ug/L			04/10/15 12:28	
Isopropylbenzene	<1.8	5.0	1.8	ug/L			04/10/15 12:28	;
1,1,2,2-Tetrachloroethane	<3.1	5.0	3.1	ug/L			04/10/15 12:28	
1,3-Dichlorobenzene	<2.2	5.0	2.2	ug/L			04/10/15 12:28	
1,4-Dichlorobenzene	<2.3	5.0	2.3	ug/L			04/10/15 12:28	;
1,2-Dichlorobenzene	<1.9	5.0	1.9	ug/L			04/10/15 12:28	
1,2-Dibromo-3-Chloropropane	<5.5	25	5.5	ug/L			04/10/15 12:28	
1,2,4-Trichlorobenzene	<13	25	13	ug/L			04/10/15 12:28	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105		70 - 130		04/10/15 12:28	5
1,2-Dichloroethane-d4 (Surr)	93		70 - 130		04/10/15 12:28	5
Dibromofluoromethane (Surr)	105		70 - 130		04/10/15 12:28	5
4-Bromofluorobenzene (Surr)	98		70 - 130		04/10/15 12:28	5

Client: Environmental International Corporation

Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-25

Date Collected: 03/30/15 11:23 Date Received: 04/03/15 08:30 Lab Sample ID: 680-111248-11

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	<0.60	1.0	0.60	ug/L			04/09/15 13:47	
Chloromethane	<0.40	1.0	0.40	ug/L			04/09/15 13:47	
Vinyl chloride	<0.50	1.0	0.50	ug/L			04/09/15 13:47	
Bromomethane	<2.5	5.0	2.5	ug/L			04/09/15 13:47	
Chloroethane	<2.5	5.0	2.5	ug/L			04/09/15 13:47	
Trichlorofluoromethane	<0.42	1.0	0.42	ug/L			04/09/15 13:47	
1,1-Dichloroethene	<0.36	1.0	0.36	ug/L			04/09/15 13:47	
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36	1.0	0.36	ug/L			04/09/15 13:47	
Acetone	<7.0	10	7.0	ug/L			04/09/15 13:47	
Carbon disulfide	<1.0	2.0	1.0	ug/L			04/09/15 13:47	
Methyl acetate	<1.8	5.0	1.8	ug/L			04/09/15 13:47	
Methylene Chloride	<2.5	5.0		ug/L			04/09/15 13:47	
trans-1,2-Dichloroethene	<0.37	1.0	0.37	ug/L			04/09/15 13:47	
Methyl tert-butyl ether	<0.30	10		_			04/09/15 13:47	
1,1-Dichloroethane	<0.38	1.0	0.38	•			04/09/15 13:47	
cis-1,2-Dichloroethene	<0.41	1.0		ug/L			04/09/15 13:47	
2-Butanone	<3.4	10		ug/L			04/09/15 13:47	
Chloroform	<0.50	1.0	0.50	-			04/09/15 13:47	
1,1,1-Trichloroethane	<0.37	1.0		ug/L			04/09/15 13:47	
Cyclohexane	0.42 J	1.0		ug/L			04/09/15 13:47	
Carbon tetrachloride	<0.33	1.0	0.33	-			04/09/15 13:47	
Benzene	<0.43	1.0	0.43				04/09/15 13:47	
1,2-Dichloroethane	<0.50	1.0	0.50				04/09/15 13:47	
Trichloroethene	<0.48	1.0	0.48				04/09/15 13:47	
Methylcyclohexane	<0.43	1.0	0.43				04/09/15 13:47	
1,2-Dichloropropane	<0.67	1.0	0.67				04/09/15 13:47	
Bromodichloromethane	<0.44	1.0		ug/L			04/09/15 13:47	
cis-1,3-Dichloropropene	<0.40	1.0		ug/L			04/09/15 13:47	
4-Methyl-2-pentanone	<2.1	10		ug/L			04/09/15 13:47	
Toluene	<0.48	1.0		ug/L			04/09/15 13:47	
trans-1,3-Dichloropropene	<0.42	1.0		ug/L			04/09/15 13:47	
1,1,2-Trichloroethane	<0.33	1.0	0.33	-			04/09/15 13:47	
Tetrachloroethene	<0.74	1.0		ug/L			04/09/15 13:47	
2-Hexanone	<2.0	10		ug/L			04/09/15 13:47	
Dibromochloromethane	<0.32	1.0	0.32	_			04/09/15 13:47	
1,2-Dibromoethane	<0.44	1.0	0.44				04/09/15 13:47	
Chlorobenzene	<0.26	1.0	0.26				04/09/15 13:47	
Ethylbenzene	<0.33	1.0	0.33	-			04/09/15 13:47	
Xylenes, Total	<0.23	1.0	0.23	-			04/09/15 13:47	
Styrene	<0.27	1.0	0.27				04/09/15 13:47	
Bromoform	<0.43	1.0		ug/L			04/09/15 13:47	
Isopropylbenzene	1.0	1.0	0.45	•			04/09/15 13:47	
1,1,2,2-Tetrachloroethane	<0.62	1.0	0.62				04/09/15 13:47	
1,3-Dichlorobenzene	<0.43	1.0		ug/L			04/09/15 13:47	
1,4-Dichlorobenzene	<0.46	1.0		ug/L			04/09/15 13:47	
1,2-Dichlorobenzene	<0.37	1.0	0.46				04/09/15 13:47	
	<1.1	5.0						
1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene	<1.1 <2.5	5.0 5.0		ug/L ug/L			04/09/15 13:47 04/09/15 13:47	

Client Sample Results

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-25

Date Collected: 03/30/15 11:23

Date Received: 04/03/15 08:30

TestAmerica Job ID: 680-111248-1

Lab Sample ID: 680-111248-11

Matrix: Water

Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100	70 - 130	_		04/09/15 13:47	1
1,2-Dichloroethane-d4 (Surr)	93	70 - 130			04/09/15 13:47	1
Dibromofluoromethane (Surr)	100	70 - 130			04/09/15 13:47	1
4-Bromofluorobenzene (Surr)	93	70 - 130			04/09/15 13:47	1

Client Sample ID: MW-26R Lab Sample ID: 680-111248-12

Date Collected: 04/02/15 10:05 Matrix: Water

Date Received: 04/03/15 08:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	<60		100	60	ug/L			04/10/15 13:31	100
Chloromethane	<40		100	40	ug/L			04/10/15 13:31	100
Vinyl chloride	<50		100	50	ug/L			04/10/15 13:31	100
Bromomethane	<250		500	250	ug/L			04/10/15 13:31	100
Chloroethane	<250		500	250	ug/L			04/10/15 13:31	100
Trichlorofluoromethane	<42		100	42	ug/L			04/10/15 13:31	100
1,1-Dichloroethene	<36		100	36	ug/L			04/10/15 13:31	10
1,1,2-Trichloro-1,2,2-trifluoroethane	<36		100	36	ug/L			04/10/15 13:31	10
Acetone	<700		1000	700	ug/L			04/10/15 13:31	10
Carbon disulfide	<100		200	100	ug/L			04/10/15 13:31	10
Methyl acetate	<180		500	180	ug/L			04/10/15 13:31	10
Methylene Chloride	<250		500	250	ug/L			04/10/15 13:31	10
trans-1,2-Dichloroethene	<37		100	37	ug/L			04/10/15 13:31	10
Methyl tert-butyl ether	<30		1000	30	ug/L			04/10/15 13:31	10
1,1-Dichloroethane	<38		100	38	ug/L			04/10/15 13:31	10
cis-1,2-Dichloroethene	<41		100	41	ug/L			04/10/15 13:31	10
2-Butanone	<340		1000	340	ug/L			04/10/15 13:31	10
Chloroform	<50		100	50	ug/L			04/10/15 13:31	10
1,1,1-Trichloroethane	<37		100	37	ug/L			04/10/15 13:31	10
Cyclohexane	<39		100	39	ug/L			04/10/15 13:31	10
Carbon tetrachloride	<33		100	33	ug/L			04/10/15 13:31	10
Benzene	180		100	43	ug/L			04/10/15 13:31	10
1,2-Dichloroethane	<50		100	50	ug/L			04/10/15 13:31	10
Trichloroethene	<48		100	48	ug/L			04/10/15 13:31	10
Methylcyclohexane	<43		100	43	ug/L			04/10/15 13:31	10
1,2-Dichloropropane	<67		100	67	ug/L			04/10/15 13:31	10
Bromodichloromethane	<44		100	44	ug/L			04/10/15 13:31	10
cis-1,3-Dichloropropene	<40		100	40	ug/L			04/10/15 13:31	10
4-Methyl-2-pentanone	<210		1000	210	ug/L			04/10/15 13:31	10
Toluene	63	J	100	48	ug/L			04/10/15 13:31	10
trans-1,3-Dichloropropene	<42		100	42	ug/L			04/10/15 13:31	10
1,1,2-Trichloroethane	<33		100	33	ug/L			04/10/15 13:31	10
Tetrachloroethene	<74		100	74	ug/L			04/10/15 13:31	10
2-Hexanone	<200		1000	200	ug/L			04/10/15 13:31	10
Dibromochloromethane	<32		100	32	ug/L			04/10/15 13:31	10
1,2-Dibromoethane	<44		100	44	ug/L			04/10/15 13:31	10
Chlorobenzene	490		100	26	ug/L			04/10/15 13:31	10
Ethylbenzene	760		100	33	ug/L			04/10/15 13:31	10
Xylenes, Total	11000		100	23	ug/L			04/10/15 13:31	10

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

.

Lab Sample ID: 680-111248-12

Matrix: Water

Client Sample ID: MW-26R Date Collected: 04/02/15 10:05

Date Received: 04/03/15 08:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	<27		100	27	ug/L			04/10/15 13:31	100
Bromoform	<43		100	43	ug/L			04/10/15 13:31	100
Isopropylbenzene	<35		100	35	ug/L			04/10/15 13:31	100
1,1,2,2-Tetrachloroethane	<62		100	62	ug/L			04/10/15 13:31	100
1,3-Dichlorobenzene	<43		100	43	ug/L			04/10/15 13:31	100
1,4-Dichlorobenzene	<46		100	46	ug/L			04/10/15 13:31	100
1,2-Dichlorobenzene	<37		100	37	ug/L			04/10/15 13:31	100
1,2-Dibromo-3-Chloropropane	<110		500	110	ug/L			04/10/15 13:31	100
1,2,4-Trichlorobenzene	<250		500	250	ug/L			04/10/15 13:31	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105		70 - 130			-		04/10/15 13:31	100
1,2-Dichloroethane-d4 (Surr)	93		70 - 130					04/10/15 13:31	100
Dibromofluoromethane (Surr)	106		70 - 130					04/10/15 13:31	100
4-Bromofluorobenzene (Surr)	96		70 - 130					04/10/15 13:31	100

Client Sample ID: MW-27 Lab Sample ID: 680-111248-13

Date Collected: 03/30/15 16:18

Date Received: 04/03/15 08:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.60	1.0	0.60	ug/L			04/09/15 14:08	1
Chloromethane	<0.40	1.0	0.40	ug/L			04/09/15 14:08	1
Vinyl chloride	4.7	1.0	0.50	ug/L			04/09/15 14:08	1
Bromomethane	<2.5	5.0	2.5	ug/L			04/09/15 14:08	1
Chloroethane	<2.5	5.0	2.5	ug/L			04/09/15 14:08	1
Trichlorofluoromethane	<0.42	1.0	0.42	ug/L			04/09/15 14:08	1
1,1-Dichloroethene	<0.36	1.0	0.36	ug/L			04/09/15 14:08	1
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36	1.0	0.36	ug/L			04/09/15 14:08	1
Acetone	<7.0	10	7.0	ug/L			04/09/15 14:08	1
Carbon disulfide	<1.0	2.0	1.0	ug/L			04/09/15 14:08	1
Methyl acetate	<1.8	5.0	1.8	ug/L			04/09/15 14:08	1
Methylene Chloride	<2.5	5.0	2.5	ug/L			04/09/15 14:08	1
trans-1,2-Dichloroethene	<0.37	1.0	0.37	ug/L			04/09/15 14:08	1
Methyl tert-butyl ether	0.40 J	10	0.30	ug/L			04/09/15 14:08	1
1,1-Dichloroethane	<0.38	1.0	0.38	ug/L			04/09/15 14:08	1
cis-1,2-Dichloroethene	0.79 J	1.0	0.41	ug/L			04/09/15 14:08	1
2-Butanone	<3.4	10	3.4	ug/L			04/09/15 14:08	1
Chloroform	<0.50	1.0	0.50	ug/L			04/09/15 14:08	1
1,1,1-Trichloroethane	<0.37	1.0	0.37	ug/L			04/09/15 14:08	1
Cyclohexane	<0.39	1.0	0.39	ug/L			04/09/15 14:08	1
Carbon tetrachloride	<0.33	1.0	0.33	ug/L			04/09/15 14:08	1
Benzene	<0.43	1.0	0.43	ug/L			04/09/15 14:08	1
1,2-Dichloroethane	<0.50	1.0	0.50	ug/L			04/09/15 14:08	1
Trichloroethene	<0.48	1.0	0.48	ug/L			04/09/15 14:08	1
Methylcyclohexane	<0.43	1.0	0.43	ug/L			04/09/15 14:08	1
1,2-Dichloropropane	<0.67	1.0	0.67	ug/L			04/09/15 14:08	1
Bromodichloromethane	<0.44	1.0	0.44	ug/L			04/09/15 14:08	1
cis-1,3-Dichloropropene	<0.40	1.0	0.40	ug/L			04/09/15 14:08	1

TestAmerica Savannah

Page 25 of 70

2

4

6

<u>م</u>

9

11

12

13

Matrix: Water

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-27

Date Collected: 03/30/15 16:18 Date Received: 04/03/15 08:30 Lab Sample ID: 680-111248-13

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methyl-2-pentanone	<2.1		10	2.1	ug/L			04/09/15 14:08	1
Toluene	<0.48		1.0	0.48	ug/L			04/09/15 14:08	1
trans-1,3-Dichloropropene	<0.42		1.0	0.42	ug/L			04/09/15 14:08	1
1,1,2-Trichloroethane	<0.33		1.0	0.33	ug/L			04/09/15 14:08	1
Tetrachloroethene	<0.74		1.0	0.74	ug/L			04/09/15 14:08	1
2-Hexanone	<2.0		10	2.0	ug/L			04/09/15 14:08	1
Dibromochloromethane	<0.32		1.0	0.32	ug/L			04/09/15 14:08	1
1,2-Dibromoethane	<0.44		1.0	0.44	ug/L			04/09/15 14:08	1
Chlorobenzene	3.0		1.0	0.26	ug/L			04/09/15 14:08	1
Ethylbenzene	<0.33		1.0	0.33	ug/L			04/09/15 14:08	1
Xylenes, Total	<0.23		1.0	0.23	ug/L			04/09/15 14:08	1
Styrene	<0.27		1.0	0.27	ug/L			04/09/15 14:08	1
Bromoform	<0.43		1.0	0.43	ug/L			04/09/15 14:08	1
Isopropylbenzene	<0.35		1.0	0.35	ug/L			04/09/15 14:08	1
1,1,2,2-Tetrachloroethane	<0.62		1.0	0.62	ug/L			04/09/15 14:08	1
1,3-Dichlorobenzene	<0.43		1.0	0.43	ug/L			04/09/15 14:08	1
1,4-Dichlorobenzene	<0.46		1.0	0.46	ug/L			04/09/15 14:08	1
1,2-Dichlorobenzene	<0.37		1.0	0.37	ug/L			04/09/15 14:08	1
1,2-Dibromo-3-Chloropropane	<1.1		5.0	1.1	ug/L			04/09/15 14:08	1
1,2,4-Trichlorobenzene	<2.5		5.0	2.5	ug/L			04/09/15 14:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		70 - 130					04/09/15 14:08	1
1,2-Dichloroethane-d4 (Surr)	92		70 - 130					04/09/15 14:08	1
Dibromofluoromethane (Surr)	99		70 - 130					04/09/15 14:08	1
4-Bromofluorobenzene (Surr)	93		70 - 130					04/09/15 14:08	1

Client Sample ID: MW-28 Lab Sample ID: 680-111248-14 Date Collected: 03/31/15 10:20 Matrix: Water

Date Received: 04/03/15 08:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.60		1.0	0.60	ug/L			04/09/15 14:30	1
Chloromethane	<0.40		1.0	0.40	ug/L			04/09/15 14:30	1
Vinyl chloride	8.1		1.0	0.50	ug/L			04/09/15 14:30	1
Bromomethane	<2.5		5.0	2.5	ug/L			04/09/15 14:30	1
Chloroethane	<2.5		5.0	2.5	ug/L			04/09/15 14:30	1
Trichlorofluoromethane	<0.42		1.0	0.42	ug/L			04/09/15 14:30	1
1,1-Dichloroethene	<0.36		1.0	0.36	ug/L			04/09/15 14:30	1
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36		1.0	0.36	ug/L			04/09/15 14:30	1
Acetone	<7.0		10	7.0	ug/L			04/09/15 14:30	1
Carbon disulfide	<1.0		2.0	1.0	ug/L			04/09/15 14:30	1
Methyl acetate	<1.8		5.0	1.8	ug/L			04/09/15 14:30	1
Methylene Chloride	<2.5		5.0	2.5	ug/L			04/09/15 14:30	1
trans-1,2-Dichloroethene	<0.37		1.0	0.37	ug/L			04/09/15 14:30	1
Methyl tert-butyl ether	<0.30		10	0.30	ug/L			04/09/15 14:30	1
1,1-Dichloroethane	<0.38		1.0	0.38	ug/L			04/09/15 14:30	1
cis-1,2-Dichloroethene	33		1.0	0.41	ug/L			04/09/15 14:30	1
2-Butanone	<3.4		10	3.4	ug/L			04/09/15 14:30	1

TestAmerica Savannah

Page 26 of 70

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Lab Sample ID: 680-111248-14

Client Sample ID: MW-28 Date Collected: 03/31/15 10:20 Date Received: 04/03/15 08:30

Chlorobenzene

Ethylbenzene

Xylenes, Total

Isopropylbenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2-Dibromo-3-Chloropropane

Date Received: 04/03/15 08:30

1,1,2,2-Tetrachloroethane

Styrene

Bromoform

Matrix: Water

04/09/15 14:30

04/09/15 14:30

04/09/15 14:30

04/09/15 14:30

04/09/15 14:30

04/09/15 14:30

04/09/15 14:30

04/09/15 14:30

04/09/15 14:30

04/09/15 14:30

04/09/15 14:30

04/09/15 14:30

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Result Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed Chloroform <0.50 1.0 0.50 04/09/15 14:30 ug/L <0.37 1,1,1-Trichloroethane 1.0 0.37 04/09/15 14:30 ug/L Cyclohexane <0.39 1.0 0.39 ug/L 04/09/15 14:30 < 0.33 1.0 04/09/15 14:30 Carbon tetrachloride 0.33 ug/L 1.0 0.43 ug/L 04/09/15 14:30 Benzene 1.6 1.2-Dichloroethane < 0.50 10 0.50 ug/L 04/09/15 14:30 **Trichloroethene** 1.0 0.48 ug/L 04/09/15 14:30 1.1 < 0.43 1.0 04/09/15 14:30 Methylcyclohexane 0.43 ug/L 1,2-Dichloropropane < 0.67 1.0 0.67 ug/L 04/09/15 14:30 Bromodichloromethane <0.44 1.0 0.44 ug/L 04/09/15 14:30 cis-1,3-Dichloropropene < 0.40 1.0 0.40 ug/L 04/09/15 14:30 10 4-Methyl-2-pentanone <2.1 2.1 ug/L 04/09/15 14:30 Toluene < 0.48 1.0 0.48 ug/L 04/09/15 14:30 trans-1,3-Dichloropropene < 0.42 1.0 0.42 ug/L 04/09/15 14:30 1,1,2-Trichloroethane < 0.33 1.0 0.33 ug/L 04/09/15 14:30 1.0 0.74 ug/L 04/09/15 14:30 Tetrachloroethene 5.8 10 ug/L 2-Hexanone < 2.0 2.0 04/09/15 14:30 Dibromochloromethane < 0.32 1.0 0.32 04/09/15 14:30 ug/L 1,2-Dibromoethane <0.44 1.0 0.44 ug/L 04/09/15 14:30

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

5.0

5.0

0.26 ug/L

0.33 ug/L

0.23 ug/L

0.43 ug/L

0.35 ug/L

0.62 ug/L

0.43 ug/L

0.46 ug/L

0.37 ug/L

1.1 ug/L

2.5 ug/L

0.27 ug/L

8.2

< 0.33

< 0.23

<0.27

< 0.43

<0.35

< 0.62

< 0.43

1.8

<1.1

<2.5

0.39 J

Surrogate	%Recovery	Qualifier	Limits	Prepare	ed Analyzed	Dil Fac
Toluene-d8 (Surr)	102		70 - 130		04/09/15 14:30	1
1,2-Dichloroethane-d4 (Surr)	92		70 - 130		04/09/15 14:30	1
Dibromofluoromethane (Surr)	98		70 - 130		04/09/15 14:30	1
4-Bromofluorobenzene (Surr)	92		70 - 130		04/09/15 14:30	1

Client Sample ID: MW-29 Lab Sample ID: 680-111248-15 Date Collected: 04/01/15 17:43 **Matrix: Water**

Method: 8260B - Volatile Organic	Compounds (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<30		50	30	ug/L			04/09/15 17:43	50
Chloromethane	<20		50	20	ug/L			04/09/15 17:43	50
Vinyl chloride	790		50	25	ug/L			04/09/15 17:43	50
Bromomethane	<130		250	130	ug/L			04/09/15 17:43	50
Chloroethane	<130		250	130	ug/L			04/09/15 17:43	50
Trichlorofluoromethane	<21		50	21	ug/L			04/09/15 17:43	50

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-29

Lab Sample ID: 680-111248-15

Matrix: Water

Date Collected: 04/01/15 17:43 Date Received: 04/03/15 08:30

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	18 J	50	18	ug/L			04/09/15 17:43	50
1,1,2-Trichloro-1,2,2-trifluoroethane	<18	50	18	ug/L			04/09/15 17:43	50
Acetone	<350	500	350	ug/L			04/09/15 17:43	50
Carbon disulfide	<50	100	50	ug/L			04/09/15 17:43	50
Methyl acetate	<90	250	90	ug/L			04/09/15 17:43	50
Methylene Chloride	<130	250	130	ug/L			04/09/15 17:43	50
trans-1,2-Dichloroethene	<19	50	19	ug/L			04/09/15 17:43	50
Methyl tert-butyl ether	<15	500	15	ug/L			04/09/15 17:43	50
1,1-Dichloroethane	<19	50	19	ug/L			04/09/15 17:43	50
cis-1,2-Dichloroethene	5900	50	21	ug/L			04/09/15 17:43	50
2-Butanone	<170	500	170	ug/L			04/09/15 17:43	50
Chloroform	<25	50	25	ug/L			04/09/15 17:43	50
1,1,1-Trichloroethane	<19	50	19	ug/L			04/09/15 17:43	50
Cyclohexane	<20	50	20	ug/L			04/09/15 17:43	50
Carbon tetrachloride	<17	50	17	ug/L			04/09/15 17:43	50
Benzene	<22	50	22	ug/L			04/09/15 17:43	50
1,2-Dichloroethane	<25	50	25	ug/L			04/09/15 17:43	50
Trichloroethene	90	50	24	ug/L			04/09/15 17:43	50
Methylcyclohexane	<22	50	22	ug/L			04/09/15 17:43	50
1,2-Dichloropropane	<34	50	34	ug/L			04/09/15 17:43	50
Bromodichloromethane	<22	50	22	ug/L			04/09/15 17:43	50
cis-1,3-Dichloropropene	<20	50	20	ug/L			04/09/15 17:43	50
4-Methyl-2-pentanone	<110	500	110	ug/L			04/09/15 17:43	50
Toluene	25 J	50	24	ug/L			04/09/15 17:43	50
trans-1,3-Dichloropropene	<21	50	21	ug/L			04/09/15 17:43	50
1,1,2-Trichloroethane	<17	50	17	ug/L			04/09/15 17:43	50
Tetrachloroethene	160	50	37	ug/L			04/09/15 17:43	50
2-Hexanone	<100	500	100	ug/L			04/09/15 17:43	50
Dibromochloromethane	<16	50	16	ug/L			04/09/15 17:43	50
1,2-Dibromoethane	<22	50	22	ug/L			04/09/15 17:43	50
Chlorobenzene	170	50	13	ug/L			04/09/15 17:43	50
Ethylbenzene	3300	50	17	ug/L			04/09/15 17:43	50
Xylenes, Total	7300	50	12	ug/L			04/09/15 17:43	50
Styrene	<14	50	14	ug/L			04/09/15 17:43	50
Bromoform	<22	50	22	ug/L			04/09/15 17:43	50
Isopropylbenzene	100	50	18	ug/L			04/09/15 17:43	50
1,1,2,2-Tetrachloroethane	<31	50	31	ug/L			04/09/15 17:43	50
1,3-Dichlorobenzene	58	50	22	ug/L			04/09/15 17:43	50
1,4-Dichlorobenzene	180	50	23	ug/L			04/09/15 17:43	50
1,2-Dichlorobenzene	35 J	50	19	ug/L			04/09/15 17:43	50
1,2-Dibromo-3-Chloropropane	<55	250		ug/L			04/09/15 17:43	50
1,2,4-Trichlorobenzene	160 J	250	130	ug/L			04/09/15 17:43	50

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		70 - 130		04/09/15 17:43	50
1,2-Dichloroethane-d4 (Surr)	93		70 - 130		04/09/15 17:43	50
Dibromofluoromethane (Surr)	99		70 - 130		04/09/15 17:43	50
4-Bromofluorobenzene (Surr)	91		70 - 130		04/09/15 17:43	50

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-30

Lab Sample ID: 680-111248-16

Matrix: Water

Date Collected: 04/02/15 18:13

Method: 8260B - Volatile Organic (Analyte		Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.60	1.0	0.60		<u>-</u> -		04/09/15 14:51	
Chloromethane	<0.40	1.0		ug/L			04/09/15 14:51	1
Vinyl chloride	0.88		0.50	•			04/09/15 14:51	1
Bromomethane	<2.5	5.0		ug/L			04/09/15 14:51	1
Chloroethane	<2.5	5.0		ug/L			04/09/15 14:51	1
Trichlorofluoromethane	<0.42	1.0		ug/L			04/09/15 14:51	1
1,1-Dichloroethene	<0.36	1.0		ug/L			04/09/15 14:51	1
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36	1.0		ug/L			04/09/15 14:51	1
Acetone	<7.0	10		ug/L			04/09/15 14:51	1
Carbon disulfide	<1.0	2.0		ug/L			04/09/15 14:51	1
Methyl acetate	<1.8	5.0		ug/L			04/09/15 14:51	1
Methylene Chloride	<2.5	5.0		ug/L			04/09/15 14:51	1
trans-1,2-Dichloroethene	<0.37	1.0		ug/L			04/09/15 14:51	
Methyl tert-butyl ether	<0.30	10	0.30	-			04/09/15 14:51	1
1,1-Dichloroethane	<0.38	1.0	0.38				04/09/15 14:51	1
cis-1,2-Dichloroethene	1.7	1.0		ug/L			04/09/15 14:51	
2-Butanone	<3.4	10		ug/L			04/09/15 14:51	1
Chloroform	<0.50	1.0	0.50	_			04/09/15 14:51	1
1,1,1-Trichloroethane	<0.37	1.0		ug/L ug/L			04/09/15 14:51	
Cyclohexane	<0.39	1.0		ug/L ug/L			04/09/15 14:51	1
Carbon tetrachloride	<0.33	1.0		ug/L			04/09/15 14:51	1
Benzene	<0.43	1.0		ug/L ug/L			04/09/15 14:51	
1,2-Dichloroethane	<0.43	1.0		ug/L			04/09/15 14:51	1
Trichloroethene	<0.48	1.0	0.48	-			04/09/15 14:51	
							04/09/15 14:51	
Methylcyclohexane	<0.43	1.0		ug/L				1
1,2-Dichloropropane	<0.67	1.0	0.67	_			04/09/15 14:51	1
Bromodichloromethane	<0.44	1.0	0.44				04/09/15 14:51	
cis-1,3-Dichloropropene	<0.40	1.0		ug/L			04/09/15 14:51	1
4-Methyl-2-pentanone	<2.1	10	2.1	•			04/09/15 14:51	1
Toluene	<0.48	1.0	0.48				04/09/15 14:51	
trans-1,3-Dichloropropene	<0.42	1.0		ug/L			04/09/15 14:51	1
1,1,2-Trichloroethane	<0.33	1.0		ug/L			04/09/15 14:51	1
Tetrachloroethene	<0.74	1.0		ug/L			04/09/15 14:51	1
2-Hexanone	<2.0	10		ug/L			04/09/15 14:51	1
Dibromochloromethane	<0.32	1.0		ug/L			04/09/15 14:51]
1,2-Dibromoethane	<0.44	1.0		ug/L			04/09/15 14:51	
Chlorobenzene	0.72			ug/L			04/09/15 14:51	1
Ethylbenzene	<0.33	1.0		ug/L			04/09/15 14:51	1
Xylenes, Total	1.3	1.0	0.23				04/09/15 14:51	1
Styrene	<0.27	1.0	0.27				04/09/15 14:51	1
Bromoform	<0.43	1.0		ug/L			04/09/15 14:51	1
Isopropylbenzene	<0.35	1.0		ug/L			04/09/15 14:51	
1,1,2,2-Tetrachloroethane	<0.62	1.0		ug/L			04/09/15 14:51	1
1,3-Dichlorobenzene	<0.43	1.0		ug/L			04/09/15 14:51	1
1,4-Dichlorobenzene	<0.46	1.0		ug/L			04/09/15 14:51	1
1,2-Dichlorobenzene	<0.37	1.0		ug/L			04/09/15 14:51	1
1,2-Dibromo-3-Chloropropane	<1.1	5.0	1.1	ug/L			04/09/15 14:51	1

TestAmerica Savannah

2

4

6

8

10

11

Client Sample Results

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

TestAmerica Job ID: 680-111248-1

Lab Sample ID: 680-111248-16

Matrix: Water

Client Sample ID: MW-30

Date Collected: 04/02/15 18:13 Date Received: 04/03/15 08:30

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101	70 - 130	 	04/09/15 14:51	1
1,2-Dichloroethane-d4 (Surr)	91	70 - 130		04/09/15 14:51	1
Dibromofluoromethane (Surr)	98	70 - 130		04/09/15 14:51	1
4-Bromofluorobenzene (Surr)	95	70 - 130		04/09/15 14:51	1

Client Sample ID: MW-31 Lab Sample ID: 680-111248-17

Date Collected: 03/30/15 15:35 Matrix: Water

Date Received: 04/03/15 08:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.60		1.0	0.60	ug/L			04/09/15 15:13	1
Chloromethane	<0.40		1.0	0.40	ug/L			04/09/15 15:13	1
Vinyl chloride	<0.50		1.0	0.50	ug/L			04/09/15 15:13	1
Bromomethane	<2.5		5.0	2.5	ug/L			04/09/15 15:13	1
Chloroethane	<2.5		5.0	2.5	ug/L			04/09/15 15:13	1
Trichlorofluoromethane	<0.42		1.0	0.42	ug/L			04/09/15 15:13	1
1,1-Dichloroethene	<0.36		1.0	0.36	ug/L			04/09/15 15:13	
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36		1.0	0.36	ug/L			04/09/15 15:13	1
Acetone	<7.0		10	7.0	ug/L			04/09/15 15:13	•
Carbon disulfide	<1.0		2.0	1.0	ug/L			04/09/15 15:13	1
Methyl acetate	<1.8		5.0	1.8	ug/L			04/09/15 15:13	1
Methylene Chloride	<2.5		5.0	2.5	ug/L			04/09/15 15:13	1
trans-1,2-Dichloroethene	<0.37		1.0	0.37	ug/L			04/09/15 15:13	1
Methyl tert-butyl ether	<0.30		10	0.30	ug/L			04/09/15 15:13	1
1,1-Dichloroethane	<0.38		1.0	0.38	ug/L			04/09/15 15:13	1
cis-1,2-Dichloroethene	<0.41		1.0	0.41	ug/L			04/09/15 15:13	1
2-Butanone	<3.4		10	3.4	ug/L			04/09/15 15:13	1
Chloroform	<0.50		1.0	0.50	ug/L			04/09/15 15:13	1
1,1,1-Trichloroethane	<0.37		1.0	0.37	ug/L			04/09/15 15:13	1
Cyclohexane	<0.39		1.0	0.39	ug/L			04/09/15 15:13	1
Carbon tetrachloride	<0.33		1.0	0.33	ug/L			04/09/15 15:13	1
Benzene	<0.43		1.0	0.43	ug/L			04/09/15 15:13	,
1,2-Dichloroethane	<0.50		1.0	0.50	ug/L			04/09/15 15:13	•
Trichloroethene	<0.48		1.0	0.48	ug/L			04/09/15 15:13	
Methylcyclohexane	<0.43		1.0	0.43	ug/L			04/09/15 15:13	,
1,2-Dichloropropane	<0.67		1.0	0.67	ug/L			04/09/15 15:13	1
Bromodichloromethane	<0.44		1.0	0.44	ug/L			04/09/15 15:13	1
cis-1,3-Dichloropropene	<0.40		1.0	0.40	ug/L			04/09/15 15:13	1
4-Methyl-2-pentanone	<2.1		10	2.1	ug/L			04/09/15 15:13	1
Toluene	<0.48		1.0	0.48	ug/L			04/09/15 15:13	1
trans-1,3-Dichloropropene	<0.42		1.0	0.42	ug/L			04/09/15 15:13	1
1,1,2-Trichloroethane	<0.33		1.0	0.33	ug/L			04/09/15 15:13	1
Tetrachloroethene	<0.74		1.0	0.74	ug/L			04/09/15 15:13	
2-Hexanone	<2.0		10	2.0	ug/L			04/09/15 15:13	
Dibromochloromethane	<0.32		1.0		ug/L			04/09/15 15:13	
1,2-Dibromoethane	<0.44		1.0		ug/L			04/09/15 15:13	
Chlorobenzene	<0.26		1.0		ug/L			04/09/15 15:13	,
Ethylbenzene	<0.33		1.0		ug/L			04/09/15 15:13	
Xylenes, Total	<0.23		1.0	0.23				04/09/15 15:13	1

TestAmerica Savannah

4/10/2015

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-31

Lab Sample ID: 680-111248-17

Matrix: Water

Date Collected: 03/30/15 15:35 Date Received: 04/03/15 08:30

Method: 8260B - Volatile Orga	nic Compounds	(GC/MS) (Co	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	<0.27		1.0	0.27	ug/L			04/09/15 15:13	1
Bromoform	<0.43		1.0	0.43	ug/L			04/09/15 15:13	1
Isopropylbenzene	<0.35		1.0	0.35	ug/L			04/09/15 15:13	1
1,1,2,2-Tetrachloroethane	<0.62		1.0	0.62	ug/L			04/09/15 15:13	1
1,3-Dichlorobenzene	<0.43		1.0	0.43	ug/L			04/09/15 15:13	1
1,4-Dichlorobenzene	<0.46		1.0	0.46	ug/L			04/09/15 15:13	1
1,2-Dichlorobenzene	<0.37		1.0	0.37	ug/L			04/09/15 15:13	1
1,2-Dibromo-3-Chloropropane	<1.1		5.0	1.1	ug/L			04/09/15 15:13	1
1,2,4-Trichlorobenzene	<2.5		5.0	2.5	ug/L			04/09/15 15:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		70 - 130			-		04/09/15 15:13	1
1,2-Dichloroethane-d4 (Surr)	93		70 - 130					04/09/15 15:13	1
Dibromofluoromethane (Surr)	99		70 - 130					04/09/15 15:13	1
4-Bromofluorobenzene (Surr)	93		70 - 130					04/09/15 15:13	1

Client Sample ID: MW-32 Lab Sample ID: 680-111248-18

Date Collected: 03/31/15 17:50 Matrix: Water

Date Received: 04/03/15 08:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.60		1.0	0.60	ug/L			04/09/15 16:38	1
Chloromethane	<0.40		1.0	0.40	ug/L			04/09/15 16:38	1
Vinyl chloride	<0.50		1.0	0.50	ug/L			04/09/15 16:38	1
Bromomethane	<2.5		5.0	2.5	ug/L			04/09/15 16:38	1
Chloroethane	<2.5		5.0	2.5	ug/L			04/09/15 16:38	1
Trichlorofluoromethane	0.73	J	1.0	0.42	ug/L			04/09/15 16:38	1
1,1-Dichloroethene	<0.36		1.0	0.36	ug/L			04/09/15 16:38	1
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36		1.0	0.36	ug/L			04/09/15 16:38	1
Acetone	<7.0		10	7.0	ug/L			04/09/15 16:38	1
Carbon disulfide	<1.0		2.0	1.0	ug/L			04/09/15 16:38	1
Methyl acetate	<1.8		5.0	1.8	ug/L			04/09/15 16:38	1
Methylene Chloride	<2.5		5.0	2.5	ug/L			04/09/15 16:38	1
trans-1,2-Dichloroethene	<0.37		1.0	0.37	ug/L			04/09/15 16:38	1
Methyl tert-butyl ether	<0.30		10	0.30	ug/L			04/09/15 16:38	1
1,1-Dichloroethane	<0.38		1.0	0.38	ug/L			04/09/15 16:38	1
cis-1,2-Dichloroethene	<0.41		1.0	0.41	ug/L			04/09/15 16:38	1
2-Butanone	<3.4		10	3.4	ug/L			04/09/15 16:38	1
Chloroform	<0.50		1.0	0.50	ug/L			04/09/15 16:38	1
1,1,1-Trichloroethane	<0.37		1.0	0.37	ug/L			04/09/15 16:38	1
Cyclohexane	<0.39		1.0	0.39	ug/L			04/09/15 16:38	1
Carbon tetrachloride	<0.33		1.0	0.33	ug/L			04/09/15 16:38	1
Benzene	<0.43		1.0	0.43	ug/L			04/09/15 16:38	1
1,2-Dichloroethane	<0.50		1.0	0.50	ug/L			04/09/15 16:38	1
Trichloroethene	<0.48		1.0	0.48	ug/L			04/09/15 16:38	1
Methylcyclohexane	<0.43		1.0	0.43	ug/L			04/09/15 16:38	1
1,2-Dichloropropane	<0.67		1.0	0.67	ug/L			04/09/15 16:38	1
Bromodichloromethane	<0.44		1.0	0.44	ug/L			04/09/15 16:38	1
cis-1,3-Dichloropropene	<0.40		1.0	0.40	ug/L			04/09/15 16:38	1

TestAmerica Savannah

Page 31 of 70

2

4

6

8

10

10

13

Ц

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-32 Lab Sample ID: 680-111248-18

Date Collected: 03/31/15 17:50 Matrix: Water Date Received: 04/03/15 08:30

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed 4-Methyl-2-pentanone <2.1 10 04/09/15 16:38 2.1 ug/L Toluene < 0.48 1.0 0.48 ug/L 04/09/15 16:38 trans-1,3-Dichloropropene <0.42 1.0 0.42 ug/L 04/09/15 16:38 1,1,2-Trichloroethane < 0.33 1.0 0.33 ug/L 04/09/15 16:38 Tetrachloroethene < 0.74 1.0 0.74 ug/L 04/09/15 16:38 <2.0 10 2.0 ug/L 04/09/15 16:38 2-Hexanone Dibromochloromethane < 0.32 1.0 0.32 ug/L 04/09/15 16:38 1,2-Dibromoethane <0.44 1.0 0.44 ug/L 04/09/15 16:38 Chlorobenzene <0.26 1.0 0.26 ug/L 04/09/15 16:38 Ethylbenzene < 0.33 1.0 0.33 ug/L 04/09/15 16:38 Xylenes, Total <0.23 1.0 0.23 ug/L 04/09/15 16:38 Styrene <0.27 1.0 04/09/15 16:38 0.27 ug/L Bromoform < 0.43 1.0 0.43 ug/L 04/09/15 16:38 Isopropylbenzene < 0.35 1.0 0.35 ug/L 04/09/15 16:38 1,1,2,2-Tetrachloroethane < 0.62 1.0 0.62 ug/L 04/09/15 16:38 1,3-Dichlorobenzene <0.43 1.0 0.43 ug/L 04/09/15 16:38 <0.46 1.4-Dichlorobenzene 1.0 0.46 ug/L 04/09/15 16:38 1,2-Dichlorobenzene < 0.37 1.0 0.37 ug/L 04/09/15 16:38 1,2-Dibromo-3-Chloropropane <1.1 5.0 1.1 ug/L 04/09/15 16:38 04/09/15 16:38 1,2,4-Trichlorobenzene <2.5 5.0 2.5 ug/L %Recovery Qualifier Dil Fac Surrogate Limits Prepared Analyzed Toluene-d8 (Surr) 105 70 - 130 04/09/15 16:38 1,2-Dichloroethane-d4 (Surr) 96 70 - 130 04/09/15 16:38 Dibromofluoromethane (Surr) 106 70 - 130 04/09/15 16:38

Client Sample ID: MW-33 Lab Sample ID: 680-111248-19 Date Collected: 04/02/15 13:27

70 - 130

100

Date Received: 04/03/15 08:30

4-Bromofluorobenzene (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.60		1.0	0.60	ug/L			04/09/15 16:59	1
Chloromethane	<0.40		1.0	0.40	ug/L			04/09/15 16:59	1
Vinyl chloride	100		1.0	0.50	ug/L			04/09/15 16:59	1
Bromomethane	<2.5		5.0	2.5	ug/L			04/09/15 16:59	1
Chloroethane	<2.5		5.0	2.5	ug/L			04/09/15 16:59	1
Trichlorofluoromethane	<0.42		1.0	0.42	ug/L			04/09/15 16:59	1
1,1-Dichloroethene	0.60	J	1.0	0.36	ug/L			04/09/15 16:59	1
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36		1.0	0.36	ug/L			04/09/15 16:59	1
Acetone	<7.0		10	7.0	ug/L			04/09/15 16:59	1
Carbon disulfide	<1.0		2.0	1.0	ug/L			04/09/15 16:59	1
Methyl acetate	<1.8		5.0	1.8	ug/L			04/09/15 16:59	1
Methylene Chloride	<2.5		5.0	2.5	ug/L			04/09/15 16:59	1
trans-1,2-Dichloroethene	2.2		1.0	0.37	ug/L			04/09/15 16:59	1
Methyl tert-butyl ether	<0.30		10	0.30	ug/L			04/09/15 16:59	1
1,1-Dichloroethane	<0.38		1.0	0.38	ug/L			04/09/15 16:59	1
cis-1,2-Dichloroethene	150		1.0	0.41	ug/L			04/09/15 16:59	1
2-Butanone	<3.4		10	3.4	ug/L			04/09/15 16:59	1

TestAmerica Savannah

Page 32 of 70

Matrix: Water

04/09/15 16:38

4/10/2015

04/09/15 16:59

04/09/15 16:59

04/09/15 16:59

04/09/15 16:59

04/09/15 16:59

04/09/15 16:59

04/09/15 16:59

04/09/15 16:59

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-33

Lab Sample ID: 680-111248-19

Matrix: Water

Date Collected: 04/02/15 13:27 Date Received: 04/03/15 08:30

Bromoform

Isopropylbenzene

1,1,2,2-Tetrachloroethane1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2-Dibromo-3-Chloropropane

Date Received: 04/03/15 08:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	<0.50	1.0	0.50	ug/L			04/09/15 16:59	1
1,1,1-Trichloroethane	<0.37	1.0	0.37	ug/L			04/09/15 16:59	1
Cyclohexane	<0.39	1.0	0.39	ug/L			04/09/15 16:59	1
Carbon tetrachloride	<0.33	1.0	0.33	ug/L			04/09/15 16:59	1
Benzene	1.7	1.0	0.43	ug/L			04/09/15 16:59	1
1,2-Dichloroethane	<0.50	1.0	0.50	ug/L			04/09/15 16:59	1
Trichloroethene	2.8	1.0	0.48	ug/L			04/09/15 16:59	1
Methylcyclohexane	<0.43	1.0	0.43	ug/L			04/09/15 16:59	1
1,2-Dichloropropane	<0.67	1.0	0.67	ug/L			04/09/15 16:59	1
Bromodichloromethane	<0.44	1.0	0.44	ug/L			04/09/15 16:59	1
cis-1,3-Dichloropropene	<0.40	1.0	0.40	ug/L			04/09/15 16:59	1
4-Methyl-2-pentanone	<2.1	10	2.1	ug/L			04/09/15 16:59	1
Toluene	1.7	1.0	0.48	ug/L			04/09/15 16:59	1
trans-1,3-Dichloropropene	<0.42	1.0	0.42	ug/L			04/09/15 16:59	1
1,1,2-Trichloroethane	<0.33	1.0	0.33	ug/L			04/09/15 16:59	1
Tetrachloroethene	<0.74	1.0	0.74	ug/L			04/09/15 16:59	1
2-Hexanone	<2.0	10	2.0	ug/L			04/09/15 16:59	1
Dibromochloromethane	<0.32	1.0	0.32	ug/L			04/09/15 16:59	1
1,2-Dibromoethane	<0.44	1.0	0.44	ug/L			04/09/15 16:59	1
Chlorobenzene	47	1.0	0.26	ug/L			04/09/15 16:59	1
Ethylbenzene	3.1	1.0	0.33	ug/L			04/09/15 16:59	1
Xylenes, Total	11	1.0	0.23	ug/L			04/09/15 16:59	1
Styrene	<0.27	1.0	0.27	ug/L			04/09/15 16:59	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103		70 - 130		04/09/15 16:59	1
1,2-Dichloroethane-d4 (Surr)	94		70 - 130		04/09/15 16:59	1
Dibromofluoromethane (Surr)	104		70 - 130		04/09/15 16:59	1
4-Bromofluorobenzene (Surr)	99		70 - 130		04/09/15 16:59	1

1.0

1.0

1.0

1.0

1.0

1.0

5.0

5.0

0.43 ug/L

0.35 ug/L

0.62 ug/L

0.43 ug/L

0.46 ug/L

0.37 ug/L

1.1 ug/L

2.5 ug/L

Client Sample ID: MW-34

Date Collected: 03/31/15 11:17

Lab Sample ID: 680-111248-20

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS)	

<0.43

<0.35

<0.62

22

93

9.2

<1.1

36

Method: 8260B - Volatile Organ	nic Compounds (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.60		1.0	0.60	ug/L			04/09/15 15:34	1
Chloromethane	<0.40		1.0	0.40	ug/L			04/09/15 15:34	1
Vinyl chloride	2.6		1.0	0.50	ug/L			04/09/15 15:34	1
Bromomethane	<2.5		5.0	2.5	ug/L			04/09/15 15:34	1
Chloroethane	<2.5		5.0	2.5	ug/L			04/09/15 15:34	1
Trichlorofluoromethane	<0.42		1.0	0.42	ug/L			04/09/15 15:34	1

TestAmerica Savannah

Page 33 of 70

ວ

10

11

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-34

Lab Sample ID: 680-111248-20

Matrix: Water

Date Collected: 03/31/15 11:17 Date Received: 04/03/15 08:30

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

4-Bromofluorobenzene (Surr)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	<0.36	1.0	0.36	ug/L			04/09/15 15:34	1
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36	1.0	0.36	ug/L			04/09/15 15:34	1
Acetone	<7.0	10	7.0	ug/L			04/09/15 15:34	1
Carbon disulfide	<1.0	2.0	1.0	ug/L			04/09/15 15:34	1
Methyl acetate	<1.8	5.0	1.8	ug/L			04/09/15 15:34	1
Methylene Chloride	<2.5	5.0	2.5	ug/L			04/09/15 15:34	1
trans-1,2-Dichloroethene	<0.37	1.0	0.37	ug/L			04/09/15 15:34	1
Methyl tert-butyl ether	<0.30	10	0.30	ug/L			04/09/15 15:34	1
1,1-Dichloroethane	<0.38	1.0	0.38	ug/L			04/09/15 15:34	1
cis-1,2-Dichloroethene	9.9	1.0	0.41	ug/L			04/09/15 15:34	1
2-Butanone	<3.4	10	3.4	ug/L			04/09/15 15:34	1
Chloroform	<0.50	1.0	0.50	ug/L			04/09/15 15:34	1
1,1,1-Trichloroethane	<0.37	1.0	0.37	ug/L			04/09/15 15:34	1
Cyclohexane	<0.39	1.0	0.39	ug/L			04/09/15 15:34	1
Carbon tetrachloride	<0.33	1.0	0.33	ug/L			04/09/15 15:34	1
Benzene	0.47 J	1.0	0.43	ug/L			04/09/15 15:34	1
1,2-Dichloroethane	<0.50	1.0	0.50	ug/L			04/09/15 15:34	1
Trichloroethene	0.52 J	1.0	0.48	ug/L			04/09/15 15:34	1
Methylcyclohexane	<0.43	1.0	0.43	ug/L			04/09/15 15:34	1
1,2-Dichloropropane	<0.67	1.0	0.67	ug/L			04/09/15 15:34	1
Bromodichloromethane	<0.44	1.0	0.44	ug/L			04/09/15 15:34	1
cis-1,3-Dichloropropene	<0.40	1.0	0.40	ug/L			04/09/15 15:34	1
4-Methyl-2-pentanone	<2.1	10	2.1	ug/L			04/09/15 15:34	1
Toluene	<0.48	1.0	0.48	ug/L			04/09/15 15:34	1
trans-1,3-Dichloropropene	<0.42	1.0	0.42	ug/L			04/09/15 15:34	1
1,1,2-Trichloroethane	<0.33	1.0	0.33	ug/L			04/09/15 15:34	1
Tetrachloroethene	2.7	1.0	0.74	ug/L			04/09/15 15:34	1
2-Hexanone	<2.0	10	2.0	ug/L			04/09/15 15:34	1
Dibromochloromethane	<0.32	1.0	0.32	ug/L			04/09/15 15:34	1
1,2-Dibromoethane	<0.44	1.0	0.44	ug/L			04/09/15 15:34	1
Chlorobenzene	2.3	1.0	0.26	ug/L			04/09/15 15:34	1
Ethylbenzene	<0.33	1.0	0.33	ug/L			04/09/15 15:34	1
Xylenes, Total	<0.23	1.0	0.23	ug/L			04/09/15 15:34	1
Styrene	<0.27	1.0	0.27	ug/L			04/09/15 15:34	1
Bromoform	<0.43	1.0	0.43	ug/L			04/09/15 15:34	1
Isopropylbenzene	<0.35	1.0	0.35	ug/L			04/09/15 15:34	1
1,1,2,2-Tetrachloroethane	<0.62	1.0		ug/L			04/09/15 15:34	1
1,3-Dichlorobenzene	<0.43	1.0	0.43	ug/L			04/09/15 15:34	1
1,4-Dichlorobenzene	0.67 J	1.0	0.46	ug/L			04/09/15 15:34	1
1,2-Dichlorobenzene	<0.37	1.0	0.37	ug/L			04/09/15 15:34	1
1,2-Dibromo-3-Chloropropane	<1.1	5.0	1.1	ug/L			04/09/15 15:34	1
1,2,4-Trichlorobenzene	<2.5	5.0	2.5	ug/L			04/09/15 15:34	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

TestAmerica Savannah

04/09/15 15:34

04/09/15 15:34

04/09/15 15:34

04/09/15 15:34

70 - 130

70 - 130

70 - 130

70 - 130

101

92

97

Client: Environmental International Corporation

Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-35

Lab Sample ID: 680-111248-21

Matrix: Water

Date Collected: 03/31/15 15:12 Date Received: 04/03/15 08:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	<0.60	1.0	0.60	ug/L			04/09/15 15:56	
Chloromethane	<0.40	1.0	0.40	ug/L			04/09/15 15:56	
Vinyl chloride	<0.50	1.0	0.50	ug/L			04/09/15 15:56	
Bromomethane	<2.5	5.0	2.5	ug/L			04/09/15 15:56	
Chloroethane	<2.5	5.0	2.5	ug/L			04/09/15 15:56	
Trichlorofluoromethane	<0.42	1.0	0.42	ug/L			04/09/15 15:56	
1,1-Dichloroethene	<0.36	1.0	0.36	ug/L			04/09/15 15:56	
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36	1.0	0.36	ug/L			04/09/15 15:56	
Acetone	<7.0	10	7.0	ug/L			04/09/15 15:56	
Carbon disulfide	<1.0	2.0	1.0	ug/L			04/09/15 15:56	
Methyl acetate	<1.8	5.0	1.8	ug/L			04/09/15 15:56	
Methylene Chloride	<2.5	5.0	2.5	ug/L			04/09/15 15:56	
trans-1,2-Dichloroethene	<0.37	1.0	0.37	ug/L			04/09/15 15:56	
Methyl tert-butyl ether	<0.30	10		ug/L			04/09/15 15:56	
1,1-Dichloroethane	<0.38	1.0		ug/L			04/09/15 15:56	
cis-1,2-Dichloroethene	<0.41	1.0	0.41	ug/L			04/09/15 15:56	
2-Butanone	<3.4	10	3.4	ug/L			04/09/15 15:56	
Chloroform	<0.50	1.0	0.50	ug/L			04/09/15 15:56	
1,1,1-Trichloroethane	<0.37	1.0		ug/L			04/09/15 15:56	
Cyclohexane	<0.39	1.0		ug/L			04/09/15 15:56	
Carbon tetrachloride	<0.33	1.0		ug/L			04/09/15 15:56	
Benzene	<0.43	1.0		ug/L			04/09/15 15:56	
1,2-Dichloroethane	<0.50	1.0		ug/L			04/09/15 15:56	
Trichloroethene	<0.48	1.0		ug/L			04/09/15 15:56	
Methylcyclohexane	<0.43	1.0		ug/L			04/09/15 15:56	
1,2-Dichloropropane	<0.67	1.0		ug/L			04/09/15 15:56	
Bromodichloromethane	<0.44	1.0		ug/L			04/09/15 15:56	
cis-1,3-Dichloropropene	<0.40	1.0		ug/L			04/09/15 15:56	
4-Methyl-2-pentanone	<2.1	10		ug/L			04/09/15 15:56	
Toluene	<0.48	1.0		ug/L			04/09/15 15:56	
trans-1,3-Dichloropropene	<0.42	1.0		ug/L			04/09/15 15:56	
1,1,2-Trichloroethane	<0.33	1.0		ug/L			04/09/15 15:56	
Tetrachloroethene	<0.74	1.0		ug/L			04/09/15 15:56	
2-Hexanone	<2.0	10		ug/L			04/09/15 15:56	
Dibromochloromethane	<0.32	1.0		ug/L			04/09/15 15:56	
1,2-Dibromoethane	<0.44	1.0		ug/L			04/09/15 15:56	
Chlorobenzene	<0.26	1.0		ug/L			04/09/15 15:56	
Ethylbenzene	<0.33	1.0		ug/L			04/09/15 15:56	
Xylenes, Total	<0.23	1.0		ug/L			04/09/15 15:56	
Styrene	<0.27	1.0		ug/L			04/09/15 15:56	
Bromoform	<0.43	1.0		ug/L			04/09/15 15:56	
Isopropylbenzene	<0.35	1.0		ug/L			04/09/15 15:56	
1,1,2,2-Tetrachloroethane	<0.62	1.0		ug/L ug/L			04/09/15 15:56	
1,1,2,2-1 etrachioroetriane 1,3-Dichlorobenzene	<0.43	1.0		ug/L ug/L			04/09/15 15:56	
1,4-Dichlorobenzene	<0.45	1.0		-			04/09/15 15:56	
				ug/L				
1,2-Dichlorobenzene	<0.37	1.0		ug/L			04/09/15 15:56	
1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene	<1.1 <2.5	5.0 5.0		ug/L ug/L			04/09/15 15:56 04/09/15 15:56	

Client Sample Results

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

TestAmerica Job ID: 680-111248-1

Lab Sample ID: 680-111248-21

Matrix: Water

Client Sample ID: MW-35

Date Collected: 03/31/15 15:12 Date Received: 04/03/15 08:30

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101	70 _ 130		04/09/15 15:56	1
1,2-Dichloroethane-d4 (Surr)	94	70 - 130		04/09/15 15:56	1
Dibromofluoromethane (Surr)	99	70 - 130		04/09/15 15:56	1
4-Bromofluorobenzene (Surr)	92	70 - 130		04/09/15 15:56	1

Client Sample ID: MW-36 Lab Sample ID: 680-111248-22

Date Collected: 03/31/15 16:05 Matrix: Water

Date Received: 04/03/15 08:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.60	1.0	0.60	ug/L			04/09/15 16:17	1
Chloromethane	<0.40	1.0	0.40	ug/L			04/09/15 16:17	1
Vinyl chloride	<0.50	1.0	0.50	ug/L			04/09/15 16:17	1
Bromomethane	<2.5	5.0	2.5	ug/L			04/09/15 16:17	1
Chloroethane	<2.5	5.0	2.5	ug/L			04/09/15 16:17	1
Trichlorofluoromethane	<0.42	1.0	0.42	ug/L			04/09/15 16:17	1
1,1-Dichloroethene	<0.36	1.0	0.36	ug/L			04/09/15 16:17	1
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36	1.0	0.36	ug/L			04/09/15 16:17	1
Acetone	<7.0	10	7.0	ug/L			04/09/15 16:17	1
Carbon disulfide	<1.0	2.0	1.0	ug/L			04/09/15 16:17	1
Methyl acetate	<1.8	5.0	1.8	ug/L			04/09/15 16:17	1
Methylene Chloride	<2.5	5.0	2.5	ug/L			04/09/15 16:17	1
trans-1,2-Dichloroethene	<0.37	1.0	0.37	ug/L			04/09/15 16:17	1
Methyl tert-butyl ether	<0.30	10	0.30	ug/L			04/09/15 16:17	1
1,1-Dichloroethane	<0.38	1.0	0.38	ug/L			04/09/15 16:17	1
cis-1,2-Dichloroethene	0.59 J	1.0	0.41	ug/L			04/09/15 16:17	1
2-Butanone	<3.4	10	3.4	ug/L			04/09/15 16:17	1
Chloroform	<0.50	1.0	0.50	ug/L			04/09/15 16:17	1
1,1,1-Trichloroethane	<0.37	1.0	0.37	ug/L			04/09/15 16:17	1
Cyclohexane	<0.39	1.0	0.39	ug/L			04/09/15 16:17	1
Carbon tetrachloride	<0.33	1.0	0.33	ug/L			04/09/15 16:17	1
Benzene	<0.43	1.0	0.43	ug/L			04/09/15 16:17	1
1,2-Dichloroethane	<0.50	1.0	0.50	ug/L			04/09/15 16:17	1
Trichloroethene	<0.48	1.0	0.48	ug/L			04/09/15 16:17	1
Methylcyclohexane	<0.43	1.0	0.43	ug/L			04/09/15 16:17	1
1,2-Dichloropropane	<0.67	1.0	0.67	ug/L			04/09/15 16:17	1
Bromodichloromethane	<0.44	1.0	0.44	ug/L			04/09/15 16:17	1
cis-1,3-Dichloropropene	<0.40	1.0	0.40	ug/L			04/09/15 16:17	1
4-Methyl-2-pentanone	<2.1	10	2.1	ug/L			04/09/15 16:17	1
Toluene	<0.48	1.0	0.48	ug/L			04/09/15 16:17	1
trans-1,3-Dichloropropene	<0.42	1.0	0.42	ug/L			04/09/15 16:17	1
1,1,2-Trichloroethane	<0.33	1.0	0.33	ug/L			04/09/15 16:17	1
Tetrachloroethene	<0.74	1.0	0.74	ug/L			04/09/15 16:17	1
2-Hexanone	<2.0	10	2.0	ug/L			04/09/15 16:17	1
Dibromochloromethane	<0.32	1.0	0.32	ug/L			04/09/15 16:17	1
1,2-Dibromoethane	<0.44	1.0	0.44	ug/L			04/09/15 16:17	1
Chlorobenzene	<0.26	1.0	0.26	ug/L			04/09/15 16:17	1
Ethylbenzene	<0.33	1.0	0.33	ug/L			04/09/15 16:17	1
Xylenes, Total	<0.23	1.0	0.23	_			04/09/15 16:17	1

TestAmerica Savannah

Page 36 of 70

2

5

6

8

9

11

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-36

Lab Sample ID: 680-111248-22

Date Collected: 03/31/15 16:05 Matrix: Water Date Received: 04/03/15 08:30

Method: 8260B - Volatile Orga Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	<0.27		1.0	0.27	ug/L			04/09/15 16:17	1
Bromoform	<0.43		1.0	0.43	ug/L			04/09/15 16:17	1
Isopropylbenzene	<0.35		1.0	0.35	ug/L			04/09/15 16:17	1
1,1,2,2-Tetrachloroethane	<0.62		1.0	0.62	ug/L			04/09/15 16:17	1
1,3-Dichlorobenzene	<0.43		1.0	0.43	ug/L			04/09/15 16:17	1
1,4-Dichlorobenzene	<0.46		1.0	0.46	ug/L			04/09/15 16:17	1
1,2-Dichlorobenzene	<0.37		1.0	0.37	ug/L			04/09/15 16:17	1
1,2-Dibromo-3-Chloropropane	<1.1		5.0	1.1	ug/L			04/09/15 16:17	1
1,2,4-Trichlorobenzene	<2.5		5.0	2.5	ug/L			04/09/15 16:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		70 - 130			-		04/09/15 16:17	1
1,2-Dichloroethane-d4 (Surr)	94		70 - 130					04/09/15 16:17	1
Dibromofluoromethane (Surr)	99		70 - 130					04/09/15 16:17	1
4-Bromofluorobenzene (Surr)	93		70 - 130					04/09/15 16:17	1

Client Sample ID: MW-37 Lab Sample ID: 680-111248-23

Date Collected: 03/31/15 12:05 Matrix: Water Date Received: 04/03/15 08:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<1.2		2.0	1.2	ug/L			04/09/15 13:48	2
Chloromethane	<0.80		2.0	0.80	ug/L			04/09/15 13:48	2
Vinyl chloride	65		2.0	1.0	ug/L			04/09/15 13:48	2
Bromomethane	<5.0		10	5.0	ug/L			04/09/15 13:48	2
Chloroethane	<5.0		10	5.0	ug/L			04/09/15 13:48	2
Trichlorofluoromethane	<0.84		2.0	0.84	ug/L			04/09/15 13:48	2
1,1-Dichloroethene	1.8	J	2.0	0.72	ug/L			04/09/15 13:48	2
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.72		2.0	0.72	ug/L			04/09/15 13:48	2
Acetone	<14		20	14	ug/L			04/09/15 13:48	2
Carbon disulfide	<2.0		4.0	2.0	ug/L			04/09/15 13:48	2
Methyl acetate	<3.6		10	3.6	ug/L			04/09/15 13:48	2
Methylene Chloride	<5.0		10	5.0	ug/L			04/09/15 13:48	2
trans-1,2-Dichloroethene	1.0	J	2.0	0.74	ug/L			04/09/15 13:48	2
Methyl tert-butyl ether	<0.60		20	0.60	ug/L			04/09/15 13:48	2
1,1-Dichloroethane	<0.76		2.0	0.76	ug/L			04/09/15 13:48	2
cis-1,2-Dichloroethene	350		2.0	0.82	ug/L			04/09/15 13:48	2
2-Butanone	<6.8		20	6.8	ug/L			04/09/15 13:48	2
Chloroform	<1.0		2.0	1.0	ug/L			04/09/15 13:48	2
1,1,1-Trichloroethane	<0.74		2.0	0.74	ug/L			04/09/15 13:48	2
Cyclohexane	<0.78		2.0	0.78	ug/L			04/09/15 13:48	2
Carbon tetrachloride	<0.66		2.0	0.66	ug/L			04/09/15 13:48	2
Benzene	6.4		2.0	0.86	ug/L			04/09/15 13:48	2
1,2-Dichloroethane	<1.0		2.0	1.0	ug/L			04/09/15 13:48	2
Trichloroethene	8.5		2.0	0.96	ug/L			04/09/15 13:48	2
Methylcyclohexane	<0.86		2.0	0.86	ug/L			04/09/15 13:48	2
1,2-Dichloropropane	<1.3		2.0	1.3	ug/L			04/09/15 13:48	2
Bromodichloromethane	<0.88		2.0	0.88	ug/L			04/09/15 13:48	2
cis-1,3-Dichloropropene	<0.80		2.0	0.80	ug/L			04/09/15 13:48	2

TestAmerica Savannah

Page 37 of 70

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-37

Lab Sample ID: 680-111248-23

Matrix: Water

Date Collected: 03/31/15 12:05 Date Received: 04/03/15 08:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methyl-2-pentanone	<4.2		20	4.2	ug/L			04/09/15 13:48	2
Toluene	<0.96		2.0	0.96	ug/L			04/09/15 13:48	2
trans-1,3-Dichloropropene	<0.84		2.0	0.84	ug/L			04/09/15 13:48	2
1,1,2-Trichloroethane	<0.66		2.0	0.66	ug/L			04/09/15 13:48	2
Tetrachloroethene	19		2.0	1.5	ug/L			04/09/15 13:48	2
2-Hexanone	<4.0		20	4.0	ug/L			04/09/15 13:48	2
Dibromochloromethane	<0.64		2.0	0.64	ug/L			04/09/15 13:48	2
1,2-Dibromoethane	<0.88		2.0	0.88	ug/L			04/09/15 13:48	2
Chlorobenzene	68		2.0	0.52	ug/L			04/09/15 13:48	2
Ethylbenzene	<0.66		2.0	0.66	ug/L			04/09/15 13:48	2
Xylenes, Total	0.77	J	2.0	0.46	ug/L			04/09/15 13:48	2
Styrene	<0.54		2.0	0.54	ug/L			04/09/15 13:48	2
Bromoform	<0.86		2.0	0.86	ug/L			04/09/15 13:48	2
Isopropylbenzene	1.1	J	2.0	0.70	ug/L			04/09/15 13:48	2
1,1,2,2-Tetrachloroethane	<1.2		2.0	1.2	ug/L			04/09/15 13:48	2
1,3-Dichlorobenzene	7.4		2.0	0.86	ug/L			04/09/15 13:48	2
1,4-Dichlorobenzene	46		2.0	0.92	ug/L			04/09/15 13:48	2
1,2-Dichlorobenzene	13		2.0	0.74	ug/L			04/09/15 13:48	2
1,2-Dibromo-3-Chloropropane	<2.2		10	2.2	ug/L			04/09/15 13:48	2
1,2,4-Trichlorobenzene	56		10	5.0	ug/L			04/09/15 13:48	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102	-	70 - 130			-		04/09/15 13:48	2
1,2-Dichloroethane-d4 (Surr)	96		70 - 130					04/09/15 13:48	2
Dibromofluoromethane (Surr)	101		70 - 130					04/09/15 13:48	2

70 - 130

Client Sample ID: PAN-MW-9

Date Collected: 04/01/15 18:58

4-Bromofluorobenzene (Surr)

Date Received: 04/03/15 08:30

Analyte	Result Qualifie	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<6.0	10	6.0	ug/L			04/09/15 13:25	10
Chloromethane	<4.0	10	4.0	ug/L			04/09/15 13:25	10
Vinyl chloride	130	10	5.0	ug/L			04/09/15 13:25	10
Bromomethane	<25	50	25	ug/L			04/09/15 13:25	10
Chloroethane	<25	50	25	ug/L			04/09/15 13:25	10
Trichlorofluoromethane	<4.2	10	4.2	ug/L			04/09/15 13:25	10
1,1-Dichloroethene	6.7 J	10	3.6	ug/L			04/09/15 13:25	10
1,1,2-Trichloro-1,2,2-trifluoroethane	<3.6	10	3.6	ug/L			04/09/15 13:25	10
Acetone	<70	100	70	ug/L			04/09/15 13:25	10
Carbon disulfide	<10	20	10	ug/L			04/09/15 13:25	10
Methyl acetate	<18	50	18	ug/L			04/09/15 13:25	10
Methylene Chloride	<25	50	25	ug/L			04/09/15 13:25	10
trans-1,2-Dichloroethene	<3.7	10	3.7	ug/L			04/09/15 13:25	10
Methyl tert-butyl ether	<3.0	100	3.0	ug/L			04/09/15 13:25	10
1,1-Dichloroethane	<3.8	10	3.8	ug/L			04/09/15 13:25	10
cis-1,2-Dichloroethene	2000	10	4.1	ug/L			04/09/15 13:25	10
2-Butanone	<34	100	34	ug/L			04/09/15 13:25	10

TestAmerica Savannah

04/09/15 13:48

Matrix: Water

Lab Sample ID: 680-111248-24

Page 38 of 70

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Client Sample ID: PAN-MW-9

Lab Sample ID: 680-111248-24

Date Collected: 04/01/15 18:58 Matrix: Water Date Received: 04/03/15 08:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	<5.0	10	5.0	ug/L			04/09/15 13:25	10
1,1,1-Trichloroethane	<3.7	10	3.7	ug/L			04/09/15 13:25	10
Cyclohexane	<3.9	10	3.9	ug/L			04/09/15 13:25	10
Carbon tetrachloride	<3.3	10	3.3	ug/L			04/09/15 13:25	10
Benzene	5.2 J	10	4.3	ug/L			04/09/15 13:25	10
1,2-Dichloroethane	<5.0	10	5.0	ug/L			04/09/15 13:25	10
Trichloroethene	4.9 J	10	4.8	ug/L			04/09/15 13:25	10
Methylcyclohexane	<4.3	10	4.3	ug/L			04/09/15 13:25	10
1,2-Dichloropropane	<6.7	10	6.7	ug/L			04/09/15 13:25	10
Bromodichloromethane	<4.4	10	4.4	ug/L			04/09/15 13:25	10
cis-1,3-Dichloropropene	<4.0	10	4.0	ug/L			04/09/15 13:25	10
4-Methyl-2-pentanone	<21	100	21	ug/L			04/09/15 13:25	10
Toluene	<4.8	10	4.8	ug/L			04/09/15 13:25	10
trans-1,3-Dichloropropene	<4.2	10	4.2	ug/L			04/09/15 13:25	10
1,1,2-Trichloroethane	<3.3	10	3.3	ug/L			04/09/15 13:25	10
Tetrachloroethene	<7.4	10	7.4	ug/L			04/09/15 13:25	10
2-Hexanone	<20	100	20	ug/L			04/09/15 13:25	10
Dibromochloromethane	<3.2	10	3.2	ug/L			04/09/15 13:25	10
1,2-Dibromoethane	<4.4	10	4.4	ug/L			04/09/15 13:25	10
Chlorobenzene	33	10	2.6	ug/L			04/09/15 13:25	10
Ethylbenzene	580	10	3.3	ug/L			04/09/15 13:25	10
Xylenes, Total	1400	10	2.3	ug/L			04/09/15 13:25	10
Styrene	<2.7	10	2.7	ug/L			04/09/15 13:25	10
Bromoform	<4.3	10	4.3	ug/L			04/09/15 13:25	10
Isopropylbenzene	32	10	3.5	ug/L			04/09/15 13:25	10
1,1,2,2-Tetrachloroethane	<6.2	10	6.2	ug/L			04/09/15 13:25	10
1,3-Dichlorobenzene	8.5 J	10	4.3	ug/L			04/09/15 13:25	10
1,4-Dichlorobenzene	28	10	4.6	ug/L			04/09/15 13:25	10
1,2-Dichlorobenzene	5.3 J	10	3.7	ug/L			04/09/15 13:25	10
1,2-Dibromo-3-Chloropropane	<11	50	11	ug/L			04/09/15 13:25	10
1,2,4-Trichlorobenzene	<25	50	25	ug/L			04/09/15 13:25	10
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103	70 - 130			_		04/09/15 13:25	10
1,2-Dichloroethane-d4 (Surr)	96	70 - 130					04/09/15 13:25	10
Dibromofluoromethane (Surr)	104	70 - 130					04/09/15 13:25	10
4-Bromofluorobenzene (Surr)	93	70 - 130					04/09/15 13:25	10

Client Sample ID: PAN-MW-10

Lab Sample ID: 680-111248-25 Date Collected: 04/01/15 09:20 Matrix: Water

Date Received: 04/03/15 08:30

Analyte	Result Qualifie	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.60	1.0	0.60	ug/L			04/09/15 16:39	1
Chloromethane	<0.40	1.0	0.40	ug/L			04/09/15 16:39	1
Vinyl chloride	<0.50	1.0	0.50	ug/L			04/09/15 16:39	1
Bromomethane	<2.5	5.0	2.5	ug/L			04/09/15 16:39	1
Chloroethane	<2.5	5.0	2.5	ug/L			04/09/15 16:39	1
Trichlorofluoromethane	<0.42	1.0	0.42	ug/L			04/09/15 16:39	1

TestAmerica Savannah

Page 39 of 70

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Client Sample ID: PAN-MW-10

Lab Sample ID: 680-111248-25

Matrix: Water

Date Collected: 04/01/15 09:20 Date Received: 04/03/15 08:30

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

4-Bromofluorobenzene (Surr)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	<0.36	1.0	0.36	ug/L			04/09/15 16:39	1
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36	1.0	0.36	ug/L			04/09/15 16:39	1
Acetone	<7.0	10	7.0	ug/L			04/09/15 16:39	1
Carbon disulfide	<1.0	2.0	1.0	ug/L			04/09/15 16:39	1
Methyl acetate	<1.8	5.0	1.8	ug/L			04/09/15 16:39	1
Methylene Chloride	<2.5	5.0	2.5	ug/L			04/09/15 16:39	1
trans-1,2-Dichloroethene	<0.37	1.0	0.37	ug/L			04/09/15 16:39	1
Methyl tert-butyl ether	<0.30	10	0.30	ug/L			04/09/15 16:39	1
1,1-Dichloroethane	<0.38	1.0	0.38	ug/L			04/09/15 16:39	1
cis-1,2-Dichloroethene	<0.41	1.0	0.41	ug/L			04/09/15 16:39	1
2-Butanone	<3.4	10	3.4	ug/L			04/09/15 16:39	1
Chloroform	<0.50	1.0	0.50	ug/L			04/09/15 16:39	1
1,1,1-Trichloroethane	<0.37	1.0	0.37	ug/L			04/09/15 16:39	1
Cyclohexane	<0.39	1.0	0.39	ug/L			04/09/15 16:39	1
Carbon tetrachloride	<0.33	1.0	0.33	ug/L			04/09/15 16:39	1
Benzene	<0.43	1.0	0.43	ug/L			04/09/15 16:39	1
1,2-Dichloroethane	<0.50	1.0	0.50	ug/L			04/09/15 16:39	1
Trichloroethene	<0.48	1.0	0.48	ug/L			04/09/15 16:39	1
Methylcyclohexane	<0.43	1.0	0.43	ug/L			04/09/15 16:39	1
1,2-Dichloropropane	<0.67	1.0	0.67	ug/L			04/09/15 16:39	1
Bromodichloromethane	<0.44	1.0	0.44	ug/L			04/09/15 16:39	1
cis-1,3-Dichloropropene	<0.40	1.0	0.40	ug/L			04/09/15 16:39	1
4-Methyl-2-pentanone	<2.1	10	2.1	ug/L			04/09/15 16:39	1
Toluene	<0.48	1.0	0.48	ug/L			04/09/15 16:39	1
trans-1,3-Dichloropropene	<0.42	1.0	0.42	ug/L			04/09/15 16:39	1
1,1,2-Trichloroethane	<0.33	1.0	0.33	ug/L			04/09/15 16:39	1
Tetrachloroethene	<0.74	1.0	0.74	ug/L			04/09/15 16:39	1
2-Hexanone	<2.0	10	2.0	ug/L			04/09/15 16:39	1
Dibromochloromethane	<0.32	1.0	0.32	ug/L			04/09/15 16:39	1
1,2-Dibromoethane	<0.44	1.0	0.44	ug/L			04/09/15 16:39	1
Chlorobenzene	<0.26	1.0	0.26	ug/L			04/09/15 16:39	1
Ethylbenzene	<0.33	1.0	0.33	ug/L			04/09/15 16:39	1
Xylenes, Total	<0.23	1.0	0.23	ug/L			04/09/15 16:39	1
Styrene	<0.27	1.0	0.27	ug/L			04/09/15 16:39	1
Bromoform	<0.43	1.0	0.43	ug/L			04/09/15 16:39	1
Isopropylbenzene	<0.35	1.0	0.35	ug/L			04/09/15 16:39	1
1,1,2,2-Tetrachloroethane	<0.62	1.0	0.62	ug/L			04/09/15 16:39	1
1,3-Dichlorobenzene	<0.43	1.0	0.43	ug/L			04/09/15 16:39	1
1,4-Dichlorobenzene	<0.46	1.0	0.46	ug/L			04/09/15 16:39	1
1,2-Dichlorobenzene	<0.37	1.0	0.37	ug/L			04/09/15 16:39	1
1,2-Dibromo-3-Chloropropane	<1.1	5.0		ug/L			04/09/15 16:39	1
1,2,4-Trichlorobenzene	<2.5	5.0	2.5	ug/L			04/09/15 16:39	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

Γ <u>ρ</u> ctΛ	marica	Savannal	^

04/09/15 16:39

04/09/15 16:39

04/09/15 16:39

04/09/15 16:39

70 - 130

70 - 130

70 - 130

70 - 130

100

92

98

92

5

6

8

10

40

Client Sample Results

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

TestAmerica Job ID: 680-111248-1

Lab Sample ID: 680-111248-26

Matrix: Water

Client Sample ID: Trip Blank

Date Collected: 03/30/15 00:00 Date Received: 04/03/15 08:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.60	1.0	0.60	ug/L			04/09/15 11:16	-
Chloromethane	<0.40	1.0	0.40	ug/L			04/09/15 11:16	
Vinyl chloride	<0.50	1.0	0.50	ug/L			04/09/15 11:16	
Bromomethane	<2.5	5.0	2.5	ug/L			04/09/15 11:16	
Chloroethane	<2.5	5.0	2.5	ug/L			04/09/15 11:16	
Trichlorofluoromethane	<0.42	1.0		ug/L			04/09/15 11:16	
1,1-Dichloroethene	<0.36	1.0		ug/L			04/09/15 11:16	
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36	1.0		ug/L			04/09/15 11:16	
Acetone	<7.0	10		ug/L			04/09/15 11:16	
Carbon disulfide	<1.0	2.0		ug/L			04/09/15 11:16	
Methyl acetate	<1.8	5.0		ug/L			04/09/15 11:16	
Methylene Chloride	<2.5	5.0		ug/L			04/09/15 11:16	
trans-1,2-Dichloroethene	<0.37	1.0		ug/L			04/09/15 11:16	
Methyl tert-butyl ether	<0.30	10		ug/L			04/09/15 11:16	
1,1-Dichloroethane	<0.38	1.0		ug/L			04/09/15 11:16	
cis-1,2-Dichloroethene	<0.41	1.0		ug/L			04/09/15 11:16	
2-Butanone	<3.4	10		ug/L			04/09/15 11:16	
Chloroform	<0.50	1.0		ug/L			04/09/15 11:16	
1,1,1-Trichloroethane	<0.37	1.0		ug/L			04/09/15 11:16	
Cyclohexane	<0.39	1.0		ug/L			04/09/15 11:16	
Carbon tetrachloride	<0.33	1.0		ug/L			04/09/15 11:16	
Benzene	<0.43	1.0		ug/L			04/09/15 11:16	
1,2-Dichloroethane	<0.50	1.0		ug/L			04/09/15 11:16	
Trichloroethene	<0.48	1.0					04/09/15 11:16	
				ug/L				
Methylcyclohexane	<0.43	1.0		ug/L			04/09/15 11:16	
1,2-Dichloropropane	<0.67	1.0		ug/L			04/09/15 11:16	
Bromodichloromethane	<0.44	1.0		ug/L			04/09/15 11:16	
cis-1,3-Dichloropropene	<0.40	1.0		ug/L			04/09/15 11:16	
4-Methyl-2-pentanone	<2.1	10		ug/L			04/09/15 11:16	
Toluene	<0.48	1.0		ug/L			04/09/15 11:16	
trans-1,3-Dichloropropene	<0.42	1.0		ug/L			04/09/15 11:16	
1,1,2-Trichloroethane	<0.33	1.0		ug/L			04/09/15 11:16	
Tetrachloroethene	<0.74	1.0		ug/L			04/09/15 11:16	
2-Hexanone	<2.0	10		ug/L			04/09/15 11:16	
Dibromochloromethane	<0.32	1.0		ug/L			04/09/15 11:16	
1,2-Dibromoethane	<0.44	1.0		ug/L			04/09/15 11:16	
Chlorobenzene	<0.26	1.0		ug/L			04/09/15 11:16	
Ethylbenzene	<0.33	1.0		ug/L			04/09/15 11:16	
Xylenes, Total	<0.23	1.0		ug/L			04/09/15 11:16	
Styrene	<0.27	1.0		ug/L			04/09/15 11:16	
Bromoform	<0.43	1.0		ug/L			04/09/15 11:16	
Isopropylbenzene	<0.35	1.0		ug/L			04/09/15 11:16	
1,1,2,2-Tetrachloroethane	<0.62	1.0		ug/L			04/09/15 11:16	
1,3-Dichlorobenzene	<0.43	1.0	0.43	ug/L			04/09/15 11:16	
1,4-Dichlorobenzene	<0.46	1.0	0.46	ug/L			04/09/15 11:16	
1,2-Dichlorobenzene	<0.37	1.0	0.37	ug/L			04/09/15 11:16	
1,2-Dibromo-3-Chloropropane	<1.1	5.0	1.1	ug/L			04/09/15 11:16	
1,2,4-Trichlorobenzene	<2.5	5.0	2.5	ug/L			04/09/15 11:16	

TestAmerica Savannah

3

7

8

10

11

Client Sample Results

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

TestAmerica Job ID: 680-111248-1

Client Sample ID: Trip Blank Lab Sample ID: 680-111248-26 Date Collected: 03/30/15 00:00

Matrix: Water

Date Received: 04/03/15 08:30

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		70 - 130	_		04/09/15 11:16	1
1,2-Dichloroethane-d4 (Surr)	92		70 - 130			04/09/15 11:16	1
Dibromofluoromethane (Surr)	98		70 - 130			04/09/15 11:16	1
4-Bromofluorobenzene (Surr)	93		70 - 130			04/09/15 11:16	1

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Su	rogate Recover	ry (Acceptance Limit
		TOL	12DCE	DBFM	BFB	iy (Acceptance Linit
ab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	(70-130)	
80-111248-1	IW-1R	101	93	98	92	
0-111248-2	IW-18	103	93	106	99	
)-111248-3	LAW-PZ-8R	101	93	98	92	
-111248-4	MW-14	102	91	98	94	
-111248-5	MW-16	103	95	106	96	
-111248-6	MW-17R	101	91	99	95	
)-111248-7	MW-18R	101	93	98	92	
0-111248-8	MW-19	101	91	99	95	
-111248-9	MW-23	101	93	99	93	
-111248-10	MW-24R	105	93	105	98	
0-111248-11	MW-25	100	93	100	93	
0-111248-12	MW-26R	105	93	106	96	
-111248-13	MW-27	101	92	99	93	
-111248-14	MW-28	102	92	98	92	
0-111248-15	MW-29	100	93	99	91	
)-111248-16	MW-30	101	91	98	95	
)-111248-17	MW-31	101	93	99	93	
-111248-18	MW-32	105	96	106	100	
-111248-19	MW-33	103	94	104	99	
-111248-20	MW-34	101	92	97	93	
-111248-21	MW-35	101	94	99	92	
-111248-22	MW-36	101	94	99	93	
-111248-23	MW-37	102	96	101	94	
0-111248-24	PAN-MW-9	103	96	104	93	
-111248-25	PAN-MW-10	100	92	98	92	
)-111248-26	Trip Blank	100	92	98	93	
680-378017/4	Lab Control Sample	95	98	102	94	
S 680-378019/4	Lab Control Sample	104	96	104	97	
S 680-378022/4	Lab Control Sample	98	95	99	97	
S 680-378174/4	Lab Control Sample	103	99	105	97	
SD 680-378017/5	Lab Control Sample Dup	95	100	103	95	
SD 680-378019/5	Lab Control Sample Dup	107	96	108	98	
SD 680-378022/5	Lab Control Sample Dup	100	94	100	97	
SD 680-378174/5	Lab Control Sample Dup	107	94	104	98	
B 680-378017/9	Method Blank	103	97	104	95	
B 680-378019/9	Method Blank	106	97	106	100	
B 680-378022/9	Method Blank	101	93	99	94	
B 680-378174/9	Method Blank	106	94	106	98	

Surrogate Legend

TOL = Toluene-d8 (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

DBFM = Dibromofluoromethane (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TestAmerica Savannah

2

5

Ę

0

10

4.0

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-378017/9

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	<0.60		1.0	0.60	ug/L			04/09/15 11:09	
Chloromethane	<0.40		1.0	0.40	ug/L			04/09/15 11:09	
Vinyl chloride	<0.50		1.0	0.50	ug/L			04/09/15 11:09	
Bromomethane	<2.5		5.0	2.5	ug/L			04/09/15 11:09	
Chloroethane	<2.5		5.0	2.5	ug/L			04/09/15 11:09	
Trichlorofluoromethane	<0.42		1.0	0.42	ug/L			04/09/15 11:09	
1,1-Dichloroethene	<0.36		1.0	0.36	ug/L			04/09/15 11:09	
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36		1.0	0.36	ug/L			04/09/15 11:09	
Acetone	<7.0		10	7.0	ug/L			04/09/15 11:09	
Carbon disulfide	<1.0		2.0	1.0	ug/L			04/09/15 11:09	
Methyl acetate	<1.8		5.0	1.8	ug/L			04/09/15 11:09	
Methylene Chloride	<2.5		5.0	2.5	ug/L			04/09/15 11:09	
trans-1,2-Dichloroethene	<0.37		1.0	0.37	ug/L			04/09/15 11:09	
Methyl tert-butyl ether	<0.30		10	0.30	ug/L			04/09/15 11:09	
1,1-Dichloroethane	<0.38		1.0	0.38	ug/L			04/09/15 11:09	
cis-1,2-Dichloroethene	<0.41		1.0	0.41	ug/L			04/09/15 11:09	
2-Butanone	<3.4		10	3.4	ug/L			04/09/15 11:09	
Chloroform	<0.50		1.0	0.50	ug/L			04/09/15 11:09	
1,1,1-Trichloroethane	<0.37		1.0	0.37	ug/L			04/09/15 11:09	
Cyclohexane	<0.39		1.0		ug/L			04/09/15 11:09	
Carbon tetrachloride	<0.33		1.0	0.33	-			04/09/15 11:09	
Benzene	<0.43		1.0		ug/L			04/09/15 11:09	
1,2-Dichloroethane	<0.50		1.0	0.50	-			04/09/15 11:09	
Trichloroethene	<0.48		1.0	0.48				04/09/15 11:09	
Methylcyclohexane	<0.43		1.0	0.43				04/09/15 11:09	
1,2-Dichloropropane	<0.67		1.0	0.67				04/09/15 11:09	
Bromodichloromethane	<0.44		1.0	0.44	-			04/09/15 11:09	
cis-1,3-Dichloropropene	<0.40		1.0		ug/L			04/09/15 11:09	
4-Methyl-2-pentanone	<2.1		10	2.1	ug/L			04/09/15 11:09	
Toluene	<0.48		1.0	0.48	_			04/09/15 11:09	
trans-1,3-Dichloropropene	<0.42		1.0	0.42				04/09/15 11:09	
1,1,2-Trichloroethane	<0.33		1.0		ug/L			04/09/15 11:09	
Tetrachloroethene	<0.74		1.0		ug/L			04/09/15 11:09	
2-Hexanone	<2.0		10		ug/L			04/09/15 11:09	
Dibromochloromethane	<0.32		1.0		ug/L			04/09/15 11:09	
1,2-Dibromoethane	<0.44		1.0	0.44	•			04/09/15 11:09	
Chlorobenzene	<0.26		1.0	0.26				04/09/15 11:09	
Ethylbenzene	<0.33		1.0		ug/L			04/09/15 11:09	
Xylenes, Total	<0.23		1.0	0.23				04/09/15 11:09	
Styrene	<0.27		1.0	0.27				04/09/15 11:09	
Bromoform	<0.43		1.0	0.43	-			04/09/15 11:09	
	<0.45				-				
Isopropylbenzene			1.0	0.35				04/09/15 11:09	
1,1,2,2-Tetrachloroethane 1,3-Dichlorobenzene	<0.62		1.0	0.62				04/09/15 11:09	
*	<0.43		1.0	0.43	-			04/09/15 11:09	
1,4-Dichlorobenzene	<0.46		1.0		ug/L			04/09/15 11:09	
1,2-Dichlorobenzene	<0.37		1.0	0.37				04/09/15 11:09	
1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene	<1.1 <2.5		5.0 5.0		ug/L ug/L			04/09/15 11:09 04/09/15 11:09	

TestAmerica Savannah

4/10/2015

Page 44 of 70

6

3

5

7

q

10

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-378017/9

Matrix: Water

Analysis Batch: 378017

Client Sample ID: Method Blank

Prep Type: Total/NA

	IVIB IVIB				
Surrogate	%Recovery Qual	ifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103	70 - 130		04/09/15 11:09	1
1,2-Dichloroethane-d4 (Surr)	97	70 - 130		04/09/15 11:09	1
Dibromofluoromethane (Surr)	104	70 - 130		04/09/15 11:09	1
4-Bromofluorobenzene (Surr)	95	70 - 130		04/09/15 11:09	1

Lab Sample ID: LCS 680-378017/4

Matrix: Water

Analysis Batch: 378017

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	50.0	45.9		ug/L		92	51 - 140	
Chloromethane	50.0	45.0		ug/L		90	63 - 126	
Vinyl chloride	50.0	40.3		ug/L		81	68 - 132	
Bromomethane	50.0	44.2		ug/L		88	20 - 180	
Chloroethane	50.0	40.6		ug/L		81	50 - 151	
Trichlorofluoromethane	50.0	48.0		ug/L		96	58 - 145	
1,1-Dichloroethene	50.0	42.4		ug/L		85	74 - 125	
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	47.0		ug/L		94	65 - 131	
ne								
Acetone	250	223		ug/L		89	60 - 154	
Carbon disulfide	50.0	41.6		ug/L		83	73 - 127	
Methyl acetate	250	276		ug/L		111	66 - 134	
Methylene Chloride	50.0	46.4		ug/L		93	76 - 129	
trans-1,2-Dichloroethene	50.0	46.5		ug/L		93	78 - 123	
Methyl tert-butyl ether	50.0	47.4		ug/L		95	74 - 135	
1,1-Dichloroethane	50.0	46.1		ug/L		92	80 - 120	
cis-1,2-Dichloroethene	50.0	49.2		ug/L		98	80 - 122	
2-Butanone	250	269		ug/L		107	75 - 133	
Chloroform	50.0	48.7		ug/L		97	79 - 122	
1,1,1-Trichloroethane	50.0	45.3		ug/L		91	74 - 128	
Cyclohexane	50.0	43.5		ug/L		87	69 - 130	
Carbon tetrachloride	50.0	44.8		ug/L		90	75 - 130	
Benzene	50.0	47.2		ug/L		94	73 - 131	
1,2-Dichloroethane	50.0	48.4		ug/L		97	75 - 130	
Trichloroethene	50.0	46.7		ug/L		93	80 - 123	
Methylcyclohexane	50.0	43.9		ug/L		88	75 ₋ 127	
1,2-Dichloropropane	50.0	50.5		ug/L		101	80 - 123	
Bromodichloromethane	50.0	49.2		ug/L		98	77 - 129	
cis-1,3-Dichloropropene	50.0	51.0		ug/L		102	80 - 133	
4-Methyl-2-pentanone	250	252		ug/L		101	75 - 135	
Toluene	50.0	44.9		ug/L		90	80 - 122	
trans-1,3-Dichloropropene	50.0	53.2		ug/L		106	74 - 140	
1,1,2-Trichloroethane	50.0	50.3		ug/L		101	79 ₋ 125	
Tetrachloroethene	50.0	46.8		ug/L		94	77 - 123	
2-Hexanone	250	235		ug/L		94	70 - 141	
Dibromochloromethane	50.0	52.2		ug/L		104	71 - 136	
1,2-Dibromoethane	50.0	50.7		ug/L		101	77 - 131	
Chlorobenzene	50.0	49.6		ug/L		99	80 - 120	

TestAmerica Savannah

4/10/2015

Page 45 of 70

Client: Environmental International Corporation

Project/Site: VoPak, Savannah/390020

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-378017/4

Matrix: Water

Analysis Batch: 378017

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	50.0	48.2		ug/L		96	80 - 120	
Xylenes, Total	100	94.0		ug/L		94	80 _ 120	
Styrene	50.0	47.3		ug/L		95	80 _ 122	
Bromoform	50.0	55.1		ug/L		110	69 - 135	
Isopropylbenzene	50.0	48.3		ug/L		97	80 _ 120	
1,1,2,2-Tetrachloroethane	50.0	55.0		ug/L		110	72 - 128	
1,3-Dichlorobenzene	50.0	47.4		ug/L		95	80 _ 120	
1,4-Dichlorobenzene	50.0	47.8		ug/L		96	80 _ 120	
1,2-Dichlorobenzene	50.0	48.4		ug/L		97	80 - 120	
1,2-Dibromo-3-Chloropropane	50.0	51.4		ug/L		103	59 - 141	
1,2,4-Trichlorobenzene	50.0	47.7		ug/L		95	77 ₋ 131	

LCS LCS

Surrogate %Reco		Qualifier	Limits		
Toluene-d8 (Surr)	95		70 - 130		
1,2-Dichloroethane-d4 (Surr)	98		70 - 130		
Dibromofluoromethane (Surr)	102		70 - 130		
4-Bromofluorobenzene (Surr)	94		70 - 130		

Lab Sample ID: LCSD 680-378017/5

Matrix: Water

Analysis Batch: 378017

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	50.0	45.1	ug/L		90	51 - 140	2	40
Chloromethane	50.0	45.4	ug/L		91	63 - 126	1	30
Vinyl chloride	50.0	40.0	ug/L		80	68 - 132	1	30
Bromomethane	50.0	43.4	ug/L		87	20 - 180	2	40
Chloroethane	50.0	39.8	ug/L		80	50 - 151	2	30
Trichlorofluoromethane	50.0	47.5	ug/L		95	58 - 145	1	30
1,1-Dichloroethene	50.0	41.8	ug/L		84	74 - 125	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	46.4	ug/L		93	65 - 131	1	30
ne Acetone	250	231	ug/L		92	60 - 154	4	40
Carbon disulfide	50.0	41.6	ug/L		83	73 _ 127	0	20
Methyl acetate	250	287	ug/L		115	66 - 134	4	30
Methylene Chloride	50.0	46.9	ug/L		94	76 - 129	1	20
trans-1,2-Dichloroethene	50.0	46.6	ug/L		93	78 - 123	0	20
Methyl tert-butyl ether	50.0	48.0	ug/L		96	74 - 135	1	20
1,1-Dichloroethane	50.0	45.8	ug/L		92	80 - 120	1	20
cis-1,2-Dichloroethene	50.0	48.8	ug/L		98	80 - 122	1	20
2-Butanone	250	271	ug/L		108	75 - 133	1	30
Chloroform	50.0	47.6	ug/L		95	79 _ 122	2	20
1,1,1-Trichloroethane	50.0	45.1	ug/L		90	74 - 128	0	20
Cyclohexane	50.0	43.4	ug/L		87	69 - 130	0	30
Carbon tetrachloride	50.0	44.1	ug/L		88	75 - 130	2	20
Benzene	50.0	47.5	ug/L		95	73 _ 131	1	30
1,2-Dichloroethane	50.0	49.4	ug/L		99	75 - 130	2	20
Trichloroethene	50.0	46.2	ug/L		92	80 - 123	1	20

TestAmerica Savannah

Page 46 of 70

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-378017/5

Matrix: Water

Analysis Batch: 378017

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Methylcyclohexane	50.0	43.6		ug/L		87	75 - 127	1	30	
1,2-Dichloropropane	50.0	51.4		ug/L		103	80 - 123	2	20	
Bromodichloromethane	50.0	49.8		ug/L		100	77 - 129	1	20	
cis-1,3-Dichloropropene	50.0	51.7		ug/L		103	80 - 133	1	20	
4-Methyl-2-pentanone	250	259		ug/L		104	75 - 135	3	30	
Toluene	50.0	45.3		ug/L		91	80 - 122	1	20	
trans-1,3-Dichloropropene	50.0	53.7		ug/L		107	74 - 140	1	20	
1,1,2-Trichloroethane	50.0	51.1		ug/L		102	79 - 125	2	20	
Tetrachloroethene	50.0	46.4		ug/L		93	77 - 123	1	20	
2-Hexanone	250	240		ug/L		96	70 - 141	2	40	
Dibromochloromethane	50.0	52.5		ug/L		105	71 - 136	1	20	
1,2-Dibromoethane	50.0	52.1		ug/L		104	77 - 131	3	30	
Chlorobenzene	50.0	49.3		ug/L		99	80 - 120	1	20	
Ethylbenzene	50.0	47.5		ug/L		95	80 - 120	1	20	
Xylenes, Total	100	93.4		ug/L		93	80 - 120	1	20	
Styrene	50.0	47.2		ug/L		94	80 - 122	0	20	
Bromoform	50.0	55.5		ug/L		111	69 - 135	1	20	
Isopropylbenzene	50.0	48.2		ug/L		96	80 - 120	0	20	
1,1,2,2-Tetrachloroethane	50.0	55.7		ug/L		111	72 - 128	1	20	
1,3-Dichlorobenzene	50.0	48.3		ug/L		97	80 - 120	2	20	
1,4-Dichlorobenzene	50.0	48.1		ug/L		96	80 - 120	0	20	
1,2-Dichlorobenzene	50.0	48.8		ug/L		98	80 - 120	1	20	
1,2-Dibromo-3-Chloropropane	50.0	52.9		ug/L		106	59 - 141	3	30	
1,2,4-Trichlorobenzene	50.0	48.6		ug/L		97	77 - 131	2	20	

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	95		70 - 130
1,2-Dichloroethane-d4 (Surr)	100		70 - 130
Dibromofluoromethane (Surr)	103		70 - 130
4-Bromofluorobenzene (Surr)	95		70 - 130

Lab Sample ID: MB 680-378019/9

Matrix: Water

Analysis Batch: 378019

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.60		1.0	0.60	ug/L			04/09/15 10:42	1
Chloromethane	<0.40		1.0	0.40	ug/L			04/09/15 10:42	1
Vinyl chloride	<0.50		1.0	0.50	ug/L			04/09/15 10:42	1
Bromomethane	<2.5		5.0	2.5	ug/L			04/09/15 10:42	1
Chloroethane	<2.5		5.0	2.5	ug/L			04/09/15 10:42	1
Trichlorofluoromethane	<0.42		1.0	0.42	ug/L			04/09/15 10:42	1
1,1-Dichloroethene	<0.36		1.0	0.36	ug/L			04/09/15 10:42	1
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36		1.0	0.36	ug/L			04/09/15 10:42	1
Acetone	<7.0		10	7.0	ug/L			04/09/15 10:42	1
Carbon disulfide	<1.0		2.0	1.0	ug/L			04/09/15 10:42	1
Methyl acetate	<1.8		5.0	1.8	ug/L			04/09/15 10:42	1
Methylene Chloride	<2.5		5.0	2.5	ug/L			04/09/15 10:42	1

TestAmerica Savannah

Page 47 of 70

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-378019/9

Matrix: Water

Analysis Batch: 378019

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL MDL Unit Prepared Dil Fac Analyte D Analyzed <0.37 trans-1,2-Dichloroethene 1.0 0.37 ug/L 04/09/15 10:42 Methyl tert-butyl ether <0.30 10 0.30 ug/L 04/09/15 10:42 1,1-Dichloroethane < 0.38 1.0 0.38 ug/L 04/09/15 10:42 cis-1,2-Dichloroethene < 0.41 1.0 0.41 ug/L 04/09/15 10:42 10 2-Butanone <34 3.4 ug/L 04/09/15 10:42 Chloroform <0.50 1.0 04/09/15 10:42 0.50 ug/L 1,1,1-Trichloroethane < 0.37 04/09/15 10:42 1.0 0.37 ug/L Cyclohexane < 0.39 1.0 0.39 ug/L 04/09/15 10:42 Carbon tetrachloride < 0.33 1.0 0.33 ug/L 04/09/15 10:42 Benzene < 0.43 1.0 0.43 ug/L 04/09/15 10:42 1,2-Dichloroethane < 0.50 1.0 0.50 ug/L 04/09/15 10:42 Trichloroethene <0.48 1.0 0.48 ug/L 04/09/15 10:42 Methylcyclohexane < 0.43 1.0 0.43 ug/L 04/09/15 10:42 1,2-Dichloropropane < 0.67 1.0 0.67 ug/L 04/09/15 10:42 Bromodichloromethane <0.44 1.0 0.44 ug/L 04/09/15 10:42 cis-1,3-Dichloropropene <0.40 1.0 0.40 ug/L 04/09/15 10:42 4-Methyl-2-pentanone <2.1 10 2.1 ug/L 04/09/15 10:42 Toluene < 0.48 1.0 0.48 ug/L 04/09/15 10:42 <0.42 1.0 0.42 ug/L 04/09/15 10:42 trans-1,3-Dichloropropene 1,1,2-Trichloroethane < 0.33 1.0 0.33 ug/L 04/09/15 10:42 Tetrachloroethene <0.74 1.0 0.74 ug/L 04/09/15 10:42 10 2-Hexanone < 2.0 2.0 ug/L 04/09/15 10:42 Dibromochloromethane < 0.32 1.0 0.32 ug/L 04/09/15 10:42 1,2-Dibromoethane <0.44 1.0 0.44 ug/L 04/09/15 10:42 Chlorobenzene <0.26 1.0 0.26 ug/L 04/09/15 10:42 Ethylbenzene < 0.33 1.0 0.33 ug/L 04/09/15 10:42 Xylenes, Total < 0.23 1.0 0.23 ug/L 04/09/15 10:42 <0.27 Styrene 1.0 0.27 ug/L 04/09/15 10:42 Bromoform < 0.43 1.0 0.43 ug/L 04/09/15 10:42 Isopropylbenzene < 0.35 1.0 0.35 ug/L 04/09/15 10:42 1,1,2,2-Tetrachloroethane < 0.62 1.0 0.62 ug/L 04/09/15 10:42 1,3-Dichlorobenzene <0.43 1.0 0.43 ug/L 04/09/15 10:42 1.4-Dichlorobenzene < 0.46 1.0 0.46 ug/L 04/09/15 10:42 1,2-Dichlorobenzene < 0.37 1.0 0.37 ug/L 04/09/15 10:42 1,2-Dibromo-3-Chloropropane <1.1 5.0 04/09/15 10:42 1.1 ug/L 1,2,4-Trichlorobenzene <2.5 5.0 2.5 ug/L 04/09/15 10:42

ИВ	MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		70 - 130		04/09/15 10:42	1
1,2-Dichloroethane-d4 (Surr)	97		70 - 130		04/09/15 10:42	1
Dibromofluoromethane (Surr)	106		70 - 130		04/09/15 10:42	1
4-Bromofluorobenzene (Surr)	100		70 - 130		04/09/15 10:42	1

TestAmerica Savannah

3

6

8

46

11

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-37801	9/4
------------------------------	-----

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	50.0	49.1		ug/L		98	51 - 140	
Chloromethane	50.0	47.3		ug/L		95	63 _ 126	
Vinyl chloride	50.0	58.4		ug/L		117	68 - 132	
Bromomethane	50.0	48.2		ug/L		96	20 _ 180	
Chloroethane	50.0	53.1		ug/L		106	50 - 151	
Trichlorofluoromethane	50.0	51.9		ug/L		104	58 ₋ 145	
1,1-Dichloroethene	50.0	53.2		ug/L		106	74 - 125	
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	55.6		ug/L		111	65 - 131	
ne								
Acetone	250	249		ug/L		99	60 - 154	
Carbon disulfide	50.0	52.8		ug/L		106	73 _ 127	
Methyl acetate	250	251		ug/L		100	66 - 134	
Methylene Chloride	50.0	53.7		ug/L		107	76 - 129	
trans-1,2-Dichloroethene	50.0	51.6		ug/L		103	78 - 123	
Methyl tert-butyl ether	50.0	50.7		ug/L		101	74 - 135	
1,1-Dichloroethane	50.0	53.3		ug/L		107	80 - 120	
cis-1,2-Dichloroethene	50.0	50.9		ug/L		102	80 - 122	
2-Butanone	250	240		ug/L		96	75 _ 133	
Chloroform	50.0	52.0		ug/L		104	79 _ 122	
1,1,1-Trichloroethane	50.0	52.1		ug/L		104	74 - 128	
Cyclohexane	50.0	52.7		ug/L		105	69 - 130	
Carbon tetrachloride	50.0	52.8		ug/L		106	75 - 130	
Benzene	50.0	51.4		ug/L		103	73 _ 131	
1,2-Dichloroethane	50.0	49.5		ug/L		99	75 _ 130	
Trichloroethene	50.0	50.4		ug/L		101	80 - 123	
Methylcyclohexane	50.0	55.0		ug/L		110	75 - 127	
1,2-Dichloropropane	50.0	51.5		ug/L		103	80 - 123	
Bromodichloromethane	50.0	51.0		ug/L		102	77 ₋ 129	
cis-1,3-Dichloropropene	50.0	53.0		ug/L		106	80 - 133	
4-Methyl-2-pentanone	250	247		ug/L		99	75 ₋ 135	
Toluene	50.0	50.7		ug/L		101	80 - 122	
trans-1,3-Dichloropropene	50.0	52.3		ug/L		105	74 - 140	
1,1,2-Trichloroethane	50.0	52.5		ug/L		105	79 ₋ 125	
Tetrachloroethene	50.0	52.2		ug/L		104	77 - 123	
2-Hexanone	250	248		ug/L		99	70 _ 141	
Dibromochloromethane	50.0	52.3		ug/L		105	71 - 136	
1,2-Dibromoethane	50.0	49.7		ug/L		99	77 - 131	
Chlorobenzene	50.0	51.4		ug/L		103	80 - 120	
Ethylbenzene	50.0	52.1		ug/L		104	80 - 120	
Xylenes, Total	100	103		ug/L		103	80 - 120	
Styrene	50.0	52.4		ug/L		105	80 - 122	
Bromoform	50.0	54.1		ug/L		108	69 - 135	
Isopropylbenzene	50.0	52.8		ug/L		106	80 - 120	
1,1,2,2-Tetrachloroethane	50.0	50.0		ug/L		100	72 - 128	
1,3-Dichlorobenzene	50.0	50.6		ug/L		101	80 - 120	
1,4-Dichlorobenzene	50.0	50.3		ug/L		101	80 - 120	
1,2-Dichlorobenzene	50.0	49.1		ug/L		98	80 - 120	
1,2-Dibromo-3-Chloropropane	50.0	49.6		ug/L		99	59 ₋ 141	

Client: Environmental International Corporation

Project/Site: VoPak, Savannah/390020

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-378019/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 378019

	Spike	LC3 LC3				/onec.	
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	
1,2,4-Trichlorobenzene	50.0	52.1	ug/L		104	77 - 131	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	104		70 - 130
1,2-Dichloroethane-d4 (Surr)	96		70 - 130
Dibromofluoromethane (Surr)	104		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130

Lab Sample ID: LCSD 680-378019/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 378019								, po . 10.	
	Spike		LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	50.0	54.3		ug/L		109	51 - 140	10	40
Chloromethane	50.0	51.2		ug/L		102	63 - 126	8	30
Vinyl chloride	50.0	60.1		ug/L		120	68 - 132	3	30
Bromomethane	50.0	55.6		ug/L		111	20 - 180	14	40
Chloroethane	50.0	51.0		ug/L		102	50 - 151	4	30
Trichlorofluoromethane	50.0	53.4		ug/L		107	58 - 145	3	30
1,1-Dichloroethene	50.0	55.0		ug/L		110	74 - 125	3	20
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	55.6		ug/L		111	65 - 131	0	30
ne									
Acetone	250	216		ug/L		86	60 - 154	14	40
Carbon disulfide	50.0	53.2		ug/L		106	73 - 127	1	20
Methyl acetate	250	264		ug/L		106	66 - 134	5	30
Methylene Chloride	50.0	53.9		ug/L		108	76 - 129	0	20
trans-1,2-Dichloroethene	50.0	51.9		ug/L		104	78 - 123	1	20
Methyl tert-butyl ether	50.0	50.2		ug/L		100	74 - 135	1	20
1,1-Dichloroethane	50.0	52.8		ug/L		106	80 - 120	1	20
cis-1,2-Dichloroethene	50.0	51.2		ug/L		102	80 - 122	1	20
2-Butanone	250	227		ug/L		91	75 - 133	6	30
Chloroform	50.0	53.2		ug/L		106	79 - 122	2	20
1,1,1-Trichloroethane	50.0	52.2		ug/L		104	74 - 128	0	20
Cyclohexane	50.0	53.1		ug/L		106	69 - 130	1	30
Carbon tetrachloride	50.0	52.5		ug/L		105	75 - 130	1	20
Benzene	50.0	51.6		ug/L		103	73 - 131	0	30
1,2-Dichloroethane	50.0	49.6		ug/L		99	75 ₋ 130	0	20
Trichloroethene	50.0	51.9		ug/L		104	80 - 123	3	20
Methylcyclohexane	50.0	55.0		ug/L		110	75 - 127	0	30
1,2-Dichloropropane	50.0	52.4		ug/L		105	80 - 123	2	20
Bromodichloromethane	50.0	52.1		ug/L		104	77 ₋ 129	2	20
cis-1,3-Dichloropropene	50.0	52.7		ug/L		105	80 - 133	1	20
4-Methyl-2-pentanone	250	242		ug/L		97	75 ₋ 135	2	30
Toluene	50.0	51.1		ug/L		102	80 - 122	1	20
trans-1,3-Dichloropropene	50.0	52.9		ug/L		106	74 - 140	1	20
1,1,2-Trichloroethane	50.0	52.5		ug/L		105	79 - 125	0	20
Tetrachloroethene	50.0	53.8		ug/L		108	77 - 123	3	20
2-Hexanone	250	245		ug/L		98	70 - 141	1	40

TestAmerica Savannah

4/10/2015

Page 50 of 70

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-378019/5

Matrix: Water

Analysis Batch: 378019

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dibromochloromethane	50.0	52.3		ug/L		105	71 - 136	0	20
1,2-Dibromoethane	50.0	50.7		ug/L		101	77 - 131	2	30
Chlorobenzene	50.0	52.9		ug/L		106	80 - 120	3	20
Ethylbenzene	50.0	53.6		ug/L		107	80 - 120	3	20
Xylenes, Total	100	107		ug/L		107	80 - 120	4	20
Styrene	50.0	53.1		ug/L		106	80 - 122	1	20
Bromoform	50.0	56.5		ug/L		113	69 - 135	4	20
Isopropylbenzene	50.0	55.1		ug/L		110	80 - 120	4	20
1,1,2,2-Tetrachloroethane	50.0	50.7		ug/L		101	72 - 128	1	20
1,3-Dichlorobenzene	50.0	51.8		ug/L		104	80 - 120	2	20
1,4-Dichlorobenzene	50.0	51.8		ug/L		104	80 - 120	3	20
1,2-Dichlorobenzene	50.0	50.4		ug/L		101	80 - 120	2	20
1,2-Dibromo-3-Chloropropane	50.0	48.8		ug/L		98	59 - 141	2	30
1,2,4-Trichlorobenzene	50.0	53.6		ug/L		107	77 - 131	3	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	107		70 - 130
1,2-Dichloroethane-d4 (Surr)	96		70 - 130
Dibromofluoromethane (Surr)	108		70 - 130
4-Bromofluorobenzene (Surr)	98		70 - 130

Lab Sample ID: MB 680-378022/9 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 378022

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.60		1.0	0.60	ug/L			04/09/15 10:45	1
Chloromethane	<0.40		1.0	0.40	ug/L			04/09/15 10:45	1
Vinyl chloride	<0.50		1.0	0.50	ug/L			04/09/15 10:45	1
Bromomethane	<2.5		5.0	2.5	ug/L			04/09/15 10:45	1
Chloroethane	<2.5		5.0	2.5	ug/L			04/09/15 10:45	1
Trichlorofluoromethane	<0.42		1.0	0.42	ug/L			04/09/15 10:45	1
1,1-Dichloroethene	<0.36		1.0	0.36	ug/L			04/09/15 10:45	1
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36		1.0	0.36	ug/L			04/09/15 10:45	1
Acetone	<7.0		10	7.0	ug/L			04/09/15 10:45	1
Carbon disulfide	<1.0		2.0	1.0	ug/L			04/09/15 10:45	1
Methyl acetate	<1.8		5.0	1.8	ug/L			04/09/15 10:45	1
Methylene Chloride	<2.5		5.0	2.5	ug/L			04/09/15 10:45	1
trans-1,2-Dichloroethene	<0.37		1.0	0.37	ug/L			04/09/15 10:45	1
Methyl tert-butyl ether	<0.30		10	0.30	ug/L			04/09/15 10:45	1
1,1-Dichloroethane	<0.38		1.0	0.38	ug/L			04/09/15 10:45	1
cis-1,2-Dichloroethene	<0.41		1.0	0.41	ug/L			04/09/15 10:45	1
2-Butanone	<3.4		10	3.4	ug/L			04/09/15 10:45	1
Chloroform	<0.50		1.0	0.50	ug/L			04/09/15 10:45	1
1,1,1-Trichloroethane	<0.37		1.0	0.37	ug/L			04/09/15 10:45	1
Cyclohexane	<0.39		1.0	0.39	ug/L			04/09/15 10:45	1
Carbon tetrachloride	< 0.33		1.0	0.33	ug/L			04/09/15 10:45	1
Benzene	<0.43		1.0	0.43	ug/L			04/09/15 10:45	1

TestAmerica Savannah

Page 51 of 70

4/10/2015

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

•

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-378022/9

Matrix: Water

Analysis Batch: 378022

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL MDL Unit Prepared Dil Fac Analyte D Analyzed 1,2-Dichloroethane <0.50 1.0 04/09/15 10:45 0.50 ug/L Trichloroethene <0.48 1.0 0.48 ug/L 04/09/15 10:45 < 0.43 Methylcyclohexane 1.0 0.43 ug/L 04/09/15 10:45 1,2-Dichloropropane <0.67 1.0 0.67 ug/L 04/09/15 10:45 Bromodichloromethane < 0.44 1.0 0.44 ug/L 04/09/15 10:45 cis-1,3-Dichloropropene < 0.40 1.0 0.40 ug/L 04/09/15 10:45 4-Methyl-2-pentanone <2.1 04/09/15 10:45 10 2.1 ug/L Toluene <0.48 1.0 0.48 ug/L 04/09/15 10:45 trans-1,3-Dichloropropene < 0.42 1.0 0.42 ug/L 04/09/15 10:45 1,1,2-Trichloroethane < 0.33 1.0 0.33 ug/L 04/09/15 10:45 Tetrachloroethene <0.74 1.0 0.74 ug/L 04/09/15 10:45 2-Hexanone <2.0 10 2.0 ug/L 04/09/15 10:45 Dibromochloromethane < 0.32 1.0 0.32 ug/L 04/09/15 10:45 1,2-Dibromoethane < 0.44 1.0 0.44 ug/L 04/09/15 10:45 <0.26 04/09/15 10:45 Chlorobenzene 1.0 0.26 ug/L Ethylbenzene <0.33 0.33 ug/L 04/09/15 10:45 1.0 Xylenes, Total 04/09/15 10:45 <0.23 1.0 0.23 ug/L Styrene < 0.27 1.0 0.27 ug/L 04/09/15 10:45 <0.43 1.0 0.43 ug/L 04/09/15 10:45 Bromoform < 0.35 1.0 0.35 ug/L 04/09/15 10:45 Isopropylbenzene 1,1,2,2-Tetrachloroethane < 0.62 1.0 0.62 ug/L 04/09/15 10:45 1.0 1.3-Dichlorobenzene < 0.43 0.43 ug/L 04/09/15 10:45 1,4-Dichlorobenzene <0.46 1.0 0.46 ug/L 04/09/15 10:45 1,2-Dichlorobenzene < 0.37 1.0 0.37 ug/L 04/09/15 10:45 1,2-Dibromo-3-Chloropropane <1.1 5.0 1.1 ug/L 04/09/15 10:45 1,2,4-Trichlorobenzene <2.5 5.0 2.5 ug/L 04/09/15 10:45

MB MB

	2					
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		70 - 130		04/09/15 10:45	1
1,2-Dichloroethane-d4 (Surr)	93		70 - 130		04/09/15 10:45	1
Dibromofluoromethane (Surr)	99		70 - 130		04/09/15 10:45	1
4-Bromofluorobenzene (Surr)	94		70 - 130		04/09/15 10:45	1

Lab Sample ID: LCS 680-378022/4

Matrix: Water

Analysis Batch: 378022

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane	50.0	54.3	-	ug/L		109	51 - 140
Chloromethane	50.0	45.3		ug/L		91	63 _ 126
Vinyl chloride	50.0	50.8		ug/L		102	68 - 132
Bromomethane	50.0	37.3		ug/L		75	20 - 180
Chloroethane	50.0	51.6		ug/L		103	50 - 151
Trichlorofluoromethane	50.0	56.3		ug/L		113	58 ₋ 145
1,1-Dichloroethene	50.0	44.0		ug/L		88	74 - 125
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	46.2		ug/L		92	65 ₋ 131
ne							
Acetone	250	248		ug/L		99	60 - 154

TestAmerica Savannah

Page 52 of 70

6

3

5

7

9

10

15

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-378022/4

Matrix: Water

Analysis Batch: 378022

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Carbon disulfide	50.0	41.4		ug/L		83	73 - 127
Methyl acetate	250	265		ug/L		106	66 - 134
Methylene Chloride	50.0	48.3		ug/L		97	76 ₋ 129
trans-1,2-Dichloroethene	50.0	47.2		ug/L		94	78 ₋ 123
Methyl tert-butyl ether	50.0	48.0		ug/L		96	74 ₋ 135
1,1-Dichloroethane	50.0	48.6		ug/L		97	80 - 120
cis-1,2-Dichloroethene	50.0	47.5		ug/L		95	80 - 122
2-Butanone	250	250		ug/L		100	75 ₋ 133
Chloroform	50.0	49.6		ug/L		99	79 - 122
1,1,1-Trichloroethane	50.0	48.9		ug/L		98	74 _ 128
Cyclohexane	50.0	42.9		ug/L		86	69 - 130
Carbon tetrachloride	50.0	50.2		ug/L		100	75 ₋ 130
Benzene	50.0	47.1		ug/L		94	73 ₋ 131
1,2-Dichloroethane	50.0	47.9		ug/L		96	75 ₋ 130
Trichloroethene	50.0	46.7		ug/L		93	80 _ 123
Methylcyclohexane	50.0	44.4		ug/L		89	75 - 127
1,2-Dichloropropane	50.0	48.0		ug/L		96	80 _ 123
Bromodichloromethane	50.0	50.4		ug/L		101	77 ₋ 129
cis-1,3-Dichloropropene	50.0	51.7		ug/L		103	80 - 133
4-Methyl-2-pentanone	250	244		ug/L		98	75 ₋ 135
Toluene	50.0	48.1		ug/L		96	80 - 122
trans-1,3-Dichloropropene	50.0	54.5		ug/L		109	74 - 140
1,1,2-Trichloroethane	50.0	49.1		ug/L		98	79 - 125
Tetrachloroethene	50.0	46.2		ug/L		92	77 _ 123
2-Hexanone	250	242		ug/L		97	70 - 141
Dibromochloromethane	50.0	51.7		ug/L		103	71 - 136
1,2-Dibromoethane	50.0	48.2		ug/L		96	77 ₋ 131
Chlorobenzene	50.0	47.8		ug/L		96	80 - 120
Ethylbenzene	50.0	47.1		ug/L		94	80 _ 120
Xylenes, Total	100	95.6		ug/L		96	80 - 120
Styrene	50.0	47.1		ug/L		94	80 - 122
Bromoform	50.0	51.8		ug/L		104	69 _ 135
Isopropylbenzene	50.0	48.4		ug/L		97	80 _ 120
1,1,2,2-Tetrachloroethane	50.0	50.5		ug/L		101	72 ₋ 128
1,3-Dichlorobenzene	50.0	48.1		ug/L		96	80 - 120
1,4-Dichlorobenzene	50.0	48.0		ug/L		96	80 - 120
1,2-Dichlorobenzene	50.0	48.2		ug/L		96	80 - 120
1,2-Dibromo-3-Chloropropane	50.0	53.9		ug/L		108	59 _ 141
1,2,4-Trichlorobenzene	50.0	45.7		ug/L		91	77 ₋ 131

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	98		70 - 130
1,2-Dichloroethane-d4 (Surr)	95		70 - 130
Dibromofluoromethane (Surr)	99		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-378022/5

Matrix: Water

Client Sample ID: Lab	Contr	ol Saı	nple Dup
	Prep 7	Type:	Total/NA

Analysis Batch: 378022	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	50.0	54.5		ug/L		109	51 - 140		40
Chloromethane	50.0	46.3		ug/L		93	63 - 126	2	30
Vinyl chloride	50.0	51.8		ug/L		104	68 - 132	2	30
Bromomethane	50.0	39.5		ug/L		79	20 - 180	6	40
Chloroethane	50.0	52.3		ug/L		105	50 - 151	1	30
Trichlorofluoromethane	50.0	56.3		ug/L		113	58 ₋ 145	0	30
1,1-Dichloroethene	50.0	44.3		ug/L		89	74 - 125	1	20
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	47.2		ug/L		94	65 - 131	2	30
ne									
Acetone	250	247		ug/L		99	60 - 154	0	40
Carbon disulfide	50.0	42.8		ug/L		86	73 - 127	3	20
Methyl acetate	250	265		ug/L		106	66 - 134	0	30
Methylene Chloride	50.0	48.9		ug/L		98	76 - 129	1	20
trans-1,2-Dichloroethene	50.0	47.3		ug/L		95	78 ₋ 123	0	20
Methyl tert-butyl ether	50.0	48.5		ug/L		97	74 - 135	1	20
1,1-Dichloroethane	50.0	48.8		ug/L		98	80 - 120	0	20
cis-1,2-Dichloroethene	50.0	47.5		ug/L		95	80 - 122	0	20
2-Butanone	250	250		ug/L		100	75 - 133	0	30
Chloroform	50.0	50.4		ug/L		101	79 - 122	2	20
1,1,1-Trichloroethane	50.0	49.4		ug/L		99	74 - 128	1	20
Cyclohexane	50.0	43.2		ug/L		86	69 - 130	1	30
Carbon tetrachloride	50.0	50.6		ug/L		101	75 - 130	1	20
Benzene	50.0	47.3		ug/L		95	73 - 131	0	30
1,2-Dichloroethane	50.0	46.9		ug/L		94	75 - 130	2	20
Trichloroethene	50.0	47.2		ug/L		94	80 - 123	1	20
Methylcyclohexane	50.0	45.1		ug/L		90	75 - 127	1	30
1,2-Dichloropropane	50.0	49.1		ug/L		98	80 - 123	2	20
Bromodichloromethane	50.0	50.5		ug/L		101	77 - 129	0	20
cis-1,3-Dichloropropene	50.0	52.2		ug/L		104	80 - 133	1	20
4-Methyl-2-pentanone	250	243		ug/L		97	75 - 135	1	30
Toluene	50.0	48.3		ug/L		97	80 - 122	0	20
trans-1,3-Dichloropropene	50.0	55.2		ug/L		110	74 - 140	1	20
1,1,2-Trichloroethane	50.0	49.6		ug/L		99	79 - 125	1	20
Tetrachloroethene	50.0	46.2		ug/L		92	77 - 123	0	20
2-Hexanone	250	242		ug/L		97	70 - 141	0	40
Dibromochloromethane	50.0	52.2		ug/L		104	71 - 136	1	20
1,2-Dibromoethane	50.0	48.7		ug/L		97	77 - 131	1	30
Chlorobenzene	50.0	48.6		ug/L		97	80 - 120	2	20
Ethylbenzene	50.0	47.8		ug/L		96	80 - 120	1	20
Xylenes, Total	100	96.4		ug/L		96	80 - 120	1	20
Styrene	50.0	47.6		ug/L		95	80 - 122	1	20
Bromoform	50.0	52.6		ug/L		105	69 - 135	2	20
Isopropylbenzene	50.0	48.9		ug/L		98	80 - 120	1	20
1,1,2,2-Tetrachloroethane	50.0	50.9		ug/L		102	72 - 128	1	20
1,3-Dichlorobenzene	50.0	48.4		ug/L		97	80 - 120	1	20
1,4-Dichlorobenzene	50.0	47.4		ug/L		95	80 - 120	1	20
1,2-Dichlorobenzene	50.0	48.9		ug/L		98	80 _ 120	1	20
1,2-Dibromo-3-Chloropropane	50.0	54.3		ug/L		109	59 ₋ 141	1	30

TestAmerica Savannah

4/10/2015

Page 54 of 70

2

3

5

7

ŏ

10

12

Client: Environmental International Corporation

Project/Site: VoPak, Savannah/390020

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-378022/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 378022

,	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,4-Trichlorobenzene	50.0	46.3		ug/L		93	77 - 131	1	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	100		70 - 130
1,2-Dichloroethane-d4 (Surr)	94		70 - 130
Dibromofluoromethane (Surr)	100		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130

Lab Sample ID: MB 680-378174/9 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	<0.60		1.0	0.60	ug/L			04/10/15 10:44	1
Chloromethane	<0.40		1.0	0.40	ug/L			04/10/15 10:44	1
Vinyl chloride	<0.50		1.0	0.50	ug/L			04/10/15 10:44	1
Bromomethane	<2.5		5.0	2.5	ug/L			04/10/15 10:44	1
Chloroethane	<2.5		5.0	2.5	ug/L			04/10/15 10:44	1
Trichlorofluoromethane	<0.42		1.0	0.42	ug/L			04/10/15 10:44	1
1,1-Dichloroethene	<0.36		1.0	0.36	ug/L			04/10/15 10:44	1
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.36		1.0	0.36	ug/L			04/10/15 10:44	1
Acetone	<7.0		10	7.0	ug/L			04/10/15 10:44	1
Carbon disulfide	<1.0		2.0	1.0	ug/L			04/10/15 10:44	1
Methyl acetate	<1.8		5.0	1.8	ug/L			04/10/15 10:44	1
Methylene Chloride	<2.5		5.0	2.5	ug/L			04/10/15 10:44	1
trans-1,2-Dichloroethene	<0.37		1.0	0.37	ug/L			04/10/15 10:44	1
Methyl tert-butyl ether	<0.30		10	0.30	ug/L			04/10/15 10:44	1
1,1-Dichloroethane	<0.38		1.0	0.38	ug/L			04/10/15 10:44	1
cis-1,2-Dichloroethene	<0.41		1.0	0.41	ug/L			04/10/15 10:44	1
2-Butanone	<3.4		10	3.4	ug/L			04/10/15 10:44	1
Chloroform	<0.50		1.0	0.50	ug/L			04/10/15 10:44	1
1,1,1-Trichloroethane	<0.37		1.0	0.37	ug/L			04/10/15 10:44	1
Cyclohexane	<0.39		1.0	0.39	ug/L			04/10/15 10:44	1
Carbon tetrachloride	<0.33		1.0	0.33	ug/L			04/10/15 10:44	1
Benzene	<0.43		1.0	0.43	ug/L			04/10/15 10:44	1
1,2-Dichloroethane	<0.50		1.0	0.50	ug/L			04/10/15 10:44	1
Trichloroethene	<0.48		1.0	0.48	ug/L			04/10/15 10:44	1
Methylcyclohexane	<0.43		1.0	0.43	ug/L			04/10/15 10:44	1
1,2-Dichloropropane	<0.67		1.0	0.67	ug/L			04/10/15 10:44	1
Bromodichloromethane	<0.44		1.0	0.44	ug/L			04/10/15 10:44	1
cis-1,3-Dichloropropene	<0.40		1.0	0.40	ug/L			04/10/15 10:44	1
4-Methyl-2-pentanone	<2.1		10	2.1	ug/L			04/10/15 10:44	1
Toluene	<0.48		1.0	0.48	ug/L			04/10/15 10:44	1
trans-1,3-Dichloropropene	<0.42		1.0	0.42	ug/L			04/10/15 10:44	1
1,1,2-Trichloroethane	<0.33		1.0	0.33	ug/L			04/10/15 10:44	1
Tetrachloroethene	<0.74		1.0	0.74	ug/L			04/10/15 10:44	1
2-Hexanone	<2.0		10	2.0	ug/L			04/10/15 10:44	1
Dibromochloromethane	<0.32		1.0	0.32	ug/L			04/10/15 10:44	1

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-378174/9

Matrix: Water Analysis Batch: 378174 Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	<0.44		1.0	0.44	ug/L			04/10/15 10:44	1
Chlorobenzene	<0.26		1.0	0.26	ug/L			04/10/15 10:44	1
Ethylbenzene	<0.33		1.0	0.33	ug/L			04/10/15 10:44	1
Xylenes, Total	<0.23		1.0	0.23	ug/L			04/10/15 10:44	1
Styrene	<0.27		1.0	0.27	ug/L			04/10/15 10:44	1
Bromoform	<0.43		1.0	0.43	ug/L			04/10/15 10:44	1
Isopropylbenzene	< 0.35		1.0	0.35	ug/L			04/10/15 10:44	1
1,1,2,2-Tetrachloroethane	<0.62		1.0	0.62	ug/L			04/10/15 10:44	1
1,3-Dichlorobenzene	<0.43		1.0	0.43	ug/L			04/10/15 10:44	1
1,4-Dichlorobenzene	<0.46		1.0	0.46	ug/L			04/10/15 10:44	1
1,2-Dichlorobenzene	<0.37		1.0	0.37	ug/L			04/10/15 10:44	1
1,2-Dibromo-3-Chloropropane	<1.1		5.0	1.1	ug/L			04/10/15 10:44	1
1,2,4-Trichlorobenzene	<2.5		5.0	2.5	ug/L			04/10/15 10:44	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		70 - 130		04/10/15 10:44	1
1,2-Dichloroethane-d4 (Surr)	94		70 - 130		04/10/15 10:44	1
Dibromofluoromethane (Surr)	106		70 - 130		04/10/15 10:44	1
4-Bromofluorobenzene (Surr)	98		70 - 130		04/10/15 10:44	1

Lab Sample ID: LCS 680-378174/4

Matrix: Water

Analysis Batch: 378174

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane	50.0	45.4		ug/L		91	51 - 140
Chloromethane	50.0	45.3		ug/L		91	63 - 126
Vinyl chloride	50.0	48.6		ug/L		97	68 - 132
Bromomethane	50.0	49.3		ug/L		99	20 - 180
Chloroethane	50.0	50.9		ug/L		102	50 - 151
Trichlorofluoromethane	50.0	48.6		ug/L		97	58 - 145
1,1-Dichloroethene	50.0	50.3		ug/L		101	74 - 125
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	50.7		ug/L		101	65 - 131
Acetone	250	256		ug/L		102	60 - 154
Carbon disulfide	50.0	50.4		ug/L		101	73 - 127
Methyl acetate	250	271		ug/L		109	66 - 134
Methylene Chloride	50.0	55.7		ug/L		111	76 - 129
trans-1,2-Dichloroethene	50.0	49.8		ug/L		100	78 - 123
Methyl tert-butyl ether	50.0	52.3		ug/L		105	74 - 135
1,1-Dichloroethane	50.0	53.0		ug/L		106	80 - 120
cis-1,2-Dichloroethene	50.0	50.5		ug/L		101	80 - 122
2-Butanone	250	243		ug/L		97	75 - 133
Chloroform	50.0	52.5		ug/L		105	79 ₋ 122
1,1,1-Trichloroethane	50.0	49.0		ug/L		98	74 - 128
Cyclohexane	50.0	48.9		ug/L		98	69 - 130
Carbon tetrachloride	50.0	50.0		ug/L		100	75 _ 130
Benzene	50.0	49.9		ug/L		100	73 - 131

TestAmerica Savannah

Page 56 of 70

_

6

Q

9

1 1

12

Ц

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-378174/4

Matrix: Water

Analysis Batch: 378174

Client Sample ID: Lab Control Sample Prep Type: Total/NA

_	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dichloroethane	50.0	51.3		ug/L		103	75 - 130	
Trichloroethene	50.0	49.7		ug/L		99	80 - 123	
Methylcyclohexane	50.0	49.7		ug/L		99	75 ₋ 127	
1,2-Dichloropropane	50.0	51.8		ug/L		104	80 - 123	
Bromodichloromethane	50.0	51.5		ug/L		103	77 ₋ 129	
cis-1,3-Dichloropropene	50.0	52.6		ug/L		105	80 - 133	
4-Methyl-2-pentanone	250	246		ug/L		99	75 - 135	
Toluene	50.0	50.0		ug/L		100	80 - 122	
trans-1,3-Dichloropropene	50.0	52.4		ug/L		105	74 - 140	
1,1,2-Trichloroethane	50.0	53.2		ug/L		106	79 - 125	
Tetrachloroethene	50.0	50.5		ug/L		101	77 - 123	
2-Hexanone	250	242		ug/L		97	70 - 141	
Dibromochloromethane	50.0	53.4		ug/L		107	71 - 136	
1,2-Dibromoethane	50.0	52.2		ug/L		104	77 - 131	
Chlorobenzene	50.0	52.2		ug/L		104	80 - 120	
Ethylbenzene	50.0	50.7		ug/L		101	80 - 120	
Xylenes, Total	100	102		ug/L		102	80 - 120	
Styrene	50.0	52.3		ug/L		105	80 - 122	
Bromoform	50.0	57.5		ug/L		115	69 - 135	
Isopropylbenzene	50.0	52.3		ug/L		105	80 - 120	
1,1,2,2-Tetrachloroethane	50.0	51.1		ug/L		102	72 - 128	
1,3-Dichlorobenzene	50.0	50.5		ug/L		101	80 - 120	
1,4-Dichlorobenzene	50.0	49.8		ug/L		100	80 - 120	
1,2-Dichlorobenzene	50.0	50.0		ug/L		100	80 - 120	

50.0

50.0

49.6

51.7

ug/L

ug/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	103		70 - 130
1,2-Dichloroethane-d4 (Surr)	99		70 - 130
Dibromofluoromethane (Surr)	105		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130

Lab Sample ID: LCSD 680-378174/5

Matrix: Water

Analysis Batch: 378174

1,2-Dibromo-3-Chloropropane

1,2,4-Trichlorobenzene

Client Sample ID: Lab	Control	Samp	ole Dup
	Prep Tv	pe: To	otal/NA

59 - 141

77 - 131

99

103

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	50.0	46.3		ug/L		93	51 - 140	2	40
Chloromethane	50.0	44.9		ug/L		90	63 - 126	1	30
Vinyl chloride	50.0	54.7		ug/L		109	68 - 132	12	30
Bromomethane	50.0	48.7		ug/L		97	20 - 180	1	40
Chloroethane	50.0	54.9		ug/L		110	50 - 151	8	30
Trichlorofluoromethane	50.0	50.6		ug/L		101	58 - 145	4	30
1,1-Dichloroethene	50.0	52.8		ug/L		106	74 - 125	5	20
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	54.6		ug/L		109	65 - 131	7	30
ne									
Acetone	250	238		ug/L		95	60 - 154	7	40

TestAmerica Savannah

4/10/2015

Page 57 of 70

2

9

5

7

a

10

TestAmerica Job ID: 680-111248-1

Client: Environmental International Corporation

Project/Site: VoPak, Savannah/390020

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-378174/5

Matrix: Water

Analysis Batch: 378174

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 378174	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Carbon disulfide	50.0	53.5		ug/L		107	73 - 127	6	20
Methyl acetate	250	253		ug/L		101	66 - 134	7	30
Methylene Chloride	50.0	53.5		ug/L		107	76 ₋ 129	4	20
trans-1,2-Dichloroethene	50.0	50.4		ug/L		101	78 - 123	1	20
Methyl tert-butyl ether	50.0	50.0		ug/L		100	74 ₋ 135	4	20
1,1-Dichloroethane	50.0	52.3		ug/L		105	80 - 120	1	20
cis-1,2-Dichloroethene	50.0	50.8		ug/L		102	80 - 122	1	20
2-Butanone	250	239		ug/L		96	75 ₋ 133	1	30
Chloroform	50.0	52.0		ug/L		104	79 - 122	1	20
1,1,1-Trichloroethane	50.0	51.3		ug/L		103	74 - 128	5	20
Cyclohexane	50.0	52.0		ug/L		104	69 - 130	6	30
Carbon tetrachloride	50.0	52.4		ug/L		105	75 ₋ 130	5	20
Benzene	50.0	50.5		ug/L		101	73 - 131	1	30
1,2-Dichloroethane	50.0	48.2		ug/L		96	75 ₋ 130	6	20
Trichloroethene	50.0	52.9		ug/L		106	80 - 123	6	20
Methylcyclohexane	50.0	53.4		ug/L		107	75 - 127	7	30
1,2-Dichloropropane	50.0	50.3		ug/L		101	80 - 123	3	20
Bromodichloromethane	50.0	50.4		ug/L		101	77 - 129	2	20
cis-1,3-Dichloropropene	50.0	51.5		ug/L		103	80 - 133	2	20
4-Methyl-2-pentanone	250	238		ug/L		95	75 ₋ 135	4	30
Toluene	50.0	50.9		ug/L		102	80 - 122	2	20
trans-1,3-Dichloropropene	50.0	51.7		ug/L		103	74 - 140	1	20
1,1,2-Trichloroethane	50.0	50.7		ug/L		101	79 ₋ 125	5	20
Tetrachloroethene	50.0	53.0		ug/L		106	77 - 123	5	20
2-Hexanone	250	238		ug/L		95	70 - 141	2	40
Dibromochloromethane	50.0	52.5		ug/L		105	71 - 136	2	20
1,2-Dibromoethane	50.0	51.3		ug/L		103	77 - 131	2	30
Chlorobenzene	50.0	52.4		ug/L		105	80 - 120	0	20
Ethylbenzene	50.0	53.6		ug/L		107	80 - 120	5	20
Xylenes, Total	100	106		ug/L		106	80 - 120	4	20
Styrene	50.0	53.8		ug/L		108	80 - 122	3	20
Bromoform	50.0	57.4		ug/L		115	69 - 135	0	20
Isopropylbenzene	50.0	54.9		ug/L		110	80 - 120	5	20
1,1,2,2-Tetrachloroethane	50.0	50.4		ug/L		101	72 - 128	1	20
1,3-Dichlorobenzene	50.0	50.8		ug/L		102	80 - 120	1	20
1,4-Dichlorobenzene	50.0	50.8		ug/L		102	80 - 120	2	20
1,2-Dichlorobenzene	50.0	49.8		ug/L		100	80 - 120	1	20
1,2-Dibromo-3-Chloropropane	50.0	50.8		ug/L		102	59 - 141	2	30
1,2,4-Trichlorobenzene	50.0	52.1		ug/L		104	77 - 131	1	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	107		70 - 130
1,2-Dichloroethane-d4 (Surr)	94		70 - 130
Dibromofluoromethane (Surr)	104		70 - 130
4-Bromofluorobenzene (Surr)	98		70 - 130

TestAmerica Savannah

Page 58 of 70

QC Association Summary

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

TestAmerica Job ID: 680-111248-1

GC/MS VOA

Analysis Batch: 378017

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-111248-23	MW-37	Total/NA	Water	8260B	_
680-111248-24	PAN-MW-9	Total/NA	Water	8260B	
LCS 680-378017/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-378017/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-378017/9	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 378019

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-111248-18	MW-32	Total/NA	Water	8260B	
680-111248-19	MW-33	Total/NA	Water	8260B	
LCS 680-378019/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-378019/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-378019/9	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 378022

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-111248-1	IW-1R	Total/NA	Water	8260B	<u> </u>
680-111248-3	LAW-PZ-8R	Total/NA	Water	8260B	
680-111248-4	MW-14	Total/NA	Water	8260B	
680-111248-6	MW-17R	Total/NA	Water	8260B	
680-111248-7	MW-18R	Total/NA	Water	8260B	
680-111248-8	MW-19	Total/NA	Water	8260B	
680-111248-9	MW-23	Total/NA	Water	8260B	
680-111248-11	MW-25	Total/NA	Water	8260B	
680-111248-13	MW-27	Total/NA	Water	8260B	
680-111248-14	MW-28	Total/NA	Water	8260B	
680-111248-15	MW-29	Total/NA	Water	8260B	
680-111248-16	MW-30	Total/NA	Water	8260B	
680-111248-17	MW-31	Total/NA	Water	8260B	
680-111248-20	MW-34	Total/NA	Water	8260B	
680-111248-21	MW-35	Total/NA	Water	8260B	
680-111248-22	MW-36	Total/NA	Water	8260B	
680-111248-25	PAN-MW-10	Total/NA	Water	8260B	
680-111248-26	Trip Blank	Total/NA	Water	8260B	
LCS 680-378022/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-378022/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-378022/9	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 378174

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-111248-2	IW-18	Total/NA	Water	8260B	
680-111248-5	MW-16	Total/NA	Water	8260B	
680-111248-10	MW-24R	Total/NA	Water	8260B	
680-111248-12	MW-26R	Total/NA	Water	8260B	
LCS 680-378174/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-378174/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-378174/9	Method Blank	Total/NA	Water	8260B	

TestAmerica Savannah

Page 59 of 70

Matrix: Water

Matrix: Water

Matrix: Water

Client: Environmental International Corporation

Project/Site: VoPak, Savannah/390020

Client Sample ID: IW-1R Lab Sample ID: 680-111248-1

Date Collected: 04/02/15 15:37 Matrix: Water

Date Received: 04/03/15 08:30

Prepared Batch Dil Initial Final Batch Batch Prep Type Type Method Run Factor Amount Amount Number or Analyzed **Analyst** Lab Total/NA Analysis 8260B 378022 04/09/15 17:00 MMT TAL SAV 200 5 mL 5 mL Instrument ID: CMSP2

Client Sample ID: IW-18 Lab Sample ID: 680-111248-2

Date Collected: 04/02/15 12:36

Date Received: 04/03/15 08:30

Batch Ratch Dil Initial Final Ratch Prepared Prep Type Type Method Factor Amount Amount Number or Analyzed Run **Analyst** Total/NA 8260B 378174 04/10/15 12:49 MMT TAL SAV Analysis 10 5 mL 5 mL Instrument ID: CMSO2

Client Sample ID: LAW-PZ-8R Lab Sample ID: 680-111248-3

Date Collected: 04/02/15 16:57

Date Received: 04/03/15 08:30

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Number or Analyzed Туре Run Factor Amount Analyst Lab MMT TAL SAV Total/NA Analysis 8260B 1000 378022 04/09/15 17:22 5 mL 5 mL Instrument ID: CMSP2

Client Sample ID: MW-14 Lab Sample ID: 680-111248-4

Date Collected: 04/01/15 18:23

Date Received: 04/03/15 08:30

Batch Batch Dil Initial Final Batch Prepared Method or Analyzed Prep Type Туре Run Factor **Amount** Amount Number Analyst Lah 04/09/15 11:38 Total/NA Analysis 8260B 5 mL 5 mL 378022 MMT TAL SAV Instrument ID: CMSP2

Client Sample ID: MW-16 Lab Sample ID: 680-111248-5 Matrix: Water

Date Collected: 04/02/15 11:21

Date Received: 04/03/15 08:30

Batch Batch Dil Initial Final Batch Prepared Prep Type Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260B 2 5 mL 5 mL 378174 04/10/15 11:46 MMT TAL SAV Instrument ID: CMSO2

Lab Sample ID: 680-111248-6 Client Sample ID: MW-17R

Date Collected: 03/31/15 16:58

Date Received: 04/03/15 08:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	378022	04/09/15 12:21	MMT	TAL SAV
	Instrume	ent ID: CMSP2								

TestAmerica Savannah

Matrix: Water

Client: Environmental International Corporation

Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-18R Lab Sample ID: 680-111248-7 Date Collected: 03/30/15 09:49

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Date Received: 04/03/15 08:30

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Total/NA Analysis 8260B 5 mL 5 mL 378022 04/09/15 12:42 MMT TAL SAV Instrument ID: CMSP2

Client Sample ID: MW-19 Lab Sample ID: 680-111248-8

Date Collected: 03/30/15 12:23 **Matrix: Water**

Date Received: 04/03/15 08:30

Batch Batch Dil Initial Final Batch Prepared Method Amount Amount Number or Analyzed Prep Type Type Run Factor Analyst Lab Total/NA Analysis 8260B 5 ml 5 mL 378022 04/09/15 13:04 MMT TAL SAV Instrument ID: CMSP2

Client Sample ID: MW-23 Lab Sample ID: 680-111248-9

Date Collected: 03/30/15 14:29

Date Received: 04/03/15 08:30

Batch Batch Dil Initial Final Batch Prepared Method Amount Number or Analyzed Prep Type Type Factor Amount Run Analyst Lab 04/09/15 13:25 TAL SAV Total/NA 378022 MMT Analysis 8260B 5 mL 5 mL Instrument ID: CMSP2

Client Sample ID: MW-24R Lab Sample ID: 680-111248-10

Date Collected: 04/01/15 10:33

Date Received: 04/03/15 08:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		5	5 mL	5 mL	378174	04/10/15 12:28	MMT	TAL SAV
	Instrum	ent ID: CMSO2								

Client Sample ID: MW-25 Lab Sample ID: 680-111248-11

Date Collected: 03/30/15 11:23

Date Received: 04/03/15 08:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	378022	04/09/15 13:47	MMT	TAL SAV
	Instrume	ent ID: CMSP2								

Client Sample ID: MW-26R Lab Sample ID: 680-111248-12

Date Collected: 04/02/15 10:05

Date Received: 04/03/15 08:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		100	5 mL	5 mL	378174	04/10/15 13:31	MMT	TAL SAV
	Instrume	ent ID: CMSO2								

Client: Environmental International Corporation

Project/Site: VoPak, Savannah/390020

Lab Sample ID: 680-111248-13

Matrix: Water

Date Collected: 03/30/15 16:18 Date Received: 04/03/15 08:30

Client Sample ID: MW-27

Batch Batch Dil Initial Final Batch Prepared Prep Type Type Method Run Factor Amount Amount Number or Analyzed Analyst Total/NA Analysis 8260B 5 ml 5 mL 378022 04/09/15 14:08 MMT TAL SAV Instrument ID: CMSP2

Client Sample ID: MW-28 Lab Sample ID: 680-111248-14

Date Collected: 03/31/15 10:20 Matrix: Water

Date Received: 04/03/15 08:30

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Number or Analyzed Type Run Factor Amount Analyst Lab Total/NA Analysis 8260B 5 ml 5 mL 378022 04/09/15 14:30 MMT TAL SAV Instrument ID: CMSP2

Client Sample ID: MW-29 Lab Sample ID: 680-111248-15

Date Collected: 04/01/15 17:43 Matrix: Water

Date Received: 04/03/15 08:30

Batch Batch Dil Initial Final Batch Prepared Method Amount Number or Analyzed Prep Type Type Run Factor Amount Analyst Lab 04/09/15 17:43 TAL SAV Total/NA 8260B 378022 MMT Analysis 50 5 mL 5 mL Instrument ID: CMSP2

Client Sample ID: MW-30 Lab Sample ID: 680-111248-16

Date Collected: 04/02/15 18:13 Matrix: Water

Date Received: 04/03/15 08:30

Batch Batch Dil Initial Final Batch Prepared Method Number or Analyzed Prep Type Type Run Factor Amount Amount Analyst Lab Total/NA Analysis 8260B 5 mL 5 mL 378022 04/09/15 14:51 MMT TAL SAV Instrument ID: CMSP2

Client Sample ID: MW-31 Lab Sample ID: 680-111248-17

Date Collected: 03/30/15 15:35 **Matrix: Water**

Date Received: 04/03/15 08:30

Batch Batch Dil Initial Final Batch Prepared Method Prep Type Type Run Factor Amount Amount Number or Analyzed **Analyst** Lab Total/NA Analysis 8260B 378022 04/09/15 15:13 MMT TAL SAV 5 mL 5 mL Instrument ID: CMSP2

Client Sample ID: MW-32 Lab Sample ID: 680-111248-18

Date Collected: 03/31/15 17:50 Matrix: Water

Date Received: 04/03/15 08:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	378019	04/09/15 16:38	MMT	TAL SAV
	Instrume	ent ID: CMSO2								

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Client Sample ID: MW-33

Lab Sample ID: 680-111248-19

Matrix: Water

Date Collected: 04/02/15 13:27 Date Received: 04/03/15 08:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	378019	04/09/15 16:59	MMT	TAL SAV
	Inetrume	nt ID: CMSO2								

Client Sample ID: MW-34 Lab Sample ID: 680-111248-20

Matrix: Water

Date Collected: 03/31/15 11:17 Date Received: 04/03/15 08:30

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Amount Number or Analyzed Type Run Factor Analyst Lab Total/NA Analysis 8260B 5 ml 5 mL 378022 04/09/15 15:34 MMT TAL SAV Instrument ID: CMSP2

Client Sample ID: MW-35 Lab Sample ID: 680-111248-21 Date Collected: 03/31/15 15:12

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Date Received: 04/03/15 08:30

Batch Batch Dil Initial Final Batch Prepared Method Amount Number or Analyzed Prep Type Type Factor Amount Run Analyst Lab 04/09/15 15:56 TAL SAV Total/NA 8260B 378022 MMT Analysis 5 mL 5 mL Instrument ID: CMSP2

Client Sample ID: MW-36 Lab Sample ID: 680-111248-22

Date Collected: 03/31/15 16:05

Date Received: 04/03/15 08:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	378022	04/09/15 16:17	MMT	TAL SAV
	Instrume	ent ID: CMSP2								

Client Sample ID: MW-37 Lab Sample ID: 680-111248-23

Date Collected: 03/31/15 12:05

Date Received: 04/03/15 08:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		2	5 mL	5 mL	378017	04/09/15 13:48	MMT	TAL SAV
	Instrume	ent ID: CMSAC								

Client Sample ID: PAN-MW-9 Lab Sample ID: 680-111248-24

Date Collected: 04/01/15 18:58

Date Received: 04/03/15 08:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		10	5 mL	5 mL	378017	04/09/15 13:25	MMT	TAL SAV
	Instrume	nt ID: CMSAC								

Lab Chronicle

Client: Environmental International Corporation

Project/Site: VoPak, Savannah/390020

Client Sample ID: PAN-MW-10

TestAmerica Job ID: 680-111248-1

Lab Sample ID: 680-111248-25

Matrix: Water

Date Collected: 04/01/15 09:20 Date Received: 04/03/15 08:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	378022	04/09/15 16:39	MMT	TAL SAV
	Instrume	nt ID: CMSP2								

Lab Sample ID: 680-111248-26

Client Sample ID: Trip Blank Date Collected: 03/30/15 00:00 **Matrix: Water**

Date Received: 04/03/15 08:30

	_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	8260B		1	5 mL	5 mL	378022	04/09/15 11:16	MMT	TAL SAV
١		Instrume	nt ID: CMSP2								

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TestAmerica	RECORD	TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Website: www.testamericainc.com Phone: (912) 354-7858 Fax: (912) 352-0165										
THE LEADER IN ENVIRONMENTAL TESTING			Alternate Laboratory Name/Location Phone: Fax:									
PROJECT REFERENCE PROJECT NO. 39002 PROJECT LOCATION (STATE) GA	TYPE		REQUIRED ANALYSIS				s 	PAGE	i		OF	
TAL (LAB) PROJECT MANAGER Shella Hoffman CLIENT, (SITE) PM A Lan Sanders CLIENT PHONE 770 773 7160 CLIENT NAME ETC CLIENT E-MAIL a Sanders @ EICUSA. COM CLIENT ADDRESS 161 K! mball Brige RJ Alphartta GA 30009 COMPANY CONTRACTING THIS WORK (if applicable)		UEOUS LIQUID (OIL, SOLVENT,)	80988 MH			T. E.			DELIVI D/ EXPEL DELIVI (SURC	ATE DUE DITED RI ERY CHARGE ATE DUE	EPORT COOLERS	S SUBMITTED
SAMPLE SAMPLE IDENTIFICATION	COMPOSITE AQUEOUS (W SOLID OR SE	NONAG		NU:	MBER O	F CONT	L I. AINERS SI	JBMITTED	+-		EMARKS	
4/2/15 15:37 IW-1R	GX	-	3						-			
4/2/15 12:36 IW-18	6 X	1_	3		_					٠.		
4/2/15 16:57 LAW-P2-8R	6 X		3							Ŝ		
4/1/15 18:23 MW-14	6 X		3									
4/2/15 11:21 MW-16	6 x		3									
3/31/15 16:58 MN-17R	6 X		3					_				
3/30/15 9:49 MW-18R	6X		a					Custody				
3/30/15 12:23 MW-19	6 x		3			;		5				
3/30/15 14729 MW-d3	6 X		3					Chair				
4/1/15 10:33 MW-24 R	6 X		3					75		<u> </u>		
3/30/15 11:23 MW-25	6 7		3					- 1.	_			
RELINQUISHED BY (SIGNATURE) DATE TIME RELINQUISHED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE)	[6 X		3									
RELINQUISHED BY (SIGNATURE) DATE TIME RELINQUISHED BY (SIGNATURE) 4/4/5 8:30	GNATURE)		·	DATE	TIME		RELINQL	JISHED BY' (SIGNATURE)		DATE		TIME
RECEIVED BY. (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE)	RE)			DATE	TIME		RECEIVE	ED BY: (SIGNATURE)		DATE	-+	TIME
	LABORATOR	Y USE	ONLY		L		L					
RECEIVED FOR LABORATORY BY. ASIGNATURE A	CUSTODY SEAL NO.		SAVAN LOG N	NAH O.	LABOF		REMARKS	26				
1 / /			_					-			TΆI	8240-680 (1008)

Serial Number 93977

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECOR					/_					<u> </u>	
TestAmerica					TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Website: www.testamericainc.com Phone: (912) 354-7858 Fax: (912) 352-0165					c.com	
					→ Alte	rnate Laborat	ory Name/L	_ocation			
L	THE LEADER IN ENVIRONMENTAL TESTING					Phone: Fax:					
VOPAK, Savannah	3900 10	PROJECT LOCATION (STATE)	MATRI; TYPE				REQUI	RED ANALYSIS		PAGE 2_	P OF
TAL (LAB) PROJECT MANAGER Shella Hoffman	901341	CONTRACT NO	ATE	<u></u>				1		STANDARD RE DELIVERY	PORT
CLIENT (SITE) PM Alan Sandes CLIENT NAME	CLIENT PHONE 770-772-7100	CLIENT FAX	i) indicate	SOLVEN	8		 				4/13/18
ESC	asanders & Cic	vsa-com	GRAB (G)	D (OIL,	8160					EXPEDITED REDELIVERY (SURCHARGE)	
CLIENT ADDRESS 161 Kimball Brilge	Rd Alphanetta	GA 30009		SLIQUI						DATE DUE	
COMPANY CONTRACTING THIS WORK (if applicable)					На		1 3 5 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		, - y	PER SHIPMEN	OOLERS SUBMITTED
SAMPLE DATE TIME	SAMPLE IDENTIFICATION	N 	COMPOSI AQUEOUS SOLID OR	NONA		NU	MBER OF CO	NTAINERS SUBMITTE	ED .	RI	EMARKS
3/30/12 19:18 WM-9	7		6 x		3						
3/31/12 10,70 UM-7			6 X		3						
4/1/15 17-43 MW-d	\		6 X	\perp	3						
3/30/15 15:13 MW-30			6 X		<u>う</u>						
3/30/15 15:35 MW-3 3/31/15 17:50 MW-3	<u> </u>		6 x	\dashv	3						
4/2/15 13227 MW-3		 	6 X		3			-	_		-
3/31/15 11:17 MW-3			6 x		3						
3/31/15 15:12 MW-:			6 X		3						
3/31/15 16:05 MW-	36		Ĺχ		3						
3/31/15 12:05 MW-3			6 x		3						
Y/1/15 18:58 PAN-	MW-9 DATE TIME	RELINQUISHED BY: (SIG	6 X		3	DATE	TIME	DEL INGUES		1	
In plus	41314 8,30	RELINCUISIED D1: (SIG	ana i uhe)			DAIE	TIME	RELINQUISHED	BY: (SIGNATURE)	DATE	TIME
RECEIVED BY: (SIGNATURE)	DATE TIME	RECEIVED BY. (SIGNATUR	RE)			DATE	TIME	RECEIVED BY: (8	(GNATURE)	DATE	TIME
	L	 	LABORATOR	RY USF	E ONLY						
BECEIVED FOR LABORATORY BY		CUSTODY INTACT	CUSTODY		SAVANNAH LABORATORY REMARKS						
Thueal to		YES O	SEAL NO.		LOG No	O. 	Q-1	2/6.6	(08	0-1116	248
	/										TAI 8240-680 (1008)

Serial Number 93979

ANALYSIS REQUEST AND CHAIN OF CUSTODY	DECORD	1					3037	 _		
TestAmerica	HECORD	TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Website: www.testamericainc.com Phone: (912) 354-7858 Fax: (912) 352-0165					om			
10317 (11101100			⊃ Alte	rnate Labora	tory Name/Lo	cation				
THE LEADER IN ENVIRONMENTAL TESTING						, 1	Phone: Fax:			
PROJECT REFERENCE PROJECT NO. PROJECT LOCATION (STATE) GA	MATRI; TYPE		REQUIRED ANALYSIS PAGE 3				3 OF			
TAL (LAB) PROJECT MANAGER SIGNA HOFFMAN CLIENT (SITE) PM ALAN SANGERS P.O. NUMBER 341 CLIENT SHONE 770-771-7100 CLIENT FAX	47E	T,)						STANDARD REPO DELIVERY	RT 🕁	
CLIENT (SITE) PM Han Sanders CLIENT RHONE 770-771-7100 CLIENT FAX) INDIC	SOLVEN	J.B					DATE DUE _		
CLIENT NAME CLIENT E-MAIL as anders @ ci cusa. com	SHAB (G	D (OIL, §	82608					EXPEDITED REPO DELIVERY (SURCHARGE)		
CLIENT ADDRESS 161 Kimball Brige RJ Alpharetta GA 30009 COMPANY CONTRACTING THIS WORK (if applicable)	(C) OR (ATER)	SLIQUI						DATE DUE		
i	COMPOSITE (C) OR GRAB (G) INDICATE AQUEOUS (WATER) SOLID OR SEMISOLID	GUEOU	Ha	4	*		†	NUMBER OF COOL PER SHIPMENT:	LERS SUBMITTED	
SAMPLE SAMPLE IDENTIFICATION	COME	NONA		NU	MBER OF CON	TAINERS SUBMITTED		REMARKS		
4/1/15 9: 40 PAN-MW-10	6 X		3							
- Trip Blank	X		J							
			<u></u>							
				<u> </u>						
		_ _	_—					<u> </u>		
		4				<u> </u>				
									<u>.</u>	
		-								
RELINQUISHED BY: (SIGNATURE) DATE TIME RELINQUISHED BY: (SIGNATURE) 4/3/4 8:50	GNATURE)		<u></u>	DATE	TIME	RELINQUISHED BY: (SIGNATURE)	DATE	TIME	
RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE)	RE)	_	_	DATE	TIME	RECEIVED BY: (SIGNAT	TURE)	DATE	TIME	
	LABORATOR	RŸ USE	ONLY							
ASCENSE FOR LABORATORY BY DATE TIME CUSTODY INTACT YES NO	CUSTODY SEAL NO.	SAVANNAH LABORATORY REMARKS (080 - 111248)				48				
The state of the s	-		_		'~				TAL8240-680 (1008)	

Login Sample Receipt Checklist

Client: Environmental International Corporation

Job Number: 680-111248-1

Login Number: 111248 List Source: TestAmerica Savannah

List Number: 1

Creator: White, Menica R

Answer	Comment
N/A	
True	
True	
True	
True	
False	RECEIVED ON ICE, BUT GOT A TEMP OF 6.2 WITH A CF OF 6.6
True	
True	
True	
True	
N/A	
True	
N/A	
	N/A True True True False True True True True True True True Tr

2

А

5

6

8

11

12

Certification Summary

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

TestAmerica Job ID: 680-111248-1

Laboratory: TestAmerica Savannah

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Georgia	State Program	4	N/A	06-30-15
Georgia	State Program	4	803	06-30-15

4

Q

9

10

46

Definitions/Glossary

Client: Environmental International Corporation Project/Site: VoPak, Savannah/390020

Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Quality Control Relative error ratio TestAmerica Job ID: 680-111248-1

Qualifiers

GC/MS VOA

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

PQL

QC

RER RL

RPD

TEF

TEQ

A la la vas viatio va	These seminarily used abbreviations may be made be avecaged in this remark
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)

VOPAK TERMINAL SAVANNAH, SAVANNAH, GEORGIA

EIGHTH SEMI-ANNUAL PROGRESS REPORT

ATTACHMENT C

Environmental International Corporation Time by Job Summary

March through August 22, 2015

TASKS	Mar 15	Apr 15	May 15	Jun 15	Jul 15	Aug 1 - 22, 15	TOTAL
390000- VOPAK:390020 - VTSI Quarterly MNA GW Sampling	90	109	0	2	7	0	207
390000- VOPAK:390025 - Semi-annual report for VTSI	3	3	0	0	8	89	102
390000- VOPAK:390031 - Site Conceptual Model	26	6	4	56	4	14	109
TOTAL	118	118	4	58	19	102	418

VOPAK TERMINAL SAVANNAH, SAVANNAH, GEORGIA

EIGHTH SEMI-ANNUAL PROGRESS REPORT

APPENDIX A

2015 SITE CONCEPTUAL MODEL REPORT

August 28, 2015

EIC Project No. 390031

Submitted To:

GEORGIA ENVIRONMENTAL PROTECTION DIVISION

Georgia Department of Natural Resources Response and Remediation Program Suite 1054 East Tower 2 Martin Luther King Jr. Drive, S.E. Atlanta, Georgia 30334

Prepared for: **VOPAK TERMINAL SAVANNAH** P.O. Box 7390

Savannah, Georgia 31418-7390

Prepared by:

ENVIRONMENTAL INTERNATIONAL CORPORATION

161 Kimball Bridge Road, Suite 100, Alpharetta, GA 30009, USA Phone 770.772.7100 • Fax 770.772.0555

http://www.eicusa.com

Table of Contents

1.0	IN	TRODUCTION1
1.1	SIT	E LOCATION AND PHYSICAL SETTING1
1.2	SIT	E BACKGROUND2
1.3	HY	DROGEOLOGY2
1.	.3.1	Stratigraphy
1.	.3.2	Groundwater Potentiometric Surface Maps
1	.3.3	Potential Impact of Substructures on Groundwater Flow4
1.4	TID	OAL FLAT VERIFICATION5
2.0	RE	ELEASE SOURCE(S) 6
2.1	PCI	E RELEASE6
2.2	HY	DROCARBON RELEASE6
2.3	CO	NSTITUENTS OF CONCERN7
3.0	CC	OC DELINEATION 8
3.1	SOI	L DELINEATION8
3.2	GR	OUNDWATER DELINEATION8
3.	.2.1	CVOC8
3.	.2.2	VOC
3.	.2.3	Vertical Delineation
3.3	SOI	L VAPOR11
3.4	SEI	DIMENT11
3.5	SUF	RFACE WATER11
4.0	FA	TE AND TRANSPORT

4.1	MIG	GRATION POTENTIAL 1	.3
4.	.1.1	CVOC Migration Potential	13
4.	.1.2	VOC Migration Potential	13
4.2	UTI	LITY TRENCHES AS MIGRATION PATHWAYS 1	3
4.3	OTI	HER EXPOSURE PATHWAYS1	3
4.4	TID	AL INFLUENCE 1	4
5.0	PO	TENTIAL RECEPTORS	!5
5.1	HUI	MAN HEALTH RECEPTORS 1	.5
5.2	ECC	DLOGICAL RECEPTORS 1	.5
5.3	NAT	ΓURAL RESOURCES1	.6
5.4	PRE	SENT AND FUTURE LAND USE 1	.6
5.5	DOV	WN-GRADIENT RECEPTORS1	6
6.0	PE	RFORMANCE METRICS1	!7
6.1	IND	DICATOR PARAMETERS 1	.7
6.2	EVI	DENCE OF DEGRADATION PRODUCTS 1	7
6.3	STA	TISTICAL TREND ANALYSIS (CVOCS) 1	8
6	.3.1	PCE Statistical Trend Analysis	9
6	.3.2	TCE Statistical Trend Analysis	9
6	.3.3	DCE Statistical Trend Analysis	9
6	.3.4	VC Statistical Trend Analysis	9
6.4	STA	TISTICAL TREND ANALYSIS (other VOCS)2	
6	.4.1	Benzene Statistical Trend Analysis	20
6	.4.2	Toluene Statistical Trend Analysis	21
6	.4.3	Ethylbenzene Statistical Trend Analysis	21
6	.4.4	Total Xylenes Statistical Trend Analysis	22
6.5	SPA	TIAL AND TEMPORAL ANALYSIS2	22
6.	.5.1	Dissolved CVOCs	22

	6.5.2	Dissolved VOCs	22
7.0	SU	<i>IMMARY</i>	24
8.0	RF	EFERENCES	26

LIST OF TABLES

- 1-1: October 2011 Well Gauging Data
- 1-2: January 2013 Well Gauging Data
- 1-3: April 2014 Well Gauging Data
- 2-1: Concentrations of Volatile Organic Compounds (CVOCs and VOCs) in Groundwater

LIST OF FIGURES

- 1-1: Site Layout Map
- 1-2: Hydrogeological Cross Section Trace Map
- 1-3: A-A' (South to North) Hydrogeological Cross-Section
- 1-4: B-B' (West to East) Hydrogeological Cross-Section
- 1-5: Groundwater Potentiometric Surface Map, October 2011
- 1-6: Groundwater Potentiometric Surface Map, January 2013
- 1-7: Groundwater Potentiometric Surface Map, April 2014
- 1-8: Depth to Water Below Ground Surface During Highest Recorded Groundwater Surface Elevation
- 1-9: Depth to Water Below Ground Surface During Lowest Recorded Groundwater Surface Elevation
- 1-10: Bulkhead Cross-Section Trace Map
- 1-11: Bulkhead Cross-Section Diagram
- 1-12: Bulkhead Cross-Section Diagram with Lithology
- 3-1: PCE Isoconcentration Map, March 30-April 2, 2015
- 3-2: TCE Isoconcentration Map, March 30-April 2, 2015
- 3-3: CIS 1, 2 DCE Isoconcentration Map, March 30-April 2, 2015
- 3-4: Vinyl Chloride Isoconcentration Map, March 30-April 2, 2015
- 3-5: Benzene Isoconcentration Map, March 30-April 2, 2015
- 3-6: Toluene Isoconcentration Map, March 30-April 2, 2015
- 3-7: Ethylbenzene Isoconcentration Map, March 30-April 2, 2015
- 3-8: Total Xylenes Isoconcentration Map, March 30-April 2, 2015
- 4-1: Potential COC Migration Pathways
- 6-1a: Statistical Trend Analysis Well Utilization with Vinyl Chloride Plume Map, April 15-17, 2014
- 6-1b: Statistical Trend Analysis Well Utilization with Benzene Isoconcentration Map, March 30-April 2, 2015
- 6-2: PCE Mann-Kendall Constituent Trend Analysis
- 6-3: TCE Mann-Kendall Constituent Trend Analysis
- 6-4: DCE Mann-Kendall Constituent Trend Analysis

- 6-5: VC Mann-Kendall Constituent Trend Analysis
- 6-6: Benzene Mann-Kendall Constituent Trend Analysis
- 6-7: Toluene Mann-Kendall Constituent Trend Analysis
- 6-8: Ethylbenzene Mann-Kendall Constituent Trend Analysis
- 6-9: Total Xylenes Mann-Kendall Constituent Trend Analysis

SECTION

1.0 INTRODUCTION

VOPAK Terminal Savannah, Inc. (VOPAK) submitted a preliminary site conceptual model (SCM) of the area affected by a tetrachloroethene/perchloroethene (PCE) plume as a part of their Voluntary Investigation and Remediation Plan (VIRP) that was approved by the Georgia Environmental Protection Division on August 31, 2011. Subsequently, VOPAK submitted an updated SCM report with the Sixth VIRP Semi-annual Progress Report submitted on August 29, 2014 (Environmental International Corporation (EIC), 2014). Following the updated 2014 SCM report, data has been obtained which further defines site characteristics and contaminant fate and transport mechanisms. Therefore, VOPAK has retained EIC to prepare a 2015 update to the VOPAK SCM.

The PCE plume at the site is the result of a release that occurred during the 1970s. Since the release, the PCE has degraded into other dissolved chlorinated volatile organic compounds (CVOCs). Additionally, certain VOCs, consisting of benzene, toluene, ethylbenzene, and xylenes (BTEX), have been consistently detected within the area of the CVOCs.

Typically, the SCM defines release sources, extent of contaminant plumes, fate and transport mechanisms, potential exposure pathways, and potential receptors that could be impacted. This information serves as an important tool in developing site remedies or in implementing certain measures designed to reach remedial end points. The sections within this report provide an updated SCM based on historical site data and data collected by EIC since the SCM was previously updated in August 2014.

1.1 SITE LOCATION AND PHYSICAL SETTING

It is important to note that VOPAK utilizes the subject property as a storage terminal based on a long-term lease with the Georgia Ports Authority (GPA). The physical site address is 280 Brampton Road, Savannah, Georgia (also known as the Georgia Ports Authority Gate No. 2 on Turner and Hart Street, Garden City, Georgia). The site, located in Chatham County, has operated as a bulk storage facility since 1951. Historically the terminal has stored various fuels and chemicals. The area surrounding the site consists of the Savannah River to the east; an

asphalt roofing materials manufacturing facility (GAF Materials Corporation), Brampton Road, and a rail yard to the south; and the GPA container storage facility to the west and north. Figure 1-1 illustrates the facility layout, wells utilized in the VIRP program, and other significant site features.

1.2 SITE BACKGROUND

As stated in EIC's SCM section of the 2011 revised VRP application (EIC, 2011), in 1996 a PCE release was discovered at the VOPAK Savannah site in the vicinity of Tank 24 within a tank farm designated as Tank Farm No. 2. Based on a historic tank inventory, PCE was stored at the site during the period from December 1972 to April 1975. Since no PCE has been stored at the site since 1975, the release was attributed to previous terminal operations. Subsequently, the previous owners of the site and VOPAK have conducted various investigatory and remedial activities per the EPD, including source removal.

In addition to the PCE release, benzene, toluene, ethylbenzene, and xylenes (BTEX) have been detected at the site above established risk reduction standards (RRS) in the underlying groundwater matrix. As discussed in EIC's previous SCM, there are three distinct BTEX plumes at the site (EIC, 2014). Two lie within the western end of Tank Farm #4 west of Tank Farm two and one lies within the CVOC plume in the vicinity of Tank Farm No. 2. The sources of these three plumes, however, are not apparent from the available historical documents (EIC, 2011). Based on the spatial and temporal distribution of the BTEX plumes relative to the groundwater flow direction, it is apparent that the two BTEX releases, located to the west of Tank Farm No. 2, are not hydraulically connected to nor are a source for the BTEX plume that is present within the PCE foot-print.

1.3 HYDROGEOLOGY

EIC has prepared two hydrogeological cross-sections that illustrate the subsurface at the site in the vicinity of the CVOC and VOC plumes. Figure 1-2 depicts a plan view of the cross-section traces. Cross Section A-A' (Figure 1-3) generally extends from south to north and Cross Section B-B' (Figure 1-4) generally extends from the northwest to southeast. These cross-sections are based on well boring logs recorded by EIC and correlate lithological units between adjacent wells. Based on EIC's interpretation of these cross-sections, the site is underlain by a complex interbedding of gravel, sand, silt, and clay units. This results in a complex matrix pathway for groundwater flow and is generally considered as anisotropic and non-homogeneous conditions.

Based on historical gauging data, depth to groundwater ranges approximately from 1 to 10 feet below ground surface. Groundwater at the site generally flows from southwest to northeast. Figures 1-5 through 1-7 illustrate variations in the groundwater potentiometric surface and flow direction at the site during three monitoring events.

Estimates of the hydraulic gradient at the site range from 0.0145 to 0.0133. Hydraulic conductivity was determined to range from 3.09 x 10⁻⁴ cm/sec to 4.31 x 10⁻⁵ cm/sec, and the estimated seepage velocity was determined to be approximately 21 to 23 feet per year (EIC, 2011).

1.3.1 Stratigraphy

To gain a better understanding of the hydrodynamics of fluid flow, EIC prepared stratigraphic cross-sections along the direction of the projected groundwater flow line (Figure 1-3, A-A') and perpendicular to the flow line (Figure 1-4, B-B') along equipotential lines.

EIC developed detailed lithological and well construction logs for the wells installed by EIC. Majority of the wells installed by previous contractor do not have detailed well construction and lithological logs. Consequently, EIC utilized only those wells that were installed by EIC for illustrating the stratigraphy.

From south to north, Cross Section A-A' includes monitoring wells MW-37, MW-34, MW-33, MW-32, and MW-36. From northwest to southeast, Cross Section B-B' includes monitoring wells MW-35, MW-31, MW-33, and MW-30. From these figures, it is apparent that the groundwater flow intercepts multiple stratigraphic layers which include basic lithological units such as gravel, sand, silt, and clay, as well as complex mixtures of these constituents such as sand with silt and silt with sand. The complex inter-bedding represented in the cross-sections is characteristic of local natural fluvial (river) deposits associated with the nearby Savannah River. No lower confining layers such as bedrock were encountered in any historical well logs at the site.

The flow pattern of groundwater through the complex inter-bedded units at the site would be anisotropic and non-homogeneous. Therefore, calculations based on Darcy's flow equations are rendered impractical for the purposes of modeling groundwater flow throughout the site.

1.3.2 Groundwater Potentiometric Surface Maps

To develop a greater understanding of the groundwater conditions at the site, EIC reviewed three select historical groundwater potentiometric surface maps, Figures 1-5 through 1-7, which illustrate the groundwater potentiometric surface during October 2011, January 2013, and April 2014, respectively. These figures were developed utilizing groundwater gauging and top-of-casing (TOC) elevation data listed in Tables 1-1 through 1-3. From these figures, it is apparent that the predominant groundwater flow direction is from the southwest to the northeast of the site.

From the data compiled from the three gauging events, EIC made the following observations. Referring to Figures 1-5 through 1-7, near the vicinity of Station 13 towards the southern tip of Tank farm No. 2, the groundwater potentiometric surface is relatively horizontal and low, sloping towards the northeast. In the vicinity of the tidal flat, towards the northeast of the site, the groundwater slope increases downward as it nears the Savannah River.

In the vicinity of Tank Farm No. 2, a surficial ridge and valley (or trough) feature has persisted which parallels the groundwater flow direction. These features originate southwest of Tank Farm No. 2, passes under Tank Farm No. 2, continues towards the northeast, and culminates northwest of Tank Farm No. 2 on GPA property. The trough feature generally crosses under the center of Tank Farm No. 2 and the ridge feature lies under and/or near the eastern berm of Tank Farm No. 2. Normally when such site conditions exist, COCs would be expected to migrate along the trough feature and to not extend up-gradient past the ridge feature paralleling the groundwater flow. This appears to be confirmed by historically relatively high COC concentrations detected at well MW-29 located within the trough feature and relatively low COC concentrations detected at well MW-30 east of the ridge feature.

1.3.3 Potential Impact of Substructures on Groundwater Flow

To determine the potential impact of substructures on groundwater flow, EIC has developed apparent depth to groundwater contour maps. Figures 1-8 and 1-9 illustrate the apparent depth to water at the site during the highest (April, 2014) and lowest (January, 2014) groundwater elevations recorded since October 2011, respectively.

From Figures 1-8 and 1-9, it is apparent that during the highest and lowest groundwater levels at the site, the depth to water ranged from zero to two feet near the southern end of Tank Farm No. 2. In addition, the area to the south of and surrounding the southern edge of Tank Farm No. 2 has a depth to water between zero and four feet. This shallow water table allows for the possible influence of subgrade structures and related back-filled trenching on groundwater flow such as stormwater pipes, water supply line pipes, and other below-grade conduits.

A stormwater reinforced concrete pipe, terminating at the bulkhead, is located perpendicular to groundwater flow. Figure 1-10 illustrates the location of this pipe relative to the bulkhead wall at the western end of the tidal flat. Figure 1-11 illustrates a cross sectional view of the pipe near the tidal flat bulkhead. Based on piping as-built drawings and on historical depth to groundwater measurements collected by EIC at well MW-32, the top of the pipe is submerged 1.6 to 2.8 ft. below the water table. The surrounding saturated soil, illustrated in Figure 1-12, which is based on the lithological log of MW-32, lying approximately 10 feet south of the trench, is primarily composed of silt and clay, which has inherently low effective porosity.

Although it is unlikely that the stormwater pipe itself may be inhibiting the bulk movement of contaminants in groundwater, the trench that was excavated for laying the pipe would be backfilled with highly porous material that can intersect the COC plume and prevent the plume from migrating further northward and down-gradient from the trench. Any COCs entering the pipe backfill can potentially migrate along the pipes. Based on the groundwater flow direction, such a plume can potentially migrate along the pipe towards the Savannah River. It is important to note, however, that such migration would be blocked by the concrete bulkhead wall. This is indicated by low or undetectable CVOC concentrations at well MW-17R, lying near the north end of the tidal flat bulkhead and down-gradient of the pipe trench.

It should be noted that EIC was researching additional as-built drawings of the pipe's installation, and data on the type of fill or bedding material utilized for the trench. EIC will assess potential impact of the subgrade storm water features at the site when more information becomes available.

1.4 TIDAL FLAT VERIFICATION

Initially, the area to the east of the bulkhead along the Savannah River was labelled as a tidal flat on site maps. Based on field observations and a cursory review of historical drawings, it appears that the stormwater discharge channel was man-made and does not represent a tidal flat. Currently, EIC is performing a detailed evaluation to verify that finding and is in the process of compiling supporting documents. The results of the evaluation will be submitted in the next semi-annual report. The discussions and figures in current document will continue referring to that area as a tidal flat until the aforementioned evaluation is complete.

2.0 RELEASE SOURCE(S)

Based on historic data it is apparent that the there are two different release source(s) in the Tank Farm No. 2 area. Both releases are discussed in the following subsections.

2.1 PCE RELEASE

PCE was apparently stored in Tank 24 during the period from December 1972 through April 1975 (EIC, 2011 - VIRP). In 1996, a PCE release was discovered in the subsurface during construction activities in the vicinity of Tank 24. Considering that no PCE has been stored at the site since 1975, the release was attributed to previous terminal operations. Subsequently, the site's previous owners and VOPAK have conducted various investigatory and remedial activities per the EPD, including source removal (EIC, 2011 - VIRP).

Due to natural attenuation, the PCE has degraded into trichloroethene (TCE), cis-1, 2-dichloroethene (DCE), and vinyl chloride (VC). Therefore, both PCE and these daughter products are the primary constituents of concern (COC) at the facility. All four of these chemicals are CVOCs. Table 2-1 lists the analytical results of CVOCs monitored during the period from February 1991 through April 2015. It is noteworthy that certain monitoring wells were installed prior to the 1996 PCE release and were being monitored since February 1991. EIC is uncertain about the events that would have triggered installation and monitoring of those wells.

2.2 HYDROCARBON RELEASE

Based on the data presented in the 2005 corrective action plan (CAP) (ERM, 2005) and subsequent sampling events, it is apparent that certain hydrocarbons comprised of benzene, toluene, ethylbenzene, and xylenes (BTEX) have been consistently detected in certain monitoring wells at the site (EIC, 2011 – VIRP). The BTEX analytical results monitored for the period from December 1998 through April 2015 are presented in Table 2-1.

As discussed in the revised VIRP, EIC determined that three well-defined dissolved BTEX plumes were identified in 1996. The first plume was located within the same foot-print as the

current PCE plume. The second BTEX plume, located to the west of the first plume, was separated by a distance of more than 1,000 feet. A smaller third BTEX plume was located approximately 400 feet to the northwest of the second plume. EIC determined that the sources these plumes were not apparent from the available documents (EIC, 2011).

No documentation is available about the source of the BTEX release in the first plume area located beneath Tank Farm No. 2. EIC also determined that on January 12, 1999 a major diesel release took place from AST 22 in the western end of Tank Farm No. 4 that resulted in light non-aqueous phase liquid (LNAPL) accumulations near the second and third plumes (EIC, 2011). EIC is currently performing remediation of diesel light non-aqueous phase liquid hydrocarbon (LNAPL) within the southern LNAPL plume of this area in compliance with EPD requirements specified by the Watershed Protection Branch. Considering the groundwater flow direction, however, it is apparent that the BTEX plume located within the PCE foot-print is not related to the diesel LNAPL plumes at the site.

2.3 CONSTITUENTS OF CONCERN

As noted in Section 2.1, the COCs, within the area of the CVOC plume is comprised of dissolved phase CVOCs and VOCs. The CVOCs consists of PCE and its daughter products TCE, DCE, and VC. The dissolved-phase VOCs consists of benzene, toluene, ethylbenzene, and xylenes (BTEX).

As the COCs migrate through a multimedia environment, natural attenuation processes sequentially replace chlorine atoms that are attached to the dissolved PCE, with carbon atoms – thereby producing the aforementioned daughter products. As the attenuation processes continue, the daughter products are ultimately transformed to carbon dioxide and water. VOC, comprised of BTEX constituents, also attenuate more readily both aerobically and anaerobically resulting in carbon dioxide and water.

3.0 COC DELINEATION

Characterizing the extent of a release entails a definition of the horizontal and vertical extent of the COCs in a multimedia environment. Utilizing historical documentation, current sampling records, and plume maps, EIC has compiled the following subsections.

3.1 SOIL DELINEATION

Soil contamination resulting from the PCE release was delineated during the period from 2001 to 2006. A review of the analytical results from this activity indicated that BTEX concentrations were also delineated within the area impacted by PCE release. As discussed in Section 3.1 of the Revised VIRP, sidewall confirmatory soil samples from excavations within the PCE footprint confirmed that RRS standards for both CVOCs and BTEX concentrations in soil were achieved in 2006 (EIC, 2011).

3.2 GROUNDWATER DELINEATION

Both CVOCs and other VOCs have been present at the site for several decades. As discussed in Section 2.3, however, these COCs have undergone natural attenuation processes. Nevertheless, additional pockets of COCs discovered after the VIRP implementation has expanded the view port of the original COC foot print. The following sections define the horizontal and vertical extent of the plumes.

3.2.1 CVOC

Prior to the initiation of the VIRP, EIC observed that a number of monitoring wells were historically not sampled since they were either destroyed or were not located. Since initiating the VIRP, EIC has gradually rehabilitated or replaced a number of monitoring wells. The analytical data from subsequent sampling of these additional wells in conjunction with data from routinely sampled wells has further expanded the baseline CVOC foot-print. Table 2-1 tabulates the current and historical analytical groundwater data for each well. Figures 3-1 through 3-4 illustrate

the horizontal extent of the dissolved CVOC plumes, from the latest sampling event of April 2015.

Relative to the baseline CVOC footprint defined in the VIRP, it is apparent that the horizontal extent of the CVOC plume is well defined in all directions except to the south beyond the VOPAK property line. This was substantiated by the EPD in the April 2014 comments letter to the VOPAK Sayannah Terminal in line item number five.

The property beyond the VOPAK southeastern fence-line is currently occupied by GAF Materials Corporation (GAF). During December 2013, EIC installed a new monitoring well, MW-37, on GAF property to delineate the southern extent of the CVOC plume. From subsequent groundwater sampling EIC performed at MW-37, however, EIC determined that the extent of the CVOC plume extended further southward than had previously been determined prior to the installation of MW-37.

As further discussed in Section 6.3, EIC has determined that CVOC concentrations at MW-37 have been decreasing or stable since EIC began sampling this well in January 2014. This indicates that natural attenuation is progressively occurring near the trailing up-gradient edge of the CVOC plume.

It is noteworthy, that there are reported PCE releases at off-site locations along Brampton Road-up-gradient of the VOPAK terminal - which may contribute to the concentrations found in MW-37. The shallow water table present in the GAF-VOPAK site boundary may intersect utility lines that may act as a preferential pathway for groundwater flow from hydraulically up-gradient sources. EIC is currently conducting research into the effect of utilities and stormwater features on groundwater flow towards the site along Brampton Road. In addition to this research, EIC will continue to monitor the trend of CVOC concentrations near the vicinity of MW-37.

As of April 2015, the dissolved CVOC concentrations of PCE, TCE, 1,2-DCE, and VC currently meet the established RRSs specified in the 2011 Revised VIRP Application in all but twelve monitoring wells: IW-1R, IW-18, LAW-PZ-8R, PAN-MW-9, MW-16, MW-24R, MW-26R, MW-27, MW-29, MW-32, MW-33, and MW-37. Referring to the analytical results table, Table 2-1, the following observations of groundwater RRS exceedances that occurred during the last sampling event in April 2015 are noted:

- Concentrations in 8 wells (IW-1R, IW-18, LAW-PZ-8R, MW-26R, MW-28, MW-29, MW-37, and PAN-MW-9) currently exceed the RRS for PCE. The PCE concentration at IW-1R was the highest of the sampled wells at 310 ppb.
- Concentrations in 2 wells (IW-1R and MW-29) currently exceed the RRS for TCE. The TCE concentration at IW-1R is the highest of the wells sampled at 150 ppb.

- Concentrations in 4 wells (IW-1R, LAW-PZ-8R, MW-29, and PAN MW-9) currently exceed the RRS for DCE. The DCE concentration at IW-1R is the highest of the sampled wells at 9,900 ppb.
- Concentrations in 12 wells (IW-1R, IW-18, LAW-PZ-8R, MW-16, MW-24R, MW-26R, MW-27, MW-28, MW-29, MW-33, MW-37, and PAN-MW-9) currently exceed the RRS for VC. The highest VC concentration was found at IW-18 at 830 ppb.

3.2.2 VOC

Figures 3-5 through 3-8 illustrate the current horizontal extent of the BTEX COC concentrations as of the April 2015 sampling event based on the groundwater delineation concentrations listed in Table 2-1. Similarly to the dissolved CVOCs, the dissolved BTEX plume has substantially reduced in size, particularly near the vicinity of MW-33, since the implementation of the VIRP at the site. VOPAK is continuing to evaluate the horizontal extent of the dissolved BTEX plumes, in the area to the west of the PCE plume, under a separate program regulated by the EPD's Watershed Protection Branch.

As of April 2015, it is apparent that the BTEX plume appears to be fully delineated and is reducing at steady rates over time in both the south and north plume areas. In particular, toluene concentrations have remained below RRS at the site since October 2011 and below delineation standards since April 2012. Referring to the analytical results table, Table 2-1, the following observations of groundwater RRS exceedances are noted:

- Concentrations in 5 wells (IW-1R, IW-18, LAW-PZ-8R, MW-26R, and MW-29) currently exceed the RRS for Benzene. The Benzene concentration at LAW-PZ-8R is the highest of the sampled wells at 1,100 ppb.
- Since the first VIRP sampling event in October 2011, Toluene has not exceeded RRS concentrations at any of the sampled monitoring wells. The Toluene concentration at IW-1R is the highest detected concentration of the sampled wells at 260 ppb.
- Concentrations in 4 wells (IW-1R, LAW-PZ-8R, MW-26R, and MW-29) currently exceed the RRS for Ethylbenzene. The Ethylbenzene concentration in LAW-PZ-8R is the highest of the sampled wells at 6,900 ppb.
- Concentrations in 3 wells (IW-1R, LAW-PZ-8R, and MW-26R) currently exceed the RRS for Total Xylenes. The highest Total Xylene concentration was found at LAW-PZ-8R at 87,000 ppb.

3.2.3 Vertical Delineation

Based on the groundwater sampling data presented in the third, fourth, and fifth VIRP Semi-Annual Progress Reports, EPD concurred that vertical delineation is complete (EPD, 2014).

3.3 SOIL VAPOR

As discussed in Section 3.1, VOPAK removed all contaminated soils to below RRS levels. Also, as the groundwater is relatively shallow and the dissolved COC concentrations are relatively low, VOPAK does not anticipate residual contamination in soils to be persistent at the site. The COC footprint is primarily within a tank farm not designed for continuous human occupancy. Consequently, vapor intrusion into buildings from the COCs is not a potential area of concern. VOPAK, however, is preparing to conduct a vapor exposure survey to determine potential impacts to construction workers.

3.4 SEDIMENT

The original CVOC release was contained within Tank Farm No. 2. As such, VOPAK does not anticipate CVOC contamination in drainage sediments outside the tank farm. VOPAK will, however, conduct sampling in areas where the tank farm spill containment dams discharge into stormwater conveyance systems.

3.5 SURFACE WATER

The Savannah River is the nearest surface water body at the site. Since the original release was contained and soil contamination was removed from the tank farm, the COCs are not known to have impacted surface water. Also, as of April 2015, the COC plume in groundwater within the CVOC footprint is stable and appears to been rapidly attenuating. Furthermore, as indicated by a sharp decrease in COC concentrations at well MW-32 between October 2014 and April 2015, the leading edge of the COC plume appears to be rapidly receding up-gradient and away from the Savannah River. As such, VOPAK does not anticipate potential impact of COCs into the Savannah River.

SECTION

4.0 FATE AND TRANSPORT

The main purpose of determining potential exposure pathways is to assess the migration potential of the released COCs in a multimedia setting. Based on such an assessment, it is possible to establish potential exposure levels, critical in establishing risk-based screening and cleanup goals.

Although the COCs migrate through various pathways, they are continually subject to various biotic and abiotic attenuation processes. At a minimum, the COCs will be subject to the following mechanisms:

- Physical separation of released product into gas and other states of matter due to sorption, solubility and other equilibrium reactions.
- Advection, referring to bulk movement of immiscible liquid
- Dispersion, involving horizontal and vertical spreading of partitioned constituents.
- Diffusion, consisting of spreading from concentration gradients.
- Biodegradation by native microorganisms along the migration pathway.
- Other biotic, abiotic, and cometabolic attenuation processes that reduce the concentrations with time and distance.

The PCE release was remediated upon discovery and has not been stored at the site since 1975. According to the 2005 CAP, there are two main transport mechanisms of potential exposure occurring at the site (ERM, 2005). These included leachate from contaminated soils that act as source material and transport of leachate in the groundwater medium as dissolved COCs. However, leachate is no longer a concern at the VOPAK site, because the contaminated soil was excavated in 2006 (EPD, 2006). Since groundwater is relatively shallow, the transport of residual leachate in the form of dissolved COCs is the primary source of concern. During transport through various exposure pathways, the dissolved COCs are also subject to the aforementioned attenuation mechanisms such as advection, dispersion, diffusion, and biodegradation.

4.1 MIGRATION POTENTIAL

As discussed in the preceding subsection and from multiple sampling events, it is apparent that dissolved CVOCs are the primary COCs. The following sections outline both the CVOCs and VOCs that are currently under investigation.

4.1.1 CVOC Migration Potential

Typically, dissolved contaminants tend to move with the groundwater flow. Consequently, the peak plume would be subject to a migration consistent with seepage velocity. Referring to the contoured COC plume maps, it is apparent that the horizontal extent of all COCs have decreased and are confined within the baseline PCE foot-print.

4.1.2 VOC Migration Potential

VOCs primarily composed of BTEX constituents are present within the PCE plume footprint. As such, they would likely be subject to similar hydrodynamic mechanisms as those that affect the PCE plume.

4.2 UTILITY TRENCHES AS MIGRATION PATHWAYS

As discussed in Section 1.3.3, sub-grade structures can influence groundwater flow. Preferential pathways along pipeline utility trenches that extend below the groundwater surface, for example, could potentially allow COC's from up-gradient offsite sources to migrate onto the VOPAK property. Future analysis will determine if these sub-grade structures effect the migration of CVOC and VOC plumes from off-site sources.

Sub-grade structures both on and down-gradient of VOPAK property could also influence groundwater flow. Based on a review of historic as-built drawings and from field observations, EIC has determined that a west-to-east oriented stormwater conveyance pipe is located approximately 10 feet north of MW-32. As discussed in Section 1.3.3, this stormwater conveyance pipe may impede the migration of contaminants to the north of and down-gradient of this feature. EIC will continue to evaluate the effect of this stormwater conveyance pipe regarding contaminant migration.

4.3 OTHER EXPOSURE PATHWAYS

As discussed in Section 4.1, groundwater is the primary pathway for the migration of COCs at this site. Figure 4-1 illustrates potential pathways through which the COCs can migrate. EIC is currently evaluating the potential for migration of COC through other media such as soil vapor from dissolved COCs. In addition, EIC will evaluate the vapor intrusion potential to ensure that

terminal personnel, contactors, or other site visitors are not at risk of exposure. Based on the site background information available, it appears that there are currently no immediate or eminent threats and hazards from the released COCs at the site.

4.4 TIDAL INFLUENCE

Based on a long-term tidal study, presented in the Third VIRP Progress Report (EIC, 2013) EIC concluded that the groundwater within the PCE footprint was not significantly affected by tidal fluctuations within the Savannah River. In addition, EIC determined from a review of historical as-built drawings that a sheet pile wall is located hydraulically down-gradient of the PCE footprint at the Georgia Ports facility perimeter along the Savannah River. This feature appears to serve as an additional barrier for contaminant movement between the land mass and surface water. Furthermore since the COCs concentrations have remained stable and contained within the baseline COCs footprint (refer to Section 3), EIC does not believe that the COC's have a potential to migrate to surface waters.

5.0 POTENTIAL RECEPTORS

Potential receptors are the most important drivers in establishing cleanup goals for the site. The receptors include human, ecological, natural resources, present and future land use, and downgradient receptors.

5.1 HUMAN HEALTH RECEPTORS

Since all contaminated soil that exceeded the RRS was excavated in 2006, as discussed in Section 3.1, subsurface soil is neither a concern to VOPAK employees nor to construction workers at the site. Consequently, only groundwater contamination or saturated soils presents potential human exposure at the site. When addressing groundwater exposure receptors, the 2005 CAP states, "Because the site and surrounding area are served by a municipal water supply system, groundwater from the surficial aquifer is not being used for human consumption. VOPAK will also ensure that any construction works conducted within the area covering contaminated groundwater will be limited to the extent of the vadose zone. Therefore, human exposure to contaminated ground water is an unlikely exposure pathway" (ERM, 2005). However, should it become necessary for onsite workers to excavate groundwater saturated soils during construction activities, measures will be taken to monitor and to protect workers from soil vapor, contaminated groundwater, and/or saturated soil resulting from residual COCs. The CAP also states that there are no private wells within a two-mile radius of the VOPAK Terminal site.

5.2 ECOLOGICAL RECEPTORS

According to the 2005 CAP, the VOPAK Savannah site was reviewed by the Georgia Natural Heritage Program (GNHP) to identify potential ecological receptors that may be impacted from contamination levels at VOPAK. GNHP found no rare, imperiled, and critically imperiled plant and animal species at the site. Since the subject property is operated as an industrial facility, VOPAK does not provide habitat for plants or animals. In addition, wetlands are not of concern at the VOPAK site. According to the 2005 CAP, "With the exception of drainage ditches and other man-made depressions, no wetland-like areas were observed on the site."

5.3 NATURAL RESOURCES

There are no known natural resources that are affected by the monitored COCs.

5.4 PRESENT AND FUTURE LAND USE

The subject property is currently utilized as a non-residential facility in a heavily industrialized setting. As stated in the introductory section, VOPAK leased the property on a long-term lease. As such, the property will remain as a terminal for several decades. Upon lease expiration, the site property will continue to be utilized as non-industrial property consistent with GPA's long term plans for site redevelopment, local zoning, and deed restrictions.

5.5 DOWN-GRADIENT RECEPTORS

The GPA Port of Savannah container storage facility is located hydraulically down-gradient of the subject property. Groundwater samples collected from sentinel wells MW-35 and MW-36, located on GPA property and hydraulically down-gradient of the subject property indicates that COCs are well below delineation standards. As discussed in Sections 2 and 3, the COC plume is stable and hydraulically contained within the baseline COC foot-print.

6.0 PERFORMANCE METRICS

To determine if the prevailing monitored natural attenuation (MNA)-based approach is effective in meeting the VIRP goals, EIC performed an evaluation using multiple lines of evidence. This process included an evaluation of indicator parameters, evidence of degradation products, statistical trend analysis, as well as spatial and temporal plume trends.

Depending on available data, several analytical tools are also available to establish the plume trends. As discussed in Section 1.3, however, the aquifer is anisotropic and non-homogeneous. Therefore, typical analytical tools based on Darcy's flow equations are considered to be impractical for the purposes of modeling groundwater flow and related performance metrics. EIC therefore utilized statistical as well as spatial and temporal analysis to evaluate the plume trends.

6.1 INDICATOR PARAMETERS

As discussed in previous semi-annual VIRP progress reports, EIC collected long-term data on indicator parameters utilizing downhole data loggers in conjunction with a tidal study. An evaluation of these results indicated that favorable site conditions were present for MNA. Downhole pH, ORP, DO, and temperature levels in representative wells were within ideal ranges indicating persistent favorable site conditions for continued attenuation.

6.2 EVIDENCE OF DEGRADATION PRODUCTS

Considering that PCE was the only source of CVOCs released at the site, the presence of PCE daughter products such as TCE, DCE, and Vinyl Chloride are clear evidence of natural attenuation at the site. Although the original source of the BTEX-related spill in the vicinity of Tank Farm No. 2 has not been determined, it is apparent that BTEX constituents are present and degrading over time.

6.3 STATISTICAL TREND ANALYSIS (CVOCS)

To determine the rate of natural attenuation and plume stability at the site for the dissolved CVOC constituents, EIC utilized a statistical trend analysis toolkit as a primary line of evidence. The toolkit was developed by Groundwater Services Inc. as a method to determine plume stability through measured groundwater concentrations of constituents over time (GSI, 2014). The Mann-Kendall trend analysis method is utilized within the toolkit and is widely accepted to be a deterministic method for plume stability analysis.

The Mann-Kendall trend analysis method is a non-parametric trend method that utilizes variance from individual trend means for each monitoring well CVOC concentration over time. Accordingly, plume stability can be analyzed by sector instead of by overall plume stability. Overall, plume stability can then be summarized by the trend analysis of each individual sector. In order to produce these trends, however, at least four independent sampling events must have been completed for each monitoring well utilized for this analysis, which restricts the use of newly installed monitoring wells.

For the purpose of defining current plume trends, EIC utilized analytical data from October 2011 to April 2015. In order to define plume trends throughout the site, EIC selected wells based on the following key factors: their location relative to the current and historical plume center line, the current and historical extent of each plume, well construction data, and available constituent concentration data. For wells where COCs were below the laboratory analysis detection limit, EIC assumed that the concentrations at those wells were at the minimum detection limit reported by the laboratory or the method detection limit (MDL). Figure 6-1a illustrates the wells selected for the CVOC trend analysis and Figure 6-1b illustrates the selected wells for the BTEX trend analysis.

As discussed in Section 2.3, VC is the last chlorinated COC daughter product from the PCE attenuation processes that ultimately transforms to carbon dioxide, water, and chloride ions. EIC therefore previously selected seven monitoring wells based on the 2014 VC plume map for the trend analysis in the 2014 SCM update. At the time of the 2014 SCM update, monitoring well MW-37, located at the trailing edge of the plume, had not been sampled enough times to be utilized in the trend analysis. However, as of the April 2015 sampling event, it now meets the requirements for the Mann-Kendall analysis tool and therefore was utilized in the trend analysis for this 2015 SCM update report.

Therefore, eight monitoring wells were selected along the plume centerline for the statistical analysis; three up-gradient wells (MW-18R, MW-34, and MW-37), three mid-gradient wells (MW-33, MW-29, and PAN-MW-9), and two down-gradient wells (MW-17R and PAN-MW-10). Figure 6-1a illustrates the location of these wells. The selected wells are tabulated from left (up-gradient) to right (down-gradient) within the GSI Mann-Kendall Toolkit table for each COC. Figures 6-2 through 6-5 illustrate the data and the trend analysis for each CVOC constituent (PCE, TCE, DCE, and VC, respectively).

6.3.1 PCE Statistical Trend Analysis

Figure 6-2 illustrates the PCE concentration over time for each of the eight selected wells. From this figure, it is apparent that the plume is either stable or concentrations are decreasing near the leading and trailing edges of the plume. Additionally, concentrations at the mid-gradient portion of the plume is decreasing with no apparent trend at MW-29. In summary, the PCE plume is statistically either stable or decreasing over time in the wells selected for the up-gradient, mid-gradient, and down-gradient portions of the plume.

6.3.2 TCE Statistical Trend Analysis

Figure 6-3 illustrates the TCE concentration over time for each of the eight selected wells. From this figure, it is apparent that the concentrations at the southern trailing edge and northern leading edge of the plume are either decreasing, stable, or have no trend. It is noteworthy, that at MW-17R there is no trend since the TCE concentration fluctuated between July 2012 and April 2013. Following the April 2013 event, however, the concentration at MW-17R has been below detection limits for TCE. Consequently, EIC believes that the TCE concentration is trending to be stable. The mid-gradient portion of the plume is similar to PCE in that the concentrations at both MW-33 and PAN-MW-9 are decreasing with a high probability and that there is no trend at MW-29. In summary the TCE plume is decreasing in concentration and remaining stable within the baseline CVOCs footprint.

6.3.3 DCE Statistical Trend Analysis

Figure 6-4 documents the DCE concentration trend analysis for each of the eight selected wells. From this figure, it is apparent that, much like with PCE and TCE, the leading and trailing edges of the plume are decreasing in concentration over time. Focusing on the mid-gradient portion of the plume, the concentrations at both wells MW-29 and PAN-MW-9 are increasing while they are steadily decreasing over time at MW-33. The increases in concentrations of DCE, noted at MW-29 and at PAN-MW-9, are indicative of natural attenuation at the site. As PCE and TCE degrade, DCE concentrations may continue to increase proportionately and eventually decrease, as the PCE and TCE daughter products reduce over time.

6.3.4 VC Statistical Trend Analysis

Figure 6-5 illustrates the concentration trend analysis for each of the eight selected wells for VC. From this figure, it is apparent that the concentrations at the leading and trailing edges of the plume are decreasing. Within the mid-gradient portion of the plume, the VC concentration at MW-33 is most likely decreasing, whereas at MW-29 and PAN-MW-9 the concentrations are increasing. This trend may continue until PCE and subsequent daughter products are attenuated. VC will eventually transform into carbon dioxide and water. In summary the concentration of the

plume is increasing in the mid-gradient portion of the plume; however, the concentrations at the leading and trailing edges of the plume are decreasing and stable.

6.4 STATISTICAL TREND ANALYSIS (other VOCS)

Similar to the CVOCs, monitored VOCs comprised of BTEX, are also attenuating and stable within the original PCE foot-print. As the BTEX constituents are independent COCs as opposed to daughter products of a primary constituent, such as PCE degrading to TCE, DCE, and VC, each of the BTEX constituents should decrease in concentration over time at each respective monitoring well. Since the first VIRP groundwater sampling event in October 2011, the BTEX constituent plumes have divided into two distinct north and south plumes, further discussed in Section 6.5.2. Due to the two distinct dissolved plumes, EIC has selected monitoring wells for the statistical trend analysis which reflect the center line of the BTEX plume in the up-gradient, mid-gradient, and down-gradient portions of both the north and south plumes. Additionally, some wells serve as both a down-gradient and up-gradient point when analyzing the plumes this way. EIC utilized the most extensive BTEX constituent from the latest April 2015 sampling event, Benzene, to select monitoring wells to represent the aforementioned portions of the south and north BTEX plumes.

In total, EIC has selected eight monitoring wells to represent both plumes in the statistical analysis, as illustrated in Figure 6-1b. For the southern plume EIC selected one up-gradient well (MW-18R), three mid-gradient wells (IW-18, LAW-PZ-8R, and MW-26R), and one down-gradient well (MW-33). For the northern plume, EIC selected one up-gradient well (MW-33), two mid-gradient wells (MW-29 and PAN-MW-9), and one down-gradient well (PAN-MW-10). Each of the eight monitoring wells are listed in the GSI Mann-Kendall toolkit in order from the up-gradient (southern) to the down-gradient (northern) portion of the site.

6.4.1 Benzene Statistical Trend Analysis

Figure 6-6 illustrates the benzene concentration over time for each of the eight selected wells. From this figure, it is apparent that the concentrations at the southern plume are decreasing near the leading and trailing edges of the plume. However, at the mid-gradient portion of the plume, concentrations are increasing at wells IW-18 and MW-26R and decreasing at well LAW-PZ-8R. It is pertinent to note that the concentration at MW-26R had been decreasing on a decreasing trend until January 2014. Additionally, LAW-PZ-8R also had an increase in concentration in October 2014, however, the concentration has since reduced to an all-time low since the beginning of the VIRP sampling program reaching 1,100 µg/L on April 2015. The concentration at IW-18 had remained stable over time throughout the VIRP program until January 2014, when it increased in concentration. It is unclear why concentrations in this area significantly increased during this time period.

From Figure 6-6, the benzene concentrations in the leading and trailing edge of the northern plume have been continuously decreasing over time. At the mid-gradient portion of the plume,

the concentration at MW-29 is likely increasing. However, the concentration near MW-29 has remained relatively stable since the first VIRP sampling event. Additionally, the concentration at PAN-MW-9 has decreased significantly over time and has been consistently below laboratory method detection limits since the first VIRP sampling event.

In summary, the areal extents of both plumes have remained stable with some increase in concentration in the up gradient plume, which may be attributed to offsite contaminants or other factors. EIC will continue to monitor the southern and northern plumes for variations in concentrations over time to confirm a natural attenuation trend for benzene.

6.4.2 Toluene Statistical Trend Analysis

Figure 6-7 illustrates the toluene concentration over time for each of the eight selected wells. From this figure, it is apparent that the concentrations within the southern plume are decreasing near the leading and trailing edges of the plume. The concentrations within the mid-gradient portion of the plume are either decreasing or are stable with no trend at well MW-26R.

From Figure 6-7, the toluene concentrations in the leading and trailing edge of the northern plume have been continuously decreasing over time. The concentrations within the mid-gradient portion of the plume have been decreasing over time at PAN-MW-9 and there has been no apparent trend at MW-29. In summary, both plumes have either decreased or remained stable over time.

6.4.3 Ethylbenzene Statistical Trend Analysis

Figure 6-8 illustrates the ethylbenzene concentration over time for each of the eight selected wells. From this figure, it is apparent that concentrations within the southern plume are decreasing near the leading and trailing edges of the plume. The concentrations within the mid-gradient portion of the plume are probably decreasing at LAW-PZ-8R, increasing at IW-18, and have no trend at MW-26R. As with Benzene, the concentrations of ethylbenzene at IW-18 had remained stable until January 2014, when concentrations in this area began to increase. Additionally, although there has been no apparent trend in concentrations at MW-26R, the concentration of 760 µg/L in April 2015 is significantly less than its peak concentration of 2,000 µg/L in January 2013. In summary, the southern ethylbenzene plume appears to be decreasing or remaining stable over time with the exception of the area of IW-18.

From Figure 6-8, the ethylbenzene concentrations in the leading and trailing edge of the northern plume have been continuously decreasing over time. The concentration within the mid-gradient portion of the plume has been decreasing over time at PAN-MW-9 yet increasing at MW-29. In summary, with the exception of the areas where wells IW-18 and MW-29 are located, both plumes have either decreased or remained stable over time.

6.4.4 Total Xylenes Statistical Trend Analysis

Figure 6-9 illustrates the total xylenes concentration over time for each of the eight selected wells. From this figure, it is apparent that concentrations within the southern plume are decreasing near the leading and trailing edges of the plume. There has been no trend within the mid-gradient portion of the plume, however, concentrations have been increasing at IW-18, as with Benzene and Ethylbenzene. As with Benzene, concentrations of Ethylbenzene at IW-18 had remained stable until January 2014, when concentrations in this area began to increase. In summary, the southern total xylenes plume appears to be decreasing or remaining stable over time with the exception of the area of IW-18.

From Figure 6-8, the total xylenes concentrations in the leading and trailing edge of the northern plume have been continuously decreasing over time. Concentrations within the mid-gradient portion of the plume have been decreasing over time at PAN-MW-9 yet increasing at MW-29. In summary, with the exception of the areas where wells IW-18 and MW-29 are located, both plumes have either decreased or remained stable over time.

6.5 SPATIAL AND TEMPORAL ANALYSIS

Spatial and temporal analysis of sequential plume maps provide a good perspective on the overall fate and transport of the COCs. In reviewing the sequential plume maps, included in the VIRP progress reports, it is apparent that both dissolved CVOCs and VOCs have been since the inception of the VIRP-based remedy.

6.5.1 Dissolved CVOCs

In comparing the CVOC plume maps in Figures 3-1 through 3-4 to those of the historical CVOC plume maps, it is apparent that all four monitored CVOC constituent plumes have degraded significantly in the mid-gradient portion of each constituent plume near MW-33, where their respective peaks were located during the October 2011 baseline conditions. The peak concentrations of these plumes are currently located at varying locations both up-gradient and down-gradient, as described in Section 3.2.1. Additionally, the significant degradation of the midgradient portion of the plume has effectively split each of the four monitored CVOC COC plumes into separate north and south plumes.

6.5.2 Dissolved VOCs

As discussed in the preceding sections, it is apparent that the BTEX constituents have decreased in concentration and in areal extent compared to the October 2011 baseline conditions. Additionally, as with the CVOC COCs, each of the four BTEX COCs have divided into separate north and south plumes. EIC attributes this division of the VOC plume to potential co-metabolic

degradation. It is also clear that the BTEX plumes are not migrating and continue to be centered on wells LAW-PZ-8R, PAN-MW-9, and MW-29, demonstrating stability.

SECTION

7.0 SUMMARY

The updated 2015 SCM, presented in this report, describes the site conditions based on a progressively increasing knowledgebase gained during the implementation of the VIRP. EIC will continue to calibrate the SCM based on subsequent findings.

In summary, contaminated soils that resulted from a PCE release that took place prior to 1975 have been removed. Some contamination is still present in the groundwater at the site. Dissolved BTEX constituents from an unknown release source of hydrocarbons are also present in the groundwater at the site. The groundwater contamination comprised of COCs are present in a complex anisotropic and nonhomogeneous hydrogeological setting. The horizontal and vertical extent of the COC plumes are well defined except that a small portion of the horizontal extent remains undefined in a hydraulically up-gradient location. There is no evidence of potential human health or ecological receptors that would be exposed to the COCs. Potential health effects to onsite workers from other multimedia pathways such as exposure to soil vapor or to contaminated groundwater during construction-related excavation activities is currently being evaluated.

EIC utilized multiple lines of evidence to evaluate the performance metrics of the MNA-based strategy. An evaluation of the site data indicates that field parameters are favorable for MNA-based remediation and the contaminant matrix indicates clear evidence of degradation products. Both statistical evaluation as well as spatial and temporal analysis indicate that the COC plumes are stable and are shrinking. The contaminant flux from mass reduction is also trending towards remedial goals and is sustainable. Analytical data also indicates that the percent rate of decrease in contaminant mass and areal extent was substantially higher than those of the pre-VIRP reduction rates. A further evaluation of the trends of the target contaminants will be conducted as more information is obtained from future sampling events from newly installed wells in both the upgradient and down-gradient portions of the site.

Although MNA is clearly established and the COC attenuation rates are substantially high, EIC recognizes that the rate of degradation may still extend the cleanup time beyond the 5-year VIRP deadline. To evaluate other options that would accelerate remedial cleanup time, EIC is

evaluating contingency options based on the analytical results from the next sampling event scheduled in October 2015.

8.0 REFERENCES

Environmental International Corporation (EIC), 2011. Revised VRP Application. Savannah, Georgia, April 2011.

EIC, 2013. Third VTRP Semi-annual Progress Report. Savannah, Georgia, February 2013.

EIC, 2014. Sixth VTRP Semi-annual Progress Report. Savannah, Georgia, August 2014.

Environmental Resources Management (ERM), 2005. Revision 4 Corrective Action Plan, Hazardous Site Inventory Number 10464. Savannah, Georgia, February 2005.

Georgia Department of Natural Resources, Georgia Environmental Protection Division (EPD), 2006. Re: Soil Removal Report. Correspondence from Alexandra Cleary, Unit Coordinator, Hazardous Sites Response Program. Atlanta, Georgia, 31 August 2006.

EPD, 2014. Re: Third VIRP Semi-Annual Progress Report, Fourth VIRP Semi-Annual Progress Report, and Fifth VIRP Semi-Annual Progress Report, VOPAK Terminal Savannah, HSI Site No. 10464, Correspondence, Atlanta, Georgia, 30 April 2014.

GSI Environmental (GSI), 2014. GSI Mann-Kendall Toolkit. Houston, Texas. 2014.

TABLES

Table 1-1: October 2011 Well Gauging Data, VOPAK Terminal Savannah, Savannah, Georgia

Well ID #	TOC Elevation*	DTP	DTW	Groundwater Surface Elevation	Notes
(Well Diameter, in.)	ft.	ft.	ft.	ft.	
LAW-PZ-8R (1)	14.02	ND	6.27	7.75	
PAN-MW-9 (2)	12.59	ND	6.35	6.24	Well was repaired by EIC on April 6, 2011
PAN-MW-10 (2)	13.81	ND	10.36	3.45	
IW-18 (1)	10.07	ND	2.92	7.15	
MW-16 (1)	17.01	ND	11.34	5.67	Well was repaired by EIC on April 6, 2011
MW-17R (2)	15.89	ND	11.96	3.93	
MW-18R (1)	14.12	ND	6.47	7.65	Well was repaired by EIC on April 6, 2011
MW-19 (1)	14.91	ND	6.80	8.11	Well was repaired by EIC on April 6, 2011
MW-23 (1)	10.39	ND	4.00	6.39	
MW-24R (2)	11.81	ND	5.95	5.86	
MW-25 (1)	14.76	ND	6.85	7.91	Well was repaired by EIC on April 6, 2011
MW-26R (1)	10.61	ND	3.22	7.39	
MW-27 (1)	9.93	ND	4.87	5.06	
MW-29 (0.75)	11.73	ND	6.02	5.71	
MW-30 (2)	11.23	ND	4.95	6.28	Well installed by EIC on April 6, 2011
MW-31 (2)	9.67	ND	5.26	4.41	Well installed by EIC on April 28, 2011
MW-32 (2)	11.70	ND	6.47	5.23	Well installed by EIC on April 25, 2011
MW-33 (2)	11.61	ND	5.07	6.54	Well installed by EIC on April 28, 2011
MW-34 (2)	10.81	ND	3.41	7.40	Well installed by EIC on April 26, 2011

NOTES:

TOC = Top of Casing

DTP = Depth to Product below TOC

DTW = Depth to Water below TOC

ND = Not Detected

^{*} TOC elevations are from well survey conducted by EMC Engineering on June 30, 2011 and is of the NAVD 29 Datum convention

Table 1-2: January 2013 Well Gauging Data, VOPAK Terminal Savannah Savannah, Georgia

Well ID#	TOC Elevation*	DTP	DTW**	Groundwater Surface Elevation	Notes
(Well Diameter, in.)	ft.	ft.	ft.	ft.	
LAW-PZ-8R (1)	14.02	ND	7.24	6.78	Very strong HC odor and slight sewer odor. Replaced existing rusting lock on outer stick-up casing with new corrosion resistant lock.
PAN-MW-9 (2)	12.59	ND	7.27	5.32	Very strong hydrogen sulfide odor in well casing as well as inside well. Replaced existing rusting lock on outer stick-up casing with new corrosion resistant lock.
PAN-MW-10 (2)	13.81	ND	10.46	3.35	Replaced existing rusting lock on outer stick-up casing with new corrosion resistant lock.
MW-16 (1)	17.01	ND	12.97	4.04	Replaced existing rusting lock on outer stick-up casing with new corrosion resistant lock.
MW-17R (1)	15.89	ND	11.10	4.79	Replaced existing rusting lock on outer stick-up casing with new corrosion resistant lock.
IW-18 (1)	10.07	ND	3.85	6.22	Strong sewer/rotten egg odor in well.
MW-18R (1)	14.12	ND	7.36	6.76	Replaced existing rusting lock on outer stick-up casing with new corrosion resistant lock.
MW-19 (1)	14.91	ND	7.74	7.17	Replaced existing rusting lock on outer stick-up casing with new corrosion resistant lock.
MW-23 (1)	10.39	ND	4.68	5.71	
MW-24R (1)	11.81	ND	6.59	5.22	Strong sewer odor. False LNAPL reading (got one hit but no LNAPL observed on probe). Replaced existing rusting lock on outer stick-up casing with new corrosion resistant lock.
MW-25 (1)	14.76	ND	7.64	7.12	Orange colored bacteria on probe. No odor. Replaced existing rusting lock on outer stick-up casing with new corrosion resistant lock.
MW-26R (1)	10.61	ND	4.20	6.41	Mild chemical odor. Tan colored bacteria on probe.
MW-27 (1)	9.93	ND	5.63	4.30	
MW-29 (0.75)	11.73	ND	7.06	4.67	Replaced existing rusting lock on outer stick-up casing with new corrosion resistant lock.
MW-30 (2)	11.23	ND	5.94	5.29	
MW-31 (2)	9.67	ND	5.75	3.92	
MW-32 (2)	11.70	ND	6.95	4.75	
MW-33 (2)	8.32	ND	3.25	5.07	Installed corrosion resistant lock onto liquid-tight well cap.
MW-34 (2)	10.81	ND	4.28	6.53	

NOTES:

TOC = Top of Casing

DTP = Depth to Product below TOC

DTW = Depth to Water below TOC

ND = Not Detected

*TOC elevations are well surveys conducted by EMC Engineering on June 30, 2011 and January 24, 2013, and are of the NGVD 29 Datum convention except where noted

 $[\]ensuremath{^{**}}$ DTW measurements are initial prior to pumping

Table 1-3: April 2014 Well Gauging Data VOPAK Terminal Savannah, Savannah, Georgia

Well ID # (Well Diameter, in.)	TOC Elevation* (ft.)	DTP (ft.)	DTW** (ft.)	Groundwater Surface Elevation (ft.)	Notes
IW-1R (1)*3	NA	ND	3.11	NA	DTW measured 24 hours after developing well
LAW-PZ-8R (1)	9.22	ND	2.07	7.15	concrete pad was damaged but casing appeared untouched
PAN-MW-9 (2)	12.59	ND	6.02	6.57	initial withdrawal contained small amount of tan bacteria
PAN-MW-10 (2)	13.81	ND	9.68	4.13	
MW-14 (2)	8.86	ND	6.59	2.27	
MW-16 (1)	17.01	ND	11.92	5.09	large air bubbles present in intial withdrawal
MW-17R (1)	15.89	ND	9.94	5.95	initial withdrawal contained small amount of brown bacteria
IW-18 (1)	10.07	ND	2.87	7.20	1" of standing water in vault above TOC; bailed prior to pumping
MW-18R (1)	14.12	ND	6.10	8.02	rotten odor when cap was removed
MW-19 (1)	14.91	ND	6.36	8.55	initial withdrawal contained small amount of orange bacteria
MW-23 (1)	10.39	ND	2.96	7.43	
MW-24R (1)	11.81	ND	5.37	6.44	initial withdrawal contained small amount of tan bacteria
MW-25 (1)	14.76	ND	6.33	8.43	small amount of orange bacteria on water level probe after initial
MW-26R (1)	10.59	ND	2.59	8.00	initial withdrawal contained large amount of orange bacteria
MW-27 (1)	9.38	ND	3.72	5.66	initial withdrawal contained large amount of orange bacteria
MW-29 (0.75)	11.73	ND	5.90	5.83	
MW-30 (2)	11.23	ND	4.60	6.63	
MW-31 (2)	9.67	ND	4.62	5.05	Initial withdrawal contained large amount of orange bacteria
MW-32 (2)	11.70	ND	5.97	5.73	
MW-33 (2)	8.96	ND	1.94	7.02	
MW-34 (2)	10.81	ND	2.87	7.94	Initial withdrawal contained small amount of red bacteria
MW-35 (2)	10.40	ND	5.67	4.73	1.5" of standing water in vault above TOC; bailed prior to pumping
MW-36 (2)	10.42	ND	6.98	3.44	
MW-37 (2)	11.57	ND	3.69	7.88	Initial withdrawal contained large amounts of orange bacteria

Notes:

ID = Identity

TOC = Top of Casing

NA = Not Applicable

NM = Not Measured

ND = Not Detected

- * TOC elevations are based on well surveys conducted by EMC Engineering on June 30, 2011, January 24, 2013, and on January 20, 2014 and are of the NGVD 29 Datum convention.
- ** DTW measurements were recorded by EIC from 4/15/2014 to 4/17/2014 prior to purging using a Solinst Oil/Water Interface Meter (probe), Model:122.

Table 2-1: Concentrations of CVOCs and VOCs in Groundwater VOPAK Savannah Terminal, Savannah, Georgia

EPA Test Me	thod: \$260B	PCE		TCE		DCE		VC		Benzer	_	Toluen	ι Α	Ethylben	zene	Xylene	ae .
ETA Test Me	Unit	μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L	
Site-Specific	Type 4 RRS	<u>μς/12</u> 5		38		1022		μg/ L 3		9		5241		700		10000	
Well ID	lues (ug/L) Sample	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
well ID	Date		riag		rrag		rrag		Flag		riag		Frag		Flag		rrag
IW-1R	Apr-14 Oct-14	310 170		210 190		13,000 11,000		640 450		130 130	J	300 320		2,900 2,200		25,000 19,000	
1 W - 11C	Apr-15	310		150	ī	9,900		440		110	J	260		2,300		17,000	
	Oct-11	55		58	,	4,400		220		36	,	7.3	ī	38		93	
	Jan-12	48	J	43	J	4,800		230		29	J	<50		33	J	86	
	Apr-12	44	J	46	J	4,500		210		25	J	<50		24	J	55	J
	Jul-12	31	J	33	J	4,500		160		21	J	<50		29	J	92	J
	Oct-12	36	J	37	J	5,200		320		24	J	<50		31	J	110	
	Jan-13	43	J	44	J	6,000		310		25	J	<50		40	J	170	
IW-18	Apr-13	42		37		6,000		410		26		13		49		270	
	Jul-13	27		31		5,900		770		30		21		110		1,000	
	Oct-13	29		26		6,400		670		26		12		56		510	-
	Jan-14	19	\vdash	28		5,300	-	1,900 1,100		60		24		100		810	+
	Apr-14 Oct-14	39 11	J	34 12	I	7,400 2,900		1,100		73 170		35 28	ī	220 130		1,900 1,100	+
	Oct-14 Apr-15	<7.4	J	8.4	J	920		1,500 830		350		14	J	180		1,100	1-
	Sep-97	50/500		NR	J	NR	1	350/<500		NS		NS NS	 	NS		NS	+
	Dec-98	<1000		NR		NR		<1,000		<1000		<1000		4,300		5,600	1
	Nov-99	NS		NS		NS		NS		NS		NS		NS		NS	+
	Dec-99	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-00	<250		<250		1,800		890		<250		<250		5,100		59,000	
	Jun-01	<1200		<1200		3,900		670		69	J	220	J	5,700		64,000	
	Nov-01	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-02	NS		NS		NS		NS		NS		NS		NS		NS	
	Aug-03	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-03	70	J	18	J	350		120		42	J	<100		3,700		42,000	
	Mar-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Jul-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Sep-04	NS		NS		NS		NS		NS		NS		NS		NS	
	May-05	NS		NS		NS		NS		NS		NS		NS		NS	
	Aug-05	NS		NS		NS		NS		NS		NS		NS		NS	
	Jun-06 Oct-06	NS 300		NS <100		NS 21.000		NS 1,700		NS 190		NS 1,200		NS 6,100		NS 84,000	
	Dec-06	240		72		31,000 12,000		630		47		410		3,000		41,000	
LAW-PZ-8 /	Mar-07	<250	+	<250		16,000		1,200		<500		760		5,000		70,000	+
LAW-PZ-8R	Sep-07	240	+	<100		18,000		1,200		310		720		4,400		54,000	1
	May-08	380		34		6,900		660		450		330		6,500		94,000	1
	Dec-08	570		52		4,600		360		290		290		4,900		55,000	1
	Apr-09	510		<250		<250		560		320		280		3,800		48,000	
	Sep-09	99		34		4,500		470		390		260		4,100		47,000	1
	Apr-10	240		49		5,100		480		NS		NS		NS		NS	
	Oct-11	150		28	J	22,000		1,500		1,600		1,100		8,000		73,000	
	Jan-12	130	J	<500		17,000		1,600		1,700		930		7,500		88,000	
	Apr-12	99	J	<500		17,000		1,800		2,300		1,100		7,500		110,000	1
	Jul-12	110	J	< 500		16,000		1,200		2,000		820		7,100		91,000	
	Oct-12	83		<500		8,000		870		1,300		530		7,300		100,000	1
	Jan-13	99		<500		13,000		1,100		2,000		800	-	7,500		100,000	+
	Apr-13	71		12	-	9,100		960		1,400		570		7,200		110,000	1
	Jul-13	30	\vdash	5.6	J	11,000	-	990 830		1,900		650		7,600		110,000	1
	Oct-13 Jan-14	44 38		8.5 <1.9	J	8,500 7,200	-	980		1,500 1,200		510 370	 	6,800 4,000		110,000 88,000	-
		22		<1.9 8.6	T	7,200	1	980 840		1,200		400		4,000		58,000	1
	Apr-14 Oct-14	<150	+	<130	J	15,000		1,900		3,400		1,100		13,000		180,000	1
	Apr-15	<740		<480		4,100	1	<500		1,100		<480		6,900		87,000	+

Table 2-1: Concentrations of CVOCs and VOCs in Groundwater VOPAK Savannah Terminal, Savannah, Georgia

EPA Test Me	ethod: 8260B	PCE		TCE		DCE		VC		Benzen	_	Toluen	e	Ethylben	zene	Xylene	es
	Unit	μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L	
Site-Specific Va	Type 4 RRS alues (ug/L)	5		38		1022		3		9		5241		700		10000)
Well ID	Sample Date	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
	Feb-91	NS		NS		NS		NS		NS		NS		NS		NS	\Box
	Jul-91 Jun-96	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Sep-97	33		NR		NR		<5		NS		NS		NS		NS	+
	Dec-98	<1		NR		NR		<1		<1		<1		2.9		1.4	
	Nov-99 Dec-99	<5 NS		<5 NS		<2 NS		<2 NS		NS NS		NS NS		NS NS		NS NS	-
	Oct-00	<1		<1		<1		<1		<1		<1		<1		<2	+
	Jun-01	<5		<5		<5		<2		<5		<5		<5		<10	
	Nov-01	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-02 Aug-03	NS <5		NS <5		NS <5		NS <2		NS <5		NS <5		NS <5		NS <10	+
	Oct-03	NS		NS		NS		NS		NS		NS		NS		NS	+
	Mar-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Jul-04	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	-
	Sep-04 May-05	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Aug-05	NS		NS		NS		NS		NS		NS		NS		NS	+
	Jun-06	<5		<5		<5		<2		<10		<5		<5		<5	
MW-14	Oct-06 Dec-06	<2 <2		<2 <2		<2 <2		<2 <2		<2 <2		<2 <2		<2 <2		<5 <5	
111 W -17	Mar-07	<5		<5		<5		<2		<10		<5		<5		<5	+
	Sep-07	<2		<2		<2		<2		<2		<2		<2		<5	
	May-08	<2 <5	-	<2 <5		<2 <5		<2 <2		NS <5		<2 <5		<2 <5	-	<5 <5	+
	Dec-08 Apr-09	<5 <5		<5 <5		<5 <5		<2		<5 <5		<5 <5		<5 <5		<5 <5	+
	Sep-09	<2		<2		<2		<2		<2		<2		<2		<2	1
	Apr-10	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-11 Jan-12	NL NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL NL	-
	Apr-12	NL NL		NL NL		NL NL		NL		NL NL		NL NL		NL NL		NL	+
	Jul-12	NL		NL		NL		NL		NL		NL		NL		NL	
	Oct-12	NL		NL		NL		NL		NL		NL		NL		NL	
	Jan-13 Apr-13	NL NS		NL NS		NL NS		NL NS		NL NS		NL NS		NL NS		NL NS	-
	Jul-13	NS		NS		NS		NS		NS		NS		NS		NS	+-
	Oct-13	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		3.5		< 0.19		< 0.20	
	Jan-14	<0.16		< 0.19		<0.21		< 0.19		<0.16 <0.16		< 0.14		<0.19 <0.19		< 0.20	
	Apr-14 Oct-14	<0.16 <0.15		<0.19		< 0.21		<0.19		<0.16		<0.14		<0.19		<0.20	+
	Apr-15	< 0.74		< 0.48		< 0.41		< 0.50		< 0.43		< 0.48		< 0.33		< 0.23	
	Feb-91	NS		NS		NS		NS		NS		NS		NS		NS	
	Jul-91 Jun-96	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	
	Sep-97	NS		NS		NS		NS		NS		NS		NS		NS	+
	Dec-98	NS		NS		NS		NS		NS		NS		NS		NS	
	Nov-99 Dec-99	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	-
	Oct-00	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Jun-01	<5		<5		<5		<2		<5		<5		<5		<10	
	Nov-01	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-02 Aug-03	NS 5.3		NS 14		NS <5		NS NS		NS <5		NS <5		NS <5		NS <10	+
	Oct-03	NS		NS		NS		NS		NS		NS		NS		NS	1
	Mar-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Jul-04 Sep-04	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	-
	May-05	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
MW-15*	Aug-05	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-03	NS NE		NS NC		NS NE		NS Ne		NS NC		NS		NS NC		NS NC	1
	Mar-04 Jul-04	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Sep-04	NS	L	NS		NS		NS		NS		NS	L	NS		NS	<u> </u>
	May-05	NS		NS		NS		NS		NS		NS		NS		NS	
	Aug-05	NS <5	-	NS <5		NS <5		NS <2		NS <10		NS <5		NS <5		NS <5	+
	Jun-06 Oct-06	<2		<2		<2		<2		<2		<2		<2		<5	+-
	Dec-06	12		12		4		<2		<2		<2		<2		<5	
	Mar-07	<5		<5		<5		<2		<10		<5		<5		<5	1
	Sep-07 May-08	<3 NS	-	4 NS		3 NS		<2 NS		<2 NS		<2 NS	-	<2 NS		<5 NS	+
	Dec-08	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS	+
	Apr-09	<5		<5		<5		<2		<5		<5		<5		<5	
	Sep-09	NS		NS		NS		NS 17		NS NE		NS		NS		NS NC	1
	Apr-10 Apr-11	<5 69	-	<5 39		<5 2,200		17 150		NS 34		NS 8.3	T	NS 26		NS 86	+
	**P4-11			3,	1	2,200	1	150	1	57		0.0		20	1		

Table 2-1: Concentrations of CVOCs and VOCs in Groundwater VOPAK Savannah Terminal, Savannah, Georgia

EPA Test Mo	ethod: 8260B	PCE		TCE		DCE		VC		Benzer	ne	Toluen	e	Ethylben	zene	Xylene	es
	Unit	μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L	
Site-Specific V	Type 4 RRS alues (ug/L)	5		38		1022		3		9		5241		700		10000)
Well ID	Sample Date	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
	Oct-00	NS		<1		110		2.2		<1		<1		<1		<2	
	Jun-01	<5		<5		41		<2		<5		<5		<5		<10	
	Nov-01 Oct-02	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Aug-03	<5		<5		33		<2		<5		<5		<5		<10	_
	Oct-03	NS		NS		NS		NS		NS		NS		NS		NS	_
	Mar-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Jul-04	NS		NS		NS		NS		NS		NS		NS		NS	+
	Sep-04 May-05	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Aug-05	NS		NS		NS		NS		NS		NS		NS		NS	+-
	Jun-06	<5		<5		36		<2		<10		<5		<5		<5	
	Oct-06	<2		12		120		4		<2		<2		<2		7	
	Dec-06 Mar-07	<2 9		24 71		120 320		8 25		<2 <10		<2 <5		<2 <5		<5 <5	-
	Sep-07	<2		<2		260		63		<2		<2		<2		<5	+
MW/ 16	May-08	<2		<2		61		53		<2		<2		6		<5	
MW-16	Dec-08	<5		<5		60		49		<5		<5		<5		<5	
	Apr-09	<5		<5		78		82		<5		<5		<5		< 5	
	Sep-09 Apr-10	<2 <5		4.1 <5	\vdash	78 89		69 83		<2 NS	\vdash	<2 NS		<2 NS	\vdash	<5 NS	+-
	Oct-11	0.57	J	0.66	ī	160		77		0.52	J	<1		0.3	J	1.9	J
	Jan-12	0.67	J	0.94	J	130		85		0.44	J	0.42	J	0.12	J	1.3	J
	Apr-12	<1		0.94	J	140		200		0.74	J	0.33	J	1.7		21	
	Jul-12	0.28	J	0.63	J	87		48		0.41	J	<1		0.23	J	1.1	J
	Oct-12 Jan-13	<2 <1		0.37 <1	J	200 120		94 78		<2 0.27	1	<2 <1		0.52	J	1.7	J
	Apr-13	<0.22		0.6	ī	140		85		0.42	J	0.24	J	2.1	,	8	- ,
	Jul-13	< 0.16		< 0.19		320		100		< 0.16		< 0.14	,	< 0.19		< 0.20	+
	Oct-13	0.58	J	1.1		110		86		0.83		< 0.14		1.2		5.6	
	Jan-14	< 0.16		< 0.19		170		180		1.5		<0.14		< 0.19		< 0.20	-
	Apr-14 Oct-14	<0.16 <0.15		1.1 0.34	T	310 130		160 81		1.3		<0.14		8.3 <0.11		4.1 <0.20	
	Apr-15	<1.5		6	J	210		120		2.7		<0.96		3.4		1.3	J
	Oct-00	NS		<1		<1		<1		<1		<1		<1		<2	Ť
	Jun-01	<5		<5		<5		<2		<5		<5		<5		<10	
	Nov-01	NS		NS		NS		NS		NS		NS		NS		NS	_
	Oct-02 Aug-03	NS <5		NS <5		NS <5		NS <2		NS <5		NS <5		NS <5		NS <10	+
	Oct-03	NS		NS		NS		NS		NS		NS		NS		NS	+
	Mar-04	<5		<5		<5		<2		<10		<5		<5		<5	
	Jul-04	<5		<5		<5		<2		<10		<5		<5		<5	
	Sep-04	<5		<5		<5		<2 NC		<10		5 Nic		<5		<5	+
	May-05 Aug-05	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Jun-06	<5		<5		<5		<2		<10		<5		<5		<5	+-
	Oct-06	<5		<5		<5		<2		<10		8		<5		<5	
	Dec-06	<2		<2	$oxed{\Box}$	<2		<2		<2	$oxed{\Box}$	<2		7	$oxed{\Box}$	<5	
	Mar-07	<5 <2		<5 <2		<5 <2		<2 <2		<10 <2		<5 <2		<5 <2		<5 <5	-
MW-17/	Sep-07 May-08	<2		<2		<2		<2		<2		<2		4		27	-
MW-17R	Dec-08	<5		<5		<5		<2		<5		<5		<5		<5	1
	Apr-09	<5		<5		<5		<2		<5		<5		<5		<5	
	Sep-09	<2		<2		<2		<2		<2		<2		<2		<5	
	Apr-10 Oct-11	NS <1		NS <1		NS 0.2	J	NS <1		NS 0.39	J	NS <1		NS 0.55	J	NS <2	+
	Jan-12	<1		<1		<1	J	<1		0.39	J	0.35	J	1.5	J	0.65	J
	Apr-12	<1		0.13	J	2.8		0.19	J	0.48	J	<1	,	0.7	J	0.22	J
	Jul-12	1.3		1.2		9.2		<1		0.29	J	<1		0.62	J	0.28	J
	Oct-12	16		5.2		13		<1		<1		<1		1.4		0.5	J
	Jan-13	<1 4.1		<1 1.3		<1 1.6		<0.30		<1 0.18	т .	<0.15		0.84 1.2	J	<2 0.33	-
	Apr-13 Jul-13	<0.16		<0.19		<0.21		<0.30		<0.16	J	<0.15		1.2		<0.20	J
	Oct-13	< 0.16		<0.19		<0.21		<0.19		<0.16		<0.14		0.83	J	<0.20	+
	Jan-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	
	Apr-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		0.95	J	< 0.20	
	Oct-14	< 0.15		< 0.13	\vdash	<0.15		< 0.18		< 0.25	\vdash	<0.33		0.66	J	<0.20	-
	Apr-15	< 0.74	1	< 0.48		< 0.41	1	< 0.50		< 0.43		< 0.48	l	0.79	J	< 0.23	

Table 2-1: Concentrations of CVOCs and VOCs in Groundwater VOPAK Savannah Terminal, Savannah, Georgia

EPA Test M	ethod: 8260B	PCE		TCE		DCE		rminal, Sa		Benzei		Toluer	ne	Ethylben	zene	Xylene	es
EFA Test M	Unit	μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L	zene	μg/L	
Site-Specific V		5		38		1022		3		9		5241		700		10000	
Well ID	Sample Date	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
	Jun-01	<5		<5		<5		<2		<5		<5	1	<5		<10	$\overline{}$
	Nov-01	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-02	NS		NS		NS		NS		NS		NS		NS		NS	_
	Aug-03 Oct-03	NS <1		NS <1		NS <1		NS <1		NS <1		NS <1		NS 2		NS 22	_
	Mar-04	<5		<5		<5		<2		<10		<5		<5		<5	
	Jul-04	<5		<5		<5		<2		<10		<5		<5		<5	+
	Sep-04	<5		<5		<5		<2		<10		<5		<5		<5	
	May-05	NS		NS		NS		NS		NS		NS		NS		NS	
	Aug-05	NS		NS		NS		NS		NS		NS		NS		NS	
	Jun-06 Oct-06	<5 <5		<5 <5		<5 <5		<2 <2		<10 <10		<5 <5		<5 <5		<5 <5	_
	Dec-06	<2		<2		<2		<2		<2		<2		<2		<5	
	Mar-07	<5		<5		<5		<2		<10		<5		<5		<5	+
	Sep-07	<2		<2		<2		<2		<2		<2		<2		<5	
MW-18/	May-08	<2		<2		<2		<2		<2		<2		2		16	
MW18R	Dec-08	<5		<5		<5		<2		<5		<5		<5		<5	
	Apr-09	<5		<5		<5	-	<2		<5	1-1	<5	-	<5		<5	_
	Sep-09 Apr-10	<2 <5		<2 <5		<2 <5		<2 <2		<2 NS		<2 NS		<2 NS	1	<5 NS	+
	Oct-11	<1		<1		<1		<1		<1		<1		<1		<2	+
	Jan-12	<1		<1		<1		<1		<1		<1		<1		<2	_
	Apr-12	<1		<1		<1		<1		<1		<1		<1		<2	
	Jul-12	<1		<1		<1		<1		<1		<1		<1		<2	
	Oct-12	<1		<1		<1		<1		<1		<1		<1		<2	
	Jan-13	<0.22		<0.20		<0.13		<0.30		<0.18		<0.15		<1 <0.097		<2 <0.31	_
	Apr-13 Jul-13	< 0.16		<0.19		<0.13		<0.19		<0.16		<0.13		<0.19		<0.20	+
	Oct-13	<0.16		<0.19		< 0.21		<0.19		<0.16		<0.14		<0.19		< 0.20	+
	Jan-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	
	Apr-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	
	Oct-14	< 0.15		< 0.13		< 0.15		< 0.18		< 0.25		< 0.33		< 0.11		< 0.20	
	Apr-15 Jun-01	<0.74 <5		<0.48 <5		<0.41 <5		<0.50		<0.43 <5		<0.48 <5		<0.33 <5		<0.23 <10	_
	Nov-01	NS		NS		NS		NS		NS		NS		NS		NS	+
	Oct-02	NS		NS		NS		NS		NS		NS		NS		NS	
	Aug-03	<5		<5		<5		<2		NS		NS		NS		NS	
	Aug-03	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-03	NS		NS		NS		NS		NS		NS		NS		NS	
	Mar-04 Jul-04	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	_
	Sep-04	NS		NS		NS		NS		NS NS		NS		NS NS		NS	+
	May-05	NS		NS		NS		NS		NS		NS		NS		NS	_
	Aug-05	NS		NS		NS		NS		NS		NS		NS		NS	
	Jun-06	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-06	NS		NS		NS		NS		NS		NS		NS		NS	_
	Dec-06 Mar-07	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	_
	Sep-07	<2		<2		<2		<2		<2		<2		<2		<5	
MW-19	May-08	NS		NS		NS		NS		NS		NS		NS		NS	
M W-19	Dec-08	NS		NS		NS		NS		NS		NS		NS		NS	
	Apr-09	<5		<5		<5		<2 NG		<5 NG		<5	1	<5 NG		<5	4_
	Sep-09	NS <5		NS <5		NS -5		NS <2		NS NS		NS NS	1	NS NC		NS NC	+
	Apr-10 Oct-11	<5 <1		<5 <1		<5 <1	-	<2		NS <1		NS <1		NS <1		NS <2	+-
	Jan-12	<1		<1		<1		<1		<1		<1	1	<1		<2	+
	Apr-12	<1		<1		0.22	J	<1		<1		<1		1.7		12	
	Jul-12	<1		<1		<1		<1		<1		<1		<1		<2	
	Oct-12	<1		<1		<1		<1		<1		<1	1	<1		<2	
	Jan-13	<0.22		<0.20		<1 0.14	т	<0.30		<0.18	+	<0.15	1	<1 0.21	ī	<2 0.41	-
	Apr-13 Jul-13	<0.22		<0.20		<0.14	J	<0.30		<0.18	+-	<0.15	1	<0.19	J	<0.20	J
	Oct-13	<0.16		<0.19		< 0.21		<0.19		<0.16		<0.14		<0.19		<0.20	+
	Jan-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	1
	Apr-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	
	Oct-14	< 0.15		< 0.13		< 0.15		< 0.18		< 0.25		< 0.33		< 0.11		< 0.20	
	Apr-15	< 0.74		< 0.48		< 0.41		< 0.50		< 0.43		< 0.48		< 0.33		< 0.23	- [

Table 2-1: Concentrations of CVOCs and VOCs in Groundwater VOPAK Savannah Terminal, Savannah, Georgia

EPA Test Mo	ethod: 8260B	PCE		TCE		DCE		VC		nan, Geo Benzei		Toluer	ne	Ethylben	zene	Xylen	es
	Unit	μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/I	
Site-Specific V:	Type 4 RRS alues (ug/L)	5		38		1022		3		9		5241		700		10000	D
Well ID	Sample Date	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
	Jun-01	<5		<5		<5		<2		<5		<5		<5		<10	
	Nov-01	NS		NS		NS		NS		NS		NS		NS		NS	—
	Oct-02 Aug-03	NS <5		NS <5		NS <5		NS <2		NS <5		NS <5		NS <5	-	NS <10	+-
	Oct-03	NS		NS		NS		NS		NS		NS		NS		NS	+
	Mar-04	NS		NS		NS		NS		NS		NS		NS		NS	1
	Jul-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Sep-04	NS		NS		NS		NS		NS		NS		NS		NS	_
	May-05 Aug-05	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	-	NS NS	_
	Jun-06	NS		NS		NS		NS		NS NS		NS		NS		NS	+
	Oct-06	NS		NS		NS		NS		NS		NS		NS		NS	
	Dec-06	NS		NS		NS		NS		NS		NS		NS		NS	
	Mar-07	NS		NS		NS		NS		NS		NS		NS		NS	
	Sep-07	NS		NS NS		NS		NS NS		NS NS		NS NS		NS NC		NS NS	+
	May-08 Dec-08	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+	NS NS	+-
MW-20	Apr-09	NS		NS		NS		NS		NS		NS		NS		NS	+
	Sep-09	NS		NS		NS		NS		NS		NS		NS		NS	
	Apr-10	NS		NS		NS		NS		NS		NS		NS		NS	
	Apr-11	NS		NS		NS		NS		NS		NS		NS		NS	_
	Oct-11 Jan-12	NL NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL NL	-	NL NL	_
	Apr-12	NL		NL		NL		NL		NL		NL		NL		NL	+
	Jul-12	NL		NL		NL		NL		NL		NL		NL		NL	+
	Oct-12	NL		NL		NL		NL		NL		NL		NL		NL	
	Jan-13	NL		NL		NL		NL		NL		NL		NL		NL	
	Apr-13	NL		NL		NL		NL		NL		NL		NL		NL	_
	Jul-13 Oct-13	NL NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL NL	+
	Jan-14	NL		NL		NL		NL		NL		NL		NL		NL	+
	Apr-14	NL		NL		NL		NL		NL		NL		NL		NL	+
	Oct-14	NL		NL		NL		NL		NL		NL		NL		NL	
	Apr-15	NL		NL		NL		NL		NL		NL		NL		NL	
	Jun-01	<5		<5 NG		<5		<2 NG		<5		<5		<5 NG		<10	_
	Nov-01 Oct-02	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Aug-03	NS		NS		NS		NS		NS		NS		NS		NS	+
	Oct-03	120		1.8		<1		<1		<1		<1		4.2		38	
	Mar-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Jul-04	NS		NS		NS		NS		NS		NS		NS		NS	_
	Sep-04 May-05	NS <2		NS <2		NS <2		NS <2		NS <2		NS <2		NS <2		NS <5	-
	Aug-05	<5		<5		<5		<2		<5		<5		<5		<5	+
	Jun-06	12		<5		<5		<2		<10		<5		<5		<5	1
	Oct-06	<2		<5		<2		<2		<2		<2		<2		<5	
	Dec-06	<2		<2		<2		<2		<2		<2		<2		<5	
	Mar-07	<5		<5		<5		<2		<10		<5		<5		<5	_
	Sep-07 May-08	<2 NS		<2 NS		<2 NS		<2 NS	1	<2 NS		<2 NS		<2 NS		<5 NS	+
MW-21	Dec-08	NS		NS NS		NS		NS		NS NS		NS NS		NS		NS	+
	Apr-09	NS		NS		NS		NS		NS		NS		NS		NS	1
	Sep-09	NS		NS		NS		NS		NS		NS		NS		NS	
	Apr-10	NS		NS		NS		NS		NS		NS		NS		NS	1
	Oct-11 Jan-12	NL NL		NL NL		NL NL		NL NL		NL NL		NL NL	1	NL NL	+	NL NL	+-
	Apr-12	NL NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL NL	+	NL NL	+
	Jul-12	NL		NL		NL		NL		NL		NL	1	NL		NL	+
	Oct-12	NL		NL		NL		NL		NL		NL		NL		NL	
	Jan-13	NL		NL		NL		NL		NL		NL		NL		NL	
	Apr-13	NL		NL		NL		NL	1	NL		NL		NL		NL	4
	Jul-13 Oct-13	NL NL		NL NL		NL NL		NL NL		NL NL		NL NL	1	NL NL	+	NL NL	+-
	Jan-14	NL NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL NL	+	NL NL	+
	Apr-14	NL		NL		NL		NL		NL		NL	1	NL		NL	+
	Oct-14	NL		NL		NL		NL		NL		NL		NL		NL	\perp
	Apr-15	NL		NL		NL		NL		NL		NL		NL		NL	

Table 2-1: Concentrations of CVOCs and VOCs in Groundwater VOPAK Savannah Terminal, Savannah, Georgia

EPA Test Me	thod: 8260B	PCE		TCE		DCE		VC		Benzen		Toluen	ie.	Ethylben	zene	Xylene	-6
ZIII Teot III	Unit	μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L	
Site-Specific Va	Гуре 4 RRS lues (ug/L)	5		38		1022		3		9		5241		700		10000	
Well ID	Sample Date	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
	Jun-01	8,700		900		3,100		380		< 500		< 500		600		83	J
	Nov-01 Oct-02	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Aug-03	1,000		480		930		<100		<250		<250		<250		<500	_
	Oct-03	NS		NS		NS		NS		NS		NS		NS		NS	
	Mar-04	7,600		700		2,300		210		<10		<5		2,300		<50	
	Jul-04	7,000 7,200		71 <250		310 610		36 <100		<10 <500		<5 <250		14 <250		<22 <250	
	Sep-04 May-05	5,700		220		840		<100		<100		<100		<100		<250	_
	Aug-05	2,400		47		240		37		<5		<5		<5		10	
	Jun-06	680		71		3,300		140		<250		<130		150		<130	
	Oct-06	2,600		<130		490		89		<250		<130		<130		<130	
	Dec-06 Mar-07	3,200 3,400		60 <130		480 730		100		<2 <250		<2 <130		20 <130		18 <130	+
	Sep-07	NS		NS		NS		NS		NS		NS		NS		NS	\dagger
MW-22/	May-08	6,900		89		930		270		2		<2		10		26	
MW-227 MW-22R	Dec-08	4,400		100		2,100		300		<5		<5		7		12	$\perp \perp \downarrow$
	Apr-09 Sep-09	1,900 3,000		88		1,700 1,000		280 220		<5 4.1	\vdash	<5 <2	-	9.2	\vdash	22 12	+
	Apr-10	NS		NS		NS		NS NS		NS NS		NS		NS NS		NS NS	+
	Oct-11	NU		NU		NU		NU		NU		NU		NU		NU	
	Jan-12	NU		NU		NU		NU		NU		NU		NU		NU	
	Apr-12	NU		NU NU		NU NU		NU NU		NU NU		NU NU		NU		NU NU	+
	Jul-12 Oct-12	NU NU		NU		NU		NU		NU		NU		NU NU		NU	+-
	Jan-13	NU		NU		NU		NU		NU		NU		NU		NU	\dagger
	Apr-13	NU		NU		NU		NU		NU		NU		NU		NU	
	Jul-13	NU		NU		NU		NU		NU		NU		NU		NU	
	Oct-13 Jan-14	NU NU		NU NU		NU NU		NU NU		NU NU		NU NU		NU NU		NU NU	+
	Apr-14	NU		NU		NU		NU		NU		NU		NU		NU	+-1
	Oct-14	NU		NU		NU		NU		NU		NU		NU		NU	
	Apr-15	NU		NU		NU		NU		NU		NU		NU		NU	
	Jun-01 Nov-01	<5 NS		<5 NS		<5 NS		<2 NS		<5 NS		<5 NS		<5 NS		<10 NS	+
	Oct-02	NS		NS		NS		NS		NS		NS		NS		NS	+-1
	Aug-03	<5		<5		<5		<2		<5		<5		<5		<10	
	Oct-03	NS		NS		NS		NS		NS		NS		NS		NS	
	Mar-04	760 NS		2,300 NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Jul-04 Sep-04	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	May-05	NS		NS		NS		NS		NS		NS		NS		NS	
	Aug-05	NS		NS		NS		NS		NS		NS		NS		NS	
	Jun-06	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-06 Dec-06	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+-1
	Mar-07	NS		NS		NS		NS		NS		NS		NS		NS	
	Sep-07	<2		<2		<2		<2		<2		<2		<2		<5	
N. 539/ . 0.2	May-08	NS		NS		NS		NS		NS		NS		NS		NS	\perp
MW-23	Dec-08 Apr-09	NS <2		NS <2		NS <5		NS <2		NS <5		NS <5		NS <5		NS <5	+-
	Sep-09	NS		NS		NS		NS		NS		NS		NS		NS	+
	Apr-10	<5		<5		<5		<2		NS		NS		NS		NS	
	Oct-11	<1		<1		<1		<1		<1		<1		<1		<2	4
	Jan-12 Apr-12	<1		<1		<1		<1		<1	\vdash	<1	-	<1	\vdash	<2 <2	+
	Jul-12	<1		<1		<1		<1		<1		<1		<1		<2	+
	Oct-12	<1		<1		<1		<1		<1		<1		<1		<2	
	Jan-13	<1		<1		<1		<1		<1		<1		<1		<2	
	Apr-13	<0.22		<0.20		<0.13		<0.30		<0.18	 	<0.15		0.23	J	0.42	J
	Jul-13 Oct-13	<0.16		<0.19		<0.21		<0.19		<0.16		<0.14		<0.19		<0.20	+-
	Jan-14	<0.16		<0.19		<0.21		<0.19		<0.16		<0.14		<0.19		< 0.20	+ -
	Apr-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	
	Oct-14	< 0.15		< 0.13	$oxed{\Box}$	< 0.15		< 0.18		< 0.25	\Box	< 0.33		<0.11	\Box	< 0.20	\Box
	Apr-15	< 0.74		< 0.48		< 0.41		< 0.50		< 0.43		< 0.48		< 0.33		< 0.23	

Table 2-1: Concentrations of CVOCs and VOCs in Groundwater VOPAK Savannah Terminal, Savannah, Georgia

EPA Test Me	ethod: 8260B	PCE		TCE		DCE		VC		Benzer		Toluen	ie	Ethylben	zene	Xylene	es
	Unit	μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L	
Site-Specific Va	Type 4 RRS alues (ug/L)	5		38		1022		3		9		5241		700		10000)
Well ID	Sample Date	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
	Nov-01	400		95		240		50		<12		<12		<12		<25	
	Oct-02 Aug-03	NS 97		NS 51		NS 100		NS 22		NS 52		NS <10		NS <10		NS <20	-
	Oct-03	NS NS		NS NS		NS		NS NS		NS		NS		NS		NS NS	+
	Mar-04	NS		NS		NS		NS		NS		NS		NS		NS	+
	Jul-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Sep-04	NS		NS		NS		NS		NS		NS		NS		NS	
	May-05 Aug-05	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	_
	Jun-06	1,300		180		500		49		11		<5		5		28	+
	Oct-06	580		150		590		33		<20		<20		<20		<50	+
	Dec-06	1,110		680		990		68		13		<2		10		35	
	Mar-07	130		200		770		17		14		<5		<5		12	
	Sep-07 May-08	62 130		37 24		820 82		20 9		12 16		<2 <2		2 <2		7	-
MW-24/	Dec-08	110		25		340		12		15		<5		<5		<5	+-
MW-24R	Apr-09	93		22		240		18		12		<5		<5		<5	+
	Sep-09	57		20		120		47		10		<2		<2		<5	
	Apr-10	35		10		150		<2		NS		NS		NS		NS	1
	Oct-11	12		5.8		180		25		10		<5		1.4	J	4.2	J
	Jan-12 Apr-12	7.5 6.8		3.9 4.7		160 230		16 7.4		8.2 11		1.8	J	0.98 16	J	230	+
	Jul-12	6.7		3.6		220		9.2		7.6		<2	J	<2		<4	+
	Oct-12	6		3.4	J	320		54		8.1		<5		3.4	J	20	+
	Jan-13	3	J	2.1	J	410		71		6.9		<5		4	J	22	
	Apr-13	3.5		2.8		540		64		6.2		0.71	J	4.4		26	
	Jul-13	5.3 3.3		5.4 2.2		800 450		140 43		8.2		0.41	ī	0.79	т.	58	-
	Oct-13 Jan-14	2.6		4.4		570		<0.19		6.1		<0.14	J	<0.19	J	6.3 2.7	+
	Apr-14	2		1.8		500		< 0.19		5.8		0.48	J	0.45	J	2	+
	Oct-14	1.7	J	< 0.65		360		38		5.6		<1.7		1.3	J	<1.0	
	Apr-15	<3.7		<2.4		300		16		3.9	J	<2.4		<1.7		<1.2	4
	Nov-01 Oct-02	<5 NS		<5 NS		<5 NS		<10 NS		<5 NS		<5 NS		<5 NS		<10 NS	+
	Aug-03	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Oct-03	NS		NS		NS		NS		NS		NS		NS		NS	+
	Mar-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Jul-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Sep-04 May-05	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	
	Aug-05	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+
	Jun-06	NS		NS		NS		NS		NS		NS		NS		NS	+
	Oct-06	NS		NS		NS		NS		NS		NS		NS		NS	
	Dec-06	NS		NS		NS		NS		NS		NS		NS		NS	
	Mar-07 Sep-07	NS <2	\vdash	NS <2		NS <2		NS <2		NS <2		NS <2		NS <2		NS <5	+
	May-08	NS NS		NS		NS		NS NS		NS		NS		NS		NS	+
MW/ 25	Dec-08	NS		NS		NS		NS		NS		NS		NS		NS	+
MW-25	Apr-09	<5		<2		<5		<5		<5		<5		<5		<5	
	Sep-09	NS		NS		NS		NS		NS		NS		NS		NS	
	Apr-10	<5 <1	\vdash	<5 <1		<5 <1		<2 <1		NS <1		NS		NS 0.72	т	NS 8.7	+
	Oct-11 Jan-12	<1		<1		0.21	J	<1		<1		<1		<1	J	<2	+
	Apr-12	0.27	J	<1		0.57	J	<1		<1		<1		3.2		20	+
	Jul-12	<1		<1		<1		<1		<1		<1		<1		<2	
	Oct-12	<1		<1		<1		<1		<1		<1		<1		<2	
	Jan-13	<0.22	\vdash	<1		<1		<1		<0.18		<0.15		<0.097		<2	+
	Apr-13 Jul-13	<0.22	+	<0.20		<0.13	-	<0.30		<0.18		<0.15		<0.09/		<0.31	+-
	Oct-13	<0.16		<0.19		<0.21		<0.19		< 0.16		<0.14		<0.19		<0.20	+-
	Jan-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	L
	Apr-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	
	Oct-14	< 0.15		< 0.13		< 0.15		< 0.18		< 0.25		< 0.33		< 0.11		< 0.20	_
	Apr-15	< 0.74		< 0.48		< 0.41		< 0.50		< 0.43		< 0.48		< 0.33		< 0.23	

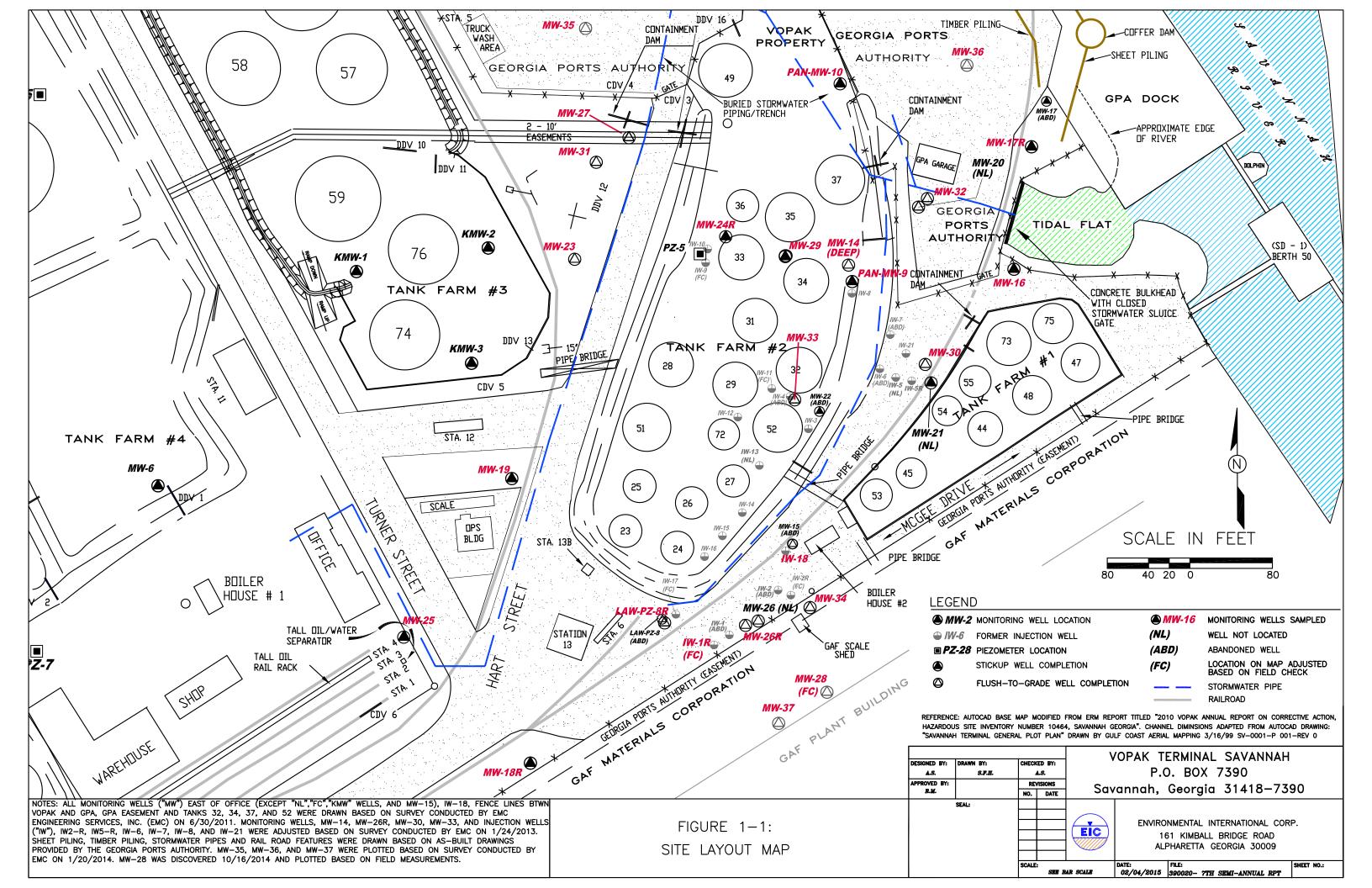
Table 2-1: Concentrations of CVOCs and VOCs in Groundwater VOPAK Savannah Terminal, Savannah, Georgia

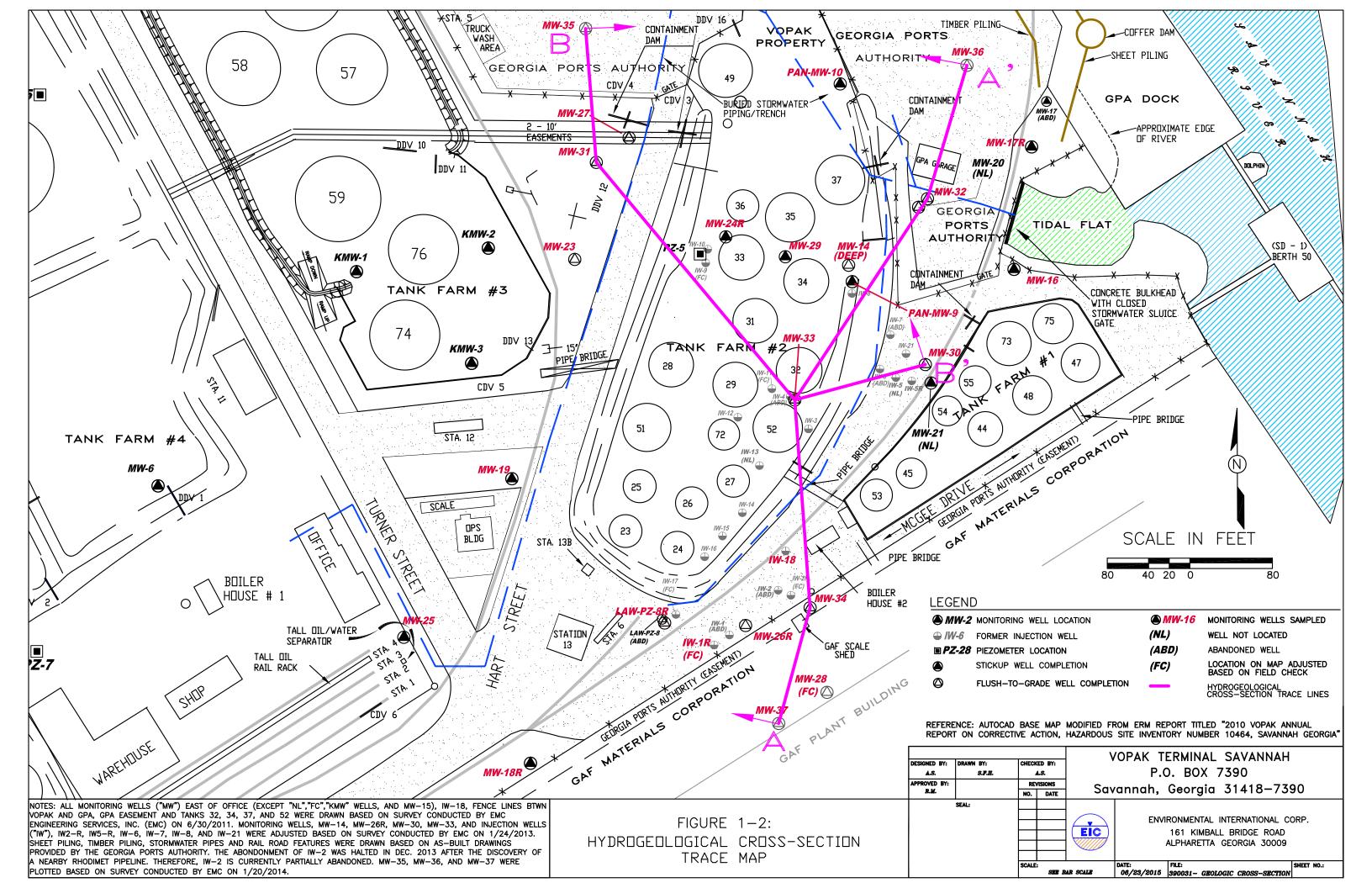
EPA Test Me	ethod: 8260B	PCE		TCE		DCE		VC		Benzei	ne	Toluer	ie	Ethylben	zene	Xylene	es
	Unit	μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/L	_
Site-Specific Va	Type 4 RRS alues (ug/L)	5		38		1022		3		9		5241		700		10000	D
Well ID	Sample Date	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
	Nov-01	2,400		100		1,100		210		<100		<100		<100		<200	_
	Oct-02 Aug-03	NS 300		NS 14		NS 180		NS 38		NS NS		NS NS		NS NS		NS NS	-
	Oct-03	NS		NS		NS		NS		NS		NS		NS		NS	+
	Mar-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Jul-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Sep-04	NS		NS		NS		NS		NS		NS		NS		NS	
	May-05	120 420		8 22		120 210		28 47		17		<2 <5		<2 <5		<5 6	_
	Aug-05 Jun-06	NS NS		NS NS		NS NS		NS NS		35 NS		NS NS		NS NS		NS	_
	Oct-06	<2		2		2,800		330		16		45		380		2,700	_
	Dec-06	6		4		5,100		560		20		83		1,500		13,000	+
	Mar-07	<5		<5		2,600		580		17		45		1,100		6,900	
	Sep-07	<2		<2		240		240		9		4		71		250	
MW/ 26/	May-08	5	\vdash	<2 <5		410 14		83 19		12 <5		10 5		260 23		1,300 120	+
MW-26/ MW-26R	Dec-08 Apr-09	<5 <5		<5 <5		200		76		<5 14		21		310		2,700	+-
2010	Sep-09	<2.		<2		150		62		4.4		3.8		63		380	+-
	Apr-10	<5		<5		93		48		NS		NS		NS		NS	1
	Oct-11	<1		0.89	J	43		34		7.2		1.4		35		110	
	Jan-12	<25		5	J	390		130		29		59		650		6,100	_
	Apr-12	<25		5.5 <5	J	350 43		140 40		22	J	54		610 270		7,200	-
	Jul-12 Oct-12	<5 <50		<50		210		63		21 35	J	15 37	ī	390		2,000 4,200	-
	Jan-13	27	J	21	I	1,500		220		64	J	140	J	2,000		2,400	+
	Apr-13	5	J	3.2	J	340		94		56		40		650		8,300	+
	Jul-13	<1.6		<1.9		19		12		75		18		450		5,500	
	Oct-13	<1.6		<1.9		150		53		33		10	J	160		2,300	
	Jan-14	<1.6 44		<1.9 <1.9		68		<1.9 11		110 110		11		200		7,200	_
	Apr-14 Oct-14	<0.75		4.1	ī	7.2		7.3		110		<1.4 <1.1		64 25		5,600 400	-
	Apr-15	<74		<48	,	<41		<50		180		63	I	760		11,000	+
	Nov-01	<5		<5		<5		<2		<5		<5		<5		<10	_
	Oct-02	NS		NS		NS		NS		NS		NS		NS		NS	
	Aug-03	<5		<5		<5		<2		<5		<5		<5		<10	
	Oct-03 Mar-04	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	_
	Jul-04	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	_
	Sep-04	NS		NS		NS		NS		NS		NS		NS		NS	+
	May-05	NS		NS		NS		NS		NS		NS		NS		NS	+
	Aug-05	NS		NS		NS		NS		NS		NS		NS		NS	
	Jun-06	NS		NS		NS		NS		NS		NS		NS		NS	_
	Oct-06	NS		NS NC		NS		NS NE		NS		NS		NS NE		NS	_
	Dec-06 Mar-07	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	+-
	Sep-07	3		2		350		5		<2		<2		<2		<5	+-
	May-08	NS		NS		NS		NS		NS		NS		NS		NS	1
MW-27	Dec-08	NS		NS		NS		NS		NS		NS		NS		NS	
	Apr-09	<5	\sqcup	<5		40		22		<5		<5		<5		<5	
	Sep-09	NS		NS		NS		NS 92		NS		NS		NS NC		NS	_
	Apr-10 Oct-11	<5 0.86	J	<5 1.6	J	<5 8.3		200		NS 0.63	J	NS <2		NS 0.29	J	NS 3.4	J
	Jan-12	0.17	J	0.42	J	1.8		19		<1	J	<1		<1	J	<2	+ ,
	Apr-12	0.26	J	0.4	J	1.7		15		<1		<1		<1		<2	1
	Jul-12	<1		0.26	J	1.4		21		<1		<1		<1		<2	
	Oct-12	<1		0.33	J	1.1		16		<1		<1		<1		<2	
	Jan-13	0.36	J	0.88	J	2.1	-	20		<1		<1		<1	-	<2	+
	Apr-13 Jul-13	<0.22		0.33	J	2.6	J	6.5 18		<0.18		<0.15 <0.14		0.35 <0.19	J	3.9 <0.20	+
	Oct-13	<0.16		<0.19	J	<0.21		2.9		<0.16		<0.14		<0.19		<0.20	+
	Jan-14	<0.16		< 0.19		2.1		13		<0.16		< 0.14		<0.19		<0.20	+
	Apr-14	< 0.16		< 0.19		1.9		9.7		< 0.16		< 0.14		< 0.19		< 0.20	1
	Oct-14	< 0.15		< 0.13		2.2		12		< 0.25		< 0.33		< 0.11		< 0.20	1
	Apr-15	< 0.74		< 0.48		0.79	J	4.7		< 0.43		< 0.48		< 0.33		< 0.23	1 -

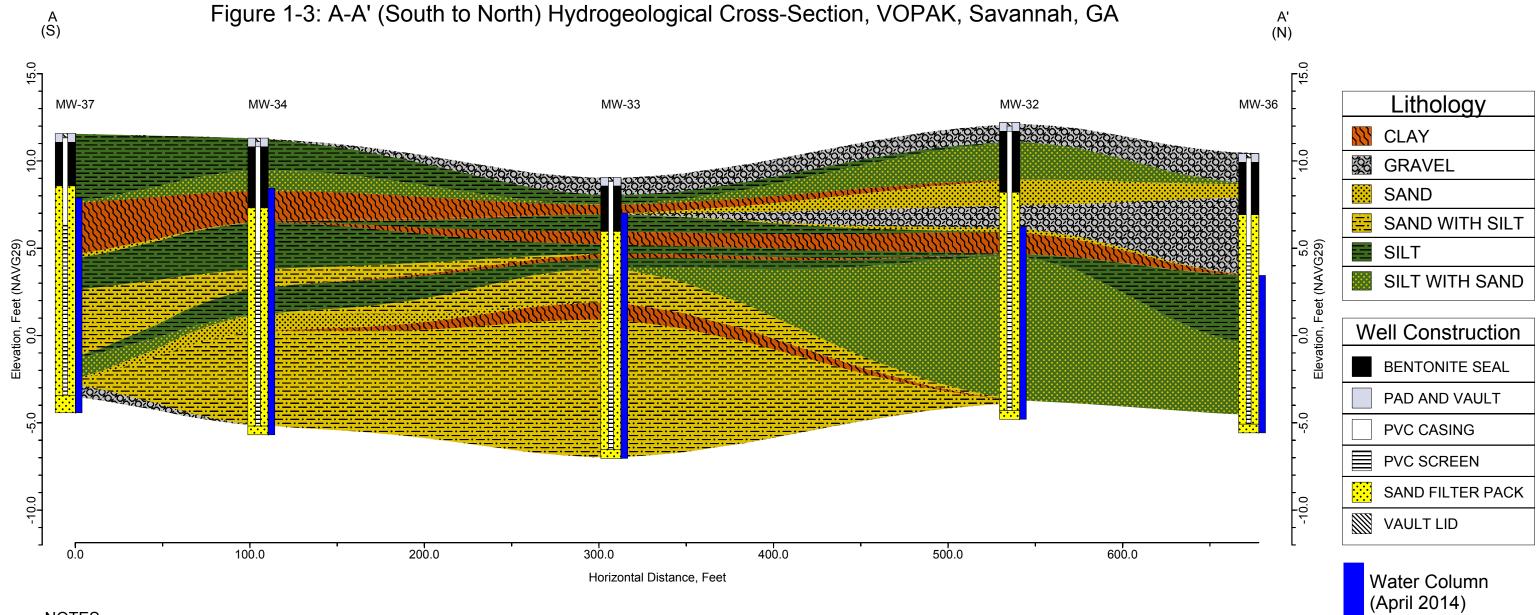
Table 2-1: Concentrations of CVOCs and VOCs in Groundwater VOPAK Savannah Terminal, Savannah, Georgia

EPA Test M		PCE		TCE		DCE		VC		Benzer	ne	Toluer		Ethylben	zene	Xylene	es
0: 0 :0	Unit	μg/L		μg/L		μg/L		μg/L		μg/L		μg/L		μg/I		μg/L	L
Site-Specific V	Type 4 RRS alues (ug/L)	5		38		1022		3		9		5241		700		10000	0
Well ID	Sample Date	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Fla
	Oct-02	<5 NG		<5 NO		<5 NG		<2		<5 NG		<5 NG		<5 NO		<10	
	Aug-03 Oct-03	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	
	Mar-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Jul-04	NS		NS		NS		NS		NS		NS		NS		NS	
	Sep-04	NS		NS		NS		NS		NS		NS		NS		NS	
	May-05	NS		NS		NS		NS		NS		NS		NS		NS	
	Aug-05 Jun-06	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	
	Oct-06	NS		NS NS		NS		NS		NS		NS		NS		NS	+
	Dec-06	NS		NS		NS		NS		NS		NS		NS		NS	
	Mar-07	NS		NS		NS		NS		NS		NS		NS		NS	
	Sep-07	NS		NS		NS		NS		NS		NS		NS		NS	
	May-08 Dec-08	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	
MW-28	Apr-09	NS		NS		NS		NS		NS		NS		NS		NS	
	Sep-09	NS		NS		NS		NS		NS		NS		NS		NS	
	Apr-10	NS		NS		NS		NS		NS		NS		NS		NS	
	Oct-11	NL		NL		NL	\Box	NL		NL	\Box	NL		NL		NL	
	Jan-12	NL NL		NL NL	\vdash	NL NL		NL NL		NL NL		NL NL		NL NL	+	NL NL	-
	Apr-12 Jul-12	NL NL		NL NL		NL NL	\vdash	NL NL		NL NL	\vdash	NL NL		NL NL	+	NL NL	-
	Oct-12	NL		NL		NL		NL		NL		NL		NL		NL	
	Jan-13	NL		NL		NL		NL		NL		NL		NL		NL	
	Apr-13	NL		NL		NL		NL		NL		NL		NL		NL	
	Jul-13	NL		NL		NL		NL		NL		NL		NL		NL	
	Oct-13 Jan-14	NL NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL NL		NL NL	
	Apr-14	NL		NL		NL		NL		NL		NL		NL		NL	
	Oct-14	2.3		0.44	J	14		3.4		0.82	J	< 0.33		0.27	J	2.2	
	Apr-15	5.8		1.1		33		8.1		1.6		< 0.48		< 0.33		< 0.23	
	Oct-06	1,500		340		1,500		24		2		<2 NG		67		51 NG	
	Dec-06 Mar-07	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	
	Sep-07	2,300		320		1,700		64		3		<2		63		57	
	May-08	NS		NS		NS		NS		NS		NS		NS		NS	
	Dec-08	NS		NS		NS		NS		NS		NS		NS		NS	
	Apr-09	1,100		320		2,100		74		<5 No.		<5 >70		35		98	
	Sep-09 Apr-10	NS 500		NS 300		NS 3,200		NS 150		NS NS		NS NS		NS NS		NS NS	+
	Oct-11	180		72		2,300		220		<20		<20		1,300		2,800	
MW-29	Jan-12	200		77		2,500		280		<20		<20		1,100		2,500	
111 11 -27	Apr-12	100		62		1,900		200		6.3	J	7.6	J	950		2,100	
	Jul-12	110 71		54 44		1,900		230 110		6.8 <20	J	<20 <20		510		1,000	
	Oct-12 Jan-13	110		44		1,600 1,300		140		6	J	6.7	J	200 1,300		370 2,900	+
	Apr-13	130		76		2,500		490		11		4.1		750		1,500	
	Jul-13	120		69		2,800		460		15		5.4	J	800		1,700	
	Oct-13	140		66		6,100		760		20		10	J	1,200		2,500	
	Jan-14 Apr-14	330 200		110 150		5,900 8,400		790 880		23 25		20		3,100 1,900		6,600 4,000	
	Oct-14	74		55		4,300		660		<13		21	I	1,800		4,300	
	Apr-15	160		90		5,900		790		<22		25	J	3,300		7,300	
MW-30	Oct-11	0.51	J	0.55	J	13		2.9		0.55	J	<1		<1		<2	Т
	Jan-12	0.18	J	0.46	J	13		3.1		0.47	J	<1		<1		0.58	-
	Apr-12 Jul-12	0.19	J	0.43	J	9.4 7.7	1	2.6		0.44	J	<1		<1 <1	+ +	<2 <2	+
	Oct-12	<1	J	0.45	J	11		3.6		0.43	J	<1		<1		<2	+
	Jan-13	0.2	J	0.38	J	9.4		3.1		0.54	J	<1		<1		<2	I
	Apr-13	0.32	J	0.32	J	7.8		4.5		0.85	J	< 0.15		< 0.097		< 0.31	
	Jul-13	<0.16		<0.19 <0.19		11		<0.19 2.5		<0.16		<0.14		<0.19		<0.20	_
	Oct-13 Jan-14	<0.16		<0.19	+	5.6		<0.19		<0.16		<0.14		<0.19		<0.20	+
	Apr-14	0.16	J	0.4	J	5.6		< 0.19		0.48	J	< 0.14		1	J	2.2	+
	Oct-14	0.39	J	< 0.13		2.3		1.2		0.35	J	< 0.33		< 0.11		< 0.20	
	Apr-15	< 0.74		<0.48	\Box	1.7		0.88	J	< 0.43		< 0.48		< 0.33		1.3	1
	Oct-11	<1		<1 <1		<1		<1		<1		<1		<1 <1		0.24	
	Jan-12 Apr-12	<1		<1		<1		<1		<1		<1		0.33	J	2.4	
	Jul-12	<1		<1		<1		<1		<1		<1		<1	,	<2	+
	Oct-12	<1		<1		<1		<1		<1		<1		<1		<2	
	Jan-13	<1		<1		<1		<1		<1		<1		<1	\Box	<2	
MW-31	Apr-13	<0.22		<0.20		< 0.13	\vdash	<0.30		<0.18	\vdash	<0.15		<0.097	+	< 0.31	+
	Jul-13	<0.16 NA		<0.19 NA		<0.21 NA		<0.19 NA		<0.16 NA		<0.14 NA		<0.19 NA	+	<0.20 NA	+
	()ct-13				1	4 74 4	1				1						-
	Oct-13 Jan-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	
				<0.19 <0.19 <0.13		<0.21 <0.21 0.43		<0.19 <0.19 <0.18		<0.16 <0.16 <0.25		<0.14 <0.14 <0.33		<0.19 <0.19 0.33		<0.20 <0.20 <0.20	

Table 2-1: Concentrations of CVOCs and VOCs in Groundwater VOPAK Savannah Terminal, Savannah, Georgia

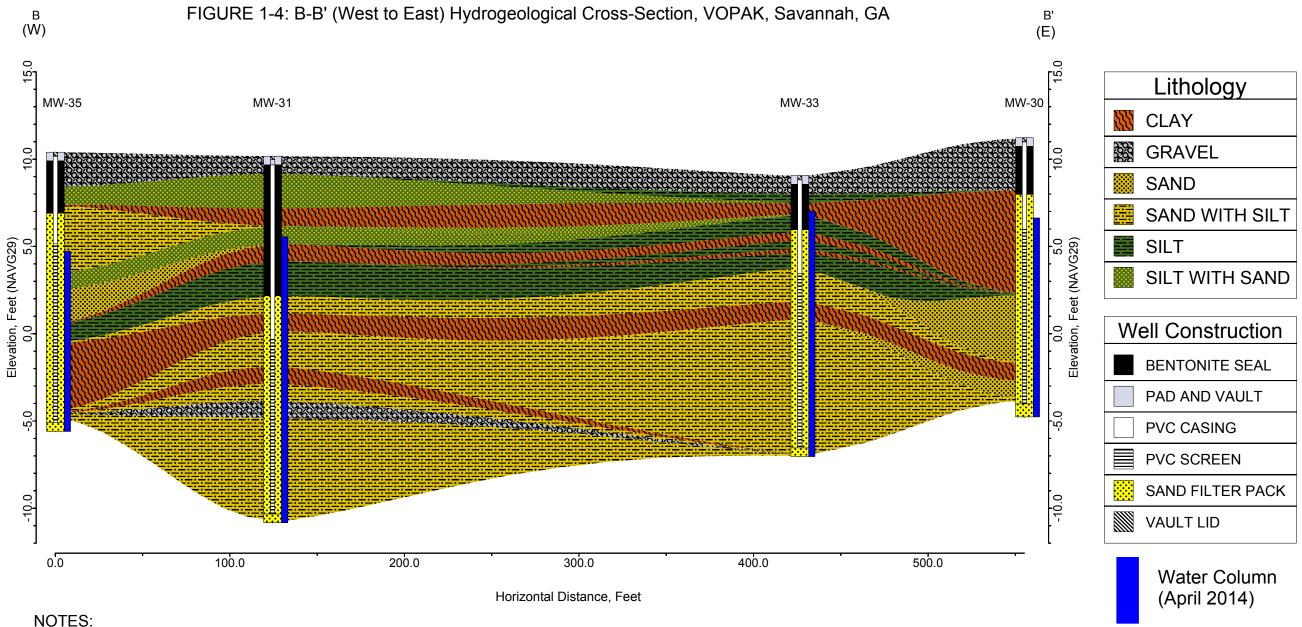

EDATM.	4. 1. 02.COD	PCE		TCE		DCE		vc		Benzei		Toluen	-	Tale Heren		V. 1	
EPA Test Method: 8260B Unit Site-Specific Type 4 RRS														Ethylben		Xylene	
		μg/L		μg/L		μg/L	•	μg/L		μg/L		μg/L		μg/L		μg/L	
	Values (ug/L)			38		1022		3		9		5241		700		10000	•
Well ID	Sample Date	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
	Oct-11	7.2	J	11		1,500		35		<10		<10		31		35	
	Jan-12	130		61		2,100		53		<20		<20		45		56	
	Apr-12	210		100		2,000		54		<20		<20		28		22	J
	Jul-12	200		140		1,100		40		<10		<10		17		16	J
	Oct-12	1,700		470		1,700		110		<10		<10		54		26	
	Jan-13	2,800		530		940		93		<20		<20		61		27	J
MW-32	Apr-13	2,800		520		980		120		0.94	J	2.8		75		42	
	Jul-13	2,200		570		750		96		<1.6		<1.4		66		40	
	Oct-13	6,200		1,300		1,600		220		<1.6		7.2	J	160		110	
	Jan-14	6,500		1,300		1,600		230		<1.6		<1.4		180		170	
	Apr-14	6,000		1,500		2,200		230		<1.6		<1.4		200		130	
	Oct-14	1,900		680		1,100		100		8.3	J	< 6.6		36		29	J
	Apr-15	< 0.74		< 0.48		< 0.41		< 0.50		< 0.43		< 0.42		< 0.33		< 0.23	
	Oct-11	5,200		3,200		16,000		840		<200		<200		370		2,200	
	Jan-12	1,100		190		4,100		370		<50		< 50		94		450	
	Apr-12	13		11		1,800		390		12		9.3	J	46		390	
	Jul-12	40	J	35	J	3,000		290		< 50		< 50		34	J	88	J
	Oct-12	37		35		2,300		330		<20		<20		28		70	
	Jan-13	5.9		9.9		390		130		1.7	J	2.3		7.3		15	
MW-33	Apr-13	1.2		4.7		380		130		1.3		1.5		5.3		12	
	Jul-13	15		5.1	J	500		220		<1.6		<1.4		8.9	J	24	
	Oct-13	1.2		4.8		800		480		1.8		2		9		26	
	Jan-14	<1.6		<1.9		340		300		<1.6		<1.4		16		40	
	Apr-14	<1.6		8.4	J	360		140		<1.6		<1.4		7	J	25	
	Oct-14	1.2	J	9.7		390		440		<1.3		3.5	J	9.4		37	
	Apr-15	< 0.74		2.8		150		100		1.7		1.7		3.1		11	
	Oct-11	2.2		1.7		44		14		1.6		<1		<1		<2	
	Jan-12	13		4.4		80		8.8		3.6		<1		<1		<2	
	Apr-12	4.3		2.2		64		16		2.3		<1		<1		<2	
	Jul-12	2.3		1.3		35		7.8		1.3		<1		<1		<2	
	Oct-12	4.9		1.8		45		8.6		1.8		<1		<1		<2	
	Jan-13	8.6		2.5		43		8.4		1.9		<1		<1		<2	
MW-34	Apr-13	2.7		0.91	J	19		5.7		0.76	J	< 0.15		< 0.097		< 0.31	
	Jul-13	3		1	J	24		0.19		1.1		< 0.14		< 0.19		< 0.20	
	Oct-13	6.1		3.1		36		9.8		1.3		< 0.14		< 0.19		< 0.20	
	Jan-14	2.4		< 0.19		14		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	
	Apr-14	0.51	J	< 0.19		4.2		< 0.19		0.26	J	< 0.14		< 0.19		< 0.20	
	Oct-14	1.1		0.23	J	5.1		1.8		< 0.25		< 0.33		0.17	J	< 0.20	1
	Apr-15	2.7		0.52	J	9.9	1	2.6		0.47	J	< 0.48		< 0.33		< 0.23	1
	Jan-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		< 0.19		< 0.20	
MW-35	Apr-14	< 0.16		< 0.19		< 0.21	1	< 0.19	\perp	< 0.16		< 0.14	_	< 0.19		< 0.20	1
	Oct-14	< 0.15		< 0.13		0.16	J	< 0.18		< 0.25		< 0.33		0.11	J	<.20	
	Apr-15	< 0.74		< 0.48		< 0.41		< 0.50		< 0.43		< 0.48		< 0.33		< 0.23	
	Jan-14	< 0.16		< 0.19		< 0.21		< 0.19		< 0.16		< 0.14		< 0.19	\vdash	< 0.20	1
MW-36	Apr-14	< 0.16		< 0.19		0.33	J	< 0.19		< 0.16		< 0.14		< 0.19	\vdash	< 0.20	1
	Oct-14	< 0.15		< 0.13		0.6	J	< 0.18		< 0.25		< 0.33	<u> </u>	< 0.11		< 0.20	1
	Apr-15	< 0.74		< 0.48		0.59	J	< 0.50		< 0.43		< 0.48		< 0.33		< 0.23	1
	Jan-14	30		16		860		130		14		< 0.14		< 0.19		1.9	
MW-37	Apr-14	22		11		690		< 0.19		16		< 0.14		1.8		3.8	
1.1.11-01	Oct-14	36		12		370		93		10		0.91	J	0.83	J	2.4	J
	Apr-15	19		8.5		350		65		6.4		< 0.96	<u> </u>	< 0.66		0.77	J


Table 2-1: Concentrations of CVOCs and VOCs in Groundwater VOPAK Savannah Terminal, Savannah, Georgia

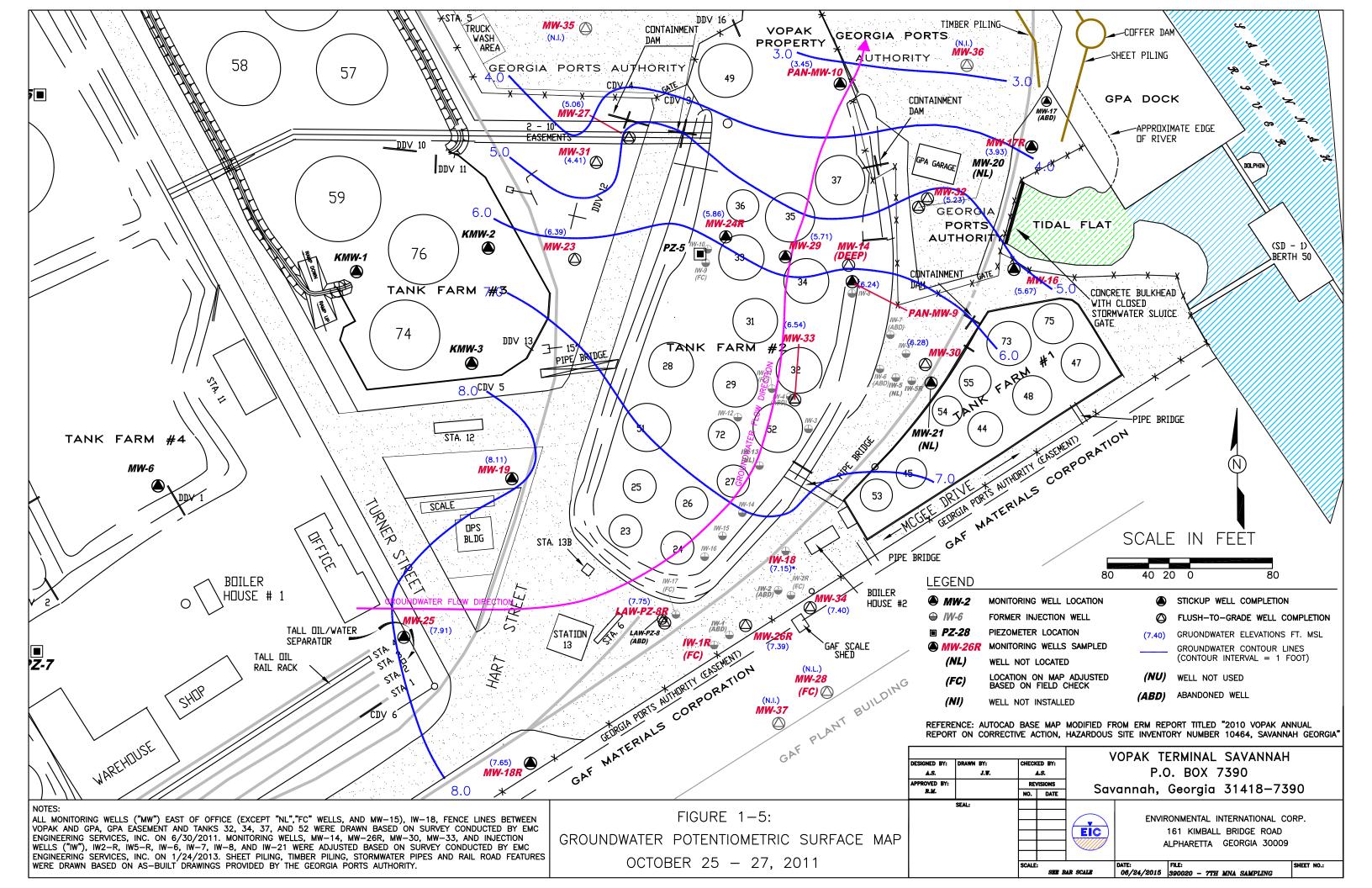

February Fig. Fig	Hg/L 100000 10000 10000 10000 10000 10000 10000 10000 100000 10000 10000 10000 10000 100000 100000 100000 10000 10000 10000 10000 10000 10000 10000 10000
Site-Specific Type 4 RRS Values (ug/L) Sample Result Flag Result	10000 10000
Pan-MW-9 Pan-MW-9 Result Fing Result	NS NS NS NS NS S,200 NS 8,600 8,500 2,000
PAN-MW-9 PAN-MW-9	NS NS NS 5,200 NS 8,600 8,500 2,000
PAN-MW-9 Fan-Pan-MW-9 Fan-Pan-	NS NS 5,200 NS 8,600 8,500 2,000
PAN-MW-9 Sep-97 S, 9,00 NR	NS 5,200 NS 8,600 8,500 2,000
Dec-98	5,200 NS 8,600 8,500 2,000
PAN-MW-9 PAN-MW-9	8,600 8,500 2,000
Dan-01	8,500 2,000
PAN-MW-9 PAN-MW-9 Aug.03	2,000
$ \textbf{PAN-MW-9} = \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NS
PAN-MW-9 Sep-04 6,000 360 <250 <100 <500 <250 <2,200	7,300
$ \textbf{PAN-MW-9} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	22,000
PAN-MW-9 PAN-MW	5,100
PAN-MW-9 PAN-MW-9 Jun-06	16,000
PAN-MW-9 PAN-MW	150 1,800
PAN-MW-9 Mar-07 600 370 680 < 40	2,600
Name	4,900
Sep-107 1,500 450 880 < 40 < 40 < 40 < 40 1,900	12,000
Dec-08 540 150 500 25 < 5 < 5 3,900	5,400
Apr-09 460 150 780 < 40 < 100 < 100 2,400 Sep-09 440 150 730 49 < 10	24,000 11,000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6,300
Oct-11 350 1,100 780 62 < 50 < 50 1,900 Jan-12 690 770 820 55 < 20	6,100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NS
Apr-12 280 1,300 1,100 45 < 20 < 20 1,900 Jul-12 37 1,200 1,300 65 < 25	4,200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,800 5,500
Oct-12 210 1,200 1,800 110 < 25 < 25 1,800 Jan-13 540 480 1,200 69 < 25	2,600
Apr-13 240 500 1,400 120 2.8 J 3.4 J 1,000 Jul-13 55 790 1,200 88 < 1.6	4,900
Jul-13 55 790 1,200 88 < 1.6 < 1.4 760	3,500
Oct-13 29 440 2,500 76 1.1 1.5 1,000 Jan-14 17 300 2,100 190 < 1.6	3,700
Jan-14 17 300 2,100 190 < 1.6 < 1.4 1,100 Apr-14 22 190 2,000 140 < 1.6 < 1.4 960 Oct-14 17 35 1,900 130 4.4 J < 3.3 650 Apr-15 < 7.4 4.9 J 2,000 130 5.2 J < 4.8 580	2,200
Apr-14 22 190 2,000 140 <1.6 <1.4 960 Oct-14 17 35 1,900 130 4.4 J <3.3	2,600 2,700
Apr-15 <7.4 4.9 J 2,000 130 5.2 J <4.8 580	2,400
	1,800
Feb-91 37 <5 <5 <30 NS NS	1,400
	NS NS
Sep-97 10 NR NR < 5 NS NS NS Dec-98 < 1	NS < 1
Nov-99 < 5 < 5 < 2 < 2 NS NS NS	NS
Oct-00 <1 <1 <1 <1 <1 <1 <1 <1	< 2
Jun-01 <5 <5 <5 <5 <2 <5 <5 <5	< 10
Aug-03 < 5 < 5 < 5 < 2 < 5 < 5 < 5 Sep-07 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 10 < 5
Sep-07 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <th< td=""><td>< 5</td></th<>	< 5
Apr-10 < 5 < 5 < 5 < 2 NS NS NS	NS
Oct-11 0.79 J 2.6 1.3 <1 <1 3.7 <1	9.9
PAN-MW-10 Jan-12 < 1 0.21 J 3.7 0.2 J 0.28 J 1.2 < 1	17
Apr-12 <1 <1 0.71 J <1 <1 <1 <1 Jul-12 <1	< 2 < 2
Jul-12 <1 <1 0.29 J <1 <1 <1 <1 Oct-12 <1	< 2
Jan-13 < 1	< 2
Apr.13 < 0.22 < 0.20 0.82 J < 0.30 < 0.18 < 0.097 < 0.15	< 0.31
Jul-13 < 0.16 < 0.19 < 0.21 < 0.19 < 0.16 < 0.19 < 0.14	< 0.20
Oct-13 < 0.16 < 0.19 0.76 < 0.19 < 0.16 < 0.19 < 0.14	< 0.20
Jan-14 < 0.16 < 0.19 1.3 < 0.19 < 0.16 < 0.19 < 0.14 Apr-14 < 0.16	< 0.20 < 0.20
Apr.14 < 0.16 < 0.19 < 0.21 < 0.19 < 0.16 < 0.19 < 0.14 Oct-14 < 0.15	<0.20
Apr-15 <0.74 <0.48 <0.41 <0.50 <0.43 <0.48 <0.33	

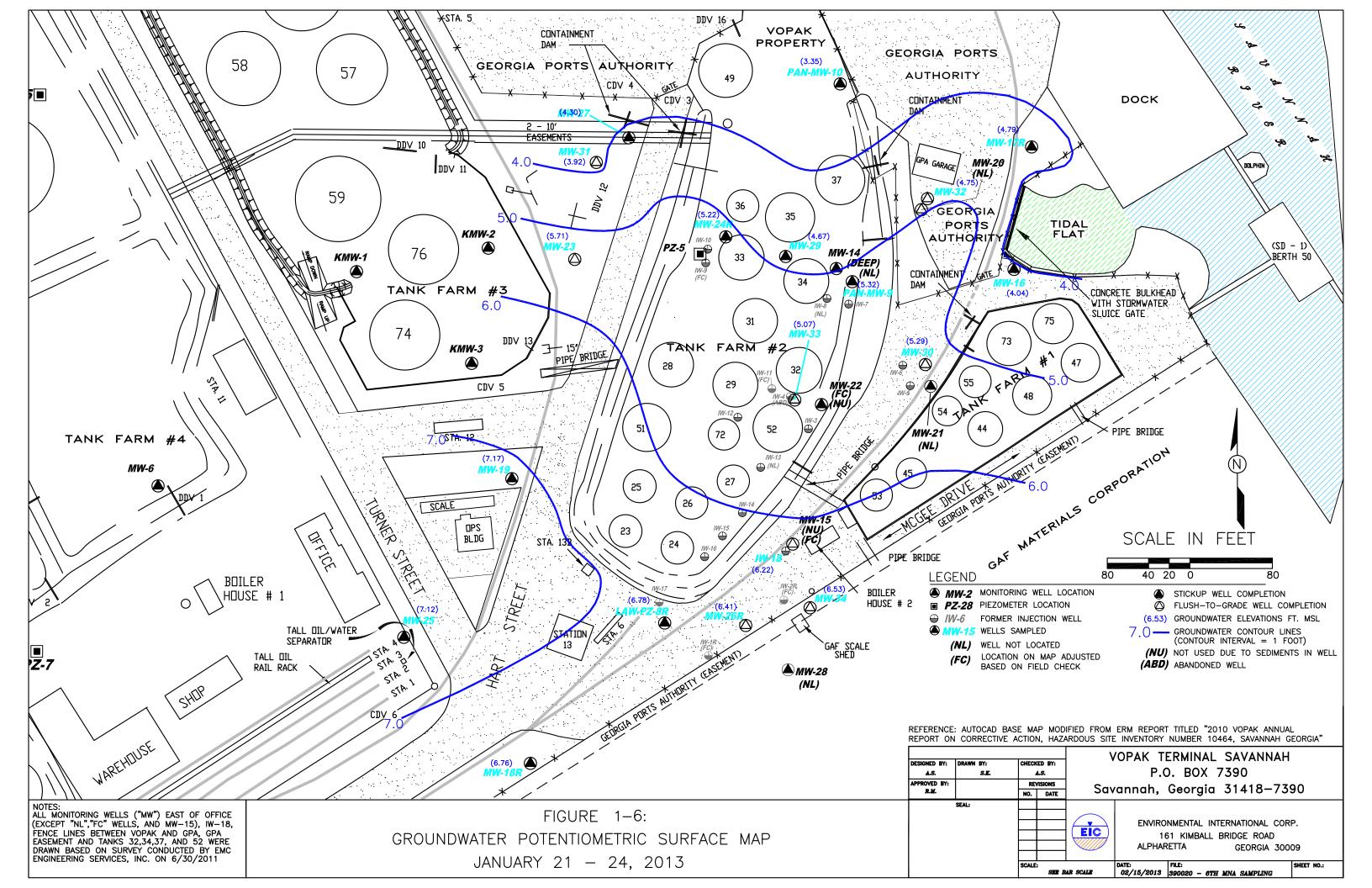
Notes:
0.79 = Concentration above Minimum Detection Limit (MDL)
39 = Concentration above RRS
NR = Not Reported by Laboratory
NS = Not Sampled
NL = Not Located
NU = Not Useable due to siltation
NA = Not Avaliable
All data prior to October 2011 tabulated by ERM

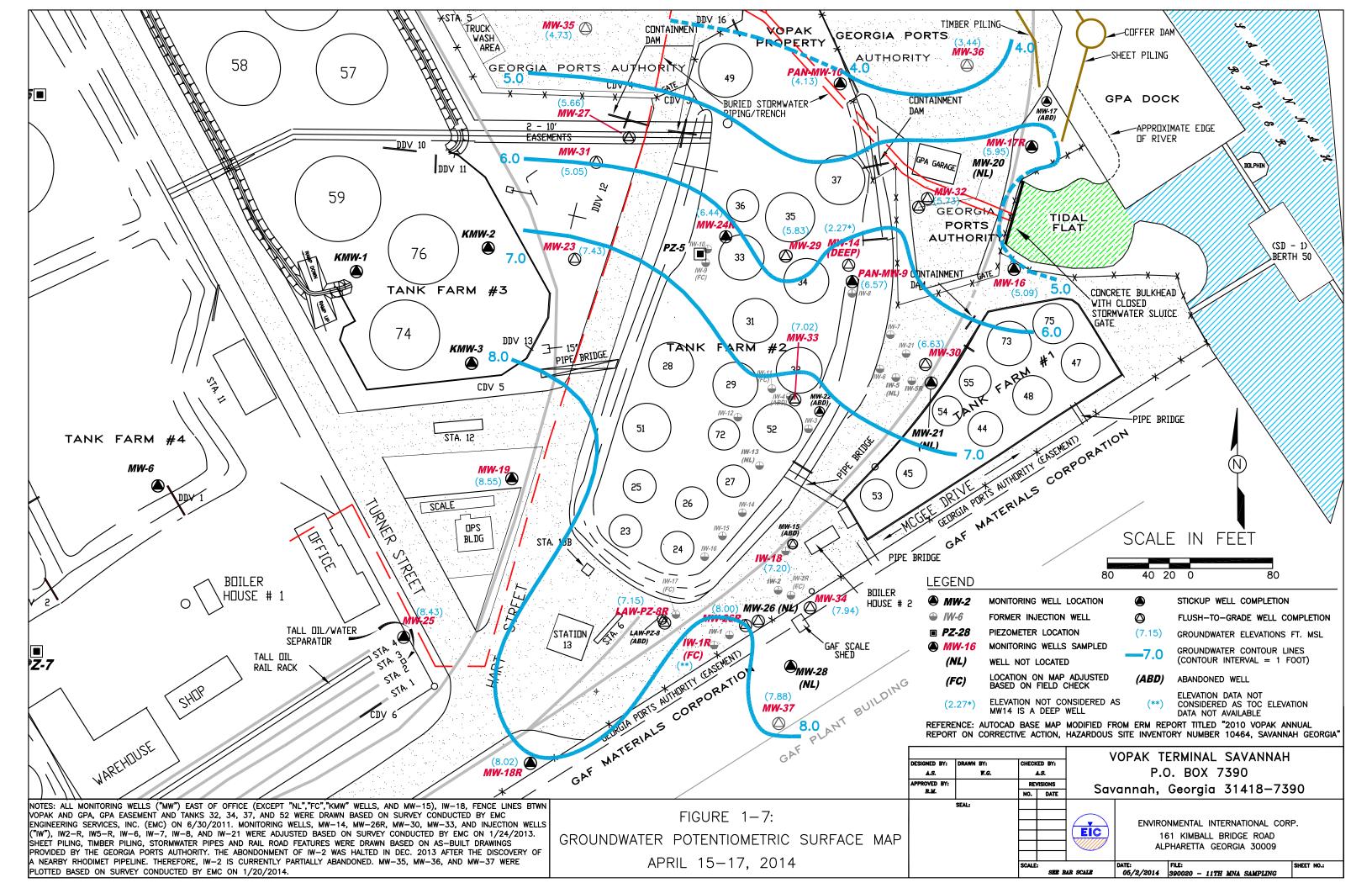
FIGURES

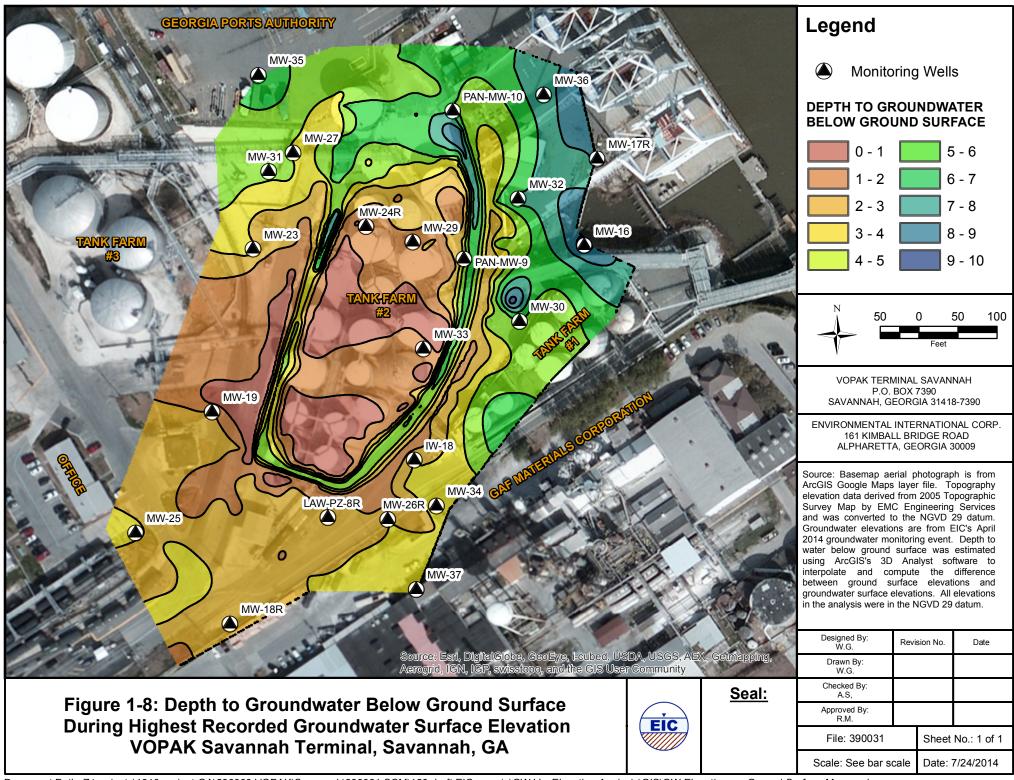


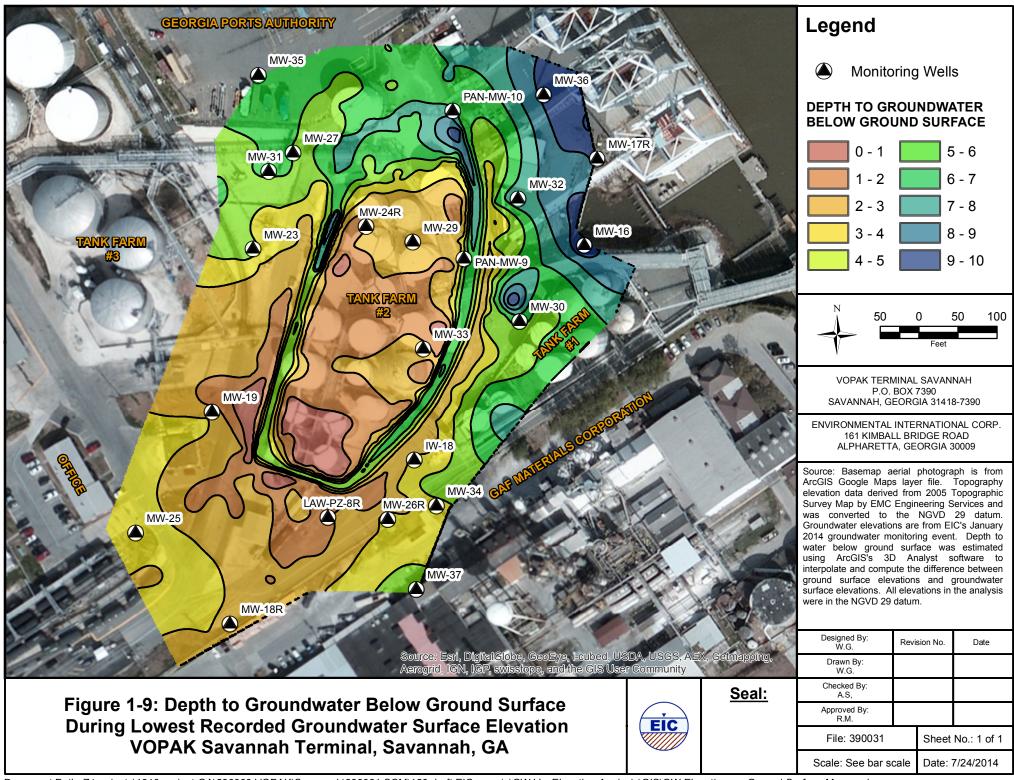
NOTES:

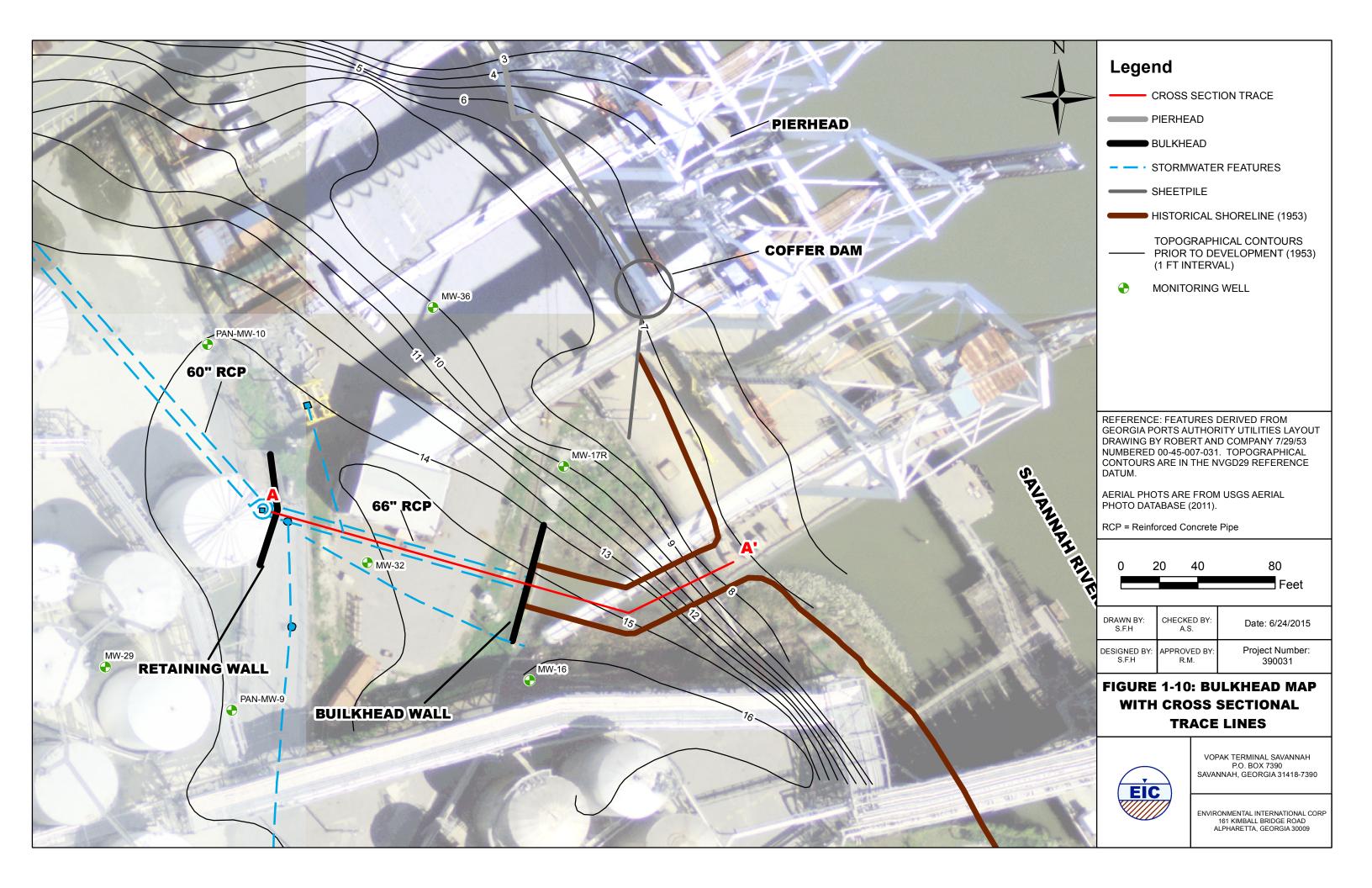

Hydrogeological cross-section is based on lithological data logs recorded during well installation at the site by EIC. Extrapolated surfaces were derived utilizing Rockworks 2006 stratigraphy modeling software by Rockware. Well construction data is based on well construction logs recorded by EIC for each respective well. Groundwater elevation is based on EIC April 2014 gauging and is the highest recorded since October 2011.

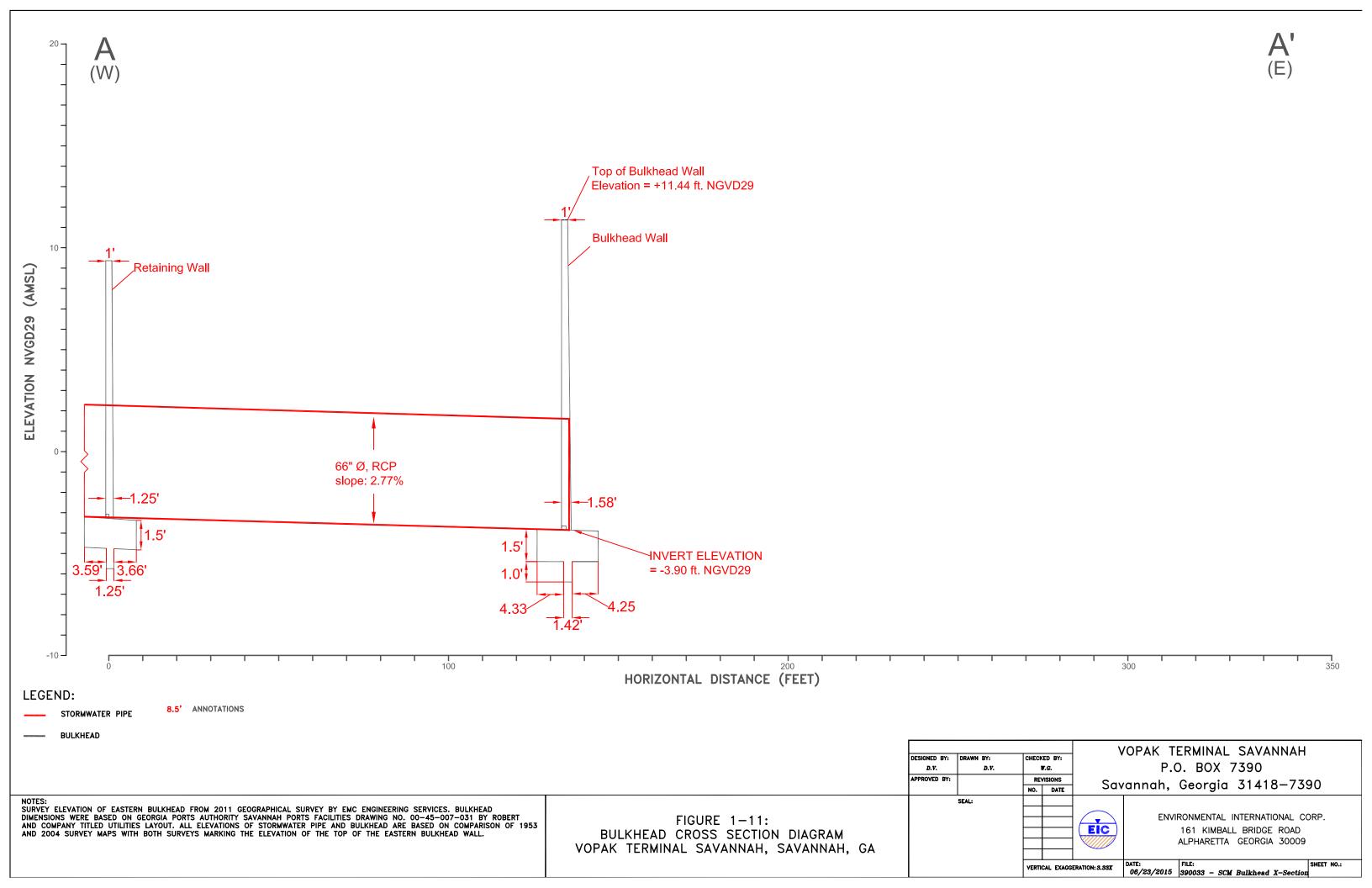

VOPAK TERMINAL SAVANNAH P.O. BOX 7390		SEAL:	DESIGNED BY:	S.F.H	DATE:	7/10/2014	FILE:	390031	
SAVANNAH, GEORGIA 31418-7390	Fic		DRAWN BY:	S.F.H	REVISION:	DATE:	SHEET NO.:	1 of 1	
ENVIRONMENTAL INTERNATIONAL CORPORATION 161 KIMBALL BRIDGE ROAD	EIC		CHECKED BY:	A.S.			VEDTICAL EXA	GEDATION = 10Y	
ALPHARETTA, GEORGIA 30009			APPROVED BY:	R.M.			VERTICAL EXAGERATION =		

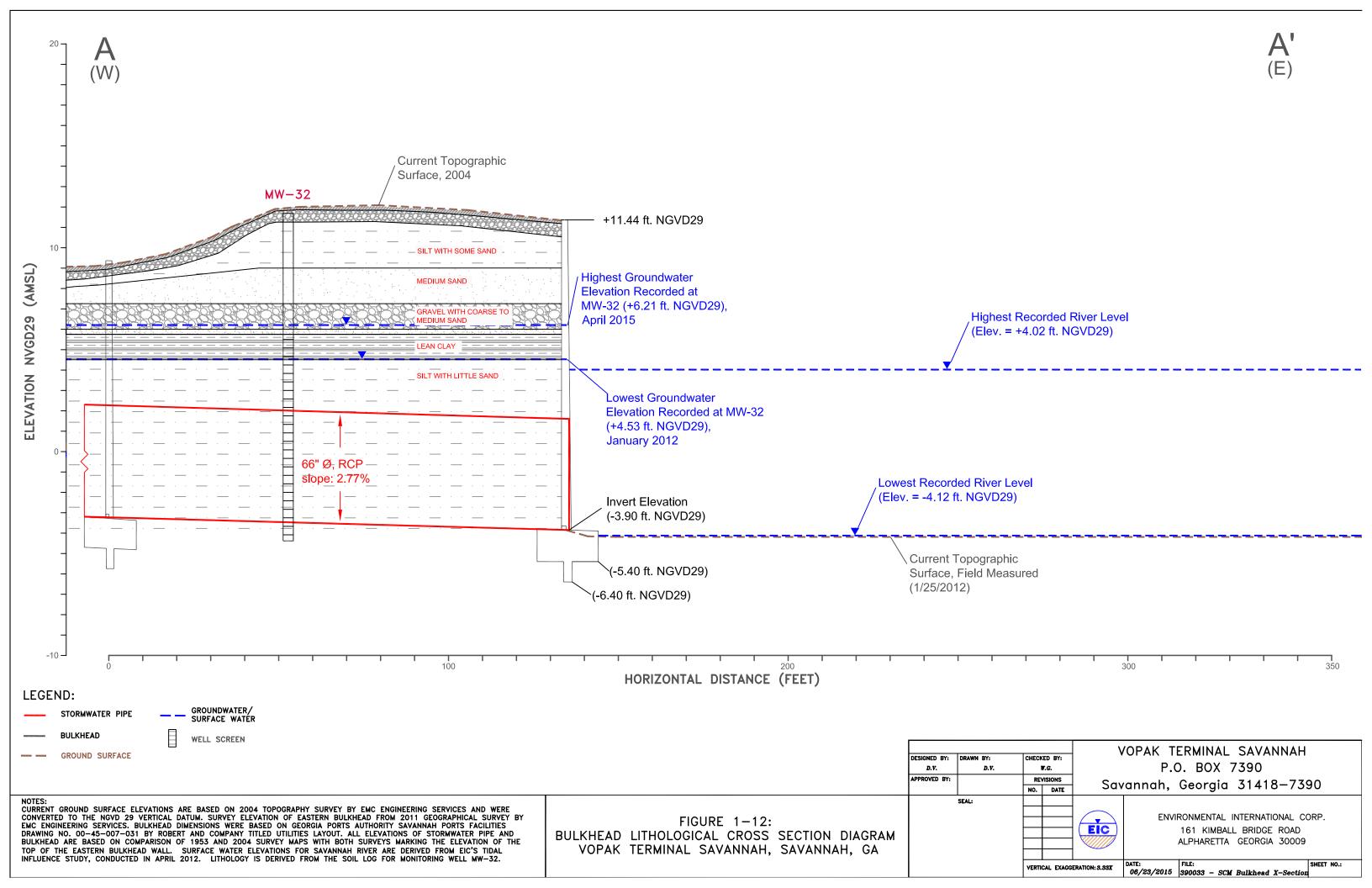


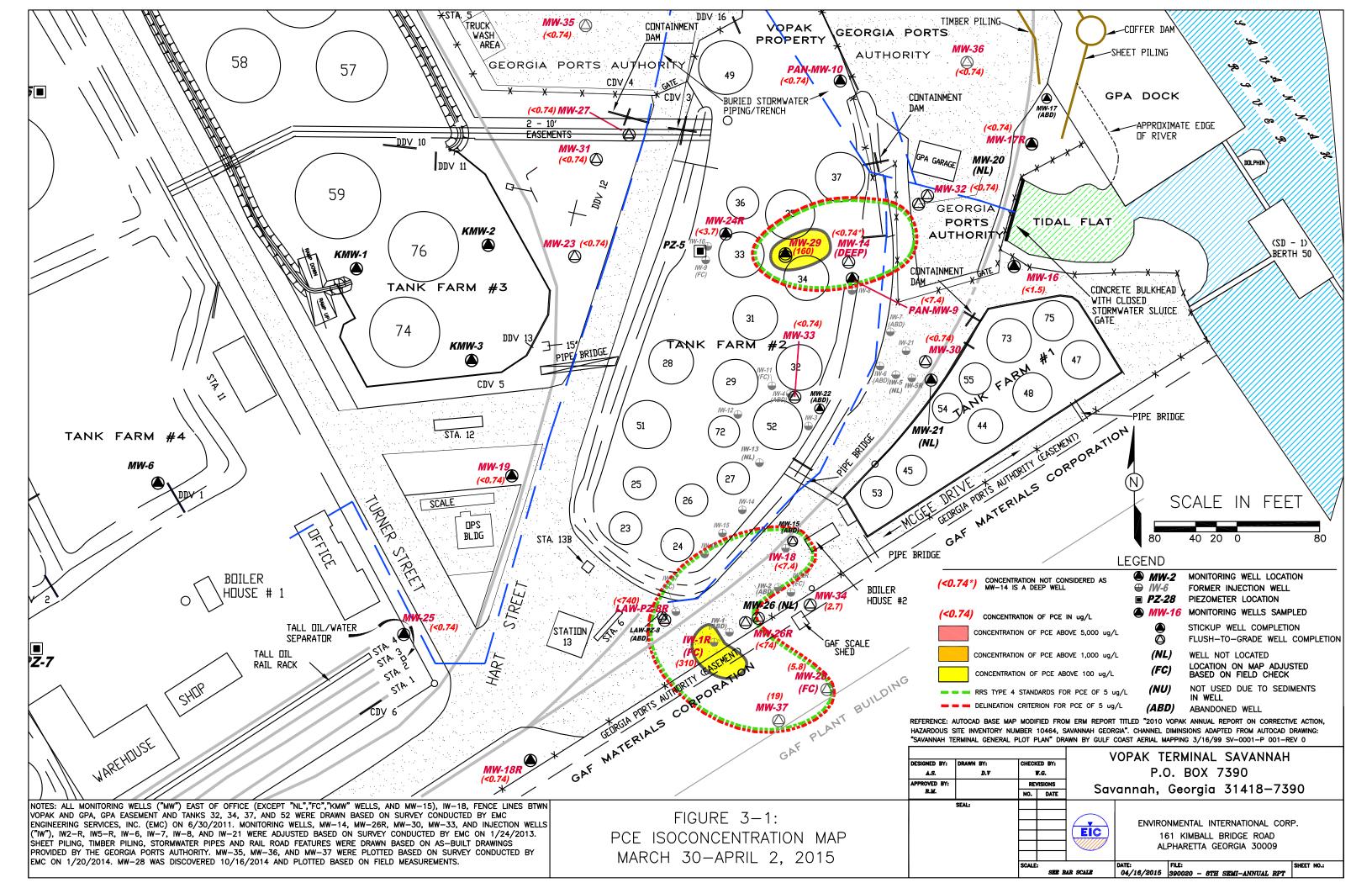

Hydrogeological cross-section is based on lithological data logs recorded during well installation at the site by EIC. Extrapolated surfaces were derived utilizing Rockworks 2006 stratigraphy modeling software by Rockware. Well construction data is based on well construction logs recorded by EIC for each respective well. Groundwater elevation is based on EIC April 2014 gauging and is the highest recorded since October 2011.

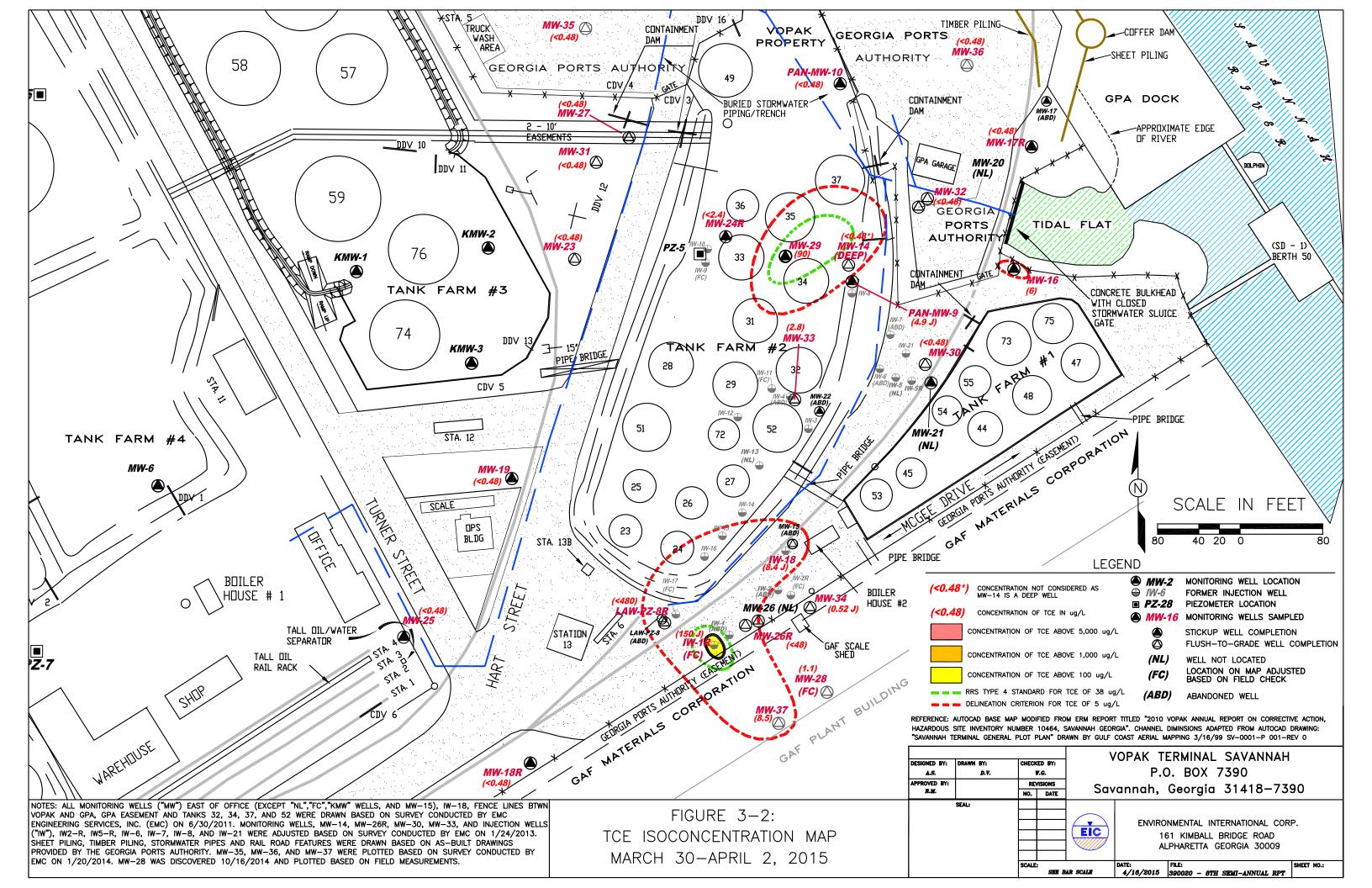

VOPAK TERMINAL SAVANNAH P.O. BOX 7390		SEAL:	DESIGNED BY:	S.F.H	DATE:	7/22/2014	FILE:	390031
SAVANNAH, GEORGIA 31418-7390	EİC		DRAWN BY:	S.F.H	REVISION:	DATE:	SHEET NO.:	1 of 1
NVIRONMENTAL INTERNATIONAL CORPORATION 161 KIMBALL BRIDGE ROAD			CHECKED BY:	A.S.			VERTICAL EXAC	GEDATION - 40V
ALPHARETTA, GEORGIA 30009			APPROVED BY:	R.M.			VER HOAL EXAC	SERATION - 10A

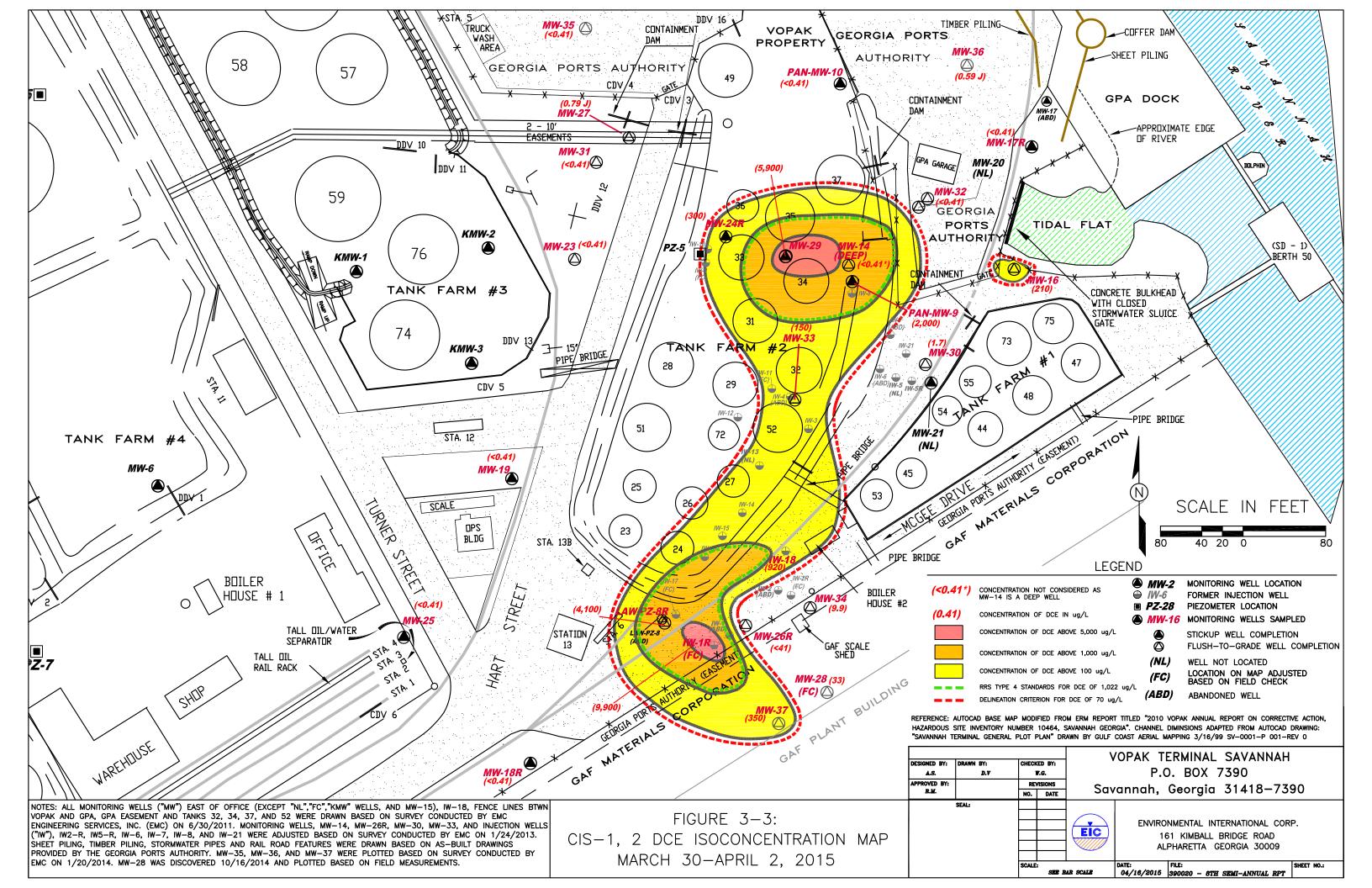


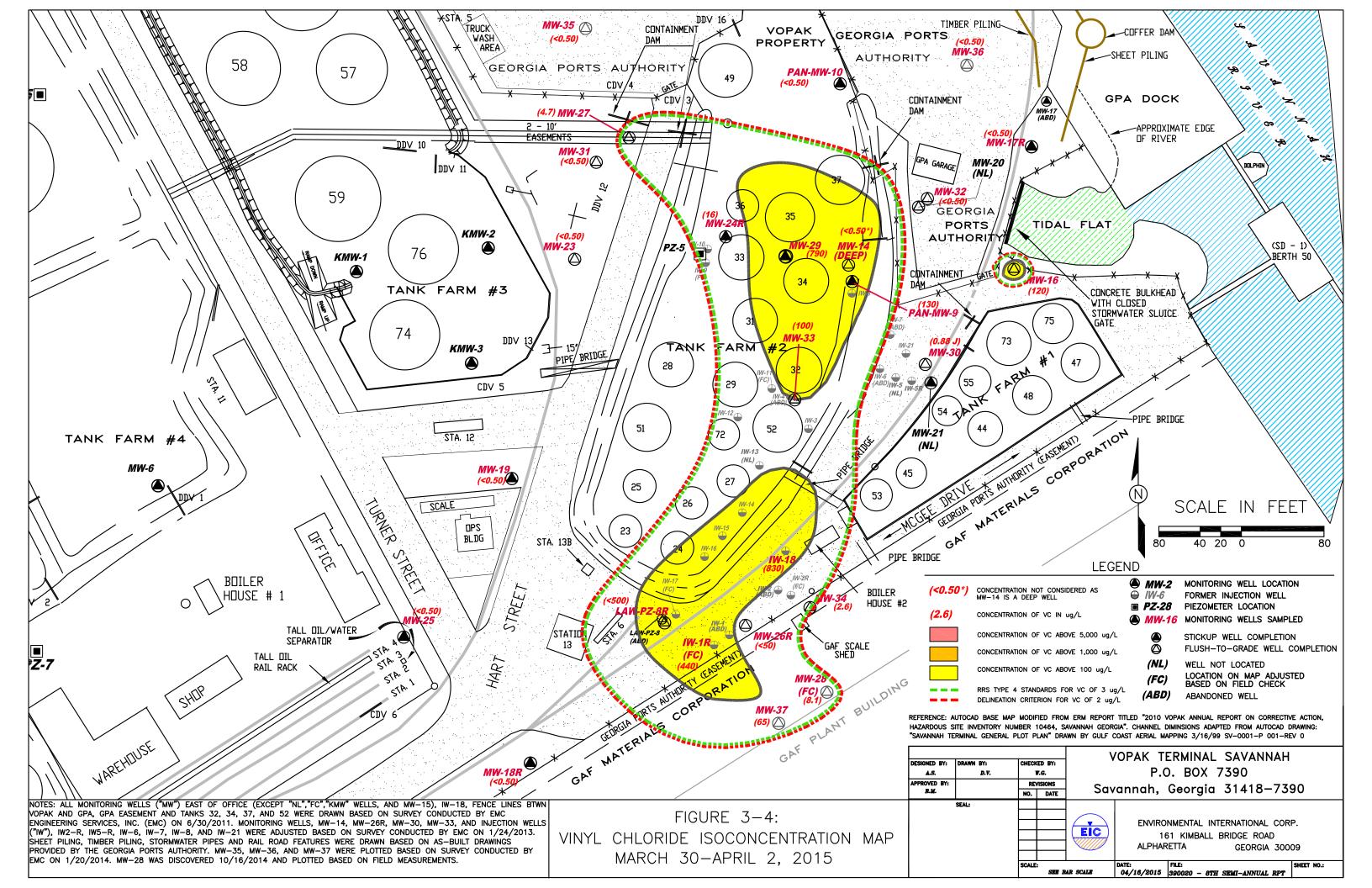


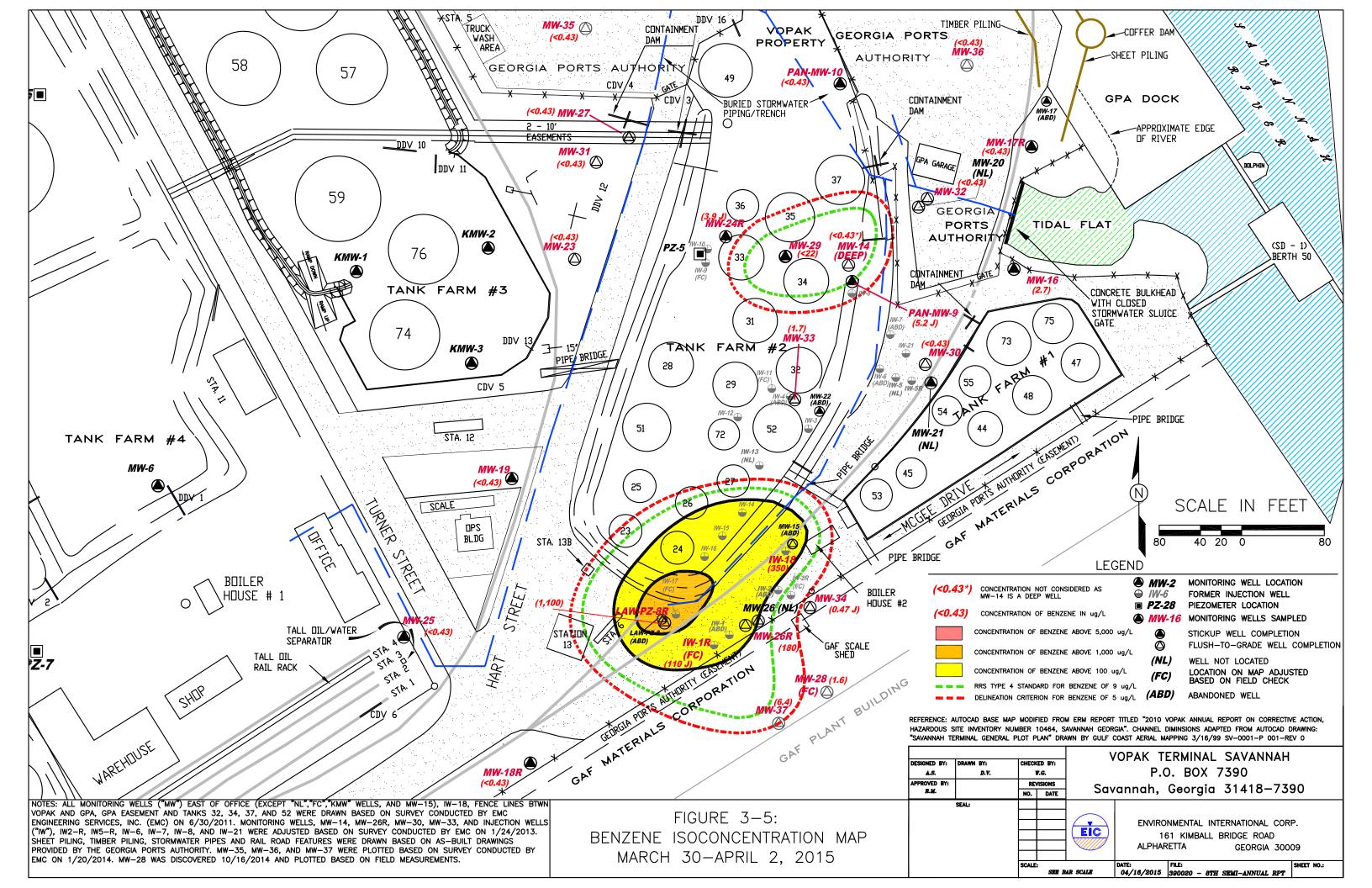


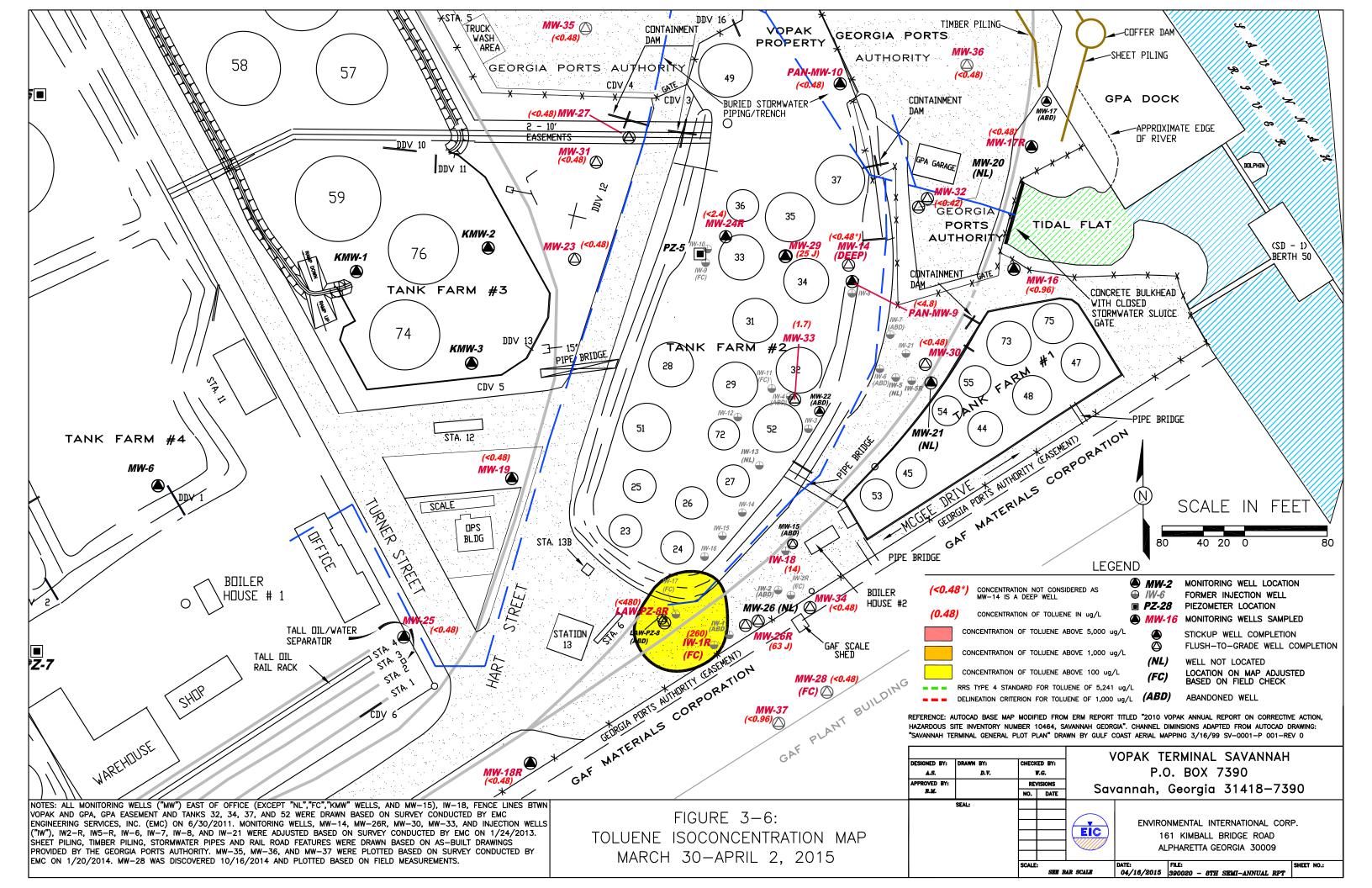


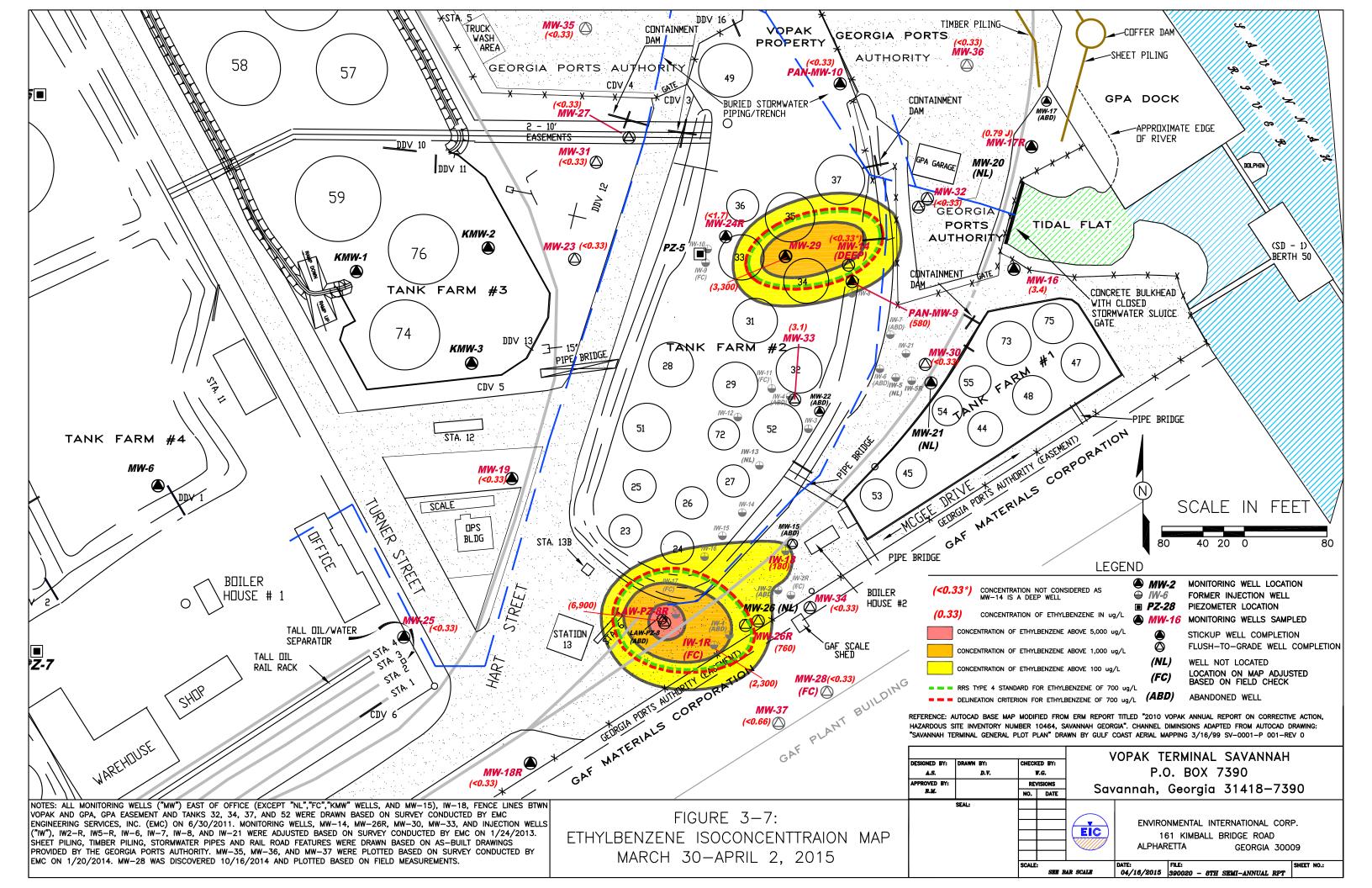












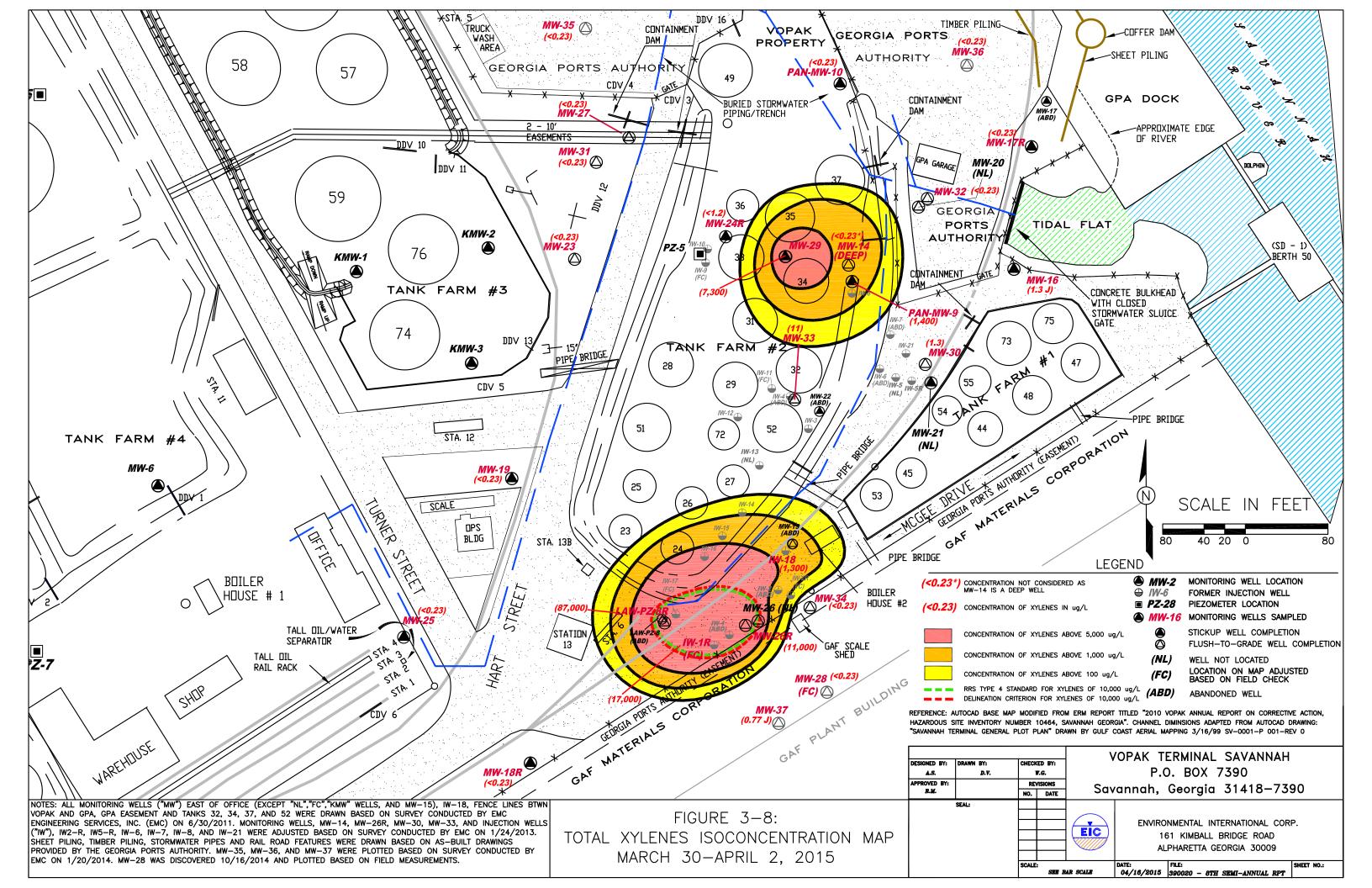
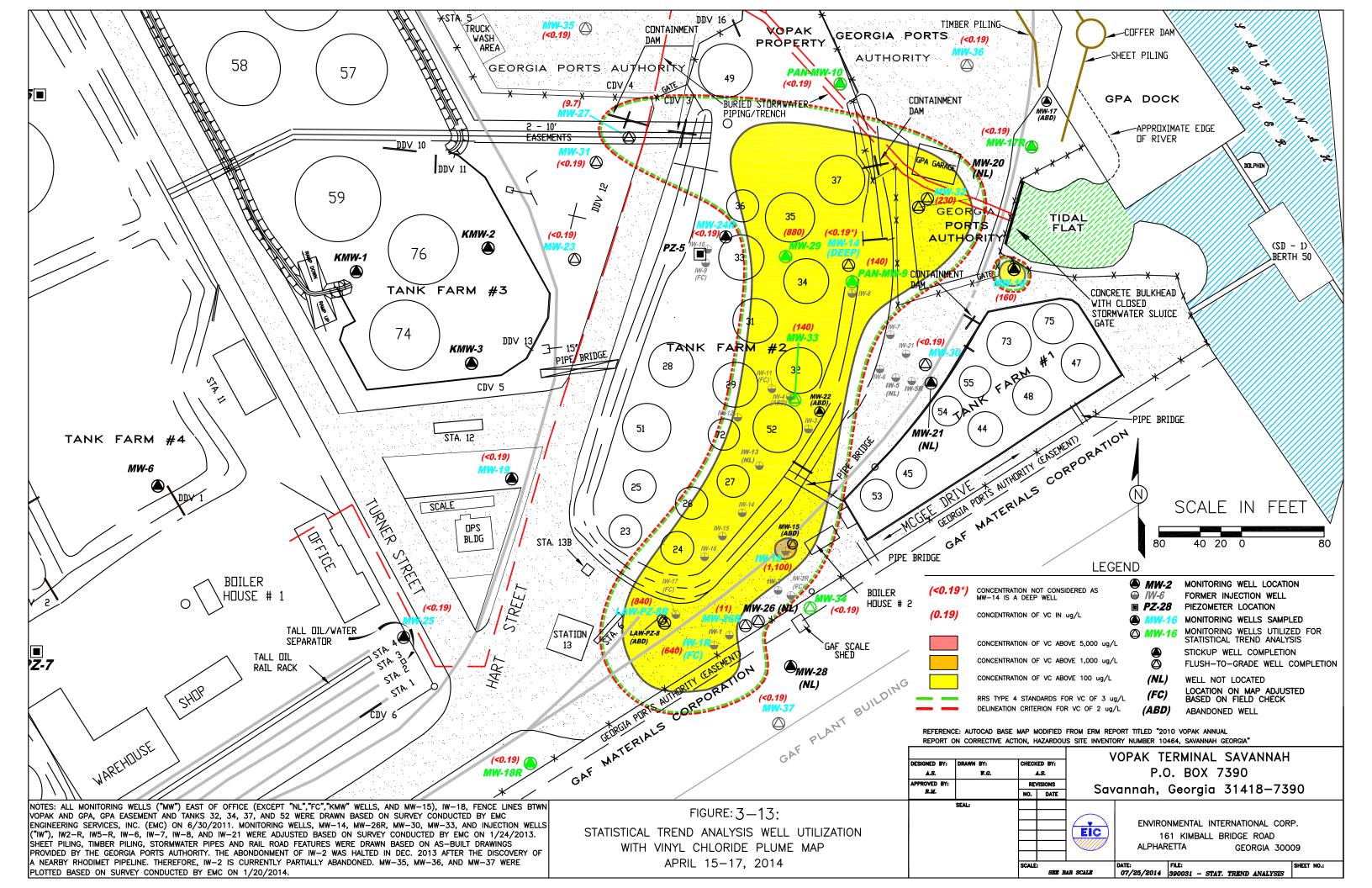


Figure 4-1: Potential COC Migration Pathways

SURFACE SOIL (meets RRS Standards)

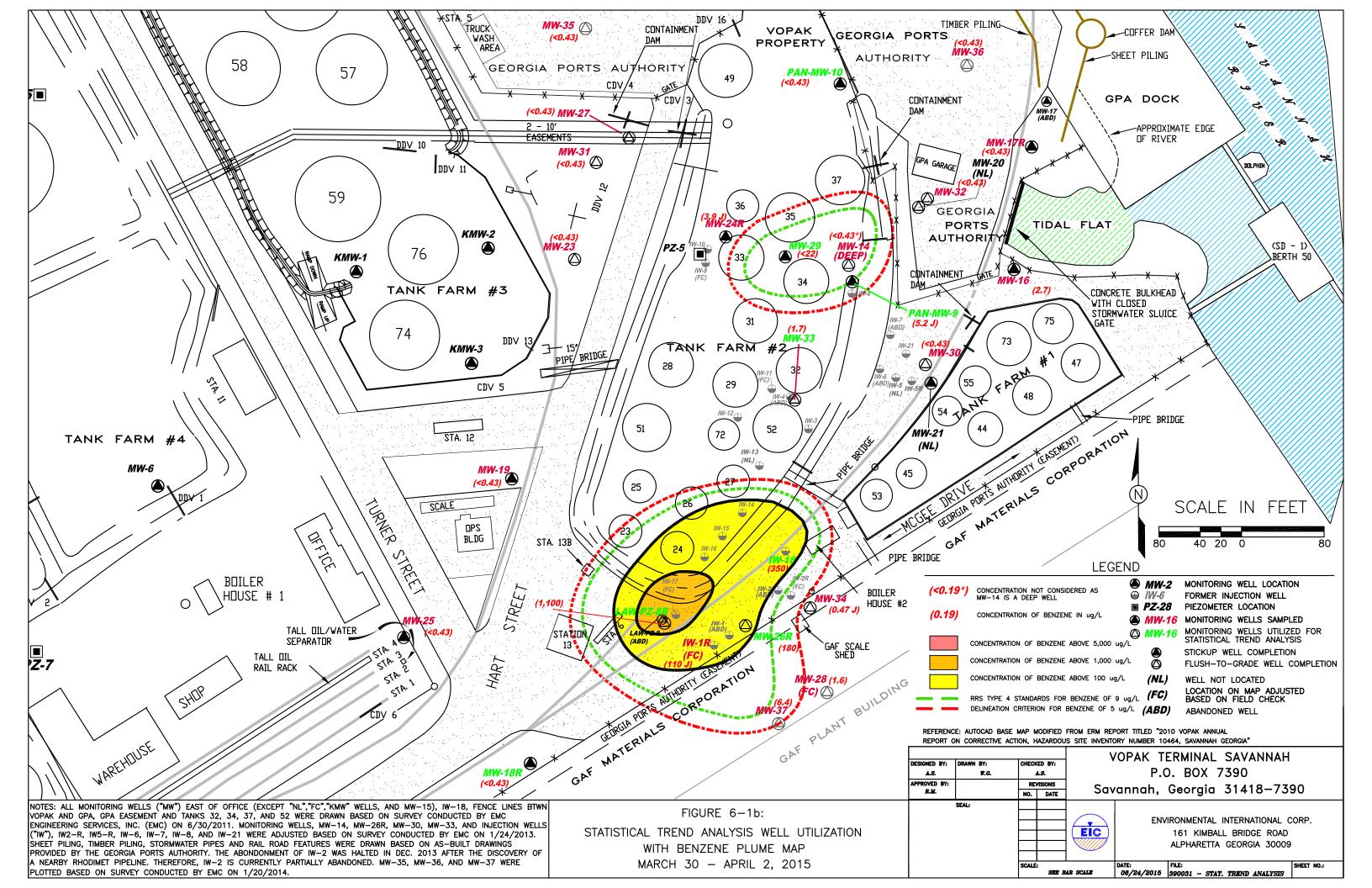

- Volatilization
- Surface Runoff to River

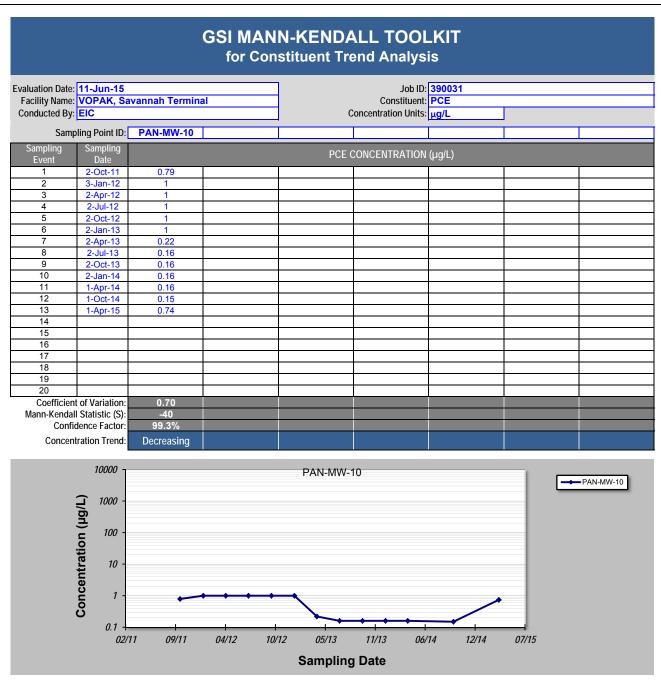
SUBSURFACE SOILS SOIL (meets RRS Standards)

- Vapor Intrusion
- Leachate to Groundwater

Groundwater (Ongoing Remedial Progress)

- Migration to water wells
- Discharge to surface water




Figure 6-2: PCE Mann-Kendall Constituent Trend Analysis

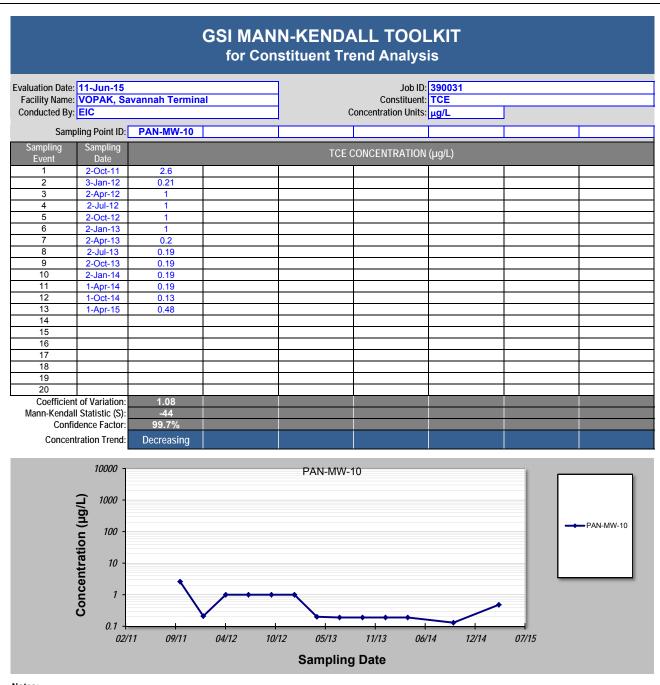
GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 11-Jun-15 Job ID: 390031 Facility Name: VOPAK, Savannah Terminal Constituent: PCE Conducted By: EIC Concentration Units: µg/L MW-18R MW-33 Sampling Point ID: MW-34 MW-37 MW-29 PAN-MW-9 MW-17R PCE CONCENTRATION (µg/L) 2-Oct-11 2.2 not installed 5200 350 1100 690 3-Jan-12 13 not installed 4.3 not installed 100 3 2-Apr-12 13 4 2.3 not installed 40 110 37 1.3 2-Oct-12 5 4.9 210 not installed 37 71 16 6 5.9 110 2-Jan-13 1 86 not installed 540 7 2-Apr-13 0.22 2.7 not installed 1.2 130 240 4.1 8 0.16 15 0.16 not installed 120 not installed 9 2-Oct-13 6.1 1.2 140 29 0.16 0.16 10 2-Jan-14 0.16 2.4 30 1.6 330 17 0.16 11 1-Apr-14 0.16 0.51 1.6 0.16 12 1-Oct-14 0.15 36 1.1 0.15 13 1-Apr-15 0.74 160 0.74 19 14 15 16 17 18 19 Coefficient of Variation: 0.83 Mann-Kendall Statistic (S): Confidence Factor: 62.5% Concentration Trend: Stable Decreasing Decreasing Stable No Trend Decreasing Decreasing 10000 MW-18R MW-34 Concentration (µg/L) 1000 MW-37 MW-33 100 MW-29 PAN-MW-9 MW-17R 10 0.1 02/11 09/11 04/12 10/12 05/13 11/13 06/14 12/14 07/15 Sampling Date

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

Figure 6-2: PCE Mann-Kendall Constituent Trend Analysis

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.


Figure 6-3: TCE Mann-Kendall Constituent Trend Analysis

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 11-Jun-15 Job ID: 390031 Facility Name: VOPAK, Savannah Terminal Constituent: TCE Concentration Units: µg/L Conducted By: EIC MW-18R MW-37 MW-33 Sampling Point ID: MW-34 MW-29 PAN-MW-9 MW-17R TCE CONCENTRATION (µg/L) 2-Oct-11 1.7 Not Installed 3200 1100 770 3-Jan-12 4.4 Not Installed 190 77 2.2 Not Installed 0.13 3 2-Apr-12 11 62 1300 4 1.3 Not Installed 35 54 1200 1.2 2-Oct-12 5 Not Installed 35 1.8 1200 5.2 6 2.5 99 41 2-Jan-13 1 Not Installed 480 7 2-Apr-13 0.20 0.91 Not Installed 4.7 76 500 1.3 8 Not Installed 69 0.19 5.1 790 Not Installed 9 2-Oct-13 4.8 66 0.19 3.1 440 0.19 10 2-Jan-14 0.19 0.19 16 19 110 300 0.19 11 1-Apr-14 0.19 0.19 11 8.4 150 190 0.19 12 1-Oct-14 0.13 0.23 9.7 55 0.13 13 1-Apr-15 0.52 8.5 0.48 2.8 14 15 16 17 18 19 Coefficient of Variation: 0.26 0.71 Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: Decreasing Decreasing Decreasing Stable No Trend Decreasing No Trend 10000 MW-18R MW-34 Concentration (µg/L) 1000 MW-37 MW-33 100 10 MW-17R 0.1 02/11 09/11 04/12 10/12 05/13 11/13 06/14 12/14 07/15 **Sampling Date**

Notes

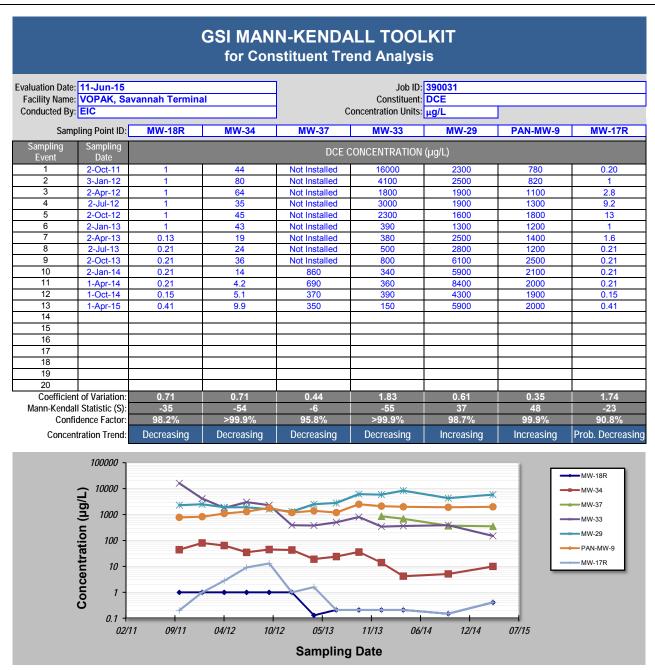

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

Figure 6-3: TCE Mann-Kendall Constituent Trend Analysis

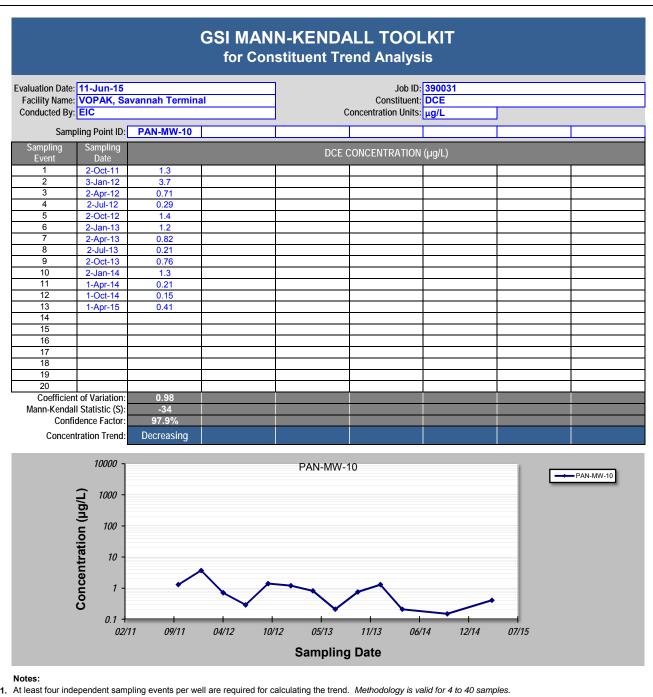
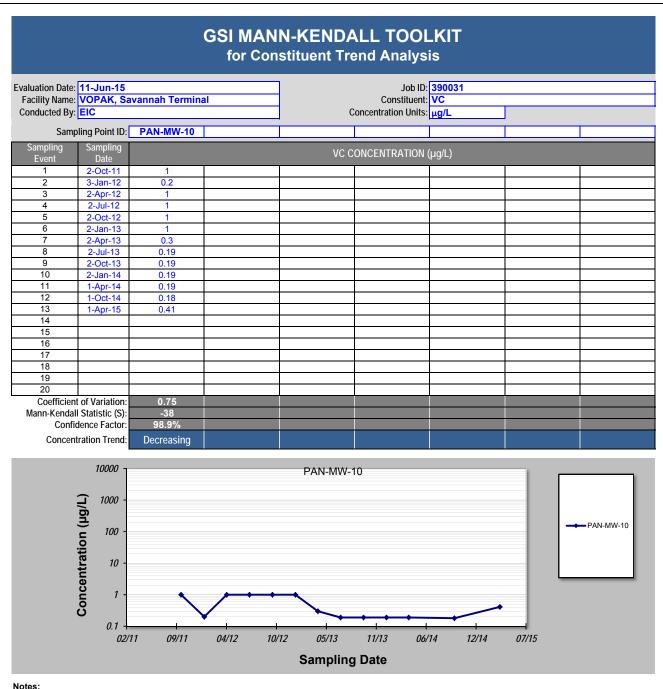

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

Figure 6-4: DCE Mann-Kendall Constituent Trend Analysis

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

Figure 6-4: DCE Mann-Kendall Constituent Trend Analysis

- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.


Figure 6-5: VC Mann-Kendall Constituent Trend Analysis

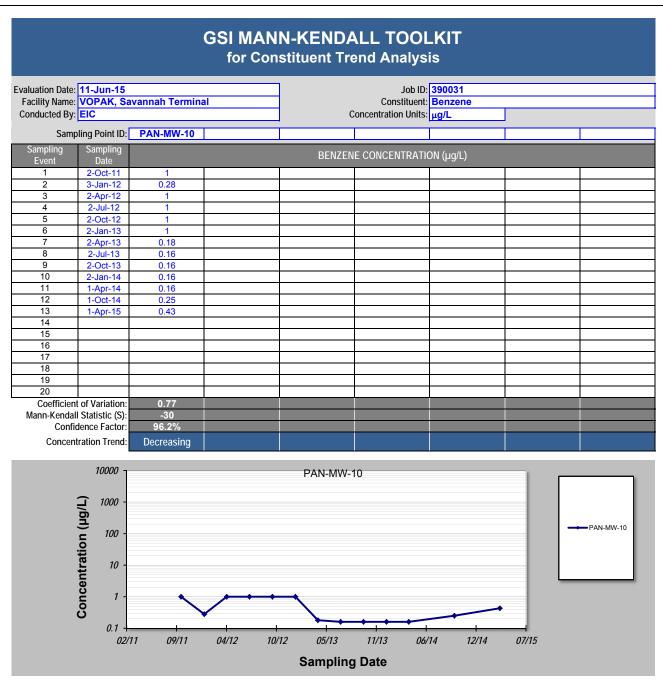
GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 11-Jun-15 Job ID: 390031 Facility Name: VOPAK, Savannah Terminal Constituent: VC Concentration Units: µg/L Conducted By: EIC MW-18R MW-37 MW-33 Sampling Point ID: MW-34 MW-29 PAN-MW-9 MW-17R VC CONCENTRATION (µg/L) 2-Oct-11 14 Not Installed 840 62 280 55 3-Jan-12 8.8 Not Installed 370 Not Installed 390 45 3 2-Apr-12 16 0.19 4 7.8 Not Installed 290 230 65 2-Oct-12 5 Not Installed 110 110 8.6 330 6 130 140 2-Jan-13 1 84 Not Installed 69 1 7 2-Apr-13 0.30 5.7 Not Installed 130 490 120 0.30 8 0.19 Not Installed 0.19 Not Installed 9 2-Oct-13 480 760 0.19 9.8 76 0.19 10 2-Jan-14 0.19 0.19 130 300 790 190 0.19 11 1-Apr-14 0.19 0.19 0.19 140 0.19 12 1-Oct-14 0.18 440 1.8 93 660 130 0.18 13 1-Apr-15 2.6 100 0.50 130 14 15 16 17 18 19 Coefficient of Variation: 0.81 0.76 Mann-Kendall Statistic (S): Confidence Factor: 62.5% Prob. Decreasing Concentration Trend: Decreasing Decreasing Stable Increasing Increasing Decreasing 1000 -MW-18R MW-34 Concentration (µg/L) 100 MW-37 MW-33 10 MW-17R 0.1 02/11 09/11 04/12 10/12 05/13 11/13 06/14 12/14 07/15 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

Figure 6-5: VC Mann-Kendall Constituent Trend Analysis

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.


Figure 6-6: Benzene Mann-Kendall Constituent Trend Analysis

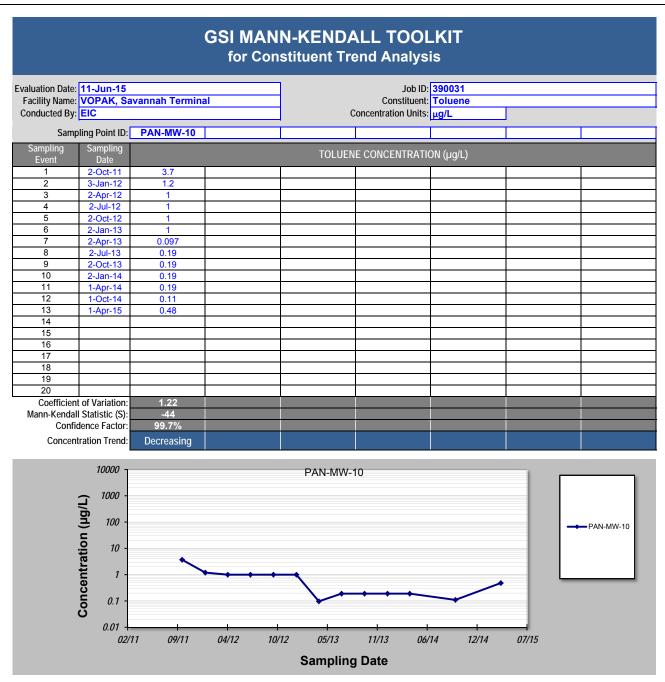
GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 11-Jun-15 Job ID: 390031 Facility Name: VOPAK, Savannah Terminal Constituent: Benzene Concentration Units: µg/L Conducted By: EIC IW-18 Sampling Point ID: MW-18R LAW-PZ-8R MW-26R MW-33 MW-29 PAN-MW-9 BENZENE CONCENTRATION (µg/L) 2-Oct-11 1600 20 50 29 50 3-Jan-12 1700 20 20 3 2-Apr-12 2300 12 4 2000 21 21 50 6.8 25 2-Oct-12 5 35 24 20 25 1300 20 6 2-Jan-13 1 2000 64 17 7 2-Apr-13 0.18 1400 56 26 1.3 11 2.8 8 0.16 75 15 30 1.6 1.6 9 2-Oct-13 1500 1.8 0.16 33 26 20 1.1 10 2-Jan-14 0.16 1200 110 60 16 23 16 11 1-Apr-14 0.16 1200 110 12 1-Oct-14 0.25 3400 170 13 1.3 4.4 13 1-Apr-15 1100 180 350 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: Decreasing Prob. Decreasing Increasing Increasing Decreasing Prob. Increasing Decreasing 10000 MW-18R LAW-PZ-8R Concentration (µg/L) 1000 MW-26R IW-18 100 10 0.1 02/11 09/11 04/12 10/12 05/13 11/13 06/14 12/14 07/15 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

Figure 6-6: Benzene Mann-Kendall Constituent Trend Analysis

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.


Figure 6-7: Toluene Mann-Kendall Constituent Trend Analysis

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 11-Jun-15 Job ID: 390031 Facility Name: VOPAK, Savannah Terminal Constituent: Toluene Concentration Units: µg/L Conducted By: EIC MW-18R IW-18 Sampling Point ID: LAW-PZ-8R MW-26R MW-33 MW-29 PAN-MW-9 TOLUENE CONCENTRATION (µg/L) 2-Oct-11 1100 20 50 50 3-Jan-12 930 59 20 20 54 1100 50 9.3 7.6 3 2-Apr-12 20 4 820 15 50 50 20 25 2-Oct-12 5 37 50 530 20 20 25 6 140 23 2-Jan-13 1 800 50 67 7 2-Apr-13 0.15 570 40 13 1.5 4.1 3.4 8 0.14 18 1.4 9 2-Oct-13 0.14 510 12 10 2 10 1.5 10 2-Jan-14 0.14 370 11 24 1.4 20 1.4 11 1-Apr-14 0.14 1.4 12 1-Oct-14 0.33 1100 1.1 28 3.5 21 3.3 13 1-Apr-15 480 63 14 14 15 16 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: Decreasing Decreasing No Trend Stable Decreasing No Trend Decreasing 10000 -MW-18R LAW-PZ-8R Concentration (µg/L) 1000 -MW-26R IW-18 MW-33 100 MW-29 PAN-MW-9 10 0.1 02/11 09/11 04/12 10/12 05/13 11/13 06/14 12/14 07/15 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

Figure 6-7: Toluene Mann-Kendall Constituent Trend Analysis

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

Figure 6-8: Ethylbenzene Mann-Kendall Constituent Trend Analysis

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 11-Jun-15 Job ID: 390031 Facility Name: VOPAK, Savannah Terminal Constituent: Ethylbenzene Conducted By: EIC Concentration Units: µg/L MW-18R IW-18 Sampling Point ID: LAW-PZ-8R MW-26R MW-33 MW-29 PAN-MW-9 ETHYLBENZENE CONCENTRATION (µg/L) 2-Oct-11 8000 1300 1900 7500 650 33 3-Jan-12 1100 2000 7500 610 46 1900 3 2-Apr-12 1 24 950 4 7100 270 29 34 510 890 2-Oct-12 5 390 7300 31 28 1800 200 6 7.3 1300 2-Jan-13 1 7500 2000 40 1100 7 2-Apr-13 0.097 7200 650 49 5.3 750 1000 8 110 7600 8.9 800 760 9 2-Oct-13 6800 56 1000 0.19 160 9 1200 10 2-Jan-14 0.19 4000 200 100 16 3100 1100 11 1-Apr-14 0.19 64 1900 12 1-Oct-14 0.11 13000 130 9.4 1800 650 13 1-Apr-15 760 6900 180 3.1 3300 14 15 16 17 18 19 Coefficient of Variation: 2.03 0.66 Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: Decreasing Prob. Decreasing No Trend Increasing Decreasing Increasing Decreasing 100000 MW-18R 10000 LAW-PZ-8R Concentration (µg/L) MW-26R 1000 IW-18 100 10 PAN-MW-9 0.1 0.01 02/11 09/11 04/12 10/12 05/13 11/13 06/14 12/14 07/15 Sampling Date

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

Figure 6-8: Ethylbenzene Mann-Kendall Constituent Trend Analysis

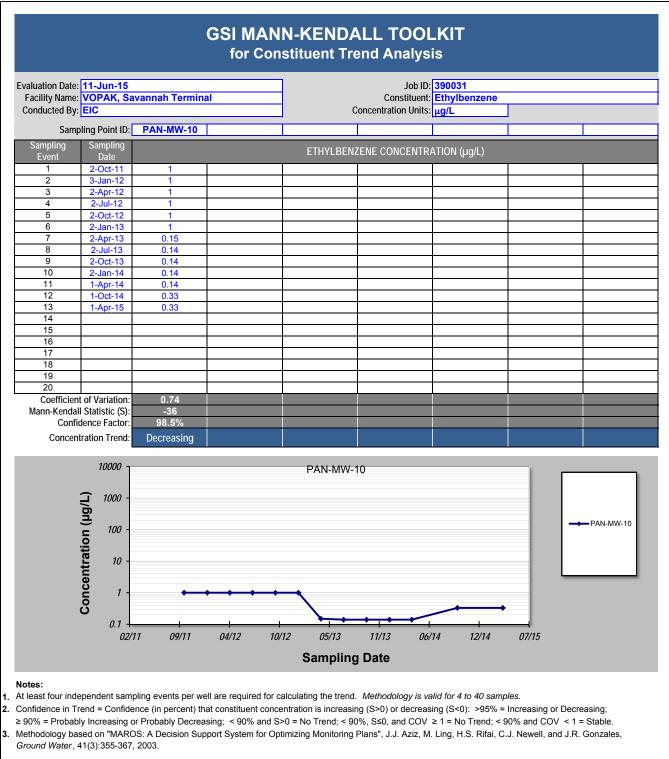
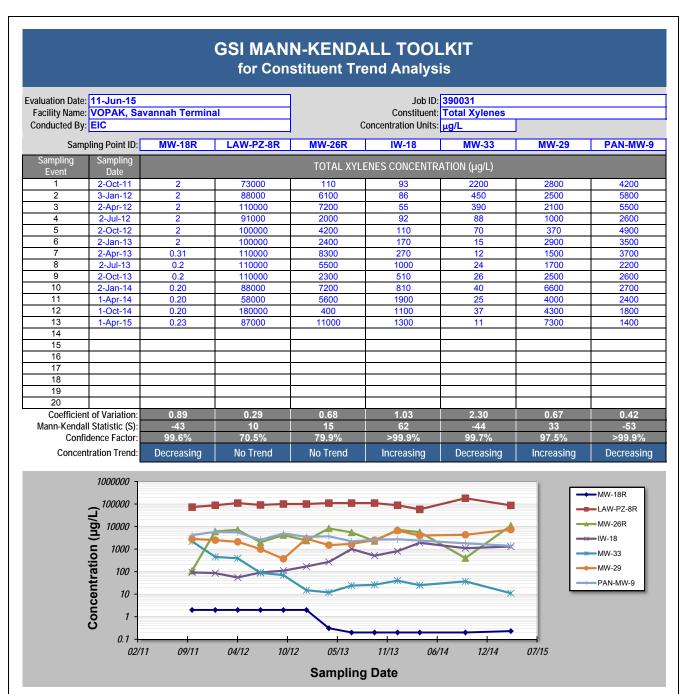



Figure 6-9: Total Xylenes Mann-Kendall Constituent Trend Analysis

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

Figure 6-9: Total Xylenes Mann-Kendall Constituent Trend Analysis

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.