PROTOCOL FOR ETHYLENE OXIDE TESTING

Atlanta Facility
Ethylene Oxide Control System

Sterigenics US, LLC
2015 Spring Road, Suite 650
Oak Brook, IL 60523
Client Reference No. (Pending)

CleanAir Project No. 14004-1
A2LA ISO 17025 Certificate No. 4342.01
A2LA / STAC Certificate No. 4342.02
Revision 1, Final Protocol
October 31, 2019
COMMITMENT TO QUALITY

To the best of our knowledge, the test plan and any state and federal regulations presented in this protocol have met all pre-determined program requirements. Modifications to the test plan or methodology presented in this original protocol will be performed only at the discretion of CleanAir and in accordance with all applicable parties involved. CleanAir operates in conformance with the requirements of ASTM D7036-04 Standard Practice for Competence of Air Emission Testing Bodies.

Kenny Sullivan
Project Manager
ksullivan@cleanair.com
(800) 627-0033 ext. 4527

Scott A. Brown, QSTI
Senior Project Manager / Quality Director
sbrown@cleanair.com
(800) 627-0033 ext. 4544

October 31, 2019
Date
PROTOCOL REVISION HISTORY

<table>
<thead>
<tr>
<th>Version</th>
<th>Revision</th>
<th>Date</th>
<th>Pages</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft</td>
<td>D0a</td>
<td>10/25/19</td>
<td>All</td>
<td>Draft version of original document.</td>
</tr>
<tr>
<td>Final</td>
<td>0</td>
<td>10/30/19</td>
<td>All</td>
<td>Final version of original document.</td>
</tr>
<tr>
<td>Final</td>
<td>1</td>
<td>10/31/19</td>
<td>4</td>
<td>Revised Ceilcote Scrubber inlet calculation language.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6-11</td>
<td>(Revision 0) Deleted Results section.</td>
</tr>
</tbody>
</table>

PROJECT PERSONNEL

**Primary Client Contact**

Kevin Wagner  
Sterigenics US, LLC  
2015 Spring Road, Suite 650  
Oak Brook, IL 60523  
(630) 928-1771  
kwagner@sterigenics.com

**On-Site Client Contact**

Daryl Mosby  
Sterigenics US, LLC  
2973 Olympic Industrial Dr.  
Atlanta, GA 30339  
(404) 355-4485  
dmosby@sterigenics.com

**CleanAir Project Manager / Field Test Leader**

Kenny Sullivan  
Clean Air Engineering  
500 W. Wood St.  
Palatine, IL 60067  
(847) 654-4527  
ksullivan@cleanair.com
TABLE OF CONTENTS

1. Project Overview ............................................................................................................................................... 1
   Test Program Summary ......................................................................................................................................... 1
   Test Program Details ............................................................................................................................................. 2
       Parameters ........................................................................................................................................................ 2
       Schedule ............................................................................................................................................................ 3
       Discussion .......................................................................................................................................................... 4

2. Description of Installation ................................................................................................................................. 6
   Process Description and Data Collection ............................................................................................................... 6
       Description ........................................................................................................................................................ 6
       Data Collection .................................................................................................................................................. 7
   Test Locations ........................................................................................................................................................ 8

3. Methodology ................................................................................................................................................... 10
   Procedures and Regulations ................................................................................................................................ 10
       Title 40 CFR Part 60, Appendix A ..................................................................................................................... 10
       Title 40 CFR Part 63, Appendix A ..................................................................................................................... 10
   Methodology Discussion ..................................................................................................................................... 10
       EPA Method 320 – EtO and H₂O Testing ........................................................................................................... 10
       EPA Methods 1 and 2 – Gas Velocity Testing .................................................................................................. 11
       EPA Method 3A – O₂/CO₂ Testing .................................................................................................................... 11
       EPA Method 4 – EtO and H₂O Testing ............................................................................................................. 11

4. Appendix .......................................................................................................................................................... 12
   Appendix A: Test Method Specifications ............................................................................................................... A
   Appendix B: Sample Calculations .......................................................................................................................... B
   Appendix C: Field Data Sheets ............................................................................................................................. C
   Appendix D: CleanAir Resumes and Certifications ............................................................................................. D
LIST OF TABLES
Table 1-1: Summary of Standards ............................................................................................................................. 1
Table 1-2: Test Schedule ............................................................................................................................................ 3
Table 3-1: Sampling Information ............................................................................................................................... 9

LIST OF FIGURES
Figure 3-1: Process Schematic ................................................................................................................................... 7
ACRONYMS & ABBREVIATIONS

AAS (atomic absorption spectrometry)
acfm (actual cubic feet per minute)
ACI (activated carbon injection)
ADL (above detection limit)
AIG (ammonia injection grid)
APC (air pollution control)
AQCS (air quality control system(s))
ASME (American Society of Mechanical Engineers)
ASTM (American Society for Testing and Materials)
BDL (below detection limit)
Btu (British thermal units)
CAM (compliance assurance monitoring)
CARB (California Air Resources Board)
CCM (Controlled Condensation Method)
CE (capture efficiency)
*C (degrees Celsius)
CEMS (continuous emissions monitoring system(s))
CFB (circulating fluidized bed)
CFR (Code of Federal Regulations)
cm (centimeter(s))
COMS (continuous opacity monitoring system(s))
CT (combustion turbine)
CTI (Cooling Technology Institute)
CTM (Conditional Test Method)
CVAAS (cold vapor atomic absorption spectroscopy)
CVAFS (cold vapor atomic fluorescence spectroscopy)
CVAFS (cold vapor atomic fluorescence spectroscopy)
D (diameter)
D I H₂O (de-ionized water)
%dv (percent, dry volume)
DLL (detection level limited)
DE (destruction efficiency)
DCI (dry carbon injection)
DGM (dry gas meter)
dscf (dry standard cubic feet)
dscfm (dry standard cubic feet per minute)
dscm (dry standard cubic meter)
DSC (differential scanning calorimetry)
DST (dual stage test)
DH (dew point)
DP (differential pressure)
DPS (dual pressure switch)
DR (drencher rate)
dr p (dry part)
FBC (fluidized bed combustor)
FCR (Flue gas recirculation)
FCI (fluidized catalytic incinerator)
FDC (fluidized catalytic combustor)
FDI (flame detection instrument)
FID (flame ionization detector)
FPD (flame photometric detection)
FRB (field reagent blank)
FSTM (flue gas sorbent total mercury)
ft (feet or foot)
ft² (square feet)
ft³ (cubic feet)
ft/sec (feet per second)
FTIR (Fourier Transform Infrared Spectroscopy)
FTIR (Fourier Transform Infrared Spectroscopy)
FTRB (field train reagent blank)
g (gram(s))
GC (gas chromatography)
GFAAS (graphite furnace atomic absorption spectroscopy)
GFC (gas filter correlation)
h (hour(s))
H₂O (water)
HAP(s) (hazardous air pollutant(s))
HI (heat input)
hr (hour(s))
HR GC/MS (high-resolution gas chromatography and mass spectrometry)
HVT (high velocity thermocouple)
IC (ion chromatography)
IC/PC (ion chromatography with post column reactor)
ICP/MS (inductively coupled argon plasma mass spectroscopy)
ID (induced draft)
in. (inch(es))
in. Hg (inches mercury)
in. H₂O (inches water)
in. Hg (inches mercury)
Ipa (isopropyl alcohol)
ISE (ion-specific electrode)
kg (kilogram(s))
kg/hr (kilogram(s) per hour)
< (less than) /
L (liter(s))
lb (pound(s))
lb/hr (pound per hour)
lb/MMBtu (pound per million British thermal units)
lb/TBtu (pound per trillion British thermal units)
lb/lb-mole (pound per pound mole)
LR GC/MS (low-resolution gas chromatography and mass spectrometry)
m (meter)
m³ (cubic meter)
MACT (maximum achievable control technology)
MASS* (Multi-Point Automated Sampling System)
MATS (Mercury and Air Toxics Standards)
MDL (method detection limit)
mg (milligram(s))
µg (microgram(s))
ML (milliliter(s))
MMBtu (million British thermal units)
MW (megawatt(s))
NCASI (National Council for Air and Stream Improvement)
ND (non-detect)
NDIR (non-dispersive infrared)
NDO (natural draft opening)
NESHAP (National Emission Standards for Hazardous Air Pollutants)
g (nanogram(s))
Nm³ (Normal cubic meter)
% (percent)
PEMS (predictive emissions monitoring systems)
PFGC (pneumatic focusing gas chromatography)
pg (picogram(s))
PIFF (pulse jet fabric filter)
ppb (parts per billion)
PPE (personal protective equipment)
ppm (parts per million)
ppmdv (parts per million, dry volume)
ppmwv (parts per million, wet volume)
PSD (particle size distribution)
psi (pound per square inch)
PTE (permanent total enclosure)
PTFE (polytetrafluoroethylene)
QA/QC (quality assurance/quality control)
Qi (qualified individual)
QSTI (qualified source testing individual)
QSTO (qualified source testing observer)
RA (relative accuracy)
RATA (relative accuracy test audit)
RB (reagent blank)
RE (removal or reduction efficiency)
RM (reference method)
scf (standard cubic feet)
scfm (standard cubic feet per minute)
SCR (selective catalytic reduction)
SDA (spray dryer absorber)
SNCR (selective non-catalytic reduction)
STD (standard)
STMS (sorbent trap monitoring system)
TBtu (trillion British thermal units)
TEOM (Tapered Element Oscillating Microbalance)
TEQ (toxic equivalency quotient)
ton/hr (ton per hour)
ton/yr (ton per year)
TSS (third stage separator)
USEPA or EPA (United States Environmental Protection Agency)
UVA (ultraviolet absorption)
WFPG (wet flue gas desulfurization)
%wv (percent, wet volume)
1. PROJECT OVERVIEW

Test Program Summary

Sterigenics US, LLC (Sterigenics) contracted CleanAir Engineering (CleanAir) to conduct testing on the ethylene oxide (EtO) control system at the facility, located in Atlanta, Georgia.

The main objective of this test program is to provide information in response to a Georgia Department of Natural Resources (DNR) Environmental Protection Division (EPD) letter to Sterigenics, dated October 9, 2019, entitled “Re: Request for additional information regarding Application No. 27153 received July 31, 2019 Sterigenics U.S., LLC, Atlanta, AIRS No:06700093” and 40 CFR 63.7, Subpart O – “Ethylene Oxide Emissions Standards for Sterilization Facilities” § 63.362.

A summary of the standards is shown in Table 1-1.

<table>
<thead>
<tr>
<th>Source</th>
<th>Constituent</th>
<th>Sampling Method</th>
<th>Permit Limit¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceilcote Scrubber System</td>
<td>EtO Removal Efficiency (%)²</td>
<td>EPA 320, EPA 1-4</td>
<td>N/A</td>
</tr>
<tr>
<td>AAT Scrubber System with Dry Bed Adsorber</td>
<td>Process Control System Output EtO Concentration (ppm) or EtO Removal Efficiency (%)²</td>
<td>EPA 320</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Process Stack Height (ft)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Process Stack Diameter (ft)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Process Stack Airflow (dscfm)</td>
<td>EPA 1-4</td>
<td></td>
</tr>
<tr>
<td>Total Process Control System</td>
<td>Process Control System Output EtO Concentration (ppm) or EtO Removal Efficiency (%)²</td>
<td>EPA 320, EPA 1-4</td>
<td>99</td>
</tr>
<tr>
<td>Indoor Air Control System</td>
<td>Process Control System Output EtO Concentration (ppm)</td>
<td>EPA 320</td>
<td>N/A</td>
</tr>
</tbody>
</table>

¹ Permit standards applicable to 40 CFR 63.362.
² Removal efficiency mass emission-based calculated from pounds per hour (lb/hr) measurements.
Test Program Details

PARAMETERS
The test program will include the following measurements:

- EtO in parts per million (ppm)
- EtO in pounds per hour (lb/hr)
- EtO removal efficiency (RE%), measured as the total EtO mass emission removed, in lb/hr as a percentage (%) of total EtO input mass emission, in lb/hr
- flue gas composition (e.g., O₂, CO₂, H₂O) in volume-based percentage (%v)
- flue gas temperature in degrees Fahrenheit (°F)
- flue gas flow rate in dry standard cubic feet per minute (dscfm)
- stack height (ft)
- stack diameter (ft)
- stack airflow (dscfm)

The above measurements will be collected from the following sample locations:

- Ceilcote Acid Scrubber Outlet Duct (Ceilcote Scrubber Outlet) – to determine output emission from the Ceilcote scrubber outlet gas stream exhausting from the sterilization chambers and input emission to the AAT Scrubber System with Dry Bed Adsorber;
- Aeration Room / Backvent Outlet Duct (Aeration Room / Backvent Outlet) – to determine input emission from outlet gas streams exhausting from backvents on the sterilization chambers and the aeration rooms to the AAT Scrubber System with Dry Bed Adsorber;
- EtO Process Control System Stack (Process Stack) – to determine output emission from outlet gas stream of the process control system;
- EtO Indoor Air Control System Stack (Indoor Air Stack) – to determine output emission from outlet gas stream of the indoor air control system.
The test program will be conducted after construction is complete and operation begins. It is necessary for Sterigenics to begin operation prior to testing to represent maximum operating conditions for the test. See the proposed timetable below.

**Table 1-2: Test Schedule**

<table>
<thead>
<tr>
<th>RUN</th>
<th>ACTIVITY</th>
<th>LOCATION</th>
<th>EPA TEST METHODS</th>
<th>REPLICATES</th>
<th>SAMPLE TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>Mobilization / Set-up</td>
<td>Ceilcote Scrubber Outlet, Aeration Room / Backvent Outlet, Process Stack</td>
<td>1</td>
<td>1</td>
<td>Varies</td>
</tr>
<tr>
<td>1</td>
<td>ETO Aeration/Backvent Emission Testing</td>
<td>Ceilcote Scrubber Outlet, Aeration Room / Backvent Outlet, Process Stack</td>
<td>320 $^1$</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Moisture, Molecular Weight Testing$^2$</td>
<td>Ceilcote Scrubber Outlet, Aeration Room / Backvent Outlet, Process Stack</td>
<td>4, 3A</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Continuous Flow Testing$^3$</td>
<td>Ceilcote Scrubber Outlet</td>
<td>2</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Flow Traverse Testing</td>
<td>Aeration Room / Backvent Outlet, Process Stack</td>
<td>2</td>
<td>3</td>
<td>Varies</td>
</tr>
<tr>
<td>2</td>
<td>ETO Vacuum Pump Emission Testing</td>
<td>Ceilcote Scrubber Outlet, Aeration Room / Backvent Outlet, Process Stack</td>
<td>320 $^1$</td>
<td>3</td>
<td>TBD $^4$</td>
</tr>
<tr>
<td></td>
<td>Moisture, Molecular Weight Testing$^2$</td>
<td>Ceilcote Scrubber Outlet, Aeration Room / Backvent Outlet, Process Stack</td>
<td>4, 3A</td>
<td>3</td>
<td>TBD $^4$</td>
</tr>
<tr>
<td></td>
<td>Continuous Flow Testing$^3$</td>
<td>Ceilcote Scrubber Outlet</td>
<td>2</td>
<td>3</td>
<td>TBD $^4$</td>
</tr>
<tr>
<td></td>
<td>Flow Traverse Testing</td>
<td>Aeration Room / Backvent Outlet, Process Stack</td>
<td>2</td>
<td>3</td>
<td>Varies</td>
</tr>
<tr>
<td>3</td>
<td>ETO Indoor Air Testing</td>
<td>Indoor Air Stack</td>
<td>320 $^1$</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Moisture, Molecular Weight Testing$^3$</td>
<td>Indoor Air Stack</td>
<td>4, 3A</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Flow Traverse Testing</td>
<td>Indoor Air Stack</td>
<td>2</td>
<td>3</td>
<td>Varies</td>
</tr>
</tbody>
</table>

Post Demobilization

$^1$ Stack FTIR Spectrometer will utilize MAX-Starboost technology.

$^2$ Moisture, O$_2$, and CO$_2$ will be measured concurrently with ETO utilizing the same sampling system.

$^3$ Velocity and temperature will be measured continuously on a minute-by-minute basis utilizing a pressure/temperature transducer.

$^4$ Based on cycle time.
DISCUSSION

Determination of Ethylene Oxide Emissions

EtO concentrations will be determined in accordance with procedures outlined in EPA Method 320. In total, nine (9) Method 320 runs will be conducted: three (3) runs will be conducted for aeration/backvent emission testing, three (3) runs will be conducted for vacuum pump emission testing, and three (3) runs will be conducted for indoor air emission testing. Aeration / backvent emission test runs will be 75 minutes in duration: testing will be conducted for 15 minutes during backventing and 60 minutes while product is being aerated. Vacuum pump emission test runs will be dependent upon cycle time. Indoor air test runs will be 60 minutes in duration. EtO concentrations will be sampled concurrently at the Ceilcote Scrubber Outlet, Aeration Room / Backvent Outlet, and Process Stack sample locations during aeration / backvent and vacuum pump emission performance testing.

EtO concentrations at the inlet locations will be measured by a typical MKS MultiGas 2030 Fourier transform infrared (FTIR) spectrometer. EtO at the stack locations will be measured by an MKS MultiGas 2030 FTIR with MAX-StarBoost enhancement technology. The MAX-StarBoost algorithm narrows the spectral bands utilized to quantify EtO, creating increased sensitivity, linearity, and dynamic range. The technology specializes in readily-quantifying parts per billion volume-based (ppbdv) concentration levels in source testing applications. The MAX-StarBoost technology is equipped with MAX-Analytics and MAX-Acquisition software. Refer to Appendix A of this protocol for further details and specifications.

Due to safety concerns, Ceilcote Scrubber Inlet EtO emissions will be calculated utilizing process data and equations outlined in NESHAP regulations.

EtO concentrations will be measured on a wet volumetric basis. EtO concentrations measured from each location, in conjunction with effluent gas volumetric flow, will be utilized to convert wet volumetric concentrations to mass emission rates in lb/hr.

Determination of Volumetric Flow

EPA Methods 1, 2, 3A, and 4 will be conducted, in conjunction with EPA Method 320, to determine volumetric flow rate that will be utilized to convert the concentrations of EtO to mass emission rates in lb/hr.

Velocity and temperature traverse points at each location will be determined from analyses performed on-site, in accordance with procedures outlined in EPA Method 1. A verification of absence of cyclonic flow check per EPA Method 1 will be conducted at each location prior to the performance testing.

Velocity and temperature measurements, in conjunction with effluent gas molecular weight, will be utilized to determine effluent gas velocity. EPA Method 2 measurements will be collected concurrently with EPA Methods 3A and 320 measurements. One velocity and temperature traverse will be conducted during every run at the Aeration Room / Backvent Outlet, Process Stack, and Indoor Air Stack locations in accordance with procedures outlined in EPA Method 2. Velocity and temperature will be continuously monitored at the Ceilcote Scrubber Outlet at a single point during the entirety of the test run. The velocity and temperature at the Ceilcote Scrubber Outlet will be measured at the average velocity point determined by a pre-run traverse.

Concentrations of oxygen (O₂) and carbon dioxide (CO₂) will be determined in accordance with procedures outlined in EPA Method 3A. O₂ and CO₂ concentrations will be measured on a wet volume-based percentage. O₂ and CO₂ concentrations will be utilized to determine molecular weight of the effluent gas and will be determined concurrently with EPA Method 320 sampling utilizing the same sample train. CO₂ concentration will be
measured by an FTIR spectrometer. O₂ concentration will be measured by a wet Ametek analyzer, or similar in series, with and subsequent to the FTIR.

Moisture content (%H₂O) will be determined in accordance with EPA Method 4, Section 16.3, with reference to EPA Method 320. Moisture content will be determined by the FTIR. Moisture content will be utilized to convert wet-based concentrations to dry-based concentrations and to determine molecular weight of the effluent gas.

**Determination of Final Results**

EtO results will be reported in units of lb/hr. For the Ceilcote Scrubber Outlet location, the final result will be the arithmetic average based on point-by-point lb/hr emissions. For the Aeration Room / Backvent Outlet, Process Stack, and Indoor Air Stack sample locations, the final results will be presented as a composite emission rate based on an arithmetic average EtO concentration and volumetric flow from the EPA Method 2 traverse. Mass emission rates in units of lb/hr will be determined from EtO concentrations and volumetric flow rates.

Removal efficiency (RE%) for the Ceilcote Scrubber system will be determined from the lb/hr difference in total input emission at the Ceilcote Scrubber Inlet and output emission from the Ceilcote Scrubber Outlet as a percent of the total input emission from the Ceilcote Scrubber Inlet.

RE% for the AAT Scrubber system will be determined from the lb/hr difference in total input emission (considered the sum of emissions measured at the Ceilcote Scrubber Outlet and Aeration Room / Backvent Outlet) and output emission (measured at the Process Stack) as a percent of the total input emission (considered the sum of emissions measured at the Ceilcote Scrubber Outlet and Aeration Room / Backvent Outlet).

RE% for the total process control system will be determined from the lb/hr difference in total input emission (considered the sum of emissions calculated Ceilcote Scrubber Inlet and Aeration Room / Backvent Outlet) and output emission (measured at the Process Stack) as a percent of the total input emission (considered the sum of emissions calculated Ceilcote Scrubber Inlet and Aeration Room / Backvent Outlet).

Sample calculations for concentrations, volumetric flow rates, and emission rates are presented in Appendix B of this protocol.

**Test Plan Execution and Results**

CleanAir will execute the test plan and present results as discussed above. The test report will mimic the format and structure of this protocol. The results section of the test report will include tables consisting of start/stop times, flue gas conditions, emission concentrations, and emission rates similar to the tables presented in the results section of this protocol. CleanAir will also include appendices presenting all sample parameters, field data, laboratory analyses, FTIR raw data, and all relevant process data.
2. **DESCRIPTION OF INSTALLATION**

Process Description and Data Collection

**DESCRIPTION**

Sterigenics US, LLC operates a commercial contract sterilization facility in Atlanta, Georgia, which utilizes EtO to sterilize its customers’ product. It also has the ability to use propylene oxide to treat nutmeats.

When EtO is used for medical device sterilization, the medical devices must have a specifically defined sterilization process, which is validated for a specific sterilization chamber or chambers. The Atlanta facility uses 10 sterilization chambers ranging in size from 5 pallets to up to 30 pallets. While all 10 sterilization chambers are similar in design, each chamber may only process products approved for that chamber and cannot process other products that have not been validated and approved by the appropriate regulatory agency for that specific chamber.

The sterilization process begins with evacuating the air from the chamber and introducing nitrogen (N₂). While under negative pressure inside the chamber, EtO is introduced into the sterilization chamber to sterilize the product. Once EtO is introduced, the dwell stage can last from 30 minutes to up to several hours, according to the validated cycle for the product. Once complete, the sterilization chamber vacuum pumps remove most of the EtO from the chamber by exhausting and purging with N₂ multiple times. Vacuum pump emissions are routed to the Ceilcote wet acid scrubber, which will be routed to the existing Advanced Air Technologies (AAT) wet acid scrubber with dry bed reactor, then to additional polishing beds, and then to a common stack.

Once the sterilization chamber process is complete and the chamber door is partially opened, the backvent fan activates to extract residual amounts of EtO from the chamber. This fan remains on while the chamber door is open. After 15 minutes, the pallets of product are removed from the sterilization chamber and placed into aeration rooms to further off-gas residual EtO. Both the backvents and aeration rooms are ducted to the AAT and treated with dry bed reactors, and then to a common stack.

A schematic of the process is shown in Figure 3-1 on the following page.
DATA COLLECTION
Sterigenics will provide information initially and during each test run to identify the test sterilization chamber. Process data will be recorded and provided to CleanAir for inclusion in the test report. Summarized data, including raw supporting data and electronically-recorded chamber-phase data, will be presented in an appendix of the test report.

Sterilization Process Data
For each test run, Sterigenics will provide the following process data:

- Sterilization test chamber number used
- Initial evacuation time
- End cycle time
- Backvent opening time
- Ending chamber EtO concentration
- Initial transfer time
- Ending transfer time
Emission Control Data

The emission control operating data collected during the test and the manufacturer design specifications will be evaluated prior to setting new operating parameters. At the start and end of each test run, Sterigenics will provide the following emission control data:

- For the Ceilcote wet acid scrubber:
  - ethylene glycol concentration\(^1\)
  - liquor tank level
  - pH

- For the AAT wet acid scrubber with dry bed reactor (WB1-Scrubber #2):
  - ethylene glycol concentration\(^1\)
  - liquor tank level
  - pH

\(^1\) Ethylene glycol liquor will be sampled during each run and sent for analysis per 40 CFR 63, Subpart O.

Test Locations

The sample point placement will be determined by EPA Methods 1 and 320 specifications. Sample ports to be installed will meet EPA Method 1 requirements. Test location layouts will be presented in the final test report.

An EPA Method 1 sample location analysis will be conducted at each sample location on-site prior to testing. An absence of cyclonic flow will be verified per EPA Method 1 specifications at each location prior to testing. At the Aeration Room/Backvent Outlet, Process Stack, and the Indoor Air Stack, velocity and temperature will be measured at points determined by the EPA Method 1 analyses. At the Ceilcote Scrubber Outlet, a velocity and temperature traverse will be conducted prior to testing. Velocity and temperature during the test run at the Ceilcote Scrubber Outlet will be measured at the average velocity traverse point determined by the traverse conducted prior to testing.

Stratification checks at each sample location will be conducted prior to testing per procedures obtained from EPA Method 7E. The point closest to the average EtO will be chosen as the EtO sample point.

The EPA Method 1 analysis, absence of cyclonic flow verification, and stratification check data will be presented in an appendix of the test report. Table 3-1, on the following page, presents the sampling information for each test location.
<table>
<thead>
<tr>
<th>Source</th>
<th>Constituent</th>
<th>Method (USEPA)</th>
<th>Run No.</th>
<th>Points per Port</th>
<th>Minutes per Point</th>
<th>Total Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Ceilcote Scrubber Outlet</strong></td>
<td>EtO, O₂, CO₂, H₂O</td>
<td>Strat. Check[^1]</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2x RT[^2]</td>
</tr>
<tr>
<td></td>
<td>EtO, O₂, CO₂, H₂O</td>
<td>320, 4, 3A</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>TBD or 75</td>
</tr>
<tr>
<td></td>
<td>Velocity &amp; Temperature (continuous)[^3]</td>
<td></td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>TBD or 75</td>
</tr>
<tr>
<td><strong>Aeration Room / Backvent Outlet</strong></td>
<td>EtO, O₂, CO₂, H₂O</td>
<td>Strat. Check[^1]</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2x RT[^2]</td>
</tr>
<tr>
<td></td>
<td>EtO, O₂, CO₂, H₂O</td>
<td>320, 4, 3A</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>TBD or 75</td>
</tr>
<tr>
<td></td>
<td>Velocity &amp; Temperature (traverse)</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>TBD</td>
</tr>
<tr>
<td><strong>Process Stack</strong></td>
<td>EtO, O₂, CO₂, H₂O</td>
<td>Strat. Check[^1]</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2x RT[^2]</td>
</tr>
<tr>
<td></td>
<td>EtO, O₂, CO₂, H₂O</td>
<td>320, 4, 3A</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>TBD or 75</td>
</tr>
<tr>
<td></td>
<td>Velocity &amp; Temperature (traverse)</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>TBD</td>
</tr>
<tr>
<td><strong>Indoor Air Stack</strong></td>
<td>EtO, O₂, CO₂, H₂O</td>
<td>Strat. Check[^1]</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2x RT[^2]</td>
</tr>
<tr>
<td></td>
<td>EtO, O₂, CO₂, H₂O</td>
<td>320, 4, 3A</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Velocity &amp; Temperature (traverse)</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>TBD</td>
</tr>
</tbody>
</table>

[^1] Strat. Check = stratification check, conducted per procedures outlined in EPA Method 7E.

---

**End of Section**
3. METHODOLOGY

Procedures and Regulations

The test program sampling measurements will follow procedures and regulations outlined by the United States Environmental Protection Agency (USEPA) and the DNR EPD. These methods appear in detail in Title 40 of the CFR and at https://www.epa.gov/emc. Appendix A includes diagrams of the sampling apparatus, as well as specifications for sampling, recovery and analytical procedures.


**TITLE 40 CFR PART 60, APPENDIX A**

Method 1    “Sample and Velocity Traverses for Stationary Sources”
Method 2    “Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)”
Method 3    “Gas Analysis for the Determination of Dry Molecular Weight”
Method 3A   “Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)”
Method 4    “Determination of Moisture Content in Stack Gases”

**TITLE 40 CFR PART 63, APPENDIX A**

Method 320   “Measurement of Vapor Phase Organic and Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy”

Methodology Discussion

**EPA METHOD 320 – EtO AND H₂O TESTING**

EtO emissions will be determined using an FTIR per EPA Method 320. EtO testing will adhere to all specifications and procedures outlined in EPA Method 320.

A calibration transfer standard (CTS) will be used to demonstrate suitable agreement between sample spectra and reference spectra. During the test program, a dynamic spike will be conducted for each sampling system. A spike/tracer gas at a constant flow rate at or below 10% of the total sample flow, when possible, will be introduced into the sampled exhaust gas stream prior to the external filter. The system will “pass” the QA spikes if the average spiked concentration is within 0.7 to 1.3 times the expected concentration. All QA spike checks will be included in the QA/QC section of the final test report. Following each test run, another CTS spectrum will be recorded. The pre- and post-test CTS spectra will then be compared. The peak absorbance in pre- and post-test CTS will be compared to the required ±5% of the mean value for the run to be valid.
In accordance with the method, for each sampling system, the flue gas will be continuously extracted through a heated stainless-steel probe, filter, and Teflon sample lines, and then directly interfaced with the instrumentation. The sampling system will be assembled and leak-checked (<200 ml/min) and will be allowed to reach and stabilize at the operating temperature of approximately 150°C to 175°C. Sample gas will be extracted at a constant rate and delivered hot and wet to the FTIR.

On-site minimum detection limit (MDL) studies will be performed for each sampling system using procedures outlined in ASTM D 6348 A2.3. The MDL is calculated as three times the standard deviation of the concentrations from 10 representative spectra taken during the MDL study. Results calculated from sample concentrations less than the calculated MDL will be reported as ‘less than’ the MDL.

Minute data points for EtO (wet basis) will be collected over the duration of the test run. Each sample spectrum will be documented with the sampling conditions, the sampling time (period when the cell is being filled), the time the spectrum was recorded, the instrumental conditions (path length, temperature, pressure, resolution, and signal integration time), and a spectral filename.

**EPA METHODS 1 AND 2 – GAS VELOCITY TESTING**

EPA Methods 1 and 2 of 40 CFR 60, Appendix A, will be used to measure the average flow rate. These methods will determine the velocity of the effluent gas stream. The effluent gas velocity will be measured by a calibrated Type-S pitot probe and pressure transducer meeting all specifications of EPA Method 2. The temperature will be measured by a Type K thermocouple attached to the pitot probe. A determination of sampling points and verification of absence of cyclonic flow will be performed for each sample location prior to testing.

**EPA METHOD 3A – O₂/CO₂ TESTING**

CO₂ concentrations will be measured using the FTIR. O₂ concentrations will be measured using a wet Ametek O₂ analyzer, or similar in series, subsequent to the FTIR. O₂/CO₂ testing will adhere to all specifications and QA/QC procedures outlined in EPA Method 3A.

Calibration error checks will be performed daily by introducing zero N₂, high range and mid-range calibration gases to the inlet of the FTIR during calibration error checks. Bias checks will be performed before and after each test run by introducing calibration gas to the inlet of the sampling system’s heated filter. Data points for O₂/CO₂ (wet basis) will be collected over the duration of the test run. Per EPA Method 3A, the average results for the run will be drift-corrected.

**EPA METHOD 4 – ETO AND H₂O TESTING**

Moisture content will be determined using an FTIR per EPA Method 4, which references EPA Method 320. Per Section 16.3 of EPA Method 4, “Method 320 is an acceptable alternative to Method 4 for determining moisture.” Moisture testing will adhere to all specifications and procedures outlined in EPA Method 320.

Refer to the section “EPA Method 320 – EtO Testing” above for specific methodology.

*End of Section*
4. **APPENDIX**

Appendix A: Test Method Specifications  
Appendix B: Sample Calculations  
Appendix C: Field Data Sheets  
Appendix D: CleanAir Resumes and Certifications
APPENDIX A: TEST METHOD SPECIFICATIONS
### Specification Sheet for EPA Method 2

**Source Location Name(s):** Aeration/ Backvent Outlet, Process Stack, Indoor Air DBA Inlet 1 & 2, Indoor Air Stack

**Pollutant(s) to be Determined:** None

**Other Parameters to be Determined from Training:** Flow Rate

<table>
<thead>
<tr>
<th>Pollutant Sampling Information</th>
<th>Standard Method Specification</th>
<th>Actual Specification Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of Run</td>
<td>N/A</td>
<td>Varied</td>
</tr>
<tr>
<td>No. of Sample Traverse Points</td>
<td>N/A</td>
<td>TBD</td>
</tr>
<tr>
<td>Sample Time per Point</td>
<td>N/A</td>
<td>Varied</td>
</tr>
<tr>
<td>Sampling Rate</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampling Probe</th>
<th>Standard Method Specification</th>
<th>Actual Specification Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nozzle Material</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Nozzle Design</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Probe Liner Material</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Effective Probe Length</td>
<td>Sufficient to Traverse Points</td>
<td>TBD</td>
</tr>
<tr>
<td>Probe Temperature Set-Point</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitot Tube Design</td>
<td>Type S</td>
<td>Type S</td>
</tr>
<tr>
<td>Pitot Tube Coefficient</td>
<td>N/A</td>
<td>TBD</td>
</tr>
<tr>
<td>Pitot Tube Calibration by</td>
<td>Geometric or Wind Tunnel</td>
<td>Wind-Tunnel</td>
</tr>
<tr>
<td>Pitot Tube Attachment</td>
<td>Attached to Probe</td>
<td>Attached to Probe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metering System Console</th>
<th>Standard Method Specification</th>
<th>Actual Specification Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter Type</td>
<td>Dry Gas Meter</td>
<td>N/A</td>
</tr>
<tr>
<td>Meter Accuracy</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Meter Resolution</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Meter Size</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Meter Calibrated Against</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Pump Type</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Temperature Measurements</td>
<td>N/A</td>
<td>Type K Thermocouple/Pyrometer</td>
</tr>
<tr>
<td>Temperature Resolution</td>
<td>5.4°F</td>
<td>1.0°F</td>
</tr>
<tr>
<td>ΔP Differential Pressure Gauge</td>
<td>Inclined Manometer or Equivalent</td>
<td>Inclined Manometer/Digital Manometer</td>
</tr>
<tr>
<td>ΔH Differential Pressure Gauge</td>
<td>Inclined Manometer or Equivalent</td>
<td>N/A</td>
</tr>
<tr>
<td>Barometer</td>
<td>Mercury or Aneroid</td>
<td>Digital Barometer calibrated w/Mercury Aneroid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Filter Description</th>
<th>Standard Method Specification</th>
<th>Actual Specification Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Location</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Filter Holder Material</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Filter Support Material</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Cyclone Material</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Filter Heater Set-Point</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Filter Material</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Components</th>
<th>Standard Method Specification</th>
<th>Actual Specification Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Location</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
EPA Method 2
Sampling Train Configuration

Type-S Pitot

Thermocouple

Pitot Manometer

Digital Readout
### Specification Sheet for EPA Method 2

**Source Location Name(s):** Cielote Scrubber Outlet  
**Pollutant(s) to be Determined:** None  
**Other Parameters to be Determined from Train:** Flow Rate

<table>
<thead>
<tr>
<th>Pollutant Sampling Information</th>
<th>Standard Method Specification</th>
<th>Actual Specification Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of Run</td>
<td>N/A</td>
<td>TBD</td>
</tr>
<tr>
<td>No. of Sample Traverse Points</td>
<td>N/A</td>
<td>1</td>
</tr>
<tr>
<td>Sample Time per Point</td>
<td>N/A</td>
<td>TBD</td>
</tr>
<tr>
<td>Sampling Rate</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampling Probe</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nozzle Material</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Nozzle Design</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Probe Liner Material</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Effective Probe Length</td>
<td>Sufficient to Traverse Points</td>
<td>TBD</td>
</tr>
<tr>
<td>Probe Temperature Set-Point</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Velocity Measuring Equipment</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitot Tube Design</td>
<td>Type S</td>
<td>Type S</td>
</tr>
<tr>
<td>Pitot Tube Coefficient</td>
<td>N/A</td>
<td>TBD</td>
</tr>
<tr>
<td>Pitot Tube Calibration by Geometric or Wind Tunnel</td>
<td>N/A</td>
<td>Wind-Tunnel</td>
</tr>
<tr>
<td>Pitot Tube Attachment</td>
<td>Attached to Probe</td>
<td>Attached to Probe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metering System Console</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter Type</td>
<td>Dry Gas Meter</td>
<td>N/A</td>
</tr>
<tr>
<td>Meter Accuracy</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Meter Resolution</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Meter Size</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Meter Calibrated Against</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Pump Type</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Temperature Measurements</td>
<td>N/A</td>
<td>Type K Thermocouple/Pyrometer/Transducer</td>
</tr>
<tr>
<td>Temperature Resolution</td>
<td>5.4°F</td>
<td>1.0°F</td>
</tr>
<tr>
<td>ΔP Differential Pressure Gauge</td>
<td>Inclined Manometer or Equivalent</td>
<td>Inclined Manometer/Digital Manometer</td>
</tr>
<tr>
<td>ΔH Differential Pressure Gauge</td>
<td>Inclined Manometer or Equivalent</td>
<td>N/A</td>
</tr>
<tr>
<td>Barometer</td>
<td>Mercury or Aneroid</td>
<td>Digital Barometer calibrated w/Mercury Aneroid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Filter Description</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Location</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Filter Holder Material</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Filter Support Material</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Cyclone Material</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Filter Heater Set-Point</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Filter Material</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

| Other Components                                                    |                               |                           |
| Description                                                          | N/A                           | N/A                       |
| Location                                                            | N/A                           | N/A                       |
| Operating Temperature                                               | N/A                           | N/A                       |
EPA Method 2
Sampling Train Configuration

Thermocouple
Type-S Pitot

Pitot Manometer or Digital Manometer

Digital Readout
## Specification Sheet for EPA Method 320 & 3A

### Source Location Name(s)
All locations

### Pollutant(s) to be Determined
Ethylene Oxide (EtO)
Moisture, O₂, and CO₂

<table>
<thead>
<tr>
<th>Pollutant Sampling Information</th>
<th>Standard Method Specification</th>
<th>Actual Specification Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of Run</td>
<td>N/A</td>
<td>TBD</td>
</tr>
<tr>
<td>No. of Sample Traverse Points</td>
<td>N/A</td>
<td>1</td>
</tr>
<tr>
<td>Sample Time per Point</td>
<td>N/A</td>
<td>TBD</td>
</tr>
<tr>
<td>Sampling Rate</td>
<td>Constant Rate</td>
<td>Constant Rate</td>
</tr>
</tbody>
</table>

### Sampling Probe

| Nozzle Material | N/A | None |
| Nozzle Design   | N/A | N/A  |
| Probe Liner Material | Stainless Steel or Equivalent | Stainless Steel |
| Effective Probe Length | Sufficient to Traverse Points | 3 feet |
| Probe Temperature Set-Point  | Prevent Condensation (Min. 250°F) | 375°F±10°F |

### Particulate Filter

| In-Stack Filter | Optional | N/A    |
| In-Stack Filter Material | N/A | N/A    |
| External Filter | Yes | Yes    |
| External Filter Material | Glass Fiber Mat | Borosilicate Glass Fiber Mat |
| External Filter Set-Point  | Prevent Condensation (Min. 250°F) | 375°F±10°F |

### Sample Delivery System

| Heated Sample Line Material | Stainless Steel or Teflon | Teflon |
| Heated Sample Line Set-Point | Prevent Condensation (Min. 250°F) | 375°F±10°F |
| Heated Sample Line Connections | Probe Exit to Pump to FTIR | Probe to Pump to FTIR |
| Moisture Removal System     | N/A                       | N/A    |
| Sample Pump Type            | N/A                       | N/A    |
| Sample Pump Material        | Non-reactive to sample gases | Teflon |
| Sample Flow Control         | Constant Rate             | Constant Rate |
| Non-Heated Sample Line Material | N/A                       | N/A    |
| Non-Heated Sample Line Connections | N/A                       | N/A    |
| Additional Filters          | Optional                  | N/A    |
| Additional Filter Type      | N/A                       | N/A    |
| Additional Filter Location  | N/A                       | N/A    |
| Filter Material             | N/A                       | N/A    |

### Analyzer Description

| Ethylene Oxide (C₂H₄O) | EPA Method 320 (FTIR) | EPA Method 320 (FTIR) |
| Propylene Oxide (C₃H₆O) | EPA Method 320 (FTIR) | N/A |
| Hydrogen Chloride (HCl) | EPA Method 320 (FTIR) | N/A |
| Carbon Dioxide (CO₂)    | EPA Method 320 (FTIR) | EPA Method 320 (FTIR) |
| Oxygen (O₂)             | EPA Method 320 (FTIR) | EPA Method 3A (Paramagnetic) |
| Nitrogen Dioxides (NO₂) | EPA Method 320 (FTIR) | N/A |
| Nitrogen Monoxides (NO) | EPA Method 320 (FTIR) | N/A |
| Carbon Monoxide (CO)    | EPA Method 320 (FTIR) | N/A |
## EPA Method 320 & 3A

<table>
<thead>
<tr>
<th>Calibration Gas Span</th>
<th>Standard Method Specification</th>
<th>Actual Specification Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylene Oxide (C$_2$H$_4$O)</td>
<td>N/A</td>
<td>0-2,000 ppm, 0-10 ppm</td>
</tr>
<tr>
<td>Propylene Oxide (C$_3$H$_6$O)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Hydrogen Chloride (HCl)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Carbon Dioxide (CO$_2$)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO$_2$)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Nitrogen Dioxides (NO$_2$)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Nitrogen Monoxides (NO)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

### Data Acquisition
- **Data Recorder**: Computer with Software for Automated Collection
- **Scan Rate**: No Requirement (64 Scans ~ 1 minute)
- **Data Storage**: Automatic
- **Actual Specification Used**: Analog Computer, 64 Scans, Automatic

### Calibration Gas Specifications
- **Ethylene Oxide (C$_2$H$_4$O)**: Best Commercially Available Accuracy (±5%)
- **Methane (CH$_4$)**: Best Commercially Available Accuracy (±5%)
- **Hydrogen Chloride (HCl)**: Best Commercially Available Accuracy (±5%)
- **Carbon Dioxide (CO$_2$)**: N/A
- **Oxygen (O$_2$)**: N/A
- **Nitrogen Dioxides (NO$_2$)**: N/A
- **Nitrogen Monoxides (NO)**: N/A
- **Carbon Monoxide (CO)**: N/A

*Note: M320 only requires that the gases used come with a certificate of accuracy*
EPA Method 320 & 3A
Sampling Train Configuration

1 Sample delivery system maintained at 191°C. / Heated umbilical length kept as short as possible.
2 FTIR maintained at 191°C.
MKS MultiGas 2030 FTIR

**Specifications:**
- Weight: 100 lbs.
- Power 120 or 240VAC, 50/60 Hz, 3amps.
- Measurement Technique: FTIR Spectrometry.
- 21μm 0.25mm LN₂ cooled detector, 7μm 0.25mm TE cooled also available.
- Ranges: Full scale setting < 100ppb to 100% concentration.
- Averaging Time: 0.2 sec to 5 min.
- Spectral Range: 2μm - 20μm (500 - 5,000cm⁻¹).
- Temperature and pressure measured internally.
- Sample Flow: 0.2 - 10 L/min.
- Sample Pressure: 0.01 - 4 Atm.
- N₂ Purge: 20psig (1.5 bar) max, 0.1 L/min.
- Gas Cell: Nickel coated Aluminum.
- Cell Temperature: Ambient to 191°C.
- Cell Mirrors: Nickel plated Aluminum Substrate with rugged gold coating.
- Cell Windows: KBr or ZnSe.

**Rental and Application Notes:**
- Shipping Weight: 120 lbs.
- Designed to meet EPA Method 318,320,321 and various VOC and inorganic gas sampling including Formaldehyde, Ammonia and HCl.
- Nitrogen and Ethylene calibration gases are needed.
- Liquid Nitrogen is needed for most applications.
- Instrument rental of the MKS FTIR is accompanied with an operator unless otherwise arranged through CleanAir Instrument Rental.
Ametek RM CEM O₂

**SPECIFICATIONS:**
- Weight: 15 lbs.
- Power Requirements: 115VAC, 50-60 Hz, ±10%; 230VAC, 50-60 Hz, ±10%; 100 VA max.
- Principle of Operation: Zirconium Oxide.
- Output: 4-20mA, 0-20mA.
- Operating Range: 0.1% - 100% Oxygen.
- Accuracy: ±0.75% of reading or 0.05% oxygen, whichever is greater.
- Maximum Inlet Temperature: 204°C (400°F).
- Sample flow: 2 to 15 scfh (0.94 to 7.08L/min.).

**RENTAL AND APPLICATION NOTE:**
- Shipping Weight: 20 lbs.
- Ideal for hot and wet samples.
- Zero calibration gas must be between 1.0% and 3.0% O₂.
MAX-Analytics™ is the most powerful gas/liquid FTIR data analysis program commercially available. Providing a large suite of tools that seamlessly stores results in one file, MAX-Analytics™ can take your data reprocessing time from minutes to seconds, dramatically increasing productivity. For users analyzing samples with unknowns, the powerful Peak Matching function can quickly identify compounds using the included quantitative/qualitative libraries with over 5200 compounds. Other features such as adding conditional interferences, multiple quant regions, and editable fencing masks based on residual, reference spectrum, or sample spectrum are just a few of the included features. MAX-Analytics™ is also supplied with a standalone Gas Reference File Editor that provides features such as traceability documentation, gas aliases, spectral subtraction, baseline correction and automatic fencing masks just to name a few. A complete list of features is provided in the specification section of this document.

Getting the most out of FTIR spectra takes world class data analysis software to generate high confidence results. Contact our applications group today to arrange a demo at 1-860-386-6878 or software@maxanalytical.com.
Feature Specification (Available Summer 2019)

<table>
<thead>
<tr>
<th>MAX-Analytics™</th>
<th>Gas Reference File Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantitative Gas Reference Library (200 compounds)</td>
<td>Includes traceability documentation for all gases in library</td>
</tr>
<tr>
<td>Qualitative NIST &amp; EPA Gas Reference Library (5500 compounds)</td>
<td>Automatic baseline correction of reference spectra</td>
</tr>
<tr>
<td>Analyze FTIR, StarBoost™ or GC-FTIR data</td>
<td>Subtract interferences from reference spectra</td>
</tr>
<tr>
<td>Fast reprocessing of data</td>
<td>Define Primary &amp; Secondary quantification regions</td>
</tr>
<tr>
<td>Peak Matching Tool for identification of unknown compounds</td>
<td>Define Interference regions</td>
</tr>
<tr>
<td>View and open previous results summary file</td>
<td>Deresolve reference spectra</td>
</tr>
<tr>
<td>Export results file to Excel spreadsheet</td>
<td>Automatically apply fencing mask using absorbance threshold</td>
</tr>
<tr>
<td>Average spectra</td>
<td>Apply fencing mask to reference gas or interferents</td>
</tr>
<tr>
<td>Manual Validation Mode</td>
<td>Units include both concentration (ppm) and mass (ng)</td>
</tr>
<tr>
<td>Add conditional interferences to analysis method</td>
<td></td>
</tr>
<tr>
<td>Multiple (Primary &amp; Secondary) quantification regions</td>
<td></td>
</tr>
<tr>
<td>Edit and save quantification regions in analysis method, without modifying gas library</td>
<td></td>
</tr>
<tr>
<td>Edit and save fencing masks in analysis method, without modifying gas library</td>
<td></td>
</tr>
<tr>
<td>Apply a fencing mask based on residual, reference spectrum, or sample spectrum</td>
<td></td>
</tr>
<tr>
<td>Save a computed spectrum (averaged, residual, or single reconstruction)</td>
<td></td>
</tr>
<tr>
<td>Easily add a sample spectrum to analysis method</td>
<td></td>
</tr>
<tr>
<td>Search for compounds by aliases, formula or CAS number</td>
<td></td>
</tr>
<tr>
<td>Add dataset and spectrum comments and save with results file</td>
<td></td>
</tr>
<tr>
<td>Set Alarm Alerts when a concentration exceeds a selected threshold</td>
<td></td>
</tr>
<tr>
<td>Customize viewing options for either detailed analysis or concentration overlay</td>
<td></td>
</tr>
<tr>
<td>MAX™ Algorithm for GC-FTIR data analysis with automated retention index search</td>
<td></td>
</tr>
</tbody>
</table>

MAX-Analytics™ and MAX™ are trademarks of MAX Analytical Technologies. East Windsor, CT.
MAX StarBoost™ Technology

FTIR Reinvented

MAX StarBoost™ is a breakthrough commercial FTIR gas analyzer enhancement technology that dramatically increases sensitivity, linearity and dynamic range over narrow spectral bands of interest. Proven in demanding applications such as ethylene oxide and formaldehyde measurement, MAX StarBoost™ enables source testing, industrial process monitoring and IH Professionals a new level of real-time, in-process analytical capability. Supplied as a turnkey add-on to the widely used and accepted MKS MultiGas™ 2030 FTIR, MAX StarBoost™ is compliant with existing methods and is easy to deploy with a quick learning curve for testing professionals!

Max StarBoost™ Key Features

- Single digit ppb detection limits
- Quick learning curve for existing 2030 users
- Specificity over GC-FID
- EPA Method 320 & ASTM D6348 compliant
- Max-Acquisition™/ MAX-Analytics™ Software
- Spectral Regions:
  - Aldehyde filter – formaldehyde, acrolein, acetaldehyde, HCl
  - Aromatic filter – ethylene oxide, BTEX
- Ideal for CEM Applications
- Switch between standard FTIR & StarBoost™
- Available on all MultiGas™ 2030 config.

MAX-Aquisition™ and MAX-Analytics™ Software are included (depending on package) to seamlessly integrate with MultiGas™ software providing state-of-the-art FTIR spectral analysis. See MAX-Aquisition™ and MAX-Analytics™ software product brochure for further information. Two spectral bands are included with optional bands available on request.

For more information on MAX StarBoost™ please contact our Applications Group to discuss your specific requirements at 860-386-6878 or email: applications@maxanalytical.com
MAX StarBoost™ Filter Bands

MAX StarBoost™ technology is available in several stock filter bands and can be deployed on any Max Analytical product utilizing the MKS MultiGas™ 2030. Available stock filter bands, compounds and detection limits are shown below. Custom filter and compounds are available on request.

<table>
<thead>
<tr>
<th>Stock Filter Bands</th>
<th>Sample Stream</th>
<th>Compounds</th>
<th>Detection Limit (1min average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldehyde</td>
<td>Combustion Source (8.8% Water)</td>
<td>Formaldehyde, HCl, Acetaldehyde, Methane, Ethane, Water</td>
<td>9ppb, 8ppb, 500ppb, 650ppb, 550ppb, 110ppb</td>
</tr>
<tr>
<td>Aromatic</td>
<td>Ambient Air</td>
<td>Methane, Ethane, Ethylene Oxide</td>
<td>4ppb, 50ppb, Summer 2019</td>
</tr>
</tbody>
</table>

MAX-Acquisition™ Software

Real-time data analysis with MKS 2030 driver (available Summer 2019), AutoReference algorithm to eliminate baseline drift, manual validation and reporting functions. See MAX-Acquisition™ Software brochure for more detail.
MAX-Acquisition™ allows for seamless data acquisition using MAX-Crossmark™ GC-FTIR or the MKS MultiGas™ 2030 FTIR analyzer upgraded with MAX-StarBoost™ Technology. Designed for technicians and power users alike, MAX-Acquisition™ can control all data acquisition from a single user interface with flexible display options for fast and easy assessment of data quality. Advanced features include an updated AutoReference algorithm that, when used in conjunction with ultra-sensitive hardware configurations like MAX-StarBoost™, eliminates biases from baseline drift and does not require the user to collect a nitrogen background. Users can also view real-time data results and easily configure alarms to alert when a compound’s concentration exceeds a selected threshold. Whether in the field or in the lab, MAX-Acquisition™ maximizes instrument productivity and ensures high quality data collection.

Getting the most out of FTIR spectra takes world class data analysis software to generate high confidence results. Contact our applications group today to arrange a demo at 1-860-386-6878 or software@maxanalytical.com.

Max Analytical Technologies • www.maxanalytical.com • 1-860-386-6878 • East Windsor, CT USA
# Feature Specification

<table>
<thead>
<tr>
<th>MAX Acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compatible with all MAX hardware configurations and MKS MultiGas 2030™</td>
</tr>
<tr>
<td>Instrument method includes data collection parameters &amp; analysis method</td>
</tr>
<tr>
<td>Easily modify analysis method</td>
</tr>
<tr>
<td>Real-time quantification of FTIR data</td>
</tr>
<tr>
<td>Real-time chromatogram for GC-FTIR data</td>
</tr>
<tr>
<td>Control data acquisition on MKS MultiGas 2030™ in StarBoost™ or standard mode</td>
</tr>
<tr>
<td>Acquire Temperature and Pressure in real-time for FTIR data</td>
</tr>
<tr>
<td>AutoReference Mode</td>
</tr>
<tr>
<td>Store spectral data with Igrams and Sbeams</td>
</tr>
<tr>
<td>Store results summary file</td>
</tr>
<tr>
<td>Export results file to Excel reporting template</td>
</tr>
<tr>
<td>Automatically create a new summary results file and spectral folder at certain time of day for CEM applications</td>
</tr>
<tr>
<td>View real-time sample spectra</td>
</tr>
<tr>
<td>View real-time single reconstructions and residuals for FTIR data</td>
</tr>
<tr>
<td>View real-time fit quality metrics (R²) for FTIR data</td>
</tr>
<tr>
<td>View sample spectrum with overlay of scaled reference spectra of gases in analysis method</td>
</tr>
<tr>
<td>Add a sample spectrum to method in real time for FTIR data</td>
</tr>
<tr>
<td>View real-time alarm alerts when concentration exceeds a selected threshold</td>
</tr>
<tr>
<td>Customize viewing options for either detailed analysis or concentration overlay for FTIR data</td>
</tr>
</tbody>
</table>

---

**MAX-Aquisition™, MAX-StarBoost™ and MAX™ are trademarks of MAX Analytical Technologies. East Windsor, CT. MultiGas™ is trademark of MKS Instruments, Inc., Andover, MA.**

MAX Analytical Technologies
32 North Road • East Windsor, CT 06088
1-860-386-6878 • sales@maxanalytical.com
www.maxanalytical.com

Bulletin720-041019
© Copyright 2019, Max Analytical Technologies
All rights reserved
This Page Intentionally Left Blank
APPENDIX B: SAMPLE CALCULATIONS
Sterigenics
CleanAir Project No. 14004
Atlanta, GA
EtO Control System

EtO Emissions Sample Calculations
for EtO, EtO Control System

Sample data taken from Run 1 and Channel 3

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

1. EtO concentration (ppmdv)

\[
C(\text{ppmdv}) = k_1 \times C_{DC} \text{ if } \text{ dry gas}
\]

\[
C(\text{ppmdv}) = \frac{k_1 \times C_{DC}}{1 - B_w/100} \text{ if } \text{ wet gas}
\]

Where:
- \(C_{DC}\) = drift corrected average concentration = ppmwv
- \(B_w\) = actual water vapor in gas (% v/v) = % v/v
- 100 = conversion factor to change percentage to decimal = 100
- \(k_1\) = ppm% to ppm conversion factor for diluent gases = 1

\(C \text{ (ppmdv)} = \text{ EtO concentration (ppmdv)} = \text{ ppmdv}\)

2. EtO concentration (ppmwv)

\[
C(\text{ppmwv}) = k_1 \times C_{DC} \text{ if } \text{ wet gas}
\]

\[
C(\text{ppmwv}) = k_1 \times C_{DC} \times \left(1 - \frac{B_w}{100}\right) \text{ if } \text{ dry gas}
\]

Where:
- \(C_{DC}\) = drift corrected average concentration = ppmwv
- \(B_w\) = actual water vapor in gas (% v/v) = % v/v
- 100 = conversion factor to change percentage to decimal = 100
- \(k_1\) = ppm% to ppm conversion factor for diluent gases = 1

\(C \text{ (ppmwv)} = \text{ EtO concentration (ppmwv)} = \text{ ppmwv}\)
3. EtO concentration (lb/dscf)

\[
C(\text{lb/dscf}) = \frac{C(\text{ppmdv}) \times MW(\text{gas})}{10^6 \text{ppm} \times 385.3}
\]

Where:
- \(C(\text{ppmdv})\) = EtO concentration (ppmdv) = ppmdv
- \(MW\) = Molecular Weight of EtO gas = 44.05 lb/lb-mole
- \(10^6\) = conversion factor from decimal to ppm = 1.00E+06
- 385.3 = molar volume = 385.3 dscf/lb-mole
- \(C(\text{lb/dscf})\) = EtO concentration (lb/dscf) = lb/dscf

4. EtO concentration (lb/scf)

\[
C(\text{lb/scf}) = C(\text{lb/dscf}) \times \frac{Q_{\text{std}}}{Q_s}
\]

Where:
- \(C(\text{lb/dscf})\) = EtO concentration (lb/dscf) = lb/dscf
- \(Q_{\text{std}}\) = volumetric flow rate at standard conditions, dry basis (dscfm) = dscf/min
- \(Q_s\) = volumetric flow rate (standard cubic feet/min) = scf/min
- \(C(\text{lb/scf})\) = EtO concentration (lb/scf) = lb/scf

5. EtO concentration (lb/acf)

\[
C(\text{lb/acf}) = C(\text{lb/dscf}) \times \frac{Q_{\text{std}}}{Q_a}
\]

Where:
- \(C(\text{lb/dscf})\) = EtO concentration (lb/dscf) = lb/dscf
- \(Q_{\text{std}}\) = volumetric flow rate at standard conditions, dry basis (dscfm) = dscf/min
- \(Q_a\) = volumetric flow rate (actual cubic feet/min) = acf/min
- \(C(\text{lb/acf})\) = EtO concentration (lb/acf) = lb/acf

6. EtO concentration (%dv)

\[
C(\%dv) = C(\text{ppmdv}) \times \frac{100}{10^6}
\]

Where:
- \(C(\text{ppmdv})\) = EtO concentration (ppmdv) = ppmdv
- 100 = conversion factor from decimal to percentage = 1.00E+02
- \(10^6\) = conversion factor from decimal to ppm = 1.00E+06
- \(C(\%dv)\) = EtO concentration (%dv) = %dv
EtO Control System

7. EtO concentration (mg/dscm)

\[ C \text{ (mg/dscm)} = C \text{(lb/dscf)} \times k_2 \times 35.31 \]

Where:
- \( C \text{ (lb/dscf)} = \) EtO concentration (lb/dscf) = lb/dscf
- \( k_2 = \) conversion factor from lb to mg = 453515 mg/lb
- \( 35.31 = \) conversion factor from dscf to dscm = 35.31 ft³/m³
- \( C \text{ (mg/dscm)} = \) EtO concentration (mg/dscm) = mg/dscm

8. EtO concentration (mg/Nm³ dry)

\[ C \text{ (mg/Nm³ dry)} = C \text{(lb/dscf)} \times k_2 \times 35.31 \times \left( \frac{68 + 460}{32 + 460} \right) \]

Where:
- \( C \text{ (lb/dscf)} = \) EtO concentration (lb/dscf) = lb/dscf
- \( k_2 = \) conversion factor from lb to mg = 453515 mg/lb
- \( 35.31 = \) conversion factor from dscf to dscm = 35.31 ft³/m³
- \( 68 = \) standard temperature (°F) = 68 °F
- \( 32 = \) normal temperature (°F) = 32 °F
- \( 460 = \) °F to °R conversion constant = 460
- \( C \text{ (mg/Nm³ dry)} = \) EtO concentration (mg/Nm³ dry) = mg/Nm³ dry

9. EtO concentration corrected to 7% O2 (ppmdv example)

\[ C \text{ (ppmdv@7%O2)} = C \text{(ppmdv)} \times \left( \frac{20.9 - x}{20.9 - O_2} \right) \]

Where:
- \( C \text{ (ppmdv)} = \) EtO concentration (ppmdv) = ppmdv
- \( x = \) oxygen content of corrected gas (%) = 7.00 %
- \( O_2 = \) proportion of oxygen in the gas stream by volume (%) = %
- \( 20.9 = \) oxygen content of ambient air (%) = 20.9 %
- \( C \text{ (ppmdv - O2)= EtO concentration corrected to 7% O2 (ppmdv example)} = \) ppmdv @ 7%O2

10. EtO concentration corrected to 12% CO2 (ppmdv example)

\[ C \text{ (ppmdv@12%CO2)} = C \text{(ppmdv)} \times \left( \frac{y}{CO_2} \right) \]

Where:
- \( C \text{ (ppmdv)} = \) EtO concentration (ppmdv) = ppmdv
- \( y = \) carbon dioxide content of corrected gas (%) = 12.00 %
- \( CO_2 = \) proportion of carbon dioxide in the gas stream by volume (%) = %
- \( C \text{ (ppmdv - CO)= EtO concentration corrected to 12% CO2 (ppmdv example)} = \) ppmdv @ 12%CO2
11. EtO emission rate (lb/hr)

\[ E_{lb/hr} = C \left( \frac{lb}{dscf} \right) \times Q_{std} \times 60 \]

Where:
- \( C \) (lb/dscf) = EtO concentration (lb/dscf) = lb/dscf
- \( Q_{std} \) = volumetric flow rate at standard conditions, dry basis (dscfm) = dscfm
- 60 = conversion factor (min/hr) = 60 min/hr
- \( E_{lb/hr} \) = EtO emission rate (lb/hr) = lb/hr

12. EtO emission rate (kg/hr)

\[ E_{kg/hr} = C \left( \frac{lb}{dscf} \right) \times 60 \times 0.454 \]

Where:
- \( C \) (lb/dscf) = EtO concentration (lb/dscf) = lb/dscf
- \( Q_{std} \) = volumetric flow rate at standard conditions, dry basis (dscfm) = dscfm
- 60 = conversion factor (min/hr) = 60 min/hr
- 0.454 = conversion factor (kg/lb) = 0.454 kg/lb
- \( E_{kg/hr} \) = EtO emission rate (kg/hr) = kg/hr

13. EtO emission rate (gm/sec)

\[ E_{gm/sec} = C \left( \frac{lb}{dscf} \right) \times \frac{454}{60} \]

Where:
- \( C \) (lb/dscf) = EtO concentration (lb/dscf) = lb/dscf
- \( Q_{std} \) = volumetric flow rate at standard conditions, dry basis (dscfm) = dscfm
- 60 = conversion factor (sec/min) = 60 sec/min
- 454 = conversion factor (g/lb) = 454.515 gm/lb
- \( E_{gm/sec} \) = EtO emission rate (gm/sec) = gm/sec

14. EtO emission rate (Ton/yr)

\[ E_{T/yr} = C \left( \frac{lb}{dscf} \right) \times 60 \times \left( \frac{Cap}{2000} \right) \]

Where:
- \( C \) (lb/dscf) = EtO concentration (lb/dscf) = lb/dscf
- \( Q_{std} \) = volumetric flow rate at standard conditions, dry basis (dscfm) = dscfm
- 60 = conversion factor (min/hr) = 60 min/hr
- Cap = capacity factor for process (hours operated/year) = hours/yr
- 2000 = conversion factor (lb/Ton) = 2,000 lb/Ton
- \( E_{T/yr} \) = EtO emission rate (Ton/yr) = Ton/yr
EtO Control System

15. EtO total emission input (lb/hr)

\[ C_i = \sum_{n=1}^{N} C_n \]

Where:
- \( C_{p,i} \) = Emission input from emission source \( n \) = lb/hr
- \( N \) = total number of emission inputs = 3
- (AAT Inlet, DEOXX Inlet, DBA Inlet)
- \( C_i \) = Total emission input = lb/hr

16. EtO Removal Efficiency%

\[ RE\% = \frac{(C_i - C_o)}{C_i} \]

Where:
- \( C_i \) = Total emission input = lb/hr
- \( C_o \) = Total emission output = lb/hr
- RE\% = Recovery Efficiency (%) = %
Sterigenics
Clean Air Project No. 14004

EtO Control System

EPA Method 320
EtO FTIR Sample Caics

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

1. Dilution Factor of Spike Gas

\[
DF = \frac{\frac{SF}{6}_{spike}}{\frac{SF}{6}_{direct}}
\]

Where:
- \(\frac{SF}{6}_{spike}\) = diluted SF6 concentration measured in spiked sample = ppmwv
- \(\frac{SF}{6}_{direct}\) = SF6 concentration measured directly in undiluted spike gas = ppmwv
- DF = dilution factor of spike gas

2. Concentration of Analyte Corrected for Dilution

\[
U_{dil} = U_a \times (1 - DF)
\]

Where:
- \(U_a\) = concentration of analyte in unspiked sample = ppmwv
- DF = dilution factor of spike gas
- \(U_{dil}\) = concentration of analyte corrected for dilution = ppmwv

3. Bias at spike level

\[
B = S_a - U_{dil} - C_s
\]

Where:
- \(S_a\) = total concentration of analytes in spiked sample = ppmwv
- \(U_{dil}\) = concentration of analyte corrected for dilution = ppmwv
- \(C_s\) = certified concentration of calibration standard * DF = ppmwv
- B = bias at spike level = ppmwv
Sterigenics
Clean Air Project No. 14004

EIO Control System

4. Expected in spiked sample (ppm)

\[ X_E = (X_D)(DF) + (X_O)(1 - DF) \]

Where:
- \( X_D \) = response, direct to analyzer = ppmwv
- \( DF \) = dilution factor (dimensionless) = ppmwv
- \( X_O \) = native concentration in flue gas (ppm) = ppmwv
- \( X_E \) = expected in spiked sample (ppm) = ppmwv

5. Spike recovery (%)

\[ \%SR = \left( \frac{X_S}{X_E} \right) \times 100 \]

Where:
- \( X_S \) = spiked concentration (ppm) = ppmwv
- \( X_E \) = expected in spiked sample (ppm) = ppmwv
- 100 = conversion constant (%/decimal)
- \( \%SR \) = spike recovery (%) = %

6. Correction Factor (CF)

\[ CF = \frac{1}{1 + \frac{B}{X_E}} \]

Where:
- \( B \) = bias at spike level
- \( X_E \) = expected in spiked sample (ppm)
- CF = analyte correction factor

7. Minimum Detection Limit (MDL)

\[ MDL = 3 \times \text{Stdev}(C_i) \]

<table>
<thead>
<tr>
<th>MDL</th>
<th>Minimum detection Limit (MDL)</th>
<th>ppbdv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stdev(C)</td>
<td>Standard deviation of the concentrations from ten representative spectra taken directly after a background while nitrogen is running through the system.</td>
<td>ppbdv</td>
</tr>
<tr>
<td>( C_i )</td>
<td>Concentrations of ( i ) spectra where ( i = 1 ) through 10</td>
<td>ppbdv</td>
</tr>
</tbody>
</table>
Method 3A Field Sample Calculations
for O2, EtO Control System

Sample data taken from Run 1 and Channel 1

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

1. Average of a calibration series

\[
C_{mce} = \frac{C_1 + C_2 + C_3}{3}
\]

Where:
- \(C_1, C_2, C_3\) = concentrations of 3 consecutive gas samples that are representative of the calibration gas
- \(C_{mce}\) = average concentration of a calibration series = \%dv

In this case the low cal series for channel 1

2a. Calibration Error Check for Hydrocarbons (5% of actual calibration gas value error allowed by Method 25A)

\[
E_{HC} = \text{abs} \left( \frac{C_{mce} - C_{ma}}{C_{ma}} \right) \leq l_{cal}
\]

Where:
- \(C_{mce}\) = average concentration of a calibration series = \%dv
- In this case the low cal series for channel 1
- \(C_{ma}\) = concentration of actual calibration gas value = \%dv
- \(l_{cal}\) = limit for calibration error for hydrocarbons = 5.0%
- \(E_{HC}\) = calibration error check value = NA

2b. Calibration Error Check for non-Hydrocarbons (2% of Instrument Span)

\[
E = \text{abs} \left( \frac{C_{mce} - C_{ma}}{\text{Span}} \right) \leq l_{cal}
\]

Where:
- \(C_{mce}\) = average concentration of a calibration series = \%dv
- In this case the low cal series for channel 1
- \(C_{ma}\) = concentration of actual calibration gas value = \%dv
- \(\text{Span}\) = instrument span value =
- \(l_{cal}\) = limit for calibration error for non-hydrocarbons = 2.0%
- \(E\) = calibration error check value = Pass
EtO Control System

3. System Bias as Percent of Span Value (5% is allowed)

\[ E_{Bias} = abs \left( \frac{C_{mf} - C_{mce}}{Span} \right) \leq l_{bias} \]

Where:
- \( C_{mce} \) = average concentration of a calibration series = %dv
  - in this case the High cal series for channel 1
- \( C_{mf} \) = calibration error response concentration for Cal01 = %dv
- \( Span \) = instrument span value = %dv
- \( l_{bias} \) = limit for system bias error = 5.0%
- \( E_{bias} \) = calibration bias error check value = Pass

4. System Drift as Percent of Span Value (3%)

\[ E_{Drift} = abs \left( \frac{C_{mf} - C_{mi}}{Span} \right) \leq l_{drift} \]

Where:
- \( C_{mf} \) = calibration error response concentration for Cal01 (final) = %dv
- \( C_{mi} \) = calibration error response concentration for Cal00 (initial) = %dv
- \( Span \) = instrument span value = %dv
- \( l_{drift} \) = limit for system drift error = 3.0%
- \( E_{drift} \) = calibration drift error check value = Pass

5. Average Concentration for an entire Run

\[ C = \frac{\sum_{i=1}^{N} C_i}{N} \]

Where:
- \( C_i \) = All concentration readings for the entirety of Run 1 = %dv
  - for the monitor looking for O2 on channel 1
- \( N \) = total number of readings in Run 1 = 0
- \( C \) = average O2 concentration for Run 1 = %dv
6. Drift-Corrected Average Concentration for an entire Run

\[
C_{DC} = \left( C - \frac{C_{oi} + C_{of}}{2} \right) \left( \frac{C_{ma}}{C_{mi} + C_{mf}} - \frac{C_{oi} + C_{of}}{2} \right)
\]

- \( C_{ma} \) = concentration of actual calibration gas value = %dv
- \( C \) = average O2 concentration for Run 1 = %dv
- \( C_{mi} \) = calibration error response concentration for Cal00 (initial) = %dv
- \( C_{mf} \) = calibration error response concentration for Cal00 (final) = %dv
- \( C_{oi} \) = calibration error response concentration for Cal00 (initial) = %dv
- \( C_{of} \) = calibration error response concentration for Cal00 (final) = %dv
- \( C_{DC} \) = drift corrected average concentration for Run 1 = %dv

for zero gas

End of Appendix
APPENDIX C: FIELD DATA SHEETS
# METHOD 1 FIELD DATA SHEET

**TEST LOCATION:**

**UNIT:**

<table>
<thead>
<tr>
<th>Client</th>
<th>Project No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plant</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Source of Dimensional Info.**

- [ ] Field Meas
- [ ] Drawings
- [ ] Other

<table>
<thead>
<tr>
<th>Duct Dimensions</th>
<th>(in.)</th>
<th>Area (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port Length</th>
<th>(in.)</th>
<th>Port Diameter (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equivalent Diameter (Rectangular Ducts) ( D_{eq} = 2LR(L+H) )</th>
<th>(in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disturbance to Port Distance Upstream (A)</th>
<th>( x ) D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disturbance to Port Distance Downstream (B)</th>
<th>( x ) D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Points Required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Points / Port Required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

## Location Schematic

Show side view of stack, including disturbances and port placement.

<table>
<thead>
<tr>
<th>[N] [UP]</th>
</tr>
</thead>
</table>

## Port Schematic (see reference on back)

Show cross-section of stack, indicating port placement.

Gas Flow: [N] [OUT] of page

<table>
<thead>
<tr>
<th>[N] [UP]</th>
</tr>
</thead>
</table>

**Note:** condition of port (i.e. rusted, heavy build-up, etc.)

Circle correct bracketed directions on diagrams.

**Data Recorded By:**

<table>
<thead>
<tr>
<th>CleanAir Engineering, Inc</th>
</tr>
</thead>
</table>

**QA/QC:**

<table>
<thead>
<tr>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Method 1 Reference Information

**Sampling Points**
- Stack diameter > 24 inches
- Stack diameter = 12-24 in.

**Traverse Points**
- Stack diameter > 24 inches
- Stack diameter = 12-24 in.

**O.D., I.D., & Wall Thickness Dimensions For Given Pipe Sizes**

<table>
<thead>
<tr>
<th>Pipe Size</th>
<th>O.D.</th>
<th>I.D.</th>
<th>Wall Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4</td>
<td>1.05</td>
<td>0.824</td>
<td>0.113</td>
</tr>
<tr>
<td>1</td>
<td>1.315</td>
<td>1.049</td>
<td>0.133</td>
</tr>
<tr>
<td>1-1/4</td>
<td>1.66</td>
<td>1.38</td>
<td>0.14</td>
</tr>
<tr>
<td>1-1/2</td>
<td>1.9</td>
<td>1.61</td>
<td>0.145</td>
</tr>
<tr>
<td>2</td>
<td>2.375</td>
<td>2.057</td>
<td>0.154</td>
</tr>
<tr>
<td>2-1/2</td>
<td>2.675</td>
<td>2.459</td>
<td>0.203</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>3.058</td>
<td>0.216</td>
</tr>
<tr>
<td>3-1/2</td>
<td>4</td>
<td>3.548</td>
<td>0.226</td>
</tr>
<tr>
<td>4</td>
<td>4.5</td>
<td>4.026</td>
<td>0.237</td>
</tr>
<tr>
<td>6</td>
<td>6.625</td>
<td>6.085</td>
<td>0.28</td>
</tr>
<tr>
<td>8</td>
<td>8.625</td>
<td>7.981</td>
<td>0.322</td>
</tr>
</tbody>
</table>

**Pipe Size NPT**
- 1/8"  1/4"  1/2"  3/4"
- 1"    2"    3"    4"    

The table shows the outside (O.D.) and inside (I.D.) diameters, as well as the wall thicknesses for schedule 40 pipe sizes. The dimensions vary according to the schedule thickness (40, 10, or 5). The most common is 40.

For example, a 1-1/4 inch schedule 40 pipe size has a 1.660 inch O.D., a 1.380 inch I.D., and a 0.140 inch wall thickness. The wall thickness is the difference between the O.D. and I.D. divided by two (1.66-1.38) / 2 = 0.140.
## CYCLONIC FLOW CHECK
### FIELD DATA SHEET

**Cross-Section of Test Location**

<table>
<thead>
<tr>
<th>[N]</th>
<th>[UP]</th>
</tr>
</thead>
</table>

### Client Information
- Client: ____________________
- Project No.: ____________
- Plant: _______________
- Date: ____________
- Meter Operator: ____________
- Probe Operator: ____________

### Duct Dimensions
- Duct Dimensions (in.):
  - Static Press. (in. H₂O): [ ]
  - Port Len. (in.): [ ]
  - Gas Flow: [ ]
  - Point No. 1: all the way

### Start Time: ___
### Stop Time: ___

### Velocity Pressure Data

<table>
<thead>
<tr>
<th>Traverse Point Number</th>
<th>Velocity Pressure at 0° (in. H₂O)</th>
<th>Rotation Angle a giving 0 v.p.</th>
<th>Traverse Point Number</th>
<th>Velocity Pressure at 0° (in. H₂O)</th>
<th>Rotation Angle a giving 0 v.p.</th>
<th>Traverse Point Number</th>
<th>Velocity Pressure at 0° (in. H₂O)</th>
<th>Rotation Angle a giving 0 v.p.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Total of absolute values of a
### Average of absolute values of a

**Procedure:** Position the pitot perpendicular to the expected direction of gas flow (0 degrees reference). Note the velocity pressure. If zero, acceptable flow condition exists, if not zero, rotate the pitot up to +/- 90 degrees (rotation angle called alpha a). Determine and record the value of the rotation angle (a) to the nearest degree. See Reference Method 1, Section 2.4. Calculate the average of the absolute values of a. Assign values of zero to points which require no rotation. If the average of a is greater than 20 degrees, the overall condition of the flow is unacceptable and an alternative method of velocity and sample traversing must be used.

**QAQC:**
**Date:** ________
**VELOCITY DETERMINATION**

**FIELD DATA SHEET**

![Cross-Section of Test Location Diagram]

- **Run:**
  - **ALT-011 Ck.**
  - **or NA**

- **Start Time:**
- **Stop Time:**

- **Static Press. (in. H₂O):**
- **Post-Test Leak Check:**
  - **Pass**
  - **Fail**

- **Traverse Point Number:**
- **Stack Temp. Tₛ (°F):**
- **Velocity Head ΔP (in. H₂O):**
- **Notes:**

- **Total:**
- **Average:**

---

*Sum of square roots.*

Circle correct bracketed units on data sheet.

**QAVQC:**

**NIST Thermocouple Serial Number:**

**Date:**
## VELOCITY & CYCLONIC FIELD DATA SHEET

**Test Location:**

**Unit:**

### Cross-Section of Test Location

- **Amb. Temp. (°F):**
- **Pbar:**
- **[in. Hg] [mbar]:**
- **Pilot Cp:**
- **Probe I.D. No.:**
- **Duct Diameters from Disturbance**
  - Downstream
  - Upstream
- **First Point All the Way [In] [Out]:**
- **Port Len. (in.):**
- **Gas Flow [In] [Out]:**
- **Of Page:**
- **Duct Dimensions (in.):**

### Procedure: Position the pilot perpendicular to the expected direction of gas flow (0 degrees reference). Note the velocity pressure. If zero, acceptable flow condition exists, if not zero, rotate the pilot up to ± 90 degrees (rotation angle called alpha α). Determine and record the value of the rotation angle (α) to the nearest degree.

### Post-Test Leak Check:
- **Pass:**
- **Fail:**
- **Good:**
- **Bad:**

### Traverse Point:
- **Number:**
  - **Stack Temp. \( T_2 \) (°F):**
  - **Velocity Head \( \Delta P \) (in. H₂O):**
  - **Velocity Pressure at \( 0^\circ \) (in. H₂O):**
  - **Rotation Angle \( \alpha \) giving 0 v.p.:**

### Notes

<table>
<thead>
<tr>
<th>Traverse Point Number</th>
<th>Stack Temp. ( T_2 ) (°F)</th>
<th>Velocity Head ( \Delta P ) (in. H₂O)</th>
<th>Velocity Pressure at ( 0^\circ ) (in. H₂O)</th>
<th>Rotation Angle ( \alpha ) giving 0 v.p.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Total

<table>
<thead>
<tr>
<th>Traverse Point Number</th>
<th>Stack Temp. ( T_2 ) (°F)</th>
<th>Velocity Head ( \Delta P ) (in. H₂O)</th>
<th>Velocity Pressure at ( 0^\circ ) (in. H₂O)</th>
<th>Rotation Angle ( \alpha ) giving 0 v.p.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Average

- **Sum of square roots.**
- **Circle correct bracketed units on data sheet.**

**QA/QC:**

- **Date:**

---

* C - 7

---

**CleanAir Engineering**

Copyright © 2006 Clean Air Engineering, Inc.

---

FIGURE Velocity_Cyclonic_200a.xlsx. October 2016
This Page Intentionally Left Blank
APPENDIX D: CLEANAIR RESUMES AND CERTIFICATIONS
Ken Sullivan
Project Manager

Professional Profile

Mr. Sullivan has 10 years of experience in wet method and instrumental testing for engineering, diagnostic, performance guarantee, and compliance purposes. Initially hired as a field technician in 2009, Mr. Sullivan started leading test programs in 2011, and has been project managing since 2014. Mr. Sullivan has been involved with projects utilizing EPA Methods 1 through 29, 201, 201A, 202, 320, Conditional Test Method (CTM) 027, CTM-013, and Other Test Methods (OTM) 027 and OTM-028, from the planning stage to field testing and reporting. In addition, Mr. Sullivan has extensive experience leading Engineers and Field Technicians to execute applicable EPA methods for numerous projects worth hundreds of thousands of dollars to clients. Through his experience, he has attained valuable testing skills, such as setting up and operating continuous emissions monitoring systems (CEMS) for various pollutants, on-site mercury analysis with an Ohio Lumex spectrometer, on-site laboratory analysis for numerous methods, experience in Micro GC (gas chromatography), and in FTIR (Fourier Transform Infrared Spectrometer) analysis.

Mr. Sullivan has been responsible for compliance and diagnostic test programs performed in a multitude of states across the country. He has also been responsible for engineering and consulting studies performed in Canada, Netherlands, Spain, and South Africa.

Relevant Experience

Coal Industry; Labadie and Meramec, MO
Led a large field crew in executing various EPA methods, including 30B, 5/202, 29, 26, 3A, 7E, and 10 at multiple locations to determine design variables for retrofitted wet scrubbers. Set-up and operated a CEMS showing real-time NOx, O2, CO2, and CO emissions. Performed on-site mercury analysis with an Ohio Lumex spectrometer in accordance with EPA Method 30B. Assisted in determining the concentration deviation between elemental and oxidized mercury at the stack to establish scrubber performance, carbon injection interference, and other design constraints.

Natural Gas Delivery (Pipeline); Middlebourne, WV
Project managed a test program to determine sources and locations of black powder along various points of the pipeline, by utilizing a personally designed modified EPA Method 17 sampling apparatus. Led field execution, collected samples and recovered sample filters on-site while maintaining communication with the client and several other parties involved to resolve the issue of equipment malfunction and degradation due to the black powder buildup.

Manufacturing Industry; Apeldoorn, Netherlands
Planned, managed, led, and executed this job from start to finish. Ran an FTIR and performed EPA Methods 320 and 25A to provide the client with carbon monoxide, hydrocarbon, and formaldehyde diagnostic data at several key points along the process line. Processed and analyzed a plethora of raw data into utile and interpretable formats and drafted an in-depth report.
Carbon Capture; Cohasset, MN
Project managed a test program designed to determine the input/output chemistry of a non-commercial scale carbon capture system prototype. The test program included measurements for over 20 compounds of interest, utilizing FTIR, GC-FPD, Micro GC, FID, UV, and photometric technologies. Developed extensive analysis that included studies in atom balance, removal, minimum detection limit, and exponential decay.

Coal Industry; Secunda, South Africa
Aided in accumulating dust concentration data and mass loading at various points in the Fluidized Catalytic Cracking Unit (FCCU), utilizing EPA Method 17. Was involved in on-site recovery and particle size analysis, and used a TESTO 350XL to determine effluent gas composition. Also trained a South African testing company how to efficiently and accurately execute methods concerning filterable particulate matter (FPM) collection.

Oil Refining Industry; Detroit, MI
Aided multi-million net-worth client in meeting new emission limits required by a permit issued by the Michigan Department of Environmental Quality (MDEQ) and Sierra Club due to implications of the Detroit Heavy Oil Upgrade Project (DHOUP). Executed several different methods, including EPA Methods 1, 2, 3A, 4, 5/202, 6C, 7E, 25A, 10, and 18, and ASTM Draft CCM, at various locations throughout the Detroit refinery. Managed every test program from planning to reporting.

Professional Certifications & Qualifications
OSHA 10-Hour
NSC CPR/AED Certification
NSC First-Aid Certification

Qualified Source Testing Individual (QSTI) Test Exams (Certificate No. 2012-711):
- Group 1 (Manual Gas Volume and Flow Measurements and Isokinetic Particulate Sampling Methods) – exam passed on 10/22/2015 (certification attached)
- Group 2 (Manual Gaseous Pollutants Source Sampling Methods) – exam passed on 4/28/2016 (certification attached)
- Group 3 (Gaseous Pollutants Source Sampling Methods) – exam passed on 4/27/2016 (certification attached)
- Group 4 (Hazardous Metals Measurement Methods) – exam passed on 6/1/2017 (certification attached)

Qualified Individual (QI)

<table>
<thead>
<tr>
<th>Field Test Leader</th>
<th>Ohio Lumex (EPA Method 30B Analysis)</th>
<th>EPA Methods 320/321 (Extractive FTIR)</th>
<th>Field Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Manager</td>
<td>Modified EPA Conditional Test Method 013 / Draft ASTM Controlled Condensation Method</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


Education

Bachelor of Science in Civil Engineering with a focus in Environmental and Atmospheric Sciences (with honors), 2009
University of Illinois; Urbana-Champaign

Bachelor of Science in Physics, 2006
Elmhurst College; Elmhurst, Illinois
SOURCE EVALUATION SOCIETY

Qualified Source Testing Individual

LET IT BE KNOWN THAT

KENNETH J. SULLIVAN

HAS SUCCESSFULLY PASSED A COMPREHENSIVE EXAMINATION AND SATISFIED EXPERIENCE REQUIREMENTS IN ACCORDANCE WITH THE GUIDELINES ISSUED BY THE SES QUALIFIED SOURCE TEST INDIVIDUAL REVIEW BOARD FOR

MANUAL GAS VOLUME MEASUREMENTS AND ISOKINETIC PARTICULATE SAMPLING METHODS

ISSUED THIS 22ND DAY OF OCTOBER 2015 AND EFFECTIVE UNTIL OCTOBER 21ST, 2020

Peter R. Westlin, QSTI/QSTO Review Board
Peter S. Pakalnis, QSTI/QSTO Review Board
Theresa Lowe, QSTI/QSTO Review Board

J. Wade Bice, QSTI/QSTO Review Board
Karen D. Kajiya-Mills, QSTI/QSTO Review Board

Theresa Lowe, QSTI/QSTO Review Board

CERTIFICATE NO.
2012-711

Bruce Randall QSTI/QSTO Review Board
LET IT BE KNOWN THAT

KENNETH J. SULLIVAN

HAS SUCCESSFULLY PASSED A COMPREHENSIVE EXAMINATION AND SATISFIED EXPERIENCE REQUIREMENTS IN ACCORDANCE WITH THE GUIDELINES ISSUED BY THE SES QUALIFIED SOURCE TEST INDIVIDUAL REVIEW BOARD FOR MANUAL GASEOUS POLLUTANTS SOURCE SAMPLING METHODS

ISSUED THIS 28TH DAY OF APRIL 2016 AND EFFECTIVE UNTIL APRIL 27TH, 2021

CERTIFICATE NO. 2012-711

Peter R. Wessels, QST/QSTO Review Board

KAREN L. KRAWIECKI, QST/QSTO Review Board

Bruce Randall QST/QSTO Review Board

Peter S. Peralta, QST/QSTO Review Board

Theresa Lowe, QST/QSTO Review Board
SOURCE EVALUATION SOCIETY

Qualified Source Testing Individual

LET IT BE KNOWN THAT

KENNETH J. SULLIVAN

HAS SUCCESSFULLY PASSED A COMPREHENSIVE EXAMINATION AND SATISFIED EXPERIENCE REQUIREMENTS IN ACCORDANCE WITH THE GUIDELINES ISSUED BY THE SES QUALIFIED SOURCE TEST INDIVIDUAL REVIEW BOARD FOR

GASEOUS POLLUTANTS INSTRUMENTAL SAMPLING METHODS

ISSUED THIS 27TH DAY OF APRIL 2016 AND EFFECTIVE UNTIL APRIL 26TH, 2021

Peter R. Westlin, QSTI/QSTO Review Board

Peter S. Pakalnis, QSTI/QSTO Review Board

Theresa Lowe, QSTI/QSTO Review Board

J. Wade Bice, QSTI/QSTO Review Board

Karen D. Kajiy-Mills, QSTI/QSTO Review Board

Bruce Randall QSTI/QSTO Review Board

CERTIFICATE NO. 2012-711
SOURCE EVALUATION SOCIETY

Qualified Source Testing Individual

LET IT BE KNOWN THAT

KENNETH J. SULLIVAN

HAS SUCCESSFULLY PASSED A COMPREHENSIVE EXAMINATION AND SATISFIED
EXPERIENCE REQUIREMENTS IN ACCORDANCE WITH THE GUIDELINES
ISSUED BY THE SES QUALIFIED SOURCE TEST INDIVIDUAL REVIEW BOARD FOR

HAZARDOUS METALS MEASUREMENT METHODS

ISSUED THIS 1ST DAY OF JUNE 2017 AND EFFECTIVE UNTIL MAY 31ST, 2022

Peter R. Westlin, QSTI/QSTO Review Board

Peter S. Pakalnis, QSTI/QSTO Review Board

Theresa Lowe, QSTI/QSTO Review Board

J. Wade Bice, QSTI/QSTO Review Board

Karen D. Kajiy-Mills, QSTI/QSTO Review Board

Bruce Randall QSTI/QSTO Review Board

CERTIFICATE NO.
2012-711
Scott Brown
Senior Project Manager / Quality Director

Professional Profile
Mr. Brown has more than 28 years of extensive environmental testing. He has been with Clean Air Engineering since March 2000. Presently, he is also the acting Corporate Quality Director in which he oversees all aspects of CleanAir’s Quality Management System in terms of compliance with ISO 17025, Field Sampling and Measurement Organization Sector, and ASTM D7036 Standards.

Mr. Brown took a position as a Senior Project Manager for the Advanced Monitoring group in 2014. With this group, he oversaw the MET-80 Mercury Sorbent System projects, including Factory Acceptance Tests (FATs), installations, QA/QC Plans, test protocol development and oversight of PS 12A/B relative accuracy test audit programs (RATAs).

Prior to joining the CleanAir team, Mr. Brown worked as a Project Manager for Best Environmental in Hayward, California, and as a Technician, Senior Technician and, ultimately, Department Manager for Normandeau Associates in Richmond, California.

Relevant Experience
Municipal Solid Waste (MSW); Ft. Lauderdale, Pompano Beach, Tampa, and St. Petersburg, Florida
Managed and performed yearly Subpart Cb compliance and RATA testing at four (4) plants in Florida over the course of 14 years. Projects included protocol development, test leadership and final report creation writing for all plants. The testing included EPA Methods 5, 9, 13B, 16A, 22, 23 and 29, as well as RATAs on all units at all facilities.

Coal-Fired Power; Various Locations
Managed several engineering studies at various coal-fired power plants to assess flue gas desulfurization (FGD) scrubbers in regard to SO2/SO3, metals (including Hg) and hydrogen halides, and particulate abatement. Mr. Brown oversaw the planning, testing and final report writing for all associated projects. The testing included EPA Methods 5B/202, 26A and 29, as well as the Ontario Hydro Method or modified Method 30B for speciated mercury. These projects often included on-site analysis of SO3 by ion chromatography, as well as on-site mercury analysis by thermal desorption atomic absorption spectrometry.

Coal-Fired Power; Various Locations
Project managed, test led and wrote the test reports for the APC performance guarantee on the newly installed selective catalytic reduction (SCR) systems, Jet Bubbling Reactors (JBR), FGDs, and electrostatic precipitators (ESP) at facilities in Indiana and Illinois. The testing included efficiencies of SO2 to SO3 conversion, mercury removal and conversion, particulate removal and NOx removal, as well as ammonia slip. These projects often included on-site ion chromatography for SO3 and ammonia, as well as analysis of mercury.
Secondary Aluminum; Various Locations
Managed and performed Subpart RRR NESHAP compliance tests at three (3) secondary aluminum plants across the United States. Mr. Brown has prepared testing protocols, designed the test programs and completed final reports for all three facilities. EPA Methods 23 and 5/26A were included in all test programs.

Paper Industry; Various Locations
Managed and tested various paper mill facilities in Wisconsin and California. Testing included EPA Methods 3A, 6C, 7E, 10 and 25A for gaseous components, Methods 5/202 and 201A (PM10) for particulates, and Methods 16A and 16C for total reduced sulfur. Mr. Brown performed many of these tests himself and also designed the test protocol. Ultimately, he completed all reporting requirements for the projects.

Gas Turbine; Covert, Michigan
Managed start-up compliance tests for three (3) gas turbines. Testing included EPA Methods 5/202, 201A (PM10), 320 (FTIR for formaldehyde), Conditional Method 0027 (ammonia), as well as all gaseous components (NOx, CO and THC). Mr. Brown designed the test protocol and, ultimately, completed all reporting requirements for this project.

Refinery; Richmond, California
Managed and performed yearly compliance RATA, Method 8 (SO2) and Method 5B (non-sulfuric acid particulate matter), as well as quarterly cal gas audits and Method 5B testing of the fluidized catalytic cracking unit. Also involved in testing many other processes at the refinery.

Chemical; Various Locations
Performed hazardous waste trial burn project on the MS-HAF and HS-HAF Units. Utilized BIF methodology for hexavalent chromium, hydrogen chloride, multiple metals and performance specifications for continuous emission monitoring of CO and O2.

Steel Production; Freemont, California
Conducted PCDD/PCDF, multiple metals, hexavalent chromium and PAH tests on the main baghouse. Performed all laboratory duties, including chemical preparation and sample recovery.

Landfill; California
Conducted test programs on various landfill gas flares in California. Testing at all flares included CO, NOx, THC, SO2, landfill gas characterization and hazardous air pollutant (HAPS) destruction efficiency.

Asphalt Batch Plants; California
Tested many asphaltic rotary kiln batch plants run all over northern California. Performed particulate, THC, NOx, O2 and CO testing at the baghouse outlets.
Professional Certifications & Qualifications

Member of ASTM International
Member of the Source Evaluation Society
Acting Member of the Stack Testing Accreditation Council (STAC) Board of Directors

OSHA 10-Hour
Hazardous Materials Shipping Certification
NSC CPR/AED Certification
NSC First-Aid Certification

Qualified Source Testing Individual (QSTI) Test Exams (Certificate No. 2007-053):
- Group 1 (Manual Gas Volume and Flow Measurements and Isokinetic Particulate Sampling Methods) – exam passed on 06/01/2017 (certification attached)
- Group 2 (Manual Gaseous Pollutants Source Sampling Methods) – exam passed on 03/15/2019
- Group 3 (Gaseous Pollutants Source Sampling Methods) – exam passed on 06/01/2017 (certification attached)
- Group 4 (Hazardous Metals Measurement Methods) – exam passed on 04/10/2015 (certification attached)

Qualified Individual (QI)

<table>
<thead>
<tr>
<th>Field Test Leader</th>
<th>Field Laboratory</th>
<th>Project Manager</th>
<th>Other Test Method 29 (Hydrogen Cyanide)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW-846 Test Method 0061 / EPA Method 306 (Chromium)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Education

Bachelor of Science in Environmental Science, 1986
University of Illinois; Urbana-Champaign, Illinois
Qualified Source Testing Individual

SCOTT A. BROWN

HAS SUCCESSFULLY PASSED A COMPREHENSIVE EXAMINATION AND SATISFIED EXPERIENCE REQUIREMENTS IN ACCORDANCE WITH THE GUIDELINES ISSUED BY THE SES QUALIFIED SOURCE TEST INDIVIDUAL REVIEW BOARD FOR MANUAL GAS VOLUME MEASUREMENTS AND ISOKINETIC PARTICULATE SAMPLING METHODS.

ISSUED THIS 1ST DAY OF JUNE, 2017 AND EFFECTIVE UNTIL MAY 31ST, 2022.

CERTIFICATE NO. 2007-053

J. Wade Bice, QSTI/QSTO Review Board
Karen D. Kajiyama-Kills, QSTI/QSTO Review Board
Bruce Randolf, QSTI/QSTO Review Board

Peter R. Westin, QSTI/QSTO Review Board
Peter S. Pakulis, QSTI/QSTO Review Board
Theresa Lowes, QSTI/QSTO Review Board
LET IT BE KNOWN THAT

SCOTT A. BROWN

HAS SUCCESSFULLY PASSED A COMPREHENSIVE EXAMINATION AND SATISFIED EXPERIENCE REQUIREMENTS IN ACCORDANCE WITH THE GUIDELINES ISSUED BY THE SES QUALIFIED SOURCE TEST INDIVIDUAL REVIEW BOARD FOR GASEOUS POLLUTANTS INSTRUMENTAL SAMPLING METHODS

ISSUED THIS 1ST DAY OF JUNE 2017 AND EFFECTIVE UNTIL MAY 31ST, 2022

CERTIFICATE NO. 2007-053

Peter R. Wokle, OST/QSTG Review Board
J. Wade Bice, OST/QSTG Review Board
Kara D. Kalyn-Mills, OST/QSTG Review Board
Bruce Randall, OST/QSTG Review Board
Theresa Lowe, OST/QSTG Review Board

D - 14
LET IT BE KNOWN THAT

SCOTT A. BROWN

HAS SUCCESSFULLY PASSED A COMPREHENSIVE EXAMINATION AND SATISFIED EXPERIENCE REQUIREMENTS IN ACCORDANCE WITH THE GUIDELINES ISSUED BY THE SES QUALIFIED SOURCE TEST INDIVIDUAL REVIEW BOARD FOR

HAZARDOUS METALS MEASUREMENT METHODS

ISSUED THIS 16TH DAY OF APRIL 2015 AND EFFECTIVE UNTIL APRIL 15TH, 2020

CERTIFICATE NO.
2007-053

Peter R. Westfall, QST/ISTS0 Review Board

Bruce Randal QST/ISTS0 Review Board

Peter S. Peralta, QST/ISTS0 Review Board

Theresa Lowe, QST/ISTS0 Review Board