

WASTE MANAGEMENT, INC. 610 BENNET ROAD | HOMER, GEORGIA 30547

R&B LANDFILL COAL COMBUSTION RESIDUALS (CCR) MANAGEMENT PLAN ANNUAL UPDATE PERMIT #: 006-009D (MSWL)

ANNUAL CCR MANAGEMENT PLAN AND DUST CONTROL REPORT

CCR Management Annual Report	Page
SUMMARY	.2
FACILITY LOCATION AND DESCRIPTION	.2
CCR MANAGEMENT ACTIVITIES	.2
CCR and Non-CCR Waste Volumes	.2
CCR Source	.3
CCR Characterization and Compatibility	.3
CCR Placement, Compaction and Cover	.3
Record Keeping	.4
Fugitive Dust Control	.4
Leachate Collection and Removal System	.4
Stormwater Management System	.4
Environmental Monitoring	.5
Emergencies	.5
Documentation of Notification of Local Governments	.5
CONCLUSION	.5

Appendix A
CCR Compatibility and Characterization Data

ATLANTIC COAST CONSULTING, INC.

Annual CCR Management Plan and Dust Control Report

This annual CCR management and dust control report was prepared in accordance with OCGA Solid Waste Management Rule 391-3-4-.07(5) and the Annual Coal Combustion Residuals (CCR) Management Plan and Dust Control Report Guidance Document provided by Georgia Department of Natural Resources, Environmental Protection Division (EPD) dated May 2018.

SUMMARY:

The R&B Landfill is composed of three distinct disposal areas identified as the East, Central, and West Disposal Units. The East Disposal Unit was closed and capped in 2006. The Central Disposal Unit is separated from the East Disposal Unit by Frank Bennett Road while the West Disposal Unit is separated from the Central Unit by Carlan Creek and is the current area of active waste placement. The current Design and Operation (D&O) plan was approved by EPD on January 23, 2017 with the current CCR Management Plan being established through a minor modification approved by Georgia's Environmental Protection Division (EPD) on May 18, 2017.

FACILITY LOCATION AND DESCRIPTION:

The R&B Landfill is located at 610 Bennett Road, Homer, Georgia. The landfill sits on a 970.59 acre tract of land located in Banks County in a rural area approximately 3.5 miles northeast of the center of Homer, Georgia. The landfill entrance is located approximately four miles southeast of Interstate 85.

CCR MANAGEMENT ACTIVITIES:

CCR and Non-CCR Waste Volumes:

R&B currently receives CCR materials for disposal in the active West Disposal Unit. It is currently permitted to receive CCR at an estimated rate 1,000,000 tons per year with an estimated daily maximum of 3,500 tons. These limits are defined in Section 1 of the current Operational Narrative shown on Sheet 44 of the Design and Operation (D&O) Plans. The facility's capacity for placement of CCR material in the West and Central Units was established by verifying that the facility's design is able to withstand the additional loads presented by the higher density CCR material. The basis of the design verification provided in the May 18, 2017 CCR Management Minor Modification was an overall waste mass density of 115 lb/CF (3,105 lb/CY). This density takes into account the elevated waste mass density experienced by the containment systems when subjected to the CCR waste placement.

The CCR material received at this facility between January 1, 2018 and December 31, 2018 had a recorded weight of 780,727 tons. This is below the upper limits established by the Operational Narrative. Therefore, no adjustments are needed to the plan or design components related to stability, leachate collection or base grade settlement.

The maximum amount of CCR received in any given day between January 1, 2018 and December 31, 2018 was 3,932 tons. This exceeds the estimated max daily weight of 3,500 tons shown in Section 1 of the Operational Narrative. This single exceedance causes no design

ATLANTIC COAST CONSULTING, INC.

Annual CCR Management Plan and Dust Control Report

concerns as it does not impact the waste mass characteristics related to composition and density. Therefore, no adjustments are needed to the plan or design components related to stability, leachate collection or base grade settlement.

CCR Source:

The only CCR material received at the facility was sourced from Duke Energy as required by Part 14 of the CCR Disposal Procedures on Sheet 46 of the D&O Plan. It should be noted that the CCR interned at the landfill is from the same source whose material was used as the basis of design for the original CCR Management Permit. Additionally, its 'as received' physical condition has remained generally consistent throughout the disposal process and no new CCR waste streams were accepted by the facility during this reporting period. Additionally, the facility does not utilize CCR material as a solidification agent for liquid wastes.

CCR Characterization and Compatibility:

Parts 14 and 15 of the CCR Disposal Procedures on Sheet 46 of the D&O Plan requires all CCR waste streams entering the facility be tested for characterization and compatibility using the Toxicity Characteristic Leaching Procedure (TCLP) 8 RCRA Metals by SW-846 Method 1311 and a Paint Filter Test by SW-845 Method 9095.

As noted above, the material source and general physical characteristics have remained consistent since the CCR Management permit's initial issue date and the customer has not notified the facility of any significant process changes. Therefore, additional testing to verify characterization and compatibility have not been required. The original laboratory results upon which the CCR Management is based are repeated in Appendix A for reference. Please note that this laboratory analysis, although specific for Superior Landfill, represents typical analytical data found in CCR material across all of Waste Management facilities in Georgia.

CCR Placement, Compaction and Cover:

The facility is permitted to operate two independent working faces. A second working face is required to be located at least 100 feet from the primary working face and is intended to support smaller vehicles and operational requirements. The combined area of the individual working faces operated during this period did not exceed 40,000 square feet. The maximum area of the working face and their management were conducted in accordance with Section 2 of the Operational Narrative on Sheet 44. Daily cover for the working faces were applied, at a minimum, at the end of each work day in accordance with Section 3 of the Odor Management Plan and CCR Disposal Procedures on Sheet 46.

CCR material was 'block' or mono filled in the West Disposal Unit. As required, in the CCR Disposal Procedures on Sheet 46 of the D&O Plan, a test pad area was established to determine placement and compaction requirements necessary to obtain a minimum compaction of 90% standard proctor. Due to the consistent physical nature of the CCR material and sourcing, the original test pad results have been used to guide placement and

ATLANTIC COAST CONSULTING, INC.

Annual CCR Management Plan and Dust Control Report

compaction efforts to date. The results of the tests are contained in Appendix A and demonstrate compliance with the compaction requirements.

No leachate outbreaks were observed during this reporting period and all cells receiving CCR material had its leachate collection gravel covered with a minimum of 12-inches of protective cover soil as required by the CCR disposal procedures on Sheet 46 of the D&O Plan. Additionally, none of the previously placed CCR material was harvested for beneficial re-use.

Record Keeping:

Records of all waste transported to the site along with daily logs and operational records are retained at the facility's site office building. All record keeping is in accordance with the Georgia Rules for Solid Waste Management 391-3-4-.07(3)(u).

Fugitive Dust Control:

The operators at the facility spread and compacted CCR material as it was received. If the CCR material was not spread during operating hours on the day it was received, the operator would use the on-site water truck to maintain the CCR's moisture levels. This procedure was determined to be an efficient and effective method to avoid fugitive dust generation.

The interior and perimeter roads were moisture conditioned using a water truck, as required, between rain fall events to avoid fugitive dust generated from vehicular traffic.

The facility did not receive any complaints related to dust between January 1, 2018 and December 31, 2018 and has remained compliant with requirements established by Air Quality Rule 391-3-1-.02(2)(n)1.

<u>Leachate Collection and Removal System:</u>

The facility's leachate collection, removal and storage system is in good working order with no known issues related to the disposal of CCR wastes.

Stormwater Management System:

The working face(s) were managed to ensure that surface water contacting CCR waste was not discharged into the stormwater management system. This was accomplished by placing and compacting material away from the side slopes, using soil diversion berms near side slopes and by sloping the working face into the waste mass.

The facility did experience two incidents of CCR material entering the stormwater management system. This was the result of two heavy rain eventS that compromised the LF's cover material and carried CCR material downstream into the stormwater surface components (i.e. perimeter ditches and sediment pond). The CCR material deposited in the perimeter ditches and sediment pond was removed and reincorporated into the waste mass at the active working face. Additionally, the grades in the washout area were re-established with compacted cover

Annual CCR Management Plan and Dust Control Report

material. These corrective actions have been successful in preventing further transport of CCR material into the stormwater management system during rain events. To prevent future reoccurrence of these types of washouts, the compacted cover and stormwater controls are regularly inspected to ensure integrity.

Environmental Monitoring:

The environmental monitoring program for the facility was modified during development of the CCR Management Plan to include appropriate Appendix III/IV analytical parameters in accordance with United States Environmental Protection Agency recommendations and Georgia Environmental Protection Division Regulations. The monitoring network (consisting of groundwater wells, surface water, underdrain, and leachate monitoring points) and extended parameter list, based on data collected to date, remains suitable for detection of CCR related constituents. Current data does not suggest confirmed impacts at these monitoring points as a result of handling CCR material. The facility will continue implementing the CCR monitoring program and documenting results to EPD in semi-annual monitoring reports.

Emergencies:

The facility did not experience any events or circumstances that represented an operational or environmental emergency during this reporting period.

Documentation of Notification to Local Governments:

The operation of CCR disposal activities during this reporting period have been in compliance with the currently approved CCR management plans and design parameters. Therefore, no plan modifications or local government notifications are required at this time

CONCLUSION:

The current CCR Management routines required by the facility's Design and Operation Plan has proven to be effective in governing the proper handling and placement of CCR material as required by OCGA's Solid Waste Management Rule 391-3-4-.07(5) and the Guidance Document for Coal Combustion Residuals (CCR) Management Plans dated December 22, 2016.

Annual CCR Management Plan and Dust Control Report Appendix A

CCR Compatibility and Characterization

IN THIS APPENDIX:

- o CCR Analytical Report
- o Test Pad Results

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-138279-1

Client Project/Site: Superior Landfill Waste Char.

For:

Waste Management 1809 West Highway 80 Garden City, Georgia 31408

Attn: Ms. Sarah Rafalowski

Lathyn Smith

Authorized for release by: 5/18/2017 12:54:49 PM

Kathryn Smith, Manager of Project Management (912)354-7858

kathy.smith@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Definitions/Glossary

Client: Waste Management

Project/Site: Superior Landfill Waste Char.

TestAmerica Job ID: 680-138279-1

Qualifiers

GC/MS VOA

X Surrogate is outside control limits

Metals

F1 MS and/or MSD Recovery is outside acceptance limits.

General Chemistry

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Savannah

5/18/2017

Sample Summary

Client: Waste Management

Project/Site: Superior Landfill Waste Char.

TestAmerica Job ID: 680-138279-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-138279-1	Ash-Kraft	Solid	05/02/17 14:55	05/03/17 08:54
680-138279-2	Ash-Grumman	Solid	05/02/17 14:35	05/03/17 08:54

3

4

5

7

8

9

10

11

Case Narrative

Client: Waste Management

Project/Site: Superior Landfill Waste Char.

TestAmerica Job ID: 680-138279-1

Job ID: 680-138279-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE

Client: Waste Management Project: Superior Landfill Waste Char.

Report Number: 680-138279-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 05/03/2017; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 2.8 C.

TCLP VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples Ash-Kraft (680-138279-1) and Ash-Grumman (680-138279-2) were analyzed for TCLP volatile organic compounds (GC-MS) in accordance with EPA SW-846 Methods 1311/8260B. The samples were leached on 05/11/2017 and analyzed on 05/14/2017.

4-Bromofluorobenzene (Surr) recovered low for LCSD 680-479788/4.

Samples Ash-Kraft (680-138279-1)[20X] and Ash-Grumman (680-138279-2)[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TCLP SEMIVOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples Ash-Kraft (680-138279-1) and Ash-Grumman (680-138279-2) were analyzed for TCLP semivolatile organic compounds (GC-MS) in accordance with EPA SW846 Methods 1311 / 8270D. The samples were leached on 05/11/2017, prepared on 05/15/2017 and analyzed on 05/17/2017.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP) - TCLP

Samples Ash-Kraft (680-138279-1) and Ash-Grumman (680-138279-2) were analyzed for Metals (ICP) - TCLP in accordance with EPA SW-846 Methods 1311/6010C. The samples were leached on 05/11/2017, and prepared and analyzed on 05/12/2017.

Barium recovered high for the MS of sample Ash-Kraft (680-138279-1) in batch 680-479888.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

MERCURY - TCLP

Samples Ash-Kraft (680-138279-1) and Ash-Grumman (680-138279-2) were analyzed for mercury - TCLP in accordance with EPA SW-846 Methods 1311/7470A. The samples were leached on 05/11/2017, prepared on 05/12/2017 and analyzed on 05/15/2017.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

IGNITABILITY FOR SOLIDS

Samples Ash-Kraft (680-138279-1) and Ash-Grumman (680-138279-2) were analyzed for ignitability for solids in accordance with EPA SW-846 Method 1030. The samples were analyzed on 05/10/2017.

The following sample did not ignite: Ash-Kraft (680-138279-1) and Ash-Grumman (680-138279-2); therefore, an ignitability value could not

- 0

4

5

6

Я

9

11

Case Narrative

Client: Waste Management

Project/Site: Superior Landfill Waste Char.

TestAmerica Job ID: 680-138279-1

Job ID: 680-138279-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

be obtained. The result has been reported as "No Burn" (NB).

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

REACTIVE CYANIDE

Samples Ash-Kraft (680-138279-1) and Ash-Grumman (680-138279-2) were analyzed for reactive cyanide in accordance with EPA SW-846 Method 9014. The samples were prepared on 05/08/2017 and analyzed on 05/09/2017.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

REACTIVE SULFIDE

Samples Ash-Kraft (680-138279-1) and Ash-Grumman (680-138279-2) were analyzed for reactive sulfide in accordance with EPA SW-846 Method 9034. The samples were prepared on 05/08/2017 and analyzed on 05/09/2017.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

CORROSIVITY (PH)

Samples Ash-Kraft (680-138279-1) and Ash-Grumman (680-138279-2) were analyzed for corrosivity (pH) in accordance with EPA SW-846 Method 9045D. The samples were analyzed on 05/11/2017.

This analysis is considered a field test and is to be performed within 15 minutes of collection. This analysis was performed in the laboratory outside the 15 minute timeframe.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GRAIN SIZE

Samples Ash-Kraft (680-138279-1) and Ash-Grumman (680-138279-2) were analyzed for grain size in accordance with ASTM D422. The samples were analyzed on 05/04/2017.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

9

4

5

6

q

10

11

Client: Waste Management

Project/Site: Superior Landfill Waste Char.

TestAmerica Job ID: 680-138279-1

Lab Sample ID: 680-138279-1

Matrix: Solid

Client Sample ID: Ash-Kraft Date Collected: 05/02/17 14:55

Date Received: 05/03/17 08:54

Phenol-d5 (Surr)

Terphenyl-d14 (Surr)

2,4,6-Tribromophenol (Surr)

Analyte	Result Q	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.020		0.020	mg/L			05/14/17 20:15	20
2-Butanone (MEK)	<0.20		0.20	mg/L			05/14/17 20:15	20
Carbon tetrachloride	<0.020		0.020	mg/L			05/14/17 20:15	20
Chlorobenzene	<0.020		0.020	mg/L			05/14/17 20:15	20
Chloroform	<0.020		0.020	mg/L			05/14/17 20:15	20
1,2-Dichloroethane	<0.020		0.020	mg/L			05/14/17 20:15	20
1,1-Dichloroethene	<0.020		0.020	mg/L			05/14/17 20:15	20
Tetrachloroethene	<0.020		0.020	mg/L			05/14/17 20:15	20
Trichloroethene	<0.020		0.020	mg/L			05/14/17 20:15	20
Vinyl chloride	<0.020		0.020	mg/L			05/14/17 20:15	20
Surrogate	%Recovery Q	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		80 - 120		-		05/14/17 20:15	20
Dibromofluoromethane (Surr)	96		80 - 122				05/14/17 20:15	20
1,2-Dichloroethane-d4 (Surr)	86		73 - 131				05/14/17 20:15	20
Toluene-d8 (Surr)	102		80 - 120				05/14/17 20:15	20

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	<0.050		0.050	mg/L		05/15/17 16:52	05/17/17 19:27	1
2,4-Dinitrotoluene	<0.050		0.050	mg/L		05/15/17 16:52	05/17/17 19:27	1
Hexachlorobenzene	<0.050		0.050	mg/L		05/15/17 16:52	05/17/17 19:27	1
Hexachlorobutadiene	<0.050		0.050	mg/L		05/15/17 16:52	05/17/17 19:27	1
Hexachloroethane	<0.050		0.050	mg/L		05/15/17 16:52	05/17/17 19:27	1
2-Methylphenol	<0.050		0.050	mg/L		05/15/17 16:52	05/17/17 19:27	1
3 & 4 Methylphenol	<0.050		0.050	mg/L		05/15/17 16:52	05/17/17 19:27	1
Nitrobenzene	<0.050		0.050	mg/L		05/15/17 16:52	05/17/17 19:27	1
Pentachlorophenol	<0.25		0.25	mg/L		05/15/17 16:52	05/17/17 19:27	1
Pyridine	<0.25		0.25	mg/L		05/15/17 16:52	05/17/17 19:27	1
2,4,5-Trichlorophenol	<0.050		0.050	mg/L		05/15/17 16:52	05/17/17 19:27	1
2,4,6-Trichlorophenol	<0.050		0.050	mg/L		05/15/17 16:52	05/17/17 19:27	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	77		38 - 130			05/15/17 16:52	05/17/17 19:27	1
2-Fluorophenol (Surr)	66		25 - 130			05/15/17 16:52	05/17/17 19:27	1
Nitrobenzene-d5 (Surr)	85		39 - 130			05/15/17 16:52	05/17/17 19:27	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.20		0.20	mg/L		05/12/17 12:11	05/12/17 19:13	1
Barium	<1.0	F1	1.0	mg/L		05/12/17 12:11	05/12/17 19:13	1
Cadmium	<0.10		0.10	mg/L		05/12/17 12:11	05/12/17 19:13	1
Chromium	<0.20		0.20	mg/L		05/12/17 12:11	05/12/17 19:13	1
Lead	<0.20		0.20	mg/L		05/12/17 12:11	05/12/17 19:13	1
Selenium	<0.50		0.50	mg/L		05/12/17 12:11	05/12/17 19:13	1
Silver	<0.10		0.10	mg/L		05/12/17 12:11	05/12/17 19:13	1

25 - 130

10 - 143

31 - 141

70

83

101

TestAmerica Savannah

05/17/17 19:27

05/15/17 16:52

05/15/17 16:52 05/17/17 19:27

Page 6 of 33

5/18/2017

3

5

7

9

10

Client: Waste Management

Project/Site: Superior Landfill Waste Char.

TestAmerica Job ID: 680-138279-1

Lab Sample ID: 680-138279-1

Matrix: Solid

Date Collected: 05/02/17 14:55 Date Received: 05/03/17 08:54

Client Sample ID: Ash-Kraft

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.020		0.020	mg/L		05/12/17 14:02	05/15/17 11:18	1
- General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Ignitability	NB			mm/sec			05/10/17 08:38	1
Cyanide, Reactive	<0.25		0.25	mg/Kg		05/08/17 14:03	05/09/17 14:45	1
Sulfide, Reactive	<150		150	mg/Kg		05/08/17 14:03	05/09/17 12:02	1
pH	6.0	HE		SU			05/11/17 15:19	1

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gravel	2.7		%			05/04/17 18:54	1
Sieve Size 3 inch - Percent Finer	100.0		% Passing			05/04/17 18:54	1
Sand	57.2		%			05/04/17 18:54	1
Sieve Size 2 inch - Percent Finer	100.0		% Passing			05/04/17 18:54	1
Coarse Sand	4.1		%			05/04/17 18:54	1
Sieve Size 1.5 inch - Percent Finer	100.0		% Passing			05/04/17 18:54	1
Medium Sand	17.0		%			05/04/17 18:54	1
Sieve Size 1 inch - Percent Finer	100.0		% Passing			05/04/17 18:54	1
Fine Sand	36.1		%			05/04/17 18:54	1
Sieve Size 0.75 inch - Percent	100.0		% Passing			05/04/17 18:54	1
Finer							
Fines	40.1		%			05/04/17 18:54	1
Sieve Size 0.375 inch - Percent	100.0		% Passing			05/04/17 18:54	1
Finer							
Sieve Size #4 - Percent Finer	97.3		% Passing			05/04/17 18:54	1
Sieve Size #10 - Percent Finer	93.2		% Passing			05/04/17 18:54	1
Sieve Size #20 - Percent Finer	86.0		% Passing			05/04/17 18:54	1
Sieve Size #40 - Percent Finer	76.2		% Passing			05/04/17 18:54	1
Sieve Size #60 - Percent Finer	66.3		% Passing			05/04/17 18:54	1
Sieve Size #80 - Percent Finer	60.1		% Passing			05/04/17 18:54	1
Sieve Size #100 - Percent Finer	55.4		% Passing			05/04/17 18:54	1
Sieve Size #200 - Percent Finer	40.1		% Passing			05/04/17 18:54	1

Client Sample ID: Ash-Grumman

Lab Sample ID: 680-138279-2 Date Collected: 05/02/17 14:35 Matrix: Solid Date Received: 05/03/17 08:54

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.020	0.020	mg/L			05/14/17 20:40	20
2-Butanone (MEK)	<0.20	0.20	mg/L			05/14/17 20:40	20
Carbon tetrachloride	<0.020	0.020	mg/L			05/14/17 20:40	20
Chlorobenzene	<0.020	0.020	mg/L			05/14/17 20:40	20
Chloroform	<0.020	0.020	mg/L			05/14/17 20:40	20
1,2-Dichloroethane	<0.020	0.020	mg/L			05/14/17 20:40	20
1,1-Dichloroethene	<0.020	0.020	mg/L			05/14/17 20:40	20
Tetrachloroethene	<0.020	0.020	mg/L			05/14/17 20:40	20
Trichloroethene	<0.020	0.020	mg/L			05/14/17 20:40	20
Vinyl chloride	<0.020	0.020	mg/L			05/14/17 20:40	20

TestAmerica Savannah

Page 7 of 33

Client: Waste Management

Project/Site: Superior Landfill Waste Char.

Client Sample ID: Ash-Grumman

Date Collected: 05/02/17 14:35 Date Received: 05/03/17 08:54 Lab Sample ID: 680-138279-2

TestAmerica Job ID: 680-138279-1

Matrix: Solid

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	114	80 - 120		05/14/17 20:40	20
Dibromofluoromethane (Surr)	96	80 - 122		05/14/17 20:40	20
1,2-Dichloroethane-d4 (Surr)	87	73 - 131		05/14/17 20:40	20
Toluene-d8 (Surr)	99	80 - 120		05/14/17 20:40	20

Method: 8270D - Semivolat	ile Organic Compounds (GC	/MS) - TCLP					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	<0.049	0.049	mg/L		05/15/17 16:52	05/17/17 19:51	1
2,4-Dinitrotoluene	<0.049	0.049	mg/L		05/15/17 16:52	05/17/17 19:51	1
Hexachlorobenzene	<0.049	0.049	mg/L		05/15/17 16:52	05/17/17 19:51	1
Hexachlorobutadiene	<0.049	0.049	mg/L		05/15/17 16:52	05/17/17 19:51	1
Hexachloroethane	<0.049	0.049	mg/L		05/15/17 16:52	05/17/17 19:51	1
2-Methylphenol	<0.049	0.049	mg/L		05/15/17 16:52	05/17/17 19:51	1
3 & 4 Methylphenol	<0.049	0.049	mg/L		05/15/17 16:52	05/17/17 19:51	1
Nitrobenzene	<0.049	0.049	mg/L		05/15/17 16:52	05/17/17 19:51	1
Pentachlorophenol	<0.25	0.25	mg/L		05/15/17 16:52	05/17/17 19:51	1
Pyridine	<0.25	0.25	mg/L		05/15/17 16:52	05/17/17 19:51	1
2,4,5-Trichlorophenol	<0.049	0.049	mg/L		05/15/17 16:52	05/17/17 19:51	1
2,4,6-Trichlorophenol	<0.049	0.049	mg/L		05/15/17 16:52	05/17/17 19:51	1
Surrogate	%Recovery Qualifier	l imits			Prenared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	68		38 - 130	05/15/17 16:52	05/17/17 19:51	1
2-Fluorophenol (Surr)	57		25 - 130	05/15/17 16:52	05/17/17 19:51	1
Nitrobenzene-d5 (Surr)	73		39 - 130	05/15/17 16:52	05/17/17 19:51	1
Phenol-d5 (Surr)	59		25 - 130	05/15/17 16:52	05/17/17 19:51	1
Terphenyl-d14 (Surr)	69		10 - 143	05/15/17 16:52	05/17/17 19:51	1
2,4,6-Tribromophenol (Surr)	86		31 - 141	05/15/17 16:52	05/17/17 19:51	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.20		0.20	mg/L		05/12/17 12:11	05/12/17 19:37	1
Barium	5.7		1.0	mg/L		05/12/17 12:11	05/12/17 19:37	1
Cadmium	<0.10		0.10	mg/L		05/12/17 12:11	05/12/17 19:37	1
Chromium	<0.20		0.20	mg/L		05/12/17 12:11	05/12/17 19:37	1
Lead	0.37		0.20	mg/L		05/12/17 12:11	05/12/17 19:37	1
Selenium	<0.50		0.50	mg/L		05/12/17 12:11	05/12/17 19:37	1
Silver	<0.10		0.10	mg/L		05/12/17 12:11	05/12/17 19:37	1

Method: 7470A - Mercury (CVAA) -	TCLP							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.020		0.020	mg/L		05/12/17 14:02	05/15/17 11:28	1

General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Ignitability	NB			mm/sec			05/10/17 08:38	1
Cyanide, Reactive	<0.25		0.25	mg/Kg		05/08/17 15:20	05/09/17 14:45	1
Sulfide, Reactive	<150		150	mg/Kg		05/08/17 15:20	05/09/17 12:02	1
pH	8.0	HF		SU			05/11/17 15:19	1

TestAmerica Savannah

Page 8 of 33

6

5

9

Client: Waste Management

Project/Site: Superior Landfill Waste Char.

TestAmerica Job ID: 680-138279-1

Lab Sample ID: 680-138279-2

Matrix: Solid

Cilent	Sample	e וט:	Asn-	-Grui	mmai
Data Ca	llootod.	05/02	147 44	.25	

Date Received: 05/03/17 08:54

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gravel	0.7		%			05/04/17 18:57	1
Sieve Size 3 inch - Percent Finer	100.0		% Passing			05/04/17 18:57	1
Sand	57.8		%			05/04/17 18:57	1
Sieve Size 2 inch - Percent Finer	100.0		% Passing			05/04/17 18:57	1
Coarse Sand	1.8		%			05/04/17 18:57	1
Sieve Size 1.5 inch - Percent Finer	100.0		% Passing			05/04/17 18:57	1
Medium Sand	15.3		%			05/04/17 18:57	1
Sieve Size 1 inch - Percent Finer	100.0		% Passing			05/04/17 18:57	1
Fine Sand	40.7		%			05/04/17 18:57	1
Sieve Size 0.75 inch - Percent	100.0		% Passing			05/04/17 18:57	1
Finer							
Fines	41.5		%			05/04/17 18:57	1
Sieve Size 0.375 inch - Percent	100.0		% Passing			05/04/17 18:57	1
Finer							
Sieve Size #4 - Percent Finer	99.3		% Passing			05/04/17 18:57	1
Sieve Size #10 - Percent Finer	97.5		% Passing			05/04/17 18:57	1
Sieve Size #20 - Percent Finer	94.1		% Passing			05/04/17 18:57	1
Sieve Size #40 - Percent Finer	82.2		% Passing			05/04/17 18:57	1
Sieve Size #60 - Percent Finer	70.4		% Passing			05/04/17 18:57	1
Sieve Size #80 - Percent Finer	63.4		% Passing			05/04/17 18:57	1
Sieve Size #100 - Percent Finer	57.4		% Passing			05/04/17 18:57	1
Sieve Size #200 - Percent Finer	41.5		% Passing			05/04/17 18:57	1

5/18/2017

Client: Waste Management Project/Site: Superior Landfill Waste Char.

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-479788/8

Matrix: Solid

Analysis Batch: 479788

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB						
Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
<0.0010	0.0010	mg/L			05/14/17 14:42	1
<0.010	0.010	mg/L			05/14/17 14:42	1
<0.0010	0.0010	mg/L			05/14/17 14:42	1
<0.0010	0.0010	mg/L			05/14/17 14:42	1
<0.0010	0.0010	mg/L			05/14/17 14:42	1
<0.0010	0.0010	mg/L			05/14/17 14:42	1
<0.0010	0.0010	mg/L			05/14/17 14:42	1
<0.0010	0.0010	mg/L			05/14/17 14:42	1
<0.0010	0.0010	mg/L			05/14/17 14:42	1
<0.0010	0.0010	mg/L			05/14/17 14:42	1
	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	Result Qualifier RL <0.0010	Result Qualifier RL Unit <0.0010	Result Qualifier RL Unit D <0.0010	Result Qualifier RL Unit D Prepared <0.0010	Result Qualifier RL Unit D Prepared Analyzed <0.0010

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		80 - 120		05/14/17 14:42	1
Dibromofluoromethane (Surr)	96		80 - 122		05/14/17 14:42	1
1,2-Dichloroethane-d4 (Surr)	85		73 - 131		05/14/17 14:42	1
Toluene-d8 (Surr)	101		80 - 120		05/14/17 14:42	1

Lab Sample ID: LCS 680-479788/3

Matrix: Solid

Analysis Batch: 479788

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.0500	0.0486		mg/L		97	80 - 120	
2-Butanone (MEK)	0.250	0.212		mg/L		85	79 - 125	
Carbon tetrachloride	0.0500	0.0475		mg/L		95	67 ₋ 125	
Chlorobenzene	0.0500	0.0492		mg/L		98	80 - 120	
Chloroform	0.0500	0.0454		mg/L		91	80 - 120	
1,2-Dichloroethane	0.0500	0.0445		mg/L		89	72 - 128	
1,1-Dichloroethene	0.0500	0.0459		mg/L		92	80 - 120	
Tetrachloroethene	0.0500	0.0490		mg/L		98	71 - 123	
Trichloroethene	0.0500	0.0485		mg/L		97	80 - 120	
Vinyl chloride	0.0500	0.0498		mg/L		100	80 - 129	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	82		80 - 120
Dibromofluoromethane (Surr)	96		80 - 122
1,2-Dichloroethane-d4 (Surr)	85		73 - 131
Toluene-d8 (Surr)	96		80 - 120

Lab Sample ID: LCSD 680-479788/4

Matrix: Solid

Analysis Batch: 479788

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

-	Sį	ike LCSD	LCSD			%Rec.		RPD
Analyte	Ad	led Result	t Qualifier	Unit [%Rec	Limits	RPD	Limit
Benzene	0.0	0.0479	<u> </u>	mg/L	96	80 - 120	1	20
2-Butanone (MEK)	0.	250 0.210) 1	mg/L	84	79 - 125	1	20
Carbon tetrachloride	0.0	0.0480) 1	mg/L	96	67 - 125	1	20

TestAmerica Savannah

Page 10 of 33

Spike

Added

0.0500

0.0500

0.0500

0.0500

0.0500

0.0500

0.0500

0.0488

mg/L

TestAmerica Job ID: 680-138279-1

Client: Waste Management Project/Site: Superior Landfill Waste Char.

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-479788/4

Matrix: Solid

Analyte

Chloroform

Chlorobenzene

1,2-Dichloroethane

1,1-Dichloroethene

Tetrachloroethene

Trichloroethene

Vinyl chloride

Analysis Batch: 479788

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

80 - 129

Client Sample ID: Method Blank

Prep Type: TCLP

LCSD	LCSD				%Rec.		RPD	
Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
0.0498		mg/L		100	80 - 120	1	20	
0.0446		mg/L		89	80 - 120	2	20	
0.0436		mg/L		87	72 - 128	2	50	
0.0441		mg/L		88	80 - 120	4	20	
0.0495		mg/L		99	71 - 123	1	20	
0.0479		mg/L		96	80 - 120	1	20	

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	79	X	80 - 120
Dibromofluoromethane (Surr)	94		80 - 122
1,2-Dichloroethane-d4 (Surr)	83		73 - 131
Toluene-d8 (Surr)	100		80 - 120

Lab Sample ID: LB 680-479494/1-A

Matrix: Solid

Analysis Batch: 479788

LB LB

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.020	0.020	mg/L			05/14/17 16:24	20
2-Butanone (MEK)	<0.20	0.20	mg/L			05/14/17 16:24	20
Carbon tetrachloride	<0.020	0.020	mg/L			05/14/17 16:24	20
Chlorobenzene	<0.020	0.020	mg/L			05/14/17 16:24	20
Chloroform	<0.020	0.020	mg/L			05/14/17 16:24	20
1,2-Dichloroethane	<0.020	0.020	mg/L			05/14/17 16:24	20
1,1-Dichloroethene	<0.020	0.020	mg/L			05/14/17 16:24	20
Tetrachloroethene	<0.020	0.020	mg/L			05/14/17 16:24	20
Trichloroethene	<0.020	0.020	mg/L			05/14/17 16:24	20
Vinyl chloride	<0.020	0.020	mg/L			05/14/17 16:24	20

LB LB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	111		80 - 120		05/14/17 16:24	20
Dibromofluoromethane (Surr)	99		80 - 122		05/14/17 16:24	20
1,2-Dichloroethane-d4 (Surr)	87		73 - 131		05/14/17 16:24	20
Toluene-d8 (Surr)	100		80 - 120		05/14/17 16:24	20

Lab Sample ID: 680-138279-2 MS

Matrix: Solid

Analysis Batch: 479788

Client Sample ID: Ash-Grumman **Prep Type: TCLP**

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.020		1.00	1.00		mg/L		100	80 - 120	
2-Butanone (MEK)	<0.20		5.00	4.32		mg/L		86	79 - 125	
Carbon tetrachloride	<0.020		1.00	1.03		mg/L		103	67 _ 125	
Chlorobenzene	<0.020		1.00	1.03		mg/L		103	80 - 120	
Chloroform	<0.020		1.00	0.952		mg/L		95	80 - 120	
1,2-Dichloroethane	<0.020		1.00	0.921		mg/L		92	72 - 128	
1,1-Dichloroethene	<0.020		1.00	0.997		mg/L		100	80 _ 120	

TestAmerica Savannah

Page 11 of 33

Client: Waste Management Project/Site: Superior Landfill Waste Char.

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-138279-2 MS

Matrix: Solid

Analysis Batch: 479788

Client Sample	ID: Ash-Grumman
	Prep Type: TCLP

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrachloroethene	<0.020		1.00	1.07		mg/L	_	107	71 - 123	
Trichloroethene	<0.020		1.00	1.02		mg/L		102	80 - 120	
Vinyl chloride	<0.020		1.00	1.08		mg/L		108	80 - 129	

MS MS %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 80 - 120 81 Dibromofluoromethane (Surr) 97 80 - 122 1,2-Dichloroethane-d4 (Surr) 87 73 - 131 Toluene-d8 (Surr) 101 80 - 120

Client Sample ID: Ash-Grumman

Prep Type: TCLP

Analysis Batch: 479788

Matrix: Solid

Lab Sample ID: 680-138279-2 MSD

Analysis Batom 410100											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.020		1.00	0.986		mg/L		99	80 - 120	2	20
2-Butanone (MEK)	<0.20		5.00	4.36		mg/L		87	79 - 125	1	20
Carbon tetrachloride	<0.020		1.00	1.01		mg/L		101	67 - 125	1	20
Chlorobenzene	<0.020		1.00	1.01		mg/L		101	80 - 120	2	20
Chloroform	<0.020		1.00	0.926		mg/L		93	80 - 120	3	20
1,2-Dichloroethane	<0.020		1.00	0.905		mg/L		90	72 - 128	2	50
1,1-Dichloroethene	<0.020		1.00	0.944		mg/L		94	80 - 120	5	20
Tetrachloroethene	<0.020		1.00	1.01		mg/L		101	71 - 123	5	20
Trichloroethene	<0.020		1.00	0.997		mg/L		100	80 - 120	2	20
Vinyl chloride	<0.020		1.00	1.07		mg/L		107	80 - 129	2	20

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	86		80 - 120
Dibromofluoromethane (Surr)	97		80 - 122
1,2-Dichloroethane-d4 (Surr)	86		73 - 131
Toluene-d8 (Surr)	97		80 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-479935/20-A

Matrix: Solid

Analysis Batch: 480308

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 479935

	MR MR						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	<0.010	0.010	mg/L		05/15/17 16:52	05/17/17 16:21	1
2,4-Dinitrotoluene	<0.010	0.010	mg/L		05/15/17 16:52	05/17/17 16:21	1
Hexachlorobenzene	<0.010	0.010	mg/L		05/15/17 16:52	05/17/17 16:21	1
Hexachlorobutadiene	<0.010	0.010	mg/L		05/15/17 16:52	05/17/17 16:21	1
Hexachloroethane	<0.010	0.010	mg/L		05/15/17 16:52	05/17/17 16:21	1
2-Methylphenol	<0.010	0.010	mg/L		05/15/17 16:52	05/17/17 16:21	1
3 & 4 Methylphenol	<0.010	0.010	mg/L		05/15/17 16:52	05/17/17 16:21	1
Nitrobenzene	<0.010	0.010	mg/L		05/15/17 16:52	05/17/17 16:21	1
•							

TestAmerica Savannah

Page 12 of 33

Client: Waste Management

Project/Site: Superior Landfill Waste Char.

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-479935/20-A

Matrix: Solid

Analysis Batch: 480308

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 479935

ı									
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Pentachlorophenol	<0.050		0.050	mg/L		05/15/17 16:52	05/17/17 16:21	1
	Pyridine	<0.050		0.050	mg/L		05/15/17 16:52	05/17/17 16:21	1
	2,4,5-Trichlorophenol	<0.010		0.010	mg/L		05/15/17 16:52	05/17/17 16:21	1
	2,4,6-Trichlorophenol	<0.010		0.010	mg/L		05/15/17 16:52	05/17/17 16:21	1
ı									

MB MB

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	72		38 - 130	05/15/17 16:52	05/17/17 16:21	1
2-Fluorophenol (Surr)	61		25 - 130	05/15/17 16:52	05/17/17 16:21	1
Nitrobenzene-d5 (Surr)	73		39 - 130	05/15/17 16:52	05/17/17 16:21	1
Phenol-d5 (Surr)	70		25 - 130	05/15/17 16:52	05/17/17 16:21	1
Terphenyl-d14 (Surr)	95		10 - 143	05/15/17 16:52	05/17/17 16:21	1
2,4,6-Tribromophenol (Surr)	99		31 - 141	05/15/17 16:52	05/17/17 16:21	1

Lab Sample ID: LCS 680-479935/21-A

Matrix: Solid

Analysis Batch: 480308

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 479935

, , =								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	0.100	0.0669		mg/L		67	31 - 130	
2,4-Dinitrotoluene	0.100	0.0903		mg/L		90	52 ₋ 130	
Hexachlorobenzene	0.100	0.0909		mg/L		91	43 - 130	
Hexachlorobutadiene	0.100	0.0732		mg/L		73	27 _ 130	
Hexachloroethane	0.100	0.0678		mg/L		68	29 - 130	
2-Methylphenol	0.100	0.0807		mg/L		81	40 - 130	
3 & 4 Methylphenol	0.100	0.0776		mg/L		78	42 _ 130	
Nitrobenzene	0.100	0.0796		mg/L		80	43 - 130	
Pentachlorophenol	0.200	0.173		mg/L		86	33 _ 130	
Pyridine	0.100	0.0538		mg/L		54	10 - 130	
2,4,5-Trichlorophenol	0.100	0.0928		mg/L		93	48 - 130	
2,4,6-Trichlorophenol	0.100	0.0846		mg/L		85	47 _ 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	73		38 - 130
2-Fluorophenol (Surr)	62		25 - 130
Nitrobenzene-d5 (Surr)	75		39 - 130
Phenol-d5 (Surr)	70		25 - 130
Terphenyl-d14 (Surr)	95		10 - 143
2,4,6-Tribromophenol (Surr)	95		31 - 141

Lab Sample ID: LB 680-479476/1-D

Matrix: Solid

Analysis Batch: 480308

Client Sample ID: Method Blank Prep Type: TCLP

Prep Batch: 479935

_	LB LB					•		
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
1,4-Dichlorobenzene	<0.050	0.050	mg/L		05/15/17 16:52	05/17/17 16:44	1	
2,4-Dinitrotoluene	<0.050	0.050	mg/L		05/15/17 16:52	05/17/17 16:44	1	
Hexachlorobenzene	<0.050	0.050	mg/L		05/15/17 16:52	05/17/17 16:44	1	
Hexachlorobutadiene	<0.050	0.050	mg/L		05/15/17 16:52	05/17/17 16:44	1	

TestAmerica Savannah

Page 13 of 33

Project/Site: Superior Landfill Waste Char.

TestAmerica Job ID: 680-138279-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LB 680-479476/1-D

Matrix: Solid

Analysis Batch: 480308

Client: Waste Management

Client Sample ID: Method Blank **Prep Type: TCLP**

Prep Batch: 479935

	LB LB					•	
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Hexachloroethane	<0.050	0.050	mg/L		05/15/17 16:52	05/17/17 16:44	1
2-Methylphenol	<0.050	0.050	mg/L		05/15/17 16:52	05/17/17 16:44	1
3 & 4 Methylphenol	<0.050	0.050	mg/L		05/15/17 16:52	05/17/17 16:44	1
Nitrobenzene	<0.050	0.050	mg/L		05/15/17 16:52	05/17/17 16:44	1
Pentachlorophenol	<0.25	0.25	mg/L		05/15/17 16:52	05/17/17 16:44	1
Pyridine	<0.25	0.25	mg/L		05/15/17 16:52	05/17/17 16:44	1
2,4,5-Trichlorophenol	<0.050	0.050	mg/L		05/15/17 16:52	05/17/17 16:44	1
2,4,6-Trichlorophenol	<0.050	0.050	mg/L		05/15/17 16:52	05/17/17 16:44	1

LB LB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	74		38 - 130	05/15/17 16:52	05/17/17 16:44	1
2-Fluorophenol (Surr)	66		25 - 130	05/15/17 16:52	05/17/17 16:44	1
Nitrobenzene-d5 (Surr)	80		39 - 130	05/15/17 16:52	05/17/17 16:44	1
Phenol-d5 (Surr)	68		25 _ 130	05/15/17 16:52	05/17/17 16:44	1
Terphenyl-d14 (Surr)	93		10 - 143	05/15/17 16:52	05/17/17 16:44	1
2,4,6-Tribromophenol (Surr)	93		31 - 141	05/15/17 16:52	05/17/17 16:44	1

Lab Sample ID: 680-138279-2 MS

Matrix: Solid

Analysis Batch: 480308

Client Sample ID: Ash-Grumman **Prep Type: TCLP** Prep Batch: 479935

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	<0.049		0.498	0.284		mg/L		57	31 - 130	
2,4-Dinitrotoluene	<0.049		0.498	0.354		mg/L		71	52 _ 130	
Hexachlorobenzene	<0.049		0.498	0.369		mg/L		74	43 _ 130	
Hexachlorobutadiene	<0.049		0.498	0.314		mg/L		63	27 - 130	
Hexachloroethane	<0.049		0.498	0.279		mg/L		56	29 _ 130	
2-Methylphenol	<0.049		0.498	0.326		mg/L		65	40 - 130	
3 & 4 Methylphenol	<0.049		0.498	0.286		mg/L		57	42 _ 130	
Nitrobenzene	<0.049		0.498	0.346		mg/L		70	43 _ 130	
Pentachlorophenol	<0.25		0.997	0.660		mg/L		66	33 - 130	
Pyridine	<0.25		0.498	<0.25		mg/L		43	10 - 130	
2,4,5-Trichlorophenol	<0.049		0.498	0.345		mg/L		69	48 - 130	
2,4,6-Trichlorophenol	<0.049		0.498	0.333		mg/L		67	47 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	58		38 - 130
2-Fluorophenol (Surr)	52		25 - 130
Nitrobenzene-d5 (Surr)	63		39 - 130
Phenol-d5 (Surr)	57		25 - 130
Terphenyl-d14 (Surr)	75		10 - 143
2,4,6-Tribromophenol (Surr)	77		31 - 141

TestAmerica Savannah

Page 14 of 33

Project/Site: Superior Landfill Waste Char.

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-138279-2 MSD

Matrix: Solid

Analysis Batch: 480308

Client: Waste Management

Client Sample ID: Ash-Grumman

Prep Type: TCLP

Prep Batch: 479935

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dichlorobenzene	<0.049		0.498	0.327		mg/L		66	31 - 130	14	50
2,4-Dinitrotoluene	<0.049		0.498	0.477		mg/L		96	52 - 130	30	50
Hexachlorobenzene	<0.049		0.498	0.460		mg/L		92	43 - 130	22	50
Hexachlorobutadiene	<0.049		0.498	0.343		mg/L		69	27 - 130	9	50
Hexachloroethane	<0.049		0.498	0.303		mg/L		61	29 - 130	8	50
2-Methylphenol	<0.049		0.498	0.379		mg/L		76	40 - 130	15	50
3 & 4 Methylphenol	<0.049		0.498	0.369		mg/L		74	42 - 130	25	50
Nitrobenzene	<0.049		0.498	0.401		mg/L		80	43 - 130	15	50
Pentachlorophenol	<0.25		0.997	0.825		mg/L		83	33 - 130	22	50
Pyridine	<0.25		0.498	0.291		mg/L		58	10 - 130	29	50
2,4,5-Trichlorophenol	<0.049		0.498	0.453		mg/L		91	48 - 130	27	50
2,4,6-Trichlorophenol	<0.049		0.498	0.428		mg/L		86	47 - 130	25	50

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	74		38 - 130
2-Fluorophenol (Surr)	62		25 - 130
Nitrobenzene-d5 (Surr)	73		39 - 130
Phenol-d5 (Surr)	68		25 - 130
Terphenyl-d14 (Surr)	89		10 - 143
2,4,6-Tribromophenol (Surr)	92		31 - 141

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-479683/1-A

Matrix: Solid

Analysis Batch: 479888

Prep Type: Total/NA

Prep Batch: 479683

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.020		0.020	mg/L		05/12/17 12:11	05/12/17 18:59	1
Barium	<0.10		0.10	mg/L		05/12/17 12:11	05/12/17 18:59	1
Cadmium	<0.010		0.010	mg/L		05/12/17 12:11	05/12/17 18:59	1
Chromium	<0.020		0.020	mg/L		05/12/17 12:11	05/12/17 18:59	1
Lead	<0.020		0.020	mg/L		05/12/17 12:11	05/12/17 18:59	1
Selenium	<0.050		0.050	mg/L		05/12/17 12:11	05/12/17 18:59	1
Silver	<0.010		0.010	mg/L		05/12/17 12:11	05/12/17 18:59	1

Lab Sample ID: LCS 680-479683/2-A

Matrix: Solid

Analysis Batch: 479888

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 479683

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Uni	t D	%Rec	Limits	
Arsenic	2.00	1.87	mg/	L _	94	80 - 120	
Barium	2.00	1.86	mg	L	93	80 - 120	
Cadmium	1.00	0.927	mg	L	93	80 - 120	
Chromium	2.00	1.90	mg	L	95	80 - 120	
Lead	10.0	8.95	mg	L	90	80 - 120	
Selenium	2.00	1.71	mg	L	85	80 - 120	
Silver	1.00	0.875	mg/		88	80 - 120	

TestAmerica Savannah

Page 15 of 33

Project/Site: Superior Landfill Waste Char.

Lab Sample ID: LB 680-479476/1-B

Lab Sample ID: 680-138279-1 MS

Analysis Batch: 479888

Matrix: Solid

Matrix: Solid Analysis Batch: 479888

Client: Waste Management

LB LB

Client Sample ID: Method Blank **Prep Type: TCLP**

Prep Batch: 479683

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.20		0.20	mg/L		05/12/17 12:11	05/12/17 19:08	1
Barium	<1.0		1.0	mg/L		05/12/17 12:11	05/12/17 19:08	1
Cadmium	<0.10		0.10	mg/L		05/12/17 12:11	05/12/17 19:08	1
Chromium	<0.20		0.20	mg/L		05/12/17 12:11	05/12/17 19:08	1
Lead	<0.20		0.20	mg/L		05/12/17 12:11	05/12/17 19:08	1
Selenium	<0.50		0.50	mg/L		05/12/17 12:11	05/12/17 19:08	1
Silver	<0.10		0.10	mg/L		05/12/17 12:11	05/12/17 19:08	1

Client Sample ID: Ash-Kraft **Prep Type: TCLP**

Prep Batch: 479683

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	<0.20		1.60	1.42		mg/L		89	75 - 125	
Barium	<1.0	F1	1.60	2.04	F1	mg/L		127	75 - 125	
Cadmium	<0.10		1.60	1.43		mg/L		89	75 - 125	
Chromium	<0.20		1.60	1.47		mg/L		92	75 - 125	
Lead	<0.20		1.60	1.38		mg/L		86	75 - 125	
Selenium	<0.50		1.60	1.27		mg/L		79	75 - 125	
Silver	<0.10		1.60	1.47		mg/L		92	75 ₋ 125	

Lab Sample ID: 680-138279-1 MSD Client Sample ID: Ash-Kraft **Matrix: Solid**

Analysis Batch: 479888

Prep Type: TCLP Prep Batch: 479683

mg/L

							•				
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	<0.20		1.60	1.38		mg/L		86	75 - 125	3	20
Barium	<1.0	F1	1.60	1.99		mg/L		124	75 - 125	3	20
Cadmium	<0.10		1.60	1.39		mg/L		87	75 - 125	3	20
Chromium	<0.20		1.60	1.43		mg/L		89	75 - 125	3	20
Lead	<0.20		1.60	1.33		mg/L		83	75 - 125	3	20
Selenium	<0.50		1.60	1.25		mg/L		78	75 - 125	1	20
Silver	<0.10		1.60	1.42		mg/L		89	75 - 125	3	20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-479700/1-A Client Sample ID: Method Blank

Matrix: Solid

Mercury

<0.00020

Prep Type: Total/NA Analysis Batch: 479930 **Prep Batch: 479700** MB MB Analyte Result Qualifier Unit RL Prepared Analyzed

Lab Sample ID: LCS 680-479700/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 479930 **Prep Batch: 479700** LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Mercury 0.250 0.252 mg/L 101 80 - 120

0.00020

TestAmerica Savannah

05/15/17 10:45

05/12/17 14:02

Client Sample ID: Method Blank

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LB 680-479476/1-C

Matrix: Solid

Analysis Batch: 479930

Prep Type: TCLP

Prep Batch: 479700

LB LB

Result Qualifier Analyte

Sample Sample

<0.020

Result Qualifier

RL Unit D Prepared Analyzed Dil Fac 0.020 mg/L 05/12/17 14:02 05/15/17 11:08 Mercury <0.020

Spike

Added

0.0830

Lab Sample ID: 680-138279-1 MS

Matrix: Solid

Analyte

Mercury

Analysis Batch: 479930

Client Sample ID: Ash-Kraft **Prep Type: TCLP Prep Batch: 479700**

Unit

mg/L

D

%Rec

89

Limits

80 - 120

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 352497

Lab Sample ID: 680-138279-1 MSD

Matrix: Solid

Analysis Batch: 479930

Client Sample ID: Ash-Kraft **Prep Type: TCLP Prep Batch: 479700**

MS

0.0742

MS

Result Qualifier

Spike MSD MSD RPD Sample Sample %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit <0.020 0.0830 0.0753 80 - 120 Mercury mg/L

Method: 1030 - Ignitability, Solids

Lab Sample ID: MB 680-479260/2

Matrix: Solid

Analysis Batch: 479260

MB MB

Analyte Result Qualifier RL Unit D Analyzed Dil Fac Prepared NB 05/10/17 08:38 Ignitability mm/sec

Method: 9014 - Cyanide, Reactive

Lab Sample ID: MB 400-352497/1-A

Matrix: Solid

Analysis Batch: 352951

MB MB

Analyte Result Qualifier RI Unit D Prepared Analyzed Dil Fac 0.25 05/08/17 14:03 Cyanide, Reactive <0.25 mg/Kg 05/09/17 14:45

Lab Sample ID: LCS 400-352497/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 352951 Prep Batch: 352497

LCS LCS Spike %Rec. Added Result Qualifier Unit D %Rec Limits Cyanide, Reactive 1.00 <0.25 mg/Kg 16 0 - 50

TestAmerica Savannah

Client Sample ID: Method Blank

Client: Waste Management

Project/Site: Superior Landfill Waste Char.

Method: 9034 - Sulfide, Reactive

Lab Sample ID: MB 400-352498/1-A

Matrix: Solid

Analysis Batch: 352921

Prep Type: Total/NA **Prep Batch: 352498**

мв мв

Result Qualifier RL Unit Analyte D Prepared Analyzed Dil Fac <150 150 05/08/17 14:03 05/09/17 12:02 Sulfide, Reactive mg/Kg

Lab Sample ID: LCS 400-352498/2-A

Matrix: Solid

Analysis Batch: 352921

Prep Type: Total/NA **Prep Batch: 352498**

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Ash-Kraft

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits mg/Kg Sulfide, Reactive 1000 155 15 0 - 80

Method: 9045D - pH

Lab Sample ID: LCS 680-479207/1

Matrix: Solid

Analysis Batch: 479207

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits рН 7.00 S.U. 101 7.1 79 - 126

Lab Sample ID: 680-138279-1 DU

Matrix: Solid

Analysis Batch: 479207

DU DU RPD Sample Sample Result Qualifier Result Qualifier Limit Analyte Unit **RPD** 6.0 HF 6.1 SU pН 40

TestAmerica Savannah

QC Association Summary

Client: Waste Management

Project/Site: Superior Landfill Waste Char.

TestAmerica Job ID: 680-138279-1

GC/MS VOA

Leach Batch: 479494

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138279-1	Ash-Kraft	TCLP	Solid	1311	
680-138279-2	Ash-Grumman	TCLP	Solid	1311	
LB 680-479494/1-A	Method Blank	TCLP	Solid	1311	
680-138279-2 MS	Ash-Grumman	TCLP	Solid	1311	
680-138279-2 MSD	Ash-Grumman	TCLP	Solid	1311	

Analysis Batch: 479788

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138279-1	Ash-Kraft	TCLP	Solid	8260B	479494
680-138279-2	Ash-Grumman	TCLP	Solid	8260B	479494
LB 680-479494/1-A	Method Blank	TCLP	Solid	8260B	479494
MB 680-479788/8	Method Blank	Total/NA	Solid	8260B	
LCS 680-479788/3	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-479788/4	Lab Control Sample Dup	Total/NA	Solid	8260B	
680-138279-2 MS	Ash-Grumman	TCLP	Solid	8260B	479494
680-138279-2 MSD	Ash-Grumman	TCLP	Solid	8260B	479494

GC/MS Semi VOA

Leach Batch: 479476

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138279-1	Ash-Kraft	TCLP	Solid	1311	
680-138279-2	Ash-Grumman	TCLP	Solid	1311	
LB 680-479476/1-D	Method Blank	TCLP	Solid	1311	
680-138279-2 MS	Ash-Grumman	TCLP	Solid	1311	
680-138279-2 MSD	Ash-Grumman	TCLP	Solid	1311	

Prep Batch: 479935

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138279-1	Ash-Kraft	TCLP	Solid	3520C	479476
680-138279-2	Ash-Grumman	TCLP	Solid	3520C	479476
LB 680-479476/1-D	Method Blank	TCLP	Solid	3520C	479476
MB 680-479935/20-A	Method Blank	Total/NA	Solid	3520C	
LCS 680-479935/21-A	Lab Control Sample	Total/NA	Solid	3520C	
680-138279-2 MS	Ash-Grumman	TCLP	Solid	3520C	479476
680-138279-2 MSD	Ash-Grumman	TCLP	Solid	3520C	479476

Analysis Batch: 480308

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138279-1	Ash-Kraft	TCLP	Solid	8270D	479935
680-138279-2	Ash-Grumman	TCLP	Solid	8270D	479935
LB 680-479476/1-D	Method Blank	TCLP	Solid	8270D	479935
MB 680-479935/20-A	Method Blank	Total/NA	Solid	8270D	479935
LCS 680-479935/21-A	Lab Control Sample	Total/NA	Solid	8270D	479935
680-138279-2 MS	Ash-Grumman	TCLP	Solid	8270D	479935
680-138279-2 MSD	Ash-Grumman	TCLP	Solid	8270D	479935

TestAmerica Savannah

Page 19 of 33

4

_

0

10

11

QC Association Summary

Client: Waste Management

Project/Site: Superior Landfill Waste Char.

TestAmerica Job ID: 680-138279-1

Metals

Leach Batch: 479476

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138279-1	Ash-Kraft	TCLP	Solid	1311	
680-138279-2	Ash-Grumman	TCLP	Solid	1311	
LB 680-479476/1-B	Method Blank	TCLP	Solid	1311	
LB 680-479476/1-C	Method Blank	TCLP	Solid	1311	
680-138279-1 MS	Ash-Kraft	TCLP	Solid	1311	
680-138279-1 MSD	Ash-Kraft	TCLP	Solid	1311	

Prep Batch: 479683

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138279-1	Ash-Kraft	TCLP	Solid	3010A	479476
680-138279-2	Ash-Grumman	TCLP	Solid	3010A	479476
LB 680-479476/1-B	Method Blank	TCLP	Solid	3010A	479476
MB 680-479683/1-A	Method Blank	Total/NA	Solid	3010A	
LCS 680-479683/2-A	Lab Control Sample	Total/NA	Solid	3010A	
680-138279-1 MS	Ash-Kraft	TCLP	Solid	3010A	479476
680-138279-1 MSD	Ash-Kraft	TCLP	Solid	3010A	479476

Prep Batch: 479700

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138279-1	Ash-Kraft	TCLP	Solid	7470A	479476
680-138279-2	Ash-Grumman	TCLP	Solid	7470A	479476
LB 680-479476/1-C	Method Blank	TCLP	Solid	7470A	479476
MB 680-479700/1-A	Method Blank	Total/NA	Solid	7470A	
LCS 680-479700/2-A	Lab Control Sample	Total/NA	Solid	7470A	
680-138279-1 MS	Ash-Kraft	TCLP	Solid	7470A	479476
680-138279-1 MSD	Ash-Kraft	TCLP	Solid	7470A	479476

Analysis Batch: 479888

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138279-1	Ash-Kraft	TCLP	Solid	6010C	479683
680-138279-2	Ash-Grumman	TCLP	Solid	6010C	479683
LB 680-479476/1-B	Method Blank	TCLP	Solid	6010C	479683
MB 680-479683/1-A	Method Blank	Total/NA	Solid	6010C	479683
LCS 680-479683/2-A	Lab Control Sample	Total/NA	Solid	6010C	479683
680-138279-1 MS	Ash-Kraft	TCLP	Solid	6010C	479683
680-138279-1 MSD	Ash-Kraft	TCLP	Solid	6010C	479683

Analysis Batch: 479930

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138279-1	Ash-Kraft	TCLP	Solid	7470A	479700
680-138279-2	Ash-Grumman	TCLP	Solid	7470A	479700
LB 680-479476/1-C	Method Blank	TCLP	Solid	7470A	479700
MB 680-479700/1-A	Method Blank	Total/NA	Solid	7470A	479700
LCS 680-479700/2-A	Lab Control Sample	Total/NA	Solid	7470A	479700
680-138279-1 MS	Ash-Kraft	TCLP	Solid	7470A	479700
680-138279-1 MSD	Ash-Kraft	TCLP	Solid	7470A	479700

Page 20 of 33

QC Association Summary

Client: Waste Management

Project/Site: Superior Landfill Waste Char.

TestAmerica Job ID: 680-138279-1

General Chemistry

Prep Batch: 352497

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138279-1	Ash-Kraft	Total/NA	Solid	7.3.3	
680-138279-2	Ash-Grumman	Total/NA	Solid	7.3.3	
MB 400-352497/1-A	Method Blank	Total/NA	Solid	7.3.3	
LCS 400-352497/2-A	Lab Control Sample	Total/NA	Solid	7.3.3	

Prep Batch: 352498

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138279-1	Ash-Kraft	Total/NA	Solid	7.3.4	
680-138279-2	Ash-Grumman	Total/NA	Solid	7.3.4	
MB 400-352498/1-A	Method Blank	Total/NA	Solid	7.3.4	
LCS 400-352498/2-A	Lab Control Sample	Total/NA	Solid	7.3.4	

Analysis Batch: 352921

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138279-1	Ash-Kraft	Total/NA	Solid	9034	352498
680-138279-2	Ash-Grumman	Total/NA	Solid	9034	352498
MB 400-352498/1-A	Method Blank	Total/NA	Solid	9034	352498
LCS 400-352498/2-A	Lab Control Sample	Total/NA	Solid	9034	352498

Analysis Batch: 352951

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138279-1	Ash-Kraft	Total/NA	Solid	9014	352497
680-138279-2	Ash-Grumman	Total/NA	Solid	9014	352497
MB 400-352497/1-A	Method Blank	Total/NA	Solid	9014	352497
LCS 400-352497/2-A	Lab Control Sample	Total/NA	Solid	9014	352497

Analysis Batch: 479207

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
680-138279-1	Ash-Kraft	Total/NA	Solid	9045D
680-138279-2	Ash-Grumman	Total/NA	Solid	9045D
LCS 680-479207/1	Lab Control Sample	Total/NA	Solid	9045D
680-138279-1 DU	Ash-Kraft	Total/NA	Solid	9045D

Analysis Batch: 479260

Lab Sample ID Client Sam	ole ID Prep Type	Matrix	Method	Prep Batch
680-138279-1 Ash-Kraft	Total/NA	Solid	1030	_
680-138279-2 Ash-Grumn	an Total/NA	Solid	1030	
MB 680-479260/2 Method Bla	nk Total/NA	Solid	1030	

Geotechnical

Analysis Batch: 116526

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138279-1	Ash-Kraft	Total/NA	Solid	D422	
680-138279-2	Ash-Grumman	Total/NA	Solid	D422	

TestAmerica Savannah

Page 21 of 33

3

4

5

_

8

10

11

4 6

Client: Waste Management

Project/Site: Superior Landfill Waste Char.

Lab Sample ID: 680-138279-1

Matrix: Solid

Client Sample ID: Ash-Kraft Date Collected: 05/02/17 14:55

Date Received: 05/03/17 08:54

Batch Dil Initial Final Batch Batch Prepared Prep Type Type Method Run Factor Amount **Amount** Number or Analyzed Analyst Lab TCLP 1311 400 mL 479494 05/11/17 15:56 EDE TAL SAV Leach 20.06 q TAL SAV **TCLP** Analysis 8260B 20 5 mL 5 mL 479788 05/14/17 20:15 CF.I Instrument ID: CMSB **TCLP** 2000 mL TAL SAV Leach 1311 100.05 g 479476 05/11/17 15:57 **EDE TCLP** 201.4 mL TAL SAV Prep 3520C 1 mL 479935 05/15/17 16:52 CEW **TCLP** Analysis 8270D 1 480308 05/17/17 19:27 OK TAL SAV Instrument ID: CMSE **TCLP** 100.05 g TAL SAV Leach 1311 2000 mL 479476 05/11/17 15:57 EDE **TCLP** Prep 3010A 5 mL 50 mL 479683 05/12/17 12:11 A.IR TAL SAV **TCLP** Analysis 6010C 479888 05/12/17 19:13 **BCB** TAL SAV Instrument ID: ICPE **TCLP** Leach 1311 100.05 g 2000 mL 479476 05/11/17 15:57 EDE TAL SAV **TCLP** Prep 7470A 0.5 mL 50 mL 479700 05/12/17 14:02 JKL TAL SAV **TCLP** Analysis 7470A 479930 05/15/17 11:18 JKL TAL SAV Instrument ID: LEEMAN2 Total/NA Analysis 1030 479260 05/10/17 08:38 LWB TAL SAV Instrument ID: NOEQUIP Total/NA Prep 7.3.3 10 g 100 mL 352497 05/08/17 14:03 CLM TAL PEN Total/NA Analysis 9014 10 mL 10 mL 352951 05/09/17 14:45 CLM TAL PEN Instrument ID: KONELAB Total/NA Prep 7.3.4 10 g 100 mL 352498 05/08/17 14:03 CLM TAL PEN 100 mL Total/NA Analysis 9034 100 mL 352921 05/09/17 12:02 CLM TAL PEN 1 Instrument ID: NOEQUIP 9045D Total/NA Analysis 20.12 g 20 mL 479207 05/11/17 15:19 LWB TAL SAV Instrument ID: NOEQUIP Total/NA Analysis D422 116526 05/04/17 18:54 VTP TAL BUR Instrument ID: D422_import

Client Sample ID: Ash-Grumman

Date Collected: 05/02/17 14:35 Matrix: Solid

Date Received: 05/03/17 08:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			20.05 g	400 mL	479494	05/11/17 15:56	EDE	TAL SAV
TCLP	Analysis	8260B		20	5 mL	5 mL	479788	05/14/17 20:40	CEJ	TAL SAV
	Instrume	nt ID: CMSB								
TCLP	Leach	1311			100.10 g	2000 mL	479476	05/11/17 15:57	EDE	TAL SAV
TCLP	Prep	3520C			203.1 mL	1 mL	479935	05/15/17 16:52	CEW	TAL SAV
TCLP	Analysis	8270D		1			480308	05/17/17 19:51	OK	TAL SAV
	Instrume	nt ID: CMSE								
TCLP	Leach	1311			100.10 g	2000 mL	479476	05/11/17 15:57	EDE	TAL SAV
TCLP	Prep	3010A			5 mL	50 mL	479683	05/12/17 12:11	AJR	TAL SAV
TCLP	Analysis	6010C		1			479888	05/12/17 19:37	BCB	TAL SAV
	Instrume	nt ID: ICPE								

TestAmerica Savannah

Lab Sample ID: 680-138279-2

Page 22 of 33

2

3

5

9

11

12

5/18/2017

Lab Chronicle

Client: Waste Management

Project/Site: Superior Landfill Waste Char.

TestAmerica Job ID: 680-138279-1

Lab Sample ID: 680-138279-2

Matrix: Solid

Client Sample ID: Ash-Grumman

Date Collected: 05/02/17 14:35 Date Received: 05/03/17 08:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.10 g	2000 mL	479476	05/11/17 15:57	EDE	TAL SAV
TCLP	Prep	7470A			0.5 mL	50 mL	479700	05/12/17 14:02	JKL	TAL SAV
TCLP	Analysis Instrume	7470A nt ID: LEEMAN2		1			479930	05/15/17 11:28	JKL	TAL SAV
Total/NA	Analysis Instrume	1030 nt ID: NOEQUIP		1			479260	05/10/17 08:38	LWB	TAL SAV
Total/NA	Prep	7.3.3			10 g	100 mL	352497	05/08/17 15:20	CLM	TAL PEN
Total/NA	Analysis Instrume	9014 nt ID: KONELAB		1	10 mL	10 mL	352951	05/09/17 14:45	CLM	TAL PEN
Total/NA	Prep	7.3.4			10 g	100 mL	352498	05/08/17 15:20	CLM	TAL PEN
Total/NA	Analysis Instrume	9034 nt ID: NOEQUIP		1	100 mL	100 mL	352921	05/09/17 12:02	CLM	TAL PEN
Total/NA	Analysis Instrume	9045D nt ID: NOEQUIP		1	19.70 g	20 mL	479207	05/11/17 15:19	LWB	TAL SAV
Total/NA	Analysis Instrume	D422 nt ID: D422_import		1			116526	05/04/17 18:57	VTP	TAL BUR

Laboratory References:

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

4

5

8

9

10

11

Accreditation/Certification Summary

Client: Waste Management

Project/Site: Superior Landfill Waste Char.

TestAmerica Job ID: 680-138279-1

Laboratory: TestAmerica Savannah

The accreditations/certifications listed below are applicable to this report.

	Authority	Program	EPA Region	Identification Number	Expiration Date
l	Georgia	State Program	4	N/A	06-30-17 *

Laboratory: TestAmerica Burlington

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Connecticut	State Program	1	PH-0751	09-30-17
DE Haz. Subst. Cleanup Act (HSCA)	State Program	3	NA	02-02-18
Florida	NELAP	4	E87467	06-30-17 *
L-A-B	DoD ELAP		L2336	02-25-20
Maine	State Program	1	VT00008	04-17-19
Minnesota	NELAP	5	050-999-436	12-31-17
New Hampshire	NELAP	1	2006	12-18-17
New Jersey	NELAP	2	VT972	06-30-17 *
New York	NELAP	2	10391	04-01-18
Pennsylvania	NELAP	3	68-00489	04-30-18
Rhode Island	State Program	1	LAO00298	12-30-17
US Fish & Wildlife	Federal		LE-058448-0	10-31-17
USDA	Federal		P330-11-00093	12-05-19
Vermont	State Program	1	VT-4000	12-31-17
Virginia	NELAP	3	460209	12-14-17

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-17
Arizona	State Program	9	AZ0710	01-11-18
Arkansas DEQ	State Program	6	88-0689	09-01-17
California	ELAP	9	2510	03-31-18
Florida	NELAP	4	E81010	06-30-17
Georgia	State Program	4	N/A	06-30-17
Illinois	NELAP	5	200041	10-09-17
lowa	State Program	7	367	08-01-18
Kansas	NELAP	7	E-10253	10-31-17
Kentucky (UST)	State Program	4	53	06-30-17
Kentucky (WW)	State Program	4	98030	12-31-17
L-A-B	ISO/IEC 17025		L2471	02-22-20
Louisiana	NELAP	6	30976	06-30-17
Louisiana (DW)	NELAP Secondary AB	6	LA170005	12-31-17
Maryland	State Program	3	233	09-30-17
Massachusetts	State Program	1	M-FL094	06-30-17
Michigan	State Program	5	9912	06-30-17
New Jersey	NELAP	2	FL006	06-30-17
North Carolina (WW/SW)	State Program	4	314	12-31-17
Oklahoma	State Program	6	9810	08-31-17
Pennsylvania	NELAP	3	68-00467	01-31-18
Rhode Island	State Program	1	LAO00307	12-30-17
South Carolina	State Program	4	96026	06-30-17
Tennessee	State Program	4	TN02907	06-30-17
Texas	NELAP	6	T104704286-16-10	09-30-17

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Savannah

Page 24 of 33

-

0

10

Accreditation/Certification Summary

Client: Waste Management TestAmerica Job ID: 680-138279-1

Project/Site: Superior Landfill Waste Char.

Laboratory: TestAmerica Pensacola (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
USDA	Federal		P330-16-00172	05-24-19
Virginia	NELAP	3	460166	06-14-17
Washington	State Program	10	C915	05-15-17 *
West Virginia DEP	State Program	3	136	06-30-17

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Savannah

Method Summary

Client: Waste Management

Project/Site: Superior Landfill Waste Char.

TestAmerica Job ID: 680-138279-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL SAV
6010C	Metals (ICP)	SW846	TAL SAV
7470A	Mercury (CVAA)	SW846	TAL SAV
1030	Ignitability, Solids	SW846	TAL SAV
9014	Cyanide, Reactive	SW846	TAL PEN
9034	Sulfide, Reactive	SW846	TAL PEN
9045D	рН	SW846	TAL SAV
D422	Grain Size	ASTM	TAL BUR

Protocol References:

ASTM = ASTM International

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TestAmerica Savannah

Λ

5

8

10

11

18STHMBTICA SAVANNAN 5102 LaRoche Avenue		Chain	Chain of Custody Record	186584	TestAmerica
Savannah, GA 31404 Phone: 912.354.7856 Fax:	Regulatory Program:	DW NPDES	XRCRA Other:		THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc. TAL-8210 (0713)
Client Contact	Project Manager: Any Ah	Katalous	1 44	Date: 5/2/17	COC No:
Company Name: W/M - Superior	TellFax: Syata lowa	um. com	Lab Contact: Lisca Harvay	Carrier: Clost	of COCs
DOI LITTO	Turna		7 30		Sampler:
telZip: Sarvannoh GFF	X CALENDAR DAYS	WORKING DAYS	bi		For Lab Use Only:
Phone: 10 - 545 - 5339	TAT (f.different from Below		N THE REAL PROPERTY OF THE PARTY OF THE PART		Walk-in Client:
Project Name: Ash Analysis	Z weeks	Wix	_		Lau Sampling.
Site Syperial Landhill	2 days		-		Job / SDG No:
	Sample	jo#	Action MS		
Sample Identification	Time	Matrix Cont.	-		Sample Specific Notes:
Ash - Kratt	5k 0.556 'G	Ash 3	一——		New amplies
Ash - Grumman	5/20.35 6	- Ah 3	*		15
					7
P					WW 4 NOT
age					A
27					
of 3					
680-1382/9 Chain of Custody					
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	5=NaOH; 6= Other				
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Plea Comments Section if the lab is to dispose of the sample.	Please List any EPA Waste Codes for the sample in the	for the sample in the	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	assessed if samples are retai	ned longer than 1 month)
Non-Hazard Flammable Skin Irritant	Poison B	Unknown	Return to Client	Disposal by Lab	Months
Special Instructions/QC Requirements & Comments:	sible.			4.0/2.8	
Cuestidy Seals Intact: 7 Yes No	Custody Seal No.:		Cooler Temp. (°C): Obs'd:		Therm ID No.:
Kelyquished by	Company:	Date/Time	Received by 1- Jack Fol	Company: 74	S-2-17 854
Relingdished by:	Company:	Date/Vime:	Received by:	Company:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received in Laboratory by:	Company:	Date/Time:
7					

186584

TestAmerica Savannah

TestAmerica	THE LEADER IN ENVIRONMENTAL TESTING
Chain of Custody Record	

	TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Phone (912) 354-7858 Fax (912) 352-0165	O	Chain of Custody Record	Cust	ody Re	cord						TestAmeric	A BUNIBON	THE LEADER IN ENVIRONMENTAL TESTING
	Client Information (Sub Contract Lab)	Sampler			Lab PM Smith,	Lab PM: Smith, Kathryn E			Carrier Tracking No(s)	cking No(s):		COC No: 680-476581.1	+	
	Client Contact: Shipping/Receiving	Phone:			E-Mail: kathy.	smith@tes	E-Mail: kathy.smith@testamericainc.com	com	State of Origin Georgia	gin:		Page: Page 1 of 1		
	Company: TestAmerica Laboratories, Inc.				,	Accreditations	Accreditations Required (See note): State Program - Georgia	note):				Job #: 680-138279-1	-	
	Address: 3355 McLemore Drive, ,	Due Date Requested: 5/9/2017	#				4	Analysis	Analysis Requested			Preservation Codes:	73	
	City. Pensacola State, Zip.	TAT Requested (days):	/s):									B - NaOH C - Zn Acetate D - Nitric Acid		N - None O - AsNaO2 P - Na2O4S
	FL, 32514 Phone: 850-474-1001(Tel) 850-478-2671(Fax)	PO #:					Ð					E - NaHSO4 F - MeOH G - Amchlor		a2SO3 a2S2O3 2SO4 Poderahydrate
		"# OM				(oN	Veactiv					I - Ice J - DI Water		setone CAA
	Project Name. Superior Landfill Waste Char.	Project #. 68018153				10 89	ı (əpililu				ıəni s in	K - EDTA L - EDA	W - pl	W - pH 4-5 Z - other (specify)
	Site;	SSOW#.				y) asi	S 4.8.7				100 10	Other:		
	Sample Identification . Client ID (1 ah ID)	Sample Date	Sample (6	Sample Type (C=comp,	Matrix (W=water, S=solid, O=waste/oil,	ield Filtered : M/SM myone M/SM mones M/SM mones	034_Reactive/				Total Number	0	l loctrice	Special Instructions Moto.
Pag		X				X	6				×	Proportion of the state of the		ionshote.
ge 3	Ash-Kraft (680-138279-1)	5/2/17	14:55 Fastern		Solid	×	×				-			
30 c	Ash-Grumman (680-138279-2)	5/2/17	14:35		Solid	×	×				-			
of 33			Eastern											
	Note: Since laboratory accreditations are subject to change. TestAmerica Laboratories, Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/lests/mainx being analyzed, the samples must be shipped back to the TestAmerica laboratories will be provided. Any changes to accreditation status should be brought to TestAmerica Laboratories, inc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to TestAmerica Laboratories, inc.	ratories, Inc. places the ow tests/matrix being analyzed, rent to date, return the sign	nership of metho the samples mu: ed Chain of Cust	id, analyte & st st be shipped ody attesting	accreditation cor back to the Tes to said complica	npliance upor tAmerica labor nce to TestAr	n out subcontrac oratory or other i	t laboratories. instructions wil ries, Inc.	This sample ship	ment is forward y changes to ac	ded under chai	in-of-custody. If the	the laboratory rought to Tes	y does not !!America
	Possible Hazard Identification					Sampl	le Disposal (A i	A fee may	be assessed if san	if samples	are retained lon	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	in 1 month)	(t)
	Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	able Rank: 2			Specia	Special Instructions/QC Requirements	/QC Requir	ements:	200		5		
	Empty Kit Relinquished by:		Date:			Time:			Met	Method of Shipment:	ıtı			
5/18/	Relinduished by, Richard By, Relinduished by,	Date/Time:	1	177	Company	Rec	Received by:			Date/Time: 5/4/ Date/Time:	(//)	085		Company
2017	Relinquished by:	Date/Time:			Company	Rec	Received by:			Date/Time	ime:		Com	Company
7	Custody Seals Intact: Custody Seal No.:					Co	Cooler Temperature(s) °C and Other Remarks.	e(s) °C and Ot	1	3,3 IR	8			

Client: Waste Management

Job Number: 680-138279-1

Login Number: 138279 List Source: TestAmerica Savannah

List Number: 1

Creator: Jackson, Victor L

,		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or campered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	N/A	
here are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	N/A	
fultiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Savannah

Client: Waste Management

Job Number: 680-138279-1

Login Number: 138279 List Source: TestAmerica Burlington List Number: 3

List Creation: 05/04/17 01:30 PM

Creator: Cota, Fred P

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td>Lab does not accept radioactive samples.</td>	True	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	856857
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.3°C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

TestAmerica Savannah

Client: Waste Management

Job Number: 680-138279-1

List Source: TestAmerica Pensacola
List Number: 2
List Creation: 05/04/17 11:51 AM

Creator: Smith, Demetrius A

Containers are not broken or leaking.

Sample collection date/times are provided.

Sample bottles are completely filled. Sample Preservation Verified.

Multiphasic samples are not present.

Residual Chlorine Checked.

Samples do not require splitting or compositing.

MS/MSDs

<6mm (1/4").

Appropriate sample containers are used.

There is sufficient vol. for all requested analyses, incl. any requested

Containers requiring zero headspace have no headspace or bubble is

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.3°C IR-2
COC is present.	True	
OC is filled out in ink and legible.	True	
OC is filled out with all pertinent information.	True	
the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	

True

True

True True

True

True

N/A

True

True

N/A

12

ATLANTIC COAST CONSULTING, INC.

630 Colonial Park Drive Suite 110 Roswell, GA 30075 o 770.594.5998 f 770.594.5967 www.aticc.net

June 8, 2015

Mr. John Workman, P.E. Director of Engineering Waste Management, Inc. 1850 Parkway Place, Suite 600 Marietta, Georgia 30337

SUBJECT:

Test Pad Evaluation

R&B Landfill

Banks County, Georgia

Dear Mr. Workman:

Atlantic Coast Consulting, Inc. (ACC) is pleased to transmit the attached results of the test pad evaluation in Cell 11A at the above referenced landfill facility. Waste Management is currently receiving two different types of ash which are being disposed of in Cell 11A. The Project Specifications require the ash material be compacted to a minimum of 90% of the materials maximum dry density. Waste Management constructed a test pad for each ash material to determine what compaction efforts needed to be made in order to achieve the minimum 90% compaction requirement. Per the request of Waste Management ACC was on site to perform density testing on the test pads for each ash material.

Laboratory Testing

Prior to construction of the ash material test pads, representative samples of each ash material were collected and delivered to Timely engineering Soil Tests, LLC (TEST) for laboratory testing. The samples were labeled ASH-1 and ASH-2. The laboratory testing program was comprised of a Standard Proctor moisture/density relationship ASTM D698, particle size analysis ASTM D422 and moisture content ASTM D2216. The results of the laboratory testing are provided in Appendix A.

Mr. John Workman, P.E. June 8, 2015 Page 2

Test Pad Construction

Waste Management constructed a test pad for each ash material that was approximately 10' X 15'. Construction of the test pads was accomplished by using a bulldozer and a vibratory smooth drum roller. The bulldozer was used to spread a 12 inch thick lift of the ash material and the vibratory smooth drum roller was used for compaction of the ash material. Both test pads were constructed within the limits of Cell 11A.

Field Density Testing

Taylor Herbertson of ACC arrived at the site on Friday, May 22, 2015 for construction of the first test pad. This visit was for the test pad construction and evaluation of the ASH-1 material. Three nuclear density tests were performed on the test pad. The first density test was taken after the vibratory smooth drum roller made one pass, the second density test was taken after the vibratory smooth drum roller made a second pass and the third density test was taken after the vibratory smooth drum roller made a third pass. All of these tests met the Project Specifications. The daily field summary report along with the results of field density tests TP-1 through TP-3 are provided in Appendix B.

Taylor Herbertson of ACC arrived back at the site on Thursday, June 4, 2015 for construction of the second test pad. This visit was for the test pad construction and evaluation of the ASH-2 material. Three nuclear density tests were performed on the test pad. The first density test was taken after the vibratory smooth drum roller made one pass, the second density test was taken after the vibratory smooth drum roller made a second pass and the third density test was taken after the vibratory smooth drum roller made a third pass. All of these tests met the Project Specifications. The daily field summary report along with the results of field density tests TP-4 through TP-6 are provided in Appendix C.

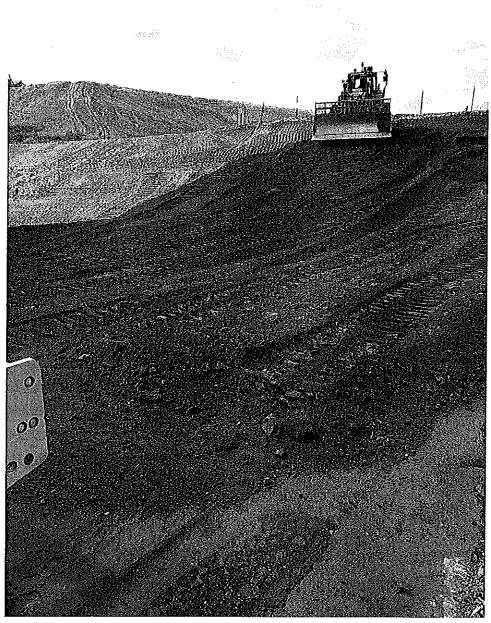
Construction Photographs

During the test pad construction at the R&B landfill in Cell 11A photographs were taken by the site technician to document the construction activities. Attached please find the construction photographs with a brief description below each photograph.

Test Pad Evaluation Summary

Based on ACC's test pad evaluation including laboratory testing and field density testing for the ASH-1 and ASH-2 materials, it has been concluded that no more than one pass with the vibratory smooth drum roller needs to be made in order to achieve the required 90% compaction.

If you have any questions, please feel free to contact me at 770-594-5998.


Sincerely,

ATLANTIC COAST CONSULTING, INC.

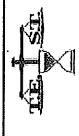
Richard T. Deason, P.E. Certifying Engineer

RTH/RTD:rsc

Test pad construction began with a bulldozer spreading a 12" lift of ash material. The test pad for each material was approximately 10' X 15'.

Compaction of the ash material was achieved using a vibratory smooth drum roller.

Nuclear density tests were performed to verify the compaction of the ash material.


I monitored operations after the test pad construction to insure lift thickness did not exceed 12".

I monitored operations after the test pad construction to insure at least one pass was made using the vibratory smooth drum roller.

APPENDIX A Laboratory Testing

 Engineering
 Phone: 770-938-8233
 Fax: 770-923-8973

 Soil
 Cell: 678-612-6534

 Web: www.test-llc.com
 1874 Forge Street Tucker, GA 30084 "IMELY

Summary of Soil Testing (ASH - Samples)

Project Number:

1508-07

Banks County C&D Cell 11A Project Name:

						Grain Size		Atter	Atterberg Limits	imits	Pro	Proctor	Hydra	aulic Con	Hydraulic Conductivity
TEST	Client		Carbonate	Moisture		Distribution					Opt.	Max.Dry	Initial	InitDry	Opt. Max.Dry Initial Init.Dry Hydraulic
Sample	Sample	nscs	USCS Content,	Content %Finer	%Finer	% Finer	% Finer	L	T'd T'd T'T		ე.	Density	M.C.	Density	M.C. Density M.C. Density Conduct.
Number	Number		%	(%)	#4 Sieve	#4 Sieve #200 Sieve .005mm	.005mm	%	%	%	%	bct	%	pct	cm/sec
						1508-07-1	Ť.								
19952	ASH-1		-	,		1	1	ı	ŀ	-	21.3	96.0	-	ŀ	,
						1508-07-2	.2								
19996	ASH-2		1	j	,	t	1	١	ī		- 31.8	78.5	٠	,	-
						1508-07-3	5								
19952A	ASH-1		1	19.5	82.8	32.2	1			ļ.	ŀ	[ļ.	
19996	ASH-2		ì	27.7	98.5	75.0		ŀ		-	,	,	ı	,	-

TIMELY

Engineering Soil

Tests, LLC

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973 Web: www.test-llc.com

Tested By Date

Bulk

RI 05/15/15

18 Checked By 1508-07-1

Client Pr. #
Pr. Name
Sample ID
Location

_	1002.362	
	Banks County C&D Cell 11A	
_	19952/ASH-1	

Lab. PR. # S. Type Depth/Elev. Add. Info

ASTM D 698

Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600kN-m/m3))

DETERMINATION OF TEST PROCEDURE

TEST DATA

Mass of Soil before sleving, g Mass of Mat. Retained on No. 4 sieve, g Mass of Mat. Retained on 3/8" sieve, g Mass of Mat. Retained on 3/4" sieve, g

Material Retained on No. 4 Sieve, % Material Retained on 3/8" Sieve, % Material Retained on 3/4" Sieve, % Total, % (oversized)

wet	dry
20700.0	17559,3
1781.3	1781.3

wet	dry
20700.0	17559,3
1781.3	1781.3

MOISTURE CONTENT

	Coarse + Fine Fraction	Coarse Fraction
Mass of Wet Sample & Tare, g	956.8	1781.3
Mass of Dry Sample & Tare, g	835.1	1781.3
Mass of Tare, g	154.7	0.0
Moisture Content, %	17.9	0.0

Procedure

В

Points

Mass of Mold and Soil, g Mass of Wet Sample & Tare, g Mass of Dry Sample & Tare, g Mass of Tare, g Moisture Content, %

Wet Densily, pcf Dry Density, pcf

		1 LO	ו אואם ו		
1	2	3	4	5	Mold ID Number
5894.0	5962,0	5964.0	5930.0		Mass of Mold, g
561.8	613.3	574.1	584.1		Volume of Mold, ft ³
489.2	538.6	492.0	495,5		Hammer ID Number
125.8	182.1	125.1	130,6		Number of Blows per layer
20.0	21.0	22,4	24.3		Number of Layers

113.8

91.6

 Number of Blows per layer					
Number of Layers					

25 Method A: Material retained on No. 4 Sleve≤ 25%

314

4211.3

0,0333

318

	Method C: Material retained on 3/4" Sieve ≤ 25%
Moisture vs. Dry Density 100% Saturation Curves:	
98.0 (Gs=2.6); (Gs=2.7);	

115.9

95.8

116.0

94.8

111.4

92.9

96.0 Dry Density, pcf 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 Moisture Content, %

REMARKS

Method B: Material retained on 3/8" Sieve ≤ 25%

DESCRIPTION

USCS (ASTM D2487; D2488)

AASHTO M145

Maximum Dry Density, pcf Optimum Moisture Content, % 96.0 21.3 Corrected Maximum Dry Density, pcf Corrected Optimum Moisture Content, %

NA NA NΑ

Timely TELST Engineering

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

							or once		100,000,00	
		X	Soil			Fax: 770-923	-8973 ⊿		Date	05/29/15
			Tests	, LLC		Web: www.te	st-llo.com		Checked By	18
Client Pr. 1	#		100	02,362			Lab. PR.	#	1508-07-	3
Pr. Name			Banks Coun	ly C&D Ce	I 11A		S. Typ	e	Bulk	
Sample ID			19952	2A/ASH-1			Depth/Elev	r,	-	
Location	ļ <u></u>			-			Add, Info	0		
AS	STM D 6913	3 (D 422 old •	version), D	1140, C 13	6, C 117 / A.	ASHTO T 88	, T 27, T 11,	T 311; Particle	Size Analysis	(Split Sieve)
MOIST	URE CONTE	NT of TOTAL	SAMPLE			MOIS.	TURE CONTE	NT of FINE MAT	ΈρΙΔΙ	7.4.1
	Vet Sample (494.1	1			Sample & Tan		510.50	•
	Ory Sample &		429.0	1		Mass of Dry S	Sample & Tare	. Q	436.60	
Mass of T	fare, g	, ,	95.0	1		Mass of Tare.			93,70	
Moisture (Content, %		19.5]		Moisture Con	tent, %		21.6	
								<u></u>		
TOTALM	lass of wet sa	ample	7689,0	1		Mass of Wet	Fine Material	& Tare, g	303,40	
	litting & tare,	g		1					·	
Mass of T	are, g flass of dry sa	anamia -	0.0			Mass of Tare,			0.00	
I TOTAL N	nass of dry si	ampie, g	6434.8	i	.	wass of Diy F % of Total San	ine Material, g nple Passing S	l Solil Sieve	249.61 91.7	
							ingro i doging (5pm 01010	<u> </u>	
	CO	ARSE MATE	RIAL	-	SIEVE	ANALYSIS*		FINE MATERIA	I	
									_	
Mass of Ta	ire, g	0.0]			Mass of Tare,	g	0.00		
Steve Size		Sample & Tare, g	% RETAINED	% PASSHIG	.]			Comulative	% PASSING	
12 ^{rr}	COBBLES		0,0	160.0		Siave Size		Mass retained, g	(of Total)	
3"			0,0	100.0		#4	COARSE SAND		82.8	
2.5"	COARSE		0.0	100.0		<i>1</i> 710	MECKUM	51.18	72.9	
2"	GRAVEL	· · · · · · · · · · · · · · · · · · ·	0,0	100.0	4	#20	SAND	78.14	63.0	
1.5"		0.0	0.0	100.0	4	#40		94.08	57.2	
1"		0.0 102.8	0,0 1.6	100.0	1	#60	FINE SAND	111.77	50.7	
.76" .5"	FINE GRAVEL	367.1	5.7	98,4 94,3	-[#100 #200	FINES	133,16 162,13	42.8 32.2	
.375"	FINE GRAVEL	531.2	8.3	91.7	1	#200	FINES	102.13	32.2	
	<u> </u>	<u></u>					nitions of Clas			
							Definitions of C	Classification		
NOTE:	3/8"	(9.5 mm)	Sieve used	for splitting	g sample on fi	ine and coarse	e material			
					_	Р	ARTICLE-SIZ	E ANALYSIS*		
	Oven ID#	16/496/610			% COBBLES		0.0	% MEDIUM Sand		15.8
B	Balance ID#	139/142/700			% COARSE Gr	avel	1.6	% FINE Sand		25.0
Sieve S	Shaker ID #	555			% FINE Gravel			% FINES	L	32.2
					% COARSE Sa		9.8	% TOTAL SAMPLE		100.0
	REMARKS		1		W 0000150	P/	-	ANALYSIS**		
					% COBBLES			% COARSE Sand	-	15.8
			•		% COARSE Gra		0.0 8.3	% FINE Sand		25.0
					% FINE Gravel		18.8	% FINES (SILGAY) % TOTAL SAMPLE	-	32.2 100.0
		·····				······································				
DESCRIPT	TION	NA								
USCS (AS	JSCS (ASTM D2487; D2488) NA AASHTO (M 145) NA									
					P	age 1 of 2				Ī

TIMELY

Engineering Soil

Tests, Llc

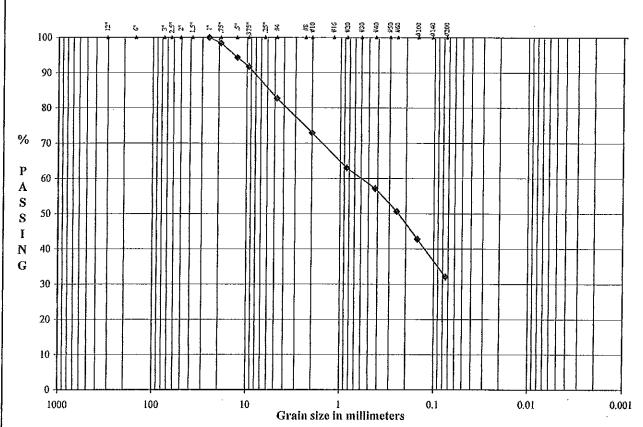
1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

Web: www.test-llc.com

Tested By Date


EΒ 05/29/15

18

Checked By 1002.362 Client Pr. # Lab, PR, # 1508-07-3 Pr. Name Banks County C&D Cell 11A S. Type Bulk 19952A/ASH-1 Depth/Elev. Sample ID Location Add. Info

ASTM D 6913 (D 422 old version), D 1140, C 136, C 117 / AASHTO T 88, T 27, T 11, T 311 Standard Test Method for Particle-Size Analysis of Soils and Aggregates (Split Sieve)

Particle-Size Analysis

			Coarse	Fine	Coarse	Medum	Fine		or Clay	
Bou	lders	Cobbles	Grav	vel	_	San	d	F	ines	
								D_{10}	NA	mm
								D ₃₀	NA	mm
								D ₆₀	NA	mm
								Cu	NA	
								Cc	NA	

Page 2 of 2

TIMELY Engineering SOIL

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

Tested By

RI

Date 05/26/15

	LESTS, LIX	Web: www.test-llc.com	Checked By
Client Pr. #	1002.362	Lab. PR. #	1508-07-2
Pr. Name	Banks County C&D Cell 11A	\$. Туре	Bulk
Sample ID	19996/ASH-2	Depth/Eley.	-
Location	•	Add. Info	-
l.			

ASTM D 698

Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600kN-m/m3))

DETERMINATION OF TEST PROCEDURE

wet	dry
13550.0	10611.2
155,6	155.6

MOISTURE	CONTENT
	Coarse + Fine Fraction
Mass of Wet Sample & Tare, g	402.9
Mass of Dry Sample & Tare, g	336.1
Mass of Tare, g	94.9
Moisture Content, %	27.7

	Coarse + Fine	Coarse
	Fraction	Fraction
9, g	402.9	155.6
ə, g	336.1	155,6
ə, g	94.9	0.0
, %	27.7	0,0

Material	Retained or	n No,	4 Sleve	3, %
Material	Retained or	n 3/8"	Sieve,	%
Material	Retained or	n 3/4"	Sieve,	%
Total, %	(oversi	zed)		

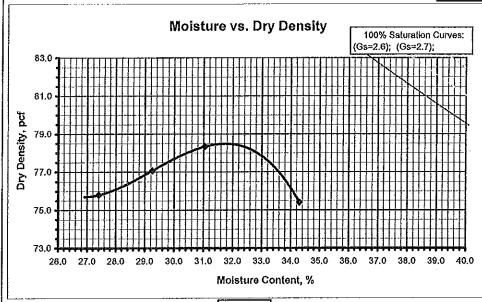
	1
1.5	l
	I
1,5	l

Procedure

 TEST	DATA

Points
Mass of Mold and Soil, g
Mass of Wet Sample & Tare, g
Mass of Dry Sample & Tare, g
Mass of Tare, g
Moisture Content %

Wet Density, pcf	
Dry Density, pcf	

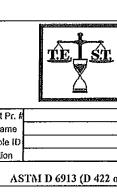

1	2	3 ·	4	5
5670.0	5716.0	5762,0	5741.0	
551.0	557.9	556.3	602.8	
470.3	470.7	466.3	494.4	
175.8	172.6	176,4	178.3	
27.4	29.3	31.0	34.3	

Mold ID Number
Mass of Mold, g
Volume of Mold, ft ³
Hammer ID Number
Number of Blows per layer
Number of Layers

	314	l
-	4211.3	
I	0.0333	ĺ
	318	ŀ
ļ	25	l
	3	

Density, pcf	96,6	99.6	102.7	101.3	
Density, pcf	75.8	77.1	78.3	75.4	

Method A: Material retained on No. 4 Sieve≤ 25% Method B: Material retained on 3/8" Sieve ≤ 25% Method C: Material retained on 3/4" Sieve ≤ 25%



Maximum Dry Density, pcf Optimum Moisture Content, % 78.5 31.8 Corrected Maximum Dry Density, pcf Corrected Optimum Moisture Content, %

REMARKS DESCRIPTION

USCS (ASTM D2487; D2488) NA

AASHTO M145 NA NA NA

MOISTURE CONTENT of TOTAL SAMPLE

TIMELY Engineering Soil

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

MOISTURE CONTENT of FINE MATERIAL

Tested By Date

EB 05/29/15

	A 130 (0, 131 ()	vveb: <u>vvvv,test-lic.com</u>	Checked By	10
Client Pr. #	1002.362	Lab, PR. #	1508-07-	3
Pr. Name	Banks County C&D Cell 11A	S. Туре	Bulk	
Sample ID	19996/ASH-2	Depth/Elev.		
Location	-	Add. Info	-	

ASTM D 6913 (D 422 old version), D 1140, C 136, C 117 / AASHTO T 88, T 27, T 11, T 311; Particle Size Analysis (Split Sieve)

Mass of Wet Sample & Tare, g Mass of Dry Sample & Tare, g Mass of Tare, g Moisture Content, %	402.9 336.1 94.9 27.7	Mass of Wet Sample & Tare, g Mass of Dry Sample & Tare, g Mass of Tare, g Moisture Content, %	360.20 303.70 83.60 25.7	. •
TOTAL Mass of wet sample before splitting & tare, g	13550,0	Mass of Wet Fine Material & Tare, g	300.90	
Mass of Tare, g TOTAL Mass of dry sample, g	0.0 10611.2	Mass of Tare, g Mass of Dry Fine Material, g % of Total Sample Passing Split Sieve	0.00 239.44 98.5	

SIEVE ANALYSIS*

			•		OIL VIL MIVAL I GIG			
	CO	ARSE MATE	RIAL				FINE MATERIA	Ļ
Mass of Ta	are, g	0.0	•		Mass of Tare, g	1	0.00	
Sieva Size		Sample & Tere, g	% RETARIED	% PASSVIG		•	Cumulative	% Passing
12"	COBBLES		0.0	100,0	Sieve Siza		Mass retained, g	(of Total)
3"			0.0	100.0	#4	COARSE SAND	0.00	98,5
2.5"	COARSE		0.0	100.0	#10	MEOXUM	0.00	98.5
2"	GRAVEL.		0.0	100.0	#20	SAND	6,20	96.0
1.5"	1		0.0	100.0	#40		15,54	92.1
1"			0.0	100.0	#60	FINE SAND	26.37	87.7
.75"			0.0	100.0	#100	[[38.72	82.6
,5''	FINE GRAVEL	0.0	0.0	100.0	#200	FINES	57,14	75.0
.376"		155.6	1.5	98,5				
					* - ASTM Defin ** - AASHTO D			
NOTE:	3/8"	(9.5 mm)	Sieve used	for splitting	sample on fine and coarse	material		

Oven ID# 16/498/610 Balance ID# 139/142/700 Sieve Shaker ID #

REMARKS

555

PARTICLE-SIZE ANALYSIS* % COBBLES % MEDIUM Sand 0.0 6.4 % COARSE Gravel 0.0 % FINE Sand 17.1 % FINE Gravel 1,5 % FINES 75.0 % TOTAL SAMPLE % COARSE Sand 100.0

P/	ARTICLE-SE	ZE ANALYSIS"	
% COBBLES	0,0	% COARSE Sand	6.4
% COARSE Gravel (Stone)	0.0	% FINE Sand	17.1
% MEDIUM Gravel (Stone)	1.5	% FINES (Sit-Clay)	75.0
% FINE Gravel (Stone)	0,0	% TOTAL SAMPLE	100.0

DESCRIPTION	NA
	, ,

USCS (ASTM D2487; D2488) NA **AASHTO (M 145)** NA

Page 1 of 2

TIMELY

Engineering Soil

Tests, LLC

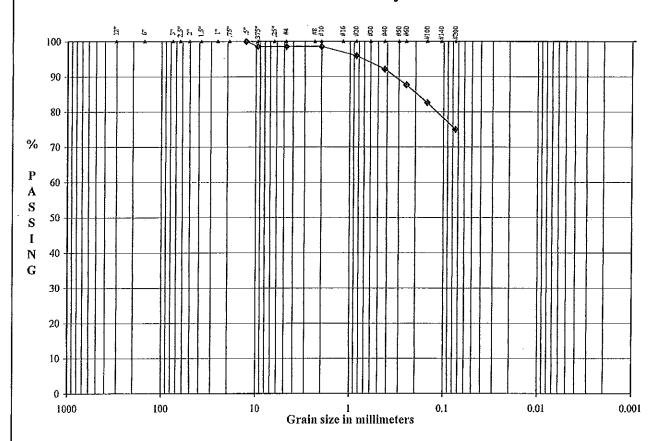
1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

Tested By Date

EΒ 05/29/15


Checked By

18

Web: www.test-lic.com 1002,362 Lab. PR.# 1508-07-3 Client Pr. # Banks County C&D Cell 11A S. Type Bulk Pr. Name Depth/Elev. 19996/ASH-2 Sample ID Add. Info Location

ASTM D 6913 (D 422 old version), D 1140, C 136, C 117 / AASHTO T 88, T 27, T 11, T 311 Standard Test Method for Particle-Size Analysis of Soils and Aggregates (Split Sieve)

Particle-Size Analysis

		Coarse	Fine	Coarse	Medum	Fine	Sit	Sit or Clay	
Boulders	Cobbles	Gravel		İ	San	d	F	ines	
					· · · · · · · · · · · · · · · · · · ·		D ₁₀	NA	mn
							D ₃₀	NA	mm
							D ₆₀	NA	mm
							Cu	NA	
							Cc	NA	

Page 2 of 2

APPENDIX B Field Density Testing – ASH-1 Material May 22, 2015

Daily Monitoring Summary

Date: May 22, 2015 s M T W T F s
Project Number: 1002.362 Project Title: R&B - Cell 11A Location: Banks County, Georgia Weather: Temperature: Low: 44' @ AM High: 82° @ PM Cloud Cover: Sunry Precipitation: None Wind: 0-5
ACC Personnel On-Site: Taylor Herbertson
Summary of Construction Progress: WM is currently placing ash in Cell 11A. There is a compaction requirement of 90% on 12" compacted lifts. Per John Workman's request WM is constructing a test pad to ensure the 90% compaction requirement is being met.
ACC Activities and Test Results: I observed the activities noted above and density tested the test pad. A sample of the ash labled 1951-1 was previously tested for Std. Proctor in the laboratory. My 3 density test were compared to this proctor and were found to have sufficient compaction.
The test pad was constructed using the helow number of passes for each test.
TP-1 - One pass using a smooth drum roller. TP-2 - Two passes using a smooth drum roller. TP-3 - Three passes using a smooth drum roller. K The vibrator was used on all passes

Daily Monitoring Summary

Date: $5/22/2015$ s M T W T F s
Summary of Surveyor's Activities: None
Summary of Problems and Resolutions: None
from Waste Management and he provided guidance on how he wanted the test pad constructed including equipment used and number of passes.
After completion of the test past it was noted that no more than one pass needs to be made to achieve the required compaction.
Summary of Health and Safety Issues: None
ubmitted by:
ACC Site Resident Manager

DATE REVIEWED: 5/23/15 COMPLETED BY: REVIEWED 8Y: SUMMARY SHEET IN - SITU DENSITY TEST RESULTS PROJECT LOCATION: Banks County, Georgia PROJECT TITLE: R&B - Cell 11A PROJECT NUMBER: 1002.362

					_				_	_				_			_		_						
	REMARKS	Roo Duga	Wassin Origin	This Posasa	200 A	Those Possos	Secretary Ones							and a state of the			The state of the s				military and a superior of the				
)	PASS/ FAIL	J		a.		Ġ																			
1000	DIFFERENCE FROM OPT. MOISTURE	107		40.3		70.3																			
	PERCENT	2000		のため		5.96																			
ì	REFERENCE OPTIMUM MOISTURE (%)	21.33				>																			
	REFERENCE MAX. DRY DENSITY (pcf)	0.9.0				Ş																			
	REFERENCE CURVE NUMBER	- F.S.T. –				->																			
	IN-SITU MOISTURE CONTENT (%)	20.9		ر 17		21.0																			
	IN-SITU DRY DENSITY (pcf)	2 0		91.1		93 -																			
	TEST	Z	1			->																			
	LIFT OR ELEVATION	-				→																			
	APPROX, LOCATION	N TEST	= PAD	2	3	->	Ħ	Z	m	Z	ш	z	មា	Z	ш	Z	a	Z	Ш	2	3	Z	Ш	z	ш
	TEST DATE	5/22				4																			
	TEST NUMBER	10-1	- 1	TP-2		TP-3																			

N = NUCLEAR DENSITY GAUGE DC = DRIVE CYLINDER S = SAND CONE

ATLANTIC COAST CONSULTING, INC

APPENDIX C

Field Density Testing – ASH-2 Material June 4, 2015

Daily Monitoring Summary

Date: June 4, 2015 SMTW(T)FS Page 1 of 2
Project Number: 1002.362 Project Title: R&B-Cell 11A Location: Banks County, Georgia Weather: Temperature: Low: 107 @ AM High: 77 @ PM Cloud Cover: Party Cloudy Precipitation: None Wind: 6-5MPH
ACC Personnel On-Site: Taylor Herbertzon
Summary of Construction Progress: <u>NM</u> is receiving a diffrent type of ash from unother site. Due to the 90% compaction requirment John Workman requested that we perform another test pad.
ACC Activities and Test Results: I monitored and density tested the test pad construction. A sample of the material labled ASH-2 was previously tested for std. proctor in the laboratory. The 3 density test I performed were compared to this proctor and were found to have sufficent compaction
The test pad was constructed using the below number of passes for each lift.
TP-4-One pass with a vibratory smooth drum roller. TP-5-Two passes with a vibratory smooth drum toller. TP-φ-Three passes with a vibratory smooth drum roller.

Daily Monitoring Summary

Date: $(\rho/4/2015)$ S M T W T) F S
Summary of Surveyor's Activities: None
Summary of Problems and Resolutions: Mone
Summary of Meetings and Discussions Held: I met with John Workman from Waste Management and he provided guidance on how he wanted the fest pad constructed including equipment used and number of passes. After completion of the test pad it was noted that no more than one pass needs to be made to achieve the required compaction using both Asit-I and Asit-2 maderials.
Summary of Health and Safety Issues: None
Submitted by: Kliff // ()
ACC Site Resident Manager

Three Cossesiy Sweets gran Smooth drum Two passes w BMOOTH CLIVE One possi in PASS/ FAIL DATE REVIEWED: 6/4/2015Φ. Φ. 0 DIFFERENCE FROM OPT. MOISTURE (%) -10.7 \mathfrak{O} 3 -REVIEWED BY PERCENT COMPLETED BY: 97.7 तव 200 REFERENCE OPTIMUM MOISTURE $\frac{\omega}{\omega}$ % REFERENCE R MAX, DRY DENSITY (pct) IN - SITU DENSITY TEST RESULTS SUMMARY SHEET REFERENCE I CURVE NUMBER R5F-7 IN-SITU MOISTURE CONTENT (%) 20.5 20.02 IN-SITU DRY DENSITY (pcf) 77.9 18.3 9 TEST ZLIFT OR ELEVATION PROJECT LOCATION: Banks County, Georgia APPROX. LOCATION PROJECT TITLE: R&B - Cell 11A TEST PRO PROJECT NUMBER: 1002.362 z ш z z z ш ш ш ZШ z ш z Z ш ш ш z Z ш TEST DATE 70/07 TEST NUMBER 5-6 10,0 ナーター

ATLANTIC COAST CONSULTING, INC

S = SAND CONE

DC = DRIVE CYLINDER

N = NUCLEAR DENSITY GAUGE

z

Z