VOLUME III: Modeling and Toxics

Narrative Discussion

1.0	INTR	CODUCTION	1-1
1.1	PROJE 1.1.1 1.1.2 1.1.3	CT LOCATION, EMISSIONS AND SOURCE CHARACTERIZATION Project Location Dispersion Model Facility Layout and Emission Source Locations Project Emissions and Source Characterization	
2.0	CLAS	SS II AIR QUALITY ANALYSIS	2-1
2.1	Mode	LING METHODOLOGY	
	2.1.1	Model Selection and Options	
	2.1.2	Dispersion Coefficients	
	2.1.3	Meteorological Data and Representativeness	
	2.1.4	Good Engineering Practice Stack Height and Building Downwash	
	2.1.5	Receptor Grids	
	2.1.0	Elevation Processing	2-0 2-6
2.2	D		
2.2	PRELI	MINARY IMPACT ASSESSMENT	
	2.2.1	SO_2	
	2.2.2	NO2	
	2.2.4	PM ₁₀	
	2.2.5	PM _{2.5}	
2.3	Ambie	ENT MONITORING REQUIREMENTS	
2.4	PSD R	EGIONAL SOURCE INVENTORIES FOR AIR QUALITY ANALYSIS	
	2.4.1	Extent of Screening Areas	
	2.4.2	Inventory of Stationary Sources	
	2.4.3	Identifying Nearby Sources	
	2.4.4	Increment Consumption and Expansion	
2.5	NAAQ	QS AIR QUALITY ANALYSIS	
2.6	PSD II	NCREMENT AIR QUALITY ANALYSIS	
2.7	Addit	IONAL IMPACTS ANALYSIS	
	2.7.1	Soils and Vegetation	
	2.7.2	Visibility Impairment	
	2.7.3	Growth	
3.0	CLAS	SS I AQRV AND PSD INCREMENT ANALYSIS	3-1
3.1	Mode	LING METHODOLOGY	
3.2	CLASS	I AIR QUALITY ANALYSIS RESULTS	
_		-	

4.0	TOXIC IMPACT ASSESSMENT	4-1
4.1	ACCEPTABLE AMBIENT CONCENTRATIONS	
4.2	MODELING METHODOLOGY	
4.3	DETERMINATION OF TOXIC AIR POLLUTANT IMPACT	
5.0	ELECTRONIC FILES	5-1

Index of Volume III Figures

Figure 1.1.1-1:	Project Location – Millen, Jenkins County, Georgia	.1-3
Figure 1.1.2-1:	Dispersion Model Facility Layout Overview	
Figure 1.1.2-2:	Dispersion Model Facility Buildings	.1-6
Figure 1.1.2-3:	Fenceline Receptors and Elevations	1-7
Figure 1.1.2-4:	Stack Locations	.1-8
Figure 1.1.2-5:	Paved Road Fugitive Dust Volume Source Locations	.1-9
Figure 2.2.1-1:	Maximum Significant Impacts for 3-hour, 24-hour and Annual SO ₂ and	
-	Determination of Significant Impact Area	
Figure 2.2.1-2:	Maximum Significant Impacts for 1-hour SO ₂ , Contour Plot and Determination of	
-	Significant Impact Area	
Figure 2.2.3-1:	Maximum Significant Impacts for Annual NO ₂ and Determination of Significant	
-	Impact Area	
Figure 2.2.3-2:	Maximum Significant Impacts for 1-Hour NO ₂ and Contour Plot	
Figure 2.2.4-1:	Maximum Significant Impacts for 24-Hour and Annual PM ₁₀ and Determination o	f
	Significant Impact Area	
Figure 2.2.5-1:	Maximum Significant Impacts for PM _{2.5} and Determination of Significant Impact	
-	Area	
Figure 2.4.2-1:	Location of Stationary Sources and PM ₁₀ Emission Intensity	
Figure 2.4.2-2:	Location of Stationary Sources and PM2.5 Emission Intensity	
Figure 2.4.2-3:	Location of Stationary Sources and NO ₂ Emission Intensity	
Figure 2.4.2-4:	Location of Stationary Sources and SO ₂ Emission Intensity	
Figure 2.5-1:	Location of 1-hour NO ₂ NAAQS Exceedances	
Figure 2.5-2:	Aerial View of 500 m Spaced Receptors with 1-hour NO ₂ NAAQS Exceedances	
Figure 2.5-3:	Aerial View of 100 meter Spaced Receptor Grid for 1-hour NO ₂ NAAQS	
	Violations Culpability	2-53
Figure 2.5-4:	Aerial View of 100 m Spaced Culpability Receptors with 1-hour NO ₂ NAAQS	
	Exceedances	

Index of Volume III Tables

Table 1.1.3.1-1:	Maximum Hourly Emissions of Criteria Pollutants	1-11
Table 1.1.3.1-2:	Maximum Hourly Emissions of HAP and TAP	1-12
Table 1.1.3.1-3:	Project Point Source Locations and Parameters	1-13
Table 1.1.3.2-1:	Project Volume Source Locations	1-15
Table 1.1.3.2-2:	Maximum Hourly Emissions for Fugitive Particulate Matter	1-17
Table 2.1.3-1:	Seasonal Albedo, Bowen, and Surface Roughness Length Values for the Daniel	
	Field NWS Surface Station and Project Site	2-4
Table 2.1.3-2:	Absolute and Relative Percent Difference of Seasonal Surface Characteristic	
	Values for NWS Station and Project Site	2-5
Table 2.2-1:	Summary of Significant Impact Levels (SIL's)	2-8
Table 2.2-2:	Summary of Significant Monitoring Concentrations	2-8
Table 2.2.1-1:	Class II Significance Results for SO ₂ and Surface Characteristics Sensitivity	2-13
Table 2.2.2-1:	Class II Significance Results for CO and Surface Characteristics Sensitivity	2-16
Table 2.2.3-1:	Class II Significance Results for NO2 and Surface Characteristics Sensitivity	2-17
Table 2.2.4-1:	Class II Significance Results for PM ₁₀ and Surface Characteristics Sensitivity	2-22
Table 2.2.5-1:	Class II Significance Results for PM2.5 and Surface Characteristics Sensitivity	2-26
Table 2.3-1:	Comparison of Maximum Ambient Impacts to Significant Monitoring	
	Concentrations	2-29
Table 2.3-2:	Ambient Background Concentrations	2-30
Table 2.5-1:	Primary and Secondary National Ambient Air Quality Standards	2-46
Table 2.5-2:	NAAQS Modeling Results	2-47
Table 2.5-3:	Comparison of PVMRM and OLM for 1-hour NO ₂ NAAQS Violations	2-52
Table 2.5-4:	Listing of Maximum Contribution of Millen Facility to Each Culpability Receptor	•
	with 1-hour NO ₂ NAAQS Violations	2-56
Table 2.6-1:	PSD Increments	2-57
Table 2.6-2:	PSD Increment Modeling Results	2-58
Table 2.7.1-1:	Comparison of Air Quality Impacts of NO ₂ , SO ₂ , and CO to the Direct Acting	
	Pollutant Screening Concentrations	2-61
Table 2.7.1-2:	Comparison of Potential Project Emissions of Cu, V, and Zn to the Significant	
	Emission Rate Tresholds	2-2
Table 3.2-1:	Results of Class I AQRV and PSD Increment Air Quality Analyses - Cape	
	Romain (FWS)	3-4
Table 3.2-2:	Results of Class I AQRV and PSD Increment Air Quality Analyses - Okefenokee	
	(FWS)	3-5
Table 3.2-3:	Results of Class I AQRV and PSD Increment Air Quality Analyses - Wolf Island	
	(FWS)	3-6
Table 3.2-4:	Results of Class I AQRV and PSD Increment Air Quality Analyses – Shining	
	Rock (USFS)	3-7
Table 4.1-1:	Summary of Acceptable Ambient Concentrations for Toxic Air Pollutants	4-3
Table 4.3-1:	Toxic Impact Assessment Modeling Results	4-4
Table 5-1:	Location of Electronic Files	5-1

LIST OF VOLUME III ATTACHMENTS

ATTACHMENT A	CLASS II MODELING PROTOCOL
ATTACHMENT B	GA EPD CORRESPONDENCE ON CLASS II PROTOCOL
ATTACHMENT C	TIER 3 NO ₂ (PVMRM) MODELING PROTOCOL
ATTACHMENT D	GA EPD/EPA CORRESPONDENCE ON PVMRM PROTOCOL
ATTACHMENT E	CLASS I PSD INCREMENT AND AQRV MODELING PROTOCOL
ATTACHMENT F	GA EPD/FLM CORRESPONDENCE ON CLASS I PROTOCOL
ATTACHMENT G	PSD INVENTORY
ATTACHMENT H	ELECTRONIC DISKS FOR VOLUME III

1.0 INTRODUCTION

CARBO Ceramics, Inc. (CARBO) manufactures ceramic pellets, or proppants, from nonmetallic minerals for use primarily in the oil and natural gas production industries. CARBO is proposing to construct a new processing plant, approximately 6 km southeast of Millen, Georgia at the intersection of GA State Route 17 and Clayton Road, in Jenkins County. The proposed plant will be a four-line, wet processing facility, similar to its Toomsboro plant in Wilkinson County, Georgia, where proppants are manufactured from kaolin clay slurry which is pelletized in spray dryers and later calcined in direct-fired rotary kilns. In addition to slurry preparation, spray drying and calcining, the processing lines each consist of an associated natural gas-fired boiler, materials handling, product storage and railcar loadout systems.

The construction of the proposed new processing facility will be a subject to PSD preconstruction review since the facility will be a major stationary source with potential emissions of NO_x, SO₂, CO, VOC, PM, PM₁₀, PM_{2.5}, and CO₂e greater than the significant emission rate thresholds for each pollutant. The facility will also be a new major source of hazardous air pollutants (HAP) for emissions of HF, HCl, and methanol and be subject to case-by-case maximum achievable control technology (MACT) review.

Volume I of this application contains the project description, emission calculations, review of PSD applicability and preconstruction requirements, case-by-case MACT review, overview of state and federal regulatory applicability and a summary of best available control technology (BACT) review. The complete BACT review is contained in Volume II of this application. This Volume III addresses the source impact, air quality, and additional impact analyses required of PSD applicants as part of major source preconstruction review. This volume also addresses the requirements of Georgia's state-only program regulating emissions of toxic air pollutants (TAP).

This Volume is organized into five main sections. In this Section 1, an overview of the project location, facility layout, building and emission source locations (stack and fugitive), and project emissions used as input for the dispersion modeling analyses is provided. Section 2 describes the Class II air quality analysis that was conducted for criteria pollutants proposed to be emitted in significant amounts, including the preliminary impact, NAAQS, PSD increment, and additional impact analyses. Section 3 describes the Class I air quality analysis that was conducted for the visibility and acidic deposition air quality related values (ARQV's) and PSD increments for four Class I areas that may be affected by the project. Section 4 describes the toxic impact assessment that was conducted for TAP emitted from the proposed Millen facility. Finally, Section 5 describes the electronic files included as an attachment to this Volume.

As a result of the air quality analyses, CARBO has made the following conclusions regarding the construction and operation of the Millen facility, as proposed in this PSD application:

- The facility will not cause or contribute to a violation in any area, designated attainment or otherwise, for any NAAQS effective at the time of this application;
- The facility will not cause or contribute to a violation in any area for any PSD increment effective at the time of this application;
- The facility will not have an adverse impact to soils or vegetation or impair visibility at any sensitive receptor as a result of emissions from the facility and associated growth;
- The facility will not have any adverse impact at any Class I area for any AQRV;
- The facility will not have a significant impact at any Class I area for any PSD increment effective at the time of this application; and
- The facility will not have an air quality impact for any toxic air pollutant in excess of the levels defined by the State of Georgia to protect the public's health, safety, and welfare

To support the air quality analyses and conclusions reached in this Volume, eight attachments are provided as follows:

- Attachment A contains the Class II modeling protocol submitted to GA EPD on July 19, 2011;
- Attachment B contains GA EPD's July 27, 2011 Class II modeling protocol approval letter and any associated correspondence;
- Attachment C contains the modeling protocol submitted to US EPA Region 4 and GA EPD on July 25, 2011 to address the use of the Plume Volume Molar Ratio Method (PVMRM) as a detailed Tier 3 screening technique for the 1-hour NO₂ NAAQS;
- Attachment D contains any agency correspondence associated with the PVMRM protocol;
- Attachment E contains the Class I modeling protocol submitted to the FLM's, GA EPD, and US EPA Region 4 on August 1, 2011;
- Attachment F contains any FLM correspondence associated with the Class I modeling protocol;
- Attachment G contains the regional inventories developed for the NAAQS and PSD air quality analysis; and
- Attachment H contains all electronic files associated with all air quality analyses conducted as part of this Volume

1.1 Project Location, Emissions and Source Characterization

1.1.1 Project Location

The PSD program applies to new and modified major stationary sources proposing to located in areas meeting the NAAQS ("attainment" areas) and in areas for which there is insufficient data to designate an area as attainment or nonattainment ("unclassifiable" areas). The Millen facility will be located in the eastern-central part of Georgia in Jenkins County which is currently designated as attainment or unclassifiable for all NAAQS. Figure 1.1.1-1 shows the project county location.

Figure 1.1.1-1: Project Location – Millen, Jenkins County, Georgia

Jenkins is located in the Vidalia Upland District of the Upper Coastal Plain. The county is situated in the Ogeechee river basin and is bounded by Bulloch County to the south, Emanuel County to the west, Burke County to the north and by the Screven County to the east. Elevations within 50 km of the county range from 25 feet (8 m) above mean sea level (MSL) along the Savannah River to 400 feet (122 m) in southwest Burke. Elevations within the proposed project site range from 165 feet (50 m) along the property boundary alongside GA S.R. 17 to 280 feet (85 m) along the northwest property boundary.

All counties adjoining Jenkins and within 50 km of the project site are also designated as attainment or unclassifiable for all NAAQS. The boundary of the nearest nonattainment area, Bibb County, is located approximately 150 km due west of the project site (through Twiggs) approximately 3 km north of Dry Branch. Bibb and portions of Monroe County were designated nonattainment for the 1997 annual $PM_{2.5}$ NAAQS on April 5, 2005. Previously, portions of Bibb and Monroe were designated nonattainment for the 1997 8-hour O₃ NAAQS on April 30, 2004, but were redesignated to attainment on October 19, 2007 forming the Macon ozone maintenance area. However, on March 12, 2009, GA EPD recommended designating Bibb and portions of Monroe nonattainment for the 2008 revised 8-hour O₃ NAAQS.

1.1.2 Dispersion Model Facility Layout and Emission Source Locations

The proposed Millen facility will consist of four processing lines, installed in pairs of two. Figure 1.1.2-1 provides an overview of the facility as represented in the dispersion model and Figure 1.1.2-2 provides a more detailed view of the facility buildings and building heights. Additionally, Figure 1.1.2-3 shows the location of fenceline receptors and elevations. Each processing line will consist of two spray dryers (fluidizers), a pellet feed system, direct-fired rotary kiln and cooler, product system, and natural gas-fired boiler. Product from each pair of processing lines will be stored in 8 product storage silo and shipped via railcars through a loadout system. In total, there are 42 modeled point sources associated with the four processing lines. Figure 1.1.2-4 shows the location of each stack relative to the facility buildings.

Prior to processing, kaolin clay will be delivered to the facility by truck and stored in covered clay sheds via one of two truck routes. The first route begins at the facility entrance off State Route 17 and proceeds to the clay storage sheds for Processing Lines 2 and 4. There are 27 volume sources associated with fugitive dust from truck traffic along this route. The other route also begins at the facility entrance off State Route 17 but proceeds to the clay storage sheds for Processing Lines 1 and 3, which are located further within the property, north and east of the clay storage sheds for Processing Lines 2 and 4. There are 32 volume sources associated with fugitive dust from truck traffic along this route. The proteom of the truck routes prior to the clay storage sheds for Processing Lines 2 and 4 are identical for both routes. Because of this, the first 16 volume sources for both routes are at identical locations. Figure 1.1.2-5 shows the volume source locations for both truck routes.

1.1.3 Project Emissions and Source Characterization

1.1.3.1 Stack Emissions and Source Parameters

Table 1.1.3.1-1 and Table 1.1.3.1-2 list the maximum hourly emission rates of criteria pollutants, HAP and TAP used for all air quality analyses presented in this Volume. These emission rates are consistent with the BACT limitations proposed for each emission unit in Volume II, the new source case-by-case MACT limitations proposed in Attachment D to Volume I, or other calculations representing potential or maximum hourly allowable emissions provided in Attachment B to Volume I of this application. The maximum hourly emission rate for each pollutant was used for both short and long term averaging periods.

For all air quality analysis relating to NO_2 , total NO_x (NO + NO₂) was used as emission input into the dispersion model for the project sources as well as all sources included in an applicable regional source inventory.

For point sources, the dispersion model requires the stack height, inside stack exit diameter, temperature and volumetric exhaust gas flow rate or exit gas velocity to be specified. Table 1.1.3.1-3 summarizes each unit's point source parameters that were used as input into the dispersion model. CARBO is not a source type that is associated with operation at varying "loads" or operating conditions and will operate emission units at or near maximum design capacity with infrequent occurrences of startup and shutdown. Therefore, the emission rates and source parameters used in the air quality analysis reflect the maximum allowable hourly emission rates and design capacity of each emission unit.

Each processing line will also be associated with an emergency dieselfired generator (EDG). However, EDG's have been excluded from the air quality analysis in its entirety. Outside of brief, periodic readiness testing, these units are used solely in the event of an emergency due to conditions beyond CARBO's control to prevent catastrophic mechanical failure of the direct-fired rotary kilns by maintaining power to the kiln drive (for rotary motion), process cooling and product recycle systems. No other systems, including the kiln burners, are in operation at the plant during such events. Since the EDG's will not operate simultaneously with the plant equipment in a continuous fashion on a defined schedule, CARBO is unable to characterize an operating scenario capable of being represented in a dispersion model.

Source Description Source ID NOx (lb/hr) SO2 (lb/hr) CO (lb/hr) PM ₁₀ PM ₂₅ (lb/hr) Processing Line No. 1 ID (lb/hr) (lb/hr) (lb/hr) (lb/hr) (lb/hr) (lb/hr) Spray Dryer No. 1 S001 8.3 0.5 16.6 4.543 1.704 Spray Dryer No. 2 S002 8.3 0.5 16.6 4.543 1.704 Pellet Feed System No. 1 S003 1.629 0.814 Kiln No. 1 S005 121 34.25 24.7 2.759 2.759
Description ID (lb/hr) (lb/hr) <th< th=""></th<>
Processing Line No. 1 Spray Dryer No. 1 S001 8.3 0.5 16.6 4.543 1.704 Spray Dryer No. 2 S002 8.3 0.5 16.6 4.543 1.704 Pellet Feed System No. 1 S003 1.629 0.814 Kiln No. 1 S005 121 34.25 24.7 2.759 2.759
Spray Dryer No. 1 S001 8.3 0.5 16.6 4.543 1.704 Spray Dryer No. 2 S002 8.3 0.5 16.6 4.543 1.704 Pellet Feed System No. 1 S003 1.629 0.814 Kiln No. 1 S005 121 34.25 24.7 2.759 2.759
Spray Dryer No. 2 S002 8.3 0.5 16.6 4.543 1.704 Pellet Feed System No. 1 S003 1.629 0.814 Kiln No. 1 S005 121 34.25 24.7 2.759 2.759 Vil N - 1 S005 121 34.25 24.7 2.759 2.759
Pellet Feed System No. 1 S003 1.629 0.814 Kiln No. 1 S005 121 34.25 24.7 2.759 2.759 Vila No. 1 S005 121 34.25 24.7 2.759 2.759
Kiln No. 1 S005 121 34.25 24.7 2.759 2.759
Kiln No. I Product System S006 0.129 0.064
Product Silo No. 1-1 S007 0.086 0.043
Product Silo No. 1-2 S008 0.086 0.043
Product Silo No. 1-3 S009 0.086 0.043
Product Silo No. 1-4 S010 0.086 0.043
Railcar Loading System No. 1 S011 0.300 0.150
Boiler No. 1 BLR1 0.14 0.01 0.81 0.075 0.075
Processing Line No. 2
Spray Drver No. 3 S012 8.3 0.5 16.6 4.543 1.704
Spray Dryer No. 4 S013 8.3 0.5 16.6 4.543 1.704
Pellet Feed System No. 2 S014 1.629 0.814
Kiln No. 2 S016 121 34.25 24.7 2.759 2.759
Kiln No. 2 Product System S017 0.129 0.064
Product Silo No. 2-1 S018 0.086 0.043
Product Silo No. 2-2 S019 0.086 0.043
Product Silo No. 2-3 S020 0.086 0.043
Product Silo No. 2-4 S021 0.086 0.043
Boiler No. 2 BLR2 0.14 0.01 0.81 0.075 0.075
Processing Line No. 3
Spray Dryer No. 5 S022 8.3 0.5 16.6 4.543 1.704
Spray Dryer No. 6 S022 0.0 0.0 10.0 11.0
Pellet Feed System No. 3 S024 1.629 0.814
Kiln No. 3 S026 121 34.25 24.7 2.759 2.759
Kiln No. 3 Product System S027 0.129 0.064
Product Silo No. 3-1 S028 0.086 0.043
Product Silo No. 3-2 S029 0.086 0.043
Product Silo No. 3-3 S030 0.086 0.043
Product Silo No. 3-4 S031 0.086 0.043
Railcar Loading System No. 2 S032 0.300 0.150
Boiler No. 3 BLR3 0.14 0.01 0.81 0.075 0.075
Processing Line No. 4
Spray Dryer No. 7 S033 8.3 0.5 16.6 4.543 1.704
Spray Dryer No. 8 S033 0.5 0.6 15.6 17.7
Pellet Feed System No. 4 S035 1.629 0.814
Kiln No. 4 S037 121 34 25 24 7 2 759 2 759
Kiln No. 4 Product System S038 0.129 0.064
Product Silo No. 4-1 S039 0.086 0.043
Product Silo No. 4-2 S040 0.086 0.043
Product Silo No. 4-3 S041 0.086 0.043
Product Silo No. 4-4 S042 0.086 0.043
Boiler No. 4 BLR4 0.14 0.01 0.81 0.075 0.075

Table 1.1.3.1-1: Maximum Hourly Emissions of Criteria Pollutants

Source	Modeled	HF	HC1	Methanol	Ammonia	Hexane
Description	Source ID	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
Processing Line No. 1						
Spray Dryer No. 1	S001			2.4	38.52	0.083
Spray Dryer No. 2	S002			2.4	38.52	0.083
Kiln No. 1 Scrubber	S005	8.66	1.98			0.106
Boiler No. 1	BLR1					0.017
Processing Line No. 2						
Spray Dryer No. 3	S012			2.4	38.52	0.083
Spray Dryer No. 4	S013			2.4	38.52	0.083
Kiln No. 2 Scrubber	S016	8.66	1.98			0.106
Boiler No. 2	BLR2					0.017
Processing Line No. 3						
Spray Dryer No. 5	S022			2.4	38.52	0.083
Spray Dryer No. 6	S023			2.4	38.52	0.083
Kiln No. 3 Scrubber	S026	8.66	1.98			0.106
Boiler No. 3	BLR3					0.017
Processing Line No. 4						
Spray Dryer No. 7	S033			2.4	38.52	0.083
Spray Dryer No. 8	S034			2.4	38.52	0.083
Kiln No. 4 Scrubber	S037	8.66	1.98			0.106
Boiler No. 4	BLR4					0.017

Table 1.1.3.1-2: Maximum Hourly Emissions of HAP and TAP

Table 1.1.3.1-3: Project Point Source Locations and Parameter	ers
---	-----

	Modeled	NAD83	NAD83	Base	Stack	Stack		Exit			
Source	Source	UTM	UTM	Elev.	Height	Temp.	Velocity	Diam.			
Description	ID	East (m)	North (m)	(ft)	(ft)	(F)	(fps)	(in)			
Processing Line No. 1	Processing Line No. 1										
Spray Dryer No. 1	S001	415,760.82	3,625,682.54	215	180.0	206	108.46	36			
Spray Dryer No. 2	S002	415,769.78	3,625,687.18	215	180.0	206	108.46	36			
Pellet Feed System No. 1	S003	415,781.00	3,625,689.88	215	160.0	80	85.75	28			
Kiln No. 1	S005	415,799.74	3,625,696.01	215	245.0	160	83.56	48			
Kiln No. 1 Product System	S006	415,870.09	3,625,749.18	215	125.0	150	16.93	19			
Product Silo No. 1-1	S007	415,909.49	3,625,825.89	225	95.5	80	7.64	20			
Product Silo No. 1-2	S008	415,916.03	3,625,829.36	225	95.5	80	7.64	20			
Product Silo No. 1-3	S009	415,922.54	3,625,832.80	225	95.5	80	7.64	20			
Product Silo No. 1-4	S010	415,928.97	3,625,836.19	225	95.5	80	7.64	20			
Railcar Loading System No. 1	S011	415,970.89	3,625,864.11	225	65.0	80	54.57	14			
Boiler No. 1	BLR1	415,719.00	3,625,666.95	215	29.0	380	23.58	18			
Processing Line No. 2											
Spray Dryer No. 3	S012	415,751.49	3,625,700.04	215	180.0	206	108.46	36			
Spray Dryer No. 4	S013	415,760.38	3,625,704.89	215	180.0	206	108.46	36			
Pellet Feed System No. 2	S014	415,768.91	3,625,712.53	215	160.0	80	85.75	28			
Kiln No. 2	S016	415,784.52	3,625,724.49	215	245.0	160	83.56	48			
Kiln No. 2 Product System	S017	415,868.18	3,625,752.93	215	125.0	150	16.93	19			
Product Silo No. 2-1	S018	415,935.26	3,625,839.87	225	95.5	80	7.64	20			
Product Silo No. 2-2	S019	415,941.81	3,625,843.17	225	95.5	80	7.64	20			
Product Silo No. 2-3	S020	415,948.17	3,625,846.58	225	95.5	80	7.64	20			
Product Silo No. 2-4	S021	415,954.84	3,625,850.07	225	95.5	80	7.64	20			
Boiler No. 2	BLR2	415,707.61	3,625,688.73	215	29.0	380	23.58	18			
Processing Line No. 3											
Spray Dryer No. 5	S022	415,707.04	3,625,782.98	215	180.0	206	108.46	36			
Spray Dryer No. 6	S023	415,716.00	3,625,787.62	215	180.0	206	108.46	36			
Pellet Feed System No. 3	S024	415,727.22	3,625,790.32	215	160.0	80	85.75	28			
Kiln No. 3	S026	415,745.96	3,625,796.45	215	245.0	160	83.56	48			
Kiln No. 3 Product System	S027	415,816.31	3,625,849.62	215	125.0	150	16.93	19			
Product Silo No. 3-1	S028	415,902.85	3,625,838.35	225	95.5	80	7.64	20			
Product Silo No. 3-2	S029	415,909.39	3,625,841.82	225	95.5	80	7.64	20			
Product Silo No. 3-3	S030	415,915.90	3,625,845.26	225	95.5	80	7.64	20			
Product Silo No. 3-4	S031	415,922.33	3,625,848.65	225	95.5	80	7.64	20			
Railcar Loading System No. 2	S032	415,964.25	3,625,876.57	225	65.0	80	54.57	14			
Boiler No. 3	BLR3	415,665.22	3,625,767.39	215	29.0	380	23.58	18			
Processing Line No. 4											
Spray Dryer No. 7	S033	415,697.71	3,625,800.48	215	180.0	206	108.46	36			
Spray Dryer No. 8	S034	415,706.60	3,625,805.33	215	180.0	206	108.46	36			
Pellet Feed System No. 4	S035	415,715.13	3,625,812.97	215	160.0	80	85.75	28			
Kiln No. 4	S037	415,730.74	3,625,824.93	215	245.0	160	83.56	48			
Kiln No. 4 Product System	S038	415,814.40	3,625,853.37	215	125.0	150	16.93	19			
Product Silo No. 4-1	S039	415,928.62	3,625,852.33	225	95.5	80	7.64	20			
Product Silo No. 4-2	S040	415,935.17	3,625,855.63	225	95.5	80	7.64	20			
Product Silo No. 4-3	S041	415,941.53	3,625,859.04	225	95.5	80	7.64	20			
Product Silo No. 4-4	S042	415,948.20	3,625,862.53	225	95.5	80	7.64	20			
Boiler No. 4	BLR4	415,653.83	3,625,789.17	215	29.0	380	23.58	18			

1.1.3.2 Paved Road Fugitive Dust Emissions and Volume Source Parameters

Although the Millen facility does not belong to one of the source categories required to include fugitive emissions for the purposes of PSD applicability, fugitive emissions, to the extent quantifiable, are required to be included in the NAAOS and PSD increment air quality analysis. Sources of quantifiable fugitive emissions from the Millen facility include the reentrainment of particulate matter becoming airborne from truck traffic on the facility's paved roads. As shown in Figure 1.1.2-5, there are two routes that trucks travel when transporting kaolin to the clay storage sheds: one route to the storage sheds for Processing Lines 1 and 3 and another shorter route to the storage sheds for Processing Lines 2 and 4. Each route was represented as a series of volume sources which were characterized in accordance with guidance provided in GA EPD's Draft Guideline for Modeling of Crushed Stone Operations, revised September 21, 1999. For the portion of roadway within 200 feet of the facility entrance off State Route 17, five volume sources with initial lateral and vertical dimensions of 9.32 ft and 5.58 ft, respectively, were spaced at 40 foot intervals with the first volume source offset 20 ft from the boundary. For the portion of the roadway past 200 ft of the facility entrance, the remaining volume sources have initial lateral and vertical dimensions of 14.70 ft and 5.58 ft, respectively, and were spaced at 100 foot intervals. The release height for all volume sources was specified as 8 ft, or two-thirds the 12 ft vehicle height. In total, there are 32 volume sources representing the 5,800 feet of travel from the facility entrance to the clay storage sheds for Processing Lines 1 and 3 and there are 27 volume sources representing the 4,800 feet of travel from the facility entrance to the clay storage sheds for Processing Lines 2 and 4.¹ Table 1.1.3.2-1 lists the locations of the volume sources for each truck route.

¹ The travel lengths for each truck route reflect round-trip distances to and from the facility entrance to the furthest clay storage shed for each route.

Proces	sing Lines 1 a	and 3	Processing Lines 2 and 4					
Volume	NAD83 UTM	NAD83 UTM	Volume	NAD83 UTM	NAD83 UTM			
Source ID	East (m)	North (m)		East (m)	North (m)			
PVDA_001 ¹	415,288.88	3,624,916.76	PVDB_001 ⁻¹	415,288.88	3,624,916.76			
PVDA_002 ⁻¹	415,299.65	3,624,922.48	PVDB_002 ¹	415,299.65	3,624,922.48			
PVDA_003 ¹	415,310.41	3,624,928.20	PVDB_003 ¹	415,310.41	3,624,928.20			
PVDA_004 ⁻¹	415,321.18	3,624,933.93	PVDB_004 ¹	415,321.18	3,624,933.93			
PVDA_005 ¹	415,331.95	3,624,939.65	PVDB_005 ¹	415,331.95	3,624,939.65			
PVDA_006	415,350.79	3,624,949.66	PVDB_006	415,350.79	3,624,949.66			
PVDA_007	415,377.70	3,624,963.97	PVDB_007	415,377.70	3,624,963.97			
PVDA_008	415,404.62	3,624,978.27	PVDB_008	415,404.62	3,624,978.27			
PVDA_009	415,431.53	3,624,992.58	PVDB_009	415,431.53	3,624,992.58			
PVDA_010	415,458.45	3,625,006.88	PVDB_010	415,458.45	3,625,006.88			
PVDA_011	415,485.36	3,625,021.19	PVDB_011	415,485.36	3,625,021.19			
PVDA_012	415,512.28	3,625,035.49	PVDB_012	415,512.28	3,625,035.49			
PVDA_013	415,539.19	3,625,049.80	PVDB_013	415,539.19	3,625,049.80			
PVDA_014	415,566.10	3,625,064.10	PVDB_014	415,566.10	3,625,064.10			
PVDA_015	415,593.02	3,625,078.40	PVDB_015	415,593.02	3,625,078.40			
PVDA 016	415,619.93	3,625,092.71	PVDB 016	415,619.93	3,625,092.71			
PVDA_017 ²	415,646.85	3,625,107.01		415,631.10	3,625,111.80			
PVDA_018	415,673.76	3,625,121.32	PVDB_018	415,616.63	3,625,138.63			
PVDA_019	415,700.68	3,625,135.62	PVDB_019	415,602.17	3,625,165.46			
PVDA_020	415,727.59	3,625,149.93	PVDB_020	415,587.70	3,625,192.29			
PVDA_021	415,754.51	3,625,164.23	PVDB_021	415,573.23	3,625,219.12			
PVDA_022	415,775.25	3,625,180.42	PVDB_022	415,558.77	3,625,245.95			
PVDA_023	415,760.89	3,625,207.30	PVDB_023	415,544.30	3,625,272.77			
PVDA_024	415,746.53	3,625,234.19	PVDB_024	415,529.84	3,625,299.60			
PVDA_025	415,732.17	3,625,261.07	PVDB_025	415,515.37	3,625,326.43			
PVDA_026	415,717.81	3,625,287.96	PVDB_026	415,500.90	3,625,353.26			
PVDA_027	415,703.45	3,625314.84	PVDB_027	415,486.44	3,625,380.09			
PVDA_028	415,689.09	3,625,341.73						
PVDA_029	415,674.73	3,625,368.61						
PVDA_030	415,660.36	3,625,395.50						
PVDA_031	415,646.00	3,625,422.38						
PVDA 032	415,631.64	3,625,449.27						

 Table 1.1.3.2-1:
 Project Volume Source Locations

¹ First five volume sources for each truck route within 200 feet of the facility entrance off State Route 17.
 ² The first 16 volume sources for each truck route are identical since trucks transporting.

² The first 16 volume sources for each truck route are identical since trucks transporting kaolin to the clay sheds for all processing lines shares the first 1,300 feet of paved road. The coordinates for the 17th volume sources show the divergence of the two routes as represented in Figure 1.1.2-5.

In order to calculate fugitive emissions for each volume source, the most recent version of the predictive emission factor equation for vehicle traffic on paved roads published in AP-42 Chapter 13.2.1 was used (January 2011). This equation requires a particle size multiplier, average vehicle weight (tons) and silt loading of the road surface (g/m^2) to be specified. Particle size multipliers for PM₁₀ and PM_{2.5} were determined from AP-42 Table 13.2.1-1. An average vehicle weight of 22.3 tons (13.3 tons unloaded with 18 ton capacity) was used based data available to CARBO. For silt loading, AP-42 Table 13.2.1-3 does not specify a value for CARBO's industry based on the type of control that will be used to minimize fugitive dust from traffic on paved roads; CARBO will use vacuum sweeping to control particulate emissions from paved roads. In lieu of claiming that fugitive dust can not be quantified, CARBO reviewed the background documentation for AP-42 Chapter 13.2.1 to develop a value for silt content that was used to estimate particulate matter emissions from paved road truck traffic.

In order to develop the predictive emission factor equation for vehicle traffic on paved roads, US EPA performed a stepwise, multiple nonlinear regression analysis based on test data gathered over a number of decades for vehicle traffic on public streets, highways and industrial paved roads. A summary of the final test data set, including silt content, used to develop the emission factor algorithm is provided in Table 4-17 of the background document. Based on the descriptions of each reference and test provided in the background documentation, CARBO isolated 18 measurements for silt content at various industrial sites utilizing vacuum sweeping controls.² From this data, CARBO estimated a silt content of 0.52 g/m^2 for industrial paved roads with vacuum sweeping control by taking the arithmetic average of all data across all industries and multiplying the average by a factor of 2.

Table 1.1.3.2-2 summarizes the emission rates for each volume source. It should be noted that kaolin will be delivered to the facility during a 9 hour period, from 7 am to 4 pm. Table 1.1.3.2-2 reflects the maximum hourly emissions of fugitive particulate matter for each volume source during any one hour period based on vehicle miles traveled per hour along each route. The 9 hour schedule was incorporated into the dispersion model by using a variable emission rate for each volume source in the source pathway. It should also be noted that no control efficiency for natural mitigation was incorporated into the calculated emission rates.

² Table 4-17, Emission Factor Documentation for AP-42, Section 13.2.1, Paved Roads, January 2011. Please see Reference ID USX 5/1990, Run ID's AUC6, AUC7, and AUC8; Reference ID EPA 8/1983, Run ID's F36, F37, F38, and F39; and Reference ID CRA 5/2008, Run ID's CI-1, CI-2, CI-3, CI-4, CI-7, CI-8, CI-11, CI-12, CM-I, CM-2, and CM-4.

	Table 1.1.3.2-2: Maximum Hourly Emissions for Fugitive Particulate Matter														
		-		Vehicle	Fugitive Road D	ust Emissions	s Factor			-				Emissions	per Volume Source
Pollutant	Volume Source ID	Road Length, (ft)	Number of Volume Sources	Particle Size Mulitplier, k (lb/VMT) ¹	Silt Loading, sL $(g/m^2)^2$	Average Vehicle Weight, W (tons) ³	Vehicle Particulate Emission Factor, (lb/VMT) ⁴	Number of Kilns	Number of Trucks per Hour per Kiln	Average Vehicle Capacity, (tons)	Truck Schedule 9 hrs/day	Number of Vehicles per Hour	Vehicle Miles Traveled per Hour, VMT ⁵	Particulate Emissions, (lbs/hr)	Hourly Emissions per Volume Source (g/s)
Two-way traffic to clay sheds for Processing Lines 1 and 3, entrance off GA State Route 17, paved, first 5 volume sources, within 200 ft of property boundary, 40 ft spacing (Volume Sources PVDA_001-PVDA_005)															
PM ₁₀	PVDA_001-005	200.00	5	0.00220	0.52	22.3	0.0288	2	3	18	7am-4pm	6	0.45	0.0131	3.2957E-04
PM _{2.5}	PVDA_001-005	200.00	5	0.00054	0.52	22.3	0.0071	2	3	18	7am-4pm	6	0.45	0.0032	8.0895E-05
Two-way	traffic to clay sheds	<u>for Processi</u>	ng Lines 1 and	3, paved, next	<u>27 volume sour</u>	ces, beyond 2	200 ft of prope	erty boundary.	100 ft spacing	(Volume Sourd	ces PVDA_006-	PVDA_032)			_
PM_{10}	PVDA_006-030	2700.00	27	0.00220	0.52	22.3	0.0288	2	3	18	7am-4pm	6	6.14	0.1766	8.2393E-04
PM _{2.5}	PVDA_006-030	2700.00	27	0.00054	0.52	22.3	0.0071	2	3	18	7am-4pm	6	6.14	0.0433	2.0224E-04
Two-way	traffic to clay sheds	for Processi	ng Lines 2 and	l 4, entrance off	GA State Rout	e 17, paved, f	first 5 volume	sources, withi	n 200 ft of prop	erty boundary	, 40 ft spacing	(Volume Sourc	es PVDB_001-	<u>PVDB_005)</u>	
PM ₁₀	PVDB_001-005	200.00	5	0.00220	0.52	22.3	0.0288	2	3	18	7am-4pm	6	0.45	0.0131	3.2957E-04
PM _{2.5}	PVDB_001-005	200.00	5	0.00054	0.52	22.3	0.0071	2	3	18	7am-4pm	6	0.45	0.0032	8.0895E-05
Two-way	traffic to clay sheds	<u>for Processi</u>	ng Lines 2 and	4, paved, next	22 volume sour	ces, beyond 2	200 ft of prope	erty boundary.	100 ft spacing	(Volume Sourc	ces PVDB 006-	<u>PVDB 027)</u>			_
PM ₁₀	PVDB_006-046	2200.00	22	0.00220	0.52	22.3	0.0288	2	3	18	7am-4pm	6	5.00	0.1439	8.2393E-04
PM _{2.5}	PVDB_006-046	2200.00	22	0.00054	0.52	22.3	0.0071	2	3	18	7am-4pm	6	5.00	0.0353	2.0224E-04

Table 1 1 2 2 2. Marin Hourly Emissions for Fugitive Porticulate Matt

¹ Particle size multipliers for PM₁₀ and PM_{2.5} determined from Table 13.2.1-1 of AP-42

² Silt loading determined as average silt loading for all test data from industrial sites utilizing vacuum sweeping controls used to develop the paved road fugitive dust predictive emission factor algorithm multiplied by a factor of 2 (please refer to Section 1.1.3.2 and footnote 2 of this application).

³ Trucks are 26,640 lbs. empty with 36,000 lbs. capacity ⁴ Equation 1, AP-42 Section 13.2.1.3 (particle size multiplier, k)*((silt loading, sL, g/m^2)^0.91)*((average vehicle weight, W, tons)^1.02)

⁵ Vehicle miles traveled road length multiplied by the number of vehicles per hour; VMT is multiplied by a factor of 2 to account for round-trips (i.e., incoming and outgoing traffic represented by the same volume sources)

2.0 CLASS II AIR QUALITY ANALYSIS

2.1 Modeling Methodology

2.1.1 <u>Model Selection and Options</u>

US EPA's guideline was revised in 2005 to replace the Industrial Source Complex (ISC3) model with the American Meteorological Society (AMS)/EPA model (AERMOD) as the preferred regulatory model. AERMOD is a steady-state plume dispersion model that is considered to be the best state-of-the-art practice of Gaussian dispersion. The AERMOD model incorporates parameterized dispersion in both stable and convective conditions using planetary boundary layer (PBL) characteristics developed from directly observed meteorological data and surface characteristics preprocessed in AERMET and AERSURFACE, respectively. To reduce the number of calm, variable, and missing winds typically encountered in standard archives of observed meteorological data, AERMINUTE is used to calculate hourly average wind speed and direction to supplement the data processed in AERMET, increasing completeness of the meteorological dataset used with AERMOD. A terrain preprocessor, AERMAP, is used to process a variety of United States Geological Survey (USGS) gridded terrain datasets to determine receptor-specific terrain-influence heights and source and receptor elevations for input into AERMOD. The terrain-influence height at each receptor is used by AERMOD to incorporate the dividing streamline height concept to better characterize plume behavior in elevated terrain. AERMOD also incorporates the plume rise model enhancements (PRIME) downwash algorithm which has been evaluated and found to perform better than the ISC3 downwash algorithm using a variety of data sets.

For these reasons, the most recent version of AERMOD (v11103) and its preprocessors AERMET (v11059), AERMINUTE (11059), AERMAP (v11103), and AERSURFACE (v08009) were used to estimate ambient impacts for all Class II PSD air quality analyses. Because of this model selection, additional guidance on the recommend use of AERMOD for certain concerns was performed in accordance with the most recent revision of implementation guidance for AERMOD (US EPA 2010). Except as discussed below, AERMOD was executed using the regulatory default model options, i.e., the parameter "DFAULT" was specified in the MODELOPT record in the control pathway.

For the 1-hour NO₂ NAAQS, CARBO used the Plume Volume Molar Ratio Method (PVMRM) which simulates the first-order reaction of nitric oxide (NO) with ozone to determine the NO₂/NO_x conversion rate during plume expansion. PVMRM is available as a non-regulatory default model option within AERMOD and it application makes AERMOD no longer a preferred guideline model. In such cases, use of this technique must be approved as an alternate model by US EPA Region 4 on a case-by-case basis under Section 3.2.2 of US EPA's guideline. Generally, the Air Quality Modeling Group

(AQMG) at US EPA's Office of Air Quality Planning and Standards (OAQPS) recommends accepting the use of PVMRM provided that a reasonable demonstration can be made regarding the appropriateness of the in-stack NO₂/NO_x ratios and background ozone database proposed to be used. On July 25, 2011, CARBO submitted to US EPA Region 4 and GA EPD a modeling protocol regarding application of PVMRM. With regard to in-stack NO₂/NO_x ratios, CARBO obtained 180 minutes of NO and NO₂ measurements from the exhaust stack of a similar operating kiln, spray dryer, and boiler at CARBO's Toomsboro facility during the second week of July 2011 - the emission units associated with the construction of the proposed Millen facility will be substantially similar, if not identical, to the units on which stack sampling was conducted. From this data, CARBO determined in-stack NO_2/NO_x ratios for the project sources as 0.01 for kilns, 0.06 for spray dryers and 0.12 for boilers – the NO_2/NO_x ratios were determined as the average of three 60-min periods of data (i.e., 3-run averages). For all other sources in the PSD inventory, except combustion turbines, the default NO₂/NO_x ratio of 0.50 was used in the absence of source-specific information. For combustion turbines, an in-stack NO₂/NO_x ratio of 0.20 was used, which is substantiated by documentation submitted along with the PVMRM protocol. For background ozone concentrations, CARBO developed a database using the maximum of contemporaneous 1-hour observations of ozone measured at seven monitors surrounding the modeling domain with one monitor used as secondary source for periods of missing data not within Georgia's statutory ozone monitoring season, March through October. Having combined the observations in this manner, the background ozone concentrations used with PVMRM are representative and conservative for both the project site and averaging period so that the controlling NO_2 concentrations were not underestimated. Please refer to the PVMRM protocol provided in Attachment C to this Volume.

Additionally, for PM_{10} significance modeling, AERMOD runs were conducted using the regulatory default model options as well as the nondefault control ("FLAT" and "ELEV") and source options (use of "FLAT" in place of source elevation) to specify use of flat, level terrain for fugitive emissions below the level of surrounding terrain; elevations for all volume sources representing fugitive particulate matter emissions from truck traffic on paved roads are below the level of most terrain immediately adjacent to and surrounding the Millen facility. As discussed in implementation guidance, AERMOD may tend to underestimate the air quality impact of low-level, non-buoyant sources (i.e., volume sources) in up-sloping terrain when compared to flat terrain results. The dual AERMOD runs were conducted to perform sensitivity testing to determine which model option would be more appropriate for the remaining particulate matter air quality analyses.

2.1.2 Dispersion Coefficients

Based on the land use analysis provided in the Class II modeling protocol, the urban modeling option in AERMOD was not used for any air quality analysis.

2.1.3 Meteorological Data and Representativeness

In the absence of at least one year of site-specific data, GA EPD provided CARBO with five-years (2006-2010) preprocessed hourly meteorological observations collected at Augusta Daniel Field (WBAN #13873) using the recently promulgated, final versions of AERMINUTE and AERMET, incorporating upper air observations of the Peachtree City NWS station (WBAN #53819). Because of the selection of Daniel Field as the representative surface station, the base elevation for the NWS measurement location, 410.43 ft, was specified as the "profile base elevation" (PROFBASE) for computation of vertical profiles of potential temperature for use in the plume rise calculations.³

The NWS data were processed using AERSURFACE outputs for the wet, dry, and average Bowen moisture conditions, by season and 30° sector. Two sets of meteorological data were compiled, one for the surface characteristics of the NWS site, and one for the characteristics of the project site. Table 2.1.3-1 summarizes the surface characteristics for the NWS and project site locations and Table 2.1.3-2 compares the surface characteristics in terms of the absolute and relative percent differences between the two.

³ Elevation corresponding to the location of the meteorological tower (33.466829 latitude, -82.038479 longitude)

SECTOR]	DANIEL F SURFACE	IELD NWS STATION	5	CARBO MILLEN PROJECT SITE				
	Winter	Spring	Summer	Autumn	Winter	Spring	Summer	Autumn	
Albedo									
0-360	0.17	0.16	0.16	0.16	0.15	0.14	0.16	0.16	
Bowen (Av	erage Surfa	ce Moistur							
0-360	1.05	0.91	0.74	1.05	0.64	0.41	0.34	0.58	
Bowen (Dr	y Surface N	Ioisture Co	ndition)						
0-360	2.20	1.98	1.57	2.20	1.07	0.84	0.65	1.07	
Bowen (We	et Surface N	Aoisture Co	ondition)						
0-360	0.58	0.56	0.51	0.58	0.27	0.22	0.20	0.27	
Surface Ro	ughness Le	ngth							
0-30	0.112	0.119	0.125	0.121	0.487	0.551	0.775	0.775	
30-60	0.090	0.095	0.099	0.096	0.397	0.473	0.773	0.773	
60-90	0.173	0.185	0.194	0.186	0.377	0.438	0.750	0.750	
90-120	0.124	0.136	0.145	0.137	0.116	0.147	0.378	0.378	
120-150	0.180	0.191	0.200	0.193	0.121	0.160	0.396	0.396	
150-180	0.145	0.159	0.170	0.160	0.548	0.586	0.682	0.682	
180-210	0.053	0.061	0.069	0.062	0.601	0.662	0.892	0.892	
210-240	0.067	0.078	0.091	0.082	1.149	1.205	1.260	1.260	
240-270	0.229	0.252	0.270	0.253	0.651	0.716	0.963	0.963	
270-300	0.060	0.073	0.085	0.074	0.446	0.534	0.765	0.765	
300-330	0.196	0.214	0.228	0.216	1.028	1.104	1.201	1.201	
330-360	0.406	0.421	0.432	0.427	1.119	1.186	1.257	1.257	

 Table 2.1.3-1:
 Seasonal Albedo, Bowen, and Surface Roughness Length Values for the Daniel Field NWS Surface Station and Project Site

SECTOR	ABSOLUTE DIFFERNCE				RELATIVE PERCENT DIFFERNCE			
	Winter	Spring	Summer	Autumn	Winter	Spring	Summer	Autumn
Albedo								
0-360	0.02	0.02	0.00	0.00	13%	13%	0%	0%
Bowen (Average Surface Moisture Condition)								
0-360	0.41	0.50	0.40	0.47	49%	76%	74%	58%
Bowen (Dr	Bowen (Dry Surface Moisture Condition)						П	п
0-360	1.13	1.14	0.92	.92 1.13 69% 81% 83% 69				
Bowen (We	et Surface N	Aoisture Co	ondition)				П	п
0-360	0.31	0.34	0.31	0.31	73%	87%	87%	73%
Surface Ro	ughness Le	ngth						
0-30	0.375	0.432	0.650	0.654	125%	129%	144%	146%
30-60	0.307	0.378	0.674	0.677	126%	133%	155%	156%
60-90	0.204	0.253	0.556	0.564	74%	81%	118%	121%
90-120	0.008	0.011	0.233	0.241	7%	8%	89%	94%
120-150	0.059	0.031	0.196	0.203	39%	18%	66%	69%
150-180	0.403	0.427	0.512	0.522	116%	115%	120%	124%
180-210	0.548	0.601	0.823	0.830	168%	166%	171%	174%
210-240	1.082	1.127	1.169	1.178	178%	176%	173%	176%
240-270	0.422	0.464	0.693	0.710	96%	96%	112%	117%
270-300	0.386	0.461	0.680	0.691	153%	152%	160%	165%
300-330	0.832	0.890	0.973	0.985	136%	135%	136%	139%
330-360	0.713	0.765	0.825	0.830	94%	95%	98%	99%

 Table 2.1.3-2:
 Absolute and Relative Percent Difference of Seasonal Surface

 Characteristic Values for NWS Station and Project Site

As shown in Table 2.1.3-2, there are some large differences, in both absolute and relative terms, between the seasonal surface characteristic values between the two sites for each of the 12 30-degree sectors. Because of this, a site-specific sensitivity analysis was conducted during the preliminary impact assessment to determine the degree to which predicted air quality impacts were influenced by differences in surface characteristics.

2.1.4 Good Engineering Practice Stack Height and Building Downwash

Credit for emissions reductions achieved by using a stack with a height in excess of what is considered to be Good Engineering Practice (GEP) is prohibited. GEP stack height, as measured from the base elevation of a stack, is defined in 40 CFR 51.100(ii) as the greater of 213 feet (65 meters) or the stack height determined based on the dimensions of nearby structures ("refined formal height") or EPA approved fluid model studies.

US EPA has created a software application to determine GEP stack height based on the refined formula and the appropriate building downwash

dimensions for input into AERMOD. The most recent version (v04274) of the Building Profile Input Program for the PRIME (BPIPPRM) software application was used to determine the GEP height and wind directionspecific downwash dimensions and the dominant downwash structures for each stack for use in the AERMOD input control files. All data generated by BPIPPRM in processing stack heights and building and tank dimensions for are provided in the attached electronic files.

With the exception of the kiln stacks, all point source stacks associated with the project are less than 65 m; each kiln stack is planned to be constructed at a height of 245 ft (75m). The BPIPPRM summary output file shows that the GEP stack height of each kiln stack is 344 ft (105 m). Therefore, all stacks were modeled at their actual release heights.

2.1.5 <u>Coordinate System</u>

For all air quality analyses, the location of all source, building corner and receptors locations were specified in the Universal Transverse Mercator (UTM) coordinate system in the North American Datum of 1983 (NAD83).

2.1.6 Receptor Grids

Receptor grids used for each air quality analysis for each pollutant (e.g., preliminary impact, NAAQS, PSD increment, etc.) are discussed in detail in each section describing the particular air quality analysis being conducted.

2.1.7 <u>Elevation Processing</u>

The most recent version of AERMAP (v11103) supports processing terrain elevations extracted from the USGS National Elevation Dataset (NED) in the GeoTIFF format. The NED elevation data are currently available for the conterminous United States, Hawaii, Puerto Rico, and the Virgin Islands at a horizontal resolution of one arc-second (approximately 30-meters) and at a resolution of two arc-seconds for Alaska. Higher resolution, 1/3 arc-second (approximately 10-meters) data are available for most areas outside of Alaska. US EPA has encouraged users of AERMOD to transition from the Digital Elevation Model (DEM) files to the NED as soon as practical since the DEM data will not be updated in the future and the NED are being actively supported and quality assured by the USGS. Additionally, problems that should be avoided by using the NED data but have been reported with the DEM data include incorrect geo-referencing information for entire DEM files and elevations that reflect the tops of buildings and trees. The NED data represent the ground elevation, which is a more appropriate input for determining receptor elevations and hill height scales for use in AERMOD. For these reasons, receptor-specific terrain-influence heights and source and receptor elevations will be determined by processing NED data in AERMAP for input into AERMOD. USGS NED data files at 1 arc-second resolution were obtained from the USGS National Map Seamless Server, available online at http://seamless.usgs.gov/, and are provided in the in the attached electronic files.

2.2 Preliminary Impact Assessment

For the purposes of this PSD application, a preliminary impact assessment, or significance modeling, was conducted for PM₁₀, PM_{2.5}, NO₂, SO₂ and CO in order to determine the need for a full impact analysis involving the cumulative evaluation of the emissions from the proposed Millen facility and nearby sources affecting the area as well as to perform site-specific analyses to determine the sensitivity of design concentrations to different modeling techniques as well as to the differences in surface characteristics between the NWS surface measurement (Augusta Daniel Field) and project locations. The surface characteristics sensitivity analysis is important both in terms of evaluating meteorological data representativeness as well as ensuring that emissions limitations will be established based on the averaging time that results in the most stringent control requirements. For each pollutant predicted to have a significant impact, the preliminary impact assessment was also used to define the significant impact area (SIA) within which the full impact analysis was carried out (i.e., the geographic locations where receptors were placed) and the screening area, or total impact area (TIA), within which the NAAQS and PSD increment inventories were developed. Additionally, the preliminary impact assessment was also used to determine whether preconstruction monitoring for PM₁₀, PM_{2.5}, NO₂, SO₂ or CO should be considered.

In order to evaluate whether the Millen facility would result in a significant impact and preconstruction monitoring requirements, the maximum impacts (highest first-high concentrations) for each pollutant and averaging period were compared to the significant impact levels (SIL's) and significant monitoring concentrations (SMC's). The SIL's were established for the nonattainment major NSR program but are widely used in the PSD program to determine whether a source's emissions would "cause or contribute" to violations of the NAAQS or increments since the SIL's are actually applicable to sources proposing to locate in areas designated as attainment or unclassifiable (please see 40 CFR 51.165(b)). The SMC's, or monitoring *de minimis* levels, are the predicted or existing levels of pollutant concentrations in the ambient air below which GA EPD has the discretionary authority to waive preconstruction monitoring requirements. However, even if pollutant concentrations are shown to be above *de minimis* levels, GA EPD typically waives preconstruction requirements for PSD applicants since the agency operates an extensive monitoring network throughout the state which provides quality assured data that is contemporaneous, representative and suitable for use in PSD review. Table 2.2-1 and Table 2.2-2 summarize the SIL's and SMC's for each pollutant emitted in significant amounts.

	Averaging Period							
Pollutant	$\begin{array}{c} 1 \text{-hour} \\ (\mu g/m^3) \end{array}$	3-hour (μ g/m ³)	8-hour (μ g/m ³)	$\begin{array}{c} 24\text{-hour} \\ (\mu g/m^3) \end{array}$	Annual (µg/m ³)			
NO ₂	7.4 ¹				1			
SO ₂	7.8 ¹	25		5	1			
СО	2,000		500					
PM ₁₀				5	1			
PM _{2.5} ²				1.2	0.3			
O ₃ ³								

Table 2.2-1:	Summary	y of Significant	Impact Levels	(SIL's)
--------------	---------	------------------	----------------------	---------

¹ Values provided by GA EPD based on the interim SIL of 4% of the NAAQS proposed by US EPA for each pollutant for the same averaging period.

² The SIL's for the PM_{2.5} NAAQS take into account for the statistical form of the NAAQS (i.e., are based on the five-year average of the highest first-high concentrations at each receptor location). US EPA intends to provide guidance on interpreting the form of the SIL's for the PM_{2.5} increments.

³ No SIL has been established for ozone (O_3); an ambient impact analysis is required for a significant net emission increase of NO_x or VOC greater than 100 tons per year.

	Averaging Period							
Pollutant	$\frac{1-\text{hour}}{(\mu g/m^3)}$	$\begin{array}{c} 3\text{-hour} \\ (\mu g/m^3) \end{array}$	8-hour $(\mu g/m^3)$	$\begin{array}{c} 24\text{-hour} \\ (\mu g/m^3) \end{array}$	Annual (µg/m ³)			
NO ₂					14			
SO_2				13				
СО			575					
PM_{10}				10				
PM _{2.5}				4				
O_{3}^{1}					14			

Table 2.2-2: Summary of Significant Monitoring Concentrations

¹ No *de minimis* monitoring concentration has been established for ozone (O₃); however, an ambient impact analysis, including collection of air quality monitoring data, is required for a significant net emission increase of NO_x or VOC greater than 100 tons per year

Since the preliminary impact assessment involved multiple components, significance modeling was carried out in coordination with GA EPD. First, emissions of SO_2 from the Millen facility were modeled to determine the highest first-high concentrations for the 3-hour, 24-hour, and annual averaging periods for each year of both meteorological data sets. The results of this analysis were used to determine the SIA for these averaging periods, the maximum impact for comparison to the 24-hour *de minimis* monitoring concentration, and to determine the sensitivity of design concentrations to the differences in surface characteristics between the NWS surface measurement and project locations. Only the meteorological data set that resulted in more conservative annual impacts for

SO₂ was used to assess the annual NO₂ SIL, SIA and SMC. Then, emissions of SO₂ were modeled for the form of the 1-hour SO₂ SIL (five-year average of highest first-high concentrations) using five-year concatenated files for both meteorological data sets to determine the maximum impacts, SIA, "buffered SIA", array of significant receptors, and sensitivity of design concentrations to differences in surface characteristics.⁴ Emissions of CO were then modeled to determine the highest first-high concentrations for the 1hour and 8-hour averaging periods for each year of both meteorological data sets to determine whether a significant impact would occur and for comparison to the 8-hour de minimis monitoring concentration. Based on previous experience, CARBO indicated to GA EPD that the air quality analysis for the 1-hour NO₂ NAAQS would use a 50 km significant impact area. Therefore, the 1-hour NO₂ SIA or significant array of receptors was not determined during the preliminary impact assessment and significance modeling for the 1-hour averaging period only involved using the five-year concatenated files for both meteorological data sets to determine which set of surface characteristics resulted in more conservative impacts for the form of the 1-hour NO₂ SIL (five-year average of highest first-high concentrations).

For the 24-hour and annual averaging periods for PM_{10} and $PM_{2.5}$, the same approach used to limit the annual NO₂ assessment was used. First, emissions of PM_{10} were modeled to determine the highest first-high concentrations for the 24-hour and annual averaging periods for each year of both meteorological data sets. The results of this analysis were used to determine the SIA, the maximum impact for comparison to the 24hour *de minimis* monitoring concentration, and to determine the sensitivity of design concentrations to the differences in surface characteristics between the NWS surface measurement and project locations. Then, an assessment of the $PM_{2.5}$ SIL's, SIA, and 24-hour *de minimis* monitoring concentration was conducted using only the meteorological data set that resulted in more conservative impacts for PM_{10} on the same averaging period. Based on guidance from GA EPD, only the statistical form of the $PM_{2.5}$ SIL's based on the NAAQS (five-year average of highest first-high concentrations) was evaluated during significance modeling. This is because this PSD application will not set the minor source baseline date for $PM_{2.5}$ and the first increment analysis will not be required until after the minor source baseline date is established for Jenkins County, or any other area, under the Georgia's state implementation plan (SIP) when revised to incorporate the final PM_{2.5} increments, SIL's and SMC rule.

Additionally, PM_{10} significance modeling was conducted twice: once using AERMOD in the regulatory default mode and again using the non-default control and source options to specify use of flat, level terrain for volume sources (fugitive emissions) below the level of surrounding terrain in order to ensure that the impacts of low-level, non-buoyant sources are not underestimated. Based on the results of this modeling, it was determined that by allowing the air quality impacts of fugitive emissions to be handled in this manner, certain receptors showed higher concentrations, although the overall largest significant impact and furthest receptors at which a significant impacts were predicted were not influenced. However, in order to ensure that the design concentrations at all receptors were not underestimated, the non-default option for flat treatment of fugitive

⁴ The significant impact area for the 1-hour SO₂ NAAQS was determined by using the furthest distance out to which 7 $\mu g/m^3$ was predicted for the statistical form of the SIL, thus providing sufficient "buffer" so as not to require resolving the SIA to 100 meter spacing. This was found to provide a buffer of an additional 3.4 km.

emissions was used for all remaining particulate matter air quality analyses since certain receptors showed sensitivity using this approach.

For all significance modeling, except the 1-hour averaging period for SO_2 , the following Cartesian coordinate receptor grid, centered on UTM 415,753 meters east and 3,3625,754 meters north, was used:

- Fenceline receptors spaced no further than 100 meters apart;
- 100 meter spaced receptors out to 2.5 km;
- 250 meter spaced receptors out to 5.0 km; and
- 500 meter spaced receptors out to 10.0 km

For the 1-hour SO₂ for the preliminary impact assessment, 500 meter spaced receptors were carried out to 50 km to establish the array of significant receptors using the recommended buffer of 7 μ g/m³. As shown in the following sections, all areas of maximum impact and furthest receptors at which significant impacts were predicted were all resolved to 100 meter spacing. Generally, when a receptor within the 250 meter spaced portion of the grid required resolution, a circular grid centered on the receptor being resolved with a radius of 500 meters (twice the spacing) was used. Similarly, a circular grid with a radius of 1,000 meters was used to resolve receptors at and beyond 5 km from the project site.

As a result of the preliminary impact assessment, the following were determined in consultation with GA EPD:

- A full impact analysis was required for emissions of PM₁₀, PM_{2.5}, NO₂, and SO₂ since each pollutant was predicted to have a significant impact for all applicable averaging periods;
- A full impact analysis was not required for emissions of CO since the highest first-high concentrations for both the 1-hour and 8-hour averaging periods were predicted to be below their respective SIL's;
- The baseline area established by this PSD application for PM_{10} and SO_2 does not include any portion of an adjoining attainment or unclassifiable area since all receptors predicted to be significant for the annual averaging period (1 μ g/m³) are within Jenkins County;
- This PSD application does not set the minor source baseline date or establish Jenkins County as a baseline area for NO₂ since the entire state was established as a baseline area for NO₂ on May 5, 1988 (Georgia-Pacific Brunswick Operations, now Brunswick Cellulose, Inc.); at the time the first PSD application was submitted after the trigger date for NO₂, the designated area for air quality planning purposes was, and still is, listed as "statewide" in 40 CFR 81.311;
- This PSD application will not set the minor source baseline date or establish Jenkins County as a baseline area for PM_{2.5} if deemed completed prior to the trigger date of October 20, 2011, or possibly at a later date given the fact that Georgia's SIP has not been revised to include the final PM_{2.5} increments, SIL's and SMC rule;

- Short-term design concentrations were more sensitive to the surface characteristics of the NWS measurement location whereas long-term design concentrations were more sensitive to the project location surface characteristics;
- Despite sensitivity to the project location surface characteristics, all annual increment and NAAQS air quality analyses were conducted using the surface characteristics of the NWS measurement location since design concentrations for short-term averaging periods will result in the most stringent emission limitations (please refer to the July 27, 2011 Class II modeling protocol approval letter including as Attachment A to this Volume);
- Design concentrations for PM₁₀ were not sensitive to flat terrain treatment for fugitive emissions although highest first-high concentrations at certain receptors were slightly greater indicating that this non-default option should be used for particulate matter air quality analysis;
- Preconstruction monitoring for NO₂ and CO should not be considered since the maximum air quality impacts were below their respective *de minimis* monitoring concentrations; and
- Preconstruction monitoring for PM_{10} , $PM_{2.5}$ and SO_2 should be waived since quality assured data that is contemporaneous and representative is available despite maximum air quality impacts being above the SMC's

2.2.1 <u>SO₂</u>

Table 2.2.1-1 summarizes the results of the preliminary impact assessment for SO_2 . The results show that a full impact analysis for SO_2 is required since a significant impact was predicted for the 1-hour, 3-hour, 24-hour and annual averaging periods. As shown in Figure 2.2.1-1 and Figure 2.2.1-2, the largest significant impact for each averaging period occurred within the 100 meter spaced portion of the receptor grid within 2.5 km of the project site. Looking at the results for each set of meteorological data, the higher surface moisture condition and lower surface roughness of the NWS measurement location resulted in the highest significant impacts for all short term averaging periods with the opposite being true of the annual averaging period. Although the sensitivity of Bowen and surface roughness were not tested independently, it is well known that it is typical for the NWS measurement location to result in higher short-term impacts because of the lower surface roughness values associated with the surrounding land use. Because of this, the five years of meteorological data using the airport site surface characteristics were used for all remaining short-term air quality analyses for SO₂. After consultation with GA EPD regarding sensitivity of the annual averaging period to differences in surface characteristics, it was decided that the NWS measurement location would also be used for the annual SO₂ NAAQS and increment since it is more than likely that the "limiting" averaging period, or averaging period that would result in the most stringent control requirements, would be the 1-hour SO₂ NAAQS. However, since annual average estimates of SO_2 were more conservative using the surface characteristics of the project location, this meteorological data set was used for the annual NO₂ preliminary impact assessment to determine a more conservative

SIA and maximum impact for comparison to the annual *de minimis* monitoring concentration.

In total, nine receptors within the 250 meter spaced portion of the receptor grid were resolved to 100 meter spacing to identify the furthest receptor at which a significant impact was predicted for all averaging periods. After resolving these receptors, the largest SO_2 SIA for the 3-hour, 24-hour, and annual averaging periods was determined to be 4 km.

As shown in Figure 2.2.1-2, the SIA for the 1-hour SO₂ NAAQS was determined to be 26.6 km and the modeling buffer (i.e., distance to the receptor having a five-year average of highest first-high concentrations greater than 7 μ g/m³) was 29 km. For the 1-hour SO₂ NAAQS assessment, only those receptors greater than 7 μ g/m³ for the 1-hour SIL were included.

Table 2.2.1-1:	Class II Significance Results for SO ₂ and Surface Characteristics
	Sensitivity

				Maximum Significant Impact			Furthest Significant Receptor			
		SIL		UTM	NAD83	Conc.	UTM	Conc.	Dist-	
Pollut-	Avg.	(µg/				(μg/			(µg/	ance
ant	Period	m^{3})	Year	East (m)	North (m)	m^3)	East (m)	North (m)	m^{3})	(km)
Augusta Daniel Field Surface Characteristics										
SO ₂	1-hr	7.8	5YR	416,400.00	3,626,300.00	<u>55.51</u>	437,500.00	3,645,000.00	7.80	26.6
			2006	416,200.00	3,626,300.00	<u>46.05</u>	417,300.00	3,626,600.00	25.64	1.8
			2007	416,100.00	3,626,400.00	38.27	416,300.00	3,626,800.00	26.06	1.2
SO_2	3-hr	25	2008	416,000.00	3,626,300.00	37.47	415,500.00	3,627,300.00	25.77	1.6
			2009	416,100.00	3,626,400.00	40.93	412,550.00 ¹	3,627,950.00 ¹	<u>25.03</u> ¹	<u>3.9</u> ¹
			2010	415,367.10	3,625,844.20	38.41	416,700.00	3,627,800.00	25.14	2.3
			2006	414,986.30	3,625,447.20	14.82	416,200.00	3,623,400.00	5.28	2.4
			2007	415,114.90	3,625,026.20	16.13	416,450.00 ¹	3,623,350.00 ¹	5.06 ¹	3.3 ¹
SO_2	24-hr	5	2008	414,877.90	3,625,104.00	16.99	416,000.00 ¹	$3,622,500.00^1$	5.00 ¹	3.3 ¹
			2009	415,114.90	3,625,026.20	<u>18.15</u>	415,300.00 ¹	3,622,850.00 ¹	5.11 ¹	2.9 ¹
			2010	416,500.00	3,625,600.00	15.32	416,200.00	3,623,400.00	5.10	2.4
		1	2006	416,300.00	3,625,900.00	2.27	417,000.00	3,626,300.00	1.00	1.4
			2007	416,300.00	3,626,000.00	2.08	414,800.00	3,625,000.00	1.04	1.2
SO_2	Annual		2008	416,300.00	3,625,900.00	2.07	416,700.00	3,626,600.00	1.01	1.3
			2009	416,300.00	3,626,100.00	1.84	416,700.00	3,626,500.00	1.04	1.2
			2010	416,300.00	3,625,600.00	2.39	417,000.00	3,625,300.00	1.01	1.3
		CA	RBO C	Ceramics Mill	en Facility Pro	ject Site	Surface Char	<u>acteristics</u>		
SO ₂	1-hr	7.8	5YR	416,208.80	3,625,651.30	44.50	396,000.00	3,638,500.00	7.85	23.5
			2006	415,376.20	3,625,991.00	39.42	414,900.00	3,626,300.00	26.32	1.0
			2007	415,376.20	3,625,991.00	40.33	415,277.50	3,626,425.70	25.06	0.8
SO_2	3-hr	25	2008	415,367.10	3,625,844.20	38.39	415,190.80	3,626,409.80	25.01	0.9
			2009	416,200.00	3,625,900.00	38.74	412,850.00 ¹	3,627950.00 ¹	25.45 ¹	3.6 ¹
Pollut- antA Pe SO_2 1 SO_2 1 SO_2 3 SO_2 24 SO_2 1 SO_2 1 SO_2 3 SO_2 3 SO_2 3 SO_2 24 SO_2 24 SO_2 1 SO_2 3 SO_2 3 SO_2 24 SO_2 24			2010	416,052.30	3,625,976.40	39.26	415,100.00	3,626,400.00	25.61	0.9
		4-hr 5	2006	414,986.30	3,625,447.20	15.53	419,100.00 ¹	3,624,400.00 ¹	5.06 ¹	3.6 ¹
			2007	415,114.90	3,625,026.20	15.30	416,150.00 ¹	3,628,800.00 ¹	5.06 ¹	3.1 ¹
SO_2	24-hr		2008	415,175.20	3,624,990.80	16.10	419,400.00 ¹	3,624,200.00 ¹	5.07 ¹	4.0 ¹
			2009	415,114.90	3,625,026.20	16.05	419,500.00 ¹	$3,625,000.00^1$	5.00 ¹	3.8 ¹
			2010	416,700.00	3,625,500.00	15.76	419,550.00 ¹	3,624,850.00 ¹	5.13 ¹	3.9 ¹
		1	2006	416,300.00	3,625,900.00	2.40	417,200.00	3,625,200.00	1.01	1.5
			2007	416,200.00	3,626,000.00	2.32	417,100.00	3,625,100.00	1.02	1.5
SO_2	Annual		2008	416,300.00	3,625,900.00	2.22	417,200.00	3,625,200.00	1.02	1.5
			2009	416,200.00	3,626,100.00	1.95	417,100.00	3,625,300.00	1.04	1.4
			2010	416,249.20	3,625,567.10	2.54	417,300.00	3,625,100.00	1.00	1.7

¹ The furthest receptor at which a significant impact was predicted was resolved to 100 meter spacing using a circular grid with a radius of 500 meters (80 receptors each) centered on the receptor being resolved

Figure 2.2.1-1: Maximum Significant Impacts for 3-hour, 24-hour and Annual SO₂ and Determination of Significant Impact Area

SMITH ALDRIDGE, INC.

2-14

CARBO Ceramics – Millen, GA Facility GA State Route 17 and Clayton Road, Jenkins County PSD Permit Application

Figure 2.2.1-2: Maximum Significant Impacts for 1-hour SO₂, Contour Plot and Determination of Significant Impact Area

2.2.2 <u>CO</u>

Table 2.2.2-1 summarizes the results of the preliminary impact assessment for CO. The results show that a full impact analysis for CO is not required since a significant ambient impact was not predicted for either the 1-hour or 8-hour averaging periods. Therefore, construction of the Millen facility will not cause or contribute to a violation of the CO NAAQS.

				Maximum Significant Impact			Furthest Significant Receptor				
				UTM NAD83			UTM NAD83				
Pollut- ant	Avg. Period	SIL (µg/m ³)	Year	East (m)	North (m)	Conc. $(\mu g/m^3)$	East (m)	North (m)	Conc. $(\mu g/m^3)$	Distance (km)	
Augusta Daniel Field Surface Characteristics											
			2006	415,100.00	3,625,700.00	154.82	N/A	N/A	N/A	N/A	
			2007	415,176.70	3,625,645.70	155.47	N/A	N/A	N/A	N/A	
CO	1-hr	2,000	2008	415,100.00	3,625,700.00	155.43	N/A	N/A	N/A	N/A	
			2009	415,176.70	3,625,645.70	160.40	N/A	N/A	N/A	N/A	
			2010	416,500.00	3,626,600.00	<u>170.44</u>	N/A	N/A	N/A	N/A	
		500	2006	415,113.20	3,625,579.50	116.23	N/A	N/A	N/A	N/A	
	8-hr		2007	415,113.20	3,625,579.50	107.81	N/A	N/A	N/A	N/A	
CO			2008	<u>415,100.00</u>	3,625,600.00	<u>116.39</u>	N/A	N/A	N/A	N/A	
			2009	415,100.00	3,625,700.00	111.66	N/A	N/A	N/A	N/A	
			2010	414,986.30	3,625,447.20	111.45	N/A	N/A	N/A	N/A	
		CARBO	Ceram	ics Millen Fa	<u>cility Project S</u>	ite Surfac	e Char	acteristi	<u>cs</u>		
			2006	415,100.00	3,625,700.00	156.40	N/A	N/A	N/A	N/A	
			2007	415,100.00	3,625,700.00	159.56	N/A	N/A	N/A	N/A	
CO	1-hr	2,000	2008	415,100.00	3,625,700.00	163.04	N/A	N/A	N/A	N/A	
			2009	415,100.00	3,625,700.00	158.58	N/A	N/A	N/A	N/A	
			2010	415,100.00	3,625,700.00	159.73	N/A	N/A	N/A	N/A	
			2006	415,113.20	3,625,579.50	102.68	N/A	N/A	N/A	N/A	
			2007	415,113.20	3,625,579.50	111.07	N/A	N/A	N/A	N/A	
CO	8-hr	500	2008	415,176.70	3,625,645.70	115.24	N/A	N/A	N/A	N/A	
			2009	415,049.80	3,625,513.40	98.10	N/A	N/A	N/A	N/A	
			2010	415,176.70	3,625,645.70	108.33	N/A	N/A	N/A	N/A	

 Table 2.2.2-1:
 Class II Significance Results for CO and Surface Characteristics

 Sensitivity

2.2.3 <u>NO₂</u>

Table 2.2.3-1 summarizes the results of the preliminary impact assessment for NO_2 . The results show that a full impact analysis for NO_2 is required since a significant impact was predicted for the 1-hour and annual averaging periods. As discussed in Section 2.2.1, only the project location meteorological data were used for annual NO_2 significance modeling since annual average estimates for SO_2 indicated that this model input data would result in a more conservative SIA and greater maximum impact for comparison to the annual *de minimis* monitoring concentration.

 Table 2.2.3-1: Class II Significance Results for NO2 and Surface Characteristics Sensitivity

				Maximu	ım Significant In	npact	Furthest Significant Receptor										
Pollut-	Pollut- Avg. (µ			UTM	NAD83	Conc.	UTM	NAD83	Conc. (µg/	Distance							
ant	Period	m ³)	Year	East (m)	North (m)	(µg/ m ³)	East (m)	North (m)	m^{3})	(km)							
Augusta Daniel Field Surface Characteristics																	
NO ₂	1-hr	7.4	5YR	416,250.00 ¹	3,628,500.00 ¹	<u>115.16</u> ^{1,3}	N/A ⁵	N/A ⁵	N/A ⁵	50.0 ⁵							
	Annual			2006	N/A	N/A	N/A	N/A	N/A	N/A	N/A						
											2007	N/A	N/A	N/A	N/A	N/A	N/A
NO_2		1	2008	N/A	N/A	N/A	N/A	N/A	N/A	N/A							
			2009	N/A	N/A	N/A	N/A	N/A	N/A	N/A							
			2010	N/A	N/A	N/A	N/A	N/A	N/A	N/A							
		<u>C</u>	ARBO (Ceramics Mill	en Facility Proj	ect Site Su	rface Chara	acteristics									
NO ₂	1-hr	7.4	5YR	414,100.00	3,627,600.00	73.68 ³	N/A	N/A	N/A	50.0							
			2006	416,300.00	3,625,900.00	7.72^{4}	420,250	3,624,000	1.03 ⁴	4.8							
			2007	416,200.00	3,626,000.00	7.39 ⁴	420,250	3,623,750	1.02^{4}	4.9							
NO_2	Annual	ual 1	2008	<u>416,300.00</u>	<u>3,625,900.00</u>	7.17^{4}	420,500	3,624,250	1.01^{4}	5.0							
			2009	416,300.00	3,625,600.00	6.33 ⁴	420,250	3,624,000	1.01^{4}	4.8							
			2010	416,249.20	3,625,567.10	<u>8.30</u> ⁴	421,900 ²	3,623,700 ²	<u>1.00</u> ^{2,4}	6.5 ^{2,4}							

¹ The receptor at which the maximum significant impact was predicted was resolved to 100 meter spacing using a circular grid with a radius of 500 meters (80 receptors) centered on the receptor being resolved (416,250.00 m east, 3,628,500.00 m north)

² The furthest receptor at which a significant impact was predicted were resolved to 100 meter spacing using a circular grid with a radius of 1,000 meters (317 receptors) centered on the receptor being resolved (421,500.00 m east, 3,623,500.00 m north)

³ Using Tier 3 Plume Volume Molar Ratio Method (PVMRM) with a contemporaneous ozone database consisting of measured observations from eight monitoring sites ("5YR 2006-2010 OZONEFIL.<u>v2.</u>csv"), site-specific in-stack NO₂/NO_x ratios for direct-fired rotary kilns (0.01), spray dryers (0.06), and boilers (0.12), and equilibrium ratio of 0.90

⁴ Using Tier 2 ambient ratio method (ARM) and default national average of $0.75 \text{ NO}_2/\text{NO}_x$

⁵ Based on previous modeling experience against the level of the interim 1-hour NO₂ SIL, CARBO has accepted a 50 km SIA for the 1-hour NO₂ NAAQS without conducting significance modeling

For significance modeling, results for the annual averaging period reflect application of the Tier 2 ambient ratio method (ARM) and national default NO_2/NO_x ratio of 0.75 to modeled NO_x (NO + NO₂) emissions whereas the results for the 1-hour averaging period reflect use of the Plume Volume Molar Ratio Method (PVMRM) to account for atmospheric conversion of NO to NO_2 in the presence of ozone. Looking at the results for each meteorological data set, the surface characteristics of the NWS measurement location resulted in a much higher maximum significant impact for the 1-hour averaging period. However, as discussed in the preliminary impact assessment for SO₂, GA EPD and CARBO determined that it would be appropriate to use the surface characteristics of the NWS measurement location to assess the annual NO₂ NAAQS and increment since the 1-hour averaging period will result in the most stringent emission limitations; the maximum significant impact for 33.24 µg/m³) while the maximum significant impact for the annual NO₂ SIL is only 33% of the increment.

As shown in Figure 2.2.3-1 and Figure 2.2.3-2, the maximum significant impact for the annual averaging period occurred within the 100 meter spaced portion of the receptor grid within 2.5 km of the project site whereas the maximum significant impact for the 1-hour averaging period was resolved to 100 meter spacing within the 250 meter spaced portion of the receptor grid. For the annual averaging period, the furthest distance out to which a significant impact was predicted with resolved to 100 meter spacing within the 500 meter spaced portion of the grid beyond 5 km from the project location. After resolving this receptor, the largest NO₂ SIA for the annual averaging period was determined to be 6.5 km.

Figure 2.2.3-1: Maximum Significant Impacts for Annual NO₂ and Determination of Significant Impact Area

Figure 2.2.3-2: Maximum Significant Impacts for 1-Hour NO₂ and Contour Plot

P:\Carbo Ceramics\Millen\2010-07 Lines 5-8 PSD Permit App\Application Follow-on\Volume III Update\AQ Analysis Summary.v3.doc

2.2.4 <u>PM₁₀</u>

Table 2.2.4-1 summarizes the results of the preliminary impact assessment for PM_{10} . The results show that a full impact analysis for PM_{10} is required since a significant impact was predicted for the 24-hour and annual averaging periods.

			Sei	nsitivity						
				Maximur	n Significant Im	pact	Furth	est Significant R	eceptor	
		SIL		UTM	NAD83	Conc.	UTM	NAD83	Conc.	Dis-
Pollut-	Avg.	$(\mu g/3)$	Veen			(μ <u>g</u> /			(µg/	tance
ant	Period	<u>m)</u>	rear	East (m)	North (m)	m ²)	East (m)	North (m)	m [°])	(km)
				<u>Augusta Da</u>	aniel Field Surf	ace Cha	<u>racteristics</u>			
			2006	415,049.80	3,625,513.40	22.62	418,050.00	3,626,350.00	5.04	2.4
			2007	415,176.70	3,625,645.70	22.58	418,150.00 ¹	<u>3,628,200.00¹</u>	<u>5.25¹</u>	<u>3.4</u> ¹
\mathbf{PM}_{10}	24-hr	5	2008	<u>415,049.80</u>	3,625,513.40	<u>26.63</u>	417,950.00 ¹	3,627,550.00 ¹	5.05 ¹	2.8^{1}
			2009	415,240.20	3,625,711.90	24.06	$418,150.00^{1}$	3,627,700.00 ¹	5.26 ¹	3.1 ¹
			2010	414,986.30	3,625,447.20	20.40	417,950.00 ¹	3,628,000.00 ¹	($\mu g/$ tance orth (m) m ³) (km) 26,350.00 5.04 2.4 28,200.00 ¹ 5.25 ¹ 3.4 ¹ 27,550.00 ¹ 5.05 ¹ 2.8 ¹ 27,700.00 ¹ 5.26 ¹ 3.1 ¹ 26,300.00 1.02 1.3 25,000.00 1.04 1.2 25,000.00 1.01 1.3 25,200.00 1.03 1.3 25,200.00 1.04 1.4 istics 2 2 26,350.00 5.10 2.2 26,600.00 5.01 2.4 26,150.00 ¹ 5.06 ¹ 2.6 ¹ 26,600.00 5.02 2.2 26,600.00 5.02 2.2 26,700.00 5.23 2.3	
			2006	416,127.80	3,625,819.70	2.87	416,900.00	3,626,300.00	1.02	1.3
			2007	416,168.30	3,625,735.50	2.62	414,800.00	3,625,000.00	1.04	1.2
\mathbf{PM}_{10}	Annual	1	2008	416,168.30	3,625,735.50	2.79	417,000.00	3,625,000.00	1.01	1.3
			2009	416,208.80	3,625,651.30	2.63	414,600.00	3,625,200.00	1.03	1.3
			2010	416,168.30	3,625,735.50	3.25	417,100.00	3,625,400.00	1.04	1.4
		CA	RBO C	eramics Mill	en Facility Proj	ect Site	Surface Chara	acteristics		
			2006	415,049.80	3,625,513.40	20.75	417,850.00	3,626,350.00	5.10	2.2
			2007	415,176.70	3,625,645.70	22.88	417,900.00	3,626,800.00	5.01	2.4
\mathbf{PM}_{10}	24-hr	5	2008	415,113.20	3,625,579.50	25.16	418,350.00 ¹	3,626,150.00 ¹	5.06 ¹	2.6 ¹
			2009	415,240.20	3,625,711.90	21.78	417,800.00	3,626,600.00	5.02	2.2
			2010	416,300.00	3,625,700.00	19.51	417,900.00	3,626,700.00	5.23	2.3
			2006	416,127.80	3,625,819.70	3.17	416,900.00	3,626,300.00	1.02	1.3
			2007	416,127.80	3,625,819.70	2.87	416,800.00	3,626,300.00	1.04	1.2
\mathbf{PM}_{10}	Annual	1	2008	416,168.30	3,625,735.50	3.05	416,900.00	3,625,400.00	1.06	1.2
			2000	416 168 30	3 625 735 50	2.81	416 700 00	3 626 500 00	1.01	12

 Table 2.2.4-1:
 Class II Significance Results for PM₁₀ and Surface Characteristics

 Sensitivity
 Sensitivity

The furthest receptor at which a significant impact was predicted was resolved to 100 meter spacing using a circular grid with a radius of 500 meters (80 receptors each) centered on the receptor being resolved

3,625,735.50

417,100.00

3.45

SMITH ALDRIDGE, INC.

416,168.30

2010

1.03

1.4

3,625,400.00

For significance modeling, AERMOD runs were conducted using the regulatory default model option as well as the non-default control ("FLAT" and "ELEV") and source options (use of "FLAT" in place of source elevation) to specify use of flat, level terrain for fugitive emissions below the level of surrounding terrain; elevations for all volume sources representing fugitive particulate matter emissions from truck traffic on paved roads are below the level of most terrain immediately adjacent to and surrounding the Millen facility. As discussed in implementation guidance, AERMOD may tend to underestimate the air quality impact of low-level, non-buoyant sources (i.e., volume sources) in up-sloping terrain when compared to flat terrain results. The maximum significant impacts were not found to be sensitive to this modeling technique – Table 2.2.4-1 reflects the results for both approaches. However, certain receptors in elevated terrain did show greater highest first-high concentrations. For example, the difference in the maximum significant impact predicted for the 24-hour averaging period using the airport site meteorological data set was 0.0009 μ g/m³ whereas the maximum difference in significant impact for any receptor for the same year and averaging period was 0.21 μ g/m³ (416,400 m east, 3,626,200 m north, 71.93 m elevation; the highest volume source elevation is nearly 10 meters below this level at the facility entrance off State Route 17). Therefore, although the design concentrations do not appear to be sensitive to flat terrain treatment for volume sources, the non-default approach was used for all subsequent particulate matter air quality analyses, beginning with PM_{2.5} significance modeling, since certain receptors in elevated terrain displayed greater highest first-high concentrations.

As shown in Figure 2.2.4-1, the maximum significant impact for each averaging period occurred within the 100 meter spaced portion of the receptor grid within 2.5 km of the project site. Looking at the results for each meteorological data set, the NWS measurement and project location surface characteristics continue to provide more conservative results for the 24-hour and annual averaging periods, respectively. Additionally, based on a comparison of the maximum significant impacts to the 24-hour and annual PM₁₀ increment, it would also be appropriate to use the surface characteristics of the NWS measurement location to assess the annual PM_{10} increment since the short-term averaging period will result in the most stringent emission limitations; the maximum significant impact for the 24hour PM_{10} SIL is 89% of the increment while the maximum significant impact for the annual PM_{10} SIL is only 20% of the increment. However, since annual average estimates of PM₁₀ were more conservative using the surface characteristics of the project location, this meteorological data set was used for the annual PM_{2.5} preliminary impact assessment to ensure that the SIA is established as the largest for both averaging periods. Additionally, it was important for CARBO to confirm that the annual averaging period and project location meteorological data set would not result in more stringent emission limitations for PM_{2.5} since the annual background value for PM_{2.5} provided by GA EPD is a larger percentage of the NAAQS.

In total, four receptors within the 250 meter spaced portion of the receptor grid were resolved to 100 meter spacing to identify the furthest receptor at which a significant impact was predicted for all averaging periods. After resolving these

receptors, the largest PM_{10} SIA for the 24-hour and annual averaging periods was determined to be 3.4 km.

2.2.5 <u>PM_{2.5}</u>

Table 2.2.5-1 summarizes the results of the preliminary impact assessment for $PM_{2.5}$. As discussed earlier, only the statistical form of the $PM_{2.5}$ SIL's based on the NAAQS was used to assess the SIA since the increments were not evaluated. However, the highest first-high concentrations were also determined without multiyear averaging for comparison to the 24-hour *de minimis* monitoring concentration. The results show that a full impact analysis for the $PM_{2.5}$ NAAQS is required since a significant impact was predicted for the 24-hour and annual averaging periods.

 Table 2.2.5-1:
 Class II Significance Results for PM_{2.5} and Surface Characteristics Sensitivity

				Maximun	n Significant Im	pact	Furth	est Significant R	eceptor				
Pollut-	Δνα	SIL		UTM	UTM NAD83		UTM NAD83		Conc.	Dis-			
ant	Period	$(\mu g/m^3)$	Year	East (m)	North (m)	$(\mu g/m^3)$	East (m)	North (m)	$(\mu g/m^3)$	(km)			
	Augusta Daniel Field Surface Characteristics												
PM _{2.5}	24-hr	1.2	5YR	415,113.20	3,625,579.50	9.76	419,150.00 ¹	3,628,550.00 ¹	1.20 ¹	4.4 ¹			
			2006	415,049.80	3,625,513.40	10.14	N/A	N/A	N/A	N/A			
			2007	415,176.70	3,625,645.70	10.34	N/A	N/A	N/A	N/A			
PM _{2.5}	24-hr	N/A ²	2008	415,049.80	3,625,513.40	11.97	N/A	N/A	N/A	N/A			
			2009	415,240.20	3,625,711.90	11.19	N/A	N/A	N/A	N/A			
			2010	414,986.30	3,625,447.20	9.22	N/A	N/A	N/A	N/A			
PM _{2.5}	24-hr	Annual	2006	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
	CARBO Ceramics Millen Facility Project Site Surface Characteristics												
PM _{2.5}	24-hr	1.2	5YR	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
PM _{2.5}	Annual	0.3	5YR	416,168.30	3,625,735.50	1.50	417,500.00	3,625,200.00	0.31	1.8			

The furthest receptor at which a significant impact was predicted was resolved to 100 meter spacing using a circular grid with a radius of 500 meters (80 receptors) centered on the receptor being resolved (416,250.00 m east, 3,628,500.00 m north)

² Highest first-high concentrations used for comparison to the 24-hour *de minimis* monitoring concentration

Based on the results of the preliminary impact assessment for PM_{10} , significance modeling for $PM_{2.5}$ consisted separate model runs for the 24-hour and annual averaging period using the meteorological data set that resulted in more conservative impacts for PM_{10} . Additionally, since certain receptors in elevated terrain displayed sensitivity to the manner in which air quality impacts from fugitive emissions were treated, the non-default option to assume flat terrain for volume sources was used to ensure the maximum significant impacts at all receptors were determined.

In this case, it is less clear if use of the airport location meteorological data set for both averaging periods will result in the most stringent emission limitations since the annual background concentration for $PM_{2.5}$ amounts to a larger portion of the NAAQS. However, based on the maximum significant impacts for the 24hour averaging period, the annual design concentration will not require application of a different level of best available control technology (BACT) than proposed. Therefore, it would also be appropriate to use the surface characteristics of the NWS measurement location to assess the annual $PM_{2.5}$ NAAQS.

As shown in Figure 2.2.5-1, the maximum significant impact for each averaging period occurred within the 100 meter spaced portion of the receptor grid within 2.5 km of the project site. Only one receptor within the 250 meter spaced portion of the receptor grid were resolved to 100 meter spacing to identify the furthest receptor at which a significant impact was predicted for all averaging periods. After resolving this receptor, the largest $PM_{2.5}$ SIA for the 24-hour and annual averaging periods was determined to be 4.4 km.

Figure 2.2.5-1: Maximum Significant Impacts for PM_{2.5} and Determination of Significant Impact Area

2.3 Ambient Monitoring Requirements

Since in the preliminary impact assessment emissions of PM_{10} , $PM_{2.5}$, NO_2 , and SO_2 for the Millen facility were predicted to have a significant impact, ambient monitoring data was collected to determine the existing air quality in the area the project would affect for the NAAQS air quality analysis. In lieu of conducting preconstruction ambient monitoring for this purpose, the PSD rules allow the permitting authority to exempt a PSD applicant from such requirements on a pollutant specific basis if the maximum ambient impact or existing air quality in the area are shown to be *de minimis*.

Table 2.3-1 summarizes the maximum significant impacts for each pollutant from the preliminary impact analysis in comparison to the *de minimis* monitoring concentrations.

	Concent	rations					
Pollut- ant	Avg. Period	SMC (µg/m ³)	2006 (µg/m ³)	2007 (μg/m ³)	2008 (µg/m ³)	2009 (µg/m ³)	2010 (µg/m ³)
PM ₁₀	24-hr	10	<u>22.62(A)</u>	<u>22.88(P)</u>	<u>26.63(A)</u>	<u>24.06(A)</u>	<u>20.40(A)</u>
PM _{2.5}	24-hr	4	<u>10.14(A)</u>	<u>10.34(A)</u>	<u>11.97(A)</u>	<u>11.19(A)</u>	<u>9.22(A)</u>
NO ₂	Annual	14	7.72(P)	7.39(p)	7.17(p)	6.33(P)	8.30(P)
SO ₂	24-hr	13	<u>15.5(P)</u>	<u>16.13(A)</u>	<u>16.99(A)</u>	<u>18.15(A)</u>	<u>15.76(P)</u>
СО	8-hr	575	116.23(A)	111.07 (P)	116.39(A)	111.66(A)	111.45(A)

 Table 2.3-1: Comparison of Maximum Ambient Impacts to Significant Monitoring

 Concentrations

(A) Airport site surface characteristics (Augusta Daniel Field)

(P) Project site surface characteristics

As shown in the above table, the maximum significant impacts for NO₂ and CO are *de minimis*. Therefore, preconstruction monitoring for these pollutants was not required. However, emissions of PM_{10} , $PM_{2.5}$ and SO₂ did exceed the 24-hour significant monitoring concentrations for each pollutant. Instead of conducting a site-specific program for the collection of continuous air quality data, GA EPD waived preconstruction monitoring requirements for these pollutants since the agency operates an extensive monitoring network throughout the state which provides quality assured data that is contemporaneous, representative and suitable for use in PSD review. For PM_{10} , air quality data are already available to from a statewide study of rural monitoring locations. In the Class II modeling protocol submitted to the agency on July 19, 2011, CARBO proposed to use continuous monitoring sites (#130210012) for $PM_{2.5}$ and SO₂, respectively, as these sites would be representative, and likely conservative, for the area impacted by the Millen facility given the sparse distribution of stationary sources through the modeling domain.⁵ In the July 27, 2011 Class II modeling protocol approval letter, in

⁵ Excluding the 1-hour averaging period for NO₂ and SO₂, there are no permitted stationary sources located with the significant impact area for any pollutant. The stationary source closest to the project location is the Southern Natural

addition to providing background air quality concentrations for NO₂, CO, and PM₁₀, GA EPD also provided background concentrations for the PM_{2.5} and SO₂ NAAQS air quality analysis based on continuous data from these monitoring sites. Table 2.3-2 summarizes the air quality data collected to establish the existing level of air quality in the area impacted by the Millen facility. All background values are based on the most recent three-year or five-year period, as applicable.

	Monitor	Averaging	Background	
Pollutant	Location	Period	$(\mu g/m^3)$	Comments
NO ₂	Yorkville (#132230003)	1-hr ¹	33.24 ¹	3-year average of the 98th-percentile annual distribution of 1-hour daily maximum concentrations (35.75, 30.10, and 33.86 μ g/m ³) ¹
		Annual	5.2	5-year average of annual average concentrations
SO_2		1-hr ¹	67.18 ¹	3-year average of the 99th-percentile annual distribution of 1-hour daily maximum concentrations (68.06, 73.29, and $60.20 \ \mu g/m^3$) ¹
	Macon SE (#130210012)	3-hr	51.48	3-year average of highest 2nd-high 3- hour block average concentrations
		24-hr	16.75	3-year average of highest 2nd-high 24- hour block average concentrations
		Annual	3.89	3-year average of annual average concentrations
CO	Yorkville	1-hr	943	5-year average of highest 2nd-high 1- hour average concentrations
0	(#132230003)	8-hr	802	5-year average of highest 2nd-high 8- hour rolling average concentrations
DM		24-hr	38.0	Recommended statewide background
r 1 v1 ₁₀		Annual	20.0	concentrations
DM	Bungalow	24-hr	25	3-year average of the 98th-percentile annual distribution of 24-hour average concentrations
F 1 V1 2.5	Koad (#132450091)	Annual	12.7	3-year average of annual average concentrations (based on the average of quarterly average daily values)

Table 2.3-2: Ambient Background Concentrations

¹ Existing air quality for the 1-hour averaging periods for NO₂ and SO₂ are based on the "first tier" uniform background concentration; no refined by season and hour-of-day pairing was proposed or used for the air quality analysis

Although no *de minimis* monitoring concentration has been established for ozone, since the project NO_x emissions are greater than 100 tpy, an air quality analysis is required,

Gas Company – Woodcliff Gate Compressor Station (AIRS 25100029) which operates a compressor driven by a single natural gas-fired combustion turbine to increase the pressure in the natural gas transportation pipeline to maintain downstream flow. The compressor station is located 12 km from the project site and has annualized maximum allowable hourly emissions of $PM_{2.5}$ and SO_2 less than 2 tpy. The next stationary source closest to the project location, the Screven Gin Company (AIRS 25100027), is located 23 km away.

including the collection of ambient monitoring data. As discussed in Section 2.1.1, on July 25, 2011, CARBO submitted to US EPA Region 4 and GA EPD a modeling protocol requesting approval to use the Plume Volume Molar Ratio Method (PVMRM) as part of the tiered screening approach to obtaining hourly average estimates of NO₂ for comparison to the NAAQS. Since PVMRM requires background ozone concentrations to be specified, CARBO developed a database of ozone concentrations based on the maximum of contemporaneous observations at seven monitoring sites in Georgia and one monitoring site in South Carolina. The data were collected for calendar years 2006 through 2010 and are contemporaneous with the five years of NWS meteorological data provided by the agency for the project. CARBO asserts that the development of the ozone database for PVMRM satisfies the requirement to collect ambient monitoring data for ozone since this database was an integral part of the 1-hour NO₂ NAAQS air quality analysis. Please refer to Attachment C of this volume which contains the PVMRM protocol as well as a discussion of the ozone database.

2.4 PSD Regional Source Inventories for Air Quality Analysis

Once it was determined that the construction of the proposed Millen facility would result in a significant impact for the 24-hour and annual averaging periods for PM_{10} and $PM_{2.5}$, the 1-hour and annual averaging periods for NO_2 , and the 1-hour, 3-hour, 24-hour and annual averaging periods for SO_2 , a baseline offsite regional source inventory for each pollutant was developed to determine the portion of the pollutant background concentration attributed to nearby sources for each NAAQS analysis as well as to determine the increase in the pollutant concentration above the baseline concentration for each PSD increment analysis. From the baseline inventory, only those stationary sources expected to cause a significant concentration gradient in the vicinity of the Millen facility were selected for the NAAQS inventory using several screening techniques. Then, the PSD increment inventory was developed for each pollutant by determining which sources in the NAAQS inventory are not accounted for in the baseline concentration.

2.4.1 Extent of Screening Areas

The screening area, or total impact area (TIA), for each pollutant was determined based on guidance provided by GA EPD in the July 27, 2011 Class II modeling protocol approval letter. In the letter, GA EPD made a distinction between pollutants covered under guidance provided in the 1990 New Source Review (NSR) Workshop Manual and those for which NAAQS have been promulgated subsequent to its publication (24-hour and annual $PM_{2.5}$ and the 1-hour NO₂ and SO₂ NAAQS). For pollutants and averaging periods addressed in the NSR Workshop Manual, the TIA was determined in the traditional manner – as the annular area extending 50 km beyond the SIA. For PM_{25} , the TIA was established using the same procedure making the baseline list of facilities included for PM₁₀ identical to those included for PM_{2.5}. For the 1-hour NO₂ and SO_2 NAAQS, the minimum extent of the offsite inventory was determined as the SIA, or buffered SIA in the case of SO_2 , with the maximum extent of the offsite inventory limited to the transport distance covered by the fastest wind speed in the meteorological data set. Although GA EPD allows for further refinement of the offsite inventories for the new 1-hour standards based on a "sectorial" approach, CARBO did not apply this method for the baseline inventory; only the fastest wind speed was used to limit the maximum extent of the inventories for these averaging periods in all wind sectors. Based on this, the following lists the extent of the TIA's used to develop the offsite regional source inventories for each pollutant based on the SIA's determined in the preliminary impact assessment:

- 53.4 km for PM₁₀;
- 54.4 km for PM_{2.5};
- 56.5 km for annual NO₂;
- 50.0 km for 1-hour NO₂;
- 54.0 km for 3-hour, 24-hour, and annual SO₂; and
- 41.0 km for 1-hour SO₂ (29.0 km buffer)

The transport distance covered by the fastest 1-hour average wind speed that was used to limit the extent of the 1-hour NO₂ and SO₂ inventories occurred during hour 13 on Julian Day 79, March 19, 2008 (40.6 km based on 11.28 m/s). This speed is based on the average of valid 1-minute ASOS winds determined by AERMINUTE and reflects the truncated wind speed adjustment of 0.26 m/s applied by AERMET to all ASOS based winds (i.e., winds measured after the ASOS commissioning date for Augusta Daniel Field). Since the buffered SIA for 1-hour SO₂ was 29 km, the TIA for this averaging period may be limited to 41 km. Additionally, since the SIA for the 1-hour NO₂ NAAQS is larger than the limiting distance, the 1-hour NO₂ TIA could not be limited using this procedure and remained unchanged at 50 km.

With the largest screening area for a pollutant being 56.5 km (annual NO₂), a baseline inventory of all stationary sources within 60 km of the project site was developed using additional buffer to add an element of conservatism to the air quality analysis. The list of sources included in the baseline inventory is provided in Table 1 of Attachment G of this volume.

2.4.2 Inventory of Stationary Sources

The area circumscribed by a 60 km radius circle about the proposed project site includes 18 counties in Georgia and South Carolina. These counties are Bulloch, Burke, Candler, Effingham, Emanuel, Evans, Jefferson, Jenkins, Johnson, Richmond, Screven, Tattnall, Toombs, Treutlen, and Washington counties in Georgia and Aiken, Allendale, Barnwell, and Hampton counties in South Carolina. In order to identify stationary sources in Georgia for the baseline inventory, GA EPD's list of stationary sources, available online at the PSD resources section of the Stationary Source Permitting Program (SSPP) website, was used. For each facility, the PSD resources source list includes the Air Information Retrieval System (AIRS) identification number, name, street address, city, zip code, geographic coordinates, county, operating status⁶, Title V source classification⁷, start up and shut down dates, plant description and the facility's major source status with respect to major NSR and HAP. Stationary sources were identified by mapping the geographic coordinates of all AIRS numbers within each county and excluding those not within 60 km of the project site. All sources listed as permanently closed or shut down were also removed from the baseline inventory.⁸ After compiling the list of AIRS numbers identified, air quality permits, Title V permit applications and major NSR permit applications available online and permitting files available in hardcopy format at

⁶ Operational status includes the codes "O" for operating, "X" for permanently closed or shut down, "T" for temporary and "P" for planned.

⁷ Title V source classification includes the codes "A" for major source, "B" for true minor, "SM" for synthetic minor, and "PR" for permit-by-rule.

⁸ Since GA EPD does not guarantee the accuracy or completeness of the information provided in the PSD resources source list, sources listed as permanently closed or shut down were initially included in the baseline inventory. However, after review of the hardcopy permitting files for facilities in several counties, CARBO is confident that the source list is accurate in this respect. However, CARBO did find several instances of sources being listed as operating but later confirmed to no longer exist or be permanently shut down. These sources are identified and remain listed in the baseline inventory but were not included in the air quality analysis in any manner (e.g., were not evaluated for increment expansion).

the GA EPD Air Protection Branch (APB) office in Atlanta, Georgia were reviewed to validate the information available in the PSD resources source lists as well as to determine the model emission and source input data for the air quality analyses. GA EPD's major PSD increment consuming sources spreadsheet, last revised August 2004, was also reviewed to support the inventory. In total, 90 sources in Georgia were evaluated for the baseline inventory. Of these sources, eight listed as operating were confirmed to no longer exist or be permanently shut down and permitting files could not be found in electronic or hardcopy format for seven sources. Additionally, one source was determined to be temporary and one existing source had applied for an initial air quality permit that was ultimately denied. For sources listed in the PSD resources source list as "wood furniture manufacturing", "automotive painting and refinishing", and "auto collision and repair", the only records contained in the permitting files were either permit-by-rule applications for coating and gluing operations or initial notifications for the paint stripping and miscellaneous surface coating operations area source MACT (40 CFR 63 Subpart HHHHHH) and did not have any quantifiable emissions for PM_{10} , $PM_{2.5}$, NO_x or SO_2 .

For sources in South Carolina, CARBO obtained the NAAQS and PSD increment inventory spreadsheets for Aiken, Allendale, Barnwell, and Hampton counties from Mr. John Glass with the South Carolina Department of Health and Environmental Control (SCDEHC).⁹ For each county, the spreadsheets include company name, air quality permit number, source identification, construction and modification dates, maximum allowable and increment affecting emission rates for PM_{10} , NO_x and SO_2 , UTM coordinates, source parameters, and comments useful for modeling. Similar to the Georgia portion of the inventory, stationary sources were identified by mapping the coordinates of all sources (point, volume, and area) within each county and removing those not within 60 km of the project site. After mapping each source, the coordinates for sources located in NAD27 were modified to NAD83 to be consistent with the datum used for the air quality analysis. In total, there are only five sources within these counties included in the baseline inventory.

Figure 2.4.2-1 through Figure 2.4.2-4 show the location of each source included in the baseline inventory (i.e., all sources with AIRS numbers located within 60 km of the project site) in relation to the proposed Millen facility as well as their emission intensities of PM_{10} , $PM_{2.5}$, NO_x or SO_2 , respectively. Emission intensities shown are based on the annualized maximum allowable hourly emission rates without incorporating any annual operating or emission limitations. These are the emission rates that were used as part of nearby source screening as well as for the air quality analysis, including the annual averaging period, excluding sources or emission scenarios identified as "intermittent".

⁹ The spreadsheets for Aiken (Aik_0080.xls), Allendale (All_0160.xls), Barnwell (Bar_0300.xls), and Hampton (Ham_1280.xls) are provided in the attached electronic files.

Figure 2.4.2-1: Location of Stationary Sources and PM₁₀ Emission Intensity

Figure 2.4.2-2: Location of Stationary Sources and PM_{2.5} Emission Intensity

Figure 2.4.2-3: Location of Stationary Sources and NO₂ Emission Intensity

Figure 2.4.2-4: Location of Stationary Sources and SO₂ Emission Intensity

2.4.3 Identifying Nearby Sources

For the air quality analysis, the total air quality concentration compared to the NAAQS includes the background contribution from both nearby and other sources. Source referred to as "other" are those natural, minor, and distant major sources that are included in the existing air quality data established for the area impacted by Millen facility (i.e., are included in the background concentrations listed in Table 2.3-2). However, since sources typically do not operate at their maximum allowable capacity, modeling is used to establish the background contribution of certain sources determined to be "nearby". Nearby sources are those that are expected to cause a "significant concentration gradient" in the vicinity of the project. Traditionally, PSD applicants have used the Q/D (or 20D) screening method to identify nearby sources located outside of the SIA for a pollutant. The 20D screening method is based on the ratio of a facility's maximum allowable emissions in tons per year (Q) and either the source-tosource distance for short-term averaging periods or the distance from the source to the outer edge of the SIA for the annual averaging period. If a source's Q/D ratio is greater than 20, then the source can be expected to cause a significant concentration gradient in the vicinity of the project for the averaging period in question and should be explicitly modeled. However, the 20D method defines "significant concentration gradient" only in terms of the SIL's for PM₁₀, NO₂, SO₂, and CO. Since the SIL's for the 24-hour and annual PM_{2.5} and the 1-hour NO₂ and SO₂ NAAQS were not established at the time the screening method was developed, 20D is not applicable to screening sources for these NAAQS inventories. Therefore, based on guidance provided by GA EPD, other screening criteria, described below, were used to identify nearby sources for PM2.5 and the 1-hour NO₂ and SO₂ NAAQS inventories.

The baseline inventory of all stationary sources within 60 km of the Millen facility is provided as Table 1 of Attachment G to this volume. For each source, the table lists the state, county, AIRS identification number, geographic location, UTM coordinates, elevation, source classification¹⁰, permitting status¹¹, the annualized maximum allowable hourly emissions (Q)¹² for PM₁₀, PM_{2.5}, NO₂, and SO₂, and the source-to-source distance (D). For sources within the TIA, the

¹⁰ Since this PSD application will establish the minor source baseline dates for PM_{10} and SO_2 , a source's classification is primarily used to identify emission increases at major PSD sources which occurred after the major source baseline date and affect the available increment since they are not part of the baseline concentration. Source classifications are based on a facility's Title V or major NSR status and include "general", "minor", "Title V", or "PSD". Only those sources listed as "PSD" may affect the increment for PM_{10} and SO_2 . For NO₂, all emission increases from any source listed which occurred during or after 1988 are presumed to affect the annual increment.

¹¹ A source's permitting status includes facilities whose most recent permitting action is "active" or "pending". The permitting status also lists as "closed" the eight sources listed as operating in the PSD resources source list but confirmed to no longer exist or be permanently shut down, "no files" the seven sources for which electronic or hardcopy permitting files could not be found, "temporary" for the source determined to be temporary, and "denied" for the existing source that applied for an air quality permit that was never issued.

¹² Since the "Q" is based on the annualized maximum hourly allowable emissions, some synthetic minor sources (listed as "minor") will have emissions greater than the Title V or PSD major source thresholds. Only those listed as "Title V" or "PSD" are actually subject to the federal operating and major NSR preconstruction permitting programs.

Q/D ratio for both the short-term and long-term averaging periods is calculated.¹³ A short-term or long-term Q/D ratio is listed as "N/A" if the source is within the SIA or beyond the screening area since the screening value would be irrelevant in either case. Sources located within 2 km of one another are identified as a group and their Q/D screening value was calculated using an aggregated Q for a pollutant and the minimum source-to-source distance of any facility within the 2 km grouping.¹⁴

As previously mentioned, the Q used for each pollutant for nearby source screening is based on the annualized maximum allowable hourly emissions for each facility. For most Georgia sources, the basis for these emission estimates is provided in Table 3 of Attachment G¹⁵ to this volume and is consistent with the procedure specified in Table 8-2 of US EPA's Guideline on Air Quality Models. For each emission unit at a facility in the baseline inventory, the table lists the modeled source identification, permit source identification, source description, control device description, construction and modification dates and the design capacity¹⁶ used to calculate emissions based on the maximum allowable or federally enforceable emission limitation for NO_x, SO₂, PM₁₀, and PM_{2.5}. In all cases where an air quality permit specifies an emission limitation, the emission limitation was used to determine the maximum allowable hourly emissions used for source screening and the air quality analysis. All emission limitations used are identified by permit and permit condition number for each source.¹⁷ However, not all sources have emission limitations specified in their air quality permit or are covered by a SIP limitation. This is particularly true for minor sources, existing major PSD sources that have not undergone a major modification, and for PM_{2.5}. For these emission units, potential emissions were determined based on the most applicable emission factor found in resources such as AP-42 or emission estimates provided in a source's permit application. For all South Carolina sources, annualized maximum allowable hourly emissions for each facility were determined from the NAAQS and PSD increment inventory

¹³ The Q/D ratio for the long-term averaging period is based on the source-to-source distance minus the SIA for each pollutant.

¹⁴ Facilities belonging to a 2 km grouping are identified in Column E of the baseline inventory. Grouped facilities may also be identified by finding facilities with identical Q/D screening values.

¹⁵ For certain smaller sources, such as permit-by-rule concrete batch plants, cotton gins, and other true minor sources, the Q for each pollutant is calculated or entered directly in Table 1 of Attachment G based on information found in permit applications, permit narratives, and memoranda contained in the facility's online or hardcopy permitting files and are only briefly addressed in Table 3 in anticipation of these sources being defined as *other*.

¹⁶ Only the design capacity required to calculate the maximum allowable emission limitation for a pollutant is listed. Types of design capacities used include maximum hourly processing rate (tons per hour); maximum rated hourly heat input (million Btu per hour); maximum rate brake horsepower (bhp); maximum hourly fuel consumption, fuel type (e.g., natural gas, diesel, No. 2 fuel oil, green sawdust, etc.) and units (e.g., standard cubic feet per minute (scfh), gallons per hour (gph), pounds per hour (pph), etc.); volumetric exhaust flow rate (dry standard cubic feet per minute (dscfm; for grain loading limitations)

¹⁷ For example, Vogtle Electric Generating facility was issued a 502(b)(10) change for the replacement of an existing fire pump engine (Application No. TV-19578; permit 4911-033-0030-V-02-4). Emissions of NO_x calculated from this engine used for source screening, and the annual NO₂ NAAQS and increment air quality assessment, are based on Condition No. 3.3.19.a which limits NO_x to no greater than 7.8 grams per brake horsepower hour based on the new source performance standard (NSPS) for compression ignition internal combustion engine (Subpart IIII). This is referenced as "V-02-4 3.3.19.a" in Table 3 of Attachment G to this volume.

spreadsheets obtained from SCDEHC, which reflect the maximum permitted rates.

For PM₁₀ and PM_{2.5}, both the filterable and condensable fractions were addressed separately when necessary to ensure that total direct particulate matter emissions were used for source screening and as input into the model. Where an air quality permit specifies an emission limitation (e.g., Georgia Rule (d) or NSPS Subpart IIII), condensable PM was assumed to be implicitly included. Otherwise, total PM was determined using separate emission factors for filterable and condensable PM or in some cases condensable PM was assumed to not be associated with type of process in question (e.g., automobile shredding or grain shipping and receiving). For certain emission units, a single emission factor was found that represented total PM and was noted as such. For most emission units, PM_{2.5} was assumed to equal PM₁₀. However, if a separate emission factor existed for $PM_{2.5}$, or if a published $PM_{2.5}/PM_{10}$ ratio applicable to the unit or source in question could be found, PM2.5 emissions were directly calculated and the basis for the estimate is provided. Generally, the only emission units with different emission rates for PM₁₀ and PM_{2.5} emissions were liquid or solid fuel combustion units not associated with material handling or processing (e.g., boilers, engines, and turbines) or cotton ginning. Using this procedure, CARBO believes that both the PM₁₀ and PM_{2.5} emissions used for source screening and the air quality analysis adequately represent both filterable and condensable fractions.

After determining the Q/D screening value for facilities, or groups of facilities, the 20D method was applied to all pollutants and averaging periods except for the PM_{2.5} and the 1-hour NO₂ and SO₂ NAAQS. After review of the original basis for 20D, GA EPD determined that the appropriate screening criterion for PM_{2.5} was 2D based on the level of the PM_{2.5} SIL's. Unlike 20D, 2D for PM_{2.5} uses the source-to-source distance for both averaging periods. Therefore, the Q/D screening values calculated for the 24-hour and annual averaging periods for PM_{2.5} are identical.

For PM₁₀, all sources in the baseline inventory have Q/D screening values less than 20. However, sources with Q/D ratios greater than 10 were selected for the PM₁₀ NAAQS inventory to be conservative.¹⁸ The PM₁₀ NAAQS inventory is provided in Table 5 of Attachment G to this volume.

For $PM_{2.5}$, 30 sources in the baseline inventory have Q/D screening values greater than 2. Because the number of minor sources defined as nearby based on 2D was unexpectedly large, GA EPD allowed a more refined screening technique to be used. The 20D screening method was developed based on modeling using SCREEN2 to determine a facility's air quality impacts at various distances using maximum annual emissions emitted from a stack with poor dispersion

¹⁸ Three sources have Q/D ratios for PM₁₀ greater than 10 but less than 20: Allen B. Wilson Combustion Turbine Plant (Georgia; AIRS 03300008); Vogtle Electric Generating Plant (Georgia; AIRS 03300030); and Savannah River Nuclear Solutions Area-D (South Carolina; AIRS 03000036); Allen B. Wilson and Vogtle are part of a 2 km grouping (identified as "033-3" or the third group in Burke County (FIPS Code 033))

characteristics.¹⁹ The SCREEN2 modeling also assumed an atmospheric stability class D, wind speed of 2.5 m/s, and calculated mixing height driven by stable (mechanical) conditions. In order to perform refined screening for sources of PM₂₅ with screening values greater than 2, CARBO used AERMOD with both sets of meteorological data to determine if each source, or group of sources, would have a significant impact for the PM_{2.5} NAAQS. The refined screening used the total Q for each facility, default stack parameters consistent with the original 20D development²⁰, and 100 meter spaced receptors within the 4.4 km SIA determined in the preliminary impact assessment. Only those sources predicted to have a significant impact for PM_{2.5} within the SIA were included in the NAAQS inventory. The results of the refined screening are provided in Table 2 Attachment G to this volume. As shown in the table, only those sources included for the PM_{10} NAAQS inventory are included for $PM_{2.5}$. The $PM_{2.5}$ NAAQS inventory is provided along with nearby sources of PM₁₀ in Table 5 of Attachment G to this volume. The refined screening method allowed for sources with Q/D screening values between 1.94 and 3.84 to be excluded from the inventory. Based on the impacts of each source or source group, the equivalent screening criteria for the sources excluded from the inventory using the refined technique ranged from around 3D to 12D.

For annual NO₂, eight sources in the baseline inventory have Q/D screening values greater than 20, three of which are located just beyond the TIA in South Carolina but where included in the NAAQS inventory to be conservative.²¹ The annual NO₂ NAAQS inventory is provided in Table 6 of Attachment G to this volume. NO_x emissions limitations listed are based on total NO_x (NO + NO₂).

For 3-hour, 24-hour, and annual SO₂, eight sources in the baseline inventory have Q/D screening values greater than 20, three of which are located just beyond the TIA in South Carolina, and two hot mix asphalt plants with Q/D screening values just between 15 and 20 were included in the NAAQS inventory.²² The SO₂ NAAQS inventory is provided in Table 7 of Attachment G to this volume.

For the 1-hour NO_2 and SO_2 NAAQS, no Q/D screening was applied. The minimum extent of the inventory was defined as the SIA from the preliminary

¹⁹ Stack height 10 meters; exit velocity 0.01 m/s; stack exit temperature 293 K (ambient); stack exit diameter 1 m

²⁰ The stack exit temperature for refined $PM_{2.5}$ screening was modified to 0 K to allow AERMOD to use the dry bulb temperature for each hour of meteorological data for exhaust conditions at ambient temperature.

²¹ Allen B. Wilson Combustion Turbine Plant (Georgia; AIRS 03300008); Vogtle Electric Generating Plant (Georgia; AIRS 03300030); King America Finishing (Georgia; AIRS 21500008); South Natural Gas Company – Woodcliff Gate Compressor Station (Georgia; AIRS 25100029); Savannah River Nuclear Solution (South Carolina; AIRS 00800041); Three Rivers Landfill (South Carolina; AIRS 00800112); Ameresco Federal Solutions (South Carolina; AIRS 00800144); and Savannah River Nuclear Solutions Area-D (South Carolina; AIRS 030000036). Allen B. Wilson and Vogtle are part of a Burke County 2 km group and SRS, Three River Landfill and Ameresco are part of an Aiken County 2 km group.

²² Reeves Construction Company (Georgia; AIRS 03100011); Allen B. Wilson Combustion Turbine Plant (Georgia; AIRS 03300008); Vogtle Electric Generating Plant (Georgia; AIRS 03300030); Reeves Construction Company (Georgia; AIRS 03300037); Koyo Bearings USA (Georgia; AIRS 25100004); King America Finishing (Georgia; AIRS 21500008); Savannah River Nuclear Solution (South Carolina; AIRS 00800041); Three Rivers Landfill (South Carolina; AIRS 00800112); Ameresco Federal Solutions (South Carolina; AIRS 00800144); and Savannah River Nuclear Solutions Area-D (South Carolina; AIRS 03000036). Allen B. Wilson and Vogtle are part of a Burke County 2 km group and SRS, Three River Landfill and Ameresco are part of an Aiken County 2 km group.

impact assessment and the maximum extent of the inventory was limited to the transport distance covered by the fastest wind speed in the meteorological data set (without using the more refined "sectorial" approach allowed by GA EPD). This limited the 1-hour NO₂ NAAQS inventory to 50 km and the 1-hour SO₂ NAAQS inventory to 41 km. However, significant sources of NO_x and SO₂ located just beyond these distances were included in order to ensure that the air quality analysis remained conservative. In total, 30 sources were included for 1hour NO_2 and 19 sources were included for 1-hour SO_2 . The NAAOS inventories for each are provided in Tables 4a and 4b of Attachment G to this volume. Table 4a contains the point source inventory and Table 4b contains the volume source inventory. Volume sources in the inventories include six directfired lumber drying kilns. NO_x emissions limitations listed are based on total NO_x (NO + NO₂) and all NO₂/NO_x ratios used for the PVMRM assessment are specified in these tables. Generally, all sources used the default in-stack NO_2/NO_x ratio of 0.50. The only sources not using the default in-stack NO_2/NO_x ratio are the project sources (direct-fired rotary kilns, spray dryers, and boilers) and combustion turbines. Please refer to Attachment C of this volume which contains the PVMRM protocol and the substantiation of the unit specific in-stack ratios.

The basis for all point and volume source parameters used to estimate the contribution of nearby sources to background concentrations is provided in Tables 8 and 9, respectively, of Attachment G of this volume. Generally, all source parameters are based on information determined from the facility's permitting files and come from permit applications, previous screen modeling assessments for toxics (SCREEN3), previous refined modeling assessment for PSD sources, stack tests, and the national emission inventory (NEI) database.

2.4.3.1 Temporary Emissions Sources

Under the PSD rules, sources of temporary emissions, typically occurring during the construction of a facility, may be excluded from the air quality analysis if the emissions would not impact a Class I area or impact an area where an increment is known to be violated. Please refer to the exemption contained 40 CFR 52.21(i)(3). For this reason, Shaw Group (AIRS 03300039) was excluded from the baseline inventory. Shaw Group operates heavy construction equipment, including backup and support diesel-fired generators, portable lighting, fuel storage facilities, mobile concrete crushers, and concrete batch plants to support construction of Units 3 and 4 at the Vogtle Electric Generating Facility. Since the facility is a synthetic minor source and the closest Class I areas are 200 km away from the construction site, the temporary emissions will not impact any Class I area. Additionally, the full impact analysis performed for the Vogtle Units 3 and 4 PSD application provides evidence that no increments are known to be violated in the area impacted by the Shaw Group. Please refer to the air quality impacts

analysis provided in Section 7 of Vogtle's PSD application for Units 3 and $4.^{\rm 23}$

2.4.3.2 Intermittent Sources and Emission Scenarios

US EPA recommends that compliance demonstrations for the 1-hour NO_2 and SO_2 NAAQS be based on emission units and emission scenarios that can logically be assumed to operate continuously or which occur frequently enough to contribute significantly to the annual distribution of daily maximum 1-hour concentrations. Source and emission scenarios not meeting these criteria are termed "intermittent" and may be excluded from the 1-hour NAAQS air quality analysis. For the 1-hour NO₂ and SO₂ NAAQS, the following emission units and emission scenarios were determined to be "intermittent" and excluded from the air quality analysis:

- emergency and backup diesel-fired generators at the Vogtle Electric Generating Facility (AIRS 03300030)²⁴;
- the No. 2 distillate fuel oil firing scenario for boilers B1 and B2 at East Georgia Regional Medical Center (AIRS 03100052)²⁵; and
- the No. 5 residual fuel oil firing scenario for boilers B1 and B2 at Koyo Bearings USA, LLC (AIRS 25100004)²⁶

2.4.4 Increment Consumption and Expansion

²³ Please refer to Application No. 18986 dated May 22, 2009 for permit amendment 4911-033-0030-V-02-3, effective April 9, 2010

²⁴ Although the diesel-fired generators at Vogtle do not currently have any operational restrictions specified in Title V permit, the low level of maximum actual emissions listed in the facility's online Title V application indicate that the engines are intermittent (i.e., do not operate relatively continuous or frequently enough to contribute significantly to the annual distribution of daily maximum 1-hour concentrations). Additionally, GA EPD is allowing this exclusion since there is an action pending to incorporate operational restrictions on the engines in a future permit amendment.

²⁵ Please refer to Application No. 11635 dated August 18, 1999 for permit 8062-031-0052-B-01-0, effective August 14, 2000. Notes provided by the applicant in the Section III-A form for boilers and fuel burning equipment indicate that "the main fuel for the boilers (B1 and B2) is natural gas and No. 2 fuel oil will only be used under emergency conditions." If the boilers were simply listed as gas/oil fired without this statement, the oil-fired scenario would not have been determined to be intermittent.

²⁶ Please refer to the November 13, 1996 memorandum from Heather Manley and Laura Taylor to Kirk Drucker regarding Application No. 7113 dated January 2, 1995. Boilers B1 and B2 can burn either natural gas or fuel oil but "the only time the boilers use No. 5 fuel oil is when they are cut off from their supply of natural gas." Since curtailment periods do not occur frequently, the oil-fired scenario was determined to be intermittent. It is also worth noting that the boilers, when originally installed in 1974, were permitted as 700 hp boilers with a maximum rated heat input of 29 mmBtu/hr. At around the time Georgia's Title V permitting program received interim approval from EPA, the facility (Torrington) submitted a synthetic minor application to limit SO₂ from the boilers to less than the major source threshold by restricting their combined hours of operation to less than 2,318 hours. After transferring ownership to Timken in 2003 and then to Koyo Bearings in 2009, the same operational limit of 2,318 hours applies to both boilers but are now referred to as being one-third the size (200 hp) which would imply the operational limitation should have been modified. Since it is unclear why this occurred, the NAAQS inventories reflect the original, larger boiler installation.

Once the NAAQS inventories were developed for the 24-hour and annual averaging periods for PM₁₀, the annual averaging period for NO₂, and the 3-hour, 24-hour, and annual averaging periods for SO₂, increment inventories were developed by comparing each emission unit's construction or modification date to the major source or minor source baseline date, as applicable. When a source was listed as constructed prior to an applicable baseline date but was later modified after such date, the maximum allowable emissions for the modified unit, in lieu of the actual emission increase, was assumed to consume increment. Since this PSD application establishes the minor source baseline date for PM_{10} and SO₂ and the SIA for each pollutant is completely contained within Jenkins County, the only emission increases that may affect the available increment are the Millen facility and those that occurred at PSD major sources after January 6, 1975, the major source baseline date for PM_{10} and SO_2 . Since the minor source baseline date for NO2 was set statewide in 1988, the same year of the major source baseline and trigger dates, any emission unit constructed or modified during that year and after was determined to consume increment. Emission units that affect increment consumption are identified in the NAAOS emission inventories for each pollutant provided in the tables of Attachment G to this volume. No increment expansion was used for the air quality analysis.

2.5 NAAQS Air Quality Analysis

The primary NAAQS are the maximum concentration ceilings, measured in terms of total concentration of a pollutant in the atmosphere, which define the "levels of air quality which US EPA judges are necessary, with an adequate margin of safety, to protect the public health." The secondary NAAQS define the levels that "protect the public welfare from any known or anticipated adverse effects of a pollutant." The objective of a NAAQS analysis is to demonstrate through dispersion modeling that emissions from a proposed project, in conjunction with the background contribution from *nearby* and *other* sources, do not "cause or contribute" to a violation of the NAAQS at any ambient location. Table 2.5-1 lists the NAAQS for the pollutants modeled for the Millen facility.

 Table 2.5-1:
 Primary and Secondary National Ambient Air Quality Standards

	Averaging Period								
Pollutant	1 -hour $(\mu g/m^3)$	3 -hour $(\mu g/m^3)$	8-hour $(\mu g/m^3)$	24 -hour ($\mu g/m^3$)	Annual $(\mu g/m^3)$				
	(µg, III)	(µg, III)	(µg, III)	(µg/m)	(µg, m)				
NO_2	188^{-4}				100^{-1}				
SO_2	196 ⁴	1,300 ³		365 ^{2, 6}	80 ^{2, 6}				
					Revoked 12/18/2006				
PM_{10}				150^{-1}	71 FR 61144 ⁵				
PM _{2.5}				35 ¹	15 ¹				

¹ For PM_{10} (24-hour), $PM_{2.5}$ (24-hour and annual), and NO_2 (annual), the secondary NAAQS are the same as the primary

² For SO_2 (24-hour and annual), there are no secondary NAAQS

³ For SO₂ (3-hour), there is no primary NAAQS

⁴ For NO₂ (1-hour) and SO₂ (1-hour), new primary NAAQS are final and secondary NAAQS are proposed

⁵ For PM₁₀ (annual), the NAAQS were revoked at the time the primary and secondary NAAQS for 24-hour $PM_{2.5}$ were reduced

⁶ For SO₂ (24-hour and annual), the primary NAAQS were revoked at the time the new 1-hour NAAQS was made final. However, these standards remain in effect until one year following the date of initial nonattainment designations for the 1-hour SO₂ primary standard (no later than June 2012)

In order to evaluate compliance with the NAAQS, AERMOD was used with the airport location meteorological data set to estimate the total air quality concentrations for comparison to the NAAQS. The total air quality concentration included the impacts from the project emissions, nearby sources from the regional source inventories, and the background concentrations. For each pollutant, except 1-hour SO₂ and NO₂, a refined receptor grid containing fenceline receptors spaced no further than 100 meters apart and 100 meter spaced receptors extending outward from the Millen facility in all directions to the distance of the applicable SIA was used. For the 1-hour SO₂ NAAQS, only the array of significant receptors plus "buffer" locations (i.e., all locations predicted to be above 7 μ g/m³) from the preliminary impact assessment was used. Please refer to Figure 2.2.1-2. The buffered array of significant receptors for 1-hour SO₂ does not contain any non-adjacent outlier receptor locations. For the 1-hour NO₂ NAAQS, the receptor grid that was used was identical to the initial grid used for 1-hour SO₂ significance modeling (i.e.,

with 500 meters spaced receptors carried all the way out to a distance of 50 km). Table 2.5-2 summarizes the results of the NAAQS air quality analysis.

			Back-	Total Air Quality Concentration ⁶			NA	AQS Compar	ison
			Ground	UTM N	IAD83				# of
Pollut-	Avg. Deriod	Voor	Conc. (ug/m^3)			Conc. (44.3)	NAAQS	Violations	Violating
an	renou	Ieal	(µg/m)	East (m)	North (m)	(µg/m [*])	(µg/m [*])	Predicted	Receptors
PM_{10}	24-hr ¹	5YR	38	415,113.20	3,625,579.50	58. <u>35</u> 75	150	No	N/A
PM _{2.5}	24-hr ²	5YR	25	415, <u>049.80</u> 11 <u>3.20</u>	3,625, <u>513.40</u> 579.50	34. <u>46</u> 76	35	No	N/A
PM _{2.5}	Annual ²	5YR	15	416, <u>127.80</u> 16 8.30	3,625, <u>819.70</u> 735.50	14. <u>17</u> 15	15	No	N/A
<u>NO2</u>	<u>1-hr</u> ^{3,7}	<u>5YR</u>	<u>33.24</u>	<u>3750,00.00</u>	<u>3,597,500.00</u>	<u>228.9484</u>	<u>188</u>	Yes	<u>3</u>
		2006		416,300.00	3, <u>626,000</u> 62 <u>5,900</u> .00	16. <u>63</u> 53		No	N/A
NO ₂	Annual ⁸	2007	52	416,300.00	3,626, <u>000</u> 10 0 .00	15. <u>67</u> 55	100	No	N/A
1102	Annuar	2008	5.2	416,300.00	3,625,900.00	15. <u>27</u> 29	100	No	N/A
		2009	-	416,300.00	3,625,600.00	15.30	-	No	N/A
		2010		416,249.20	3,625,567.10	18. <u>05</u> 03		No	N/A
SO ₂	1-hr ⁴	5YR	67.18	416,200.00	3,626,500.00	112. <u>99</u> 67	196	No	N/A
		2006	54.18	419,000.00	3,627,800.00	93.07	1,300	No	N/A
		2007		418,600.00	3,627,900.00	104.74		No	N/A
SO_2	3-hr ⁵	2008		418,000.00	3,627,500.00	97.53		No	N/A
		2009		414,800.00	3,625,400.00	104.78		No	N/A
		2010		418,400.00	3,628,200.00	111.32		No	N/A
		2006		415,113.20	3,625,579.50	31. <u>56</u> 54		No	N/A
		2007		415,175.20	3,624,990.80	30.84		No	N/A
SO_2	24-hr ⁵	2008	16.75	414,922.80	3,625,381.00	<u>33.02</u> 32. 85	365	No	N/A
		2009		416,500.00	3,625,600.00	<u>31.12</u> 30. 97		No	N/A
		2010		415,240.20	3,625,711.90	32. <u>47</u> 29		No	N/A
		2006		416,300.00	3, <u>626,000</u> 62 <u>5,900</u> .00	7. <u>39</u> 36		No	N/A
		2007		416,300.00	3,626,000.00	7. <u>08</u> 05		No	N/A
SO_2	Annual ⁴	2008	3.89	416,300.00	3,625,900.00	6.95	80	No	N/A
		2009		416, <u>400</u> 300.0 0	3, <u>625,600</u> 62 6,100.00	7. <u>05</u> 04		No	N/A
		2010		416,300.00	3,625,600.00	7.49		No	N/A

The PM₁₀ 24-hour NAAQS is based on the highest sixth-high concentration over a five-year period

² The PM_{2.5} 24-hour and annual NAAQS are based on the five-year average of the highest first-high concentrations at each receptor

³ The 1-hour NO₂ NAAQS is based on the five-year average of the 98th-percentile (highest eighth-high) annual distribution of daily maximum 1-hour concentrations at each receptor location

⁴ The 1-hour SO₂ NAAQS is based on the five-year average of the 99th-percentile (highest fourth-high) annual distribution of daily maximum 1-hour concentrations at each receptor location

- ⁵ The 3-hour and 24-hour SO₂ NAAQS are based on the highest second-high concentration for each year modeled ⁶ The total air quality concentration represents the "NAAQS" source group in each AERMOD modeling run and includes the appropriate background concentration as defined by specifying BACKGRND as a source in the SO pathway and including the keyword "BACKGROUND" in the "NAAQS" source group
- ⁷ Design concentration determined using PVMRM
- ⁸ Design concentrations determine using Tier 1 full conversion of NO_x to NO₂

As shown in Table 2.5-2, there were no predicted violations of the NAAQS for any pollutants except the 1-hour NO₂ NAAQS. Figure 2.5-1 and show the locations of receptors with 1-hour NO₂ NAAQS violations.

CARBO Ceramics – Millen, GA Facility GA State Route 17 and Clayton Road, Jenkins County PSD Permit Application

Figure 2.5-1: Location of 1-hour NO₂ NAAQS Exceedances

Figure 2.5-2: Aerial View of 500 m Spaced Receptors with 1-hour NO₂ NAAQS Exceedances

As shown in Figure 2.5-1 and Figure 2.5-2, there are three receptors with violations of the 1-hour NO2 NAAQS just inside the edge of the 50 km SIA. The exceedances occur in the 500 meter spaced portion of the receptor grid near the Rayonier Wood Products Swainsboro Sawmill (AIRS 10700011). Figure 2.5-2 also shows the location of Rayonier's direct-fired lumber drying kilns, Emission Unit ID Nos. DK09 and DK10 (Modeled Source ID Nos. 10700011DK09 and 10700011DK10).²⁷

Since the lumber kilns are direct-fired, there is no stack associated with their continuous operation. Each kiln has four roof vents on each end which open periodically to adjust relative humidity and temperature during the drying process. Therefore, each kiln was modeled as a volume source (single, elevated, on or adjacent to a building). Based on the facility's Title V application, the vents discharge at a height of 27 feet. This height was used to determine the initial vertical dimension of the volume for each kiln. To determine the initial lateral dimension, a width of 40 feet and length of 100 feet for each kiln was estimated from aerial photography. Since the lateral dimension for a volume source should be based on square, the geometric mean of the width and length was used to model each kiln as a single volume source, as opposed to two adjacent volumes. NO_x emissions from each kiln were based on each kiln's maximum capacity, 13.1 million board feet per hour (mmbf/hr), and a NO_x emission factor of 0.135 lb/mmbf from NCASI. This is the same emission factor used to estimate future potential emissions for PSD applicability in the March 2006 PSD application.

As noted in the most recent clarifying guidance regarding application of Appendix W modeling for the 1-hour NO₂ NAAQS, PVMRM may overestimate the NO₂/NO_x ratio for low-level plumes since the algorithm does not prevent the plume from extending below ground level when the volume is calculated. Since the kilns were modeled as volume sources using PVMRM, this may be the cause for the NAAQS violations. Therefore, prior to conducting a culpability analysis, the three receptors with violations were remodeled using the ozone limiting method (OLM), as opposed to PVMRM, with the recommended OLMGROUP ALL option. The results of this analysis are summarized in Table 2.5-3.

²⁷ By way of background, Rayonier's initial Part 70 operating permit was amended on November 30, 2004 to allow for the construction and operation of two wood gasifier direct heated, batch-type, lumber drying kilns (DK07 and DK08), which replaced their six existing kilns. The permit amendment was not subject to PSD review and included a PSD avoidance limit for drying lumber of 118.42 million board feet (mmbf) per year. Rayonier later applied for and was issued a PSD permit (2421-107-0011–V-02-3) on July 16, 2007 authorizing the modification of lumber drying kilns DK07 and DK08 to convert them from batch to continuous, after which they were to be renamed as DK09 and DK10. This permit also authorized an increase in the allowable lumber drying to 220 mmbf/year. Since Rayonier had not begun modifying the kilns prior to the 18 month PSD deadline, the facility applied for and was granted a one-year extension. However, the facility did begin construction by the extended deadline causing the PSD permit to expire. In 2010, Rayonier submitted another application to convert their kilns in the same manner proposed in 2006. This permit (2421-107-0011-V-03-3) was issued on February 8, 2011 and serves as the basis for the modeled NO_x emissions and source parameters.
Total Ai	r Quality Concentra	ation	Total A	ir Quality Concer	ntration
	PVMRM		C	OLMGROUP ALI	
UTM NAD83			UTM NAD83		
East (m)	North (m)	Conc. $(\mu g/m^3)$	East (m) North (m)		Conc. $(\mu g/m^3)$
375,000.00	3,597,500.00	228. <u>94</u> 84	375,000.00	3,597,500.00	<u>220.32</u> 215.38
375,000.00	3,598,000.00	195.31	375,000.00	3,598,000.00	194.88
374,500.00	3,598,000.00	195.22	374,500.00	3,598,000.00	194. <u>67</u> 20

Fable 2.5-3 :	Comparison	of PVMRM and	OLM for 1-he	our NO ₂ I	NAAOSV	Violations
abic 2.5-5.	Comparison	ULL VIVIANU ANU		$\mathbf{J}\mathbf{u}111021$	INAAQD	iorations

As shown in the table above, when compared to using OLM, PVMRM does result in slightly higher predicted impacts for NO₂. However, since the difference in predicted impacts can not explain the NAAQS violations, further modeling was performed to determine if the Millen facility causes or contributes to these exceedances. Since the violations occur within the 500 meter spaced portion of the grid, a refined grid of 100 meter spaced receptors was created to ensure that all NAAQS violations within 50 km of the project site are found and evaluated. The receptor grid used for the culpability analysis is shown in Figure 2.5-3 and contains both ambient and non-ambient air receptors with respect to Rayonier, but are all considered ambient air receptors with respect to the Millen facility. In total, 196 receptors were used for the analysis.

After establishing the receptor grid for the culpability analysis, another AERMOD run was conducted using PVMRM and the five-year concatenated airport location meteorological data set. However, in addition to the "NAAQS" source group, two additional source groups were created: "CARBO" and "01700011". The "CARBO" source group included all project sources with NO_x emissions and the "01700011" source group included Rayonier's direct-fired lumber kilns. Additionally, the "RECTABLE" output option was modified to determine all five-year average daily maximum 1-hour concentrations, ranked from the highest first-high through the 366th-high as follows:

OU RECTABLE 1 1-366

Then, the "MAXDCONT" output option was used to determine the contribution of source groups "CARBO" and "01700011" paired in time and spaced to each ranked five-year average air quality impact for the "NAAQS" source group in excess of the level of the 1-hour NO_2 NAAQS as follow:

OU MAXDCONT NAAQS 8 THRESH 188

Figure 2.5-4 shows that 79 of the 196 culpability receptors have 1-hour NO_2 NAAQS violations.

Figure 2.5-3: Aerial View of 100 meter Spaced Receptor Grid for 1-hour NO₂ NAAQS Violations Culpability

Figure 2.5-4: Aerial View of 100 m Spaced Culpability Receptors with 1-hour NO₂ NAAQS Exceedances

SMITH ALDRIDGE, INC.

P:\Carbo Ceramics\Millen\2010-07 Lines 5-8 PSD Permit App\Application Follow-on\Volume III Update\AQ Analysis Summary.v3.doc

For the 79 receptors shown in Figure 2.5-4, 1-hour NO₂ NAAQS violations were predicted from the design concentration (98th-percentile) to the 148th ranked five-year average. However, this particular receptor (374,900.00 m east, 3,597,700.00, m north, 343.85334.71 μ g/m³) is almost directly on top lumber kiln DK10. Based on the MAXDCONT output, the maximum paired contribution of the Millen facility to any of the ranked NAAQS violations predicted at any of the culpability receptors was 2.5557 μ g/m³. Since this is less than the 1-hour NO₂ SIL, the Millen facility will not cause or contribute to any violations of the NAAQS. Table 2.5-4 lists the maximum contribution of the Millen facility to any 1-hour NO₂ NAAQS violation predicted during the culpability analysis.

#	UTM	NAD83	NAAQS	Rank	CARBO	#	UTM	NAD83	NAAQS	Rank	CARBO
Т	East (m)	North (m)	$(\mu g/m^3)$	Rank	$(\mu g/m^3)$	Π	East (m)	North (m)	$(\mu g/m^3)$	Rank	$(\mu g/m^3)$
1	374,400	3,597,700	<u>188.6117</u> 191.6574	<u>9TH</u> 8TH	0. <u>00164</u> 00184	41	374,900	3,597,900	197. <u>4998</u> 2998	37TH	0. <u>00993</u> 01044
2	374,400	3,597,800	193. <u>6307</u> 6306	8TH	0. <u>00113</u> 00108	42	374,900	3,598,000	<u>198.5273</u> 190.4719	<u>22ND</u> 27TH	0. <u>00606</u> 00481
3	374,400	3,597,900	188.2727	8TH	0. <u>00108</u> 00102	43	374,900	3,598,100	<u>192.5207</u> 191.5049	14TH	0.00191
4	374,500	3,597,500	188. <u>5521</u> 5519	8TH	0. <u>00281</u> 00267	44	375,000	3,597,500	<u>192.6822</u> 191.2342	23RD	0. <u>01139</u> 01099
5	374,500	3,597,600	<u>195.4682</u> 201.0507	<u>11TH</u> 9TH	0. <u>00270</u> 00232	45	375,000	3,597,600	214. <u>2867</u> 0925	<u>30TH</u> 29TH	0. <u>02103</u> 01928
6	374,500	3,597,700	193. <u>1435</u> 5246	<u>15TH</u> 16TH	0. <u>00323</u> 00304	46	375,000	3,597,700	<u>235.0015</u> 223.767	<u>74TH</u> 83RD	0. <u>10811</u> 08886
7	374,500	3,597,800	195. <u>0733</u> 0732	15TH	0. <u>00335</u> 00324	47	375,000	3,597,800	<u>203.7130</u> 196.1311	<u>44TH</u> 55TH	0. <u>02789</u> 02856
8	374,500	3,597,900	188. <u>6075</u> 5169	22ND	0. <u>00210</u> 0022	48	375,000	3,597,900	<u>195.4168</u> 188.4195	<u>17TH</u> 23RD	0. <u>00587</u> 00801
9	374,500	3,598,000	188.6385	13TH	0. <u>00140</u> 00134	49	375,000	3,598,000	189.3163	11TH	0.00103
10	374,600	3,597,400	192. <u>1919</u> 1918	10TH	0. <u>00271</u> 00261	50	375,000	3,598,100	190.9842	8TH	0. <u>00093</u> 00091
11	374,600	3,597,500	202. <u>2323</u> 1943	12TH	1. <u>36143</u> 32337	51	375,000	3,598,200	190. <u>7749</u> 7748	8TH	0.0009500094
12	374,600	3,597,600	<u>196.2013</u> 207.558	<u>19TH</u> 17TH	0. <u>00508</u> 00447	52	375,100	3,597,500	193.361 <mark>0</mark>	13TH	0.0029000284
13	374,600	3,597,700	<u>204.1440</u> 189.2195	23RD27TH	0.00567	53	375,100	3,597,600	<u>195.5615</u> 197.3358	<u>21ST</u> 19TH	0. <u>01185</u> 01252
14	374,600	3,597,800	<u>201.5770</u> 199.6599	26TH	0. <u>00544</u> 00487	54	375,100	3,597,700	<u>192.4707</u> 194.7365	<u>35TH</u> 25TH	0. <u>00873</u> 01177
15	374,600	3,597,900	<u>199.9476</u> 189.1466	<u>28TH</u> 35TH	0. <u>00410</u> 00408	55	375,100	3,597,800	<u>194.1750209.8677</u>	<u>66TH</u> 58TH	0. <u>01153</u> 01246
16	374,600	3,598,000	188. <u>2761</u> 2759	21ST	0. <u>0028700275</u>	56	375,100	3,597,900	192. <u>2355</u> 833	<u>21ST</u> 19TH	0. <u>00338</u> 00499
17	374,600	3,598,100	<u>188.9798</u> 191.0646	<u>10TH</u> 9TH	0. <u>00157</u> 00141	57	375,100	3,598,000	189. <u>6414<mark>2678</mark></u>	9TH	0. <u>00109</u> 0011
18	374,700	3,597,300	<u>191.7816</u> 189.507	8TH9TH	0. <u>00211</u> 00206	58	375,100	3,598,100	195.8689	8TH	0. <u>00079</u> 00078
19	374,700	3,597,400	<u>196.8744</u> 195.2526	11TH	0. <u>00317</u> 00273	59	375,200	3,597,500	189.409 <mark>0</mark>	12TH	0. <u>00515</u> 00511
20	374,700	3,597,500	199. <u>9882</u> 5413	16TH	0.0048000504	60	375,200	3,597,600	<u>194.5384</u> 192.7292	8TH	0.001140012
21	374,700	3,597,600	<u>217.2219</u> 215.1367	22ND	0. <u>75046</u> 73846	61	375,200	3,597,700	<u>193.5613</u> 195.0494	<u>14TH</u> 10TH	0.0036100336
22	374,700	3,597,700	<u>205.6970</u> 192.8938	<u>36TH</u> 40TH	0. <u>01059</u> 01271	62	375,200	3,597,800	193. <u>6689</u> 5099	54TH	0. <u>00559</u> 00557
23	374,700	3,597,800	189.2783	50TH	0. <u>00897</u> 00903	63	375,200	3,597,900	<u>213.9634214.3442</u>	<u>12TH</u> 11TH	0. <u>00278</u> 00295
24	374,700	3,597,900	<u>192.6970</u> 191.498	<u>52ND</u> 53RD	0. <u>00869</u> 00871	64	375,200	3,598,000	198.123 <u>1</u>	27TH	0.0021000204
25	374,700	3,598,000	191. <u>2579</u> 2578	28TH	0. <u>00339</u> 00328	65	375,200	3,598,100	189.4765	13TH	0. <u>00180</u> 00175
26	374,700	3,598,100	<u>195.9490</u> 189.9524	<u>10TH</u> 12TH	0.002100018	66	375,300	3,597,500	195.327 <u>0</u>	9TH	0.0024500238
27	374,800	3,597,300	199.0143	8TH	0. <u>00180</u> 0017	67	375,300	3,597,600	<u>191.5091</u> 188.4221	<u>31ST</u> 33RD	0.002680032
28	374,800	3,597,400	188.4637	18TH	0.00333	68	375,300	3,597,700	192.2245 197.562	<u>34TH</u> 26TH	0.0020400198
29	374,800	3,597,500	<u>193.5987</u> 238.9922	8TH	0. <u>00562</u> 00624	69	375,300	3,597,800	<u>203.2558</u> 193.4685	<u>41ST</u> 48TH	0.0037900373
30	374,800	3,597,600	<u>192.2365</u> 190.8192	37TH	2. <u>55621</u> 56606	70	375,300	3,597,900	198. <u>0228</u> 0227	34TH	0.0032500317
31	374,800	3,597,700	<u>253.7584</u> 256.3819	<u>39TH</u> 37TH	0.0203902117	71	375,300	3,598,000	<u>203.5508193.4246</u>	<u>14TH</u> 20TH	0.001880014
32	374,800	3,597,800	206. <u>39212602</u>	87TH	0. <u>01819</u> 02052	72	375,300	3,598,100	188.1343	14TH	0.0010500099
33	374,800	3,597,900	<u>190.1228</u> 207.9392	<u>56TH</u> 44TH	0.0132400599	73	375,400	3,597,500	188. <u>1259</u> 0071	8TH	0.0015900195
34	374,800	3,598,000	192.6215 6214	31ST	0.00494	74	375,400	3,597,600	193. <mark>28791335</mark>	14TH	0.0012200139
35	374,800	3,598,100	196.3221	12TH	0.0021900209	75	375,400	3,597,700	<u>195.2494194.6488</u>	19TH	0.00139
36	374,900	3,597,400	190. <u>9309</u> 2422	12TH	0.0011000117	76	375,400	3,597,800	193. <u>6209</u> 6208	22ND	0. <u>00223</u> 00212
37	374,900	3,597,500	203.2863202.5554	8TH	0.005750052	77	375,400	3,597,900	192. <u>00</u> 36 0035	15TH	0.0016100149
38	374,900	3,597,600	202.4749203.1083	<u>14TH</u> 12TH	0.0197502174	78	375,400	3,598,000	<u>189.7917192.5063</u>	<u>13TH</u> 10TH	0.0013100124
39	374,900	3,597,700	223.3586 222.5964	114TH	1.23686 21867	79	375,400	3,598,100	188.0494	8TH	0.0008100078
40	374 900	3 597 800	228 6830188 7167	81ST	0 0503903304		,				

Table 2.5-4: Listing of Maximum Contribution of Millen Facility to Each Culpability Receptor with 1-hour NO₂ NAAQS Violations

2.6 PSD Increment Air Quality Analysis

As part of the air quality analysis, a PSD applicant must demonstrate that emissions from the proposed construction and operation of a facility will not cause or contribute to air pollution in violation of any "maximum allowable increase" over the baseline concentration in any area. The "maximum allowable increase" of an air pollutant that is allowed to occur above the baseline concentration is referred to as the PSD increment. By establishing the maximum allowable level of ambient pollutant concentration increase in a particular area, an increment defines "significant deterioration" of air quality in that area. Table 2.6-1 lists the PSD increment for pollutants modeled for the Millen facility.

	Averaging Period						
Pollutant	1-hour (μg/m ³)	3-hour $(\mu g/m^3)$	8-hour (μg/m ³)	24-hour $(\mu g/m^3)$	Annual (µg/m ³)		
NO ₂					25		
SO_2		512		91	20		
PM ₁₀				30	17		

Table 2.6-1: PSD Increments

In order to evaluate compliance with the PSD increments, AERMOD was used with the airport location meteorological data set to estimate the total increase in pollutant concentrations above the applicable baseline concentration. Since this PSD application establishes the minor source baseline date for PM_{10} and SO_2 , the total increase in pollutant concentrations was determined as the emission increases associated with the Millen facility and all emission increases occurring at major PSD sources after the major source baseline date for PM_{10} and SO_2 (January 6, 1975). For NO₂, since the baseline concentration was established in 1988, all emission increases occurring at both major and minor sources during and after 1988 were used to evaluate the increment. No increment expansion was considered for any pollutant in the analysis. For each pollutant, a refined receptor grid containing fenceline receptors spaced no further than 100 meters apart and 100 meter spaced receptors extending outward from the Millen facility in all directions to the distance of the applicable SIA was used. Table 2.6-2 summarizes the results of the PSD increment air quality analysis.

1				0				
			Increase Abo	ve Baseline Cor	centration	PSD In	crement Com	parison
			UTM N	IAD83		PSD		# of
Pollut-	Avg.	V	-		Conc.	Increment	Violations	Violating
ant	Period	Year	East (m)	North (m)	$(\mu g/m^3)$	$(\mu g/m^3)$	Predicted	Receptors
		2006	415,113.20	3,625,579.50	18. <u>46</u> 85		No	N/A
	a (1	2007	416,200.00	3,626,100.00	18. <u>31</u> 21	•	No	N/A
PM_{10}	24-hr ¹	2008	415,113.20	3,625,579.50	<u>23.78</u> 24.47	30	No	N/A
		2009	415,100.00	3,625,700.00	<u>21.51</u> 22.64		No	N/A
		2010	415,049.80	3,625,513.40	<u>16.78</u> 17.30		No	N/A
		2006	416,127.80	3,625,819.70	<u>3.03</u> 2.89		No	N/A
		2007	416 <u>,127.80</u> 16 8.30	3,625, <u>819.70</u> 735.50	2. <u>72</u> 64		No	N/A
PM_{10}	Annual	2008	416, <u>200.00</u> 16 <u>8.30</u>	3,625, <u>800.00</u> 735.50	2. <u>87</u> 81	17	No	N/A
		2009	416, <u>200.00</u> 20 8.80	3,625, <u>800.00</u> 651.30	2. <u>67</u> 66		No	N/A
		2010	416,168.30	3,625,735.50	3. <u>33</u> 29		No	N/A
		2006	416,300.00	3, <u>626,000</u> 62 5,900.00	10. <u>16</u> 07		No	N/A
NO ₂	Annual ²	2007	416,300.00	3,626, <u>000</u> 10 0.00	9. <u>30</u> 20	25	No	N/A
1102		2008	416,300.00	3,625,900.00	9. <u>10</u> 11	-0	No	N/A
		2009	416,300.00	3,625,600.00	8. <u>36</u> 37		No	N/A
		2010	416,249.20	3,625,567.10	10. <u>76</u> 75		No	N/A
		2006	415,376.20	3,625,991.00	37. <u>28</u> 15		No	N/A
		2007	416,289.70	3,625,482.90	34. <u>25</u> 23		No	N/A
SO_2	3-hr 1	2008	416,500.00	3,625,600.00	35. <u>87</u> 85	512	No	N/A
		2009	417,600.00	3,629,100.00	45.67		No	N/A
		2010	418,400.00	3,628,200.00	52. <u>22</u> 21		No	N/A
		2006	416,400.00	3,626,000.00	14. <u>04</u> 05		No	N/A
		2007	416,300.00	3,625,600.00	13. <u>74</u> 68		No	N/A
SO ₂	24-hr ¹	2008	414,922.80	3,625,381.00	16. <u>24</u> 06	91	No	N/A
2		2009	416,500.00	3,625,600.00	14. <u>34</u> 19		No	N/A
		2010	415, <u>200.00</u> 17 6.70	3,625, <u>700.00</u> 645.70	12. <u>92</u> 86		No	N/A
		2006	416,300.00	3, <u>626,000</u> 62 5,900.00	2. <u>54</u> 52		No	N/A
		2007	416,300.00	3,626 <u>.</u> -000.0 0	2. <u>34</u> 31	20	No	N/A
SO_2	Annual	2008	416,300.00	3,625,900.00	2. <u>24</u> 25	20	No	N/A
		2009	416, <u>400</u> 300.0 0	3, <u>625,600</u> 62 6,100.00	2. <u>16</u> 15		No	N/A
		2010	416,300.00	3,625,600.00	2.77		No	N/A

Table 2.6-2: PSD Increment Modeling Results

Results for the short-term PSD increment analysis for each pollutant are based on the highest second-high

concentration for each year modeled (exceedance rate of one per year at any one location)

 $^2~$ Design concentrations determine using Tier 1 full conversion of NO_x to NO_2

As shown in Table 2.6-2, there were no predicted exceedances of the PSD increments for any pollutant. Therefore, the Millen facility will not cause or contribute to any air pollutant in violation of the maximum allowable increase over the baseline concentration in any area.

2.7 Additional Impacts Analysis

As part of preconstruction review, PSD applicants are required to conduct an analysis of the adverse impacts to visibility, soils and vegetation that would occur as a result of the project and from associated growth. The analysis need not address impacts to receptors sensitive to visibility impairment not located within the largest of the annual NO₂ or PM₁₀ SIA's, soils and vegetation having no significant commercial or recreational value, or growth associated with mobile source or temporary emissions.

2.7.1 Soils and Vegetation

In order to determine if any adverse impacts to soils or vegetation would occur as a result of the project, a screening procedure was used based on guidance provided by US EPA in A Screening Procedure for the Impacts of Air Pollution Sources on Plants, Soils and Animals, December 1980. The screening guidance lists pollutants which have both direct and indirect impacts on soils and vegetation. For pollutants which are said to have direct adverse impacts, such as NO₂, SO₂, and CO, the minimum levels of pollutant concentrations in the ambient air at which adverse effects have been reported were used as screening concentrations. For this analysis, refined dispersion modeling was conducted using AERMOD to estimate the total air quality concentration to compare to the screening thresholds, including the contribution of applicable nearby sources represented in the NAAQS inventory and other sources represented by the background concentration. If the maximum model concentration exceeds the screening level, further analysis is required based on an estimation of indirect impacts via soil deposition and plant uptake. Certain pollutants, such a particulate forms of trace elements boron (B), copper (Cu), vanadium (V) and zinc (Zn), have adverse impacts via indirectly pathways only. In order to perform a screening assessment for these pollutants, potential project emissions were compared to significant emission rate thresholds (SER's). The respective SER for each pollutant was originally developed based on a source lifetime of 10 years. Therefore, the SER's were adjusted to reflect a 40 year lifetime for the project.

Table 2.7.1-1 provides a summary of the total air quality concentration predicted for NO₂, SO₂, and CO in comparison to the screening concentrations. For the analysis, the results of the NAAQS air quality analysis for SO₂ and annual NO₂ were used for comparison to the screening concentrations since the averaging times are consistent with the screening concentrations. For the 4-hour, 8-hour, and 1 month averaging periods for NO₂ and 1 week averaging period for CO, the results of the 1-hour NO₂ NAAQS analysis and 1-hour CO preliminary impact assessment were used as a conservative measure for comparison to the screening concentrations on these averaging periods. As shown in Table 2.7.1-1, the total air quality impacts for each pollutant and averaging period are well below the screening concentrations for adverse impacts.

Pollutant	Avg. Period	Background Concentration 1 (µg/m ³)	Total Air Quality Concentration ² (µg/m ³)	Screening Conc. ³ (µg/m ³)	Above Screening Threshold
	4-hr			3,760	No
NO	8-hr	33.24	<u>101.09</u> 9 3.98 4	3,760	No
\mathbf{NO}_2	1-month			564	No
	Annual	5.2	18. <u>05</u> 03 ⁵	94	No
	1-hr	67.18	112. <u>99</u> 67 ⁵	917	No
SO_2	3-hr	54.18	111.32 ⁵	786	No
	Annual	3.89	7.49 ⁵	18	No
СО	1-week	943	1,050.44 ⁶	1,800,000	No

Table 2.7.1-1: Comparison of Air Quality Impacts of NO₂, SO₂, and CO to the Direct Acting Pollutant Screening Concentrations

Background concentrations representing the contribution from *other* sources are provided in Table 2.3-2

For NO₂ and SO₂, the total air quality concentration includes the contribution from *nearby* sources in the NAAQS inventory and background concentrations. For CO, only the Millen facility is included in the total air quality concentrations since the ambient impacts were *de minimis*

³ Screening concentrations for each pollutant and averaging period are based on the most stringent provided in Table 3.1 of *A Screening Procedure for the Impacts of Air Pollution Sources on Plants, Soils and Animals*, December 1980

⁴ Since the additional impacts assessment is only required to be carried out within the largest SIA for deterministic NAAQS, the total air quality concentration from the 1-hour NO₂ NAAQS air quality analysis used as a conservative surrogate for the 4-hour, 8-hour and 1-month averaging periods is the greatest impact occurring within 6.5 km of the Millen facility (<u>415,400</u><u>416,900</u> m east, 3,<u>624,800629,300</u> m north)

⁵ Maximum impacts for each averaging period from the NAAQS air quality analysis presented in Table 2.5-2

⁶ Maximum impact for the 1-hour averring period from the preliminary impact assessment presented in Table 2.2.2-1 plus the background concentration

Table 2.7.1-2 provides a comparison of total project emissions for Cu, V, and Zn to the adjusted SER's; there is no data or applicable emission factor available to CARBO at this time to estimate emissions of boron from any of the project sources. Since the original SER for each pollutant was based on a 10-year source life, the SER's were adjusted downward by a factor of 4 to account for an estimated 40-year source life for the Millen facility. As shown in Table 2.7.1-2, total project emissions are below the adjusted SER's for indirect acting pollutants.

Pollutant	Project Emissions ¹ (tpy)	SER ² (tpy)	Adjusted SER ³ (tpy)	Above Threshold
Copper (Cu)	0.024	0.21	0.053	No
Vanadium (V)	0.065	0.33	0.083	No
Zinc (Zn)	0.816	63	15.75	No

Table 2.7.1-2:	Comparison of Potential Project Emissions of Cu, V, and Zn to the
	Significant Emission Rate Tresholds

¹ Based on facility-wide maximum hourly natural gas consumption of 642,353 scfh (8 spray dryers, 4 direct-fired rotary kilns, and 4 boilers totaling 655 mmBtu/hr) and emission factors published in AP-42 Table 1.4-4 for copper (8.5 x 10^{-4} lb/ 10^{6} scf), vanadium (2.3 x 10^{-3} lb/ 10^{6} scf) and zinc (2.9 x 10^{-2} lb/ 10^{6} scf)

² SER's for each pollutant are based on the most stringent for soils or plants provided in Table 5.7 of *A Screening Procedure for the Impacts of Air Pollution Sources on Plants, Soils and Animals,* December 1980

³ SER's are adjusted downward by a factor of 4 to account for the fact that the published SER's are only based on a 10-year source life

2.7.2 Visibility Impairment

The Class II visibility impairment screening analysis evaluates the visual plume impacts at potentially sensitive receptors within the largest of the annual NO₂ or PM_{10} SIA. Potentially sensitive receptors include state parks, historic sites and airports. The receptor nearest to the project site is Magnolia Springs State Park, which is located 13 km from the project site, 8 km north of Millen. Since there are no receptors with potential sensitivity to visibility impairment within either the annual NO₂ (6.5 km) or PM_{10} (3.4 km) SIA's, no screening assessment was required to be performed.

2.7.3 Growth

The impacts of growth associated with a PSD project are referred to as secondary emissions. Secondary emissions are not emitted directly by the proposed project, but are indirectly associated with the construction and/or operation the facility. The growth analysis, if warranted, is intended to quantify the amount of new growth that is likely to occur in support of the facility and to estimate emissions resulting from that growth. Associated growth includes new residential and commercial/industrial growth resulting from the new facility but excludes temporary and mobile source emissions.

Secondary emissions associated with construction of the facility will be temporary and are not required to be evaluated. With respect to residential growth, the number of new permanent jobs created by the project is expected to be between 40 and 50. To the extent possible, these jobs will be filled from the local labor pool. However, if this expectation can not be accommodated, there is

a supply of existing vacant housing in Jenkins and surrounding counties sufficient to serve those who will move to the area. According to the 2005-2009 American Community Survey (ACS), there are thousands of vacant housing units for sale and for rent within reasonable commuting distances from Bulloch, Burke, Candler, Emanuel, Jenkins and Screven counties. Other than the Millen facility, no industrial growth is anticipated to be associated with the project as the supply of kaolin and other materials for the manufacture of proppant will come from existing mines and suppliers both inside and outside of central Georgia. Accordingly, for the purposes of an additional impacts assessment, negligible new growth is anticipated as a result of the proposed facility.

3.0 CLASS I AQRV AND PSD INCREMENT ANALYSIS

When potential emissions from a proposed major stationary source "may affect" a Class I Area, the PSD rules require an applicant to demonstrate that the source will have no adverse impact on any air quality related value (AQRV). AQRV's are those attributes of a Class I Area that deterioration of air quality may diminish the area's national significance, impair the structure or functioning of an ecosystem, or impair the quality of the visitor experience and include visibility impairment and deposition of sulfur and nitrogen. A source is determined to have no adverse impact on visibility impairment if the 98th-percentile (highest eighth-high) change in light extinction, when compared to natural background conditions, is less than 5% based. For Class I areas in the eastern United States, total deposition of sulfur or nitrogen is compared to a Deposition Analysis Threshold (DAT) of 0.01 kilograms/hectare/year (kg/ha/yr) to determine if an adverse impact is predicted.

Generally, the term "may affect" includes any PSD major facility proposing to locate within 100 km of a Class I area and certain large sources beyond 100 km. In the revised *Federal Land Managers' Air Quality Related Values Work Group Phase I Report* (FLAG 2010), the U.S. Forest Service (USFS), National Park Service (NPS) and U.S. Fish and Wildlife Service (FWS) have officially adopted screening criteria to determine if an assessment of AQRV's will be necessary for large PSD sources proposing to locate at distances greater than 50 km from a Class I area. The screening criteria (Q/D) is similar to that used for US EPA's Best Available Retrofit Technology (BART) guidelines for the Regional Haze Rule and is based on ratio of the sum of potential emissions of NO_x, SO₂, and all forms of particulate matter (including sulfuric acid mist (H₂SO₄)) and the distance between the proposed source and a Class I area. The FLM's will consider a source with a Q/D ratio of less than 10 to have negligible impacts with respect to the ARQV's.

Based on the level of BACT proposed, the Millen facility has a Q/D screening value greater than 10 for four Class I areas within 300 km of the project location: Cape Romain (SC), Okefenokee (GA), Wolf Island (GA), and Shining Rock (NC). Based on this, the FLM's for these Class I areas were contacted on July 25, 2011 to determine if they may be concerned about adverse impacts to AQRV's that would result from the proposed facility. Both FWS and USFS requested that an AQRV analysis be performed. Since evaluating visibility impairment involves modeling of NO_x, SO₂, and particulate matter, the facility's air quality impacts with respect to the Class I SIL's for NO_x, SO₂, and PM₁₀ were also evaluated. In order to conduct the AQRV and Class I increment significance analysis, a modeling protocol was submitted on August 1, 2011 to FWS, USFS, GA EPD and US EPA for review and comment on the proposed modeling techniques. A copy of the modeling protocol is provided in Attachment E of this volume. Copies of all correspondence with the FLM's, GA EPD and US EPA are provided in Attachment F of this volume.

3.1 Modeling Methodology

The Class I area AQRV and PSD increment significance analysis was conducted in accordance with the modeling protocol, submitted on August 1, 2011. Since all Class I areas are located beyond 50 km from the project site, CALPUFF, the preferred regulatory model for long range transport (LRT), was used. Unlike AERMOD, CALPUFF is a non-steady-state Lagrangian puff dispersion modeling system capable of characterizing transport, chemical transformation, dispersion and deposition. The most recent EPA-approved version of CALPUFF, Version 5.8 Level 070623 (with CALPOST Version 5.6394 Level 070622), was used. However, for visibility impairment, the version of the CALPOST post-processor used was CALPOST Version 6.292 Level 110406 which allows for the use of Method 8 Mode 5 to conform to FLAG 2010 guidelines.

Because of this model selection, model options were chosen based on the recommendations contained in the *Interagency Workgroup on Air Quality Modeling (IWAQM) Phase 2 Summary Report and Recommendations for Modeling Long Range Transport Impacts*, December 1998 (IWAQM II). These model options are appropriate for both the AQRV's and Class I increments and were chosen, and tested, to conform to the regulatory default model (MREG = 1) and used Pasquill-Gifford dispersion coefficients (MDISP = 3). The CALPUFF input file used for the Class I air quality analysis is provided with the modeling protocol included in Attachment E of this volume. The meteorological dataset that was used was the CALMET 5.8 dataset developed for VISTAS sub-regional domain 4. This domain has been configured to include each Class I area under review with at least a 50 km buffer zone in each direction to ensure that concentrations were not underestimated by loosing "puffs" off the grid. The data was obtained from GA EPD and has been preprocessed on a 4-km grid scale using 2001 through 2003 MM5 data as the initial guess field with NWS observations to provide local surface refinement.

In order to evaluate both the visibility impairment and deposition AQRV's, chemical transformations involving five species, SO₂, SO₄, NO_x, HNO₃, and NO₃, were performed. CALPUFF is capable of simulating these chemical transformations using pseudo-first-order chemical reaction mechanisms. For the AQRV assessment, the MESOPUFF II chemical transformation scheme (MCHEM = 1), which is part of the regulatory default model, was used. MESOPUFF II uses ambient concentrations of ozone as a surrogate for hydroxyl radical (OH) concentrations for daytime sulfate and nitrate chemistry. The ozone data that were used contain hourly measurements of ozone from all non-urban monitors within and just outside the metrological domain and were obtained from GA EPD. The default ozone value of 80 ppb (BCK03) will used for the background ozone concentrations are used for nitric acid and nitrate partitioning. A spatially constant, domain average value of 0.5 ppb was used for this purpose, consistent with IWAQM II and BART guidelines for the VISTAS region.

Unlike modeling conducted for the Class I PM_{10} increment, visibility impairment required speciation of total direct PM_{10} emissions into fractions representing coarse (PMC) and fine particulate matter (PMF), organic condensables (POC or SOA), and

elemental carbon (EC). Also, sulfuric acid mist (H_2SO_4) is condensable PM which was modeled as directly emitted sulfur (SO₄). For visibility impairment, PM was speciated according to the profiles contained in the modeling protocol. PM₁₀ was speciated into different size fractions of particulate matter based on the total PM₁₀ and PM_{2.5} BACT emission limitations and the facility-wide H₂SO₄ PSD avoidance limitation that are proposed as part of this PSD application. Please refer to Volumes I and II. For emission units not associated with condensable PM, such as storage silos, railcar loading and other material handling equipment, PM is apportioned to size fractions of coarse (PCM) and fine (PMF) particulate based on the ratios of $PM_{10-2.5}$ and $PM_{2.5}$ to total PM_{10} BACT. The particulate was then split evenly into coarse size fractions PM_{10-6} (PMC800) and $PM_{6-2.5}$ (PMC425) for PM_{10-2.5} and the submicron size fractions PM_{1-0.625} (PMF081) and PM_{0.625}. $_{0.5}$ (PMF056) for PM_{2.5}. Although the spray dryers and boilers may be associated with some non-zero fraction of filterable PM, the same procedure was used to apportion PM except that all PM is assumed to be organic condensable (POC) which will provide for a conservative estimate of visibility impairment based on the light extinction coefficient for SOA. Finally, the same approach used for the spray dryers and boilers was used for the kilns except that the total portion of PM_{10} speciated to POC excludes the portion of H₂SO₄ modeled directly as SO₄.

3.2 Class I Air Quality Analysis Results

Table 3.2-1, Table 3.2-2, Table 3.2-3, and Table 3.2-4 summarize the Millen facility's impacts with respect to the AQRV's and Class I PSD increments for Cape Romain, Okefenokee, Wolf Island, and Shining Rock, respectively. Based on the results, the Millen facility, as proposed, will have no adverse impact on visibility or deposition in any Class I area and will not be significant for any Class I SIL. It should be noted that the Millen facility demonstrates no adverse impact to visibility based on the highest 24-hour change in light extinction at all Class I receptors.

Parameter	Averaging Period	2001	2002	2003	Threshold			
<u>Class I A</u>	rea Significant	<u>Impact Leve</u>	els for SO ₂ , Pl	<u>M₁₀, and NO₂</u>				
	3-hr (µg/m ³)	0.0981	0.1732	0.1391	1.00			
SO ₂ Class I SIL	24-hr (µg/m ³)	0.0297	0.0254	0.0450	0.20			
	annual (µg/m³)	0.0022	0.0019	0.0018	0.08			
PM., Class I SII	24-hr (µg/m ³)	0.0223	0.0176	0.0327	0.3			
	annual (µg/m³)	0.0013	0.0013	0.0011	0.2			
NO2 Class I SIL	annual (µg/m ³)	0.0035	0.0034	0.0031	0.10			
<u>Cla</u>	ss I Area Sulfu	r and Nitrog	en Deposition	AQRV				
N	annual (kg/ha/yr)	0.0027	0.0024	0.0019	0.01			
S	Annual (kg/ha/yr)	0.0024	0.0023	0.0016	0.01			
	Visibility Impairment AQRV							
Δb _{ext} Method 8 M5	24-hr (%)	1.8	1.48	1.54	Highest			
Δb _{ext} Method 8 M5	24-hr (%)	0.66	0.74	0.69	5% (98th Percentile)			
Number of Days Exceeding 5%		0	0	0	7			

Table 3.2-1: Results of Class I AQRV and PSD Increment Air Quality Analyses – Cape Romain (FWS)

Parameter	Averaging Period	2001	2002	2003	Threshold			
<u>Class I A</u>	rea Significant	<u>Impact Leve</u>	els for SO ₂ , Pl	<u>M₁₀, and NO₂</u>	2			
	3-hr (µg/m ³)	0.1359	0.1456	0.1443	1.00			
SO ₂ Class I SIL	24-hr (µg/m ³)	0.0394	0.0479	0.0458	0.20			
	annual (µg/m³)	0.0009	0.0011	0.0010	0.08			
DM Close I SH	24-hr (µg/m ³)	0.0221	0.0267	0.0235	0.3			
PM_{10} Class I SIL	annual (µg/m ³)	0.0007	0.0008	0.0006	0.2			
NO2 Class I SIL	annual (µg/m ³)	0.0016	0.0020	0.0024	0.10			
<u>Cla</u>	ss I Area Sulfu	r and Nitrog	en Deposition	AQRV				
N	annual (kg/ha/yr)	0.0010	0.0017	0.0012	0.01			
S	Annual (kg/ha/yr)	0.0007	0.0011	0.0007	0.01			
	Visibility Impairment AQRV							
Δb _{ext} Method 8 M5	24-hr (%)	3.19	3.26	2.83	Highest			
Δb _{ext} Method 8 M5	24-hr (%)	0.65	0.62	0.83	5% (98th Percentile)			
Number of Days Exceeding 5%		0	0	0	7			

Table 3.2-2: Results of Class I AQRV and PSD Increment Air Quality Analyses – Okefenokee (FWS)

Parameter	Averaging Period	2001	2002	2003	Threshold				
<u>Class I A</u>	<u>Class I Area Significant Impact Levels for SO₂, PM₁₀, and NO₂</u>								
	3-hr (µg/m ³)	0.1362	0.1501	0.1466	1.00				
SO ₂ Class I SIL	24-hr (µg/m ³)	0.0542	0.0446	0.0521	0.20				
	annual (µg/m³)	0.0015	0.0018	0.0014	0.08				
PM., Class I SII	24-hr (µg/m ³)	0.0311	0.0243	0.0237	0.3				
PM_{10} Class I SIL	annual (µg/m³)	0.0009	0.0011	0.0009	0.2				
NO2 Class I SIL	annual (µg/m ³)	0.0032	0.0040	0.0031	0.10				
<u>Cla</u>	ss I Area Sulfu	r and Nitrog	en Deposition	AQRV					
N	annual (kg/ha/yr)	0.0014	0.0016	0.0011	0.01				
S	Annual (kg/ha/yr)	0.0013	0.0013	0.0009	0.01				
Visibility Impairment AQRV									
Δb _{ext} Method 8 M5	24-hr (%)	2.61	2.39	2.09	Highest				
Δb _{ext} Method 8 M5	24-hr (%)	0.76	0.85	0.92	5% (98th Percentile)				
Number of Days Exceeding 5%		0	0	0	7				

Table 3.2-3: Results of Class I AQRV and PSD Increment Air Quality Analyses – Wolf Island (FWS)

Parameter	Averaging Period	2001	2002	2003	Threshold			
<u>Class I A</u>	rea Significant	Impact Leve	els for SO ₂ , Pl	<u>M₁₀, and NO₂</u>				
	3-hr (µg/m ³)	0.0184	0.0245	0.0387	1.00			
SO ₂ Class I SIL	24-hr (µg/m ³)	0.0047	0.0042	0.0088	0.20			
	annual (µg/m³)	0.0002	0.0002	0.0003	0.08			
DM Class I SH	24-hr (µg/m ³)	0.0037	0.0044	0.0058	0.3			
PM_{10} Class I SIL	annual (µg/m ³)	0.0002	0.0002	0.0002	0.2			
NO2 Class I SIL	annual (µg/m ³)	0.0003	0.0002	0.0003	0.10			
<u>Cla</u>	ss I Area Sulfu	r and Nitrog	en Deposition	AQRV				
N	annual (kg/ha/yr)	0.0010	0.0011	0.0018	0.01			
S	Annual (kg/ha/yr)	0.0007	0.0008	0.0012	0.01			
	Visibility Impairment AQRV							
Δb _{ext} Method 8 M5	24-hr (%)	0.37	0.34	0.53	Highest			
Δb _{ext} Method 8 M5	24-hr (%)	0.27	0.19	0.32	5% (98th Percentile)			
Number of Days Exceeding 5%		0	0	0	7			

Table 3.2-4: Results of Class I AQRV and PSD Increment Air Quality Analyses – Shining Rock (USFS)

4.0 TOXIC IMPACT ASSESSMENT

GA EPD regulates emissions of toxic air pollutants (TAP) through a state-only program governed by the provisions of Georgia Rule 391-1-1-.02(2)(a)3.(ii). This rule gives GA EPD the authority to require emission limitations when necessary to safeguard the public heath, safety, and welfare of Georgia's citizens. Generally, a TAP may be any substance that may have an adverse effect on public heath, excluding any substance that is covered by a state or federal ambient air quality standard. When conducting reviews of air quality permit applications for new or modified sources of TAP, GA EPD uses the procedures contained in the agency's *Guideline for Ambient Pollutant Impacts of Toxic Air Emissions*, revised June 21, 1998.

Pollutants without a state or federal ambient air quality standard (i.e., non-criteria pollutants) that are emitted from the proposed facility include ammonia, methanol, hydrogen fluoride (HF), hydrogen chloride (HCl), and speciated organics from fuel combustion. Prior to proppant formation in the spray dryers, a solution of aqueous ammonia is used to adjust the pH of the kaolin slurry. An additive containing methanol as an impurity is also added prior to proppant formation in order to control the mechanical properties of the slurry. At the high temperatures encountered in the direct-fired rotary kilns, naturally occurring fluorides and chlorides in kaolin are released to the atmosphere as HF and HCl. Speciated organic compounds, the largest of which is hexane, are emitted from combustion of fuel in all fuel burning and fuel combustion equipment.

Each of these non-criteria pollutants is classified as a TAP under GA EPD's guidelines. Generally, any non-criteria pollutant is considered a TAP in Georgia if the pollutant has one or more of the following toxicity-based values:

- US EPA *Integrated Risk Information System* (IRIS) inhalation reference concentration (RfC) or risk based air concentration (RBAC);
- Occupational Safely and Health Administration (OSHA) time-weighted average or "ceiling" permissible exposure limit (PEL) in 29 CFR 1910.1000;
- American Conference of Governmental Industrial Hygienist (ACGIH) timeweighted average, short-term exposure, or "ceiling" threshold limit value (TLV); and
- National Institute of Occupational Safety and Health Standards (NIOSH) timeweighted average, short-term exposure, or "ceiling" recommended exposure limit (REL)

Any of the aforementioned references may be directly used to determine if a pollutant has a toxicity-based threshold value. As an alternative, the most recent material safety data sheet (MSDS) for a pollutant may also be used to determine pollutant toxicity since it is required to be published in Section 8, Exposure Controls/Personnel Protection, of an MSDS. Once a pollutant's toxicity values have been determined, short-term (15-min and 24-hour) and long-term (annual) acceptable ambient concentrations (AAC's) are derived based on the exposure period on which the toxicity values are based and whether or not the pollutant is a known carcinogen. Then, dispersion modeling is conducted to compare

the maximum ground level concentration (MGLC), or highest first-high concentration, to the applicable AAC.

4.1 Acceptable Ambient Concentrations

Since a single pollutant may have toxicity data published in all of the references listed above, the AAC for each TAP is derived based on a priority schedule (in the order in which the references are listed). For pollutants with an RfC or RBAC, a chronic AAC (annual averaging period) is determined. If a pollutant has both an RfC and RBAC, the AAC is based on the more stringent of the two. The RfC provides an estimate of daily inhalation exposure that is likely to be without an appreciable risk of deleterious effects during a 70 year lifetime. The RBAC is an approximation of cancer-causing potential per concentration of air inhaled. For pollutants with an RfC, the AAC is set equal to the RfC. An AAC is obtained from an RBAC by dividing the unit risk by a factor based on the weight-of-evidence classification, e.g., 1:1,000,000 for known carcinogens (class A), 1:100,000 for probable carcinogens (class B), and 1:10,000 for suspected carcinogens (class C).

If both an RfC and RBAC are not available in IRIS, a 24-hour AAC is derived from a time-weighted average OSHA PEL, ACHIG TLV, or NIOSH REL. These exposure limits were developed in terms of the typical duration of occupational exposure (i.e., 8-hours per day, five-days a week or a 40-hour work week). If a TWA value is provided for a given pollutant, the 24-hour average AAC is derived as follows. First, an adjustment factor (i.e., 40 divided by the total weekly emitting hours) is applied to the TWA to account for exposure in excess of occupational duration. This adjustment factor is based on 168 hours per week for continuous operation. Second, the adjusted TWA is divided by a safety factor to account for carcinogenicity in humans: 100 for pollutants that are not known human carcinogens, 300 for pollutants that are known human carcinogens. Additionally, if a TAP has an RfC or RBAC based AAC, then a 24-hour AAC is not required.

If a pollutant also has a short-term exposure or ceiling limit, a 15-minute AAC is derived. These values have been established for pollutants that are acute sensory irritants and are adjusted by a safety factor of 10. No exposure adjustment factor is applied to short-term exposure or ceiling limit values. A 15-minute AAC, if applicable, must be met in addition to an annual average or 24-hour average AAC. Table 4.1-1 summarizes the AAC's derived for each TAP. It should be noted that the annual AAC for HF is not based on an IRIS RfC or RBAC but a chronic REL published by the California Air Resources Board, which was developed in the same manner.²⁸ GA EPD has previously accepted this toxicity value as an acceptable alternate since the US EPA Office of Air Quality Planning and Standards (OAQPS) uses the CARB-derived value when conducting risk assessments for HAP.²⁹

²⁸ Derivation of Toxicity Criteria, Section 6.1, Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments, California Air Resources Board, Office of Environmental Health Hazard Assessment, August 2003.

²⁹ <u>http://www.epa.gov/ttn/atw/toxsource/table1.pdf</u>

7.4 D	Averaging Period						
ТАР	15-min	24-hour	Annual				
	(µg/m ³)	(µg/m ³)	(µg/m ³)				
Hexane (C ₆ H ₁₄)			700 (IRIS RfC)				
Methanol	32,760	625					
(CH ₃ OH)	(ACGIH 250 ppm STEL)	(OSHA 200 ppm TWA)					
Ammonia	2,440		100				
(NH ₃)	(ACGIH 35 ppm STEL)		(IRIS RfC)				
Hydrogen Fluoride	165		14 ¹				
(HF)	(ACGIH 2 ppm STEL)		(CARB Chronic REL)				
Hydrogen Chloride	745		20				
(HCl)	(OSHA 5 ppm Ceiling)		(IRIS RfC)				

Table 4.1-1:	Summary	of Acce	ptable A	mbient	Concentra	tions for	Toxic Air	· Pollutants
--------------	---------	---------	----------	--------	-----------	-----------	-----------	--------------

US EPA has not established an RfC or RBAC for HF, however, the California Air Resources Board (CARB) suggests a $14 \mu g/m^3$ chronic inhalation reference exposure level (REL) which US EPA has adopted; GA EPD has previously accepted this alternate toxicity data as the AAC for the annual time averaging period

4.2 Modeling Methodology

The procedures in GA EPD's toxics guideline, as modified by instructions from GA EPD in the July 27, 2011 Class II modeling protocol approval letter, were used to conduct the toxic impact assessment for emissions of TAP from the Millen facility. In the Class II modeling protocol, CARBO proposed to use ISC3 with rural dispersion coefficients, regulatory default model options, and five-years of meteorological data measured at the Augusta Regional Airport (Bush Field) surface station (20 ft anemometer height) and Athens Bens Epps Airport upper air station for calendar years 1974 through 1978 for the toxic impact assessment. However, since there is terrain immediately surrounding the Millen facility within elevations in excess of the release height of the shortest stack, AERMOD 11103 was used to determine the MGLC for each TAP.³⁰ Because of this model selection, downwash was incorporated into the analysis. Consistent with the proposal for ISC3, the urban modeling option in AERMOD was not used. Additionally, the five years of meteorological data used for the NAAOS and Class II PSD increment air quality analysis were used for the TIA. Based on guidance from GA EPD, a concatenated five-year meteorological data set was used to assess the 15-min, 24-hour, and annual AAC.³¹ In this way, only a single model run was required for each TAP.

³⁰ The natural gas-fired boilers (BLR1, BLR2, BLR3 and BLR4) are the shortest stacks from which TAP (hexane) are released to the atmosphere. The height of release above mean sea level for each boiler is 244 feet (29 feet above the grade elevation of the plant processing area). The highest terrain elevation within 2,500 meters of the facility, the extent of 100 m spaced receptors used for the TIA, is over 280 feet (414,700 meters east, 3,625,500 meters north). The release height for all other stacks emitting TAP (spray dryers and direct-fired rotary kilns) are above this terrain elevation. However, since AERMOD was used for hexane because of the stack height of the boilers, AERMOD was used to estimate the MGLC for all TAP to provide consistency in model selection for the analysis.

³¹ For TAP with an annual AAC based on an RfC (or CARB chronic REL) or RBAC, PERIOD is used, in lieu of ANNUAL, when specifying the pollutant averaging period in the control options pathway.

4.3 Determination of Toxic Air Pollutant Impact

In order to determine the MGLC for each TAP, AERMOD was used to estimate the highest first-high air quality impacts from each TAP within the 100 meter spaced portion of the receptor grid used for the preliminary impact assessment (i.e., out to a distance of 2.5 km). Potential emissions of each TAP modeled and source parameters are summarized in Section 1.1.3.1 above. Please refer to Attachment B of Volume I for detailed emission calculations. For TAP with an AAC based on a 15-minute short-term exposure or ceiling limit, the 1-hour MGLC was multiplied by a conversion factor of 1.32 per GA EPD's toxic guideline. Table 4.3-1 summarizes the results of the toxic impact assessment. The results show that the maximum ambient impact all TAP are well below their respective AAC's. Therefore, the Millen facility, as proposed, will be in compliance with Georgia's state-only toxics program with additional margin on top of the safety factors built into the derivation of the AAC's.

			Maxim					
TAP	Avg. Period	ACC	UTM NAD83 East (m) North (m)		Conc. (µg/m ³)	Date	Percent of AAC	AAC Exceeded
Hexane	Annual	700	415,430.60	3,625,910.40	0.04	PERIOD	<0.01%	No
Methanol	15-min	32,760	415,100.00	3,625,700.00	24.64	10070220	0.08%	No
Wiethanoi	24-hr	625	415,049.80	3,625,513.40	9.18	08121424	1.47%	No
Ammonia	15-min	2,440	415,100.00	3,625,700.00	299.65	10070220	12.28%	No
Allinoina	Annual	100	415,176.70	3,625,645.70	10.87	PERIOD	10.87%	No
ЦЕ	15-min	165	416,700.00	3,626,800.00	19.81	10062607	12.01%	No
HF	Annual	14	416,300.00	3,625,900.00	0.49	PERIOD	3.50%	No
HCI	15-min	745	416,700.00	3,626,800.00	4.53	10062607	0.61%	No
IICI	Annual	20	416,300.00	3,625,900.00	0.11	PERIOD	0.55%	No

Table 4.3-1: Toxic Impact Assessment Modeling Results

5.0 ELECTRONIC FILES

The DVD included in Attachment H to this Volume contains the electronic files associated with all air quality analyses described in this application. For reference, Table 5-1 describes the location of the electronic files within the various folders contained on the DVD.

Main Folder	Subfolder	Subfolder(s)	Subfolder(s)	Subfolder(s)	Files
Electronic Files					South Carolina PSD inventory spreadsheets for Aiken (Aik_0080.xls), Allendale (All_0160.xls), Barnwell (Bar_0300.xls), and Hampton (Ham_1280.xls)
Electronic Files					Excel workbook for Q/D screening, refined PM _{2.5} screening, NAAQS and PSD increment inventories (i.e. Attachment G)
					Screening and Inventories.xls"
Electronic Files					Excel workbook for project source emission rates and stack parameters
					"Emissions and Stack Parameters.xls"
Electronic Files					Excel workbook for project source fugitive emissions calculations
					"Paved Road Fugitive Dust Road Calculations.xls"
Electronic Files	AERMAP 11103				Excel workbook contains all receptor grids for each air quality analysis, including 100 m resolution grids "Project Receptors.xls"
Electronic	AERMAP	Receptor Grids			AERMAP files for full significance grid
Files	11103				 Fenceline receptors spaced no further than 100 meters apart; 100 meter spaced receptors out to 2.5 km; 250 meter spaced receptors out to 5 km; and 500 meter spaced receptors out to 50 km
Electronic Files	AERMAP 11103	NO2 ANN SO2 3HR 24HR SIA RESOLVE			AERMAP files to resolve annual NO ₂ and 3-hr, 24-hour and annual SO ₂ SIA's to 100 m spacing
Electronic Files	AERMAP 11103	PM10 24HR SIA RESOLVE			AERMAP files to resolve 24-hour PM ₁₀ SIA to 100 m spacing
Electronic Files	AERMAP 11103	PM25 24HR SIA RESOLVE			AERMAP files to resolve 24-hour PM _{2.5} SIA to 100 m spacing

Table 5-1: Location of Electronic Files

Main					
Folder	Subfolder	Subfolder(s)	Subfolder(s)	Subfolder(s)	Files
Electronic Files	AERMAP 11103	NO2 1HR SIG MAX RESOLVE			AERMAP files to resolve maximum 1- hour NO ₂ significant impact to 100 m spacing
Electronic Files	AERMAP 11103	100m 6.5km for Full Impact			AERMAP files for 100 m spaced receptors out to distance of furthest SIA (6.5 km annual NO ₂). 100 m spaced receptor grids for PM ₁₀ (3.4 km), SO ₂ (4.0 km) and PM _{2.5} (4.4 km) were extracted from this receptor set
Electronic Files	AERMAP 11103	NO2 1HR NAAQS RESOLVE			AERMAP files for 1-hour NO ₂ NAAQS culpability analysis
Electronic Files	AERMET 11059				Excel workbook used to determine fastest wind speed to limit 1-hour NO ₂ and SO ₂ NAAQS screening areas "Fastest Wind Speed.xls"
Electronic Files	AERMET 11059	AIRPORT	DanielFld		Preprocessed AERMET surface and profile files provided by GA EPD for August Daniel Field surface characteristics
Electronic Files	AERMET 11059	PROJECT	CARBOj		Preprocessed AERMET surface and profile files provided by GA EPD for project site surface characteristics
Electronic Files	AERMOD 11103	INCREMENTS	NO2 ANN AIRPORT PM10 24HR ANN AIRPORT SO2 3HR 24HR ANN AIRPORT		All AERMOD input and output files for PSD increment analysis

Main Folder	Subfolder	Subfolder(s)	Subfolder(s)	Subfolder(s)	Files
Electronic Files	AERMOD 11103	NAAQS	NO2 1HR AIRPORT		All AERMOD input and output files for NAAQS analysis
			NO2 ANN AIRPORT		
			PM10 24HR AIRPORT		
			PM25 24HR AIRPORT		
			PM25 ANN AIRPORT		
			SO2 1HR AIRPORT		
			SO2 3HR AIRPORT		
			SO2 24HR AIRPORT		
			SO2 ANN AIRPORT		
Electronic Files	AERMOD 11103	PRELIM IMPACT	AIRPORT	CO 1HR 8HR	All AERMOD input and output files for preliminary impact assessments using
				NO2 1HR	airport surface characteristics
				PM10 24HR ANN	
				PM25 24HR NAAQS FORM	
				PM25 24HR SMC	
				SO2 1HR	
				SO2 3HR 24HR ANN	

Main Folder	Subfolder	Subfolder(s)	Subfolder(s)	Subfolder(s)	Files
Electronic Files	AERMOD 11103	PRELIM IMPACT	PROJECT	CO 1HR 8HR NO2 1HR NO2 1ANN PM10 24HR ANN PM25 ANN NAAQS FORM SO2 1HR SO2 3HR 24HR	All AERMOD input and output files for preliminary impact assessments using project surface characteristics PM10 24HR ANN subfolders contains separate folders for regulator default and non-default (FLAT ELEV) modeling runs
Electronic Files	AERMOD 11103	PM25 24HR ANN NAAQS INVENORY SCREENING	AIRPORT PROJECT		All AERMOD input and output files for refined PM2.5 screening (Table 2 Attachment G) using both set of meteorological data
Electronic Files	AERMOD 11103	TOXICS			All AERMOD input and output files for toxic impact assessment
Electronic Files	AERSURFA CE	CARBO NLCD92			Excel workbook for surface characteristics comparison of airport and project sites "Surface Characteristics Comparison.xls"
Electronic Files	AERSURFA CE	CARBO NLCD92	AVG WET DRY		All AERSURFACE input and output files for all surface moisture conditions for project site Also contains "19161062.tif" and "19161062.zip" which are the NLCD92 data obtained from the USGS seamless server
Electronic Files	AERSURFA CE	KDNL NLCD92			AERSURFACE files for all surface moisture conditions provided by GA EPD for the airport site location
Electronic Files	BPIPPRM 04274				BPIPPRM input and output files
Electronic Files	CALPUFF	2001 2002 2003			Each folder contains the CALPUFF and POSTUTIL input files to generate files of concentrations and deposition to process through CALPOST

I

Main Folder	Subfolder	Subfolder(s)	Subfolder(s)	Subfolder(s)	Files
Electronic Files	CALPUFF	2001	METHOD8		CALPOST input and output files for AQRV's and Class I PSD increments for
1 1105		2002	N Deposition		all Class I areas evaluated
		2003	S Deposition		
			PM10		
			NO2		
			SO2		
Electronic Files	NED	NED_69308043			1 arc-sec NED data used to process elevations in AERMAP
					"NED_69308043.tif"
Electronic Files	03				Ozone database used with PVMRM for 1-hour NO ₂ NAAQS
					"5YR 2006-2010 OZONEFIL. <u>v2.</u> csv"

Volume III, Attachment A –

Class II Dispersion Modeling Protocol

SMITH ALDRIDGE, INC.

Environmental Consultants

July 19, 2011

Peter Courtney Georgia Environmental Protection Division Air Protection Branch 4244 International Parkway, Suite 120 Atlanta, Georgia 30354

RE: Proposed Dispersion Modeling Protocol Class II PSD Air Quality and Additional Impacts Analyses CARBO Ceramics, Inc. Greenfield Millen, Jenkins County, Georgia Facility

Dear Mr. Courtney,

On behalf of our client, CARBO Ceramics, Inc. ("CARBO"), please find the enclosed proposed dispersion modeling protocol for a planned greenfield proppant manufacturing facility in Millen, Jenkins County, Georgia. The facility will be a major stationary source with respect to PSD review and the enclosed protocol proposes the methods and procedures to be followed in conducting the source impact, air quality and additional impact analyses for areas designated as Class II for the purposes of PSD. The protocol addresses actions taken by the United States Environmental Protection Agency (US EPA) to strengthen the primary NAAOS for NO_2 and SO_2 to include new 1-hour standards, to add PSD increments, significant impact levels, and significant monitoring concentrations for PM2.5, to end the use of PM₁₀ as surrogate for PM_{2.5} and to account for condensable particulate matter in PSD permit emission limitations. Additionally, this protocol addresses the processing of meteorological model input data to be contemporaneous with 1-hour monitored concentrations of ozone proposed to be used with alternative modeling techniques for estimating ambient impacts of NO₂. A separate modeling protocol requesting approval to use alternative modeling techniques for NO₂ is being submitted to US EPA concurrent with this protocol. If you have any questions, please do not hesitate to contact me by phone at (404) 255-0928 x117 or by e-mail at jbandzul@smithaldridge.com. We look forward to your review and comment.

Sincerely,

Jon Bandzul, Principal Smith Aldridge, Inc.

enc: Proposed Dispersion Modeling Protocol w/Electronic Files

cc: Jason Goodwin – CARBO Ceramics, Inc. Craig Smith – Smith Aldridge, Inc.

> MAILING ADDRESS: P.O. BOX 420485 • ATLANTA, GEORGIA 30342 6000 LAKE FORREST DRIVE • SUITE 385 • ATLANTA, GEORGIA 30328 OFFICE: 404.255.0928 • FAX: 404.255.0948 • WWW.SMITHALDRIDGE.COM

CARBO Ceramics

Millen Proppant Manufacturing Plant

(Jenkins County)

Proposed Air Dispersion Modeling Protocol

for

Class II Area PSD Air Quality and Additional Impact Analyses

July 2011

Prepared by: SMITH ALDRIDGE, INC.

> Environmental Consultants Atlanta, Georgia

TABLE OF CONTENTS

Page

1.0	INTRO	DDUCTION	1
2.0	PROJE	ECT DESCRIPTION	3
2.1	Projec	t, County, and Regional Location	3
	2.1.1	State and National Parks	5
	2.1.2	Local, Regional, International Airports	6
	2.1.3	Federal Mandatory Class I Areas	6
2.2	Projec	t Emissions	7
	2.2.1	Potential Emissions of the New Major Stationary Source	7
	2.2.2	Class I Area Screening	8
3.0	AIR Q	UALITY ANALYSIS FOR NAAQS AND PSD INCREMENTS	.10
	3.1.1	Preliminary Impact Analysis	10
	3.1.2	Ambient Monitoring Exemption Analysis	12
	3.1.3	Regional PSD Inventory Development	13
		3.1.3.1 Estimating PM _{2.5} Emission Rates for Existing and Proposed	
		New Sources	15
		3.1.3.2 Intermittent Emissions	16
	3.1.4	NAAQS Analysis	17
	3.1.5	Background Pollutant Concentrations	18
	3.1.6	PSD Increment Analysis	21
	3.1.7	NAAQS or PSD Increment Exceedance Resolution	22
	3.1.8	Ozone Impact Analysis	23
4.0	ADDI	FIONAL IMPACT ANALYSES	.24
	4.1.1	Soils and Vegetation	24
	4.1.2	Class II Visibility	24
5.0	TOXIO	CIMPACT ANALYSES	.26
	5.1.1	Acceptable Ambient Concentrations	26
6.0	AIR D	ISPERSION MODELING METHODOLOGY	.28
6.1	Model	l Selection and Model Options	.28
	6.1.1	Air Quality Analyses for the SIL's, SMC's, NAAQS, PSD	
		Increments and Soils and Vegetation Impairment	28
	6.1.2	Class II Area Visibility Impairment Analysis	29
	6.1.3	Toxic Impact Analysis	29
6.2	Disper	rsion Coefficients	.30
	6.2.1	Land Cover and Land Use	30
6.3	Meteo	rological Data	.31
	6.3.1	Meteorological Station Selection	31
	6.3.2	Surface Characteristics	33
	6.3.3	AERMET Processing	39
		6.3.3.1 1-min ASOS Winds Processing in AERMINUTE	40
		6.3.3.2 Stage 1 Extracting NWS Data and Quality Assessment	40
		6.3.3.3 Stage 2 Merging Surface and Upper Air Data	41
		6.3.3.4 Stage 3 Creating AERMOD Boundary Layer Parameters	41
	6.3.4	Meteorological Dataset Completeness	42
	6.3.5	Processing ASOS Station as "Onsite" with NWS Data as "Backup"	46

TABLE OF CONTENTS

	6.3.6 Determination of Data Representativeness	48
6.4	Good Engineering Practice Stack Height and Building Downwash	49
6.5	Coordinate System	49
6.6	Receptors	49
6.7	Elevation Processing	50

LIST OF TABLES

Table 2.1-1	Geographic and NAD83 UTM Coordinates for Proposed Project
	Site
Table 2.1.1-1	Proximity of Project Site to State and National Parks
Table 2.1.2-1	Proximity to Local, Regional, International Airports
Table 2.1.3-1	Proximity to Federal Mandatory Class I Areas7
Table 2.2.1-1	Potential Emissions of Criteria, Other Regulated NSR, Toxic and
	Hazardous Air Pollutants of Proposed Modification8
Table 2.2.2 - 1	Class I Area Q/D Screening Values9
Table 3.1.1 - 1	Significant Impact Levels (SIL's) 11
Table 3.1.2 - 1	Significant Monitoring Concentrations (SMC's)12
Table 3.1.4 - 1	National Ambient Air Quality Standards (NAAQS)17
Table 3.1.5-1	Proposed Background Air Quality Concentrations for NAAQS
	Air Quality Analysis
Table 3.1.6-1	Class II PSD Increments
Table 5.1.1-1	Acceptable Ambient Concentrations for Toxic Air Pollutants26
Table 6.3.1-1	Inventory of GA NWS ASOS and Southeast U.S. NOAA/ESRL
	RAOBS Stations
Table 6.3.2-1	Seasonal Albedo, Bowen, and Surface Roughness Length Values
	for Macon NWS Surface Station and Project Site
Table 6.3.2-2	Absolute and Relative Percent Difference of Seasonal Surface
	Characteristic Values for Macon NWS ASOS Station and Project
	Site
Table 6.3.3 - 1	MCN NWS ASOS Surface and FFC Upper Air Station
	Identifying Information for AERMET Processing
Table 6.3.3.4-1	Upper, Lower, and Middle Percentile Annual Precipitation (in.)
	for Macon NWS Surface Station, 1971-2000
Table 6.3.4-1	Calendar Year 2005 Meteorological Dataset Completeness
Table 6.3.4-2	Calendar Year 2006 Meteorological Dataset Completeness
Table 6.3.4-3	Calendar Year 2007 Meteorological Dataset Completeness
Table 6.3.4-4	Calendar Year 2008 Meteorological Dataset Completeness
Table 6.3.4-5	Calendar Year 2009 Meteorological Dataset Completeness
Table 6.3.5-1	WRB NWS Surface Station Identifying Information for AERMET
	Processing
Table 6.3.5-2	Calendar Year 2006 Meteorological Dataset Completeness using
	WRB as "Backup" for MCN NWS ASOS "Onsite"

SMITH ALDRIGDE, INC.

Page

TABLE OF CONTENTS

Page

LIST OF FIGURES

Figure 2-1	Profile	View	of	Typical	CARBO	Ceramics	Proppant
-	Manufao	cturing l	Proce	SS	•••••		
Figure 2.1-1	Propose	d Projec	t Loc	ation; Mil	len, Jenkin	s County, G	eorgia4
Figure 6.2.1-1	USGS N	JLCD92	Lan	d Use Su	rounding	the CARBC) Ceramics
	Project S	Site – 3k	tm Ra	adius			
Figure 6.3.2-1	USGS N	LCD92	Land	Use Surro	ounding th	e Macon NV	VS Surface
	Station -	– 1km R	adius	s (12 30-de	gree sector	rs)	
Figure 6.3.2-2	USGS N	JLCD92	Lan	d Use Sui	rounding	the CARBC) Ceramics
	Project S	Site – 1k	tm Ra	adius (12 3	0-degree s	ectors)	
Figure 6.7-1	Extent o	f Nation	nal El	evation Da	ata Set Don	nain	51

LIST OF ATTACHMENTS

Attachment A Electronic Files

1.0 INTRODUCTION

CARBO Ceramics, Inc. ("CARBO") manufactures ceramic pellets, or proppants, from nonmetallic minerals for use primarily in the oil and natural gas production industries. CARBO is proposing to construct a new processing plant, approximately 6 km southeast of Millen, Georgia at the intersection of GA State Route 17 and Clayton Road, in Jenkins County. The proposed plant will be a four-line, wet processing facility, similar to its Toomsboro plant in Wilkinson County, Georgia, where ceramic proppants are manufactured from kaolin clay from a slurry which is pelletized in spray dryers and later calcined in direct-fired rotary kilns. In addition to slurry preparation, spray drying and calcining, the processing lines each consist of associated materials handling and storage, screening, and shipping operations.

The construction of the proposed new processing facility will be a subject to PSD preconstruction review since the facility will be a major stationary source and potential emissions of NO_x , SO_2 , CO, VOC, PM, PM_{10} , $PM_{2.5}$, and CO_2e are greater than the significant emission rate thresholds for each pollutant. As part of PSD review, CARBO will be required to conduct an ambient air quality analysis to demonstrate that potential emissions from the proposed major stationary source, and all applicable emissions increases and decreases from other existing and proposed new sources, will not cause or contribute to a violation of any applicable national ambient air quality standard (NAAQS) or PSD increment effective at the time of permit issuance. CARBO will also be required to conduct an assessment of ambient air quality in the area that the proposed source would affect and an additional impact analysis to assess the impairment to visibility, soils, and vegetation that would occur as a result of the modification.

The Georgia Environmental Protection Division (GA EPD) Data and Modeling Unit (DMU) recommends in its modeling guidance that, prior to significant modeling effort, a modeling protocol be submitted by the applicant for review and comment by the agency on the proposed modeling techniques (GA EPD 2006). CARBO is submitting this modeling protocol in accordance with this recommendation. This protocol is the "Class II protocol" and proposes the methods and procedures to be followed in conducting the source impact, air quality and additional impact analyses for areas designated as Class II for the purposes of PSD review and addresses actions taken by the United States Environmental Protection Agency (US EPA) to strengthen the primary NAAQS for NO₂ and SO₂ to include new 1-hour standards, to add PSD increments, significant impact levels, and significant monitoring concentrations for $PM_{2.5}$, to end the use of PM_{10} as surrogate for $PM_{2.5}$ and to account for condensable particulate matter in PSD permit emission limitations. Additionally, this protocol addresses the processing of meteorological model input data to be contemporaneous with 1-hour monitored concentrations of ozone (O_3) proposed to be used with alternative modeling techniques for estimating ambient impacts of NO₂. The ozone database and contemporaneous meteorology are proposed to be used with the Plume Volume Molar Ratio Method (PVMRM) which may be used, on a case-by-case basis,

to limit NO_2 formation based on the amount of ozone available within the volume of a single or merged plumes.

With regard to areas designated as Class I, this protocol identifies the Class I areas that the proposed modification may affect. A "Class I protocol" will be submitted to GA EPD and the appropriate Federal Land Managers shortly after the date of this protocol to address the methods and procedures to be followed in conducting additional PSD review for protection of the Class I increments and air quality related values.
2.0 PROJECT DESCRIPTION

The proposed new facility will essentially be identical to the existing Toomsboro facility in terms of process nature, production capacity, and process configurations. Generally, ceramic proppants are made by grinding or dispersing ore into a fine powder, combining the powder into small pellets and firing the pellets in a rotary kiln. Similar to the Toomsboro site, this will be accomplished using a "wet" process which begins with processing kaolin. The kaolin is formed into slurry with the addition of water, dispersants and pH-adjusting reagent to control pellet formation and the mechanical properties of the slurry. After the slurry is formed, it is pelletized in spray dryers where methanol, ammonia and excess water from the slurry are driven off. The pellets are then fired, or "sintered", in direct-fired rotary kilns to remove combined (chemically bound) water. The fired pellets are then conveyed from the kiln product systems to storage silos ready for shipment via railcars. A profile view of the proppant product flow (from left-to-right) in a typical proppant manufacturing line is shown in Figure 2.1.

Air pollution control equipment associated with the proposed new facility will largely be determined by the BACT and case-by-case MACT proposals in the PSD permit application, which will reflect the most recent control technology determinations demonstrated in practice (considering other factors beyond the scope of the Class II protocol) and may differ from those of the existing Toomsboro facility.

2.1 Project, County, and Regional Location

The PSD program applies to new and modified major stationary sources proposing to located in areas meeting the NAAQS ("attainment" areas) and in areas for which there is insufficient data to designate an area as attainment or nonattainment ("unclassifiable" areas). The proposed project site is located in the eastern-central part of Georgia in Jenkins County which is currently designated as attainment or unclassifiable for all NAAQS. Table 2.1-1 lists the geographic coordinates of the facility and Figure 2.1-1 shows the project location.

Table 2.1-1	Geographic and NAD83 UTM Coordinates for Proposed Project Site					
UTM Zon	UTM East (m) e (NAD83)	UTM North (m) (NAD83)	Latitude	Longitude		
17	415,753	3,625,754	32° 45' 59"N	81° 53' 58"W		

Figure 2.1-1 Proposed Project Location; Millen, Jenkins County, Georgia

Jenkins is located in the Vidalia Upland District of the Upper Coastal Plain. The county is situated in the Ogeechee river basin and is bounded by Bulloch County to the south, Emanuel County to the west, Burke County to the north and by the Screven County to the east. Elevations within 50 km of the county range from 25 feet (8 m) above mean sea level (MSL) along the Savannah River to 400 feet (122 m) in southwest Burke. Elevations within the proposed project site range from 165 feet (50 m) along the property boundary alongside GA S.R. 17 to 280 feet (85 m) along the northwest property boundary.

All counties adjoining Jenkins and within 50 km of the project site are also designated as attainment or unclassifiable for all NAAQS. The boundary of the nearest nonattainment area, Bibb County, is located approximately 150 km due west of the project site (through Twiggs) approximately 3 km north of Dry Branch. Bibb and portions of Monroe County were designated nonattainment for the 1997 annual $PM_{2.5}$ NAAQS on April 5, 2005. Previously, portions of Bibb and Monroe were designated nonattainment for the 1997 8-hour O₃ NAAQS on April 30, 2004, but were redesignated to attainment on October 19, 2007 forming the Macon ozone maintenance area. However, on March 12, 2009, GA EPD recommended designating Bibb and portions of Monroe nonattainment for the 2008 revised 8-hour O₃ NAAQS.

As mentioned in the introduction and discussed in further detail in Section 4.1.2 of this protocol, PSD review includes an assessment of visibility impairment that would occur as a result of the modification. For Class II areas, this assessment is performed for certain state and national parks, and historic sites and local, regional and international airports located within a project's significant impact area for visibility affecting pollutants such as NO_x and PM. Sections 2.1.1 and 2.1.2 list and provide relevant information for such areas that may be included in the Class II visibility impairment analysis. The same is provided for Class I areas located with 300 km of CARBO in Section 2.1.3.

2.1.1 <u>State and National Parks</u>

Georgia is home to 63 state and 13 national parks, monuments, and historic sites, two of which are located within approximately 50 km of the project site: the Magnolia Springs and Georgia L. Smith State Parks. Magnolia Springs is located 8 km north of Millen in Jenkins County and covers 1,070 acres, including the 28-acre Magnolia Springs Lake. Georgia L. Smith is located 20 km east of Swainsboro in Emanuel County and is best known for the refurbished Parrish Mill and Pond, a combination gristmill, saw mill, covered bridge and dam built in 1880. Table 2.1.1-1 provides summary of the proximity of the proposed project site to these state parks.

State/National Site	County	Distance (km)	Heading (from north)
Magnolia Springs	Jenkins	13.3	330°
Georgia L. Smith	Emanuel	31.8	220°

Table 0 1 1 1	Duggingitz	of Ducient Cite	to Ctata an	d National Darka
1 abie 2.1.1-1	Proximity		e to State an	a mational Parks

2.1.2 Local, Regional, International Airports

There are six airports located within approximately 50 km of the project site: Burke County Airport (BXG) in Burke County (3 miles S of Waynesboro), Emanuel County Airport (SBO) in Emanuel County (2 miles NW of Swainsboro), Metter Municipal Airport (MHP) in Candler County (2 miles S of Metter), Millen Airport (2J5) in Jenkins County (5 miles N of Millen near Magnolia Springs), Plantation Airpark (JYL) in Screven County (7 miles S of Sylvania), and Statesboro-Bulloch County Airport (TBR) in Bulloch County (3 miles NE of Statesboro). Table 2.1.2-1 provides summary of the proximity of the proposed project site to these airports.

Airport	County	Distance (km)	Heading (from north)
Burke County Airport			
(BXG)	Burke	32.1	343°
Emanuel County Airport			
(SBO)	Emanuel	47.5	249°
Metter Municipal Airport			
(MHP)	Candler	46.6	200°
Millen Airport			
(2J5)	Jenkins	15.3	336°
Plantation Airpark			
(JYL)	Screven	31.4	116°
Statesboro-Bulloch			
County Airport (TBR)	Bulloch	34.3	153°

Table 2.1.2-1 Proximity to Local, Regional, International Airports

Federal Mandatory Class I Areas 2.1.3

Federal mandatory Class I areas are those areas of special national or regional scenic, recreational, natural or historic value where the need to prevent deterioration of air quality is the greatest. These Class I areas include our nation's pristine national parks and wilderness areas and are managed by officials of the Forest Service (FS), Fish & Wildlife Service (FWS), and National Park Service (NPS) through the United States Departments of Interior and Agriculture. There are four Class I areas located within 300 km of the

proposed project site: the Shining Rock wilderness area (FS) and the Cape Romain, Okefenokee and Wolf Island national wildlife refuges (FWS). Table 2.1.3-1 provides summary of the proximity of the proposed project site to these Class I areas.

Class I Area	FLM	State	Distance (km)	Heading (from north)
Cape Romain	FWS	SC	210.2	86°
Shining Rock	FS	NC	296.7	344°
Okefenokee	FWS	GA	191.9	191°
Wolf Island	FWS	GA	164.1	161°

Table 2.1.3-1 Proximity to Federal Mandatory Class I Areas

2.2 Project Emissions

2.2.1 Potential Emissions of the New Major Stationary Source

The construction of the proposed new facility will trigger PSD review for emissions of NO_x , SO_2 , CO, VOC, PM, PM_{10} , $PM_{2.5}$, and $CO_{2}e$. Table 2.2.1-1 below summarizes potential emissions of criteria, other regulated new source review (NSR) pollutants including greenhouse gases (GHG's), largest single and combined hazardous air pollutants (HAP) and select toxic air pollutants (TAP) of the modification. Until such time that the BACT, case-by-case MACT control technology determinations, and air quality analyses are carried out, CARBO is estimating potential emissions of the facility based on emission limitations for similar process equipment contained in the December 2009 PSD permit and other calculations relied upon in the PSD application (number 18293 dated August 19, 2008 and revised on February 9, 2009 and on August 14, 2009) for the Toomsboro facility.

Criteria	a Air Poll	utants					
NOx	SO2	CO	\mathbf{VOC}^*	\mathbf{PM}^{**}	PM_{10} **	PM _{2.5} **	Pb
(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
2,446	618	1,046	67	249	249	76	<0.6
<u>Other I</u>	Regulated	NSR, Toxic	and Hazardo	<u>us Air Polluta</u>	<u>ints</u>		
F	H ₂ SO ₄	Hexane (C6H14)	Ammonia (NH₃)	Methanol (CH₃OH)	HCl	HF	All HAP
(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
<3	<7	5	1,350	40	35	152	232
<u>Greenhouse Gases (GHG)</u>							
C	CO ₂	N ₂ O	CH4	CO ₂ e			
(t	py)	(tpy)	(tpy)	(tpy)			
395	5,376	28	8	404,308			

Table 2.2.1-1Potential Emissions of Criteria, Other Regulated NSR, Toxic and
Hazardous Air Pollutants of Proposed Modification

* Includes emissions of methanol

Since the facility does not belong to one of the 28 source categories listed in 40 CFR 52.21(b)(1)(iii), an estimate of fugitive particulate matter emissions are not included for the purposes of PSD applicability.

On October 20, 2010, US EPA amended the PSD regulations to add increments, significant impact levels, and significant monitoring concentrations for $PM_{2.5}$, thus making it possible for states to implement NSR requirements for $PM_{2.5}$ without using PM_{10} as a surrogate (US EPA 2010f). Additionally, beginning January 1, 2011, the condensable portion of PM must be accounted for in enforceable emission limitations in PSD permits. In this regard, all emission rates modeled for PM_{10} and $PM_{2.5}$ are total PM (i.e., filterable plus condensable).

2.2.2 <u>Class I Area Screening</u>

When emissions from a new major stationary source may affect a Class I area, PSD review requires an applicant to demonstrate that the source would have no adverse impact on any air quality related value (AQRV). AQRV's are those attributes of a Class I area where deterioration of air quality may diminish the area's national significance, impair the structure or functioning of an ecosystem, or impair the quality of the visitor experience. The meaning of the term "may affect" is interpreted by US EPA policy to mean new or modified major sources which propose to locate within 100 km of a Class I area. However, if a large project located beyond 100 km from a Class I area is of such a size that the reviewing agency or Federal Land Manager (FLM) is concerned about the project's potential impacts, the applicant may be asked to perform a Class I area increment or AQRV analysis (US EPA 1990).

For those sources with a Q/D screening value greater than 10, where "Q" is the sum of NO_x , SO_2 , all forms of PM, including sulfuric acid mist (H_2SO_4), and "D" is the distance from the source to each Class I Area, a Class I area increment and AQRV analysis is required (NPS 2010). Table 2.2.2-1 lists the estimated Q/D screening values for the proposed new processing lines for each Class I area within 300 km.

Class I Area	Distance, D (km)	Q/D*	Agency	Agency Contact		
<u>National Wildlife Refuges</u>						
Cape Romain	210.2	15.76	United States Department of Interior	Catherine Collins U.S. Fish and Wildlife Service Air Quality Branch 7222 W. Jefferson Avenue		
Okefenokee	191.9	17.26	Fish & Wildlife	Suite 375		
Wolf Island	164.1	20.19	Service (FWS)	Lakewood, CO 80235-2034 (303) 914-3807 <u>Catherine Collins@fws.gov</u>		
<u>Wilderness Areas</u>						
Shining Rock	296.7	11.17	United States Department of Agriculture Forest Service (FS)	Bill Jackson Air Resource Specialist USDA Forest Service 160A Zillicoa Street Asheville, NC 28801 (828) 257-4815 <u>bjackson02@fs.fed.us</u>		

Table 2.2.2-1 Class I Area Q/D Screening Values

 $Q = NO_x + SO_2 + all \text{ forms of } PM = 3,313 \text{ tpy}$

The proposed project site is located well beyond 100 km from the nearest Class I Area (164.1 km to Wolf Island) but has an estimated Q/D screening value greater than 10 for each Class I area within 300 km. Based on this, the FLM's for the Class I areas listed may be concerned about potential emissions from the proposed facility based on the previous BACT determinations. In this regard, notification will be provided to the FLM's and a Class I modeling protocol will be prepared to delineate proposed procedures that will be used to determine whether potential emissions from the facility will cause or contribute to a violation of any Class I area PSD increment or adversely affect any applicable AQRV. The notification and protocol will be prepared and submitted shortly after the date of this Class II protocol.

3.0 AIR QUALITY ANALYSIS FOR NAAQS AND PSD INCREMENTS

As part of the PSD application, CARBO will conduct an air quality analysis to determine the ambient impacts associated with the construction and operation of the facility. The main purpose of the analyses will be to demonstrate that potential emissions from the project, and all applicable emissions increases and decreases from other existing and proposed new sources, will not cause or contribute to a violation of any applicable NAAQS or PSD increment. As of the date of this protocol, NAAQS exist for NO₂, SO₂, CO, PM₁₀, PM_{2.5}, and Pb and PSD increments exist for NO₂, SO₂, PM₁₀, and PM_{2.5}. The procedures used to conduct the air quality analysis will generally conform to those described by US EPA in their PSD and nonattainment NSR permitting guidance (US EPA 1990).

CARBO will use a two-tiered approach to dispersion modeling for the NAAQS and PSD increment analysis. Initially, only potential emissions, including quantifiable fugitive emissions, for each pollutant with a NAAQS and subject to PSD review will be modeled to determine if a significant impact is predicted to occur. If no significant impact is predicted for a pollutant for all time averaging periods, the impacts will be considered *de minimis* and no further refined modeling will be conducted. However, if a significant ambient impact is predicted to occur for a pollutant, a full impact NAAQS and PSD increment analysis will be conducted for each applicable time averaging period considering emissions increases and decreases from existing and proposed new sources, residential, commercial, and industrial growth associated with the project, and background pollutant concentrations.

3.1.1 Preliminary Impact Analysis

In the first step of the air quality analysis, CARBO will determine if a significant impact is predicted to occur by comparing results from initial dispersion modeling for each pollutant to the applicable significant impact levels (SIL's) for each averaging period. SIL's are used in the PSD program as a screening tool to identify the level at which a project's emission increase may be considered de minimis, i.e., will not "cause or contribute" to a violation of a NAAQS or PSD increment. SIL's are also used to define the geographical extent of the significant impact area (SIA) within which the full impact NAAOS and PSD increment air quality analysis must be carried out. US EPA has established SIL's for the annual time averaging period for NO_2 , the 3-hour, 24-hour and annual time averaging periods for SO₂, the 1-hour and 8-hour time averaging periods for CO and the 24-hour and annual time averaging periods for PM₁₀ and PM_{2.5}. Additionally, US EPA has issued guidance on the use of interim SIL's for the 1-hour NO₂ and SO₂ NAAQS until a SIL for each is promulgated through rulemaking (US EPA 2010c, 2010e). For both the 1-hour NO₂ and SO₂ NAAQS, EPA recommends using a SIL with a value of 4% of the NAAQS – 4 ppb for NO_2 and 3 ppb for SO_2 . Table 3.3.3-1 summarizes the SIL's that will be used in the preliminary impact analysis.

POLLUTANT	AVERAGING PERIOD				
	1-hour (μg/m³)	3-hour (µg/m³)	8-hour (µg/m³)	24-hour (µg/m³)	Annual (µg/m³)
NO ₂	8*				1
SO_2	8*	25		5	1
СО	2,000		500		
PM_{10}				5	1
PM _{2.5}				1.2	0.3
O_3^{\dagger}					

Table 3.1.1-1	Significant Impact Levels	(SIL's)
		· /

⁶ Based on 4% of the NAAQS for the same averaging period at EPA standard conditions of 25 °C and 760 mm Hg (1 atm.) and rounded to the nearest whole number

^{\dagger} No SIL has been established for ozone (O₃) and an ambient impact analysis is required for a significant net emission increase of NO_x or VOC greater than 100 tons per year

Excluding the 1-hour time averaging period for NO_2 and SO_2 , the highest modeled pollutant concentration for each averaging period will be compared to the SIL's listed in Table 3.1.1.-1 to determine if a significant impact is predicted to occur. For the 1-hour time averaging period for NO_2 and SO_2 , EPA recommends using the average of the highest concentrations predicted at each receptor and comparing the highest five-year average to the interim SIL.

For PM_{2.5}, a situation exists where the form of the SIL for the NAAQS and increment will likely be dissimilar. On March 23, 2010, US EPA issued guidance on using a SIL based on the statistical form of the 24-hour and annual NAAQS. However, US EPA promulgated increments for PM_{2.5} allowing for an exceedance rate of one per year for the short-term averaging period (i.e., the highest value of the second-highest modeled concentrations for the 24-hour time averaging period) consistent with the existing PSD regulations. In their final action on the $PM_{2.5}$ SIL's, US EPA states that they intend to provide guidance on interpreting the SIL's for use with the increments. CARBO believes that US EPA will likely interpret the SIL's for the $PM_{2.5}$ increments consistent with the form of the SIL's for all other existing PSD increments. Therefore, for the purposes of determining the extent of the SIA, CARBO will use the highest modeled PM_{2.5} concentration for each averaging period for comparison to the SIL's, in lieu of using the form of the SIL's suggested for the PM_{2.5} NAAQS. However, as discussed in Section 3.1.7, if modeled violations of the PM_{2.5} NAAQS are predicted to occur, CARBO will use SIL's which take into account the statistical form of the NAAQS when resolving violations of the 24-hour and annual PM_{2.5} standards.

If a significant impact for a pollutant is predicted to occur, the SIA will be determined as the circular area with a radius extending from the proposed

project site to the most distant receptor at which a significant impact is predicted or 50 km, whichever is less. For all pollutants, except NO₂ and SO₂, the SIA will be the largest area determined considering each averaging period and all years modeled. Based on previous guidance from GA EPD, the SIA's used for the 1-hour NO₂ and SO₂ NAAQS air quality analyses will be specific to the 1-hour time averaging period. In other words, the SIA used for the 3hour, 24-hour, and annual averaging periods for SO₂ will be different from the SIA used for the 1-hour averaging period. The same will be true of the 1-hour and annual averaging periods for NO₂. As discussed in Section 3.1.3, this is because the GA EPD no longer allows the Q/D (or 20D) screening methodology for the new 1-hour NAAQS standards.

3.1.2 <u>Ambient Monitoring Exemption Analysis</u>

The air quality analysis must assess the existing ambient air quality in the area that the proposed project would affect. For each criteria pollutant subject to PSD review, ambient monitoring data may be required to be collected as part of the air quality analysis. However, GA EPD has discretionary authority to exempt CARBO from this data requirement considering a comparison of the project's ambient impact to significant monitoring concentrations (SMC's) or if existing ambient monitoring data for a pollutant is judged to be available and contemporaneous, complete, quality assured, and representative of the project area. As discussed in Section 3.1.5, CARBO believes that such data exists and has proposed background pollutant concentrations to be used in the NAAQS analysis.

Regardless, CARBO will compare the highest pollutant concentrations predicted for criteria pollutants in the preliminary impact analysis to the SMC's specified in Table 3.1.2-1 for each applicable averaging period. If the project's predicted impacts exceed the SMC for a pollutant, CARBO will contact GA EPD to confirm that the proposed air quality monitoring data for that pollutant will satisfy PSD ambient monitoring requirements if preconstruction monitoring requirements have not yet been waived.

POLLUTANT	AVERAGING PERIOD				
	1-hour (µg/m³)	3-hour (μg/m³)	8-hour (μg/m³)	24-hour (µg/m³)	Annual (µg/m³)
NO_2					14
SO_2				13	
СО			575		
PM ₁₀					10
$PM_{2.5}$				4	

 Table 3.1.2-1
 Significant Monitoring Concentrations (SMC's)

3.1.3 <u>Regional PSD Inventory Development</u>

CARBO will develop regional source emission inventories for each pollutant requiring a full impact NAAQS and PSD increment analysis. The process will generally consist of (1) determining the SIA to be used for each pollutant and averaging period (2) using the SIA and meteorological data to determine the screening area for a pollutant, (3) identifying the counties within the SIA and screening areas, (4) identifying the existing and proposed new sources within the SIA and screening areas, (5) performing a screening procedure to determine which stationary sources must be explicitly modeled and which can be considered to be included in ambient background concentrations and excluded, (6) determining model and emission input data, (7) ensuring the emission input data is appropriate for each averaging period and (8) determining which sources affect increment consumption or expansion.

The screening area, or total impact area (TIA), for each pollutant will be the SIA plus a distance of 50 km, except for the 1-hour time averaging period for NO_2 and SO_2 . For the 1-hour NO_2 and SO_2 NAAQS, an initial screening area will be determined as the SIA plus a distance of 50 km, but may be decreased to the distance covered by the fastest wind speed in the meteorological dataset used for the NAAQS and PSD increment air quality analyses as per previous guidance from GA EPD. Based on CARBO's review of the meteorological dataset (discussed in Section 6.3.3), the fastest wind speed over the five year period was 14.16 m/s, which occurred on March 5, 2005 at hour 16 and includes the 0.26 m/s truncated wind speed adjustment applied to ASOS based winds in AERMET. This would limit the size of the screening areas for the 1-hour NO_2 and SO_2 NAAQS to 51 km. For the other pollutants and averaging periods, CARBO expects the TIA's to be in the range of 55 to 60 km. Therefore, the inventory of sources used for the NAAQS and PSD increment air quality analyses will be derived from Bulloch, Burke, Candler, Effingham, Emanuel, Jefferson, Jenkins, and Screven counties in Georgia and Aiken, Allendale, and Barnwell counties in South Carolina. The 60 km area also covers portions of Evans, Johnson, Richmond, Tattnall, Toombs, Treutlen and Washington counties in Georgia and Hampton County in South Carolina however there are no sources located within 60 km of the project site in these counties.

Within the TIA for all NAAQS and PSD increments, excluding the 1-hour NO_2 and SO_2 NAAQS, CARBO proposes to identify stationary sources to be included in the NAAQS inventory using the Q/D (or 20D) method. The 20D method is designed to exclude stationary sources located within the TIA; stationary sources within the SIA will not be excluded using this method. A stationary source within the TIA will be excluded from the air quality analysis if it is located beyond the SIA and the ratio of Q/D is less than 20,

where Q is the maximum emission rate in tons per year (tpy) of the source and D is either the distance from the stationary source to the SIA for the annual averaging period or is the distance from the stationary source to the project site for short-term averaging periods. Prior to performing 20D screening, an aggregate Q for a pollutant will be determined for stationary sources located within the vicinity of each other (within 2 km). CARBO does not intend to exclude any sources from the 1-hour NO₂ and SO₂ NAAQS air quality analyses unless they are determined to be temporary, intermittent, or are of such a size and type (such as automotive painting and refinishing, concrete batch plants, cotton gins, etc.) sources) that they can reasonably be assumed to be included in the ambient background concentration.

CARBO will make a good faith effort to include in the NAAOS inventory source's for which permit applications are submitted as of 30 days prior to the anticipated date the PSD application will be filed. Once sources have been identified, online and hardcopy major and minor source permit and application files, information provided by the agency such as the PSD increment consuming sources database available online (PSDINVEN 1.xls), and the national emission inventory (NEI) database will be searched to determine source and emission model input data. NAAQS inventories and electronic modeling files from previous PSD applications will be used to the extent that they are available and include sources and emissions applicable to the air quality analysis. For sources in South Carolina, CARBO has obtained the PSD inventory spreadsheets for each county covered by the projected screening areas and will use this data as provided by the SCDEHC. In certain circumstances, it may be difficult to determine model input data (e.g., stack parameters) for some emission units since not all stationary sources are required to submit air modeling information in their permit applications or participate in the annual emission inventory. In such cases where these sources can not be screened from the inventory, CARBO will utilize model input data known for a similar emission unit or determine "average" model input data for the source based on the emission unit's standard classification code (SCC) using the NEI database and document the occurrence in the PSD application.

Emission rates used as model input will be based upon the maximum allowable emission limit or federally enforceable permit limit and the source design capacity, consistent with US EPA requirements for source emission input data for NAAQS compliance in PSD modeling demonstrations (US EPA 2005). However, if a source's permitted or SIP emission limit for a particular source or source category is greater than the source's maximum physical capacity to emit, or in the absence of such limits, emission input data will be based on the source's potential emissions determined using GA EPD guidance considering its design specifications, allowable and available fuels and process materials.

Once the NAAQS source inventory has been developed for each pollutant, sources will be initially screened for inclusion in the PSD increment inventory by comparing the sources' construction dates to the statutory major source baseline dates (January 6, 1975 for PM and SO₂, February 8, 1988 for NO_2 and October 20, 2010 for $PM_{2,5}$) or the established minor source baseline date, as applicable. Since CARBO anticipates filing a PSD application prior to the trigger date for PM_{2.5} (October 20, 2011), no minor source baseline date for PM_{2.5} will be established in Jenkins or surrounding counties. Based on information available to CARBO, the minor source baseline dates for NO_2 , SO_2 , and PM_{10} have not been established for Jenkins County. Additionally, CARBO does not anticipate that the construction of the facility will have a significant impact for the annual averaging period at locations outside of Jenkins County, except for possibly NO₂ in Screven County. According to information available from GA EPD, the minor source baseline date for NO₂ for Screven has not been established. Because of this, it is likely that only emissions changes at PSD major sources occurring as a result of construction after the major source baseline dates will be included in the increment inventories, if not already screened from the NAAQS inventories using the 20D procedure.

3.1.3.1 <u>Estimating PM_{2.5} Emission Rates for Existing and Proposed New</u> <u>Sources</u>

In modeling submitted with previous PSD applications, it was typical for applicants to use PM_{10} as a surrogate for meeting $PM_{2.5}$ major NSR requirements. However, as of May 16, 2011, the PM_{10} surrogate policy may no longer be used and direct $PM_{2.5}$ emissions must be explicitly modeled.

This presents significant challenges since modeling of $PM_{2.5}$ has not been a routine requirement to date. Most, if not all sources in the inventory will likely not have maximum allowable emission rates for $PM_{2.5}$ specified in construction and operating permits. In such cases, emission rates will have to be based on the source's maximum physical capacity to emit, i.e., "potential-to-emit". However, direct PM emissions consist of both the filterable fraction, which already exists in particle form, and the condensable fraction, which exist in gaseous form under exhaust stream conditions but condenses in the ambient air. Emission factors for $PM_{2.5}$, if available, are largely representative of filterable particulate matter, many of which are in the form of fractions of PM or PM_{10} based on uncontrolled particle size distributions for sources, and do not include the condensable portion of PM. Emission factors that do include, or separately estimate, condensable PM are only widely available for most stationary combustion sources (e.g.

fossil fuel-fired boilers, combustion turbines, internal combustion engines (ICE), etc.).

Notwithstanding that direct $PM_{2.5}$ emissions from most sources are not well characterized, emission rates for sources in the NAAQS and increment inventories must be developed to explicitly meet the requirement to conduct an ambient air quality impact analysis under the PSD program. Based on an initial review of sources likely to be included in the $PM_{2.5}$ inventories, CARBO does not anticipate having other than stationary combustion sources in the final, screened inventories. For these sources, the potential maximum hourly emission rate for direct PM or PM_{10} will be determined and then multiplied by a fraction for $PM_{2.5}$, derived for the source category, using PM profiles in the California Emission Inventory Data and Reporting System (CEIDARS) developed by the California Air Resources Board (CARB) (SCAQMD 2006).

3.1.3.2 Intermittent Emissions

For the 1-hour NO₂ and SO₂ NAAQS inventories, US EPA recommends that only sources and emissions scenarios that "can logically be assumed to be relatively continuous or which occur frequently enough to contribute significantly to the annual distribution of daily maximum 1-hour concentrations" be included in compliance demonstrations (US EPA 2011). Sources and emission scenarios that do not meet these criteria. such as emergency/backup generators and certain startup/shutdown operations, are determined to be "intermittent" and not modeled for the new 1-hour standards. CARBO believes that this definition also includes sources whose maximum actual emissions are or will be significantly lower than potential emissions. For example, for existing or proposed new gas/oil fired boilers, if information in the source's permit or permit application files indicates that oil is combusted only during periods of natural gas curtailment, the oil-fired scenario will not be included in the 1-hour NO2 and SO2 NAAQS inventory since natural gas curtailment periods do not frequently occur – for most sources in Georgia, the last period of curtailment occurred during Hurricane Katrina. However, the oil-fired scenario will be included in all other air quality analyses. In developing the inventory, CARBO will identify those sources and emission scenarios determined to be intermittent and the basis for the determination.

3.1.4 NAAQS Analysis

The NAAQS, summarized in Table 3.1.4-1, are the maximum pollutant concentrations that define the level of air quality which US EPA has judged to be requisite for the protection of public health with an adequate margin for safety.

POLLUTANT	AVERAGING PERIOD				
	1-hour (µg/m³)	3-hour (µg/m³)	8-hour (µg/m³)	24-hour (µg/m³)	Annual (µg/m³)
NO_2	188^*				100
SO_2	196*	1,300 Secondary		365^{+}	80 ⁺
СО	40,000		10,000		
PM ₁₀				150	Revoked Dec 18, 2006 71 FR 61144
$PM_{2.5}$				35	15
O ₃			147 (75 ppb)		

Table 3.1.4-1 National Ambient Air Quality Standards (NAAQS)

 $^{*}~$ At EPA standard conditions of 25 °C and 760 mm Hg (1 atm.)

^{\dagger} Although the 24-hour and annual NAAQS were revoked at the time the 1-hour standard was made final, these standards remain in effect until one year following the effective date of initial nonattainment designations for the 1-hour SO₂ standard (no later than June 2012)

The following describes the design concentrations that will be determined to demonstrate compliance with the NAAQS for the five years of NWS meteorological model input data proposed to be used:

3-hour SO2, 24-hour SO2, 1-hour CO and 8-hour CO NAAQS

For the 3-hour and 24-hour time averaging periods for SO_2 and the 1-hour and 8-hour time averaging periods for CO, the highest of the second-highest modeled concentrations plus the applicable ambient background concentration will be used to determine compliance with the NAAQS.

Annual NO2 NAAQS

For the annual time averaging period for NO_2 , the highest of the annual average modeled concentrations plus the applicable ambient background concentration will be used to determine compliance with the NAAQS.

<u>24-hour and PM₁₀ NAAQS</u>

For the 24-hour time averaging period for PM_{10} , the highest sixth-high 24-hour modeled concentration for the five-year period modeled plus the applicable ambient background concentration will be used to determine compliance with the NAAQS.

<u>24-hour and Annual PM_{2.5} NAAQS</u>

Since existing preferred regulatory dispersion models used for the PSD program can not account for secondary $PM_{2.5}$ impacts resulting from precursor emissions, a screening level analysis will be used for the $PM_{2.5}$ NAAQS modeling demonstration. For the 24-hour and annual time averaging periods for $PM_{2.5}$, the highest five-year averages of the 24-hour and annual average modeled concentrations plus the applicable ambient background concentration will be used to determine compliance with the NAAQS. The average of the highest first-high concentrations is used in lieu of the 98th-percentile (highest eighth-high) for the 24-hour averaging period.

<u>1-hour SO₂ NAAQS</u>

For the 1-hour time averaging period for SO_2 , the highest five-year average of the 99th-percentile (highest fourth-high) annual distribution of 1-hour daily maximum concentrations at each receptor plus the applicable ambient background concentration will be used to determine compliance with the NAAQS.

<u>1-hour NO₂ NAAQS</u>

For the 1-hour time averaging period for NO_2 , the highest five-year average of the 98th-percentile (highest eighth-high) annual distribution of 1-hour daily maximum concentrations at each receptor plus the applicable ambient background concentration will be used to determine compliance with the NAAQS.

<u>8-hour O₃ NAAQS</u>

Currently, no preferred regulatory model exists to conduct refined single or multiple source modeling for ozone. However, since the modification results in a significant net emission increase of NO_x greater than 100 tpy, the ambient impacts of ozone must be addressed. Please refer to Section 3.1.8 for CARBO's approach to conducting an ozone impact analysis for the modification.

3.1.5 <u>Background Pollutant Concentrations</u>

Ambient background concentrations are an essential part in estimating the total air quality concentration to be considered in determining source impacts and represent the portion of pollutant concentrations attributable to other natural, minor, and distant major sources not explicitly modeled. For all PSD modeling demonstrations, background concentrations are required to be added to a source's modeled impacts to determine the design concentration for comparison to the NAAQS. Generally, air quality data collected in the vicinity of the source should be used to determine the appropriate background concentrations for the averaging times of concern. However, if no monitors are located in the vicinity of the source, a regional site – one that

located away from the area of interest but is impacted by similar natural and distant sources – may be selected (US EPA 2005).

For more than three decades, the Georgia Environmental Protection Division (GA EPD) has monitored air quality in the state of Georgia through the Ambient Monitoring Program (AMP) of the Air Protection Branch (APB). The AMP provides information on the measured concentrations of both criteria and non-criteria pollutants from data collected in a network of 60 monitoring locations in 36 counties and includes State and Local Air Monitoring Stations (SLAMS) and Photochemical Assessment Monitoring Stations (PAMS). Generally, monitoring locations are sited to determine the highest concentrations expected to occur, to measure typical concentrations in densely populated areas, to determine the impact of significant sources or categories of sources on air quality or to determine general background concentration levels. The data collected are then used to provide timely information on air quality to the public, to determine compliance with air quality standards and develop emission control strategies (GA EPD 2010).

CARBO has performed a review of monitoring stations measuring ambient concentrations of NO_2 , SO_2 , CO, PM_{10} , and $PM_{2.5}$ throughout the state of Georgia and has selected monitoring sites believed to be representative of or conservative for the background conditions for the project area. A total of three monitoring sites were selected to develop representative estimates for background air quality. Table 2.1.1-1 provides summary of the proposed background concentrations which are based on the average of the design values for each pollutant and time averaging period for the most recent threeyear period, 2008 through 2010, from data obtained from US EPA's AQS database.

			Proposed	
Dellutent	Monitor	Averaging	Background	Commente
Pollutant	Location	Period	(µg/m°)	
NO_2	Yorkville (#132230003)	1-hour	33.24	3-year average of the 98th- percentile annual distribution of 1- hour daily maximum concentrations (19, 16, 18 ppb) [*]
				3-year average of annual average
		Annual	10.18	concentrations [*]
SO_2	Macon SE (#130210012)	1-hour	67 12	3-year average of the 99th- percentile annual distribution of 1- hour daily maximum
		1-nour	07.12	concentrations (20, 20, 25 ppb)
		- 1		3-year average of highest 2nd-high 3-hour block average
		3-hour	49.12	concentrations
		24-hour	16.75	3-year average of highest 2nd-high 24-hour block average concentrations ^{***}
		Appual	4.26	3-year average of annual average
		Alliual	4.30	concentrations
	N 7 1 •11	1-hour	N/A	Proposed construction will be less
CO	Y OFKVIIIe (#132230003)	8-hour	N/A	than significant impact levels for CO
		24-hour	38.0	Recommended statewide
PM_{10}		Annual	20.0	background concentrations
PM _{2.5}	Bungalow Rd.	24-hour	25	3-year average of the 98th- percentile annual distribution of 24-hour average concentrations ^{**}
	(#132450091)			3-year average of annual average concentrations (based on the average of quarterly average daily
		Annual	12.7	values) ^{**}

Table 3.1.5 - 1	Proposed Background Air Quality Concentrations for NAAQS
	Air Quality Analysis

Documented in AQS annual summary query report, "13-223-0003 YORKVILLE NO2 2008-2010.xls", provided in the electronic files ("\BACKGROUNDS\") enclosed as Attachment A

^{**} Documented in AQS design value report, "aqsprodAIO890602.pdf", provided in the electronic files ("\BACKGROUNDS\") enclosed as Attachment A

*** Documented in AQS annual summary query report, "13-021-0012 MACON SE SO2 2008-2010.xls", provided in the electronic files ("\BACKGROUNDS\") enclosed as Attachment A

For NO_2 , Yorkville (#132230003), the Type 1 PAMS for the Atlanta Metropolitan Statistical Area (MSA), was selected was as a representative regional site. The monitor serves as a rural upwind background monitor and is sited in Paulding County. GA EPD has previously indicated that data from this monitor is preferred for background concentrations for PSD air quality

analyses for NO_2 . The monitor is located within approximately 50 km of four of six of Georgia's largest coal-fired power plants not expected to be explicitly modeled (Bowen, Hammond, Wansley and Yates) and located downwind of other significant combustion sources in Georgia and Alabama such as Alabama's Gaston, Gorgas and Miller electric generating facilities and the Sewell Creek combustion turbine facility in Polk County.

For SO₂, GA Forestry Commission (#130210012), or the Macon SE SLAMS, was selected as a representative regional monitor. There are eight SO₂ monitors located throughout the state of Georgia which are located generally in the vicinity of Atlanta, Brunswick, Columbus, Macon, Rome and Savannah. The Savannah monitoring sites, East President Street (#130510021) and Lathrop (#130511002), are closest to the project site at a distance of 108 km. However, neither of these monitors is considered representative of the project location because they are sited in a coastal environment, along the Savannah River at its discharge to the Atlantic Ocean, with differing meteorology and significant marine traffic. The Macon SE SLAMS, located in Bibb County, is the next closest to the project area at a distance of 154 km and the only SO₂ monitor within the same physiographic region and airshed.

For $PM_{2.5}$, Bungalow Road (#132450091) was selected as the representative monitor in the project vicinity. The Bungalow Road monitoring site is located in Augusta and is closest to the project location at a distance of 75 km. Being within a suburban area of the Augusta-Richmond MSA, data from this monitoring site will provide a conservative estimate of background air quality for $PM_{2.5}$ in the modeling domain.

For PM_{10} , GA EPD recommends statewide background concentrations based on a previous study of monitors located in rural areas. CARBO is proposing to use these background concentrations so no monitor was selected for PM_{10} .

3.1.6 <u>PSD Increment Analysis</u>

The Class II area PSD increments, summarized in Table 3.1.6-1, are the maximum allowable increases of ambient pollutant concentrations that are allowed to occur above baseline concentrations in a particular area. As such, an increment defines "significant deterioration".

POLLUTANT	AVERAGING PERIOD						
	1-hour (µg/m³)	3-hour (µg/m³)	8-hour (μg/m³)	24-hour (µg/m³)	Annual (µg/m³)		
NO_2					25		
SO_2		512		91	20		
СО							
PM ₁₀				30	17		
$PM_{2.5}$				9	4		

Table 3.1.6-1	Class II PSD Increments
---------------	--------------------------------

The following describes the design concentrations that will be determined to demonstrate compliance with the PSD increments for the five years of NWS meteorological model input data proposed to be used:

PSD Increments for NO₂, SO₂, CO, PM₁₀, and PM_{2.5}

For all time averaging periods other than the annual, the highest of the second-highest modeled concentrations will be used to determine compliance with the Class II increments. For the annual time averaging period, the highest of the annual average modeled concentrations will be used to determine compliance with the Class II increments.

3.1.7 NAAQS or PSD Increment Exceedance Resolution

Now that the NSR transition period for PM_{2.5} may soon end and after US EPA strengthened the primary NAAQS for NO_2 and SO_2 , the potential for existing modeled violations of the NAAQS and increments to occur is greater than before. If dispersion modeling does predict violations of the NAAQS and/or increments, CARBO may choose to demonstrate that the construction and operation of the proposed facility will not cause or contribute to the modeled violations in a "spatial and temporal sense", consistent with US EPA policy (US EPA 1988). This analysis is straightforward for most pollutants and time averaging periods but the statistical form of the 1-hour NO₂ and SO₂ NAAQS and 24-hour PM_{2.5} NAAQS makes spatial and temporal resolution more However, the most recent version of US EPA's preferred challenging. regulatory model for NSR and PSD air quality analyses, AERMOD (v11103), contains an output option (MAXDCONT) that can be used to determine a source's contribution to the predicted air quality impacts of a target source group, which will be used to resolve modeled violations of these standards, as required.

As previously mentioned, CARBO expects US EPA to interpret the form of the SIL for the $PM_{2.5}$ increment differently from that of the NAAQS. Therefore,

spatial and temporal resolution of modeled increment or NAAQS violations will differ accordingly.

3.1.8 Ozone Impact Analysis

As previously stated, no preferred regulatory model exists to conduct refined modeling to estimate the air quality impact of single or multiple sources on the ozone NAAQS for the purposes of PSD review. Most often, state agencies evaluate the relationship between precursor emissions and ozone formation in the context of state implementation plan (SIP) attainment demonstrations for the ozone NAAQS or regional haze. For some sources, the Scheffe VOC/NO_x point source screening tables may serve as a useful screening tool for estimating a source's incremental impact for ozone. However, this screening tool was developed specifically for the 1-hour O₃ standard and is applicable only to those sources with VOC/NO_x emission ratios greater than 1 that propose to located in VOC-limited environments. CARBO's VOC/NO_x emission ratio is far less than 1. Thus, use of the Scheffe point source screening tables would be of limited value to estimate the project's ozone impacts. In this regard, CARBO will provide in the PSD application a qualitative assessment of the project's ozone impacts framed by a discussion expected intrastate and regional precursor emission reductions that will be achieved as a result of existing and proposed new SIP revisions and federal rules in the context of the proposed increase in precursor emissions of the modification.

4.0 ADDITIONAL IMPACT ANALYSES

Emissions of criteria and other pollutants have a variety of effects on public welfare. As part of the PSD application, CARBO will conduct an additional impact analysis to review these effects in an assessment of impairment to visibility, soils, and vegetation that would occur as a result of the proposed construction and any associated residential, commercial, and industrial growth. Visibility may be adversely affected by pollutants such as NO_x and PM by scattering or absorption of light in amounts sufficient to cause a plume to be visible when observed against its viewing background. Gaseous pollutants and metals, when emitted in certain amounts, may also have adverse impacts on sensitive vegetation species either directly through exposure to concentrations in the ambient air or indirectly through deposition on soils.

4.1.1 <u>Soils and Vegetation</u>

Both direct and indirect adverse impacts to vegetation will be assessed using a screening procedure described by US EPA to estimate the impacts of sources of air pollution on plants, soils, and animals (US EPA 1980). This analysis will also use a two-tiered approach. Initially, the annual level of potential emissions for direct and indirect acting pollutants will be compared to significant emission rate thresholds for each applicable time averaging period. For pollutants emitted in amounts exceeding the thresholds, refined modeling will be conducted, considering emissions from other existing and proposed new sources and background pollutant concentrations, to compare the predicted ambient pollutant impacts to the screening concentrations. Additional analysis will be performed for each pollutant with an ambient impact above the screen concentration, taking into account inventories of soil and vegetation types within the impact area, the sensitivity of the species to the pollutant emitted, and whether the species is of significant commercial or recreational value.

4.1.2 Class II Visibility

As previously discussed in Section 2.1, an assessment of visibility impairment will be performed for state and national parks, monuments and historic sites and local, regional and international airports located within the project's significant impact area for NO_x and $PM - for NO_x$, CARBO is planning to use the annual averaging period for NO_x to determine the SIA applicable to the Class II visibility analyis. These Class II areas are listed in Tables 2.1.1-1 and 2.1.2-1. In order to perform the assessment, a screening procedure developed by US EPA will be used determine the potential visible plume impacts (US EPA 1992). This analysis, too, uses a two-tiered approach consisting of an initial screening procedure (Level I) using worst-case meteorological parameters and, if necessary, a more refined procedure (Level

II), considering, among other factors, plume transport time and cumulative frequency distributions for dispersion conditions and associated winds speeds and atmospheric stability to determine meteorological conditions representative of the periods during which the winds are in the direction of the Class II area. The primary variables affecting plume visibility are the (1) quantity of emissions, (2) types of emissions, (3) relative location of source and observer, and (4) the background visual range. For Georgia, and much of the southeast, the background visual range is 25 km for Class II areas.

Both the Level I and Level II screening procedures are used to determine the contrast of a plume against a viewing background and plume perceptibility. The analysis is generally considered satisfactory if plume contrast and perceptibility are less than critical values of 0.05 and 2.0, respectively.

5.0 TOXIC IMPACT ANALYSES

As part of the PSD application, CARBO will conduct a toxics impact assessment (TIA) for emissions of toxic air pollutants (TAP) emitted from the proposed new facility. The TIA will use GA EPD's procedures governing permitting review of TAP emissions contained in the agency's revised guideline on ambient impact assessments for TAP (GA EPD 1998). GA EPD regulates emissions of TAP through a state-only program under the provisions of Georgia Rule 391-3-1-.02(2)(a)3.(ii). Generally, a TAP is any substance that may have an adverse effect on public health, excluding any substance that is covered by a state or federal ambient air quality standard. Since GA EPD does not specify *de minimis* emission rates for TAP emissions, dispersion modeling is performed to demonstrate that the ambient impacts of TAP are less than the acceptable ambient concentration (AAC) values.

5.1.1 <u>Acceptable Ambient Concentrations</u>

A number of TAP are emitted during the manufacture of proppants from kaolin and include speciated organic compounds, primarily hexane, from the combustion of natural gas, methanol and ammonia during spray drying of the kaolin slurry and HF and HCl from sintering the pellets in the direct-fired rotary kilns. Table 5.1.1-1 summarizes the ACC level and basis for each of these TAP.

ТАР	AVERAGING PERIOD					
	15-min	24-hour	Annual			
	(μg/m³)	(µg/m³)	(µg/m³)			
Hexane (C ₆ H ₁₄)			700 (IRIS RfC)			
Methanol	32,760	625				
(CH ₃ OH)	(ACGIH 250 ppm STEL)	(OSHA 200 ppm TWA)				
Ammonia	2,440		100			
(NH3)	(ACGIH 35 ppm STEL)		(IRIS RfC)			
Hydrogen Fluoride	165		14 [*]			
(HF)	(ACGIH 2 ppm STEL)		(CARB Chronic REL)			
Hydrogen Chloride	745		20			
(HCl)	(OSHA 5 ppm Ceiling)		(IRIS RfC)			

 Table 5.1.1-1
 Acceptable Ambient Concentrations for Toxic Air Pollutants

US EPA has not established an RfC or RBAC for HF, however, the California Air Resources Board (CARB) suggests a 14 µg/m³ chronic inhalation reference exposure level (REL) which US EPA has adopted; GA EPD has previously accepted this alternate toxicity data as the AAC for the annual time averaging period

For the 24-hour and annual time averaging periods, the highest modeled TAP concentrations, or maximum ground level concentration (MGLC), will be

compared to the AAC's. For the 15-min averaging period, the highest 1-hour MGLC will be multiplied by a factor of 1.32 and then compared to the AAC's.

6.0 AIR DISPERSION MODELING METHODOLOGY

Dispersion modeling for the PSD application will be conducted in accordance with the recommendations contained in GA EPD's modeling guidance for SIP-approved federal and state-only programs, US EPA's guideline on air quality models (40 CFR Part 51 Appendix W or "US EPA's guideline") and as proposed and agreed upon in this protocol. US EPA's guideline addresses the regulatory application of refined air quality dispersion models in assessing ambient impacts of criteria pollutants and contains the preferred modeling techniques recommended by US EPA for the new source review (NSR) and PSD programs.

Subsequent to this protocol, CARBO will submit to US EPA Region 4 and GA EPD a proposed modeling protocol to request approval to use the Plume Volume Molar Ratio Method (PVMRM) as part of a tiered screening approach for estimating air quality impacts of NO_2 ("the PVMRM protocol"). In the PVMRM protocol, CARBO will propose to use a database of monitored 1-hour ozone concentrations for calendar years 2005 through 2009 with PVMRM. Below in Section 6.3, CARBO addresses the processing of meteorological model input data to be contemporaneous with the proposed ozone database.

6.1 Model Selection and Model Options

6.1.1 <u>Air Quality Analyses for the SIL's, SMC's, NAAQS, PSD Increments</u> and Soils and Vegetation Impairment

US EPA's guideline was revised in 2005 to replace the Industrial Source Complex (ISC3) model with the American Meteorological Society (AMS)/EPA model (AERMOD) as the preferred regulatory model. AERMOD is a steadystate plume dispersion model that is considered to be the best state-of-the-art practice of Gaussian dispersion. The AERMOD model incorporates parameterized dispersion in both stable and convective conditions using planetary boundary layer (PBL) characteristics developed from directly observed meteorological data and surface characteristics preprocessed in AERMET and AERSURFACE, respectively. To reduce the number of calm, variable, and missing winds typically encountered in standard archives of observed meteorological data, AERMINUTE is used to calculate hourly average wind speed and direction to supplement the data processed in AERMET, increasing completeness of the meteorological dataset used with AERMOD. A terrain preprocessor, AERMAP, is used to process a variety of United States Geological Survey (USGS) gridded terrain datasets to determine receptor-specific terrain-influence heights and source and receptor elevations for input into AERMOD. The terrain-influence height at each receptor is used by AERMOD to incorporate the dividing streamline height concept to better characterize plume behavior in elevated terrain. AERMOD also incorporates the plume rise model enhancements (PRIME) downwash algorithm which has

been evaluated and found to perform better than the ISC3 downwash algorithm using a variety of data sets.

For these reasons, the most recent version of AERMOD (v11103) and its preprocessors AERMET (v11059), AERMINUTE (11059), AERMAP (v11103), and AERSURFACE (v08009) will be used to estimate the ambient impacts for all PSD air quality analyses, excluding any Class II area visibility impairment modeling that may be required as part of the additional impact analysis. Because of this model selection, additional guidance on the recommend use of AERMOD for certain concerns, such as surface characteristics and elevation processing, will be in accordance with the most recent revision of implementation guidance for AERMOD (US EPA 2010). Except as otherwise specified and approved, AERMOD will be executed using the regulatory default model option, i.e., the parameter "DFAULT" will be specified in the MODELOPT record in the control pathway.

For the NO₂ NAAQS and PSD increment, CARBO will propose in a protocol to US EPA Region 4 and GA EPD to use PVMRM, which simulates the firstorder reaction of nitric oxide (NO) with O₃ to determine the NO₂/NO_x conversion rate during plume expansion. PVMRM is available as a nonregulatory default model option within AERMOD and it application makes AERMOD no longer a preferred guideline model. In such cases, use of this technique must be approved as an alternate model by US EPA Region 4 on a case-by-case basis under Section 3.2.2 of US EPA's guideline. Generally, the Air Quality Modeling Group (AQMG) at US EPA's Office of Air Quality Planning and Standards (OAQPS) recommends accepting the use of PVMRM provided that a reasonable demonstration can be made regarding the appropriateness of the in-stack NO₂/NO_x ratios and background ozone database proposed to be used (US EPA 2011). The PVMRM protocol will describe the methods and procedures to be followed when using AERMOD with this non-regulatory default model option.

6.1.2 <u>Class II Area Visibility Impairment Analysis</u>

The Level I and Level II visibility impairment assessment for Class II areas will be performed using VISCREEN. VISCREEN calculates the potential impact of a plume containing NO_x and PM for specific transport and dispersion conditions. Should a Level III analysis be required, CARBO will submit a separate protocol addressing the application of PLUVUE-II, if required.

6.1.3 <u>Toxic Impact Analysis</u>

The most recent version of the ISC3 model (v02035) will be used to estimate the maximum ground level concentration (MGLC) for each TAP considered to

compare to the pollutant's ambient impacts to the AAC's consistent with GA EPD's most recent air dispersion modeling guidance for state-only programs (GA EPD 2006). ISC3 will be executed using the regulatory default model option, i.e., the parameter "DFAULT" will be specified in the MODELOPT record in the control pathway.

6.2 Dispersion Coefficients

The selection of either rural or urban dispersion coefficients is an important component in characterizing the environment in which pollutants disperse and should follow one of the two procedures specified in the US EPA's guideline. These include a land use classification procedure using the Auer meteorological land use typing scheme or a population based procedure. Of the two methods, the land use procedure is considered to be sufficient for most applications.

6.2.1 Land Cover and Land Use

As specified in Section 7.2.3.c of US EPA's guideline, the land use within the total area circumscribed by a 3 km radius circle (28.3 km²) about the proposed project site was visually inspected for classification using the Auer meteorological land use typing scheme (Auer 1978). If land use types I1 (Heavy Industrial), I2 (Light Industrial), C1 (Commercial), R2 (Residential; Small Lot Single Family & Duplex), and R3 (Residential; Multi-Family) account for 50% or more of the circumscribed area, urban dispersion coefficients should be used. Otherwise, rural dispersion coefficients are appropriate. Figure 6.2.1-1 presents an aerial image of the 28.3 km² area surrounding the proposed project site in comparison to the 1992 digitized USGS National Land Cover Dataset (NLCD92).

Figure 6.2.1-1 USGS NLCD92 Land Use Surrounding the CARBO Ceramics Project Site – 3km Radius

Without quantification, visual inspection of the NLCD92 data in Figure 6.2.1-1 shows that well over 50% of the circumscribed area surrounding the proposed project site is of the deciduous (41) and evergreen (42) forest, pasture/hay (81), row crops (82), and woody wetland (91) land use types. Since none of these USGS NLCD92 land use types can be classified as Auer land use types I1, 12, C1, R2, or R3, over 50% of the area may therefore be classified as rural. Therefore, the urban modeling option in AERMOD will not be used and rural dispersion coefficients will be selected for ISC3.

6.3 Meteorological Data

Because the dispersion modeling for the PSD source and additional impact analyses and toxic impact analysis will use two refined models – AERMOD which is the preferred regulatory model for NSR programs and ISC3 which is used specifically for certain state-only programs – two sets of meteorological model input data are proposed. For the toxics review, CARBO is proposing to use ISC3 with five years of National Weather Service (NWS) data measured at the Augusta Regional Airport (Bush Field) surface station (20 ft anemometer height) and Athens Bens Epps Airport upper air station for calendar years 1974 through 1978. For all other PSD air quality analyses, CARBO is proposing to use AERMOD with five years of NWS data measured for calendar years 2005 through 2009 so that the meteorological model input data may be contemporaneous with the ozone database proposed for PVMRM.

AERMOD requires meteorological data preprocessed in AERMET to estimate the air quality impact of pollutants discharged to the atmosphere from stationary sources. AERMET is used to process surface characteristics, including surface roughness legth, Bowen ratio, and albedo, in conjunction with several standardized formats of hourly meteorological surface observations and upper air soundings to develop the hourly boundary layer parameter estimates and multiple-level observations required by AERMOD. In this section, meteorological station selection, surface characteristics processing and comparison, meteorological data processing, and representativeness of the meteorological data are discussed.

6.3.1 <u>Meteorological Station Selection</u>

In its guideline, US EPA recommends that site-specific meteorological data be used for the air quality modeling analyses if one or more years of quality assured data are available. In the absence of site-specific data, five years of representative meteorological data from a nearby NWS station can be used. The NWS data used as input into the dispersion model should be selected based on spatial and climatological representativeness considering the proximity of the meteorological monitoring site to the modeling domain, the complexity of the terrain, the exposure of the meteorological monitoring site the period of time during which data are collected.

Since at least one year of site specific meteorological data is not available for the project, CARBO inventoried and performed a review of NWS Automated Surface Observing System (ASOS) stations in Georgia and radiosonde observation (RAOBS) sites in the southeast United States using National Climactic Data Center (NCDC) and National Oceanographic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) databases to determine which monitoring sites would be most characteristic project vicinity. The review of surface stations was limited to ASOS stations since 1min winds archived in the DSI-6405 format are readily available for use in AERMINUTE. Table 6.3.1-1 summarizes the WBAN identifier and call sign, names, geographic locations, base elevations and distances to the surface and upper air stations nearest to the project site.

Table 6.3.1-1 Inventory of GA NWS ASOS and Southeast U.S. NOAA/ESRL RAOBS Stations

WBAN#	Name	LAT LONG (decimal degrees)	Elevation	Distance (to project site)
NWS AS	OS Surface Stations (Georgi			
03813	Macon, GA Regional Airport (MCN)	32.689N, 83.653W	108 m (354 ft)	164 km
03820	Augusta, GA Regional Airport (AGS)	33.370N, 81.965W	45 m (148 ft)	67 km
03822	Savannah, GA Municipal Airport (SAV)	32.119N, 81.202W	16 m (52 ft)	97 km
13837	Augusta, GA Daniel Field (DNL)	33.467N, 82.039W	129 m (423 ft)	79 km
13870	Alma, GA Bacon Co. Airport (AMG)	31.536N, 82.507W	58 m (188 ft)	148 km
NOAA/E	RSL RAOBS Upper Air Stat	<u>ions (Southeast Uni</u>	ited States)	
13880	Charleston, SC International Airport (CHS)	32.899N, 80.041W	12 m (39 ft)	174 km
13889	Jacksonville, FL International Airport (JAX)	30.494N, 81.693W	8 m (26 ft)	252 km
53819	Peachtree City, GA Falcon Field (FFC)	33.355N, 84.567W	243 m (798 ft)	257 km
53823	Shelby County, AL Birmingham (BMX)	33.172N, 86.770W	178 m (584 ft)	456 km
93805	Tallahassee, FL Regional Airport (TLH)	30.393N, 84.353W	17 m (55 ft)	351 km

In terms of proximity, the Augusta (Bush Field) Regional Airport (AGS), Augusta Daniel Field (DNL), and Savannah Municipal Airport (SAV) ASOS stations are nearest to the project site. However, DNL is sited in an urban setting and such meteorological observations may not be representative of the modeling domain. SAV was also determined to not be representative of the modeling domain since it is sited in a coastal setting and meteorological observations may be affected by local land-sea breeze circulations typically associated with such locations. And although the nearest NWS ASOS station, AGS, would likely be spatially and climatologically representative of the project site, surface observations from this monitoring site were found to suffer severely from a high incidence of calm, variable, and missing winds, even after merging 1-min ASOS winds.

Both MCN and AMG are located at similar distances from the project site. There are also no apparent significant terrain features between either of the surface stations and the project site. However, MCN is located at about the same latitude as the project site whereas AGS is located much farther to the south towards Florida. Thus, the project site likely shares more of the same climactic influences with MCN. Additionally, five consecutive years of NWS ASOS data for MCN is available from a previously proposed PSD project in Georgia. Therefore, MCN was selected as the representative surface station to develop five years of meteorology for model input for the project.

GA EPD has previously recommended upper air soundings from the Peachtree City Falcon Field (FFC) Weather Service Forecast Office (WSFO) for use with hourly meteorological observations from the MCN NWS ASOS station. Therefore, CARBO is proposing to use five years of NWS data measured at the MCN NWS ASOS and FFC WSFO upper air stations for calendar years 2005 through 2009. The surface station data was obtained from the National Climactic Data Center (NCDC) in the integrated surface hourly data (ISHD) file format and is provided in the electronic files enclosed as Attachment A ("\ISHD\KMCN"). The upper air data was obtained from the NOAA/ESRL radiosonde database in the forecast systems laboratory (FSL) file format and is also provided in the electronic files enclosed as Attachment A ("\FSL\FFC").

6.3.2 <u>Surface Characteristics</u>

AERMET uses surface characteristics, in conjunction with meteorological observations, to characterize the boundary layer parameters used by AERMOD. The surface characteristics required for processing include surface roughness length, Bowen ratio, and albedo. The surface roughness length is related to the height of obstacles in the direction of the wind flow and is important in determining mechanical turbulence during stable conditions. The Bowen ratio and albedo are both used to estimate convective turbulence

during unstable conditions and are measures of daytime surface moisture and the fraction of solar radiation reflected by the surface, respectively.

AERSURFACE was created to develop realistic values for surface characteristics for AERMET processing and uses digitized 30-m resolution USGS NCLD92 data to determine land cover specific values for surface roughness, Bowen ratio, and albedo. For each USGS NLCD92 land use type, surface characteristic values are linked to five seasonal categories which are specified for each month of the year. The default seasonal categories and month assignments in AERSURFACE include (1) "midsummer with lush vegetation" for June, July, and August, (2) "autumn with unharvested cropland" for September, October, and November, (3) "late autumn after frost and harvest, or winter with no snow" for December, January, and February, (4) "winter with continuous snow on ground" also for December, January, and February and (5) "transitional spring with partial green coverage or short annuals" for March, April, and May. AERSURFACE also links surface characteristics values based on whether or not the site is an airport, is in an arid region, and whether or not the surface moisture for the site being processed is "average", "wet", or "dry" when compared to climactic normals. US EPA has made the following recommendations for processing digitized land cover data for surface characteristic values (US EPA 2010):

<u>Surface Roughness</u>

Surface roughness length should be based on an inverse distance weighted geometric mean for a default upwind distance of 1 km relative to the site and may be varied by sector to account for variations in land cover. However, the sector widths should be no smaller than 30 degrees.

<u>Bowen Ratio</u>

The Bowen ratio should be based on a simple unweighted geometric mean within the domain defined by a 10 km by 10 km region centered on the site.

<u>Albedo</u>

The albedo should be based on a simple unweighted arithmetic mean within the domain defined by a 10 km by 10 km region centered on the site.

Generally, the surface characteristics input into AERMET should be based on the land cover in the vicinity of the NWS surface station. However, these surface characteristics may not result in the construction of a boundary layer representative of the environment in the vicinity of the project site. Because of this, the surface characteristics for the land cover surrounding the NWS surface station and project site should be determined and compared.

USGS NCLD92 data for the area surrounding both the MCN NWS surface station and CARBO were obtained from the USGS National Map Seamless Server, available online at <u>http://seamless.usgs.gov/</u>, and are provided in the

in the electronic files ("\AERSURFACE\KMCN NLCD92\" and "\AERSURFACE\CARBO NLCD92\") enclosed as Attachment A. Figures 6.3.2-1 and 6.3.2-2 illustrate the digitized land cover data contained within an area circumscribed by a 1 km radius circle, divided into 12 30-degree sectors, about the MCN NWS ASOS station and project site, respectively.

Aerial Image

USGS NLCD 92

Figure 6.3.2-1 USGS NLCD92 Land Use Surrounding the Macon NWS Surface Station – 1km Radius (12 30-degree sectors)

Aerial Image

USGS NLCD 92

Figure 6.3.2-2 USGS NLCD92 Land Use Surrounding the CARBO Ceramics Project Site – 1km Radius (12 30-degree sectors)

In order to compare surface characteristics between the two sites, AERSURFACE was used to determine the seasonal parameter values using the unmodified NLCD92 data. In AERSURFACE, the latitude and longitude for the MCN NWS surface station (32.689N, 83.653W) and project site (32.766N, 81.899W) were specified and NAD83 was input as the datum for the NLCD92 data. Then, each set of digitized land cover data representing the surface station (airport) and project site (not an airport) was processed as a "non-arid region" with no "continuous snow cover for most of the winter" for each of the "average", "wet", and "dry" surface moisture conditions using the default seasonal category and month assignments. Surface characteristic values were determined for each season and for each of 12 30-degree sectors. Table 6.3.2-1 presents the seasonal parameter values determined by AERSUFACE.

 Table 6.3.2-1
 Seasonal Albedo, Bowen, and Surface Roughness Length Values

 for Macon NWS Surface Station and Project Site

SECTOR	MACON NWS SURFACE STATION				CARBO MILLEN PROJECT SITE			
	Winter	Spring	Summer	Autumn	Winter	Spring	Summer	Autumn
Albedo								
0-360	0.16	0.16	0.16	0.16	0.15	0.14	0.16	0.16
Bowen (Av	erage Surfac	ce Moisture	Condition)					
0-360	0.64	0.38	0.40	0.58	0.64	0.41	0.34	0.58
Bowen (Dry	y Surface M	oisture Con	dition)					
0-360	1.14	0.82	0.80	1.14	1.07	0.84	0.65	1.07
Bowen (We	et Surface M	loisture Con	dition)					
0-360	0.30	0.22	0.24	0.30	0.27	0.22	0.20	0.27
Surface Ro	ughness I	Length						
0-30	0.015	0.031	0.037	0.031	0.487	0.551	0.775	0.775
30-60	0.014	0.021	0.029	0.023	0.397	0.473	0.773	0.773
60-90	0.024	0.020	0.048	0.041	0.377	0.438	0.750	0.750
90-120	0.031	0.035	0.172	0.169	0.116	0.147	0.378	0.378
120-150	0.049	0.044	0.196	0.196	0.121	0.160	0.396	0.396
150-180	0.036	0.063	0.160	0.158	0.548	0.586	0.682	0.682
180-210	0.035	0.043	0.079	0.078	0.601	0.662	0.892	0.892
210-240	0.016	0.045	0.082	0.076	1.149	1.205	1.260	1.260
240-270	0.046	0.023	0.042	0.034	0.651	0.716	0.963	0.963
270-300	0.067	0.064	0.126	0.115	0.446	0.534	0.765	0.765
300-330	0.040	0.089	0.127	0.114	1.028	1.104	1.201	1.201
330-360	0.015	0.053	0.067	0.057	1.119	1.186	1.257	1.257

The AERSURFACE files for the "average", "wet", and "dry" surface moisture conditions for both the surface station and project site are provided in the electronic files ("\AERSURFACE\KMCN NLCD92\" and

"\AERSURFACE\CARBO NLCD92\") enclosed in Attachment A. In order to compare the surface characteristics of the two sites, both the absolute difference and relative percent difference between the seasonal values were calculated and are presented in Table 6.3.2-2.

Table 6.3.2-2Absolute and Relative Percent Difference of Seasonal Surface
Characteristic Values for Macon NWS ASOS Station and Project
Site

	0110							
SECTOR	ABSOLUTE DIFFERNCE			RELATI	VE PERC	ENT DIFF	ERNCE	
	Winter	Spring	Summer	Autumn	Winter	Spring	Summer	Autumn
Albedo								
0-360	0.01	0.02	0.00	0.00	6%	13%	0%	0%
Bowen (Av	erage Surfac	e Moisture	Condition)					
0-360	0.00	0.03	0.06	0.00	0%	8%	16%	0%
Bowen (Dr	y Surface M	oisture Cond	dition)					
0-360	0.07	0.02	0.15	0.07	6%	2%	21%	6%
Bowen (We	et Surface M	oisture Con	dition)					
0-360	0.03	0.00	0.04	0.03	11%	0%	18%	11%
Surface Ro	oughness I	Length						
0-30	0.472	0.520	0.738	0.744	188%	179%	182%	185%
30-60	0.383	0.452	0.744	0.750	186%	183%	186%	188%
60-90	0.353	0.418	0.702	0.709	176%	183%	176%	179%
90-120	0.085	0.112	0.206	0.209	116%	123%	75%	76%
120-150	0.072	0.116	0.200	0.200	85%	114%	68%	68%
150-180	0.512	0.523	0.522	0.524	175%	161%	124%	125%
180-210	0.566	0.619	0.813	0.814	178%	176%	167%	168%
210-240	1.133	1.160	1.178	1.184	195%	186%	176%	177%
240-270	0.605	0.693	0.921	0.929	174%	188%	183%	186%
270-300	0.379	0.470	0.639	0.650	148%	157%	143%	148%
300-330	0.988	1.015	1.074	1.087	185%	170%	162%	165%
330-360	1.104	1.133	1.190	1.200	195%	183%	180%	183%

As shown in Table 6.3.2-2, there is no significant difference between the average seasonal albedo and Bowen ratio values between the two sites. There is, however, a large difference, in both absolute and relative terms, between the seasonal surface roughness length values between the two sites for each of the 12 30-degree sectors. It is typical for the 1 km upwind domain of a NWS surface station located at an airport to have a much lower surface roughness length when compared to industrial sites because of Federal Aviation Administration (FAA) restrictions on the height of nearby obstacles in navigable airspace. In such cases, a site-specific sensitivity analysis should be conducted to determine the degree to which predicted air quality impacts are
influenced by differences in surface characteristics. This sensitivity analysis is discussed further in Section 6.3.6.

6.3.3 <u>AERMET Processing</u>

AERMET is the meteorological data preprocessor used to characterize the surface fluxes of heat and momentum, scaling and stability parameters, boundary layer height, and the surface characteristics, winds and temperature used by AERMOD. In order to develop the surface and upper air profile data files required by AERMOD, AERMET processing is conducted in three stages. In Stage 1, NWS surface and upper air observations are extracted from the NCDC ISHD and NOAA/ESRL FSL data files and processed through various quality assessment checks. In Stage 2, the extracted observations are merged together along with 1-min ASOS winds processed in AERMINUTE and stored in a single file. Finally, in Stage 3 the merged meteorological data is combined with the surface characteristic values determined by AERSURFACE to estimate the boundary layer parameters used by AERMOD. Stage 3 AERMET processing also applies an adjustment to all ASOS-based wind speeds in order to compensate for the bias introduced due to wind speeds being truncated, rather than rounded, to whole knots in the archived data files.

Each year of paired surface and upper air profile data files were processed in AERMET for both sets of seasonal surface characteristics considering the surface moisture condition for each year relative to climatological normals. All input, message, and report data files created by AERMET during Stage 1, 2, and 3 processing for each year of meteorology are provided in the electronic files ("\AERMET 11059\CARBO\" and "\AERMET 11059\KMCN\") enclosed in Attachment A. In performing the processing, the five-year meteorological dataset using the project site surface characteristics was processed first. Then, since the surface observations, 1min ASOS winds and upper air soundings for both datasets are identical, the merge file created in initial Stage 2 processing was used to process the fiveyear meteorological dataset with the MCN NWS ASOS surface characteristics in Stage 3 (i.e., the meteorology developed for the airport surface characteristics only required Stage 3 processing using the merged filed from the project site dataset). In order to process the observational data and surface characteristics through the various stages of AERMET, an identifier, latitude, longitude, elevation and factor to convert the time of each record to local standard time (LST) must be specified for the surface station and upper air station. AERMET no longer requires specifying the project site latitude, longitude, time conversion factor, and elevation using the LOCATION keyword on the Stage 3 METPREP pathway. Table 6.3.3-1 provides a summary of the identifying information used in AERMET processing.

	Identifying Information for AERMET Processing								
_	Site	Identifier	LAT LONG (decimal degrees)	Elevation	Time Conversion				
	MCN NWS ASOS Station	3813	32.689N, 83.653W	108 m (354 ft)	5* (EST)				
	Peachtree City Falcon Field WSFO Upper Air Station	53819	33.355N, 84.567W	243 m (798 ft)	5* (EST)				

Table 6.3.3-1 MCN NWS ASOS Surface and FFC Upper Air Station Identifying Information for AERMET Processing

^{*} The time specified for each record in both the NCDC ISHD and NOAA/ESRL FSL surface and upper air data files are specified in Greenwich Mean Time (GMT)

6.3.3.1 <u>1-min ASOS Winds Processing in AERMINUTE</u>

Prior to Stage 1 processing in AERMET, AERMINUTE was used to develop for each year of meteorological data a file (HOURFILE) containing hourly averaged winds formatted for input and merging with the surface and upper air observations in Stage 2 AERMET processing. The 1-min ASOS winds in the DSI-6405 file format, input files and output files for each year of AERMINUTE processing are contained in the electronic files ("\AERMINUTE 11059\") enclosed in Attachment A. In order to ensure that AERMINUTE handles wind speeds less than 2 knots in the appropriate manner, the date by which a sonic anemometer was installed at the MCN NWS ASOS station, July 24, 2007, was specified using the Ice Free Winds Group (IFWGROUP) keyword in each AERMINUTE.INP input file.

6.3.3.2 Stage 1 Extracting NWS Data and Quality Assessment

As previously stated, Stage 1 AERMET processing comprises of the extraction and retrieval of data and an assessment of the quality of that data. Quality assessment (QA) is performed on all the data types by AERMET. The QA process identifies occurrences of missing data, values that are outside a range of threshold upper and lower bound values, and inconsistencies between selected variables within an observation period. Default values are defined for the upper and lower bounds and for missing values. When AERMET detects anomalous data, a message is written to a file informing the user of the violation.

In order to increase the number of temperature observations accepted by AERMET in Stage 1 processing, the threshold upper bound for the dry bulb temperature variable (TMPD) was modified to 40° C (104° F) from 35° C (95° F). After completing Stage 1 processing, the surface and upper air output files, SFQAOUT.DSK and UAQAOUT.DSK, were

processed with the 1-min ASOS winds HOURFILE from AERMINUTE through Stage 2.

6.3.3.3 Stage 2 Merging Surface and Upper Air Data

In Stage 2, the surface observations and upper air soundings extracted in Stage 1 and 1-min ASOS winds calculated by AERMINUTE for each 24-hour period are merged together and stored in a single file for use in Stage 3. The single, merged file is then combined with the surface characteristic values determined by AERSURFACE to estimate the boundary layer parameters used by AERMOD.

6.3.3.4 Stage 3 Creating AERMOD Boundary Layer Parameters

In the final stage of AERMET processing, the merged data file is combined with the seasonal surface characteristic values for each of 12 30-degree sectors to produce the two meteorological model input data files for AERMOD – the surface (*.SFC) file and upper air profile (*.PFL) file. The surface data file contains boundary layer scaling parameters, such as surface friction velocity, mixing height, and Monin-Obukhov length, and reference-height winds and temperature. The upper air profile data file contains one or more levels of winds, temperature and the standard deviation of the fluctuating components of the wind.

In selecting whether to process the seasonal surface characteristics determined by AERSURFACE for the "average", "wet", or "dry" surface moisture condition, the annual precipitation as measured at the MCN NWS ASOS station for each year of data being processed was compared to the 30-year (1971-2000) climatological record. US EPA recommends selecting "wet" conditions if precipitation is in the upper 30th-percentile, "dry" conditions if precipitation is in the lower 30thpercentile, and "average" conditions if precipitation is in the middle 40th-percentile (US EPA 2008). Table 6.3.3.4-1 summarizes the upper, lower, and middle percentile precipitations measured at the MCN NWS surface station for the 1971-2000 period in comparison to the annual precipitation for each year of data being processed (NOAA The annual amount of precipitation for each year was 2004). determined from data provided by the Peachtree City NWS WSFO, available online at http://www.srh.noaa.gov/ffc/?n=rainfall scorecard.

Table 6.3.3.4-1	Upper, Lower Precipitation Station, 1971-	r, and Middle Percen (in.) for Macon NWS 2000	tile Annual S Surface
Time Period	Lower 30th- Percentile ("dry")	Middle 40th- Percentile ("average")	Upper 30th- Percentile ("wet")
1971-2000	< 41.34"	41.34" – 48.18"	> 48.18"
2005		47.43	
2006	34.62		
2007	39.71		
2008		48.14	
2009			61.54

Based on the precipitation data presented in Table 6.3.3.4-1, "dry" was selected in processing calendar years 2006 and 2007, "average" was selected in processing calendar years 2005 and 2008, and "wet" was selected in processing calendar year 2009. The surface (*.SFC) and upper air profile (*.PFL) data files created by AERMET are also provided in the electronic files ("\AERMET\MCN NWS" and "\AERMET\CARBO") enclosed in Attachment A.

6.3.4 <u>Meteorological Dataset Completeness</u>

Regulatory analyses for NAAQS and PSD increments involve the sequential application of AERMOD, or another preferred regulatory model, to every hour in the period of analysis. As such, these analyses require meteorological records for each hour in the analysis period. In order to be acceptable for use in regulatory modeling applications, the meteorological data base must be 90% percent complete. Due to implementation of the METAR coding used to report surface observations at NWS ASOS stations during the mid-1990's, a high incidence of calm, variable, and missing wind conditions have been reported in the archived data files. Currently, AERMOD cannot simulate dispersion for calm or missing wind conditions – the model will calculate a zero for the concentration predicted. Because of this, the surface file used for the dispersion modeling analyses may not meet the 90% completeness requirement, even after merging 1-min ASOS winds. Therefore, each year of meteorology processed in AERMET was evaluated for completeness to determine its acceptability for NAAQS and PSD increment analysis.

In order to determine the completeness of the five year meteorological database, the variables wind direction, wind speed, temperature, stability (heat flux, boundary layer height, and Monin-Obukhov length), and joint wind direction, wind speed, and stability were evaluated for completeness on

a quarterly basis (US EPA 2000). For a given hour, wind speed was considered missing if "999" was reported in the surface file or if a "0" was reported in the surface file and "999" was reported for the same hour in the AERMINUTE 1-min ASOS winds HOURFILE. The same approach was used for wind direction. This method ensures that valid calm hours determined by AERMINUTE are not counted as missing. Temperature was considered missing if "999" was reported in the surface file. For stability, this variable was determined to be missing if the hour was not calm or variable and (1) heat flux was missing, (2) heat flux was positive and the convective boundary layer height or Monin-Obukhov length was missing, or if (3) heat flux was negative and the stable boundary layer height or Monin-Obukhov length was missing. These stability parameters may be missing due to missing temperature, cloud cover or morning soundings. Tables 6.3.4-1 through 6.3.4-5 summarize the completeness of each year of meteorology using this procedure on a quarterly basis. The number of valid calm, invalid calm, and variable wind conditions are also reported each year.

	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter	Annual
WSPD (Wind speed)	96.99%	96.16%	96.02%	96.94%	96.58%
WDIR (Wind direction)	96.71%	95.69%	95.09%	96.67%	96.10%
TMPD (Temperature)	100.00%	100.00%	100.00%	99.95%	99.99%
Stability	97.87%	99.31%	99.40%	99.07%	98.93%
Joint (WSPD, WDIR, Stability)	94.58%	95.00%	94.49%	95.74%	95.02%
Number of valid calms		533			
Number of invalid calms		300			
Number of variable winds		42			

	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter	Annual
WSPD (Wind speed)	90.05%	98.38%	98.52%	98.89%	96.51%
WDIR (Wind direction)	<u>89.35%</u>	97.45%	97.87%	98.89%	95.95%
TMPD (Temperature)	98.24%	98.70%	99.44%	98.52%	98.74%
Stability	98.06%	97.78%	97.18%	96.44%	97.40%
Joint (WSPD, WDIR, Stability)	<u>87.41%</u>	95.23%	95.05%	95.32%	93.34%
Number of	valid calms	584			
Number of invalid calms		295			
Number of var	iable winds	49			

Table 6.3.4-2	Calendar	Year	2006	Meteoro	logical	Dataset	Comp	leteness
					0			

 Table 6.3.4-3
 Calendar Year 2007 Meteorological Dataset Completeness

	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter	Annual
WSPD	00.000/	07.00%	00.000/	07.000/	00.45%
(Wind speed)	98.38%	97.96%	98.33%	97.92%	98.17%
WDIR					
(Wind direction)	98.19%	97.41%	98.10%	97.73%	97.89%
TMPD					
(Temperature)	98.38%	98.80%	96.53%	97.50%	97.83%
Stability	98.56%	97.36%	95.88%	96.76%	97.18%
Joint					
(WSPD, WDIR,					
Stability)	96.76%	94.77%	93.98%	94.49%	95.07%
Number of valid calms		293			
Number of invalid calms		114			
Number of varia	able winds	25			

	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter	Annual
WSPD (Wind speed)	97.99%	97.07%	97.07%	96.11%	97.07%
WDIR (Wind direction)	97.85%	96.93%	96.66%	96.11%	96.90%
TMPD (Temperature)	97.39%	98.49%	97.62%	100.00%	98.38%
Stability	96.75%	97.12%	96.61%	100.00%	97.63%
Joint (WSPD, WDIR, Stability)	94.60%	94.05%	93.27%	96.11%	94.54%
Number of valid calms		0			
Number of invalid calms		212			
Number of variable winds		15			

 Table 6.3.4-4
 Calendar Year 2008 Meteorological Dataset Completeness

Table 6.3.4-5 Calendar Year 2009 Meteorological Dataset Completeness

	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter	Annual
WSPD	00.000/	00.040/	00.00%	00.000/	05.000/
(Wind speed)	96.20%	98.84%	96.02%	96.90%	97.03%
WDIR					
(Wind direction)	95.56%	98.75%	95.79%	96.76%	96.76%
TMPD					
(Temperature)	99.26%	99.12%	97.04%	99.03%	98.63%
Stability	99.12%	98.84%	97.41%	98.80%	98.56%
Joint					
(WSPD, WDIR,					
Stability)	94.68%	97.59%	93.19%	95.56%	95.32%
Number of valid calms		0			
Number of invalid calms		212			
Number of variable winds		24			

As shown in the above tables, all meteorological variables evaluated were determined to meet the quarterly 90% completeness requirement, except for wind direction and joint wind direction, wind speed, and stability in the first quarter of 2006. In order to obtain the 90% goal, calendar year 2006 was reprocessed using data from the MCN NWS ASOS station as "onsite" data with surface data from the Warner Robins Air Force Base (WMO #722175; WBAN #13860; Call Sign KWRB, or "WRB") used "backup" as suggested by GA EPD for a previously proposed PSD project. Meteorological variables are not considered missing if they are obtained from a "backup" monitor and may be used to meet the completeness requirement.

6.3.5 <u>Processing ASOS Station as "Onsite" with NWS Data as "Backup"</u>

In order to process the MCN NWS ASOS station as "onsite" data, the meteorological variables wind speed, wind direction, temperature, station pressure and total sky cover were extracted from the 2006 surface file data and compiled into a FORTRAN free format file for Stage 1 AERMET processing. The data were extracted from the surface file, as opposed to the raw or abbreviated ISHD data, to be sure that the onsite data used are the exact same data that AERMET extracted from the raw surface file using the 30 minute window preceding the end of each hour - the raw surface data contain a variable number of observations per hour and AERMET requires a fixed number for processing onsite data. Additionally, since onsite data are given are higher priority than 1-min ASOS winds and NWS data in AERMET, using the raw ISHD surface data as onsite data will not allow AERMET to substitute 1-min ASOS winds unless the data are coded as missing and will not apply the truncated wind speed adjustment for ASOS based wind measurements during Stage 3 processing. For these reasons, the 2006 surface file, which already contains the merged and adjusted ASOS winds, was used to create the free formatted onsite data file for processing.

Using data from the surface file, a multilevel onsite data file was constructed – one level for dry bulb temperature (variable TT01) at the 2 m reference measurement height and a second level for wind speed (WS02), wind direction (WD02), station pressure (PRES), and total sky cover (TSKC) at the 10 m reference measurement height. Temperature was specified in units of Celsius with threshold lower and upper bounds of -30°C and 40°C, respectively, with missing data coded as "99". Wind speed was specified in units of meters per second with threshold lower and upper bounds of 0 m/s and 50 m/s, respectively, with missing data coded as "999". Wind direction was specified in units of degrees with threshold lower and upper bounds of 0° and 360°, respectively, with missing data coded as "999". Station pressure was specified in units of 10*mbar and total sky cover was specified on the range of 0 to 10 tenths. Specification of the variables in this manner is consistent with the nomenclature and quality assurance indicators for onsite

data in Tables B-3a and B-3b of the AERMET user manual. A threshold wind speed of 0.2 m/s was also specified, which is the minimum allowable wind speed used by AERMET to estimate the boundary layer parameters. Otherwise, the hour is treated as calm.

In order to process WRB as the "backup" for the MCN "onsite" data through the various stages of AERMET, an identifier, latitude, longitude, elevation and factor to convert the time of each record to local standard time (LST) must be specified for the surface station and upper air station. Table 6.3.5-1 provides a summary of the identifying information used in AERMET processing.

Table 6.3.5-1 WRB NWS Surface Station Identifying Information for AERMET Processing

	Site	Identifier	LAT LONG (decimal degrees)	Elevation	Time Conversion
	Warner Robins Air Force Base	99999**	32.633N, 83.600W	90 m (295 ft)	5* (EST)
*	TT] (' 'C'] C	1 1.1.1.0		PODI POI	C 1

The time specified for each record in both the NCDC ISHD and NOAA/ESRL FSL surface and upper air data files are specified in Greenwich Mean Time (GMT)

* Previously WBAN 13860; WMO number is 722175

For Stage 1 processing, the threshold upper bound for the dry bulb temperature variable (TMPD) for WRB was also modified to 40°C (104°F) from 35°C (95°F) to increase the number of temperature observations accepted by AERMET. Using WRB as backup also required specifying secondary site surface characteristics in the Stage 3 input file. NLCD92 data for WRB were processed through AERSURFACE for the dry surface moisture condition using the same options as MCN except that the latitude and longitude specified with the identifying information listed in the table above were used. The surface roughness of WRB is applied to estimate boundary layer parameters when AERMET substitutes WRB wind data for calm or missing onsite data. Currently, albedo and Bowen from the primary set of surface characteristics, MCN, are used in all cases. For the meteorological data representing the surface roughness of the project site, the seasonal values of albedo, Bowen, and surface roughness for the project site were used for both the primary and secondary values.

In performing the processing, the 2006 dataset for the airport sites was processed first with the merge file created in Stage 2 processing used to process the dataset for project site. All input, message, and report data files created by AERMET during Stage 1, 2, and 3 processing, the ISHD and AERSURFACE files, and free format MCN onsite data file are contained in the onsite processing folders ("\2006 ONSITE\) provided in the electronic files ("\AERMET 11059\CARBO\" and "\AERMET 11059\KMCN\") enclosed in Attachment A. When comparing the initial surface files to the surface files reprocessed with WRB, the files are essentially identical except for those

hours where wind speed, wind direction, temperature, and/or cloud cover were used as backup for data missing from the MCN onsite file. The primary differences between the two files are the precipitation codes, precipitation amounts and relative humidity, which are not important for the modeling analyses since they are only relevant when using AERMOD's deposition algorithms. Table 6.3.5-2 summarizes the completeness of year 2006 after using WRB as backup for MCN.

Table 6.3.5-2	Calendar Year 2006 Meteorological Dataset Completeness using
	WRB as "Backup" for MCN NWS ASOS "Onsite"

	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter	Annual
WSPD (Wind speed)	96.67%	99.07%	99.54%	98.98%	98.58%
WDIR (Wind direction)	94.17%	98.66%	99.44%	98.98%	97.84%
TMPD (Temperature)	99.40%	99.26%	99.91%	99.63%	99.55%
Stability	99.31%	98.84%	98.80%	98.75%	98.94%
Joint (WSPD, WDIR, Stability)	93.47%	97.50%	98.24%	97.73%	96.78%
Number of valid calms		350	· · · · ·		
Number of invalid calms		123			
Number of variable winds		65			

As shown in the above table, after reprocessing MCN as onsite with WRB as a "backup", the variables wind direction and joint wind direction, wind speed, and stability in the first quarter of 2006 meet the 90% completeness requirement for regulatory dispersion modeling applications.

6.3.6 Determination of Data Representativeness

As previously discussed, the values for surface characteristics input into AERMET should be based on the land cover in the vicinity of the NWS surface station and be representative of the modeling domain. This is to help ensure that boundary layer parameters used by AERMOD adequately characterize atmospheric dispersion of the source area. If the representativeness of a meteorological dataset is uncertain based on the results of the surface characteristics comparison, a site-specific sensitivity analysis should be conducted to determine the degree to which predicted pollutant concentrations are influenced by differences in surface parameters.

Since the absolute and relative percent difference in seasonal surface roughness length values between the airport and project sites were large, CARBO will apply AERMOD using both five-year meteorological datasets in the preliminary impact analysis to determine the importance of this difference in surface characteristics relative to changes in the predicted pollutant concentrations for each averaging period of interest. The meteorological dataset that results in more conservative air quality impacts for a given pollutant and averaging period will be used to determine the design concentrations for the NAAQS and PSD increments.

6.4 Good Engineering Practice Stack Height and Building Downwash

As specified in Section 6.2.2 and the Guideline, credit for emissions reductions achieved by using a stack with a height in excess of what is considered to be Good Engineering Practice (GEP) is prohibited. GEP stack height, as measured from the base elevation of a stack, is defined in 40 CFR 51.100(ii) and the US EPA technical support document for the stack height regulations as the greater of 213 feet (65 meters) or the stack height determined based on the dimensions of nearby structures ("refined formal height") or EPA approved fluid model studies (US EPA 1985).

US EPA has created software applications to determine the GEP stack height based on the refined formula and the appropriate building downwash dimensions for input into both ISC3 and AERMOD. However, GA EPD does not require applicants to consider downwash when determining the MGLC for TAP using ISC3. The most recent version (v04274) of the Building Profile Input Program for the PRIME (BPIPPRM) software application will be used to determine the GEP height and wind direction-specific downwash dimensions and the dominant downwash structures for each stack for use in the AERMOD input control files. All data generated by BPIPPRM in processing stack heights and building and tank dimensions for the existing and proposed new processing lines are provided in the electronic files ("\BPIPPRM") enclosed as Attachment A.

6.5 Coordinate System

For the air quality analyses, the location of all source, building corner and receptors locations will be specified in the Universal Transverse Mercator (UTM) coordinate system in the North American Datum of 1983 (NAD83).

6.6 Receptors

Receptors are locations where ambient air concentrations are calculated by the dispersion model. Generally, the receptor grid must be of sufficient size and density to ensure that the dispersion pattern can be adequately characterized and the maximum ambient impact for the averaging period(s) of interest has been determined. Additionally, receptor grids may be of refined (100-meter spacing) or

coarse (greater than 100-meter spacing) grid densities. For the PSD air quality analyses, the final extent of the receptor grid(s) used for each pollutant will be determined based on results obtained from the preliminary impact analysis. At a minimum, 100-meter spaced receptors will be placed along the facility property boundary with a refined Cartesian receptor grid extending outward in all directions to a distance of 5 km. If necessary, this refined Cartesian receptor grid will be supplemented by coarse Cartesian grids of 250-meter spaced receptors out to a distance of 10-km and 1,000 meter spaced receptors out to a distance of 50 km. If design concentrations or violations of the NAAQS or PSD increment are predicted at receptors in the coarse grids, the air quality impact will be resolved to the nearest 100 meters. The receptor that represents the endpoint for the radius of the SIA for each pollutant will also be resolved to 100 meters.

6.7 Elevation Processing

The most recent version of AERMAP (v11103) supports processing terrain elevations extracted from the USGS National Elevation Dataset (NED) in the GeoTIFF format. The NED elevation data are currently available for the conterminous United States, Hawaii, Puerto Rico, and the Virgin Islands at a horizontal resolution of one arcsecond (approximately 30-meters) and at a resolution of two arc-seconds for Alaska. Higher resolution, 1/3 arc-second (approximately 10-meters) data are available for most areas outside of Alaska. US EPA has encouraged users of AERMOD to transition from the Digital Elevation Model (DEM) files to the NED as soon as practical since the DEM data will not be updated in the future and the NED are being actively supported and quality assured by the USGS. Additionally, problems that should be avoided by using the NED data but have been reported with the DEM data include incorrect geo-referencing information for entire DEM files and elevations that reflect the tops of buildings and trees. The NED data represent the ground elevation, which is a more appropriate input for determining receptor elevations and hill height scales for use in AERMOD. For these reasons, receptor-specific terrain-influence heights and source and receptor elevations will be determined by processing NED data in AERMAP for input into AERMOD. The same elevations will also be used for input into ISC3 for the toxic impact assessment.

USGS NED data files at 1 arc-second resolution were obtained from the USGS National Map Seamless Server, available online at <u>http://seamless.usgs.gov/</u>, and are provided in the in the electronic files ("\NED") enclosed as Attachment A. The extent of the NED data obtained is shown in Figure 6.7-1.

Figure 6.7-1 Extent of National Elevation Data Set Domain

REFERENCES

- Auer, Jr., A.H., 1978. <u>Correlation of Land Use and Cover with Meteorological</u> <u>Anomalies.</u> Journal of Applied Meteorology, 17(5): 636–643.
- Energy Information Association (EIA) 2001. <u>The Transition to Ultra-Low Sulfur</u> <u>Diesel Fuel: Effects on Prices and Supply.</u> May.
- Georgia Environmental Protection Division (GA EPD) 1998. <u>Guideline for Ambient</u> <u>Impact Assessment of Toxic Air Pollutant Emissions (Revised).</u> Air Protection Branch. June 21.
- GA EPD 2006. <u>Georgia Air Dispersion Modeling Guidance (Revised).</u> Air Protection Branch. December 1.
- GA EPD 2008. <u>Procedure to Calculate a Facility's Potential-to-Emit and Determine</u> <u>its Classification (Revised).</u> Air Protection Branch. August 26.
- GA EPD 2010. <u>Ambient Air Monitoring Plan.</u> Air Protection Branch. May.
- National Oceanic and Atmospheric Administration (NOAA) 2004. <u>Climatography of</u> <u>the United States No. 20 – Monthly Station Climate Summaries, 1971-2000.</u> <u>February.</u>
- National Park Service (NPS) 2010. <u>Federal Land Managers' Air Quality Related</u> <u>Values Work Group Phase I Report – Revised (2010).</u> Natural Resource Report NPS/NRPC/NRR—2010/232. United States Department of Interior. October.
- South Coast Air Quality Management District (SCAQMD) 2006. Methodology to Calculate Particulate Matter (PM_{2.5}) and PM_{2.5} Significance Thresholds. October.
- U.S. Environmental Protection Agency (US EPA) 1980. <u>A Screening Procedures for</u> <u>the Impacts of Air Pollution Sources on Plants, Soils, and Animals.</u> EPA-450/2-81-078. December 12.
- US EPA 1985. <u>Guideline for Determining Good Engineering Practice Stack Height</u> <u>(Technical Support Document for the Stack Height Regulations).</u> EPA-450/4-80-023R (Revised). June.
- US EPA 1988. <u>Air Quality Analysis for Prevention of Significant Deterioration</u> (PSD). Emison, Gerald A. July 5.
- US EPA 1990. <u>New Source Review Workshop Manual Prevention of Significant</u> <u>Deterioration and Nonattainment Area Permitting (Draft).</u> October.

REFERENCES

- US EPA 1992. <u>Workbook for Plume Visual Impact Screening and Analysis (Revised).</u> EPA-454/R-92-023. October.
- US EPA 2000. <u>Meteorological Monitoring Guidance for Regulatory Modeling</u> <u>Applications.</u> EPA-454/R-99-005. February.
- US EPA 2005. <u>Guideline on Air Quality Models.</u> 40 CFR Part 51 Appendix W. 70 FR 68218 68261. November 9.
- US EPA 2004. <u>Final Regulatory Analysis: Control of Emissions from Nonroad Diesel</u> <u>engines.</u> EPA-420/R-04-007. May.
- US EPA 2004a. <u>Control of Emissions of Air Pollution from Nonroad Diesel Engines</u> <u>and Fuel.</u> 40 CFR Parts 9, 69, et. al. 69 FR 38958 – 39273. June 29.
- US EPA 2007. <u>Prevention of Significant Deterioration for PM_{2.5} Increments,</u> <u>Significant Impact Levels (SIL's) and Significant Monitoring Concentrations</u> <u>(SMC's).</u> 40 CFR Parts 51 and 52. 72 FR 54112 – 54156. September 21.
- US EPA 2008. <u>AERSURFACE User's Guide</u>. EPA-454/B-08-001. January.
- US EPA 2009. <u>AERMOD Implementation Guide (Revised)</u>. March 19.
- US EPA 2010. <u>Notice Regarding Modeling for New Hourly NO₂ NAAQS.</u> February 25.
- US EPA 2010a. <u>Modeling Procedures for Demonstrating Compliance with PM_{2.5}</u> <u>NAAQS.</u> Page, Stephen. Office of Air Quality Planning and Standards. Mach 23.
- US EPA 2010b. <u>Applicability of Appendix W Modeling Guidance for the 1-hour NO₂</u> <u>National Ambient Air Quality Standard.</u> Fox, Tyler. Office of Air Quality Planning and Standards. Air Quality Modeling Group. June 28.
- US EPA 2010c. <u>Guidance Concerning the Implementation of the 1-hour NO₂ NAAQS</u> <u>for the Prevention of Significant Deterioration Program.</u> Page, Stephen. Office of Air Quality Planning and Standards. June 29.
- US EPA 2010d. <u>Applicability of Appendix W Modeling Guidance for the 1-hour SO₂</u> <u>National Ambient Air Quality Standard.</u> Fox, Tyler. Office of Air Quality Planning and Standards. Air Quality Modeling Group. August 23.

REFERENCES

- US EPA 2010e. <u>Guidance Concerning the Implementation of the 1-hour NO₂ NAAQS</u> <u>for the Prevention of Significant Deterioration Program.</u> Page, Stephen. Office of Air Quality Planning and Standards. August 23.
- US EPA 2010f. <u>Prevention of Significant Deterioration for PM_{2.5} Increments,</u> <u>Significant Impact Levels (SIL's) and Significant Monitoring Concentrations</u> <u>(SMC's).</u> 40 CFR Parts 51 and 52. 75 FR 64864 – 64907. October 20.
- US EPA 2011. <u>Additional Clarification Regarding Application of Appendix W</u> <u>Modeling Guidance for the 1-hour NO₂ National Ambient Air Quality</u> <u>Standard.</u> Fox, Tyler. Office of Air Quality Planning and Standards. Air Quality Modeling Group. March 1.

Volume III, Attachment B –

Agency Correspondence Relating to the Class II Dispersion Modeling Protocol

SMITH ALDRIDGE, INC.

P:\Carbo Ceramics\Millen\2010-07 Lines 5-8 PSD Permit App\Volume III- Modeling + Toxics\Vol III Attachment Covers.doc

Georgia Department of Natural Resources

Environmental Protection Division • Air Protection Branch

4244 International Parkway • Suite 120 • Atlanta • Georgia 30354 404/363-7000 • Fax: 404/363-7100 Mark Williams, Commissioner F. Allen Barnes, Director

July 27, 2011 Mr. John Bandzul Smith Aldridge, Inc. P.O. Box 420485 Atlanta, GA 30342

Forwarded to: Jbandzul@SmithAldridge.com

Subject: Review of PSD Air Dispersion Modeling Protocol CARBO-Greenfield Site, Millen, Jenkins Co., Georgia

Dear Mr. Bandzul:

We have reviewed the air quality dispersion modeling protocol dated July 19, 2011, which addresses the proposed modeled conformance of CARBO Ceramics, Inc. (CARBO) kaolin processing facility in Jenkins County, Georgia with applicable air quality standards. We find that it generally conforms to the procedures and guidelines we use to assess Prevention of Significant Deterioration (PSD) modeling projects. However, we do have the following comments:

Since the protocol was received, we have received copies of your FLM communications with the US
Fish & Wildlife Service and the US Forest Service, confirming an interest in Air Quality Related Value
Assessments in the former. We understand you have not heard confirmation of such a requirement for
the Shining Rock Wilderness Area. We look forward to receipt of your Class I area Modeling Protocol.
We anticipate that it will include the Shining Rock Class I area, if required. Please continue to copy GA
EPD on any FLM communications.

As discussed on the April 5, 2011 conference call, EPA/EPD retain purview over Class I Increment consumption, so both agencies should get a copy of any project correspondence you may have with any FLM. In addition, if the project is not required to assess Air Quality Related Values at any Class I area (such as Shining Rock), you may wish to contact EPD for Class I Significance screening procedures involving AERMOD. If such screening modeling indicates the project will exceed applicable Significance levels at Shining Rock, such screening modeling must be repeated using CALPUFF, which should be addressed in the Class I Area Modeling Protocol that you are preparing. GA EPD does not expect your project to consume, or model any Class I PM2.5 Increment or Significance. For issues with Class I AQRV assessment, refer to the FLAG-2010 AQRV Work Group Phase I Report, or consult the applicable FLM. For issues with Class I Increment, refer to the Interagency Workgroup on Air Quality Modeling (IWAQM) Phase 2 Summary Report and Recommendations for Modeling Long Range Transport Impacts, 1998, or consult the GA EPD modeling unit.

2. Class II Meteorological Data: Based on the preliminary meteorological representation results you shared with us on 7/26/11, we believe you should conduct any further Class II impacts modeling with the Daniel Field/Peachtree City 2006-2010 data set based on the surface characteristics of the Daniel Field National Weather Service (NWS) station. GA EPD processed hourly meteorological observations collected at Daniel Field using the recently promulgated, final versions of AERMINUTE and AERMET (both versions 11059), incorporating the once daily upper air observations of the Peachtree City NWS station. The data were processed using AERSURFACE (version 08009) outputs for the wet, dry, and average moisture conditions, by season and 30° sector in accordance with the AERMOD Implementation Guidance (3/19/08). Two sets of meteorological data were compiled, one for the surface characteristics of the NWS site, and one for the characteristics of the CARBO project site.

While the AERSURFACE outputs were similar for values of albedo and Bowen ratio, and generally similar for surface roughness, the ratio of surface roughness values by sector consistently indicated a pair of sectors to have ratios in excess of 10. For this reason, the EPA Region 4 modeling-based method of demonstrating representation was invoked.

You have conducted significance modeling with both sets of meteorological data for SO2, NO2 (using PVMRM), PM10, PM2.5, and CO. The results showed higher maximum short-term impacts for each pollutant were predicted using the NWS-characteristics data set. The results also indicated slightly higher maximum annual average impacts for each pollutant were predicted using the site characteristics. During our meeting of 7/26/11, we decided that:

a. The short-term impacts are usually the basis for model-derived permit limits.

b. The surface characteristics of the NWS set are those which actually influenced the data collected. For these reasons, GA EPD authorized you to complete the air quality assessment using the meteorological data set compiled with the NWS station surface characteristics.

- 3. Offsite Inventory Preparation: Please provide (in the modeled air quality assessment) dimensions and/or alternate emission source characteristics for any fugitive sources modeled, and indicate how such dimensions are represented in the model(s). Please document all sources of information used to compile any offsite inventories compiled for the project. Please carefully distinguish between NOx and NO₂, and provide your definition of NO₂, in the air quality modeling report. GA EPD believes extent of the offsite inventory should be based on the significant impact distance plus 50km, as indicated in the Draft 1990 NSR Workshop Manual. For pollutants and averaging periods addressed in that guidance, the offsite inventory may be reduced using the 20D screening technique. For PM2.5, all facilities in the post-20D PM10 offsite inventory should be inventoried for emissions of PM2.5. Examination of the original basis for the 20D screening technique suggests that application of the method to PM2.5 screening is acceptable (based on approximation of the PM2.5 SILs and the tabulated impacts), if:
 - a. the technique is changed to 2D,
 - b. D is defined consistently as the distance (in km) from the source to the offsite facility, and
 - c. PM2.5 annual (tpy) emission rates are used.

EPA has indicated (1-hr NO2 guidance memo dated 3/1/11) that the minimum extent of the modeled offsite inventory is defined by the Array of Significant Receptors (ASRs). GA EPD accepts the ASR for this purpose. If the ASR is not refined to 100m resolution, then GA EPD accepts the ASR for this purpose if it is buffered by the addition of receptor locations (not to exceed 500m resolution) at which concentrations of 7 μ g/m³, or above, have been predicted during significance modeling. Refined modeling for the 1-hr standards must be conducted to the ASR locations, or the ASR+buffer locations, as applicable.

The maximum extent of 1-hr pollutant offsite inventories is determined by identifying the fastest wind speed in the project meteorological data set, and converting that speed to the appropriate transport distance:

Wind speed (m/s) * 3600 s/hr * 1 km/1000 m) = transport distance per hour

GA EPD allows refinement of this maximum inventory extent using a 16-sector wind rose, as follows:

- a. Use Lakes Environmental's WRPLOT freeware (or equivalent) to develop a wind rose based on the entire project meteorological data set.
- b. Using wind speeds in meters-per-second, identify the sectors with undefined (designated ">") wind speed for the maximum wind speed class.
 - i. Adjust the minimum wind speed for this fastest class until the fastest wind speed is resolved.
 - ii. Repeat for all sectors with maximum wind speeds designated as ">".
- c. Use the class upper bound speed for sectors with designated class wind speeds.

- d. Convert the fastest wind speed, or wind speed class upper bound to the appropriate transport distance for each sector.
- e. Eliminate all sources beyond this maximum transport distance from the project in each sector.
- f. This transport distance screening technique cannot be applied to sources lying within the ASR, or ASR+buffer, as applicable.

Significance modeling may predict concentrations in excess of the 1-hr SILs or 7 μ g/m³ at selected receptors which are not adjacent to the main ASR, or ASR+buffer, respectively. Such outlier locations are assumed to be continuous with the main ASR or ASR+buffer for purposes of refined model receptor locations, and defining the minimum extent of the offsite inventory. However, outlying receptors with concentrations in excess of the SILs or 7 μ g/m³ may be excluded from refined modeling if they lie farther from the source than the fastest 1-hr transport distance in their wind sector.

4. Air Toxics: Air toxics modeling should be conducted in accordance with the GA EPD Guideline for Ambient Impact Assessment of Toxic Air Pollutant Emissions, 1998. Air toxics modeling may use either AERMOD, version 11059, with downwash, or ISCST3, version 02035 without downwash. Air toxics model receptors should extend to at least 2 km outward from the project site, and there must be sufficient receptors to resolve the Maximum Ground-Level Concentration (MGLC). If any receptors are located at terrain elevations in excess of the lowest stack height in the model, AERMOD must be used to assess impacts at those receptors. If the ISCST3 model (version 02035) is used for air toxics, with receptors assigned terrain elevations, use the Macon/Waycross meteorological data set downloadable from the georgiaair.org website for ISCST3 modeling. A concatenated 5-yr meteorological data set may be used to assess 1-hr, 24-hr, and/or PERIOD (instead of annual) averaging periods. In this way, EPD expects a single model run for each toxic impact requiring refined modeling. The SCREEN3 model should not be used without specific justification, due to the number of sources and the range of source emission characteristics at the site. The air toxics modeling must be conducted to involve all onsite sources of the same pollutant. Georgia EPD no longer requires derivation of Acceptable Ambient Concentrations (AACs) from NIOSH LD₅₀ threshold concentration data.

The EPD Permitting Program advises that the same pollutants modeled with the last CARBO PSD/112(g) permit are the specific air toxics to be assessed. The Permitting Program will also review and, if acceptable, approve your on- and off-site emissions inventories, including PM2.5 and SO2 emissions. On page 14 of the protocol, you indicate you may not be able to locate sufficient information to model selected sources, and wish to use "average" data for missing emission data. We would prefer that you identify the missing information and allow EPD the opportunity to provide the information to you or confirm that it is missing and approve your specific missing data handling technique.

5. Actual Class II criteria pollutant dispersion modeling should use the 11103 version of AERMOD. Standards (referred to here as pre-2008) discussed in the draft 1990 New Source Review Workshop Manual should be evaluated using that guidance. Other, more recent standards (post-2007, ie., 1-hr NO2, 1-hr SO2, and PM2.5) should be evaluated considering the guidance memos listed on page 63 of the updated AERMOD User's Guide. We have provided a discussion of methods we believe to be allowable based on the latter guidance in paragraph 3 of this protocol approval letter. As provided in the AERMOD User's Guide, any DEFAULT option may be employed in the modeling. Use of Non-Default options is subject to individual approval, preferably from EPA. You will shortly receive a letter from the EPA Region 4 Dispersion Modeling contact in which he, as I understand it, will provide approval of your use of the Beta-(and non-Default) PVMRM algorithm, contingent on certain conditions being met.

The largest Significant Impact Distance (SID) for each pollutant, regardless of time-averaging period, plus 50 km, will establish the size of any model screening area to be inventoried for offsite sources of that pollutant (PM2.5, PM10, SO₂, or NO₂) for cumulative modeling. The "20D", or for PM2.5, the "2D" screening technique may be used for eliminating sources from all but the 1-hr averaging period

models, but the screening should be conducted using both a short-term "d" and a long-term "D", except for PM2.5. No source located within the pollutant-specific largest Significant Impact Areas (SIAs) may be screened from the cumulative inventory. As discussed in paragraph 3, above, 1-hr NO2 and SO2 inventories will be developed based on other criteria, so the pollutant-specific largest SIA for these pollutants refers only to pre-2008 time-averaging periods. When applying the 20D or 2D screening methods, the pollutant-specific emissions of facilities within 2 km of each other outside the SIA should be added prior to applying the screening test.

- 6. PM2.5 Modeling: EPD expects CARBO to conduct refined PM2.5 modeling for NAAQS (only). At this time, EPD is not aware of PM2.5 modeling techniques acceptable to EPA other than those outlined in the Stephen Page guidance memo of 3/23/10. We understand you propose to add a 50km screening annulus to your maximum PM2.5 SID in order to develop an offsite PM2.5 inventory. Offsite sources may be screened from refined modeling using the "2D" technique, though no sources may be screened which are located within the SIA
- 7. Increment Issues: The Jenkins Co. Air Quality Control Region minor source baseline date for annual NO2 is 5/5/88, and was set statewide on that date. The facility will not be required to assess PM2.5 Increment consumption by this project (if the application is deemed complete by 10/20/11), based on the submittal of the application in advance of the earliest possible PM2.5 trigger date. When deemed a complete application, this CARBO project's emissions will set the minor source baseline dates for PM and SO2 in Jenkins Co., and , with annual NO2 project emissions, consume such Increment.
- 8. Ambient Concentrations: The project background 1- and 8-hr background ambient concentrations of CO are 943 and 802 μg/m³, respectively. The annual NO₂ background ambient concentration is 5.2 μg/m³. The 1-hr NO₂ background ambient concentration (2008-2010) is 33.24 μg/m³, based on the March 1, 2011 EPA memo requiring the 98th %-ile of the daily maximum 1-hr concentration over a 3-yr period to be used for this purpose. The 24-hr annual average of the daily 98th percentile concentrations of PM2.5 at Bungalow Rd, Augusta ('08-'10) is 25.0 μg/m³, the annual average PM2.5 concentration at Bungalow Rd, Augusta ('08-'10) is 12.7 μg/m³. The:

1-hr SO₂ ambient concentration (Macon SE, 2008-2010) is 67.2 μ g/m³. The 3-hr SO₂ ambient background (same monitor and period) is 51.48 μ g/m³, the 24-hr SO₂ ambient background (same monitor and period) is 16.75 μ g/m³, the annual average SO₂ ambient background (same monitor and period) is 3.89 μ g/m³.

The PM10 regional background ambient concentrations for 24-hr and annual are 38 and 20 μ g/m³, respectively. You indicated you may wish to employ a concurrent PM2.5 hourly ambient background concentrations in the modeling of that pollutant. A 2008-2010 file of such concentrations is available on request.

- 9. General Modeling considerations: Please use the applicable procedure cited in the current version of the AERMOD Implementation Guide to address any horizontal emissions and/or rain-capped stacks in the models. Please use BPIPPrm (version 04274) to assess building downwash dimensions and GEP stack heights. Stacks of heights equal to, or in excess of GEP height should be modeled using the GEP height. Stacks below GEP height must be modeled to assess building downwash influences on their plumes. Please use AERMAP (version 11103) to assess all model receptor elevations above sea level with the USGS NED database (all model coordinates, including building corners, should be referenced using the NAD83 datum). Please assess source elevations using AERMAP, if appropriate. For all criteria pollutant modeling, please use AERMOD (version 11103).
- 10. Model Receptors: For the pre-2008 air quality standards and PM2.5, the extent of the receptors modeled should be at least that which was agreed upon during the 7/25/11 pre-PSD meeting. All design

concentrations should ultimately be resolved to the nearest 100 meters. The SID receptors should have at least one 100-m spaced receptor located farther from the project than the farthest receptor showing a concentration greater than or equal to the respective SIL. For the 1-hr air quality standards, see the discussion detailed in paragraph 3 as regards receptor placement.

- 11. Additional Impacts:
 - a. All additional impacts studies will be limited to no more than the largest significant impact distance from the project site based on pre-2008 (excluding PM2.5) standards. Additional impacts studies do not include National Monuments, or National Parks, unless specifically requested by a Federal Land Manager.
 - b. On the basis of Tables 2.1.1-1 and 2.1.2-1, six airports, and two state parks, or less depending on the largest 24-hr PM10 or annual NO2 SIA, should be assessed for visible plume impacts using the VISCREEN model, User's Guide, and Tutorial.
 - c. Only four trace elements, Cu, B, V, and Zn are included in EPA's 1980 publication, "A Screening Procedure for the Impacts of Air Pollution Sources on Plants, Soils, and Animals" which are not included on the Hazardous Air Pollutants list of Title 3 of the 1990 Clean Air Act Amendments. Additional impacts assessments of those four elements, and the criteria air pollutants should be conducted in accordance with that guidance, or more recent literature. Note that EPA has proposed modifications of the secondary SO2 and NO2 standards which are projected to be final around March 20, 2012.
 - d. Please include a discussion, and if warranted, an assessment of air emissions expected to occur as a result of the growth associated with the project as indicated on pages D.3-D.4 of EPA's Draft 1990 New Source Review Workshop Manual.

Please contact me at 404-363-7095, or 706-334-2533, if you have any questions. If EPA issues guidance, or models which you believe may affect the modeling of this project subsequent to this protocol approval letter, please contact me to verify the ability to incorporate such guidance or models in the assessments of this application. If you have specific questions on issues that develop after you receive this protocol approval letter, please contact me.

Sincerely,

Peter S. Courtney, P.E. Environmental Specialist GA EPD

Attachments: Generally Applicable Class II Area Modeling References

Generally Applicable Class II Area Modeling References

2005, 40 CFR 51, Appendix W, Guideline on Air Quality Models

1990, Draft New Source Review Workshop Manual.

2004, USER'S GUIDE FOR THE AMS/EPA REGULATORY MODEL - AERMOD (EPA-454/B-03-001, September 2004) (version 04300)

2009, ADDENDUM, USER'S GUIDE FOR THE AMS/EPA REGULATORY MODEL - AERMOD (EPA-454/B-03-001, September 2004), October 2009 (version 09292)

2011, ADDENDUM, USER'S GUIDE FOR THE AMS/EPA REGULATORY MODEL - AERMOD (EPA-454/B-03-001, September 2004), March 2011 (version 11059)

2009, AERMOD IMPLEMENTATION GUIDE, Last Revised: March 19, 2009

2004, USER'S GUIDE FOR THE AERMOD TERRAIN PREPROCESSOR (AERMAP, version 04300), EPA-454/B-03-003, October 2004.

2009, ADDENDUM, February, 2009, to USER'S GUIDE FOR THE AERMOD TERRAIN PREPROCESSOR (AERMAP version 09040), EPA-454/B-03-003, October 2004.

2004, USER'S GUIDE TO THE BUILDING PROFILE INPUT PROGRAM (BPIP), updated to include the PRIME algorithm (BPIPPRM, version 04274, EPA-454/R-93-038, (Revised April 21, 2004), (Electronic copy only).

1995, USER'S GUIDE FOR THE INDUSTRIAL SOURCE COMPLEX (ISC3) DISPERSION MODELS, VOLUME I - USER INSTRUCTIONS, VOLUME II – DESCRIPTION OF MODEL ALGORITHMS. EPA-454/B-95-003a & b, September, 1995. Vol. a includes 02035 instructions.

2002, USER INSTRUCTIONS FOR THE REVISED ISCST3 MODEL (dated 02035), Feb 4, 2002.

1995, SCREEN3 Model User's Guide, EPA-454/B-95-004, model version 96043.

2010, Guidance Concerning the Implementation of the 1-hour NO2 NAAQS for the Prevention of Significant Deterioration Program, EPA Memorandum from Stephen D. Page, Director, OAQPS, to EPA Regional Air Division Directors, June 29, 2010.

2010, Guidance Concerning the Implementation of the 1-hour SO2 NAAQS for the Prevention of Significant Deterioration Program, EPA Memorandum from Stephen D. Page, Director, OAQPS, to EPA Regional Air Division Directors, August 23, 2010.

2010, Modeling Procedures for Demonstrating Compliance with PM2.5 NAAQS, EPA Memorandum from Stephen D. Page, Director, OAQPS, to EPA Regional Modeling Contacts and selected OAQPS Personnel, March 23, 2010.

2010, Prevention of Significant Deterioration (PSD) for Particulate Matter Less Than 2.5 Micrometers (PM2.5)--Increments, Significant Impact Levels (SILs) and Significant Monitoring Concentration (SMC), Final rule, Federal Register vol. 75, No. 202, pgs. 64863-64907, October 20, 2010. 1998, Guideline for Ambient Impact Assessment of Toxic Air Pollutant Emissions, Revised June 21, 1998, Georgia Environmental Protection Division (GA EPD).

2006, Interim Dispersion Modeling Guidance, Last Revised Dec 28, 2006, GA EPD (georgiaair.org).

Volume III, Attachment C –

Tier 3 NO₂ (PVMRM) Modeling Protocol

SMITH ALDRIDGE, INC.

P:\Carbo Ceramics\Millen\2010-07 Lines 5-8 PSD Permit App\Volume III- Modeling + Toxics\Vol III Attachment Covers.doc

SMITH ALDRIDGE, INC.

Environmental Consultants

July 25, 2011

Stanley Krivo US EPA Region 4 Sam Nunn Atlanta Federal Center 61 Forsyth Street SW Atlanta, Georgia 30303-8960

RE: Proposed Dispersion Modeling Protocol Alternative Modeling Techniques using Tier 3 Screening Methods for NO₂ CARBO Ceramics, Inc. Greenfield Millen, Jenkins County, Georgia Facility

Dear Mr. Krivo,

On behalf of our client, CARBO Ceramics, Inc. ("CARBO"), please find the enclosed dispersion modeling protocol requesting approval to use PVMRM as an alternate model under Section 3.2.2 of US EPA's Guideline on Air Quality Models for a planned greenfield proppant manufacturing facility in Millen, Jenkins County, Georgia. Based on our review, we believe that the enclosed protocol satisfies the conditions to use PVMRM as part of the tiered screening methodology for obtaining hourly average estimates of NO₂ for comparison to the NAAQS for the PSD air quality analysis required for the project. If you have any questions, please do not hesitate to contact me by phone at (404) 255-0928 x117 or by e-mail at jbandzul@smithaldridge.com. We look forward to your review and comment.

Sincerely

Jon Bandzell, Principal Smith Aldridge, Inc.

enc: Proposed Dispersion Modeling Protocol w/Electronic Files

cc: Jason Goodwin – CARBO Ceramics, Inc. Craig Smith – Smith Aldridge, Inc. Pete Courtney – GA EPD

CARBO Ceramics

Millen Proppant Manufacturing Plant

(Jenkins County)

Proposed Air Dispersion Modeling Protocol

for

Alternative Modeling Techniques using Tier 3 Screening Methods for the NO₂ NAAQS

July 2011

Prepared by: SMITH ALDRIDGE, INC.

Environmental Consultants Atlanta, Georgia

TABLE OF CONTENTS

Page

1.0	INTRO	ODUCTION	1
2.0	ALTE	RNATIVE MODELING TECHNIQUES FOR NO2	2
2.1	Descri	iption of Tier 3 Detailed Screening Models	3
	2.1.1	Scientific Peer Review	4
	2.1.2	Applicability of PVMRM	4
	2.1.3	Performance Evaluations for Bias	5
	2.1.4	Background Concentration Data	6
		2.1.4.1 Ozone	8
		2.1.4.2 Nitrogen Dioxide	14
	2.1.5	In-stack NO ₂ /NO _x Ratios	14
		2.1.5.1 Project Sources	15
		2.1.5.2 Combustion Turbines	16
		2.1.5.3 All Other Stationary Sources	17
	2.1.6	NO ₂ /NO _x Equilibrium Ratio	17
	2.1.7	Protocol of Methods	18
		2.1.7.1 AERMOD Control Options for PVMRM	18
		2.1.7.2 AERMOD Source Options for PVMRM	18
		2.1.7.3 Hourly Ozone File	18
		2.1.7.4 Determining the Significant Impact Area	19
		2.1.7.5 Determining the Design Concentrations	19

LIST OF TABLES

Table 2.1.4.1-1	Project Ozone Database Monitoring Sites	9
Table 2.1.4.1-2	Combined Ozone Database and CASTNET Completeness	
	Summary	11
Table 2.1.4.1-3	Maximum, Average, and Median Annual Values and 1-hour	
	Annual Maximum Values for Ozone Dataset (ppb)	13
Table 2.1.5.1-1	In-Stack NO ₂ /NO _x Ratios for Project Sources (Spray Dryers,	
	Direct-Fired Rotary Kilns, and Boilers)	16

LIST OF FIGURES

Figure 2.1.4.1-1	Project Ozone Database Monitoring Site Locations Relative	
	to 50-km Modeling Domain	10

LIST OF ATTACHMENTS

Attachment A Electronic Files

1.0 INTRODUCTION

CARBO Ceramics, Inc. ("CARBO") manufactures proppants from nonmetallic minerals for use primarily in the oil and natural gas production industries. CARBO is proposing to construct a new processing plant, approximately 6 km southeast of Millen, Georgia at the intersection of GA State Route 17 and Clayton Road, in Jenkins County. The proposed plant will be a four-line, wet processing facility, similar to its Toomsboro plant in Wilkinson County, Georgia, where proppants are manufactured from kaolin clay from a slurry which is pelletized in spray dryers and later calcined in direct-fired rotary kilns. In addition to slurry preparation, spray drying and calcining, the processing lines each consist of associated materials handling and storage, screening, and shipping operations.

The construction of the proposed new processing facility will be a subject to PSD preconstruction review since the facility will be a major stationary source with potential emissions of NO_x , SO_2 , CO, VOC, PM, PM_{10} , $PM_{2.5}$, and CO_2e greater than the significant emission rate thresholds for each pollutant. As part of PSD review, CARBO will be required to conduct an ambient air quality analysis to demonstrate that potential emissions from the proposed construction, and all applicable emissions increases and decreases from other existing and proposed new sources, will not cause or contribute to a violation of any applicable National Ambient Air Quality Standard (NAAQS) or PSD increment effective at the time of permit issuance.

In this protocol, CARBO is requesting GA EPD and US EPA Region 4 approve the use of the Plume Volume Molar Ratio Method (PVMRM) as part of the tiered screening approach to obtaining hourly average estimates of NO₂ for comparison to the new 1hour NAAQS standard. This modeling technique is not being proposed for the annual averaging period. PVMRM is available as a non-regulatory default model option within AERMOD and its application makes AERMOD no longer the preferred regulatory model. In such cases, use of this technique as an alternative model may be approved on a case-by-case basis under Section 3.2.2 of US EPA's guideline on air quality models (40 CFR Part 51 Appendix W or "US EPA's guideline"). In cases where the preferred model is less appropriate for a particular situation, or if there is no preferred model, an alternate model may be used provided that the model has received scientific peer review, is applicable to the particular application on a theoretical basis, the databases necessary to perform the analysis are adequate and available, performance evaluations have shown that the alternate is not biased towards underestimates and a protocol on the methods and procedures to be followed has been established. CARBO is submitting this protocol for consideration to satisfy the above conditions and justify the use of the PVMRM. Generally, the Air Quality Modeling Group (AQMG) at US EPA's Office of Air Quality Planning and Standards (OAQPS) recommends accepting the use of PVMRM provided that a reasonable demonstration can be made regarding the appropriateness of the in-stack NO₂/NO_x ratios and background ozone database proposed to be used (US EPA 2011).

With regard to in-stack NO_2/NO_x ratios, CARBO obtained 180 minutes of NO and NO_2 measurements from the exhaust stack of a similar operating kiln, spray dryer, and boiler at CARBO's Toomsboro facility during the second week of July 2011 – the emission units associated with the construction of the proposed Millen facility will be substantially similar, if not identical, to the units on which stack sampling was conducted. From this data, CARBO determined in-stack NO_2/NO_x ratios for the project sources as 0.01 for kilns, 0.06 for spray dryers and 0.12 for boilers – the NO_2/NO_x ratios were determined as the average of three 60-min periods of data (i.e., 3-run averages). For all other nearby sources in the PSD inventory, except combustion turbines, CARBO is proposing to use the default NO_2/NO_x ratio of 0.50 in the absence of source-specific information. For combustion turbines, CARBO is proposing to use an in-stack ratio of 0.20, which is substantiated by documentation submitted along with this protocol.

With regard to the background ozone concentrations, CARBO has developed a database using the maximum of contemporaneous 1-hour observations of ozone measured at seven monitors surrounding the modeling domain with one monitor used as secondary source for periods of missing data not within Georgia's statutory ozone monitoring season, March through October. Combining the observations in this manner will ensure that the background ozone concentrations used with PVMRM are representative and conservative for both the project site and averaging period so that the controlling NO_2 concentrations will not be underestimated.

2.0 ALTERNATIVE MODELING TECHNIQUES FOR NO₂

On April 12, 2010, a new 1-hour NO₂ NAAQS of 100 ppb (188 μ g/m³) became effective. For the purposes of NSR and PSD dispersion modeling demonstrations, the design concentration for the hourly NO₂ NAAQS is the five-year average of the 98th-percentile annual distribution of 1-hour daily maximum concentrations at each receptor location. In other words, for each receptor, the maximum 1-hour NO₂ concentration is determined for each calendar day and then the highest 8th-high of these concentrations is obtained for each year and averaged across the modeled five-year period.

Nitrogen oxides (NO_x) exist in various forms in the atmosphere and are primarily emitted in combustion processes from the oxidation of fuel-bound nitrogen and molecular nitrogen in combustion air with the most common constituent being nitric oxide (NO). NO_2 is formed to a much lesser degree in-stack through thermal conversion. Upon entering the atmosphere, NO is oxidized rapidly to NO_2 in the presence of ozone or in a photochemically reactive environment. The resulting NO_2 may also undergo cyclic decomposition back to NO in the presence of sunlight through photolysis resulting in the production of free oxygen which combines with molecular oxygen to form ozone. Additionally, NO_2 may undergo subsequent reactions with hydroxyl radicals (OH) to form nitric acid (HNO₃), which could

contribute to acidic rain and deposition, or as a parallel competing reaction path may also subsequently react in the presence of ammonia (NH_3) to form visibility impairing nitrates. This all makes modeling for the NO_2 NAAQS difficult considering the complexity of the atmospheric chemistry and meteorology affecting its formation. For these reasons, US EPA recommends in Section 5.2.4 of the Guideline a three-tiered screening approach to obtaining annual average estimates of NO_2 for comparison to the NAAQS and PSD increment. Recent memoranda issued by US EPA's OAQPS regarding this screening approach confirm its applicability to the new hourly standard (US EPA 2010b, US EPA 2011).

In the tiered screening approach, full conversion of NO_x to NO_2 is assumed as the first tier. If the concentration assuming full conversion exceeds the NAAQS and/or PSD increment, the Ambient Ratio Method (ARM) is applied in the second tier. In the ARM, the NO_x concentration used in the first tier is simply multiplied by a factor of 0.80 as a conservative default ambient ratio for the 1-hour standard (US EPA 2011). In the third tier, a more detailed screening method such as the Ozone Limiting Method (OLM) or Plume Volume Molar Ratio Method (PVMRM) may be considered. Both the OLM and PVMRM attempt to avoid overestimates made using the full conversion and ARM methods by taking into account the oxidizing potential of the atmosphere while still retaining the desired screening level approach for NO_2 .

2.1 Description of Tier 3 Detailed Screening Models

The OLM uses a simplified approach to the reaction chemistry by assuming that NO and ozone react in proportion to their ground level concentrations. In the OLM, the estimated maximum NO_x concentration is separated into two components: the portion formed due to in-stack thermal conversion and directly emitted as NO_2 with the remaining portion available in the atmosphere as NO for oxidation with ozone. The portion of NO available is then is compared to the background O_3 concentration to determine the limiting factor in NO_2 formation. If the portion of NO available is greater than the background ozone concentration, the conversion of NO to NO_2 is limited to the background ozone concentration (i.e., is ozone limited). Otherwise, full conversion is assumed.

Studies have shown, however, that NO_2 formation occurs in proportion to the number of moles of NO and ozone entrained in the plume rather than in proportion to their atmospheric concentrations (Hanranhan 1999). The PVMRM follows the same chemical reaction theory as the OLM but determines the NO_2/NO_x conversion rate by calculating the number of NO_x moles emitted in the plume and the number of O_3 moles contained within the plume volume between the source and receptor. As the plume moves downwind from the source, the amount of ozone available within the plume for reaction increases as the plume expands. This continues until equilibrium is reached within the plume and the plume becomes limited by the amount of ozone entrained in the plume.

CARBO is proposing to use PVMRM as part of a tiered screening approach to obtaining hourly average estimates of NO_2 for comparison to the NAAQS since this method provides a more realistic prediction of the NO_2/NO_x conversion rate in an expanding plume. Since the application of PVMRM makes AERMOD no longer the preferred regulatory model, CARBO is providing the following under Section 3.2.2 of the Guideline to justify its use in the absence of a preferred model.

2.1.1 <u>Scientific Peer Review</u>

In 1991, the American Meteorological Society (AMS) and US EPA initiated a joint effort to develop an improved air quality model for regulatory applications. At that time, the AMS/EPA Regulatory Model Improvement Committee (AERMIC) was formed to upgrade current regulatory models which had been in existence for nearly two decades. Instead, AERMIC chose to focus on developing a new model, AERMOD which, along with its meteorological and terrain data preprocessors AERMET and AERMAP, was submitted to OAQPS for consideration as a preferred regulatory model. As part of this process, the scientific merit of AERMOD was extensively documented through internal and external peer review, model evaluation and public comment (US EPA 2002). Furthermore, the reaction chemistry of PVMRM itself has also received scientific peer review in several performance evaluation and sensitivity studies discussed below and has been found to perform within the range considered acceptable for refined models. And since AERMOD is the preferred Guideline model for a wide range of applications, CARBO believes that the requirement for scientific peer review has been satisfied.

2.1.2 Applicability of PVMRM

Atmospheric concentrations of NO_2 are nearly always the result of oxidation of NO in the presence of ozone. The process of ozone removal by NO is referred to as the ozone titration mechanism. PVMRM simulates this firstorder reaction in an expanding plume based on a photostationary state (PSS) approximation of NO, NO_2 , and ozone in order to better estimate ambient concentrations of NO_2 . PVMRM is therefore applicable on a theoretical basis to determining design concentrations of NO_2 for PSD air quality analysis. However, applicability of PVMRM depends, in part, on the chemical environment into which the plumes are emitted.

Although ozone titration is the primary mechanism of atmospheric NO_2 formation, PVMRM neglects the role of peroxy radicals in the conversion of NO to NO_2 . This process ultimately results in the production of ozone through subsequent photolysis of NO_2 . Peroxy radicals can be formed through the photolysis of volatile organic compounds (VOC) and subsequent combination of hydrogen with oxygen or through reactions of VOC with the

hydroxyl radical (OH). In both cases, NO_2 may be the product of subsequent secondary atmospheric reactions. The reactions will continue cyclically until NO_2 finds a "sink" to remove it from the cycle, such as nitric acid (HNO₃) or peroxyacyl nitrate (PAN), or when radicals react with each other to form stable products. Since the formation of NO_2 through reactions of NO with peroxy radicals are essentially limited by the presence of VOC in the atmosphere, PVMRM is most applicable to chemical environments in which ozone is the dominant oxidant for NO. In other words, PVMRM is most applicable to low-VOC environments.

According to the most recent information available from US EPA's AirData website (http://www.epa.gov/air/data/index.html), Jenkins County is in the bottom 20th-percentile in the state for countywide point, nonpoint, and mobile source emissions of VOC, ranking 144th out of 159 counties. In 2002, total emissions of VOC from on-road vehicles, nonroad equipment, solvent use, waste disposal, industrial processes, residential wood combustion, and fossil fuel combustion and other miscellaneous sources were 847 tons, or approximately 0.1% of statewide VOC emissions (638,000 tons). VOC emissions from Jenkins and all bordering counties (Bulloch, Burke, Emanuel, and Screven) comprised less than 2% of the statewide total for the same year. Also, there are no municipal solid waste (MSW) landfills in Jenkins County, which can be a significant source of VOC. Additionally, there are no Title V or PSD major sources for VOC in Jenkins County. The closest stationary source that exceeds the PSD major source threshold for VOC is the King America Finishing textile finishing facility, located 25 km southeast of the proposed project site in Screven County. However, information provided in the facility's most recent Title V permit renewal application indicates that five-year average actual VOC emissions were only 55 tons.

Since the environment of Jenkins County is not subject to high loading of VOC and the most significant stationary sources of VOC are located outside the county, significant NO_x point sources, such as CARBO's proposed facility, will cause the atmosphere to experience a significant net removal of ozone through titration. Thus, CARBO believes that the atmospheric environment of Jenkins County is well suited for PVMRM.

2.1.3 <u>Performance Evaluations for Bias</u>

Despite some theoretical limitations associated with the first-order approximation, in practice the performance of PVMRM in predicting NO_2/NO_x conversion rates for the annual averaging period has been shown to be unbiased under a variety of conditions based on criteria comparable to that used for other dispersion models considered to be refined. The databases used to evaluate the ability of PVMRM to make predictions of ambient concentrations of NO_2 have included ambient NO_2/NO_x ratios measured by

aircraft downwind of large power plants to evaluate the performance of photochemical reaction models and long-term field studies used to develop site specific ARM ratios for sources with multiple stacks. In all cases studies, PVMRM was found to consistently predict values close to those observed and also performed very well in comparison to the more complex models. When the NO₂/NO_x ratios predicted by PVMRM were paired in space and time with those ratios observed closest to the maximum ground level concentrations, the average ratio of all cases was within a factor or two, a commonly used benchmark in judging the performance of refined dispersion models. In fact, most of the predicted and observed pairings were within a factor of 1.5 (MACTEC 2005). Additionally, no anomalous behavior was noted when PVMRM was subjected to sensitivity testing over a range of buoyancy and momentum fluxes from single and multiple source models. PVMRM was found to perform as expected with the NO₂/NO_x conversion rate primarily controlled by the volume of the plume (MACTEC 2004).

The original evaluations of PVMRM have recently been updated to reflect the new AERMOD modeling system and to assess its performance for the 1-hour averaging period (US EPA 2011). Results from these evaluations continue to demonstrate good performance of PVMRM when ranked hourly pairings and robust highest concentrations of modeled and monitored concentrations are compared.

2.1.4 <u>Background Concentration Data</u>

Ambient background concentrations are an essential part in estimating the total air quality concentration to be considered in determining source impacts and their role takes on even greater importance in the context of the new 1-hour NO_2 standard. For all PSD modeling demonstrations, background concentrations are required to be added to a source's modeled impacts to determine the design concentration for comparison to the NAAQS (US EPA 2005). However, since PVMRM relies on ozone as the primary conversion mechanism for NO_x emissions, ambient background concentrations also play a critical role in estimating a source's modeled impacts for NO_2 (US EPA 2008a).

PVMRM requires ambient background concentrations of ozone to be specified to account for the oxidation of NO to NO_2 in the atmosphere. Given the averaging time and form of the NO_2 NAAQS and the importance of seasonal and diurnal patterns of ozone and meteorological conditions typically associated with peak hourly concentrations, CARBO believes that any PSD modeling demonstration for the NO_2 NAAQS must involve the use of monitored hourly ambient background concentrations of ozone and contemporaneous meteorology. CARBO has therefore completed a review of monitoring stations measuring ambient concentrations of ozone in the vicinity

of the project and has developed an ozone database believed to be representative and conservative of background conditions for the project area and is contemporaneous with the five-year period for which GA EPD has provided meteorological data for the PSD air quality analysis. A total of eight monitoring sites from Georgia and South Carolina were selected to develop five years of hourly background concentrations for ozone.

For more than three decades, the Georgia Environmental Protection Division (GA EPD) has monitored air quality in the state of Georgia through the Ambient Monitoring Program (AMP) of the Air Protection Branch (APB). The AMP provides information on the measured concentrations of both criteria and non-criteria pollutants from data collected in a network of 60 monitoring locations, including 23 ozone monitors, in 36 counties and includes State and Local Air Monitoring Stations (SLAMS) and Photochemical Assessment Monitoring Stations (PAMS). Additionally, the South Carolina Department of Health and Environmental Control (SCDEHC) has operated a network of air quality monitors in the state since 1959 and conducts monitoring for ozone at 19 sites. Generally, monitoring locations are sited to determine the highest concentrations expected to occur, to measure typical concentrations in densely populated areas, to determine the impact of significant sources or categories of sources on air quality or to determine general background concentration levels. The data collected are then used to provide timely information on air quality to the public, to determine compliance with air quality standards and develop emission control strategies.

In addition to monitoring conducted at the state level, US EPA's Clean Air Markets Division (CAMD), with sponsorship from the National Park Service (NPS), operates 86 monitoring stations across the nation as part of the Clean Air Status and Trends Network (CASTNET). At each CASTNET monitoring site, CAMD continuously measures ambient concentrations of ozone and performs weekly sampling of select gaseous and particulate pollutants involved in acidic deposition in or near rural areas and sensitive ecosystems. Originally, CASTNET was formed to assess trends in acidic deposition due to emission reductions achieved through implementation of trading programs such as the Acid Rain Program (ARP). CASTNET has since become the nation's primary monitoring network for acidic deposition with its measurements also being used to track changes associated with climate change and to develop and evaluate numerical models created for regulatory assessment and understand atmospheric processes (US EPA 2007).

For ozone, the seven ozone monitoring sites nearest to the project location – six monitoring sites in Georgia and one in South Carolina – were selected as the primary sources of measured hourly background concentrations. US EPA's CAMD operates a single CASTNET monitoring station in Georgia which measures hourly background concentrations of ozone year-round. Since Georgia's ozone monitoring season consists only of the March through

October months, the CASTNET monitor was used as a secondary source of data for substitution during periods of missing data not within the ozone monitoring season. Data for each monitoring site was obtained from US EPA's Air Quality System (AQS) and CASTNET database. A summary of each dataset is presented below with a description of the monitors used and the methods used to substitute for periods of missing data.

2.1.4.1 <u>Ozone</u>

Since PVMRM is based on a first-order approximation of the oxidizing potential of the atmosphere, representativeness of background ozone concentrations in the modeling domain is of critical importance. To ensure that the background ozone data is spatially representative and conservative for the PSD air quality analysis, seven ozone monitoring sites surrounding the modeling domain were used to develop a database consisting of the maximum contemporaneous 1-hour observation measured for each site. These sites include Macon SE (#130210012) and Macon West (#130210013) in Bibb County, Georgia; E. President Street (#130510021) in Chatham County, Georgia; Riverside Park (#130730001) and Bungalow Road (#132450091) in Richmond County, Georgia; Leslie (#132611001) in Sumter County, Georgia; and Aston (#450290002) in Colleton County, South Carolina. Details of these monitoring stations, including the Pike County, Georgia CASTNET station, are described below in Table 2.1.4.1-1 below. Figure 2.1.4.1-1 shows the location of each monitoring site relative to the modeling domain.
CARBO Ceramics, Inc. – Millen Plant

GA State Route 17 and Clayton Road, Millen, Georgia (Jenkins County) Proposed Air Dispersion Modeling Protocol Alternative Modeling Techniques using Tier 3 Screening Methods for the NO₂ NAAQS

Table 2.1.4.1-1Project Ozone Database Monitoring Sites					
AQS ID	County/ MSA	Direction From Site	Site Type	Monitoring Scale	Monitoring Season
130210012 <u>Macon SE</u> GA Forestry	Bibb/ Macon	W	SLAMS	Neighborhood/ Population Exposure	March- October
130210013 <u>Macon West</u> Lake Tobesofkee	Bibb/ Macon	W	SLAMS	Neighborhood/ Population Exposure	March- October
130510021 <u>Savannah E.</u> President St.	Chatham/ Savannah	SE	SLAMS	Neighborhood/ Population Exposure	March- October
130730001 <u>Riverside Park</u>	Columbia/ Augusta	N	SLAMS	Neighborhood/ Population Exposure	March- October
132450091 Bungalow Road	Richmond/ Augusta	N	SLAMS	Neighborhood/ Population Exposure	March- October
132558001 <u>Bledsoe Farm</u> (CASTNET)	Spalding/ Atlanta	W/NW	CASTNET	Regional/ Rural Background	Year-Round
132611001 <u>Leslie</u> <u>Union High</u>	Sumter/ None	SW	SLAMS	Neighborhood/ Background	March- October
450290002 <u>Ashton (SC)</u>	Colleton/ None	E/NE	SPM	Urban	Year-Round (effective 3/15/2005)

CARBO Ceramics, Inc. – Millen Plant GA State Route 17 and Clayton Road, Millen, Georgia (Jenkins County) Proposed Air Dispersion Modeling Protocol Alternative Modeling Techniques using Tier 3 Screening Methods for the NO₂ NAAQS

Project Ozone Database Monitoring Site Locations Relative to 50-km Modeling Domain

As previously mentioned, in order to ensure that the background ozone concentrations used with PVMRM are representative and conservative for both the project site and averaging period so that the controlling NO_2 concentrations will not be underestimated, the maximum of contemporaneous 1-hour observations of ozone measured at the seven state operated monitors surrounding the modeling domain were used to develop the primary ozone database. Table 2.1.4.1-2

summarizes the completeness of this combined ozone dataset, prior to data substitution, and also the Bledsoe CASTNET dataset.

Table 2.1.4.1-2	Combined	Ozo	ne	Dat	abase	and	CA	STNET
	Completer	iess St	imm	ary				
		2006	20	07	2008	20	09	2010
Combined GA and S	SC Ozone M	<i>l</i> onito	ring	Site	Data (E	PA AQ	<u>)S)</u>	
Ozone Season	Hours			~ ~		- 0	~ ~	
(March through	October) 5	,880	5,8	80	5,880	5,8	80	5,880
Data Avail	ability 5	,880	5,8	80	5,879	5,8	80	5,880
Percent Data Avail	ability 1	00%	100)%	99%	100	%	100%
Non-Ozone Season	Hours							
(January, I	^r ebruary,		0.0	00	0.004	0.0	00	0.000
November, & D	ecember) 2	,880	2,8	80	2,904	2,8	80	2,880
Data Avail	ability2	2,856	2,8	59	2,859	2,6	26	2,589
Percent Data Avail	ability	99%	99	9%	99%	91	%	90%
Bledsoe CASTNET I	<u>Data</u>							
Ozone Season	Hours							
(March through	October) 5	,880	5,8	80	5,880	5,8	80	5,880
Data Avail	ability 5	5,778	5,8	11	5,758	5,7	90	5,317
Percent Data Avail	ability	98%	98	8%	98%	98	%	90%
Non-Ozone Season	Hours					-	•	
(January, H	February,			~ ~			~~	0.000
November, & D	ecember) 2	2,880	2,8	80	2,904	2,8	80	2,880
Data Avail	ability 2	2,604	2,8	37	2,876	2,8	49	2,582
Percent Data Avail	ability	90%	99)%	99%	99	%	90%

The combined set of ozone observations provides extensive and robust data for Georgia's statutory March through October ozone monitoring. Only a single hour (March 9, 2008 hour 23) required data substitution. As the data gap was only one hour in duration, the average of the ozone observations before and after the missing data period was used for substitution. For the months of January, February, November and December, data availability was not as complete since only Ashton, the South Carolina ozone monitor, operates during Georgia's non-ozone monitoring season months.

Because the Bledsoe CASTNET monitoring site is located just south of the Atlanta 8-hour ozone nonattainment area, ozone observations from the monitor should provide conservative measured values for substitution. However, in order to determine the suitability of using the CASTNET data for periods of missing data outside of the ozone monitoring season, each hour where contemporaneous ozone

observations were recorded for both the CASTNET site and combined database where compared. Out of 28,457 paired observations, the CASTNET monitoring site was found to have a higher recorded valued for ozone than the combined data for 11,177 hours. This indicates that, on average, the CASTNET data is more conservative than the combined dataset 41% of time. Given that the combined database contains the maximum of contemporaneous ozone observations at seven monitors, CARBO believes that the Bledsoe observations show sufficient evidence of conservative bias and that direct substitution of CASTNET data for missing and non-ozone monitoring season hours is appropriate. However, in order to ensure that the values in the nonozone season monitoring months remain conservative and representative of the modeling domain, the maximum value of the CASTNET monitor and Aston was used for hours in the months of January, February, November and December where contemporaneous measurements were recorded at both sites. For these months, ozone observations at Ashton were more conservative that Bledsoe 36% of the time – 4,726 hours out of 13,198 paired observations.

Data substitution for periods of missing data in the combined dataset not within in the ozone monitoring season was performed as follows:

Missing Data Periods Longer than Four Hours

For periods of missing data longer than four hours, the maximum of contemporaneous monitored 1-hour ozone concentrations measured at the Aston and Bledsoe monitors was substituted for each missing hour.

Missing Data Periods of Four Hours or Less

For periods of missing data of four hours or less, an averaging technique was used to maintain the form of the diurnal profile characteristic of ozone while biasing data substitution to concentrations higher than would be determined through linear interpolation. Starting with the first missing hour, the arithmetic average of the monitored 1-hour ozone concentrations before and after the missing data period was substituted. For the second missing hour (if any), the arithmetic average of the 1-hour ozone concentrations before and after the missing data period was also substituted but in this case the 1-hour ozone concentration before the missing data period was the first hour for which data substitution was performed. This data substitution process was repeated for up to four consecutive missing hours.

All Other Missing Data Periods

The remaining missing data periods consisted of those greater than four hours where contemporaneous Aston and CASTNET data was also missing. For these periods of missing data, the 1-hour monthly

maximum concentration for each hour of day was substituted from the combined dataset for each missing hour.

Table 2.1.4.1-3 provides a summary of statistics for the five year dataset after performing the above described data substitution.

Table 2.1.4.1-3	Maximum, Average, and Median Annual Values
	and 1-hour Annual Maximum Values for Ozone
	Dataset (ppb)

		2006	2007	2008	2009	2010
	Maximum	138	107	103	89	104
	Average	36	39	38	34	37
	Median	37	37	35	34	35
	Hour 01	62	65	61	65	61
	Hour 02	59	60	58	60	62
	Hour 03	69	61	59	58	58
	Hour 04	60	60	58	56	55
	Hour 05	53	58	56	53	52
	Hour 06	53	56	56	50	50
	Hour 07	52	53	56	48	49
	Hour 08	54	54	54	49	50
	Hour 09	69	57	57	59	53
	Hour 10	77	76	65	61	82
	Hour 11	86	94	80	79	90
	Hour 12	93	103	83	79	104
	Hour 13	138	96	89	82	104
	Hour 14	116	99	98	86	100
	Hour 15	102	106	96	88	91
	Hour 16	101	107	103	86	91
	Hour 17	99	106	100	89	86
	Hour 18	101	104	100	86	85
	Hour 19	98	97	95	81	77
	Hour 20	93	91	84	74	80
	Hour 21	85	86	76	64	72
	Hour 22	75	74	71	66	74
	Hour 23	66	72	67	66	62
	Hour 24	66	67	65	68	60

The final data set showing the data substitutions made is also provided in the electronic files ("\O3\") enclosed as Attachment A ("CombinedO3wDataSubstitution.xls"). Columns A through M contain the AQS time series and data set and column N contains the CASTNET data set. Columns P through U include the procedures described above to perform each step of data substitution, such as selection of the maximum value for a given hour of data, with the final selected value in column U. Each column that contains a function that performs the substitution procedures is labeled, as appropriate. Columns X through BC are used to calculate summary statistics for the combined data set, presented in Table 2.1.4.1-3. Finally, columns BP through BT are used to generate the comma-delimited data series for use as the ozone file in AERMOD.

2.1.4.2 <u>Nitrogen Dioxide</u>

CARBO is not proposing any contemporaneous pairing of modeled and monitored concentrations for NO2 to determine compliance with the 1hour NAAQS standard. Instead, CARBO will use a "first tier" uniform monitored background concentration based on a monitored design value – the average of the 98th-percentile annual distribution of daily 1-hour maximum concentrations – from a representative monitor for the most recent three year period. GA EPD has previously indicated that data from the Yorkville Type 1 PAMS (#132230003) in Paulding County is the preferred monitoring site for determining background concentrations for PSD air quality analyses for NO₂. The monitor is located within approximately 50 km of four of six of Georgia's largest coal-fired power plants not expected to be explicitly modeled (Bowen, Hammond, Wansley and Yates) and located downwind of other significant combustion sources in Georgia and Alabama such as Alabama's Gaston, Gorgas and Miller electric generating facilities and the Sewell Creek combustion turbine facility in Polk County. Based on GA EPD's review of AQS data for this site, the monitored design value for this monitor is $35.75 \ \mu g/m^3$ for the most recent three-year period (2008 - 2010).

2.1.5 In-stack NO₂/NO_x Ratios

PVMRM requires a NO_2/NO_x ratio to be specified for each source or group of sources to account for the fraction of NO_2 formed in-stack due to thermal conversion. Currently, limited information exists nation-wide for measured in-stack NO_2/NO_x ratios for stationary sources. Therefore, for all sources in the 1-hour NO_2 NAAQS PSD inventory, except CARBO's NO_x sources and seven combustion turbines, the default 0.50 NO_2/NO_x ratio will be used (US

EPA 2011). For the project sources, unit-specific NO_2/NO_x ratio will be used based on recent in-stack measurements taken on similar operating units. For combustion turbines, an NO_2/NO_x ratio was determined based on review of data available in literature and from GA EPD's industrial source monitoring program.

2.1.5.1 <u>Project Sources</u>

Sources of NO_x associated with the construction of the Millen facility include spray dryers (or fluidizers), direct-fired rotary kilns, and boilers. An emergency diesel-fired generator (EDG) will also constructed with each processing line, but these units will be excluded as "intermittent" since their operation is not frequent enough to contribute significantly to the annual distribution of 1-hour daily maximum concentrations. The EDG's are used solely in the event of an emergency to prevent catastrophic mechanical failure of the directfired kilns by maintaining power to the kiln drive (for rotary motion), process cooling and product recycle systems. No other systems, including the kiln burners, are in operation at the plant during such events. Therefore, no NO_2/NO_x ratio was determined for EDG's.

During the second week of July 2011, CARBO obtained 180 minutes of NO and NO₂ measurements from the exhaust stack of a similar operating kiln, spray dryer, and boiler at CARBO's Toomsboro facility – the units associated with the construction of the proposed Millen facility will be substantially similar, if not identical, to the units on which stack sampling was conductedy. From this data, CARBO determined in-stack NO₂/NO_x ratios for the project sources as 0.01 for kilns, 0.06 for spray dryers and 0.12 for boilers – the NO₂/NO_x ratios were determined as the average of three 60-min periods of data (i.e., 3-run averages). Table 2.1.5.1-1 summarizes the measurement data used to determine the in-stack NO₂/NO_x ratios for each unit. The raw measurement data taken from the stack of each unit is provided in the electronic files ("\In-Stack Ratios\CARBO\") enclosed as Attachment A.

Table 2.1.5.1	-1 In-Stack	NO_2/NO_x	Ratios for	Project Sources
	(Spray	Dryers, Dire	ect-Fired Rot	tary Kilns, and
	Boilers)			
		NO ₂	NO	In-stack
Date	Time	(ppm)	(ppm)	NO ₂ /NO _x
<u>Spray Dryer</u>	<u>s</u>			
7/11/2011	10:22-11:22	0.35	7.47	
7/11/2011	11:22-12:22	0.56	7.32	
7/11/2011	12:22-01:22	0.57	7.54	
	3-run average	0.49	7.44	0.06
Direct-fired	<u>Rotary Kilns</u>			
7/12/2011	21:47-22:47	0.21	155.92	
7/12/2011	22:47-23:47	0.50	198.04	
7/12/2011	23:47-00:47	0.22	180.76	
	3-run average	0.31	178.24	$0.002 \ (0.01)^{*}$
<u>Boilers</u>				
7/13/2011	01:26-02:26	0.13	3.33	
7/13/2011	02:26-03:26	0.39	2.75	
7/13/2011	03:26-04:26	0.56	2.05	
	3-run average	0.36	2.71	0.12

The measured in-stack NO_2/NO_x for the direct-fired rotary kiln was 0.002; in order to be conservative, CARBO is rounding the value to 0.01 for the PVMRM assessment (the highest instantaneous NO_2/NO_x ratio over the 180 minute period was 0.006)

2.1.5.2 <u>Combustion Turbines</u>

In an environmental assessment of combustion modification techniques for stationary gas turbines, the relationship between NO and NO_x emissions from combustion turbines was described under varying compressor inlet temperatures. Under most conditions, NO was found to account for 90% of total NO_x emissions, on average, with a lower limit of 80% (US EPA 1981). While in some regards the data supporting this conclusion could be considered out of date since it was collected in the 1970s, six of the seven combustion turbines that will be included in the 1-hour NO₂ NAAQS PSD inventory are vintage 1970's units. Therefore, the data is reasonably representative of the particular turbines in question. As such, an NO₂/NO_x ratio of 0.20 will be used for these units.

Additionally, an NO₂/NO_x ratio of 0.20 is also substantiated for newer units based on data obtained from GA EPD's industrial source monitoring program for combustion turbines. On August 19, 2010, Walton County Power, LLC submitted to GA EPD measured in-stack NO, NO₂ and NO_x data obtained during continuous emission monitoring systems (CEMS) relative accuracy test audits (RATA) – a RATA is required to consist of at least nine 21 minute runs (WPC 2010). The CEMS audits were performed on combustion turbines at two facilities, constructed in 2001 and 2003, and the data for both confirm that an in-stack NO₂/NO_x ratio of 0.20 is appropriate for newer combustion turbines as well; all NO₂/NO_x ratios measured during the RATA were equal to or less than 0.20.

Both the 1981 US EPA environmental assessment of combustion turbine and the Walton County Power NO_x RATA summaries are provided in the electronic files ("\In-Stack Ratios\Combustion Turbines\") enclosed as Attachment A. Please refer to Section 4.2.3, Fuel Potential for NO_x Production, of the 1981 reference for information regarding the relationship between NO and NO_x emissions (specifically the discussion on page 4-21 and Figure 4-10 on page 4-22.

2.1.5.3 <u>All Other Stationary Sources</u>

For all source types other than those described above, the default $0.50 \text{ NO}_2/\text{NO}_x$ ratio will be used. US EPA's guidance indicates that this value is an upper bound based on available in-stack data and is adequately conservative in most cases (US EPA 2011).

2.1.6 <u>NO₂/NO_x Equilibrium Ratio</u>

PVMRM determines the NO_2/NO_x conversion rate in an expanding plume which is limited by how quickly the plume entrains O_3 from the surrounding ambient air. In other words, the fraction of NO_2 in the plume increases as the plume disperses downwind of the source. This increase will continue until equilibrium is reached within the plume and PVMRM method requires this equilibrium ratio to be specified.

CARBO is proposing to use an equilibrium ratio of 0.90. This ratio is consistent with that used in the initial and updated performance evaluations and sensitivity analysis discussed in earlier sections.

2.1.7 <u>Protocol of Methods</u>

The following protocol of methods establishes the procedures to be followed in applying PVMRM for the ambient air quality analysis for NO_2 in a PSD application for the construction the Millen facility. The protocol of methods is specific to NO_2 and PVMRM. All other matters typically addressed in a protocol, such as selection of dispersion coefficients, surface characteristics, evaluations of good engineering practice (GEP) stack height and building downwash, and receptor elevation and terrain influence height preprocessing, are addressed in a separate Class II modeling protocol to GA EPD.

2.1.7.1 <u>AERMOD Control Options for PVMRM</u>

The following will be specified in the AERMOD control options (CO) pathway to indicate that PVMRM (MODELOPT) will be used for the 1-hour averaging period (AVERTIME) for NO₂ (POLLUTID). The file path and name for the hourly ozone file (OZONEFIL) in units of parts per billion and default in-stack NO_2/NO_x (NO2STACK) and equilibrium ratios (NO2EQUIL) will also be specified. An in-stack NO_2/NO_x ratio for the project sources and combustion turbines will be specified separately for each source in the source options (SO) pathway which will override the default ratio.

CO MODELOPT PVMRM CO AVERTIME 1 CO POLLUTID NO2 CO OZONEFIL "5YR 2006-2010 OZONEFIL.csv" PPB CO NO2STACK 0.50 CO NO2EQUIL 0.90

2.1.7.2 <u>AERMOD Source Options for PVMRM</u>

The following will be specified in the SO pathway to indicate the NO_2/NO_x ratio (NO2/NOX) that will be used for each source (SOURCE ID).

SO NO2RATIO [SOURCE ID] [NO2/NOX]

2.1.7.3 <u>Hourly Ozone File</u>

Background O_3 concentrations will be input into AERMOD using a separate data file, specified in the CO pathway, for each year modeled in a FORTRAN free format with commas separating the required data fields. For year YY, month MM, day DD, hour HH, and O_3 background $[O_3]$, the data will be specified in the following format for each hour.

YY,MM,DD,HH,[O₃]

2.1.7.4 Determining the Significant Impact Area

In the first step of the air quality analysis for NO_2 , CARBO will determine if a significant ambient impact is predicted to occur by comparing results from initial dispersion modeling to the applicable significant impact level (SIL) for each averaging period. The SIL's are used in the PSD program as a screening tool to identify the level at which a project's emission increase may be considered de minimis, i.e., will not cause or contribute to a violation of a NAAQS or PSD increment. SIL's are also used to define the geographical extent of the significant impact area (SIA) within which the full impact NAAQS and PSD increment air quality analysis must be carried out.

US EPA has issued guidance on the use of 4 ppb, or 4% of the NAAQS, as an interim SIL for the 1-hour averaging period until such time that a SIL is promulgated through rulemaking (US EPA 2010c). For the 1-hour averaging period, the five-year average of the highest 1-hour concentrations for each year modeled at each receptor will be compared to the SIL to determine if a significant impact is predicted to occur. The SIA will be determined as the circular area with a radius extending from CARBO to the lesser of the most distant receptor at which a significant impact is predicted or 50 km.

2.1.7.5 <u>Determining the Design Concentrations</u>

For the 1-hour time averaging period for NO_2 , the highest five-year average of the 98th-percentile (highest eighth-high) annual distribution of 1-hour daily maximum concentrations at each receptor plus the first-tier ambient background concentration will be used to determine compliance with the NAAQS. The most recent version of US EPA's preferred regulatory model, AERMOD (v11103), can now support the statistical form of the new 1-hour NAAQS and SIL.

REFERENCES

- Georgia Environmental Protection Division (GA EPD) 2010. <u>Ambient Air Monitoring</u> <u>Plan.</u> Air Protection Branch. May.
- Hanranhan, P.L. (Hanranhan) 1999. <u>The Plume Volume Molar Ratio Method for</u> <u>Determining NO₂/NO_x Ratios in Modeling – Part I: Methodology.</u> J. Air & Waste Management Association. 49:1324-1331. November 1999.
- Hanranhan 1999a. <u>The Plume Volume Molar Ratio Method for Determining</u> <u>NO₂/NO_x Ratios in Modeling – Part II: Evaluation Studies.</u> J. Air & Waste Management Association. 49:1332-1338. November 1999.
- MACTEC 2004. <u>Sensitivity Analysis of PVMRM and OLM in AERMOD.</u> September 2004.
- MACTEC 2005. Evaluation of Bias in AERMOD-PVMRM. June 2005.
- US EPA 1981. <u>Combustion Modification Controls for Stationary Gas Turbines.</u> <u>Volume I: Environmental Assessment.</u> EPA-600/7-81-122a. July.
- US EPA 2002. <u>Compendium of Reports from the Peer Review Process for AERMOD.</u> Office of Air Quality Planning and Standards. Emissions, Monitoring and Analysis Division. February.
- US EPA 2005. <u>Guideline on Air Quality Models.</u> 40 CFR Part 51 Appendix W. 70 FR 68218 68261. November 9.
- US EPA 2007. <u>Clean Air Status and Trends Network (CASTNET) Program Overview.</u> <u>http://www.epa.gov/castnet/docs/CASTNET_factsheet_2007.pdf</u>
- US EPA 2008. <u>AERSURFACE User's Guide.</u> EPA-454/B-08-001. January.
- US EPA 2008a. <u>Integrated Science Assessment for Oxides of Nitrogen Health</u> <u>Criteria.</u> EPA-600/R-08-071. July.
- US EPA 2009. <u>AERMOD Implementation Guide (Revised)</u>. March 19.
- US EPA 2010. <u>Reponses to Significant Comments on the 2009 Propose Rule on the</u> <u>Primary National Ambient Air Quality Standards for Nitrogen Dioxide.</u> January.
- US EPA 2010a. <u>Notice Regarding Modeling for New Hourly NO₂ NAAQS.</u> February 25.

REFERENCES

- US EPA 2010b. <u>Applicability of Appendix W Modeling Guidance for the 1-hour NO₂</u> <u>National Ambient Air Quality Standard.</u> Fox, Tyler. Office of Air Quality Planning and Standards, Air Quality Modeling Group. June 28.
- US EPA 2010c. <u>Guidance Concerning the Implementation of the 1-hour NO₂ NAAQS</u> <u>for the Prevention of Significant Deterioration Program.</u> Page, Stephen. Office of Air Quality Planning and Standards. June 29.
- US EPA 2011. <u>Additional Clarification Regarding Application of Appendix W</u> <u>Modeling Guidance for the 1-hour NO₂ National Ambient Air Quality</u> <u>Standard.</u> Fox, Tyler. Office of Air Quality Planning and Standards, Air Quality Modeling Group. March 1.
- Walton County Power (WPC) 2010. <u>Submittal of NO/NO_x/NO₂ Data: Walton County</u> <u>Power, LLC.</u> Letter from Norman Jones to DeAnna Oser. August 19.

Volume III, Attachment D –

Agency Correspondence Relating to the Tier 3 NO₂ (PVMRM) Modeling Protocol

SMITH ALDRIDGE, INC.

P:\Carbo Ceramics\Millen\2010-07 Lines 5-8 PSD Permit App\Volume III- Modeling + Toxics\Vol III Attachment Covers.doc

Volume III, Attachment E –

Class I AQRV and PSD Increment Modeling Protocol

SMITH ALDRIDGE, INC.

Environmental Consultants

August 1, 2011

Catherine Collins U.S. Fish and Wildlife Service 7333 W. Jefferson Avenue, Suite 375 Lakewood, CO 80235-2034 Bill Jackson USDA Forest Service 160A Zillicoa Street Asheville, NC 28801

Federal Land Managers,

On behalf of our client, CARBO Ceramics, Inc. ("CARBO"), please find the enclosed Class I AQRV dispersion modeling protocol for your review and comment. CARBO is proposing to construct a PSD major facility in Millen, Jenkins County, Georgia. After application of BACT, potential emissions NO_x, SO₂, and all forms of particulate matter may affect air quality related values in the Class I areas under your purview. Specifically, you have requested AQRV's to be evaluated at Cape Romain, Okefenokee, Wolf Island and Shining Rock. In this regard, the enclosed modeling protocol contains the procedures that we propose to use to evaluate visibility impairment and deposition of sulfur and nitrogen in your areas. Since the closest Class I area that will be assessed is further than 50 km from the project site, CALPUFF will be used. The procedures contained in the protocol conform to guidance in the Interagency Workgroup of Air Quality Modeling (IWAQM) Phase 2 Summary Report and the revised Federal Land Managers' Air Quality Related Values Work Group Phase I report (FLAG 2010).

Additionally, GA EPD has requested we evaluate the project for significance with respect to the Class I increments. Therefore, the protocol also addresses how CALPUFF will be used to evaluate the Class I significant impact levels and is being forwarded to GA EPD and US EPA Region 4.

If you have any questions or require any further information, please do not hesitate to contact me by e-mail at <u>jbandzul@smithaldridge.com</u> or by phone at 404-255-0928 Ext. 117.

Sincerely

Jon Bandzul, Principal Smith Aldridge, Inc.

cc: Tim Allen, FWS Melanie Pitrolo, USFS Stan Krivo, US EPA Region 4 Peter Courtney, GA EPD Jason Goodwin, CARBO Ceramics, Inc. Craig Smith, Smith Aldridge, Inc.

enc: CARBO Ceramics Millen Facility Class I Area Impact Analysis Modeling Protocol

CARBO Ceramics

Millen Proppant Manufacturing Plant

(Jenkins County)

Proposed Air Dispersion Modeling Protocol

for

Class I Area PSD Increments and Air Quality Related Values

August 2011

Prepared by: SMITH ALDRIDGE, INC.

> Environmental Consultants Atlanta, Georgia

TABLE OF CONTENTS

Page

1.0	INTRODUCTION	1
2.0	PROJECT DESCRIPTION	
2.1	Project. County. and Regional Location	4
	2.1.1 Federal Mandatory Class I Areas	5
2.2	Project Emissions	6
	2.2.1 Potential Emissions of the New Major Stationary Source	6
	2.2.2 Class I Area Screening	6
3.0	ASSESSING CLASS I PSD INCREMENTS AND AORV'S	8
3.1	Class I PSD Increments	8
3.2	Visibility Impairment	9
3.3	Acidic Deposition	11
4.0	MODELING METHODOLOGY	12
4.1	Model and Post-Processor Selection	12
4.2	Modeling Domain, Terrain, and Meteorological Dataset	12
4.3	Computational Domain and Receptors	12
4.4	Background Ozone and Ammonia Concentrations	13
	4.4.1 Ozone Concentrations	13
	4.4.2 Ammonia Concentrations	14
4.5	Model Options Selection	14
4.6	Particulate Matter Speciation	14
4.7	Good Engineering Practice Stack Height and Building Downwash	15
4.8	POSTUTIL Post-Processing	15
	4.8.1 Class I PSD Increments	15
	4.8.2 Visibility Impairment	15
	4.8.3 Deposition	16
4.9	CALPOST Post-Processing	17
	4.9.1 Class I PSD Increments	17
	4.9.2 Visibility Impairment	17
	4.9.3 Deposition	17
5.0	PRESENTATION OF RESULTS	18

LIST OF TABLES

Table 2-1	Geographic and NAD83 UTM Coordinates for Proposed Project	
	Site	4
Table 2-2	Proximity to Federal Mandatory Class I Areas	6
Table 2-3	Class I Area Q/D Screening Values	7
Table 3.1 - 1	Class I PSD Increments and Significant Impact Levels (SIL's)	8
Table 3.2-2	Annual Average Natural Background Conditions (Table 6 FLAG	
	2010)	0
Table 3.2-3	Monthly Average Large Sulfate and Nitrate Relative Humidity	
	Adjustment Factors (Table 7 FLAG 2010)1	0

TABLE OF CONTENTS

Table 3.2 - 4	Monthly Average Small Sulfate and Nitrate Relative Humidity	
	Adjustment Factors (Table 8 FLAG 2010)	11
Table 3.2 - 5	Monthly Average Fine Sea Salt Relative Humidity Adjustment	
	Factors (Table 9 FLAG 2010)	11
Table 5-1	[Class I Area] Class I SIL, S & N Deposition and Visibility	
	Impairment Summary	18

LIST OF FIGURES

Figure 2-1	Profile	View	of	Typical	CARBO	Ceramics	Proppant
	Manufac	turing F	roce	SS			
Figure 2.1-1	Proposed	d Projec	t Loc	ation; Mill	en, Jenkins	s County, Ge	eorgia4
Figure 2.1.1-1	Class I A	Areas wi	ithin	300 km of	Proposed	Project Site .	

LIST OF ATTACHMENTS

- Attachment A Source Parameters, Stack Locations and Particulate Matter Speciation
- Attachment B CALPUFF Input File (CALPUFF.INP)
- Attachment C Electronic Files (includes BPIPPRM for GEP Stack Height)

Page

1.0 INTRODUCTION

CARBO Ceramics, Inc. ("CARBO") manufactures ceramic pellets, or proppants, from nonmetallic minerals for use primarily in the oil and natural gas production industries. CARBO is proposing to construct a new processing plant, approximately 6 km southeast of Millen, Georgia at the intersection of GA State Route 17 and Clayton Road, in Jenkins County. The proposed plant will be a four-line, wet processing facility, similar to its Toomsboro plant in Wilkinson County, Georgia, where proppants are manufactured from kaolin clay slurry which is pelletized in spray dryers and later calcined in direct-fired rotary kilns. In addition to slurry preparation, spray drying and calcining, the processing lines each consist of associated materials handling and storage, screening, and shipping operations.

The construction of the proposed new processing facility will be a subject to PSD preconstruction review since the facility will be a major stationary source with potential emissions of NO_x, SO₂, CO, VOC, PM, PM₁₀, PM_{2.5}, and CO₂e greater than the significant emission rate thresholds for each pollutant. As part of PSD review, CARBO will be required to conduct an ambient air quality analysis to demonstrate that potential emissions from the proposed major stationary source, and all applicable emissions increases and decreases from other existing and proposed new sources, will not cause or contribute to a violation of any applicable national ambient air quality standard (NAAQS) or PSD increment effective at the time of permit issuance. Also, when potential emissions from a proposed major stationary source "may affect" a Class I Area, the PSD rules also require an applicant to demonstrate that the source will have no adverse impact on any air quality related value (AQRV). AQRV's are those attributes of a Class I Area that deterioration of air quality may diminish the area's national significance, impair the structure or functioning of an ecosystem, or impair the quality of the visitor experience and include visibility and deposition of sulfur and nitrogen.

Generally, the term "may affect" includes any PSD major facility proposing to locate within 100 km of a Class I area and certain large sources beyond 100 km. In the revised Federal Land Managers' Air Quality Related Values Work Group Phase I report (FLAG 2010), the U.S. Forest Service (USFS), National Park Service (NPS) and U.S. Fish and Wildlife Service (FWS) have officially adopted screening criteria to determine if an assessment of AQRV's will be necessary for large PSD sources proposing to locate at distances greater than 50 km from a Class I area. The screening criteria (Q/D) is similar to that used for US EPA's Best Available Retrofit (BART) guidelines for the Regional Haze Rule and is based on ratio of the sum of potential emissions of NO_x , SO_2 , and all forms of particulate matter (including sulfuric acid mist (H₂SO₄)) and the distance between the proposed source and a Class I area. The FLM's will consider a source with a Q/D ratio of less than 10 to have negligible impacts with respect to the ARQV's.

The Millen facility will have a Q/D screening value greater than 10 for four Class I areas within 300 km of the project location: Cape Romain (SC), Okefenokee (GA), Wolf Island (GA), and Shining Rock (NC). Based on this, the FLM's for these Class I areas – FWS for Cape Romain, Okefenokee and Wolf Island and USFS for Shining Rock – were contacted on July 25, 2011 to determine if they may be concerned about adverse impacts to AORV's that would result from the proposed facility. FWS indicated that an AQRV analysis should be performed on the basis of the Q/D screening ratios for each wildlife refuge. USFS also indicated that an AQRV analysis would be required for Shining Rock (since FWS had requested the analysis) but that a Class I modeling applicability determination form should be submitted so that the FLM could make the appropriate judgment. The determination form was submitted to USFS on July 25, 2011 and the FLM confirmed that an analysis would be required in July 27, 2011. In this regard, this modeling protocol is being submitted for review and comment on the proposed modeling techniques for the AQRV analysis. Since the visibility impairment analysis involves modeling of NO_x, SO₂, and speciated particulate matter, this protocol also includes the proposed methods and procedures for evaluating the facility's air quality impacts with respect to the Class I significant impact levels (SIL's) for NO_x, SO₂, and PM₁₀. Therefore, this document is also being submitted to the Georgia Environmental Protection Division (GA EPD) Air Protection Branch (APB) for review and comment. At this time GA EPD is not requiring PSD sources to evaluate significant impacts for PM_{2.5}.

2.0 PROJECT DESCRIPTION

Generally, ceramic proppants are made by grinding or dispersing ore into a fine powder, combining the powder into small pellets and firing the pellets in a rotary kiln. This will be accomplished using a "wet" process which begins with processing kaolin clay. The kaolin is formed into slurry with the addition of water, dispersants and pH-adjusting reagent to control pellet formation and the mechanical properties of the slurry. After the slurry is formed, it is pelletized in spray dryers and then fired, or "sintered", in direct-fired rotary kilns to remove combined (chemically bound) water. The fired pellets are then conveyed from the kiln product systems to storage silos ready for shipment via railcars. A profile view of the proppant product flow (from left-to-right) in a typical proppant manufacturing line is shown in Figure 2.1.

Figure 2-1 Profile View of Typical CARBO Ceramics Proppant Manufacturing Process

Emissions units and source parameters associated with the construction of the Millen facility are enclosed as Table 1 of Attachment A. Potential emissions of NO_x , SO_2 , PM_{10} and $PM_{2.5}$ are provided in Table 2 of Attachment A and are based on the level of best available control technology (BACT) that is planned to be proposed for each emission unit as part of a PSD application for the facility. As for sulfuric acid mist, CARBO will propose to avoid PSD review by limiting facility-wide potential emissions of H_2SO_4 to less than 7 tons per year. Therefore, emissions of H_2SO_4 are split evenly among the direct-fired rotary kilns and proposed to be modeled directly as SO_4 . Since sulfuric acid mist is considered to be a component of condensable particulate matter (CPM) and CPM must now be accounted for in emission limitations in PSD permits, the PM speciation for the direct-fired rotary kilns reflects the fact the a portion of total PM is being modeled as SO_4 . Please refer to Section 4.6 and Table 2 in Attachment A for details as to how PM is speciated for each emission unit for the visibility impairment analysis.

2.1 Project, County, and Regional Location

The proposed Millen facility will be located in the eastern-central part of Georgia in Jenkins County. Figure 2.1-1 shows the project location and Table 2.1-1 lists the geographic coordinates of the facility.

Figure 2.1-1 Proposed Project Location; Millen, Jenkins County, Georgia

Table 2-1	Geographic and NAD83 UTM Coordinates for Proposed Project Site
-----------	--

UTM Zone	UTM East (m) (NAD83)	UTM North (m) (NAD83)	Latitude	Longitude	
17	415,753	3,625,754	32° 45' 59"N	81° 53' 58"W	

2.1.1 <u>Federal Mandatory Class I Areas</u>

Federal mandatory Class I areas are those areas of special national or regional scenic, recreational, natural or historic value where the need to prevent deterioration of air quality is the greatest. These Class I areas include our nation's pristine national parks and wilderness areas and are managed by officials of the Forest Service (FS), Fish & Wildlife Service (FWS), and National Park Service (NPS) through the United States Departments of Interior and Agriculture. There are four Class I areas located within 300 km of the proposed project site: the Shining Rock wilderness area (FS) and the Cape Romain, Okefenokee and Wolf Island national wildlife refuges (FWS). Figure 2.1.1-1 shows the location of the proposed project in relation to these Class I areas and Table 2.1.1-1 provides summary of the facility's proximity to each area.

Figure 2.1.1-1Class I Areas within 300 km of Proposed Project Site
(Latitude 32° 45' 59"N, Longitude 81° 53' 58"W)

Table 2-2	Proximity t	o Federal Ma	andatory Cl	ass I Areas	
Cla	ss I Area	FLM	State	Distance (km)	Heading (from north)
Cap	e Romain	FS	SC	210.2	86°
Shir	ning Rock	FS	NC	296.7	344°
Oke	efenokee	FWS	GA	191.9	191°
Wo	lf Island	FWS	GA	164.1	161°

2.2 **Project Emissions**

2.2.1 Potential Emissions of the New Major Stationary Source

The construction of the proposed new facility will trigger PSD review for emissions of NO_x , SO_2 , CO, VOC, PM, PM_{10} , $PM_{2.5}$, and CO_2e . Table 2 in Attachment A summarizes the level of best available control technology (BACT) that will be proposed for pollutants relevant to the AQRV analysis and Class I increments on a unit-level basis.

2.2.2 Class I Area Screening

When emissions from a new major stationary source may affect a Class I area, PSD review requires an applicant to demonstrate that the source would have no adverse impact on any AQRV. For those sources with a Q/D screening value greater than 10, where "Q" is the sum of NO_x , SO_2 , all forms of PM, including sulfuric acid mist (H_2SO_4), and "D" is the distance from the source to each Class I Area, a Class I area AQRV analysis is required (FLAG 2010). And, when an AQRV analysis is required by an FLM, GA EPD requires PSD applicants to assess a project's air quality impacts with respect to the Class I increments using the same refined model that is used for the AQRV analysis, if applicable. Table 2.2.2-1 lists the estimated Q/D screening values for the proposed new processing lines for each Class I area within 300 km.

Table 2-3	Class I Area Q/D	Screen	ing Values					
Class I Area	Distance, D (km)	Q/D*	Agency	Agency Contacts				
National Wi	<u>ldlife Refuges</u>							
Cape Romain	210.2	15.76	United States Department of Interior	Catherine Collins (303) 914-3807 <u>Catherine Collins@fws.gov</u>				
Okefenokee	191.9	17.26	Fish & Wildlife Service	Tim Allen (303) 914-3802				
Wolf Island	164.1	20.19	(FWS)	Tim Allen@fws.gov				
				U.S. Fish and Wildlife Service Air Quality Branch 7333 W. Jefferson Avenue Suite 375 Lakewood, CO 80235-2034				
Wilderness A	Areas							
Shining Rock	296.7	11.17	United States Department of Agriculture	Bill Jackson (828) 257-4815 <u>bjackson02@fs.fed.us</u>				
			Forest Service (FS)	Melanie Pitrolo (828) 257-4213 <u>mpitrolo@fs.fed.us</u>				
				USDA Forest Service 160A Zillicoa Street Asheville, NC 28801				

 $Q = NO_x + SO_2 + all$ forms of PM = 3,312 tpy; reflects H₂SO₄ as a component of condensable PM

The proposed project site is located well beyond 100 km from the nearest Class I Area (164.1 km to Wolf Island) but has an estimated Q/D screening value greater than 10 for each Class I area within 300 km. Based on this, the FLM's for these Class I areas have requested that an AQRV analysis be performed and modeling protocol be submitted.

3.0 ASSESSING CLASS I PSD INCREMENTS AND AQRV'S

3.1 Class I PSD Increments

Since NO_x, SO₂, and PM₁₀ are subject to PSD review, CARBO will perform an air quality analysis for each pollutant to determine if the facility's potential emissions would result in a significant impact for each Class I aa within 300 km. On July 23, 1996, the US EPA proposed significant impact levels for the NO_x , SO_2 , and PM_{10} Class I increments that would exclude proposed sources with *de minimis* ambient impacts from the requirement to conduct comprehensive Class I increment analyses and enable the permitting authority to determine that the emissions from such source would not cause or contribute to a violation of the increment in a Class I area (61 FR 38292). The significant impact levels (SIL's) for NO_x , SO_2 , and PM_{10} proposed to be used for the Class I analysis were determined by taking four percent (4%) of the Class I increment for each pollutant and averaging period, consistent with EPA's approach in the original 1996 proposal. Additionally, on October 20, 2010, US EPA amended the PSD regulations to add Class I PSD increments and SIL's for PM_{2.5} (75 FR 64864). The Class I SIL's for PM_{2.5} are based on multiplying the PM₁₀ Class I SIL's by the ratio of the PM_{2.5} NAAQS to the PM₁₀ NAAQS for each averaging period. However, at this time GA EPD is not requiring PSD sources to evaluate significant impacts for $PM_{2.5}$. Table 3.1-2 summarizes the Class I increments and SIL's for each pollutant and averaging period.

POLLUTANT		AVERAGING PERIOD									
		1-hour (µg/m³)	3-hour (µg/m³)	24-hour (µg/m³)	Annual (µg/m³)						
NO_2	Increment					2.5					
	SIL					0.1					
SO_2	Increment		25		5	2					
	SIL		1		0.2	0.1					
PM ₁₀	Increment				8	4					
	SIL				0.3	0.2					
$PM_{2.5}$	Increment				2	1					
	SIL				0.07	0.06					

 Table 3.1-1
 Class I PSD Increments and Significant Impact Levels (SIL's)

A cumulative increment consumption analysis should be performed only for those pollutants and averaging periods for which the maximum ambient impact of the facility's emissions are greater that the applicable SIL. This is equivalent to the approach used for Class II areas. Please refer to 43 FR 26398, published June 19, 1978.

3.2 Visibility Impairment

Visibility can be characterized in terms of light extinction, b_{ext} , which is the attenuation of light per unit distance due to light scattering and absorption by gases and particles in the atmosphere. The change in light extinction is affected by various chemical species and the Rayleigh scattering phenomenon and can be calculated using the IMPROVE methodology as shown by the following;

$$b_{ext} = 2.2f_{s}(RH)\underbrace{[(NH_{4})_{2}(SO_{4})]}_{Small Sulfates} + 4.8f_{1}(RH)\underbrace{[(NH_{4})_{2}(SO_{4})]}_{Large Sulfates} + 2.4f_{s}(RH)\underbrace{[NH_{4}NO_{3}]}_{Small Nitrates} + 5.1f_{1}(RH)\underbrace{[NH_{4}NO_{3}]}_{Large Nitrates} + 2.8\underbrace{[OC]}_{Small} + 6.1\underbrace{[OC]}_{Large} + \underbrace{[Soil]}_{Filterable} + \underbrace{0.6[PMC]}_{Filterable} + \underbrace{10[EC]}_{Filterable} + 1.7f_{ss}(RH)\underbrace{[S]}_{Sea} + \underbrace{b_{ray}}_{Rayleigh} + \frac{1}{3}\underbrace{[NO_{2}]}_{ppb}$$

where concentrations, in square brackets, are in micrograms per cubic meter (μ g/m³) and b_{ext} is in units of inverse megameters (Mm⁻¹). The IMPROVE formula incorporates different light extinction coefficients and separate humidity growth functions for large and small hygroscopic species (sulfate and nitrates), different extinction coefficients for large and small organic particulate matter, the contribution of concentrations of fine hygroscopic sea salt, site-specific Rayleigh scattering, and the light absorption by NO₂.

In order to evaluate visibility impairment, the change in light extinction is compared to the annual average natural visibility conditions for a Class I area. If the 98thpercentile change in light extinction from natural conditions at any Class I receptor is less than 5%, the construction of the Millen facility will be deemed to have a presumptive no adverse impact on visibility impairment. Table 3.2-1 lists the annual average natural background conditions that will be used for each Class I area from FLAG 2010.

1 4

m 11

1 able 3.2-2	Annual Average Natural Background Conditions (Table 6 FLAG 2010)									
Class I Area	(NH4)2SO4 bks04	NH4NO3 bkno3	Organics BKOC	Elemental Carbon BKEC Soils BKSOIL		Coarse BKPMC	Sea Salt ^{BKSALT}	Rayleigh Mm ⁻¹ BEXTRAY		
Cape										
Romain	0.23	0.10	1.80	0.02	0.45	3.00	0.20	12		
Okefenokee	0.23	0.10	1.80	0.02	0.50	3.00	0.08	11		
Wolf Island	0.23	0.10	1.80	0.02	0.50	3.00	0.08	11		
Shining Rock	0.23	0.10	1.76	0.02	0.50	1.76	0.02	10		

1 D

1 . . .

Since small and large sulfate and nitrate and fine sea salt particles are hygroscopic, an adjustment factor is applied when determining the extinction coefficient for these species. With FLAG 2010, monthly average relative humidity adjustment factors for these particles are applied to natural conditions as well as modeled species in order to minimize the effects short-term weather events and geographically localized meteorological phenomena. Tables 3.2-2 through 3.2-4 list the monthly average humidity growth factors for large and small sulfates and nitrates and fine sea salt particles that will be used for each Class I area.

Table 3.2-3	Monthly	Average	Large	Sulfate	and	Nitrate	Relative	Humidity
	Adjustme							

Class I Area	Jan	Feb	Mar	April	May	June	July	Aug	Sept	Oct	Nov	Dec
71104												
Cane												
Romain	2.66	2.47	2.42	2.32	2.56	2.8	2.82	3.04	3.03	2.86	2.65	2.7
												-
Okefenokee	2.94	2.73	2.73	2.65	2.74	3.11	3.00	3.17	3.16	3.05	2.96	3.03
		•										
Wolf Island	2.86	2.67	2.61	2.54	2.63	2.96	2.94	3.13	3.12	2.99	2.88	2.95
Shining												
Rock	2.78	2.56	2.48	2.33	2.72	2.98	3.02	3.17	3.18	2.91	2.68	2.79

Table 3.2-4	Mor Adjı	nthly ustme	Avera nt Fact	ige Sn tors (Ta	nall – S able 8 1	Sulfate FLAG	and 2010)	Nitra	ite Re	elative	Hun	nidity
Class I Area	Jan	Feb	Mar	April	May	June	July	Aug	Sept	Oct	Nov	Dec
Cape Romain	3.66	3.33	3.24	3.07	3.46	3.88	3.91	4.31	4.30	4.00	3.62	3.73
Okefenokee	4.16	3.79	3.80	3.65	3.79	4.46	4.24	4.55	4.55	4.35	4.18	4.33
Wolf Island	4.02	3.68	3.58	3.45	3.59	4.17	4.13	4.47	4.46	4.23	4.05	4.18
Shining Rock	3.89	3.51	3.37	3.11	3.77	4.22	4.29	4.58	4.60	4.12	3.69	3.88
Table 3.2-5Monthly Average Fine Sea Salt Relative Humidity Adjustment Factors (Table 9 FLAG 2010)												
Class I Area	Jan	Feb	Mar	April	May	June	July	Aug	Sept	Oct	Nov	Dec
Cape Romain	3.74	3.44	3.37	3.23	3.62	3.99	4.04	4.32	4.29	4.03	3.74	3.81
Okefenokee	4.13	3.83	3.82	3.69	3.85	4.38	4.28	4.51	4.48	4.31	4.18	4.27
Wolf Island	4.03	3.74	3.66	3.55	3.72	4.20	4.20	4.46	4.42	4.22	4.08	4.15
Shining												

3.3 Acidic Deposition

The primary gases involved in sulfur and nitrogen deposition are SO_2 , SO_4 , NO and NO_2 (NO_x), HNO_3 and NO_3 . An analysis will be performed to determine total annual wet and dry deposition fluxes of sulfur and nitrogen from the proposed facility within each Class I Area. The total sulfur and nitrogen deposition shall be compared to the deposition analysis threshold (DAT). For Class I Areas in the eastern United States, the DAT for each area is 0.01 kilograms/hectare/year (kg/ha/yr). If the modeled sulfur or nitrogen deposition exceeds the DAT, the FLM will make a project

specific determination as to whether the increase in deposition constitutes an adverse impact.

4.0 MODELING METHODOLOGY

4.1 Model and Post-Processor Selection

CALPUFF has been adopted by the U.S. EPA as a "Guideline" model for sourcereceptor distances greater than 50 km (i.e. long range transport, or "LRT"), and for use on a case-by-case basis in complex flow situations for near-field applications. CALPUFF is also recommended by FLAG and IWAQM for Class I Area LRT increment and AQRV assessments. In its final BART guidance, EPA recommended CALPUFF as "the best modeling application available for predicting a single source's contribution to visibility impairment. As a result of these recommendations, the CALPUFF modeling and post-processing systems will be used for the AQRV and Class I increment analysis. The most recent EPA-approved version of CALPUFF, Version 5.8 Level 070623 (with CALPOST Version 5.6394 Level 070622), will be used. However, the version of the CALPOST post-processor used for visibility impairment will be CALPOST Version 6.292 Level 110406 to allow for the use of visibility Method 8 Mode 5 to conform to FLAG 2010 guidelines.

4.2 Modeling Domain, Terrain, and Meteorological Dataset

The meteorological dataset that will be used for the AQRV and Class I increment analysis is the CALMET 5.8 dataset developed for VISTAS sub-regional domain 4. Initial discussions with Tim Allen at FWS confirm that this CALMET data set is still appropriate to use for PSD applicants. The data was obtained from GA EPD and has been preprocessed on a 4-km grid scale using 2001 through 2003 MM5 data as the initial guess field with NWS observations to provide local surface refinement. The grid uses the Lambert Conic Conformal (LCC) projection with an origin of 40° N latitude and 97° W longitude with matching parallel latitudes of 33° N and 45° N.

4.3 Computational Domain and Receptors

The computational domain for the Class I area analysis will use the full meteorological domain. This domain has been configured to include each Class I area under review with at least a 50 km buffer zone in each direction to ensure that concentrations will not be underestimated by loosing "puffs" off the grid. The discrete receptors for each Class I Area will be those receptor locations and elevations provided by the National Park Service (NPS) Air Resources Division (ARD) available online at the NPS website.

It should be noted that CALPOST contains a receptor screening method (NDRECP) that allows subsets of discrete receptors modeled in CALPUFF to be selected for processing in a given CALPOST run. Using this method, a single CALPUFF input

file will be used to generate the species concentrations and wet and dry deposition fluxes for all Class I receptors. For the four Class I areas included as part of this protocol, there are 804 total receptors listed in Subgroup 17b of the CALPUFF.INP, file enclosed in Attachment B, in the following order:

- Cape Romain: 1 164;
- Okefenokee: 165 665;
- Wolf Island: 665 694; and
- Shining Rock: 695-804

CALPOST will then be used to process subsets of discrete receptors for each AQRV and Class I increment using NDRECP. As an example, receptors for Wolf Island will be processed by specifying the following:

NDRECP = 664*0, 30*1

This allows CALPOST to skip the first 664 receptors (for Cape Romain and Okefenokee) and process the next 30 receptors, which represent Wolf Island.

4.4 Background Ozone and Ammonia Concentrations

The CALPUFF model is capable of simulating linear chemical transformation effects by using pseudo-first-order chemical reaction mechanisms for the conversions of SO_2 to SO_4 , and NO_x , which consists of nitrogen oxide (NO) and nitrogen dioxide (NO₂), to nitrate (NO₃) and nitric acid (HNO₃). For the analysis, chemical transformations involving five species (SO₂, SO₄, NO_x, HNO₃, and NO₃) will be modeled using the MESOPUFF II chemical transformation scheme, which is part of the regulatory default model options selection. Ambient concentrations of ozone and ammonia concentrations as represented in the model affect the MESOPUFF II chemical transformation.

4.4.1 Ozone Concentrations

Ambient ozone concentrations are used in the MESOPUFF II chemical transformation scheme as a surrogate for OH radicals throughout the daylight hours during SO_2 and NO_x oxidation. Hourly measurements of ozone from all non-urban monitors within and just outside the computational grid will be used as input to CALPUFF. Standard ozone data files containing this data were obtained from GA EPD. The default value of 80 ppb (BCK03) will used for the background ozone concentration for instances when hourly data is missing.

4.4.2 <u>Ammonia Concentrations</u>

FLAG 2010 recommends using the IWAQM Phase II spatially constant domain average ammonia background values (BCKNH3) of 10 ppb for "grasslands", 0.5 ppb for "forest", and 1.0 ppb for "arid lands". The VISTAS RPO recommends using an ammonia background value of 0.5 ppb for the purposes of BART determinations. Since most areas of the modeling domain are predominantly forested, the ammonia background will be set to 0.5 ppb the analysis.

4.5 Model Options Selection

CALPUFF model options will be specified in accordance with the recommendations contained in Appendix B of the IWAQM Phase II summary report. These recommended modeling options are appropriate for both Class I increment and AQRV analyses. The CALPUFF input options will be tested to conform to the regulatory default model (MREG = 1) using the MESOPUFF II chemical transformation scheme (MCHEM = 1) and Pasqiull-Gifford dispersion coefficients (MDISP = 3).

The CALPUFF input file will be setup to generate the species concentration (CONC.DAT), wet deposition (WFLX.DAT) and dry deposition (DFLX.DAT) data files required for POSTUTIL and CALPOST processing to determine the impact of the proposed facility on each Class I increment and AQRV. The CALPUFF input file (CALPUFF.INP) showing model options selection is provided in Attachment B for FLM confirmation; the enclosed CALPUFF.INP excludes meteorological and ozone data pathways.

4.6 Particulate Matter Speciation

For the visibility impairment analysis, particulate matter will be speciated according to the profile developed for each emission unit provided in Table 2 of Attachment A. Generally, PM_{10} is speciated into different size fractions of particulate matter based on the total PM_{10} and $PM_{2.5}$ BACT emission limitations and the facility-wide H_2SO_4 PSD avoidance limitation that will be proposed as part of the PSD application for the Millen facility. For emission units not associated with condensable PM, such as storage silos, railcar loading and other material handling equipment, PM is apportioned to size fractions of coarse (PCM) and fine (PMF) particulate based on the ratios of PM_{10-2.5} and PM_{2.5} to total PM₁₀ BACT. The particulate is then split evenly into coarse size fractions PM₁₀₋₆ (PMC800) and PM_{6-2.5} (PMC425) for PM_{10-2.5} and the submicron size fractions PM_{1-0.625} (PMF081) and PM_{0.625-0.5} (PMF056) for PM_{2.5}. Although the spray dryers and boilers may be associated with some non-zero fraction of filterable PM, the same procedure was used to apportion PM except that all PM is assumed to be organic condensable (POC) which will provide for a conservative estimate of visibility impairment from these units based on the light extinction coefficient for SOA. Finally, the same approach used for the spray dryers and boilers

was used for the kilns except that the total portion of PM_{10} speciated to POC excludes the sulfuric acid mist PSD avoidance limitation since H_2SO_4 is a component of PM. So, 7 tons per year (0.40 lb/hr per kiln) will be modeled directly as SO₄ while the remaining PM (BACT minus SO₄) is speciated to submicron size fractions for POC.

4.7 Good Engineering Practice Stack Height and Building Downwash

As specified 40 CFR Part 51 Appendix W, credit for emissions reductions from stack heights in excess of good engineering practice (GEP) is prohibited. GEP stack height, as measured from the base elevation of a stack, is defined in 40 CFR §51,100(ii) and the US EPA Technical Support Document for Stack Height Regulations (EPA-450/4-80-023R) as the greater of 213 feet (65 meters), or the stack height determined based on the dimensions of nearby structures ("Equation 1 Height") or EPA approved fluid model studies. As shown in Table 1 of Attachment A, only the kiln stacks are greater than 213 feet (245). Therefore, the actual stack height for all other emission units may be used for the analysis. In order to determine if the actual height of the kilns stacks may be used, the Building Profile Input Program (BPIP), a software application designed to incorporate the concepts and procedures expressed in EPA-450/4-80-023R, was used to determine the GEP stack height based on EPA's refined formula. Using BPIP, the GEP stack height for the kilns was determined to be 344 feet. Therefore, the actual height of the kiln stacks will be used for the analysis. The input, output, and summary files for BPIP are provided in the electronic files enclosed as Attachment C. Also, a Google Earth .kml file is provided which shows the locations of the stacks relative to the buildings associated with the proposed facility to facilitate review of the BPIP files.

4.8 POSTUTIL Post-Processing

4.8.1 Class I PSD Increments

No post processing in POSTUTIL will be required prior to using CALPOST for the NO_2 , SO_2 and PM_{10} Class I increments. These species are directly modeled in CALPUFF and stored in the concentration file (CONC.DAT).

4.8.2 <u>Visibility Impairment</u>

POSTUTIL will be used to generate a file for CALPOST (VISIBILITY.DAT) from the CALPUFF concentration files. Species SO_2 , SO_4 , NO_x , HNO_3 , and NO_3 will be passed directly through to the new file. However, species for coarse particulate matter (PMC), fine particulate matter (SOIL), and secondary organic aerosols (SOA) will be computed from the modeled species of particulate matter using the following in Subgroup 2c;

```
! CSPECCMP = PMC !
! PMC800 = 1.0 !
```

```
! PMC425 = 1.0 !
! END !
! CSPECCMP = SOIL !
! PMF081 = 1.0 !
! PMF056 = 1.0 !
! END !
! CSPECCMP = SOA !
! POC800 = 1.0 !
! POC425 = 1.0 !
! POC081 = 1.0 !
! POC056 = 1.0 !
```

4.8.3 <u>Deposition</u>

POSTUTIL will be used to generate a total flux file (TFLX.DAT) file from the wet flux (WFLX.DAT) and dry flux (DFLX.DAT) CALPUFF files. This will be accomplished by processing the input species and computing nitrogen, N, and sulfur, S. N and S will be computed from the modeled species using the following in Subgroup 2c;

```
! CSPECCMP = N !
! SO2 = 0.0 !
! SO4 = 0.291667 !
! NOx = 0.466667 !
! HNO3 = 0.222222 !
! NO3 = 0.451613 !
! END!
! CSPECCMP = S !
! SO2 = 0.500000 !
! SO4 = 0.333333 !
! NOx = 0.0 !
! HNO3 = 0.0 !
! END!
```

Sulfur and nitrogen deposition are calculated in order to correct for the difference in molecular weight between species. The amount of N deposition from secondary formation of ammonium sulfates and nitrates is also included.

4.9 CALPOST Post-Processing

4.9.1 <u>Class I PSD Increments</u>

For the NO_2 , SO_2 and PM_{10} Class I increments, CALPOST will be used to extract the highest first-high concentrations for each pollutant and applicable averaging period of the CALPUFF concentration file (CONC.DAT). This will be performed by setting the ASPEC parameter to the appropriate species, extracting the species from the correct layer, and setting as true (T) the appropriate averaging period.

4.9.2 <u>Visibility Impairment</u>

For visibility impairment, CALPOST will be used to process the VISIBILITY.DAT file created by POSTUTIL by setting the ASPEC parameter to VISIB. Consistent with FLAG 2010, MVISBK will be set to 8 with M8_MODE set to 5 and monthly relative humidity will be capped at 95%. For each Class I area, the annual average natural background conditions specified in Table 3.2-1 will be set to BKSO4, BKNO3, BKPMC, BKOC, BKSOIL, BKEC and BKSALT as applicable. The extinction due to site specific Rayleigh scattering specified in Table 3.2-1 will be defined in BEXTRAY. Additionally, the monthly average humidity growth factors for large and small sulfates and nitrates and fine sea salt particles specified in Tables 3.2-2, 3.2-3, and 3.2-4 will be specified as RFHSML, RFHLRG, and RFHSEA, respectively.

4.9.3 <u>Deposition</u>

For deposition, the total flux file (TFLX.DAT) created in POSTUTIL will be processed in CALPOST by setting ASPEC to N or S, as applicable. The total flux extracted from the flux file is in micrograms per meter squared per second (μ g/m²/s) and will be converted to kilograms/hectare/year (kg/ha/yr) for comparison to the DAT by multiplying by a factor of 315.36 as shown below.

$$\left(\frac{kg}{ha \cdot year}\right) = \left(\frac{10^{-6} \text{ g}}{m^2 \cdot \text{sec}}\right) \left(\frac{60 \text{ sec}}{\text{min}}\right) \left(\frac{60 \text{ min}}{hr}\right) \left(\frac{8,760 \text{ hr}}{\text{year}}\right) \left(\frac{10,000 \text{ m}^2}{ha}\right) \left(\frac{kg}{1,000 \text{ g}}\right) = 315.36 \left(\frac{\mu \text{g}}{m^2 \cdot \text{sec}}\right)$$

This conversion factor will be applicable for years 2001 and 2002 of the CALMET data set. There are only 8,734 hours in year 2003. Therefore, the appropriate conversion factor is 314.424.
5.0 PRESENTATION OF RESULTS

Results will be summarized for each Class I Area in tables similar to that of Table 5-1.

Table 5-1	[Class I Area] (Class I SIL, S	& N D	Deposition	and	Visibility	Impairmen	ıt
	Summary							

Parameter	Averaging Period	2001	2002	2003	Threshold
<u>Class I Area Signifi</u>	cant Impact Levels	s for SO2, PM1	10, and NO2		
SO2 Class I SIL	3-hr (μg/m³)				1.00
	24-hr (µg/m³)				0.20
	annual (µg/m³)				0.08
PM10 Class I SIL	24-hr (µg/m³)				0.32
	annual (µg/m³)				0.16
NO2 Class I SIL	annual (µg/m³)				0.10
<u>Class I Area Sulfur</u>	and Nitrogen Depo	osition AQRV			
Ν	annual (kg/ha/yr)				0.01
S	annual (kg/ha/yr)				0.01
<u>Visibility Impairme</u>	nt AQRV				
Δb_{ext} Method 8 M5	24-hr (%)				Highest
Δb_{ext} Method 8 M5	24-hr (%)				5% (98th Percentile)
Number of Days Exceeding 5%					7

SMITH ALDRIDGE, INC.

ATTACHMENT A

Source Parameters, Stack Location, BACT Limits and PM Speciation

Table 1. CARBO Ceramics Millen Facility - Stack Locations and Source Parameters

			<u>St</u>	ack Locatio	ns and Base	Elevation		Mode	eled Stack I	Parameters	and Eleva	ations
Modeled ID No.	Emission Unit Description	Zone	Base Elevation, (ft)	UTM NAD 83 Easting, (km)	UTM NAD 83 Northing, (km)	LCC Easting, (km)	LCC Northing, (km)	Stack Height, (ft)	Base Elevation, (ft)	Stack Diameter, (in)	Exit Velocity, (fps)	Exhaust Temp., t (°F)
CARBO Ce	ramics Millen Facility Proces	sing Li	<u>ne 1</u>									
S001	Spray Dryer No. 1	17	215	415.76082	3625.68254	1405.83795	-684.19427	180.0	215.00	36.00	108.46	206
S002	Spray Dryer No. 2	17	215	415.76978	3625.68718	1405.84595	-684.18813	180.0	215.00	36.00	108.46	206
S003	Pellet Feed System No. 1	17	215	415.78100	3625.68988	1405.85651	-684.18352	160.0	215.00	28.00	85.75	80
S005	Kiln No. 1 Scrubber	17	215	415.79974	3625.69601	1405.87387	-684.17421	245.0	215.00	48.00	83.56	160
S006	Kiln No. 1 Product System	17	215	415.87009	3625.74918	1405.93377	-684.10947	125.0	215.00	19.00	16.93	150
S007	Product Silo No. 1-1	17	225	415.90949	3625.82589	1405.95914	-684.02684	95.5	225.00	20.00	7.64	80
S008	Product Silo No. 1-2	17	225	415.91603	3625.82936	1405.96497	-684.02228	95.5	225.00	20.00	7.64	80
S009	Product Silo No. 1-3	17	225	415.92254	3625.83280	1405.97077	-684.01775	95.5	225.00	20.00	7.64	80
S010	Product Silo No. 1-4	17	225	415.92897	3625.83619	1405.97650	-684.01329	95.5	225.00	20.00	7.64	80
S011	Railcar Loading System No. 1	17	225	415.97089	3625.86411	1406.01286	-683.97843	65.0	215.00	14.00	54.57	80
BLR1	Boiler No. 1	17	215	415.71900	3625.66695	1405.79954	-684.21693	29.0	215.00	18.00	23.58	380
CARBO Ce	ramics Millen Facility Proces	sing Li	<u>ne 2</u>									
S012	Spray Dryer No. 3	17	215	415.75149	3625.70004	1405.82572	-684.17860	180.0	215.00	36.00	108.46	206
S013	Spray Dryer No. 4	17	215	415.76038	3625.70489	1405.83362	-684.17227	180.0	215.00	36.00	108.46	206
S014	Pellet Feed System No. 2	17	215	415.76891	3625.71253	1405.84067	-684.16324	160.0	215.00	28.00	85.75	80
S016	Kiln No. 2 Scrubber	17	215	415.78452	3625.72449	1405.85394	-684.14871	245.0	215.00	48.00	83.56	160
S017	Kiln No. 2 Product System	17	215	415.86818	3625.75293	1405.93124	-684.10610	125.0	215.00	19.00	16.93	150
S018	Product Silo No. 2-1	17	225	415.93526	3625.83987	1405.98205	-684.00856	95.5	225.00	20.00	7.64	80
5019	Product Silo No. 2-2	17	225	415.94181	3625.84317	1405.98791	-684.00416	95.5	225.00	20.00	7.64	80
S020	Product Silo No. 2-3	17	220	415.94617	3025.04050	1405.99337	-003.99909	95.5	225.00	20.00	7.04	80
BLR2	Boiler No. 2	17	225	415 70761	3625.68873	1405 78455	-684 19739	29.0	215.00	18.00	23 58	380
CARBO CA	pramics Millen Facility Proces	sina Li	no 3	413.70701	3023.00073	1403.70433	-004.13733	23.0	210.00	10.00	20.00	500
S022	Spray Dryer No. 5	17	215	415 70704	3625 78208	1405 76756	-684 10437	180.0	215.00	36.00	108.46	206
5022	Spray Dryer No. 6	17	215	415,70704	3625 78762	1405.70756	-684 09823	180.0	215.00	36.00	108.46	200
S024	Pellet Feed System No. 3	17	215	415 72722	3625.79032	1405 78612	-684 09362	160.0	215.00	28.00	85 75	80
S024	Kiln No. 3 Scrubber	17	215	415 74596	3625 79645	1405 80348	-684 08431	245.0	215.00	48.00	83.56	160
S027	Kiln No. 3 Product System	17	215	415.81631	3625.84962	1405.86339	-684.01957	125.0	215.00	19.00	16.93	150
S028	Product Silo No. 3-1	17	225	415.90285	3625.83835	1405.95044	-684.01569	95.5	225.00	20.00	7.64	80
S029	Product Silo No. 3-2	17	225	415.90939	3625.84182	1405.95627	-684.01112	95.5	225.00	20.00	7.64	80
S030	Product Silo No. 3-3	17	225	415.91590	3625.84526	1405.96207	-684.00659	95.5	225.00	20.00	7.64	80
S031	Product Silo No. 3-4	17	225	415.92233	3625.84865	1405.96780	-684.00213	95.5	225.00	20.00	7.64	80
S032	Railcar Loading System No. 2	17	225	415.96425	3625.87657	1406.00416	-683.96727	65.0	225.00	14.00	54.57	80
BLR3	Boiler No. 3	17	215	415.66522	3625.76739	1405.72916	-684.12703	29.0	215.00	18.00	23.58	380
CARBO Ce	ramics Millen Facility Proces	sing Li	<u>ne 4</u>									
S033	Spray Dryer No. 7	17	215	415.69771	3625.80048	1405.75533	-684.08870	180.0	215.00	36.00	108.46	206
S034	Spray Dryer No. 8	17	215	415.70660	3625.80533	1405.76323	-684.08237	180.0	215.00	36.00	108.46	206
S035	Pellet Feed System No. 4	17	215	415.71513	3625.81297	1405.77029	-684.07334	160.0	215.00	28.00	85.75	80
S037	Kiln No. 4 Scrubber	17	215	415.73074	3625.82493	1405.78355	-684.05881	245.0	215.00	48.00	83.56	160
S038	Kiln No. 4 Product System	17	215	415.81440	3625.85337	1405.86085	-684.01620	125.0	215.00	19.00	16.93	150
S039	Product Silo No. 4-1	17	225	415.92862	3625.85233	1405.97335	-683.99740	95.5	225.00	20.00	7.64	80
S040	Product Silo No. 4-2	17	225	415.93517	3625.85563	1405.97921	-683.99300	95.5	225.00	20.00	7.64	80
S041	Product Silo No. 4-3	17	225	415.94153	3625.85904	1405.98487	-683.98853	95.5	225.00	20.00	7.64	80
S042	Product Silo No. 4-4	17	225	415.94820	3625.86253	1405.99082	-683.98393	95.5	225.00	20.00	7.64	80
BLR4	Boiler No. 4	17	215	415.65383	3625.78917	1405.71416	-684.10749	29.0	215.00	18.00	23.58	380

Table 2. CARBO Ceramics Millen Facility - Potential Emissions (BACT) for AQRV and Class I Significance Analysis

Particulate Matter Speciation of Total PM₁₀ and

																	Co	arse	5	Soil	1	Or	ganic			C	oarse	<u>s</u>	oil		Or	ganic		
		NO	50	SO ₄ ,			DM	DM	DM	DM		.														l I								Particle Speciation
Modeled	R	(lb/hr)	30 ₂ , (lb/hr)	(Ib/hr) PSD	PM, (ar/dscf)	PM, (lb/hr)	(ar/dscf)	(lb/hr)	(ar/dscf)	(lb/hr)	Particulate	Particulate	BACT BACT	Inorganic	Inorganic	Condensable	PMC	PMC	PMF	PMF	POC	POC	POC	POConstant	Particle	PMC.	PMCaar	PMF	PMFs and a d	POC	POCase	POC	POComerce	PM ₁₀ Mass Emissions Rate
No.	Emission Unit Description	BACT	BACT	Avoid.	BACT	BACT	BACT	BACT	BACT	BACT	Matter	Matter	PM ₁₀₋₆ PM _{2.5-0}	as SO4	as PMF	as POC	PMC800	PMC425	PMF081	PMF056	POC800	POC425	POC081	POC056	Sum Check	PMC80	PHC425	PMF081	PME056	POC800	POC425	POC081	POC056	Sum Check
CARBO C	eramics Millen Facility Proces	sing Line	1										100 1.00	SO4	PMF	POC	PMC800	PMC425	PMF081	PMF056	POC800	POC425	POC081	POC056		lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr lb/hr
S001	Sprav Drver No. 1	8.30	0.50		0.0200	4.543	0.0200	4.543	0.0075	1.704	0%	100%	63% 38%	0%	0%	100%	0%	0%	0%	0%	31%	31%	19%	19%	100% ✓	0.000	0.000	0.000	0.000	1.420	1.420	0.852	0.852	4.543 0.000 ✓
S002	Spray Dryer No. 2	8.30	0.50		0.0200	4.543	0.0200	4.543	0.0075	1.704	0%	100%	63% 38%	0%	0%	100%	0%	0%	0%	0%	31%	31%	19%	19%	100% ✓	0.000	0.000	0.000	0.000	1.420	1.420	0.852	0.852	4.543 0.000 ✓
S003	Pellet Feed System No. 1				0.0100	1.629	0.0100	1.629	0.0050	0.814	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% ✓	0.40	0.407	0.407	0.407	0.000	0.000	0.000	0.000	1.629 0.000 ✓
S005	Kiln No. 1 Scrubber	121.00	34.25	0.40	0.0100	2.759	0.0100	2.759	0.0100	2.759	0%	100%	0% 100%	14%	0%	86%	0%	0%	0%	0%	0%	0%	43%	43%	100% 🗸	0.000	0.000	0.000	0.000	0.000	0.000	1.180	1.180	2.759 0.000 🗸
S006	Kiln No. 1 Product System				0.0100	0.129	0.0100	0.129	0.0050	0.064	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% 🗸	0.032	0.032	0.032	0.032	0.000	0.000	0.000	0.000	0.129 0.000 🗸
S007	Product Silo No. 1-1				0.0100	0.086	0.0100	0.086	0.0050	0.043	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% 🗸	0.02	0.021	0.021	0.021	0.000	0.000	0.000	0.000	0.086 0.000 🗸
S008	Product Silo No. 1-2				0.0100	0.086	0.0100	0.086	0.0050	0.043	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% 🗸	0.02	0.021	0.021	0.021	0.000	0.000	0.000	0.000	0.086 0.000 🗸
S009	Product Silo No. 1-3				0.0100	0.086	0.0100	0.086	0.0050	0.043	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% ✓	0.02	0.021	0.021	0.021	0.000	0.000	0.000	0.000	0.086 0.000 🗸
S010	Product Silo No. 1-4				0.0100	0.086	0.0100	0.086	0.0050	0.043	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% 🗸	0.02	0.021	0.021	0.021	0.000	0.000	0.000	0.000	0.086 0.000 🗸
S011	Railcar Loading System No. 1				0.0100	0.300	0.0100	0.300	0.0050	0.150	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% 🗸	0.075	5 0.075	0.075	0.075	0.000	0.000	0.000	0.000	0.300 0.000 🗸
BLR1	Boiler No. 1	0.14	0.01			3 0.075		30.075		0.075	0%	100%	0% 100%	0%	0%	100%	0%	0%	0%	0%	0%	0%	50%	50%	100% 🗸	0.000	0.000	0.000	0.000	0.000	0.000	0.037	0.037	0.075 0.000 🗸
CARBO C	eramics Millen Facility Proces	sing Line	<u>2</u>																															
S012	Spray Dryer No. 3	8.30	0.50		0.0200	4.543	0.0200	4.543	0.0075	1.704	0%	100%	63% 38%	0%	0%	100%	0%	0%	0%	0%	31%	31%	19%	19%	100% ✓	0.000	0.000	0.000	0.000	1.420	1.420	0.852	0.852	4.543 0.000 ✓
S013	Spray Dryer No. 4	8.30	0.50		0.0200	4.543	0.0200	4.543	0.0075	1.704	0%	100%	63% 38%	0%	0%	100%	0%	0%	0%	0%	31%	31%	19%	19%	100% 🗸	0.000	0.000 (0.000	0.000	1.420	1.420	0.852	0.852	4.543 0.000 ✓
S014	Pellet Feed System No. 2				0.0100	1.629	0.0100	1.629	0.0050	0.814	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% 🗸	0.40	0.407	0.407	0.407	0.000	0.000	0.000	0.000	1.629 0.000 ✓
S016	Kiln No. 2 Scrubber	121.00	34.25	0.40	0.0100	2.759	0.0100	2.759	0.0100	2.759	0%	100%	0% 100%	14%	0%	86%	0%	0%	0%	0%	0%	0%	43%	43%	100% 🗸	0.000	0.000	0.000	0.000	0.000	0.000	1.180	1.180	2.759 0.000 🗸
S017	Kiln No. 2 Product System				0.0100	0.129	0.0100	0.129	0.0050	0.064	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% 🗸	0.032	0.032	0.032	0.032	0.000	0.000	0.000	0.000	0.129 0.000 🗸
S018	Product Silo No. 2-1				0.0100	0.086	0.0100	0.086	0.0050	0.043	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% 🗸	0.02	0.021	0.021	0.021	0.000	0.000	0.000	0.000	0.086 0.000 🗸
S019	Product Silo No. 2-2				0.0100	0.086	0.0100	0.086	0.0050	0.043	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% ✓	0.02	0.021	0.021	0.021	0.000	0.000	0.000	0.000	0.086 0.000 🗸
S020	Product Silo No. 2-3				0.0100	0.086	0.0100	0.086	0.0050	0.043	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% 🗸	0.02	0.021	0.021	0.021	0.000	0.000	0.000	0.000	0.086 0.000 🗸
S021	Product Silo No. 2-4				0.0100	0.086	0.0100	0.086	0.0050	0.043	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% 🗸	0.02	0.021	0.021	0.021	0.000	0.000	0.000	0.000	0.086 0.000 🗸
BLR2	Boiler No. 2	0.14	0.01			§ 0.075		8 0.075		0.075	0%	100%	0% 100%	0%	0%	100%	0%	0%	0%	0%	0%	0%	50%	50%	100% ✓	0.00	0.000	0.000	0.000	0.000	0.000	0.037	0.037	0.075 0.000 ✓
CARBO C	eramics Millen Facility Proces	<u>sing Line</u>	<u>3</u>																															
S022	Spray Dryer No. 5	8.30	0.50		0.0200	4.543	0.0200	4.543	0.0075	1.704	0%	100%	63% 38%	0%	0%	100%	0%	0%	0%	0%	31%	31%	19%	19%	100% 🗸	0.000	0.000	0.000	0.000	1.420	1.420	0.852	0.852	4.543 0.000 🗸
S023	Spray Dryer No. 6	8.30	0.50		0.0200	4.543	0.0200	4.543	0.0075	1.704	0%	100%	63% 38%	0%	0%	100%	0%	0%	0%	0%	31%	31%	19%	19%	100% 🗸	0.000	0.000	0.000	0.000	1.420	1.420	0.852	0.852	4.543 0.000 🗸
S024	Pellet Feed System No. 3				0.0100	1.629	0.0100	1.629	0.0050	0.814	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% ✓	0.40	0.407	0.407	0.407	0.000	0.000	0.000	0.000	1.629 0.000 ✓
S026	Kiln No. 3 Scrubber	121.00	34.25	0.40	0.0100	2.759	0.0100	2.759	0.0100	2.759	0%	100%	0% 100%	14%	0%	86%	0%	0%	0%	0%	0%	0%	43%	43%	100% 🗸	0.000	0.000	0.000	0.000	0.000	0.000	1.180	1.180	2.759 0.000 ✓
S027	Kiln No. 3 Product System				0.0100	0.129	0.0100	0.129	0.0050	0.064	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% ✓	0.032	2 0.032	0.032	0.032	0.000	0.000	0.000	0.000	0.129 0.000 🗸
S028	Product Silo No. 3-1				0.0100	0.086	0.0100	0.086	0.0050	0.043	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% ✓	0.02	0.021	0.021	0.021	0.000	0.000	0.000	0.000	0.086 0.000 ✓
S029	Product Silo No. 3-2				0.0100	0.086	0.0100	0.086	0.0050	0.043	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% ✓	0.02	0.021	0.021	0.021	0.000	0.000	0.000	0.000	0.086 0.000 ✓
S030	Product Silo No. 3-3				0.0100	0.086	0.0100	0.086	0.0050	0.043	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% ✓	0.02	0.021	0.021	0.021	0.000	0.000	0.000	0.000	0.086 0.000 V
5031	Product SIIO No. 3-4				0.0100	0.086	0.0100	0.086	0.0050	0.043	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% •	0.02	0.021	0.021	0.021	0.000	0.000	0.000	0.000	0.086 0.000 V
5032 BL B2	Railcal Loading System No. 2	0.14	0.01		8 0.0100	0.300	0.0100	0.300	0.0050	0.150	100%	100%	0% 100%	0%	0%	100%	25%	25%	25%	25%	0%	0%	0% 50%	0% 50%	100% •	0.073	0.075	0.075	0.075	0.000	0.000	0.000	0.000	0.300 0.000 V
CARRO	Boller No. 3	0.14	0.01			g 0.075		¥ 0.075		3 0.075	0%	100%	0% 100%	0%	0%	100%	0%	0%	0%	0%	0%	0%	50%	50%	100%	0.000	0.000	0.000	0.000	0.000	0.000	0.037	0.037	0.075 0.000 V
CARDU	Serey Driver No. 7		<u>4</u> 0.50		8 0 0 0 0 0	4 5 4 2	0.0200	4 5 4 2	0.0075	1 704	09/	1008/	620/ 200/	08/	09/	1009/	09/	08/	09/	09/	210/	210/	109/	109/	100%	0.00	0.000	0.000	0.000	1 420	1 420	0.050	0.050	4 5 4 2 0 000
5033	Spray Dryer No. 7	0.30	0.50		0.0200	4.543	0.0200	4.543	0.0075	1.704	0%	100%	63% 36%	0%	0%	100%	0%	0%	0%	0%	31%	31%	19%	19%	100% •	0.000	0.000	0.000	0.000	1.420	1.420	0.052	0.052	4.543 0.000 V
S034	Bollot Food System No. 4	0.30	0.50		0.0200	4.040	0.0200	4.043	0.0075	0.914	100%	100%	63% 36% E0% E0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	19%	19%	100% •	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.002	4.543 0.000 V
S035	Kilp No. 4 Scrubber	121.00	34.25	0.40	0.0100	2 750	0.0100	2 750	0.0030	2 750	0%	100%	0% 100%	1/1%	0%	0 /0	20%	25%	20%	20%	0%	0%	13%	/3%	100%	0.40	0.407	0.407	0.407	0.000	0.000	1 180	1 180	2 759 0.000 -/
5037	Kiln No. 4 Product System	121.00	34.23	0.40	0.0100	0 120	0.0100	0 120	0.0100	0.064	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	43 /0	43 %	100%	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 129 0 000 V
S030	Product Silo No. 4-1				0.0100	0.086	0.0100	0.129	0.0050	0.043	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100%	0.03	0.032	0.032	0.032	0.000	0.000	0.000	0.000	0.086.0.000 ✓
S040	Product Silo No. 4-2				0.0100	0.086	0.0100	0.086	0.0050	0.043	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% ✓	0.02	0.021	0.021	0.021	0.000	0.000	0.000	0.000	0.086 0.000 ✓
S041	Product Silo No. 4-3				0.0100	0.086	0.0100	0.086	0.0050	0.043	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% ✓	0.02	0.021	0.021	0.021	0.000	0.000	0.000	0.000	0.086 0.000 ✓
S042	Product Silo No. 4-4				0.0100	0.086	0.0100	0.086	0.0050	0.043	100%	0%	50% 50%	0%	0%	0%	25%	25%	25%	25%	0%	0%	0%	0%	100% ✓	0.02	0.021	0.021	0.021	0.000	0.000	0.000	0.000	0.086 0.000 ✓
BLR4	Boiler No. 4	0.14	0.01			0.075		0.075		0.075	0%	100%	0% 100%	0%	0%	100%	0%	0%	0%	0%	0%	0%	50%	50%	100% 🗸	0.000	0.000	0.000	0.000	0.000	0.000	0.037	0.037	0.075 0.000 ✓
						× · · ·	annnnnn	« · · · ·	aannaannaan										H							H	-	++						

Particulate Matter Speciation

Spray Dryers 1, 2, 3, and 4 (Modeled ID Nos. S001, S002, S012, S013, S022, S023, S033, and S034)

Particulate matter is speciated based on the ratio of PM_{10.2.5} and PM_{2.5.0} to total PM₁₀ based on best available control technology (BACT) emission limitations for PM₁₀ and PM_{2.5}.

Although some non-zero amount of particulate matter will be coarse and fine filterable PM (PMC and PMF), all PM is apportioned to four size fractions for organic condensables as a conservative assumption for visibility impact based on the light extinction efficiency of SOA. PM₁₀₋₂₅ is split evenly into size fractions POC₁₀₋₆ (POC800) and POC₆₋₂₅ (POC425) and PM_{2.5-0} is split evenly into the submicron size fractions POC_{1-0.625} (POC081) and POC_{0.625-0.5} (POC056)

Particulate matter is speciated based on the ratio of PM_{10-2.5} and PM_{2.5-0} to total PM₁₀ based on best available control technology (BACT) emission limitations for PM₁₀ and PM_{2.5}.

These units are referred to as "material handling" and are associated with coarse (PMC) and fine (PMF) filterable particulate matter.

PM_{10-2.5} is split evenly into size fractions PMC₁₀₋₆ (PMC800) and PMC_{6-2.5} (PMC425) and PM_{2.5-0} is split evenly into the submicron size fractions PMF_{1-0.625} (PMF081) and PMF_{0.625-0.5} (PMF056).

Direct-fired Rotary Calciners 1, 2, 3, and 4 (Modeled S005, S016, S026, and S037)

Particulate matter is speciated based on the PSD avoidance limitation of less than 7 tons per year for H₂SO₄ and the ratio of PM_{10-2.5} and PM_{2.50} to total PM₁₀ based on best available control technology (BACT) emission limitations for PM₁₀ and PM_{2.5}.

The avoidance limitation for H₂SO₄ is split evenly among the kilns and is modeled directly as SO₄. The amount of SO₄ directly modeled is subtracted from total PM10 prior to specitation since H₂SO₄ is condensable PM and and component of PM₁₀.

All PM is apportioned to two submicron size fraction for organic condensables as a conservative assumption for visibility impact based on the light extinction efficiency of SOA; actual PM is likely inorganic PM which should be modeled (less conservatively) as PMF or SOIL. The amount of total PM₁₀ after subtracting SO₄ is 100% PM_{2.5-0} and is split evenly into the submicron size fractions POC_{1-0.625} (POC081) and POC_{0.625-0.5} (POC056).

Natural Gas-fired Boilers 1, 2, 3, and 4 (Modeled ID Nos. BLR1-BLR4)

Particulate matter specation for the natural gas-fired boilers is based on BACT for PM₁₀ and apportioned evenly into the submicron size fractions for organic condensables POC_{10.025} (POC081) and POC_{0.025-0.5} (POC056)

Model Species for Visibility Impairment Analysis
--

M:\CarboCeramics\Millen\Jenkins County\Class I Protocol\CARBO Ceramics Millen Emissions, Stack Parameters and Speciation.xls

ATTACHMENT B

CALPUFF Input File

CALPUFF.INP CARBO Millen Class I Increment and AQRV CALPUFF.INP CALPUFF/CALMET 5.8 (YYYY), MREG=1, MCHEM=1, MDISP=3, BCKNH3=0.5 Cape Romain, Okefenokee, Wolf Island, Shining Rock ------ Run title (3 lines) ------

CALPUFF MODEL CONTROL FILE

INPUT GROUP: 0 -- Input and Output File Names

Default Name	Туре	File Name	
CALMET. DAT	i nput	* METDAT =\CALMET. DAT *	
I SCMET. DAT	i nput	* I SCDAT = *	
PLMMET. DAT	i nput	* PLMDAT = *	
PROFILE. DAT SURFACE. DAT RESTARTB. DAT	i nput i nput i nput	* PRFDAT = * * SFCDAT = * * RSTARTB= *	
CALPUFF.LST CONC.DAT DFLX.DAT WFLX.DAT	output output output output	! PUFLST =CALPUFF.LST ! ! CONDAT =CONC.DAT ! ! DFDAT =DFLX.DAT ! ! WFDAT =WFLX.DAT !	
VI SB. DAT TK2D. DAT RH02D. DAT RESTARTE. DAT	output output output output	* VI SDAT =VI SB. DAT * * T2DDAT = * * RHODAT = * * RSTARTE= *	
Emission Files	s		
PTEMARB. DAT VOLEMARB. DAT BAEMARB. DAT LNEMARB. DAT	- i nput i nput i nput i nput	* PTDAT = * * VOLDAT = * * ARDAT = * * LNDAT = *	
Other Files			
OZONE. DAT VD. DAT CHEM. DAT H2O2. DAT HI LL. DAT HI LL. CT. DAT COASTLN. DAT FLUXBDY. DAT BCON. DAT DEBUG. DAT MASSFLX. DAT MASSBAL. DAT FOG. DAT	input input input input input input input input output output output output	<pre>! OZDAT = file path for ozone observations ! * VDDAT =</pre>	
All file names Otherwise, if T = 1 F - 1	s will be LCFILES = ower case	converted to lower case if LCFILES = T = F, file names will be converted to UPPER CASE = _ ! LCFILES = F ! =	
NOTE: (1) file	e/path nam	mes can be up to 70 characters in length	
Provision for	multiple	input files	
Number of	f CALMET.[DAT files for run (NMETDAT) Default: 1 ! NMETDAT = 12 !	
Number of	f PTEMARB.	DAT files for run (NPTDAT) Default: 0 ! NPTDAT = 0 !	
Number of	f BAEMARB.	DAT files for run (NARDAT) Default: 0 !NARDAT = 0 !	
Number of	f VOLEMARE	B.DAT files for run (NVOLDAT) Default: 0 ! NVOLDAT = 0 !	
! END!			

```
Subgroup (Oa)
```

The followin	ng CALMET. DA	Γ filenames	are proc	essed in	sequence i	f NMETDAT>1	
Default Name	Туре	File Nam	е				
none none none none none none none none	input ! N input ! N	METDAT= fil METDAT= fil	- e path fc e path fc	or CALMET or CALMET or CALMET or CALMET or CALMET or CALMET or CALMET or CALMET or CALMET or CALMET	5.8 datase 5.8 datase	t (Jan) ! t (Feb) ! t (Mar) ! t (Apr) ! t (Jun) ! t (Jul) ! t (Aug) ! t (Sep) ! t (Oct) ! t (Nov) ! t (Dec) !	! END! ! END!
INPUT GROUP:	1 General	run contro	l paramet	ers			
Option to	run all peri	ods found		_			
in the me	t.file	(METRUN)	Default:	0 lafinad h	! METRUN =	0 !	
METRI	JN = 0 - Run JN = 1 - Run	all period	s in met.	file	erow		
Starting (used on METRUN	date: Yean yif Month = 0) Day Hour	~ (IBYR) n (IBMO) y (IBDY) ^ (IBHR)	No defau No defau No defau No defau	t t t t	! BYR = ! BMO = ! BDY = ! BHR =	YYYY ! 1 ! 1 ! 1 !	
Note: IBI (II	HR is the tir BHR=1, the fi	ne at the E rst hour o	ND of th∈ f a day,	e first h runs fro	our of the s m 00:00 to	simulation 01:00)	
Base time The zone ADDED to Examples:	e zone is the numbe the time to PST = 8., M CST = 6., M	(XBTZ) er of hours obtain UTC MST = 7. EST = 5.	No defau that mus (or GMT)	llt st be	! XBTZ = 5	ļ	
Length o	f run (hours)) (IRLG)	No defau	ıl t	! IRLG =	8760 !	
Number o	f chemical sp	becies (NSP	EC) Defaul t:	5	! NSPEC =	14 !	
Number o to be emi	f chemical sp itted (NSE)	oeci es	Defaul t:	3	! NSE = 1	2 !	
Flag to s SETUP pha (Used to	stop run afte ase (ITEST) allow checki	er na	Defaul t:	2	! ITEST =	2 !	
òf the ma ITI ITI	odel inputs, EST = 1 - ST(EST = 2 - Cor aft	files, etc DPS program ntinues wit ter SETUP	.) after SE h executi	TUP phas on of pr	e ogram		
Restart (Configuratior	ו:					
Contro	ol flag (MRES	START)	Defaul t:	0	! MRESTART	= 0 !	
0 = 1 =	= Do not read = Read a rest the run	d or write tart file a	a restart t the beg	file Jinning o	f		
2 = 3 =	= Write a res = Read a rest and write a	start file tart file a a restart f	during ru t beginni ile durir	ın ng of ru ıg run	n		
Number outpu	r of periods t cycle (NRES	in Restart SPD)	Defaul t:	0	! NRESPD =	0!	
0 = >0 =	= File writte = File update	en only at ed every NR	last peri ESPD peri	od ods			
Meteorol	ogical Data I	Format (MET	FM) Default:	1	! METFM =	1 !	
ME	TFM = 1 - CAI	_MET binary	file (CA	LMET.MET)		

METFM = 2 - ISC ASCII file (ISCMET.MET) METFM = 3 - AUSPLUME ASCII file (PLMMET.MET) METFM = 4 - CTDM plus tower file (PROFILE.DAT) and surface parameters file (SURFACE.DAT) METFM = 5 - AERMET tower file (PROFILE.DAT) and surface parameters file (SURFACE. DAT) Meteorological Profile Data Format (MPRFFM) (used only for METFM = 1, 2, 3) Default: 1 ! MPRFFM = 1 1 MPRFFM = 1 - CTDM plus tower file (PROFILE.DAT) MPRFFM = 2 - AERMET tower file (PROFILE.DAT) PG sigma-y is adjusted by the factor (AVET/PGTIME)**0.2 Averaging Time (minutes) (AVET) Default: 60.0 ! AVET = 60. ! PG Averaging Time (minutes) (PGTIME) Default: 60.0 ! PGTIME = 60. ! ! END! _____ _____ INPUT GROUP: 2 -- Technical options Vertical distribution used in the near field (MGAUSS) 0 = uniform Default: 1 ! MGAUSS = 1 ! 1 = Gaussian Terrain adjustment method Default: 3 ! MCTADJ = 3 ! (MCTADJ) 0 = no adjustment 1 = ISC-type of terrain adjustment 2 = simple, CALPUFF-type of terrain adjustment 3 = partial plume path adjustment Subgrid-scale complex terrain flag (MCTSG) 0 = not modeled Default: 0 ! MCTSG = 0 1 1 = modeledNear-field puffs modeled as elongated slugs? (MSLUG) Default: 0 ! MSLUG = 0 1 $0^{-} = n0$ 1 = yes (slug model used) Transitional plume rise modeled ? ! MTRANS = 1 (MTRANS) Default: 1 Ţ 0 = no (i.e., final rise only) 1 = yes (i.e., transitional rise computed) Stack tip downwash? (MTIP) Default: 1 ! MTIP = 1 ! 0 = no (i.e., no stack tip downwash) 1 = yes (i.e., use stack tip downwash) Method used to simulate building downwash? (MBDW) 1 = ISC method 2 = PRIME method ! MBDW = Default: 1 1 ! Vertical wind shear modeled above stack top? (MSHEAR) Default: 0 0 = no (i.e., vertical wind shear not modeled) 1 = yes (i.e., vertical wind shear modeled) ! MSHEAR = 0 !! MSPLIT = 0 ! Puff splitting allowed? (MSPLIT) Default: 0 0 = no (i.e., puffs not split) 1 = yes (i.e., puffs are split) Chemical mechanism flag (MCHEM) Default: 1 ! MCHEM = 1 ! 0 = chemical transformation not model ed 1 = transformation rates computed internally (MESOPUFF II scheme) 2 = user-specified transformation rates used

CALPUFF. I NP

CALPUFF. I NP 3 = transformation rates computed internally (RIVAD/ARM3 scheme) 4 = secondary organic aerosol formation computed (MESOPUFF II scheme for OH) Aqueous phase transformation flag (MAQCHEM) (Used only if MCHEM = 1, or 3) Default: 0 ! MAQCHEM = 0 1 0 = aqueous phase transformation not model ed 1 = transformation rates adjusted for aqueous phase reactions Wet removal modeled ? (MWET) Default: 1 ! MWET = 1_ ! 0 = no1 = yesDry_deposition modeled ? (MDRY) Default: 1 ! MDRY = 1 ļ 0 = no 1 = yes(dry deposition method specified for each species in Input Group 3) Gravitational settling (plume tilt) modeled ? (MTILT) Default: 0 I MTIIT = 0 I0 = no 1 = yes puff center falls at the gravitational settling velocity for 1 particle species) Restrictions: - MDRY = 1 - NSPEC = 1 (must be particle species as well) GEOMETRIC STANDARD DEVIATION in Group 8 is - sg = 0 set to zero for a single particle diameter Default: 3 ! MDISP = 3 1 = dispersion coefficients computed from measured values of turbulence, sigma v, sigma w 2 = dispersion coefficients from internally calculated a sigma v, sigma w using micrometeorological variables (u*, w*, L, etc.)
 B PG dispersion coefficients for RURAL areas (computed using the ISCST multi-segment approximation) and MP coefficients in urban areas 4 = same as 3 except PG coefficients computed using CTDM sigmas used for stable and neutral conditions. For unstable conditions, sigmas are computed as in MDISP = 3, described above. MDISP = 5 assumes that measured values are read Sigma-v/sigma-theta, sigma-w measurements used? (MTURBVW) (Used only if MDISP = 1 or 5) Default: 3 ! MT 1 = use sigma-v or sigma-theta measurements from PROFILE.DAT to compute sigma-y (valid for METFM = 1, 2, 3, 4, 5) ! MTURBVW = 3 ! (valid for METFM = 1, 2, 3, 4, 5) 2 = use sigma-w measurements from PROFILE.DAT to compute sigma-z (valid for METFM = 1, 2, 3, 4, 5) 3 = use both sigma-(v/theta) and sigma-w from PROFILE.DAT to compute sigma-y and sigma-z (valid for METFM = 1, 2, 3, 4, 5) 4 = use sigma-theta measurements from PLMMET.DAT to compute sigma-y (valid only if METFM = 3) Back-up method used to compute dispersion when measured turbulence data are missing (MDI SP2) ! MDI SP2 = 3 ! Default: 3 (used only if MDISP = 1 or 5) 2 = dispersion coefficients from internally calculated sigma v, sigma w using micrometeorological variables (u*, w*, L, etc.) 3 = PG dispersion coefficients for RURAL areas (computed using the ISCST multi-segment approximation) and MP coefficients in urban areas same as 3 except PG coefficients computed using the MESOPUFF II eqns. 4 =

[DIAGNOSTIC FEATURE]

CALPUFF. I NP Method used for Lagrangian timescale for Sigma-y (used only if MDISP=1, 2 or MDISP2=1, 2) (MTAULY) Default: 0 ! MTAULY = 0 !0 = Draxler default 617.284 (s) 1 = Computed as Lag. Length / (.75 q) -- after SCIPUFF 10 < Direct user input (s) -- e.g., 306.9 [DIAGNOSTIC FEATURE] Method used for Advective-Decay timescale for Turbulence (used only if MDISP=2 or MDISP=2) (MTAUADV) Default: 0 ! MTAUADV = 0 ! 0 = No turbul ence advection 1 = Computed (OPTION NOT IMPLEMENTED) 10 < Direct user input (s) -- e.g., 300 Method used to compute turbulence sigma-v & sigma-w using micrometeorological variables (Used only if MDISP = 2 or MDISP2 = 2) (MCTURB) Default: 1 ! MCTURB = 1 ! 1 = Standard CALPUFF subroutines 2 = AERMOD subroutines PG sigma-y, z adj. for roughness? (MROUGH) ! MROUGH = 0 !Default: 0 0 = no1 = yesPartial plume penetration of elevated inversion? ! MPARTL = 1 ! Default: 1 (MPARTL) 0 = no1 = yesStrength of temperature inversion Def provided in PROFILE. DAT extended records? Default: 0 ! MTINV = 0 !(MTINV) 0 = no (computed from measured/default gradients) 1 = yesPDF used for dispersion under convective conditions? Default: 0 ! MPDF = 0 ! (MPDF) 0 = no 1 = yesSub-Grid TIBL module used for shore line? Default: 0 ! MSGTIBL = 0 ! (MSGTI BL) 0 = no1 = yes Boundary conditions (concentration) modeled? ! MBCON = 0 !Default: 0 (MBCON) 0 = no 1 = yes, using formatted BCON.DAT file 2 = yes, using unformatted CONC.DAT file MBCON > O requires that the last species modeled be 'BCON'. Mass is placed in species BCON when generating boundary condition puffs so that clean air entering the modeling domain can be simulated in the same way as polluted air. Specify zero emission of species BCON for all regular sources. Note: Individual source contributions saved? Default: 0 ! MSOURCE = 0 !(MSOURCE) 0 = no 1 = yes Analyses of fogging and icing impacts due to emissions from arrays of mechanically-forced cooling towers can be performed using CALPUFF in conjunction with a cooling tower emissions processor (CTEMISS) and its associated postprocessors. Hourly emissions of water vapor and temperature from each cooling tower cell are computed for the current cell configuration and ambient conditions by CTEMISS. CALPUFF models the dispersion of these emissions and provides cloud information in a specialized format for further analysis. Output to FOG. DAT is provided in either

CALPUFF. I NP 'plume mode' or 'receptor mode' format. Configure for FOG Model output? Default: 0 ! MFOG = 0 !(MFOG) 0 = no 1 = yes- report results in PLUME Mode format 2 = yes - report results in RECEPTOR Mode format Test options specified to see if they conform to regulatory values? (MREG) Default: 1 ! MREG = 1 ! 0 = NO checks are made 1 = Technical options must conform to USEPA Long Range Transport (LRT) guidance METFM 1 or 2 AVET 60. (min) PGTIME 60. (min) MGAUSS 1 MCTADJ 3 MTRANS MTI P MCHEM 1 or 3 (if modeling SOx, NOx) MWFT 1 MDRY 1 MDI SP 2 or 3 0 if MDISP=3 1 if MDISP=2 MPDF MROUGH 0 MPARTL SYTDEP MHFTSZ 1 550. (m) Ω 0.5 (m/s) SVMI N ! END! _____ _____ INPUT GROUP: 3a, 3b -- Species list Subgroup (3a) The following species are modeled: CSPEC = S02 ! ! END! CSPEC = CSPEC = S04 ! ! END! NOX ! ! END! CSPEC = CSPEC = HN03 ! ! END! NO3 ! ! END! CSPEC = PM10 ! ! END! CSPEC = PMC800 ! ! END! CSPEC = PMC425 ! END! CSPEC = PMF081 ! ! END! CSPEC = PMF056 ! ! END! CSPEC = P0C800 ! ! END! P0C425 ! CSPEC = ! END! CSPEC = P0C081 ! ! END! CSPEC = P0C056 ! ! END! Т Dry DEPOSI TED OUTPUT GROUP SPECI ES MODELED EMI TTED NUMBER (0=N0, 1=COMPUTED-GAS (0=N0, 1=YES) (O=NONE NAME (0=N0, 1=YES) (Limit: 12 1=1st CGRUP, 2=COMPUTED-PARTICLE 3=USER-SPECIFIED) 2=2nd CGRUP, Characters in length) 3= etc.) S02 0 1, 1, 1, = S04 0 = 1, 1, NOX Ο = 1, 1, Ó, HN03 = 0 1, N03 = 1, 0, 0 PM10 = 0 1, 1, PMC800 = 1 1, 0 PMC425 = 1, 1, 0 PMF081 = 1, 1, 0 PMF056 = 1, 1, 0

I

I

I

I

1

1

I

1

I

			CALPUFF. I NP			
P0C800	=	1,	1,	2,	0	i
P0C425	=	1,	1,	2,	0	i
P0C081	=	1,	1,	2,	0	. 1
P0C056	=	1,	1,	2,	0	ļ
	P0C800 P0C425 P0C081 P0C056	POC800 = POC425 = POC081 = POC056 =	POC800 = 1, POC425 = 1, POC081 = 1, POC056 = 1,	CALPUFF.INP POC800 = 1, 1, POC425 = 1, 1, POC081 = 1, 1, POC056 = 1, 1,	CALPUFF. I NP POC800 = 1, 1, 2, POC425 = 1, 1, 2, POC081 = 1, 1, 2, POC056 = 1, 1, 2,	CALPUFF.INP POC800 = 1, 1, 2, 0 POC425 = 1, 1, 2, 0 POC081 = 1, 1, 2, 0 POC056 = 1, 1, 2, 0

! END!

The last species in (3a) must be 'BCON' when using the boundary condition option (MBCON > 0). Species BCON should Note: typically be modeled as inert (no chem transformation or removal).

Subgroup (3b)

The following names are used for Species-Groups in which results for certain species are combined (added) prior to output. The CGRUP name will be used as the species name in output files. Use this feature to model specific particle-size distributions by treating each size-range as a separate species. Order must be consistent with 3(a) above.

INPUT GROUP: 4 -- Map Projection and Grid control parameters Projection for all (X,Y): Map projection (PMAP) Default: UTM ! PMAP = LCC !итм · Universal Transverse Mercator TTM Tangential Transverse Mercator LCC Lambert Conformal Conic PS Polar Stereographic EМ Equatorial Mercator LAZA : Lambert Azimuthal Equal Area False Easting and Northing (km) at the projection origin (Used only if PMAP= TTM, LCC, or LAZA) FEAST (FEAST) Defaul t=0.0 = 0 ! FNORTH = 0 (FNORTH) Defaul t=0.0 I UTM zone (1 to 60) (Used only if PMAP=UTM) (IUTMZN) No Default ! IUTMZN = 17 . ! Hemisphere for UTM projection? (Used only if PMAP=UTM) (UTMHEM) Default: N ! UTMHEM = N !Northern hemi sphere projecti on Southern hemi sphere projecti on Ν S Latitude and Longitude (decimal degrees) of projection origin (Used only if PMAP= TTM, LCC, PS, EM, or LAZA) (RLATO) No Default ! RLATO = 40N ! (RLONO) ! RLONO = 97W !No Default RLONO identifies central (true N/S) meridian of projection RLATO selected for convenience TTM : RLATO selected for convenience RLONO identifies central (true N/S) meridian of projection RLATO selected for convenience RLONO identifies central (grid N/S) meridian of projection RLATO selected for convenience LCC : PS RLONO identifies central meridian of projection RLATO is REPLACED by 0.0N (Equator) RLONO identifies longitude of tangent-point of mapping plane RLATO identifies latitude of tangent-point of mapping plane EM : LAZA: Matching parallel(s) of latitude (decimal degrees) for projection (Used only if PMAP= LCC or PS) No Default (XLAT1) XLAT1 = 33N(XLAT2) No Default ! XLAT2 = 45N !LCC : Projection cone slices through Earth's surface at RLAT1 and RLAT2 PS Projection plane slices through Earth at RLAT1 (RLAT2 is not used) Page 7

Note: Latitudes and longitudes should be positive, and include a letter N, S, E, or W indicating north or south latitude, and east or west longitude. For example, 35.9 N Latitude = 35.9N 118.7 E Longitude = 118.7E Datum-region

The Datum-Region for the coordinates is identified by a character string. Many mapping products currently available use the model of the Earth known as the World Geodetic System 1984 (WGS-84). Other local models may be in use, and their selection in CALMET will make its output consistent with local mapping products. The list of Datum-Regions with official transformation parameters is provided by the National Imagery and Mapping Agency (NIMA).

NIMA Datum - Regions(Examples)

WGS-84WGS-84 Reference Ellipsoid and Geoid, Global coverage (WGS84)NAS-CNORTH AMERICAN 1927 Clarke 1866 Spheroid, MEAN FOR CONUS (NAD27)NAR-CNORTH AMERICAN 1983 GRS 80 Spheroid, MEAN FOR CONUS (NAD83)NWS-84NWS 6370KM Radius, SphereESR-SESRI REFERENCE 6371KM Radius, Sphere

Datum-region for output coordinates (DATUM) Default: WGS-84 ! DATUM = NWS-84 !

METEOROLOGICAL Grid:

Rectangular grid defined for projection PMAP, with X the Easting and Y the Northing coordinate

No. X grid cells (NX) No. Y grid cells (NY) No. vertical layers (NZ)	No default ! NX = 248 ! No default ! NY = 257 ! No default ! NZ = 10 !
Grid spacing (DGRIDKM)	No default ! DGRIDKM = 4 ! Units: km
Cell face heights (ZFACE(nz+1)) ZFACE = 0., 20, 40, 80, 160, 320,	No defaults Units: m 640, 1200, 2000, 3000, 4000 !
Reference Coordinates of SOUTHWEST corner of grid cell(1, 1):	
X coordinate (XORIGKM) Y coordinate (YORIGKM)	No default ! XORIGKM = 718.005 ! No default ! YORIGKM = -1214.003 ! Units: km

COMPUTATIONAL Grid:

Ţ

The computational grid is identical to or a subset of the MET. grid. The lower left (LL) corner of the computational grid is at grid point (IBCOMP, JBCOMP) of the MET. grid. The upper right (UR) corner of the computational grid is at grid point (IECOMP, JECOMP) of the MET. grid. The grid spacing of the computational grid is the same as the MET. grid.

X index of LL corner (IBCOMP) (1 <= IBCOMP <= NX)	No default	! I BCOMP =	1 !	
Y index of LL corner (JBCOMP) (1 <= JBCOMP <= NY)	No default	! JBCOMP =	1 !	
X index of UR corner (IECOMP) (1 <= IECOMP <= NX)	No default	! I ECOMP =	248	İ
Y index of UR corner (JECOMP) (1 <= JECOMP <= NY)	No default	! JECOMP =	257	i

CALPUFF. I NP CALPUFF.INP The lower left (LL) corner of the sampling grid is at grid point (IBSAMP, JBSAMP) of the MET. grid. The upper right (UR) corner of the sampling grid is at grid point (IESAMP, JESAMP) of the MET. grid. The sampling grid must be identical to or a subset of the computational grid. It may be a nested grid inside the computational grid. The grid spacing of the sampling grid is DGRIDKM/MESHDN. Logical flag indicating if gridded receptors are used (LSAMP) Default: T ! LSAMP = F !(T=yes, F=no) X index of LL corner (IBSAMP) (IBCOMP <= IBSAMP <= IECOMP) No default ! IBSAMP = 1 I Y index of LL corner (JBSAMP) No default ! JBSAMP = 1 I (JBCOMP <= JBSAMP <= JECOMP) X index of UR corner (IESAMP) (IBCOMP <= IESAMP <= IECOMP) No default ! IESAMP = 248 ļ Y index of UR corner (JESAMP) (JBCOMP <= JESAMP <= JECOMP) ! JESAMP = No default 257 ļ Nesting factor of the sampling grid (MESHDN) Default: 1 ! MESHDN = 1 ! (MESHDN is an integer >= 1) ! END! _____ INPUT GROUP: 5 -- Output Options DEFAULT VALUE VALUE THIS RUN **FILE** Concentrations (ICON) Dry Fluxes (IDRY) Wet Fluxes (IWET) 1 ICON = 1 IDRY = 1 IWET = 1 1 2D Temperature (ÍT2D) 0 I T2D = 0 2D Density (IRHO) Relative Humidity (IVIS) (relative humidity file is IRHO = 0 0 1 IVIS = 1 required for visibility anal ysi s) Use data compression option in output file? (LCOMPRS) ! LCOMPRS = T ! Default: T 0 = Do not create file, 1 = create file QA PLOT FILE OUTPUT OPTION: Create a standard series of output files (e.g. locations of sources, receptors, grids ...) suitable for plotting? (IQAPLOT) Default: 1 ! IQAPLOT = 1 !0 = no1 = yesDIAGNOSTIC MASS FLUX OUTPUT OPTIONS: Mass flux across specified boundaries for selected species reported? (IMFLX) Default: 0 ! IMFLX = 0 !0 = no1 = yes (FLUXBDY. DAT and MASSFLX. DAT filenames are specified in Input Group 0) Mass balance for each species reported? (IMBAL) Default: 0 ! IMBAL = 0 !0 = no1 = yes (MASSBAL. DAT filename is specified in Input Group 0)

	LINE	PRINTER OUT	PUT OPTIONS	S:	CALPUFF. I NP	•		
	P P P	rint concent rint dry flu rint wet flu 0 = Do not p	rations (IC xes (IDPRT) xes (IWPRT) rint, 1 = F	CPRT) Defa) Defa) Defa Print)	ult: 0 ult: 0 ult: 0	! CPRT = C ! DPRT = C ! WPRT = C) !) !) !	
	C(oncentration ICFRQ) in ti	print inte mesteps	erval Defa	ult: 1	! ICFRQ = 1	!	
	D (ry flux prin IDFRQ) in ti	t interval mesteps	Defa	ult: 1	! I DFRQ = 1	!	
	Ŵ (et flúx prin IWFRQ) in ti	t interval mesteps	Defa	ult: 1	! IWFRQ = 1	!	
	Uı (nits for Lin IPRTU) Co 1 = 2 = 3 = 4 = 5 = 0	e Printer (for ncentratior g/m**3 mg/m**3 ug/m**3 ng/m**3 dour Units	Dutput Defa for Depositi g/m**2/ mg/m**2/ ug/m**2/ ng/m**2/	ult: 1 on s s s s	! IPRTU = 1	!!	
	M wi	essages trac ritten to th IMESG) 0 = no 1 = yes (ad 2 = yes (YY	king progre e screen ? vection ste YYJJJHH, #	ess of run Defa ep, puff ID) old puffs, #	ult: 2 emitted pu	! IMESG = 2 ffs)	2 !	
N S / SAVE	IASS SPECI GROUI D ON	FLUX ES P PRI DI SK?	- CONCENTRA	ATIONS ED ON DISK?	PRI NTED?	FLUXES	WE PRI NTED?	T FLUXES SAVED ON DISK?
		 S02 =	0.	1.	0.	1.	0.	1.
I	0	! 	0.	1.	0.	1.	0.	1.
1	0	I NOX =	0.	1.	0.	1.	0.	1.
I	0	! HNO3 =	0.	1.	0.	1.	0.	1.
ļ	0	! NO3 =	0.	1.	0.	1.	0.	1.
ļ	0	! PM10 =	0,	1.	0,	1.	0,	1.
ļ	0	! PMC800 =	0,	1,	0,	1,	0,	1,
i	0	! PMC425 =	0,	1,	0,	1,	0,	1,
i	0	! PMF081 =	0,	1,	0,	1,	0,	1,
ļ	0	! PMF056 =	0,	1,	0,	1,	0,	1,
ļ	0	! P0C800 =	0,	1,	О,	1,	О,	1,
ļ	0	! P0C425 =	О,	1,	О,	1,	О,	1,
ļ	0	P0C081 =	О,	1,	О,	1,	О,	1,
ļ	0	! P0C056 =	О,	1,	О,	1,	О,	1,

Note: Species BCON (for MBCON > 0) does not need to be saved on disk.

OPTIONS FOR PRINTING DEBUG QUANTITIES (much output)

Logical for debug output (LDEBUG)	Default: F	! LDEBUG = F !
First puff to track (IPFDEB)	Defaul t: 1	! IPFDEB = 1 !
Number of puffs to track (NPFDEB)	Defaul t: 1	! NPFDEB = 1000 !
	Page 10	

```
Met. period to start output
        (NN1)
                                                         Default: 1
                                                                          ! NN1 = 1 !
        Met.
             period to end output
        (NN2)
                                                         Default: 10
                                                                          ! NN2 = 8760 !
! END!
_____
INPUT GROUP: 6a, 6b, & 6c -- Subgrid scale complex terrain inputs
. . . . . . . . . . . . . . .
Subgroup (6a)
        Number of terrain features (NHILL)
                                                         Default: 0
                                                                          ! NHILL = 0 !
        Number of special complex terrain receptors (NCTREC)
                                                         Default: 0
                                                                           ! NCTREC = 0 !
        Terrain and CTSG Receptor data for
CTSG hills input in CTDM format ?
(MHILL)
                                                         No Default
                                                                           ! MHILL = 2 !

    Hill and Receptor data created
by CTDM processors & read from
HILL.DAT and HILLRCT.DAT files
    Hill data created by OPTHILL &
input below in Subgroup (6b);
Decentor data in Subgroup (6c)

             Receptor data in Subgroup (6c)
        Factor to convert horizontal dimensions Default: 1.0
                                                                          ! XHILL2M = 1. !
        to meters (MHILL=1)
        Factor to convert vertical dimensions
                                                         Default: 1.0
                                                                          ! ZHILL2M = 1. !
        to meters (MHILL=1)
        X-origin of CTDM system relative to
                                                         No Default
                                                                           ! XCTDMKM = 0.0E00 !
        CALPUFF coordinate system, in Kilometers (MHILL=1)
        Y-origin of CTDM system relative to No Defaul CALPUFF coordinate system, in Kilometers (MHILL=1)
                                                         No Default
                                                                           ! YCTDMKM = 0.0E00 !
! END !
Subgroup (6b)
-----
                          1 **
     HILL information
                                        THETAH ZGRID RELIEF
                                                                                  EXPO 2
HI LL
                 XC
                             YC
                                                                      EXPO 1
                                                                                            SCALE 1
                                                                                                          SCALE 2
  AMAX1
              AMAX2
 NO.
                (km)
                                        (deg.)
                                                                       (m)
                                                                                                            (m)
                            (km)
                                                   (m)
                                                            (m)
                                                                                   (m)
                                                                                               (m)
               (m)
   (m)
                _ _ _ _
                                                 ----
                                                         _ _ _ _ _ _
                                                                      _ _ _ _ _ _
                                                                                  _ _ _ _ _ _
                                                                                                          _ _ _ _ _ _ _
----
                            ----
                                        _ _ _ _ _ _
                                                                                             _ _ _ _ _ _ _
  ----
              ----
 _ _ _ _ _ _ _ _ _ _ _ _ _
Subgroup (6c)
    COMPLEX TERRAIN RECEPTOR INFORMATION
                          XRCT
                                         YRCT
                                                       ZRCT
                                                                        XHH
                          (km)
                                          (km)
                                                         (m)
                                                                         ----
                         _ _ _ _ _ _
                                          - - - - -
------
1
     Description of Complex Terrain Variables:

    Coordinates of center of hill
    Orientation of major axis of hill (clockwise from

            XC, YC
            THETAH
                       North)
            ZGRI D
                     = Height of the 0 of the grid above mean sea
                       l evel
            RELIEF = Height of the crest of the hill above the grid elevation
                                                     Page 11
```

**	EXPO 1 = EXPO 2 = SCALE 1 = SCALE 2 = AMAX = BMAX = XRCT, YRC ZRCT = XHH = NOTE: DATA for i nput su	= Hill-shape e: = Hill-shape e: = Horizontal la = Horizontal la = Maximum allow = Maximum allow CT = Coordinata = Height of the Receptor = Hill number a (NOTE: MUST l r each hill and ubgroup and the	CALPU kponent for the ength scale alor ength scale alor wed axis length wed axis length es of the comple e ground (MSL) a associated with BE ENTERED AS A d CTSG receptor erefore must enc	JFF.INP major axis major axis of the major axi for the major axi for the major a for the major a ex terrain recep at the complex te REAL NUMBER) are treated as with an input	s s xis tors errain rrain receptor a separate group terminator.	
I NPUT	GROUP: 7 (Chemical param	eters for dry de	eposition of gas	es	
LAW CO (dimen	SPECIES [DEFFICIENT NAME nsionless)	DIFFUSIVITY (cm**2/s)	ALPHA STAR	REACTI VI TY	MESOPHYLL RESISTANCE (s/cm)	HENRY' S
 !	 S02 =	0. 1509,	1000,	8,	О,	0. 04
! ! !	NOX = HNO3 =	0. 1656, 0. 1628,	1, 1,	8, 18,	5, 0,	3.5 ! 8E-08
! END!						
I NPUT	GROUP: 8 9	Size parameters	s for dry deposi	tion of particl	es	
	For SINGLE SPI compute a depo and these are	ECIES, the mean osition veloci then averaged	n and standard c ty for NINT (see to obtain a mea	leviation are us e group 9) size- m deposition ve	ed to ranges, locity.	
	For GROUPED SI specified (by for each shoul deposition vel	PECIES, the si: the 'species' Id be entered a locity for the	ze distribution in the group), as O. The model stated mean dia	should be expli and the standar will then use ameter.	citly d deviation the	
	SPECIES NAME	GEOMETRIC MASS DIAMETER (microns)	S MEAN GE	OMETRIC STANDAR DEVIATION (microns)	D	
	S04 = N03 = PM10 = PMC800 PMC425 PMF081 PMF056 P0C800 P0C425 P0C081 P0C056	$\begin{array}{c} 0.48,\\ 0.48,\\ 0.48,\\ 0.48\\ = & 8,\\ = & 4.2\\ = & 0.8\\ = & 0.$	25, 3125, 5625, 25, 3125, 5625,	2 ! 2 ! 2 ! 0 ! 0 ! 0 ! 0 ! 0 ! 0 ! 0 ! 0 !	-	

! END!

_____ ------

INPUT GROUP: 9 -- Miscellaneous dry deposition parameters -----

Reference cuticle resistance	(s/cm)			
(RCUTR)	Defaul t:	30	!	RCUTR = 30.0!
Reference ground resistance	(s/cm)	10		
(RGR)	Deraul t:	10	!	RGR = 10.0!
	Pa	ge 12		

			CALP	UFF.INP				
	Reference pollut (REACTR)	tant reactivity	Defaul t:	8 ! F	REACTR =	8.0 !		
	Number of partic evaluate effecti (NINT)	cle-size intervals ve particle depos	used to ition vel Default:	ocity 9!	NINT =	9 !		
	Vegetation state (IVEG) IVEG=1 for ac IVEG=2 for ac IVEG=3 for in	e in unirrigated a ctive and unstress ctive and stressed nactive vegetation	reas Default: ed vegeta vegetati	1 ! tion on	I VEG =	1 !		
! END)!							
I NPU	IT GROUP: 10 We	et Deposition Para	meters					
		Scavengi ng Coeff	ïcient	Units: (s	sec)**(-	1)		
	Pollutant	Liquid Precip.	Froz	en Precip.				
! ! !	S02 = S04 = N0X = HN03 = N03 =	0.00003, 0.0001, 0, 0.00006, 0.0001,		0. 00003 0. 00003 0. 00003	-) !] !) !] !			
	PMT80 = PMC800 = PMC425 = PMF081 = PMF056 = P0C800 = P0C425 = P0C081 =	0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001,		0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003	5 ! 3 ! 3 ! 3 ! 3 ! 3 ! 3 ! 3 ! 3 !			
i	P0C056 =	0.0001,		0.00003	3 !			
	Ozone data input Ozone data input (Used only if MC O = use a mor 1 = read hour the OZONE	nemistry Parameter t option (MOZ) CHEM = 1, 3, or 4) thly background o rly ozone concentr E. DAT data file	s Default: zone valu ations fro	1 e om	! M	0Z =	1	!
ļ	Monthly ozone cc (Used only if MC MOZ = 0 or MOZ (BCKO3) in ppb BCKO3 = 80, 80, 8	oncentrations CHEM = 1, 3, or 4 = 1 and all hourl 30, 80, 80, 80, 80, 80	and y 03 data Default: , 80, 80,	missing) 12*80. 80, 80, 8	30 !			
i	Monthly ammonia (Used only if MC (BCKNH3) in ppb BCKNH3 = 0.5, 0.5	concentrations CHEM = 1, or 3) 5, 0.5, 0.5, 0.5,	Default: 0.5, 0.5,	12*10. 0.5, 0.5,	0.5, 0	. 5, 0. 5	ļ	
	Nighttime SO2 lo in percent/hour	oss rate (RNITE1)	Defaul t:	0.2	! R	NITE1 =	0.2!	
	Nighttime NOx lo in percent/hour	oss rate (RNITE2)	Defaul t:	2.0	! R	NITE2 =	2.0 !	
	Nighttime HNO3 f in percent/hour	formation rate (RN	I TE3) Defaul t:	2.0	! R	NITE3 =	2.0 !	
	H2O2 data input (Used only if MA 0 = use a mor 1 = read hour the H2O2.	option (MH2O2) AQCHEM = 1) hthly background H rly H2O2 concentra DAT data file	Default: 202 value tions fro	1 n	! M	H2O2 =	1!	

Monthly H2O2 concentrations (Used only if MQACHEM = 1 and MH202 = 0 or MH202 = 1 and all hourly H202 data missing) (BCKH202) in ppb Default: 12*1. ! BCKH202 = 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00 ! --- Data for SECONDARY ORGANIC AEROSOL (SOA) Option (used only if MCHEM = 4) The SOA module uses monthly values of: Fine particulate concentration in ug/m^3 (BCKPMF) Organic fraction of fine particulate (OFRAC) VOC / NOX ratio (after reaction) to characterize the air mass when computing the formation of SOA from VOC emissions. (VCNX) Typical values for several distinct air mass types are: 12 Month 8 10 11 3 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Clean Continental BCKPMF
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 <th1.</th>
 1.
 1.
 1.</ 1. 1. 1. 1. 1. 1. 1. 1. . 20 . 20 . 20 20 . 20 . 15 OFRAC 20 20 50. 50. 50 VCNX 50. 50. 50 50. 50 Clean Marine (surface) BCKPMF .5 .5 .5 OFRAC .25 .25 .30 . 5 . <u>3</u>0 . 5 . 30 . 5 . 30 . 5 . 30 . 5 30 . 5 30 .5 25 . 5 30 5 30 50. 50 50. 50. 50. 50. 50 VCNX 50. 50 50 50 50 Urban - I ow bi ogenic (controls present) BCKPMF 30. 30. 30. 30. OFRAC . 20 . 20 . 25 . 25 . 30. 30. 30. 30 30 30 30 30 . 25 . 25 25 25 20 20 . 20 20 VCNX 4 4. 4. 4 4. 4 4 4 Δ 4 Urban - high biogenic (controls present) BCKPMF 60. 60. 60. 60. 60. 60 60. 60 60 60 60 60 OFRAC . 25 . 25 30 30 30 55 55 55 35 35 35 25 VCNX 15. 15 15. 15. 15 15 15 15 Regional Plume BCKPMF 20. OFRAC .20 20. 20. 20. 20. . 20 . 25 . 35 15. 15. 15. 15. 20. 20. 20 20 20 20 20. 20. . 25 . 40 . 20 . 40 40 30 30 . 30 . VCNX 15. 15. 15 15 15 15 15 15 15 Urban no controls present 100. 100. 100.
 OFRAC
 30
 30
 35
 35
 55
 55

 VCNX
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 . 35 . 55 . 35 . 35 . 30 Default: Clean Continental

 BCKPMF = 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00
 1.00, 1.00, 1.00, 1.00

 OFRAC = 0.15, 0.15, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.15 !
 VCNX = 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0

 ! END! _____ INPUT GROUP: 12 -- Misc. Dispersion and Computational Parameters Horizontal size of puff (m) beyond which time-dependent dispersion equations (Heffter) are used to determine sigma-y and sigma-z (SYTDEP) De Default: 550. ! SYTDEP = 5.5E02 ! Switch for using Heffter equation for sigma z as above (0 = Not use Heffter; 1 = use Heffter (MHFTSZ) Default: 0 ! MHFTSZ = 0 !Stability class used to determine plume growth rates for puffs above the boundary Ĭayer (JSUP) Default: 5 ! JSUP = 5 ! Vertical dispersion constant for stable ! CONK1 = 0.01 ! conditions (k1 in Eqn. 2.7-3) (CONK1) Default: 0.01 Vertical dispersion constant for neutral/

	UFF.INP	
(CONK2)	Default: 0.1	! CONK2 = 0.1 !
Factor for determining Transition-point fro Schulman-Scire to Huber-Snyder Building Dow scheme (SS used for Hs < Hb + TBD * HL)	om wnwash Default: 0.5	
TBD < 0 ==> al ways use Huber-Snyder TBD = 1.5 ==> al ways use Schulman-Scire TBD = 0.5 ==> ISC Transition-point		. 100 - 0.3 :
Range of land use categories for which urban dispersion is assumed		
(IURB1, IÜRB2)	Default: 10 19	! I URB1 = 10 ! ! I URB2 = 19 !
Site characterization parameters for single (needed for METFM = $2, 3, 4, 5$)	e-point Met data	files
Land use category for modeling domain (ILANDUIN)	Default: 20	! ILANDUIN = 20 !
Roughness length (m) for modeling domain (ZOIN)	n Default: 0.25	! ZOIN = 0.25 !
Leaf area index for modeling domain (XLAIIN)	Default: 3.0	! XLAIIN = 3.0 !
Elevation above sea level (m) (ELEVIN)	Default: 0.0	! ELEVIN = 0.0 !
Latitude (degrees) for met location (XLATIN)	Default: -999.	! XLATIN = -999. !
Longitude (degrees) for met location (XLONIN)	Default: -999.	! XLONIN = -999. !
Specialized information for interpreting si	ngle-point Met d	data files
Anemometer height (m) (Used only if METH (ANEMHT)	FM = 2,3) Default: 10.	! ANEMHT = 10. !
Form of lateral turbulance data in PROFI (Used only if METFM = 4,5 or MTURBVW = 7 (ISIGMAV) 0 = read sigma-theta	ILE.DAT file 1 or 3) Default: 1	! ISIGMAV = 1 !
1 = read sigma-v		
Choice of mixing heights (Used only if M (IMIXCTDM) 0 = read PREDICTED mixing heights 1 = read OBSERVED mixing heights	METFM = 4) Default: 0	! IMIXCTDM = 0 !
Maximum length of a slug (met. grid units) (XMXLEN)	Default: 1.0	! XMXLEN = 1. !
Maximum travel distance of a puff/slug (in grid units) during one sampling step (XSAMLEN)	Default: 1.0	! XSAMLEN = 1. !
Maximum Number of slugs/puffs release from one source during one time step (MXNEW)	Default: 99	! MXNEW = 99 !
Maximum Number of sampling steps for one puff/slug during one time step (MXSAM)	Default: 99	! MXSAM = 99 !
Number of iterations used when computing the transport wind for a sampling step that includes gradual rise (for CALMET and PROFILE winds)		
(NCUUNI) Minimum sigma y for a new puff/slug (m)	Default: 2	! NCOUNT = 2 !
(SYMIN)	Default: 1.0	! SYMIN = 1. !
MINIMUM SIGMA Z FOR A NEW PUFF/SLUG (M) (SZMIN)	Default: 1.0	! SZMIN = 1. !
Default minimum turbulence velocities sigma for each stability class over land and over (SVMIN(12) and SWMIN(12))	a-v and sigma-w r water (m/s)	

	LAND WATER Stab Class : A B C D E F A B C D E F
	Default SVMIN : .50, .50, .50, .50, .50, .50, .37, .37, .37, .37, .37 Default SWMIN : .20, .12, .08, .06, .03, .016, .20, .12, .08, .06, .03, .016
	! SVMIN = 0.500,
0.5	00 ! ! SWMIN = 0.200, 0.120, 0.080, 0.060, 0.030, 0.016, 0.200, 0.120, 0.080, 0.060, 0.030
0.0	16 !
	Divergence criterion for dw/dz across puff used to initiate adjustment for horizontal convergence (1/s) Partial adjustment starts at CDIV(1), and full adjustment is reached at CDIV(2) (CDIV(2)) Default: 0.0,0.0 ! CDIV = 0., 0. !
	Minimum wind speed (m/s) allowed for non-calm conditions. Also used as minimum speed returned when using power-law extrapolation toward surface (WSCALM) Default: 0.5 ! WSCALM = 0.5 !
	Maximum mixing height (m) (XMAXZI) Default: 3000. ! XMAXZI = 3000. !
	Minimum mixing height (m) (XMINZI) Default: 50. ! XMINZI = 50.0 !
	Default wind speed classes 5 upper bounds (m/s) are entered; the 6th class has no upper limit (WSCAT(5)) Default : ISC RURAL : 1.54, 3.09, 5.14, 8.23, 10.8 (10.8+)
	Wind Speed Class: 1 2 3 4 5
i	WSCAT = 1.54, 3.09, 5.14, 8.23, 10.80 !
	Default wind speed profile power-law exponents for stabilities 1-6 (PLXO(6)) Default : ISC RURAL values ISC RURAL : .07, .07, .10, .15, .35, .55 ISC URBAN : .15, .15, .20, .25, .30, .30
	Stability Class : A B C D E F
ļ	PLX0 = 0.07, 0.07, 0.10, 0.15, 0.35, 0.55 !
	Default potential temperature gradient for stable classes E, F (degK/m) (PTGO(2))
	Default plume path coefficients for each stability class (used when option for partial plume height terrain adjustment is selected MCTADJ=3) (PPC(6)) Stability Class A B C D E E
	Default PPC: .50, .50, .50, .35, .35
i	PPC = 0. 50, 0. 50, 0. 50, 0. 35, 0. 35 !
	Slug-to-puff transition criterion factor equal to sigma-y/length of slug (SL2PF) Default: 10. ! SL2PF = 10.0 !
	Puff-splitting control variables
	VERTI CAL SPLIT
	Number of puffs that result every time a puff is split - nsplit=2 means that 1 puff splits into 2 (NSPLIT)
	Time(s) of a day when split puffs are eligible to be split once again; this is typically set once per day, around sunset before nocturnal shear develops. 24 values: 0 is midnight (00:00) and 23 is 11 PM (23:00)

CALPUFF. I NP O=do not re-split (IRESPLIT(24)) 1=eligible for re-split Defaul t: Hour 17 = 1 ļ Split is allowed only if last hour's mixing height (m) exceeds a minimum value (ZISPLIT) Default: Default: 100. ! ZISPLIT = 100.0 ! Split is allowed only if ratio of last hour's by the puff is less than a maximum value (this postpones a split until a nocturnal layer develops) (ROLDMAX) Default: 0.25 ! ROLDMAX = 0.25 ! HORI ZONTAL SPLIT _ _ _ _ _ _ _ _ _ _ _ _ Number of puffs that result every time a puff is split - nsplith=5 means that 1 puff splits into 5 (NSPLITH) ! NSPLITH = 5 !5 Defaul t: Minimum sigma-y (Grid Cells Units) of puff before it may be split (SYSPLITH) Defaul Default: 1.0 ! SYSPLITH = 1.0 ! Minimum puff elongation rate (SYSPLITH/hr) due to wind shear, before it may be split (SHSPLITH) Default: 2. ! SHSPLITH = 2.0 ! Minimum concentration (g/m^3) of each species in puff before it may be split Enter array of NSPEC values; if a single value is entered, it will be used for ALL species (CNSPLITH) Default: 1.0E-07 ! CNSPLITH = 1.0E-07 ! Integration control variables -----Fractional convergence criterion for numerical SLUG sampling integration (EPSSLUĞ) 1.0e-04 ! EPSSLUG = 1.0E-04 ! Defaul t: Fractional convergence criterion for numerical AREA source integration (EPSAREA) 1.0e-06 ! EPSAREA = 1.0E-06 ! Defaul t: Trajectory step-length (m) used for numerical rise integration (DSRI SE) Defaul t: 1.0 ! DSRISE = 1.0 ! Boundary Condition (BC) Puff control variables ------Minimum height (m) to which BC puffs are mixed as they are emitted (MBCON=2 ONLY). Actual height is reset to the current mixing height at the release point if greater than this minimum. (HTMI NBC) Defaul t: 500. ! HTMINBC = 500.0 ! Search radius (km) about a receptor for sampling nearest BC puff. BC puffs are typically emitted with a spacing of one grid cell length, so the search radius should be greater than DGRIDKM. (RSAMPBC) Default: 10. ! RSAMPBC = 10.0 ! Near-Surface depletion adjustment to concentration profile used when sampling BC puffs? (MDEPBC) Default: 1 0 = Concentration is NOT adjusted for depletion ! MDEPBC = 1 !1 = Adjust Concentration for depletion ! END! _____ INPUT GROUPS: 13a, 13b, 13c, 13d -- Point source parameters Subgroup (13a) Number of point sources with (NPT1) No default ! NPT1 = 42 ! parameters provided below Page 17

Units used for point source emissions below (IPTU) Default: 1 ! IPTU = 3 ! g/s 1 = 2 = 3 = kg/hr IĎ∕hr tons/yr Odour Unit * m**3/s (vol. flux of odour compound) Odour Unit * m**3/min 4 = 5 = 6 = 7 = metric tons/yr Number of source-species combinations with variable emissions scaling factors provided below in (13d) (NSPT1) Default: 0 ! NSPT1 = 0 ! Number of point sources with variable emission parameters provided in external file (NPT2) No default ! NPT2 = 0 ! (If NPT2 > 0, these point source emissions are read from the file: PTEMARB.DAT) ! END! -----Subgroup (13b) POINT SOURCE: CONSTANT DATA b С Source Х Υ Stack Base Stack Exit Exit BI dg. Emission Coordinate Coordinate Height Elevation Diameter No. Vel. Temp. Dwash Rates (m/s) (deg. K) (km) (km) (m) (m) (m) 1 ! SRCNAM = SOO1 ! 1 ! X = 1405.8379, -684.1943, 54.864, 65.532, 0.9144, 33.05861, 369.8267, 0., 0.5, 0, 8.3, 0, 0, 4.543, 0, 0, 0, 0, 1.4196, 1.4196, 0.8518, 0.8518! 1 ! SIGYZI = 0, 0 ! .0! 1! 1 ! ZPLTFM = 1 ! FMFAC = ! END! 2 ! SRCNAM = S002 ! 2 ! X = 1405.8459, -684.1881, 54.864, 65.532, 0.9144, 33.05861, 369.8267, 0., 0.5, 0, 8.3, 0, 0, 4.543, 0, 0, 0, 0, 1.4196, 1.4196, 0.8518, 0.8518! 2 ! SIGYZI = 0, 0! .0! 1! 2 ! ZPLTFM = 2 ! FMFAC = ! END! SRCNAM = SOO3 !3 1 3 ! X = 1405.8565, -684.1835, 48.768, 65.532, 0.7112, 26.1366, 299.8267, 0., 0, 0, SI GYZI = 0, 0, 0, 1.629, 0.4071, 0.4071, 0.4071, 0.4071, 0, 0, 0, 0! 0, 0 ! 3 3 Т .0! 1! Ţ ZPLTFM = ! FMFAC = 3 ! END! SRCNAM = SOO5 !4 ! 1405.8739. -684.1742. 74.676, 65.532, 1.2192. 25.46909. 344.2711. 4 ! X = 0., 0.4, 1: 0,0! .0! 1!!! 0, 34.25 121, 0, 2.759, 0, 0, 0, 0, 0, 0, 1.1798, 1.1798! SIGYZI = 4 L ZPLTFM = 4 I. FMFAC = ! END! 4 SRCNAM = SOO6 !5 I ! X = 1405.9338, 0., 5 -684.1095, 38.1, 65.532, 0.4826. 5.160264. 338.7155. 0, 0, SI GYZI = ZPLTFM = 0, 0. 0, 0.129, 0.0321, 0.0321, 0.0321, 0.0321, 0. 0. 0, 0! 0! 0, 0 .0! 1! 5! 5! $5 \mid \text{FMFAC} =$! END! SRCNAM = SOO7 ! 6 1 1405.9591, -684.0268, 29.1084, 68.58, 0.508, 2.328672, 299.8267, 6 ! X = 0., 0. 0, 0, 0, 0, 0.086, 0.0214, 0.0214, 0.0214, 0.0214, 0, 0, 0, 0! 6 ! ŠÍ GYZI = 0, 0 ! 6 1 ZPLTFM = .0! ! FMFAC = 6 ! END! SRCNAM = SOO8 !7 7 ! X = 1405.9650, -684.0223, 29.1084, 68.58, 0.508, 2.328672, 299.8267,

0., 7., 7., 0, 0, 0, 0, 0, 0.086, 7.! SIGYZI = 0, 0.! 7.! ZPLTFM = .0.! 7.! FMFAC = 1.! .!END! 0.0214, 0.0214, 0.0214, 0.0214, 0, 0, 0, 0! , : rwFAC = 1 ! !END! 8 ! SRCNAM = SOO9 ! 8 ! ⊻ 8 ! X = 1405.9708, -684.0178, 29.1084, 68.58, 0.508, 2.328672, 299.8267, 0., 8 ! SI GYZI = 0, 0 ! 8 ! ZPLTFM = .0 ! 8 ! FMFAC = 1 ! !END! 0. 0214, 0. 0214, 0, 0.086, 0.0214, 0.0214, 0. 0. 0. 0! 9 ! SRCNAM = S010 ! 9 ! X = 1405.9765, -684.0133, 29.1084, 68.58, 0.508, 2.328672, 299.8267, 0., D., 0, 0, 0, 0, 0, 0, 0.086, 9 ! SIGYZI = 0, 0 ! 9 ! ZPLTFM = .0 ! 9 ! FMFAC = 1 ! !END! 0.0214, 0.0214, 0.0214, 0.0214, 0, 0, 0, 0! 10 ! SRCNAM = SO11 ! 10 ! X = 1406.0129, -683.9784, 19.812, 65.532, 0.4572, 10.06145, 299.8267, 0, 0, 0, 0, 0, 0, 0, 0.3, 0.075, 10 ! SIGYZI = 0, 0 ! 10 ! ZPLTFM = .0 ! 10 ! FMFAC = 1 ! !END! 11 ! SRCNAM = BLR1 ! 11 ! Y = 1005 0., 0.075, 0.075, 0.075, 0. 0. 0. 01 11 ! X = 1405.7995, -684.2169, 8.8392, 65.532, 0.4572, 7. 187184, 466. 4933, 0., ., 0.01, 0, 0.14, 0 11 ! SIGYZI = 0, 0 ! 11 ! ZPLTFM = .0 ! 11 ! FMFAC = 1 ! . !END! 0, 0, 0, 0.075, 0, 0.0375, 0.0375! 0, 0, 0, 0, 12 ! SRCNAM = SO12 ! 12 ! X = 1405.8257,-684.1786, 0.9144, 54.864, 65.532, 33.05861, 369.8267, 0., 0.5, 0, 8.3, 0, 0, 4.543, 0, 0, 0, 0, 1.4196 1.4196, 0.8518, 0.8518! 12 ! SIGYZI = 0, 0 ! 12 ! ZPLTFM = .0 ! 12 ! FMFAC = 1 ! !END! 13 ! SRCNAM = SO13 ! 13 ! X = 1405.8336, -684.1723, 54.864, 65.532, 0.9144, 33.05861, 369.8267, 0., 0.5, 0, 8.3, 0, 0, 4.543, 0, 0, 0, 0, 1.4196, 1.4196, 0.8518, 0.8518! 13 ! SIGYZI = 0, 0 ! 13 ! ZPLTFM = .0 ! 13 ! FMFAC = 1 ! !END! 14 ! SRCNAM = SO14 ! 14 ! X = 1405.8407, -684.1632, 48.768, 65.532, 0.7112 26. 1366, 299.8267. 0., 0, 0, 0, 0, 0, 0, 14 ! SIGYZI = 0, 0 ! 14 ! ZPLTFM = .0 ! 14 ! FMFAC = 1 ! !END! 1.629, 0.4071, 0.4071, 0.4071, 0.4071, 0, 0, 0, 0! 15 ! SRCNAM = S016 ! 15 ! X --684.1487, 74.676,65.532, 1.2192, 25.46909, 344.2711, 0., 0.4, 121, 34.25, 0, 0, 2,759, 0, 0, 0, 0, 0, 0, 1.1798. 1.1798 15 ! SIGYZI = 0, 0 ! 15 ! ZPLTFM = .0 ! 15 ! FMFAC = 1 ! !EM 15 ! FMFAC = 1 ! END! 16 ! SRCNAM = S017 ! 16 ! X = 1405.9312, -684.1061, 38.1, 65.532, 5.160264, 338.7155, 0.4826, 0., ., 0, 0, 0, 0, 0, 0, 16 ! SIGYZI = 0, 0 ! 16 ! ZPLTFM = .0 ! 16 ! FMFAC = 1 ! !END! 0.0321, 0.0321, 0! 0.129, 0.0321, 0.0321, 0, 0. 0. 17 ! SRCNAM = S018 ! 17 ! X = 1405.9820, -684.0086,29. 1084, 68. 58, 0.508, 2.328672, 299.8267. 0., 0,

 0,
 0,
 0,
 0,
 0,
 0,

 17
 !
 SIGYZI
 =
 0,
 0 !

 17
 !
 ZPLTFM
 =
 .0
 !

 17
 !
 ZPLTFM
 =
 .0
 !

 17
 !
 FMFAC
 =
 1
 !
 END!

 18
 !
 SRCNAM
 =
 \$019
 !

 10
 !
 Y
 1400
 \$0270

 0, 0.086, 0.0214, 0.0214, 0.0214, 0.0214, 0! 0, 0. 0, 18 ! X = 1405.9879, -684.0042, 29. 1084, 68. 58, 2.328672, 299.8267, 0.508, 0., 0, D., 0, 0, 0, 0, 0, 18 ! SIGYZI = 0, 0 ! 18 ! ZPLTFM = .0 ! 0, 0, 0, 0.086, 0.0214, 0.0214, 0.0214, 0.0214, 0, 01

CALPUFF. I NP 18 ! FMFAC = 1 ! ! END! 19 ! SRCNAM = SO20 ! 19 ! X = 1405.9936, -683.9997, 29. 1084, 68. 58, 0.508, 2.328672, 299.8267, 0., 0, 0, 0, 0, 0, 0, 0.086, 19 ! SIGYZI = 0, 0 ! 19 ! ZPLTFM = .0 ! 19 ! FMFAC = 1 ! !END! 0.0214, 0.0214, 0.0214, 0.0214, 0, 0. 0. 0! 20 ! SRCNAM = SO21 ! 20 ! X = 1405.9995, -683.9951, 29. 1084, 68. 58, 0.508, 2.328672, 299.8267, 0., 0, 20 ! SI GYZI = 0, 0 ! 20 ! SI GYZI = 0, 0 ! 20 ! ZPLTFM = .0 ! 20 ! FMFAC = 1 ! !END! 0.086, 0.0214, 0.0214, 0.0214, 0.0214, 0, 0. 0, 0! 21 ! SRCNAM = BLR2 ! 21 ! X -21 ! X = 1405.7845, -684.1974, 8.8392, 65.532, 0.4572. 7.187184, 466.4933, 0., 21 (0.01, 0, 0.14, 21 ! SIGYZI = 0, 0 ! 21 ! ZPLTFM = .0 ! 21 ! FMFAC = 1 ! !E 22 ! SRCNAM = S022 ! 1405 7/72 0, 0, 0.075, 0, 0, 0, 0. 0, 0, 0.0375. 0.0375! ! END! 0.9144, 1405.7676, 22 ! X = -684.1044, 54.864, 65.532, 33.05861, 369.8267, 0., 0.5, 0, 8.3, 0, 0, 0, 0, 4.543, 0, 0, 1.4196 1.4196, 0.8518, 0.8518! 22 ! SIGYZI = 0, 0 ! 22 ! ZPLTFM = .0 ! 22 ! FMFAC = 1 ! ! 23 ! SRCNAM = S023 ! ! END! 23 ! X = 1405.7756, -684.0982, 54.864, 65.532, 0.9144, 33.05861, 369.8267, 0., 0, 0.5, 0, 8.3, 0, 0, 4.543, 0, 0, 0, 1.4196 1.4196, 0.8518, 0.8518! 23 ! SIGYZI = 0, 0 ! 23 ! ZPLTFM = .0 ! 23 ! FMFAC = 1 ! !END! 24 ! SRCNAM = SO24 ! 1405.7861, 24 ! X = -684.0936, 48.768, 65.532, 0.7112, 26. 1366, 299.8267. 0., 0, 0, 0, 0, 0, 0, 24 ! SIGYZI = 0, 0 ! 24 ! ZPLTFM = .0 ! 24 ! FMFAC = 1 ! !END! 1.629, 0.4071, 0.4071, 0.4071, 0.4071, 0, 0, 0, 0, 0! 25 ! SRCNAM = S026 ! 25 ! X = 74.676,65.532, 1405.8035, -684.0843, 1.2192, 25. 46909, 344. 2711, 0., . 34.25, 0.4, 121, 25 ! SIGYZI = 0, 0 ! 25 ! ZPLTFM = .0 ! 25 ! FMFAC = 1 ! !END! 26 ! SRCNAM = SO27 ! 26 ! X = 140F SCCC 0, 0, 2.759, 0, 0, 0, 0, 0, 0, 1.1798, 1.1798 26 ! X = 1405.8634, -684.0196, 38.1, 65.532, 0.4826, 5.160264, 338.7155, 0., 2, 0, 0, 0, 0, 26 ! SIGYZI = 0, 0 ! 26 ! ZPLTFM = .0 ! 26 ! FMFAC = 1 ! !! 0, 0.129, 0.0321, 0.0321, 0.0321, 0.0321, 0, 0. 0. 0! 27 ! SRCNAM = \$028 ! 27 ! X -27 ! X = 1405.9504, -684.0157, 29. 1084, 68. 58, 0.508, 2.328672, 299.8267, 0., 27 ! SIGYZI = 0, 0, 0, 27 ! SIGYZI = 0, 0 ! 27 ! ZPLTFM = .0 ! 27 ! FMFAC = 1 ! !END! 0, 0.086, 0.0214, 0.0214, 0.0214, 0.0214, 0, 0, 0, 0! 28 ! SRCNAM = S029 ! 28 ! X = 1405.9563, -684.0111, 29.1084, 68.58, 0.508, 2.328672, 299.8267, 0., 5., 0, 0, 0, 0, 0, 0, 28 ! SIGYZI = 0, 0 ! 28 ! ZPLTFM = .0 ! 28 ! FMFAC = 1 ! END! 29 ! SRCNAM = S030 ! 29 ! X = 1405 9621 0.0214, 0.0214, 0.086, 0.0214, 0.0214, 0! 0. 0. 0. 29 ! X = 1405.9621, -684.0066, 29. 1084, 68. 58, 299.8267, 0.508, 2.328672, 0., 2, , 0, 0, 0, 0, 29 ! SIGYZI = 0, 0 ! 29 ! ZPLTFM = .0 ! 29 ! FMFAC = 1 ! !E 0.086, 0.0214, 0.0214, 0, 0.0214, 0.0214, 0, 0, 0, 0! 30 ! X = 1405.9678, -684.0021, 29.1084, 68.58, 0.508, 2. 328672, 299. 8267, 0.,

CALPUFF. I NP 0.086, 0.0214, 0.0214, 0.0214, 0, 0.0214, 0, 0, 0, 01 31 ! SRCNAM = SO32 ! 31 ! X = 1406.0042, -683.9673, 19.812, 65.532, 0.4572, 10.06145, 299.8267, 0., 0, 0, 0, 0, 0, 0, 31 ! SIGYZI = 0, 0 ! 31 ! ZPLTFM = .0 ! 31 ! FMFAC = 1 ! !END! 0.3, 0.075, 0.075, 0.075, 0.075, 0, 0, 0, 0! 32 ! SRCNAM = BLR3 ! 32 ! X = 1405.7292, -684.127, 8.8392, 65.532, 0.3556, 7.187184, 466.4933, 0., ., 0.01, 0, 0.14, 0, 0, 0.075, 32 ! SIGYZI = 0, 0 ! 32 ! ZPLTFM = .0 ! 32 ! FMFAC = 1 ! !END! 0, 0, 0, 0, 0, 0, 0.0375, 0.0375! 33 ! SRCNAM = S033 ! 33 ! X = 1405.7553. -684.0887, 54.864, 65.532, 0.9144 33.05861, 369.8267, 0., 0.5, 0, 0, 8.3, 0, 0, 4.543, 0, 1.4196, 1.4196, 0, 0, 0.8518, 0.8518 33 ! SIGYZI = 0, 0 ! 33 ! ZPLTFM = .0 ! 33 ! FMFAC = 1 ! !E 34 ! SRCNAM = S034 ! ! END! 1405.7632, 34 ! X = -684.0824, 54.864, 65.532, 0.9144, 33.05861, 369.8267, 0., 0.5, 0, 0, 8.3, 0, 0, 4.543, 0, 1.4196, 1.4196, 0, 0, 0.8518, 0.8518 34 ! SIGYZI = 0, 0 ! 34 ! ZPLTFM = .0 ! 34 ! FMFAC = 1 ! !! 35 ! SRCNAM = \$035 ! ! END! 1405.7703, 35 ! X = -684.0733, 48.768, 65.532, 0.7112, 26. 1366, 299.8267, 0., 35 ! SIGYZI = 0, 0 ! 35 ! ZPLTFM = .0 ! 35 ! FMFAC = 1 ! !END! 1.629, 0.4071, 0.4071, 0. 4071, 0. 4071, 0, 0, 0, 0! 36 ! SRCNAM = SO37 ! 36 ! X = 1405.7836, -684.0588, 74.676, 65.532, 1.2192, 25.46909, 344.2711, 0., ., 34.25, 0.4, 121, 36 ! SIGYZI = 0, 0 ! 36 ! ZPLTFM = .0 ! 36 ! FMFAC = 1 ! ! ENE 27 ! EDENAL 0, 0, 2.759, 0, 0, 0, 0, 0, 0, 1. 1798, 1. 1798! ! END! 37 ! SRCNAM = SO38 ! 37 ! X = 1405.8609, -684.0162, 38.1, 65.532, 0.4826, 5.160264, 338.7155, 0., 7, 0, 0, 0, 0, 0, 37 ! SIGYZI = 0, 0 ! 37 ! ZPLTFM = .0 ! 37 ! FMFAC = 1 ! !E 38 ! SCALAN & COCC 0. 129, 0.0321, 0.0321, 0! Ο, 0.0321, 0.0321, 0, 0. 0. 38 ! SRCNAM = S039 ! 38 ! X = 1405.9733, -683.9974, 29.1084, 68.58, 0.508, 2.328672, 299.8267, 0., 0, 0, 0, 0, 0, 0, 0, 38 ! SIGYZI = 0, 0 ! 38 ! ZPLTFM = .0 ! 38 ! FMFAC = 1 ! !END! 0.086, 0.0214, 0.0214, 0.0214, 0.0214, 0, 0, 0, 0! 39 ! SRCNAM = SO40 ! 39 ! X = 1405.9792, -683.993, 29.1084, 68.58, 0.508, 2.328672, 299.8267. 0., J., 0, 0, 0, 0, 0, 0, 39 ! SIGYZI = 0, 0 ! 39 ! ZPLTFM = .0 ! 39 ! FMFAC = 1 ! !END! 40 ! SRCNAM = S041 ! 20 ! Y = 1405 9849. 0, 0.086. 0.0214, 0.0214, 0.0214, 0.0214, 0, 0! 0, 0, 40 ! X = 1405.9849, 29. 1084, 68. 58, 299.8267, -683.9885, 0.508, 2.328672. 0.,

 0,
 0,
 0,
 0,
 0,
 0,

 40 !
 SIGYZI =
 0,
 0 !
 1

 40 !
 ZPLTFM =
 .
 0 !

 40 !
 FMFAC =
 1 !
 !END!

 41 !
 SRCNAM =
 \$042 !

 41 !
 V
 1405 2000

 0.086, 0.0214. 0.0214, 0.0214. 0.0214, 0. 0. 0, 0! -683.9839, 29. 1084, 68. 58, 41 ! X = 1405.9908, 0.508, 2.328672, 299.8267, 0., 0, 0, 0, 0, 0, 0, 41 ! SI GYZI = 0, 0 ! 41 ! ZPLTFM = .0 ! 41 ! FMFAC = 1 ! !END! 0.086, 0.0214, 0.0214, 0.0214, 0.0214, 0, 0, 0, 0!

CALPUFF. I NP 42 ! SRCNAM = BLR4 ! 42 ! X = 1405.7142, -684.1075, 8.8392, 65.532, 0.4572, 7. 187184, 466. 4933, 0., 0.01, 0.14, 0.075, 0, 0, 0, 0, 0, 0.0375, 0.0375! 0, 0, 0. 0, SIGYZI = ZPLTFM = 0, 0 ! .0 ! 42 42 ! FMFAC = 1! ! END! ----а Data for each source are treated as a separate input subgroup and therefore must end with an input group terminator. SRCNAM is a 12-character name for a source (No default) is an array holding the source data listed by the column headings Х (No default) (No default) is an array holding the initial sigma-y and sigma-z (m) (Default: 0.,0.) is a vertical momentum flux factor (0. or 1.0) used to represent the effect of rain-caps or other physical configurations that reduce momentum rise associated with the actual exit velocity. SI GYZI FMFAC reduce momentum rise associated with the actual exit velocity. (Default: 1.0 -- full momentum used) is the platform height (m) for sources influenced by an isolated structure that has a significant open area between the surface and the bulk of the structure, such as an offshore oil platform. The Base Elevation is that of the surface (ground or ocean), and the Stack Height is the release height above the Base (not above the platform). Building heights entered in Subgroup 13c must be those of the buildings on the platform, measured from the platform deck. ZPLTFM is used only with MBDW=1 (ISC downwash method) for sources with building downwash. (Default: 0.0) ZPLTFM (Default: 0.0) b 0. = No building downwash modeled a. = Downwash modeled for buildings resting on the surface
 a. = Downwash modeled for buildings raised above the surface (ZPLTFM > 0.)
 NOTE: must be entered as a REAL number (i.e., with decimal point) An emission rate must be entered for every pollutant modeled. Enter emission rate of zero for secondary pollutants that are modeled, but not emitted. Units are specified by IPTU (e.g. 1 for g/s). Subgroup (13c) BUILDING DIMENSION DATA FOR SOURCES SUBJECT TO DOWNWASH Source Effective building height, width, length and X/Y offset (in meters) every 10 degrees. LENGTH, XBADJ, and YBADJ are only needed for MBDW=2 (PRIME downwash option) No. 1 * SRCNAM 1 = * HEI GHT 50.0, 50.0, 50.0 50.0 1 = 50.0, 50.0, 50. 0, 50. 0, 50. 0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0 50.0 50.0 50.0, 50.0, 50.0, 50.0, 50.0, 50.0 50.0, 50.0 50.0, 50.0, 72.64, 82.54, 86.51, 72.64, 82.54, 86.51 50.0. 50.0. 50.0. 50.0. 50.0, 50.0, 50.0, 50.0 50.0, 86. 51, 82. 54, 72. 64, 86. 51, 82. 54, 89.59, 62.26, 87.58, 89.59, 80.8, 1 WIDTH = 89.95, 87.58, 62.26, 89.59, 75. 0, 80. 8, 89.95, 50.0, 62.26, 87.58, 80. 8, 75. 0, 89.95, 89. 75, 89. 95, 87.58, 89.59, 80.8, 62.26, 80.80. 72.64, 50.0 82.54, 72.64, 87.58, 62.26, , 89. 59, 86.51, 1 LENGTH = 72.64, 82.54, 62.26, 87.58, 80.80, 89.95, 86.51, 89.59, 75.00 82. 54, 72. 64, 89.95, 86.51, 80.80 87.58, 89.59, 62. 26, 89. 59, 62.26, 87.58, 72.64, 82.54, 50.00, 80.80 89.95, 75.00 * 86.51, -62.48, -60.00, -47.35, -69.21, 1 XBADJ = -55.76, -67.29, -70.07, -70.71, -69.21, -47.35, -65.60, -65.60, -70.71 -67.29, -31.82, -70.07, -62.48, -55.76, -37.50, -27.48, -35.19, -22.30, -16.44, -10.09 -3.43, 3.34, 10.00, 3.34, -3.43, -10.09 -27.48, -31.82, -35.19, -37.50'* -16.44, -22.30,

						CALP	UFF.INP	
1	*	YBADJ =	34.47,	32.89,	30.31,	26.81,	22.50,	17.50,
			11.97,	6.08,	0.00,	-6.08,	-11.97,	-17.50,
			-22.50,	-26.81,	-30.31,	-32.89,	-34.47,	-35.00,
			-34.47,	-32.89,	-30.31,	-26.81,	-22.50,	-17.50,
			-11.97,	-6.08,	0.00,	6.08,	11.97,	17.50,
			22.50,	26.81,	30.31,	32.89,	34.47,	35.00 *

END

----a

Building height, width, length, and X/Y offset from the source are treated as a separate input subgroup for each source and therefore must end with an input group terminator. The X/Y offset is the position, relative to the stack, of the center of the upwind face of the projected building, with the x-axis pointing along the flow direction.

Subgroup (13d)

POINT SOURCE: VARIABLE EMISSIONS DATA

Use this subgroup to describe temporal variations in the emission rates given in 13b. Factors entered multiply the rates in 13b. Skip sources here that have constant emissions. For more elaborate variation in source parameters, use PTEMARB.DAT and NPT2 > 0.

IVARY determines the type of variation, and is source-specific: (IVARY) Default: 0

Ó =	Constant	
1 =	Diurnal cycle	(24 scaling factors: hours 1-24)
2 =	Monthly cycle	(12 scaling factors: months 1-12)
3 =	Hour & Season	(4 groups of 24 hourly scaling factors,
		where first group is DEC-JAN-FEB)
4 =	Speed & Stab.	(6 groups of 6 scaling factors, where
		first group is Stability Class A,
		and the speed classes have upper
		bounds (m/s) defined in Group 12
5 =	Temperature	(12 scaling factors, where temperature
		classes have upper bounds (C) of:
		0, 5, 10, 15, 20, 25, 30, 35, 40,
		45, 50, 50+)

----a

Data for each species are treated as a separate input subgroup and therefore must end with an input group terminator.

INPUT GROUPS: 14a, 14b, 14c, 14d -- Area source parameters

Subgroup (14a)

Number of polygon area sources with parameters specified below (NAR1) No default ! NAR1 = 0 ! Units used for area source emissions below (I ARU) Default: 1 ! IARU = 1 ! g/m**2/s 1 = 2 = kg/m**2/hr lb/m**2/hr 3 = tons/m**2/yr Odour Unit * m/s (vol. flux/m**2 of odour compound) Odour Unit * m/min metric tons/m**2/yr 4 = 5 = 6 = 7 = Number of source-species combinations with variable emissions scaling factors provided below in (14d) (NSAR1) Default: 0 ! NSAR1 = 0 !

Number of buoyant polygon area sources with variable location and emission

! END!	rces are rea			,		
Subgroup (14b)	-					
AREA	- SOURCE: CON	ISTANT DAT	a A			
				b		
No.	Height (m)	El evati or (m)	n Sigma z (m)	Rates		
a Data for e and therei	each source fore must er	are treat nd with ar	ed as a sepa n input group	rate input terminator	subgroup	
An emissic Enter emis modeled, b (e.g. 1 fo	on rate must ssion rate c out not emit or g/m**2/s)	be enter of zero fo ted. Uni	red for every or secondary ts are speci	pollutant pollutants fied by IAR	modeled. that are U	
Subgroup (14c)	-					
COOF	- PDINATES (km) FOR FAC		OF FACH POL	YGON	
	UTINATES (KI	I) I OK LAC	H VERIEA(4)	01 E/1011 1 0E		
Source No. Orde	ered list of	• X follow	ved by list o	f Y. groupe	a by source	
Source Orde	ered list of	T follow	ved by list c	f Y, groupe	a d by source	-
Source No. Orde Data for e and theref Subgroup (14d)	ered list of each source fore must er	are treat	ed by list o	f Y, groupe rate input	a d by source subgroup	_
Source No. Orde Data for e and theref Subgroup (14d) AREA	ered list of each source fore must er - SOURCE: VAR	are treat ad with ar	ed by list of as a sepan input group	f Y, groupe rate input terminator	a d by source subgroup	-
Source No. Orde Data for e and theref Subgroup (14d) AREA Use this s rates give Skip source variation	ered list of each source fore must er SOURCE: VAR subgroup to en in 14b. ces here tha in source p	are treat are treat d with an describe Factors e t have co	sed as a sepa red as a sepa n input group SSIONS DATA temporal var entered multi onstant emiss s, use BAEMAR	a i ations in ply the rations. B. DAT and N.	a d by source subgroup the emission es in 14b. more elabora AR2 > 0.	te
Source No. Orde Data for e and theref Subgroup (14d) AREA Use this s rates give Skip sourc variation I VARY dete (I VARY)	ered list of each source fore must er SOURCE: VAR subgroup to en in 14b. ces here tha in source p	are treat are treat d with ar describe Factors e t have co parameters	sed as a sepa red as a sepa n input group SSIONS DATA temporal var entered multi onstant emiss s, use BAEMAR variation, an Def	a iations in B. DAT and N. d is source ault: 0	a d by source subgroup the emission es in 14b. more elabora AR2 > 0. -specific:	te
Source No. Orde Data for e and theref Subgroup (14d) AREA Use this s rates give Skip source variation I VARY dete (I VARY) 0 = 1 = 2 = 3 =	ered list of each source fore must er - - SOURCE: VAR subgroup to en in 14b. ces here tha in source p ermines the Const Diurr Month Hour	Are treat are treat ad with an electribe Factors en thave co parameters type of v cant nal cycle & Season	sed as a sepa red as a sepa n input group SSIONS DATA temporal var entered multi onstant emiss s, use BAEMAR variation, an Def (24 scaling (4 groups of	a iations in ply the rations. For B. DAT and N. d is source ault: 0 factors: hou factors: moi 24 hourly	a d by source subgroup the emission es in 14b. more elabora AR2 > 0. -specific: urs 1-24) nths 1-12) scaling fact	- te ors,
Source No. Orde Data for e and theref Subgroup (14d) AREA Use this s rates give Skip source variation I VARY dete (I VARY) 0 = 1 = 2 = 3 = 3 = 4 =	ered list of each source fore must er SOURCE: VAR subgroup to en in 14b. ces here tha in source p ermines the Const Diurn Month Hour Speec	Are treat are treat ad with an elascribe Factors ent have co barameters type of v cant hal cycle & Season a Stab.	sed as a sepa input group SSIONS DATA temporal var entered multi onstant emiss s, use BAEMAR variation, an Def (24 scaling (12 scaling (4 groups of where first (6 groups of first group and the spe	a iations in ply the rations. For i B. DAT and N. d is source ault: 0 factors: hou factors: mo 24 hourly group is D 6 scaling is Stabili ed classes	a d by source subgroup subgroup more elabora AR2 > 0. -specific: urs 1-24) nths 1-12) scaling fact EC-JAN-FEB) factors, whe ty Class A, have upper	- te ors, re
Source No. Orde Data for e and therei Subgroup (14d) AREA Use this s rates give Skip source variation I VARY dete (I VARY) 0 = 1 = 2 = 3 = 4 = 5 =	ered list of each source fore must er SOURCE: VAR SOURCE: VAR in source p ermines the Const Diurn Month Hour Speec Tempe	Are treat are treat d with an exact of the factors exact of the factors	sed as a sepa input group SSIONS DATA temporal var entered multi onstant emiss s, use BAEMAR variation, an Def (24 scaling (12 scaling (4 groups of where first (6 groups of first group and the spe bounds (m/s (12 scaling classes hav 0, 5, 10, 1 45, 50, 50+	a iations in ply the rations. For i B. DAT and N. d is source ault: 0 factors: ho factors: ho factors: ho factors: mo 24 hourly group is D 6 scaling is Stabili ed classes i defined i factors, wh e upper bou 5, 20, 25, 1	a d by source subgroup subgroup more elabora AR2 > 0. -specific: urs 1-24) nths 1-12) scaling fact EC-JAN-FEB) factors, whe ty Class A, have upper n Group 12 ere temperat nds (C) of: 30, 35, 40,	- ors, re ure

```
CALPUFF. I NP
```

INPUT GROUPS: 15a, 15b, 15c -- Line source parameters ----_____ Subgroup (15a) Number of buoyant line sources with variable location and emission parameters (NLN2) No default ! NLN2 = 0 ļ (If NLN2 > 0, ALL parameter data for these sources are read from the file: LNEMARB.DAT) No default Number of buoyant line sources (NLINES) ! NLINES = 0 !Units used for line source emissions below (ILNU) Default: 1 ! ILNU = 1 ! g/s 1 = kg/hr Ib/hr 2 = 3 = odour Unit * m**3/s (vol. flux of odour compound) Odour Unit * m**3/min 4 = 5 = 6 = 7 = Number of source-species combinations with variable emissions scaling factors provided below in (15c) (NSLN1) Default: 0 ! NSLN1 = 0 ! Maximum number of segments used to model each line (MXNSEG) ! MXNSEG = 7 ! Default: 7 The following variables are required only if NLINES > 0. They are used in the buoyant line source plume rise calculations. Number of distances at which Default: 6 ! NLRISE = 6 !transitional rise is computed Average building length (XL) No default ! XL = 0. !(in meters) Average building height (HBL) No default ! HBL = 0. !(in meters) Average building width (WBL) No default ! WBL = 0. ! (in meters) Average line source width (WML) No default ! WML = 0. ! (in meters) Average separation between buildings (DXL) No default ! DXL = 0. ! (in meters) Average buoyancy parameter (FPRIMEL) ! FPRIMEL = 0. ! No default (in m**4/s**3) ! END! Subgroup (15b) BUOYANT LINE SOURCE: CONSTANT DATA

Source No.	Beg. X Coordinate (km)	Beg. Y Coordinate (km)	End. X Coordinate (km)	End. Y Coordinate (km)	Release Height (m)	Base Elevation (m)	Emission Rates	а

----a

> Data for each source are treated as a separate input subgroup and therefore must end with an input group terminator.

b

An emission rate must be entered for every pollutant modeled. Enter emission rate of zero for secondary pollutants that are modeled, but not emitted. Units are specified by ILNTU

```
(e.g. 1 for g/s).
```

_ _ _ _ _ _ _ _ _ Subgroup (15c)

а BUOYANT LINE SOURCE: VARIABLE EMISSIONS DATA

Use this subgroup to describe temporal variations in the emission rates given in 15b. Factors entered multiply the rates in 15b. Skip sources here that have constant emissions.

IVARY determines (IVARY)	s the type of v	variation, and is source-specific: Default: 0
0 =	Constant	
1 =	Diurnal cycle	(24 scaling factors: hours 1-24)
2 =	Monthly cycle	(12 scaling factors: months 1-12)
3 =	Hour & Season	(4 groups of 24 hourly scaling factors, where first group is DEC-JAN-FEB)
4 =	Speed & Stab.	(6 groups of 6 scaling factors, where first group is Stability Class A, and the speed classes have upper bounds (m/s) defined in Group 12
5 =	Temperature	(12 scaling factors, where temperature classes have upper bounds (C) of: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 50+)

а

Data for each species are treated as a separate input subgroup and therefore must end with an input group terminator.

_____ INPUT GROUPS: 16a, 16b, 16c -- Volume source parameters

_____ Subgroup (16a) -----

Number of volume sources with parameters provided in 16b, c (NVL1) No default ! NVL1 = 0 ! Units used for volume source emissions below in 16b (IVLU) Default: 1 ! IVLU = 1 ! g/s kg/hr lb/hr 1 = 2 = 3 = tons/yr Odour Unit * m**3/s (vol. flux of odour compound) Odour Unit * m**3/min 4 = 5 = 6 = 7 = metric tons/yr Number of source-species combinations with variable emissions scaling factors provided below in (16c) (NSVL1) Default: 0 ! NSVL1 = 0 ! Number of volume sources with variable location and emission (NVL2) No default ! NVL2 = 0 ! parameters (If NVL2 > 0, ALL parameter data for these sources are read from the VOLEMARB.DAT file(s)) ! END! Subgroup (16b) VOLUME SOURCE: CONSTANT DATA -----χ Y Effect. Base Initial Initial Emission Coordinate Coordinate Height Elevation Sigma y Sigma z Rates

b

(km)	(km)	(m)	(m)	(m)	(m)			
	CALPUFF. INP							

----a

Data for each source are treated as a separate input subgroup and therefore must end with an input group terminator.

b

An emission rate must be entered for every pollutant modeled. Enter emission rate of zero for secondary pollutants that are modeled, but not emitted. Units are specified by IVLU (e.g. 1 for g/s).

Subgroup (16c)

VOLUME SOURCE: VARIABLE EMISSIONS DATA

Use this subgroup to describe temporal variations in the emission rates given in 16b. Factors entered multiply the rates in 16b. Skip sources here that have constant emissions. For more elaborate variation in source parameters, use VOLEMARB.DAT and NVL2 > 0.

IVARY determines the type of variation, and is source-specific: (IVARY) Default: 0

,		
0 =	Constant	
1 =	Diurnal cycle	(24 scaling factors: hours 1-24)
2 =	Monthly cycle	(12 scaling factors: months 1-12)
3 =	Hour & Season	(4 groups of 24 hourly scaling factors,
		where first group is DEC-JAN-FEB)
4 =	Speed & Stab.	(6 groups of 6 scaling factors, where
		first group is Stability Class A,
		and the speed classes have upper
		bounds (m/s) defined in Group 12
5 =	Temperature	(12 scaling factors, where temperature
		classes have upper bounds (C) of:
		0 5 10 15 20 25 30 35 40
		45 50 50+

-----a

Data for each species are treated as a separate input subgroup and therefore must end with an input group terminator.

INPUT GROUPS: 17a & 17b -- Non-gridded (discrete) receptor information

Subgroup (17a)

Number of non-gridded receptors (NREC) No default ! NREC = 804 !

! END!

Subgroup (17b)

	a NON-GRIDDED (DISCRETE) RECEPTOR DATA				
Receptor No.	X Coordinate (km)	Y Coordinate (km)	Ground Elevation (m)	Height b Above Ground (m)	
1 ! X = 2 ! X = 3 ! X = 4 ! X = 5 ! X = 6 ! X = 7 ! X =	1609. 9180, 1610. 6820, 1610. 5061, 1611. 2701, 1611. 0941, 1611. 8579, 1610. 1544,	-633. 6187, -633. 4711, -632. 5613, -632. 4136, -631. 5038, -631. 3560, -630. 7417,	0, 1, 1, 1, 1, 1,	O ! !END!cape romain begin O ! !END! O ! !END! O ! !END! O ! !END! O ! !END! O ! !END! O ! !END!	

				CALPUFF.	INP	
8 ! 9 I	X = X =	1610. 9181, 1611 6819	-630.5940, -630.4462	1, 1	0 !	! END!
10 !	X =	1612. 4456,	-630. 2984,	1,	0	! ! END!
11 !	X =	1610. 7422,	-629.6842,	1,	0	! ! END!
12 !	X = X =	1611.5058, 1612.2695	-629.5365, -629.3887	1,	0	I IENDI
14	X =	1610. 5662,	-628.7745,	0,	Ő	! ! END!
15 !	X =	1611. 3298,	-628.6268,	1,	0	! ! END!
16 !	X = X =	1612.0934, 1612.8569	-628.4790, -628.3311	1, 1	0	! !END! I IENDI
18	X =	1610. 3903,	-627.8648,	1,	ŏ	! ! END!
19 !	X =	1611. 1538,	-627.7171,	1,	0	! ! END!
20 1	X = X =	1610. 2143, 1610. 9777	-626.9550, -626.8074	1,	0	I I FNDI
22	X =	1611. 7411,	-626.6596,	1,	Õ	! END!
23 !	X =	1610.8017,	-625.8977,	1,	0	! ! END!
25	× = X =	1610. 6257,	-624. 9880,	1,	0	I I ENDI
26 !	X =	1611. 3889,	-624.8403,	2,	0	! END!
27 !	X =	1612. 1521,	-624.6925,	1,	0	! !END!
29 !	X =	1611. 2128,	-623. 9324,	1,	0	! ! END!
30 !	X =	1611. 9759,	-623.7828,	1,	0	! ! END!
31 !	X = X -	1616. 5544, 1611. 0367	-622.8947,	0, 1	0	! !END!
33 !	X =	1611. 7997,	-622.8732,	1,	0	END!
34 !	X =	1612.3865,	-621.8158,	1,	0	! ! END!
35 !	X = X =	1613. 1494, 1617, 7267,	-621.6679, -620.7791.	1, 0.	0	I IENDI
37 !	X =	1612. 9731,	-620. 7584,	1,	Õ	! ! END!
38 !	X =	1613. 7359,	-620.6104,	1,	0	! ! END!
40 I	X = X =	1621. 9489, 1622. 7115.	-617, 9203,	0, 1.	0	!!END!
41	X =	1623. 4741,	-617.7715,	1,	Ō	! ! END!
42 !	X =	1614.1457,	-618.6434,	1,	0	! ! END!
43 9	X =	1624. 0590,	-616. 7133,	1,	0	! ! END!
45 !	X =	1624. 8215,	-616.5643,	1,	0	! ! END!
46 !	X =	1625.5839,	-616.4153,	1,	0	! !END!
48	X =	1633. 9700,	-614. 7714,	Ó,	0	END!
49 !	X =	1614.7317,	-617.5859,	1,	0	! ! END!
50 ! 51	X = X =	1621.5942, 1622.3566	-616.2504, -616.1017	0, 1	0	I IENDI
52 !	X =	1623. 1190,	-615.9529,	1,	Õ	! ! END!
53 !	X =	1623.8814,	-615.8040,	1,	0	! ! END!
54 !	X = X =	1624. 6438, 1625. 4062.	-615.5061.	1,	0	!!END!
56 !	X =	1626. 1685,	-615.3570,	1,	0	! ! END!
57 !	X =	1626. 9309,	-615.2078,	1,	0	! ! END!
59	X =	1628. 4555,	-614. 9093,	2,	0	! ! END!
60 !	X =	1629. 2178,	-614.7599,	2,	0	! END!
61 !	X = X =	1629. 9801, 1630. 7424	-614.6105, -614.4610	1,	0	! !END!
63 !	X =	1631. 5047,	-614. 3114,	ī,	ŏ	! ! END!
64 !	X =	1633.7914,	-613.8623,	0,	0	! ! END!
66	X = X =	1615. 3176,	-616. 3284,	1,	0	!!END!
67 !	X =	1616. 8425,	-616.2320,	1,	0	! END!
68 !	X = X -	1620. 6545, 1621. 4168	-615.4898, -615.3411	0, 1	0	! !END!
70	X =	1622. 1792,	-615. 1924,	1,	0	! ! END!
71 !	X =	1622. 9415,	-615.0436,	1,	0	! ! END!
73	X = X =	1623. 7038, 1624. 4661	-614.8948, -614.7458	1, 1	0	I IENDI
74 !	X =	1625. 2284,	-614. 5968,	1,	Õ	! ! END!
75 !	X =	1628.2774,	-614.0002,	1,	0	! ! END!
77	X = X =	1632.0884.	-613. 8508,	1,	0	!!END!
78 !	X =	1634. 3748,	-612.8034,	0,	0	! ! END!
79 !	X = X -	1619. 7149, 1620 4772	-614.7290,	0, 1	0	! ! END!
81	× = X =	1621. 2395.	-614. 4318	1,	0	! ! END!
82	X =	1622.0018,	-614.2831,	1,	Ō	! ! END!
83 !	X = X -	1622. 7640, 1623. 5262	-614.1344, -613 9855	1, 1	0	I IENDI
85 !	X =	1624. 2885,	-613. 8366,	1,	0	! ! END!
86 !	X =	1625.0507,	-613.6876,	1,	0	! ! END!
88 I	x = X =	1625. 8129, 1626. 5750.	-013.5386, -613.3895	1, 1.	0	
89 !	X =	1627. 3372,	-613.2403,	1,	Õ	! END!
90 !	X =	1629. 6236,	-612.7923,	1,	0	! ! END!

		4 (0.0 0.057	(10 (100	CALPUFF.	INP		
91 ! 92 !	X = X =	1630. 3857, 1631. 1478,	-612.6428, -612.4933,	1, 1,	0 !	! END! ! END!	
93 ! 94 I	X = X -	1631. 9099, 1634, 1961	-612.3437, -611.8944	1,	0!	! END! I ENDI	
95 !	X =	1618. 7756,	-613.9682,	1,	0 !	! END!	
96! 97!	X = X =	1619. 5378, 1620. 3000	-613.8197, -613.6712	1, 1	0 !	! END! I FNDI	
98 !	X =	1621. 0622,	-613. 5226,	1,	0 I	! END!	
99 ! 100	x = ! X =	1621.8243, 1622.5865,	-613.3739, -613.2251,	1,	0 !	! END! ! END!	
101	! X =	1623.3487,	-613.0763,	1,	0 !	! END!	
102	! X =	1624. 8729,	-612. 7784,	1,	0 !	! END!	
104 105	! X = ! X =	1625.6350, 1626.3971.	-612.6294, -612.4803.	1, 1.	0 !	! END! ! END!	
106	! X =	1627. 1592,	-612.3311,	1,	0 !	! END!	
107	! X =	1628. 6833,	-612. 0326,	1,	0 !	! END!	
109 110	! X = ! X =	1629. 4453, 1630. 2074.	-611.8832, -611.7337.	1, 1,	0 !	! END! ! END!	
111	! X =	1630. 9694,	-611.5842,	1,	0 !	! END!	
112	! X = ! X =	1634.0173, 1620.1227,	-610. 9854, -612. 7619,	0, 1,	0 !	! END! ! END!	
114 115	! X =	1620.8848,	-612.6133,	1,	0 !	! END!	
116	! X =	1622. 4090,	-612. 3159,	1,	0 !	! END!	
117 118	! X = ! X =	1623. 1711, 1623. 9331.	-612.1671, -612.0182.	1, 1.	0 !	! END! ! END!	
119	! X =	1624. 6952,	-611.8693,	1,	0 !	! END!	
120	! X =	1626. 2192,	-611. 5711,	1,	0 !	! END!	
122 123	! X = ! X =	1626. 9812, 1627. 7432,	-611.4220, -611.2728.	1, 1,	0 !	! END! ! END!	
124	! X =	1628. 5051,	-611. 1235,	1,	0 !	! END!	
125	! X = ! X =	1633.0767, 1633.8385,	-610. 2262, -610. 0764,	0, 1,	0 !	! END! ! END!	
127 128	! X =	1634.6004, 1621.4695	-609.9266, -611 5554	1, 1	0 !	! END! I ENDI	
129	! X =	1622. 2315,	-611. 4067,	1,	0 !	! END!	
130	! X = ! X =	1622. 9935, 1623. 7555,	-611. 2579, -611. 1090,	1, 1,	0 !	! END! ! END!	
132 133	! X =	1624. 5174, 1625. 2793	-610.9601, -610.8111	1, 1	0 !	! END! I ENDI	
134	! X =	1626. 0413,	-610. 6620,	1,	0 !	! END!	
135	! X = ! X =	1626. 8032, 1627. 5651,	-610. 5129, -610. 3637,	1,	0 !	! END! ! END!	
137 138	! X = X =	1628.3270, 1629.0888	-610.2144, -610.0650	1, 1	0 !	! END! I ENDI	
139	! X =	1629. 8507,	-609. 9156,	1,	0 !	! END!	
140 141	! X = ! X =	1630. 6126, 1634. 4216,	-609.7661, -609.0176,	1, 0,	0 !	! END! ! END!	
142 143	! X =	1624.3397,	-610.0509,	1,	0 !	! END!	
143	! X =	1625. 8634,	-609. 7529,	1,	0 !	! END!	
145 146	! X = ! X =	1626. 6252, 1627. 3870,	-609.6038, -609.4546,	1, 1,	0 !	! END! ! END!	
147	! X =	1628.1488,	-609.3053,	1,	0 !	! END!	
149	! X =	1629. 6724,	-609.0066,	1,	0 !	! END!	
150 151	! X = ! X =	1630. 4341, 1634. 2427,	-608.8571, -608.1087,	1, 0,	0 !	! END! ! END!	
152	! X =	1628.7324,	-608.2469,	1,	0 !	! END!	
153	! X =	1630. 2557,	-607.9481,	1,	0 !	! END!	
155 156	! X = ! X =	1631.0174, 1629.3157.	-607.7985, -607.1885.	1, 1,	0 !	! END! ! END!	
157	! X =	1630. 0773,	-607.0391,	1,	0 !	! END!	
158 159	! X = ! X =	1630. 8389, 1631. 6005,	-606.8896, -606.7400,	1, 1,	0 !	! END! ! END!	
160 161	! X =	1629. 8989,	-606.1301,	1,	0 !	! END!	
162	! X =	1631. 4219,	-605.8310,	1,	0 !	! END!	
163 164	! X = ! X =	1629. 7205, 1630. 4819,	-605.2211, -605.0716,	1,	0 !	!END! !END!cape romain	end
165 166	! X =	1418. 3215,	-931.1034,	36, 36	0	! ! END! okefenokee	begi n
167	. X =	1400. 6116,	-932. 1086,	27,	0 0	! ! END!	
168 169	! X = ! X =	1402. 1943, 1403. 7771.	-931.8516, -931.5943.	27, 30.	0	! ! END! ! ! END!	
170 171	! X =	1405.3597,	-931.3367,	36,	0	! ! END!	
172	·	1408. 5250,	-930. 8206,	30, 36,	0	! ! END!	
173	! X =	1410. 1075.	-930, 5621,	37,	0	! !END!	

				CALPUFF. I NP		
174	X =	1411.6900,	-930. 3034,	36,	0 !	! END!
176	X =	1413.2724, 1414.8548,	-929.7850	30, 36,	0 !	! END!
177	X =	1416. 4371,	-929.5254,	36,	0 !	! END!
178	X =	1418.0194,	-929.2655,	36,	0 !	! END!
180	X =	1419.0017,	-929.0033,	36, 36,	0 !	! END!
181	X =	1397.1482,	-930. 7832,	27,	0 !	! END!
182	X =	1398.7307,	-930. 5268,	27,	0 !	! END!
183	X =	1400. 3132, 1401. 8956.	-930.2702,	30, 27.	01	I ENDI
185	X =	1403.4780,	-929.7559,	31,	0 !	! END!
186	X =	1405.0604,	-929.4984,	36,	0 !	! END!
188	X =	1408. 2249,	-928.9825,	30, 36,	0 !	! END!
189	X =	1409.8071,	-928.7240,	36,	0 !	! END!
190	X =	1411.3893, 1/12 971/	-928.4653,	36, 36	0 !	! END!
192	X =	1414. 5534,	-927.9471,	36,	0 !	! END!
193	X =	1416.1354,	-927.6875,	36,	0!	! END!
194 1	X =	1417.7174, 1419.2993	-927.4276, -927.1675	30, 36	01	I ENDI
196	X =	1420. 8812,	-926. 9070,	36,	0 !	! END!
197	X =	1422.4630,	-926.6463,	36,	0!	! END!
198	X =	1395. 2683, 1396. 8505.	-929.2008,	27, 30.	0 !	! END!
200	X =	1398. 4327,	-928.6884,	31,	0 !	! END!
201	X =	1400.0149,	-928.4318,	32,	0 !	! END!
202	X =	1401. 5970, 1403, 1790,	-927.9177	27,	0 !	! END!
204	X =	1404.7610,	-927.6602,	36,	0!	! END!
205	X =	1406.3430,	-927.4024,	36,	0 !	! END!
200	X =	1407. 9249,	-926.8860,	30, 36,	0 !	! END!
208	X =	1411.0886,	-926.6274,	36,	0!	! END!
209	X =	1412.6703,	-926.3684,	36, 36	0 !	! END!
211	X =	1415. 8337,	-925.8497,	36,	0 !	! END!
212	X =	1417.4153,	-925.5899,	36,	0!	! END!
213	X =	1418.9969, 1420.5784	-925.3298, -925.0694	37, 36	0 !	I ENDI
215	X =	1393. 3890,	-927.6180,	27,	0!	! END!
216	X =	1394.9710,	-927.3623,	27,	0!	! END!
217	X =	1396.5529,	-927.1063,	27,	01	I ENDI
219	X =	1399.7165,	-926. 5935,	30,	0 !	! END!
220	X =	1401.2983,	-926.3367,	34,	0 !	! END!
222	X =	1402.8800,	-925.8221	30, 36,	0 !	! END!
223	X =	1406.0433,	-925.5644,	36,	0 !	! END!
224	X =	1407.6249, 1409.2064	-925.3063,	36, 36	0 !	! END!
226	X =	1410. 7879,	-924.7895,	36,	0 !	! END!
227	X =	1412.3693,	-924.5306,	36,	0 !	! END!
228	X =	1413.9507, 1415.5320	-924.2714, -924.0119	36, 36	0 !	I ENDI
230	X =	1417. 1133,	-923.7522,	36,	0!	! END!
231	X =	1420.2757,	-923.2318,	36,	0!	! END!
232	X =	1393.0921,	-925.7796,	38.	0 !	
234	X =	1396. 2552,	-925.2680,	29,	0 !	! END!
235	X =	1397.8367,	-925.0118,	32,	0 !	! END!
230	X =	1400, 9996,	-924. 7555,	36, 36,	0 !	! END!
238	X =	1402.5810,	-924.2414,	36,	0 !	! END!
239	X =	1404.1623,	-923.9840,	37,	0 !	! END!
240	X =	1407. 3249,	-923. 4684,	38, 37,	0 !	! END!
242	X =	1408.9060,	-923. 2102,	37,	0 !	! END!
243	X =	1410.4872, 1712.0683	-922.9516,	36, 36	0 !	I ENDI
245	X =	1413. 6493,	-922. 4337,	36,	0 !	! END!
246	X =	1415.2303,	-922. 1743,	36,	0!	! END!
24/ 9	x = X =	1416.8113, 1419.9730	-921.9146, -921.3943	36, 36	01	
249	X =	1421.5538,	-921.1338,	36,	ŏ!	! END!
250	X =	1392.7951, 1304.2764	-923.9412,	38, 37	0 !	I ENDI
252	X =	1395. 9576,	-923. 4298.	37, 38,	0 !	! END!
253	X =	1397.5388,	-923. 1736,	36,	0 !	! END!
254	X =	1399. 1199, 1400. 7010	-922.9172, -922.6604	36, 36	0 !	
256	X =	1402. 2820,	-922. 4034,	38,	0 !	! END!

				CALPUFF. I NP		
257 !	X =	1403.8630, 1405.4440	-922.1461,	38, 37	0 !	! END!
259 !	X =	1407. 0249,	-921.6305,	37,	0 !	! END!
260 !	X =	1408.6057,	-921. 3724,	36,	0!	! END!
261 !	X = X -	1410. 1865, 1411. 7673	-921.1139,	36, 36	0 1	I ENDI
263 !	X =	1413. 3480,	-920. 5960,	36,	0 !	! END!
264 !	X =	1414. 9286,	-920. 3367,	36,	0!	! END!
265 !	X = X -	1416.5092,	-920.0771,	36, 36	0 !	! END!
267 !	X =	1419.6703,	-919.5569,	36,	0 !	! END!
268 !	X =	1392.4981,	-922. 1029,	37,	0!	! END!
269 ! 270 I	X = X =	1394.0791, 1395.6600	-921.8474, -921.5916	38, 38	01	! END!
271 !	X =	1397. 2408,	-921. 3355,	38,	0 !	! END!
272 !	X =	1398.8216,	-921.0791,	36,	0 !	! END!
273 !	X =	1400. 4024, 1401. 9831,	-920. 8224,	30, 36,	0 !	! END!
275 !	X =	1403.5637,	-920. 3082,	36,	0 !	! END!
2/6 !	X = X -	1405. 1443, 1406. 7249	-920.0506,	36, 36	01	! END!
278 !	X =	1408. 3054,	-919. 5346,	36,	0 !	! END!
279 !	X =	1409.8858,	-919. 2762,	36,	0!	! END!
280 ! 281 !	X = X =	1411.4663, 1413.0466.	-919.0175,	36, 36,	01	I ENDI
282 !	X =	1414. 6270,	-918. 4992,	36,	0 !	! END!
283 !	X =	1416. 2072,	-918.2396,	36,	0 !	! END!
284 !	X = X =	1417. 7875, 1419. 3676.	-917.7196.	30, 36.	0 !	! END!
286 !	X =	1420. 9478,	-917.4591,	36,	0 !	! END!
28/ !	X = X -	1393. /818,	-920.0093,	37,	0 !	! END!
289 !	X =	1396. 9429,	-919. 4974,	36,	0 !	! END!
290 !	X =	1398. 5233,	-919.2411,	36,	0!	! END!
291 ! 292 I	X = X =	1400. 1037, 1401. 6841	-918.9845, -918.7276	36, 36	01	! END!
293 !	X =	1403. 2644,	-918. 4703,	36,	ŏ !	! END!
294 !	X =	1404.8447,	-918. 2128,	36,	0 !	! END!
295 !	X =	1408.0051	-917. 9550,	30, 36,	0 !	! END!
297 !	X =	1409.5852,	-917. 4386,	36,	0!	! END!
298 ! 299 I	X = X =	1411. 1653, 1412 - 7453	-917.1799, -916.9210	36, 36	0 1	! END!
300 !	X =	1414. 3253,	-916. 6617,	36,	0 !	! END!
301 !	X =	1415.9052,	-916. 4022,	36,	0 !	! END!
302 !	X = X =	1391, 9043,	-918, 4266,	30, 37.	0 !	! END!
304 !	X =	1393. 4845,	-918. 1712,	36,	0!	! END!
305 !	X = X -	1395.0648, 1396.6449	-917.9155,	36, 36	0 !	! END!
307 !	X =	1398. 2250,	-917. 4032,	36,	0 !	! END!
308 !	X =	1399.8051,	-917.1466,	36,	0!	! END!
310 !	X = X =	1401. 3851, 1402. 9651,	-916. 6326,	30, 36,	0 !	! END!
311 !	X =	1404.5451,	-916. 3751,	36,	0 !	! END!
312 !	X = X =	1406. 1249, 1407. 7048	-916.1174, -915.8594	36, 36	01	! END!
314 !	X =	1409. 2846,	-915.6011,	36,	0 !	! END!
315 !	X =	1410. 8643,	-915.3425,	36,	0 !	! END!
317 !	X =	1412. 4440, 1414. 0237,	-915.0638,	36, 36,	0 !	! END!
318 !	X =	1415. 6033,	-914.5649,	36,	0 !	! END!
319 !	X = X -	1417.1828, 1393-1873	-914.3051,	36, 36	0 1	! END!
320 !	X =	1394. 7672,	-916.0775,	36,	0 !	! END!
322 !	X =	1396. 3470,	-915.8216,	36,	0!	! END!
323 !	X = X =	1397. 9268, 1399. 5065.	-915. 5654,	30, 36.	01	! END! ! FND!
325 !	X =	1401.0862,	-915.0520,	36,	0 !	! END!
326 !	X = X -	1402.6659,	-914.7949,	36, 36	0 !	! END!
328 !	X =	1405. 8250,	-914. 2798,	36,	0!	! END!
329 !	X =	1407.4045,	-914.0219,	36,	0!	! END!
330 ! 331 I	X = X =	1408. 9840, 1410, 5634	-913.7636, -913.5051	30, 36,	01	! END! ! FND!
332 !	X =	1412. 1427,	-913. 2462,	36,	0 !	! END!
333 1	X = X -	1413. 7220, 1415. 2012	-912.9871, -910 -977	36, 26	0!	! END!
335 !	X =	1416. 8805,	-912. 4680,	36,	0!	! END!
336 !	X =	1392.8901,	-914. 4953,	36,	0!	! END!
338 I	× = X =	1394. 4090, 1396. 0491.	-914.2397, -913.9838	30, 36.	01	
339 !	X =	1397.6285,	-913. 7276,	36,	Ōİ	! END!
				CALPUFF. I NP		
----------------	------------	---------------------------	--------------------------	---------------	-----	------------------
340 !	X =	1399.2079,	-913.4711,	36, 36	0 !	! END!
342	X =	1402. 3666,	-912. 9573,	36,	0 !	! END!
343 !	X =	1403. 9459,	-912.7000,	36,	0!	! END!
344 !	X = X -	1405.5251, 1407.1042	-912.4424,	36, 36	0 1	I ENDI
346 !	X =	1408. 6833,	-911. 9262,	36,	0 !	! END!
347 !	X =	1410. 2624,	-911.6677,	36,	0!	! END!
348 !	X = X =	1411.8414, 1413.4204	-911.4090, -911.1499	36, 36	01	! END!
350 !	X =	1414. 9993,	-910. 8905,	36,	0 !	! END!
351	X =	1416.5782,	-910.6309,	36,	0 !	! END!
353	× = X =	1418. 1370, 1419. 7358.	-910. 3709,	30, 36.	0 !	! END!
354	X =	1392. 5928,	-912.6574,	36,	0 !	! END!
355 !	X =	1394.1720,	-912.4019,	36,	0 !	! END!
357	X =	1397. 3303,	-911.8899,	30, 36,	0 !	! END!
358 !	X =	1398. 9094,	-911.6335,	36,	0!	! END!
359 !	X = X =	1400. 4884, 1402. 0673	-911.3768, -911.1198	37, 37	01	! END!
361	X =	1403. 6463,	-910. 8625,	36,	0 !	! END!
362	X =	1405.2251,	-910.6049,	36,	0 !	! END!
364	X = X =	1408. 3827.	-910. 3471,	30, 36.	0 !	! END!
365	X =	1409.9615,	-909.8305,	36,	0 !	! END!
366 !	X =	1411.5402,	-909.5718,	36,	0 !	! END!
368	X =	1414. 6974,	-909.0534,	30, 36,	0 !	! END!
369 !	X =	1416. 2759,	-908.7938,	36,	0!	! END!
3/0 !	X = X -	1417.8544, 1719.7329	-908.5339,	36, 36	0 1	! END!
372	X =	1397.0321,	-910. 0523,	36,	0 !	! END!
373 !	X =	1398.6108,	-909.7959,	37,	0 !	! END!
375	X = X =	1400. 1895, 1401. 7681.	-909. 5393,	36, 37.	01	! END! ! FND!
376	X =	1403.3467,	-909. 0251,	36,	0 !	! END!
377 !	X =	1404.9252,		36,	0 !	! END!
379	X =	1408. 0822,	-908.2517,	30, 36,	0 !	! END!
380 !	X =	1409.6606,	-907.9933,	36,	0!	! END!
381 !	X = X =	1411.2389, 1412.8172	-907.7346, -907.4757	36, 36	01	! END!
383 !	X =	1414. 3955,	-907.2164,	36,	0 !	! END!
384	X =	1415.9737,	-906.9569,	36,	0 !	! END!
385	X = X =	1417. 5518, 1419. 1299,	-906. 4369,	30, 36,	0 !	! END!
387 !	X =	1396.7339,	-908.2147,	37,	0!	! END!
388 1	X = X -	1398.3123,	-907.9584,	36, 37	0 !	! END!
390	X =	1401. 4689,	-907.4450,	36,	0 !	! END!
391 !	X =	1403.0471,	-907.1878,	36,	0 !	! END!
392	X = X =	1404. 6253, 1406. 2035.	-906. 9303,	30, 36.	0 !	! END!
394	X =	1407.7816,	-906.4145,	36,	0 !	! END!
395 !	X = X -	1409.3597,	-906.1562,	36, 36	0 !	! END!
397 !	X =	1412. 5156,	-905.6387,	36,	0 !	! END!
398 !	X =	1414.0935,	-905.3795,	36,	0 !	! END!
400	X = X =	1415.6714, 1417.2492.	-905.1200,	30, 36.	0 !	! END!
401	X =	1418. 8270,	-904.6002,	37,	0 !	! END!
402 !	X =	1388.5447,	-907.6542,	32,	0 !	! END!
403 9	X =	1398.0137,	-906. 1210,	36,	0 !	! END!
405 !	X =	1399.5917,	-905.8645,	37,	0!	! END!
406 ! 407	X = X =	1401.1697, 1402.7476	-905.6077,	37, 36	01	! END!
408 !	X =	1404. 3254,	-905.0931,	36,	0 !	! END!
409 !	X =	1405.9033,	-904.8354,	36,	0 !	! END!
410 9	× = X =	1407. 4810, 1409. 0588,	-904.3773,	30, 36,	0 !	! END!
412	X =	1410. 6364,	-904.0606,	36,	0 !	! END!
413 414	X = X =	1412.2141, 1413.7016	-903.8018, -903.5426	36, 36	0 !	I END!
415	X =	1415. 3692,	-903. 2832,	36,	0 !	! END!
416 !	X =	1416. 9466, 1419 5341	-903.0235,	36,	0!	! END!
418	Λ = X =	1380. 3578.	-902.7635, -907.0859.	30, 36,	0 !	! END!
419	X =	1381. 9359,	-906. 8326,	36,	0 !	! END!
420 ! 421 !	X = X =	1383.5141, 1385.0922	-906.5790,	30, 36	01	
422	X =	1386. 6702,	-906. 0710,	34,	0 !	! END!

				CALPUFF. I NP		
423 !	X =	1388.2482,	-905.8165,	29, 30	0 !	! END!
425 !	X =	1397. 7152,	-904. 2837,	36,	0 !	! END!
426 !	X =	1399. 2929,	-904.0272,	36,	0!	! END!
42/ !	X = X -	1400.8705,	-903. //04,	36, 36	0 !	! END!
429	X =	1404.0256,	-903.2560,	36,	0 !	! END!
430 !	X =	1405.6031,	-902.9984,	36,	0!	! END!
431 !	X = X -	1407.1805,	-902. /404,	36, 36	0 !	! END!
432 !	X =	1410. 3352,	-902.2237	30, 36,	0 !	! END!
434 !	X =	1411.9125,	-901.9649,	36,	0!	! END!
435 !	X = X -	1413.4897, 1415.0669	-901.7058,	36,	0 1	! END!
437	X =	1416. 6441,	-901. 1868,	36,	0 !	! END!
438 !	X =	1418.2212,	-900. 9268,	36,	0 !	! END!
439 ! 440	X = X =	1380.0629, 1381.6408	-905.2480, -904.9948	36, 36	01	I ENDI
441	X =	1383. 2186,	-904.7413,	36,	0 !	! END!
442 !	X =	1384.7963,	-904.4874,	32,	0 !	! END!
443	× = X =	1387.9517.	-904.2333,	30, 33.	0 !	! END!
445	X =	1389. 5293,	-903.7242,	33,	0 !	! END!
446 !	X =	1392.6844,	-903.2140,	30,	0 !	! END!
447 1	X =	1395. 8393,	-902. 9084,	36,	0 !	! END!
449	X =	1397.4167,	-902.4464,	36,	0!	! END!
450 !	X = X -	1398.9940,	-902.1900,	36, 36	0 !	! END!
452 !	X =	1402. 1485,	-901.6763,	36,	0 !	! END!
453 !	X =	1403.7257,	-901.4190,	36,	0!	! END!
454 ! 455	X = X -	1405.3029,	-901.1614,	36, 36	0 !	! END!
456 !	X =	1408. 4570,	-900. 6453,	36,	0 !	! END!
457 !	X =	1410.0340,	-900. 3869,	36,	0 !	! END!
458 ! 459	X = X =	1411.6109, 1413.1879	-900.1281, -899.8691	36, 36	01	I ENDI
460 !	X =	1414. 7647,	-899.6098,	36,	0 !	! END!
461	X =	1416.3415,	-899.3502,	36,	0!	! END!
462 !	X = X =	1379. 7682.	-903.4102	30, 36.	0 !	! END!
464	X =	1381. 3457,	-903.1571,	36,	0 !	! END!
465 !	X =	1382.9231,	-902.9036,	34,	0 !	! END!
467	X =	1386.0779,	-902.3957,	33,	0 !	! END!
468 !	X =	1387.6552,	-902.1414,	33,	0!	! END!
469 !	X = X -	1389.2325,	-901.8868,	33,	0 !	! END!
471	X =	1392. 3869,	-901. 3766,	31,	0 !	! END!
472	X =	1393.9640,	-901.1211,	36,	0 !	! END!
4/3 ! 474	X = X =	1395.5411, 1397.1182	-900.8653, -900.6092	36, 36	01	I ENDI
475 !	X =	1398.6952,	-900. 3528,	36,	0 !	! END!
476 !	X =	1400.2721,	-900.0962,	36,	0!	! END!
478	X = X =	1401.8490,	-899.8392,	30, 36.	0 !	! END!
479	X =	1405.0027,	-899. 3245,	36,	0 !	! END!
480 !	X =	1406.5794,		36,	0 !	! END!
482	X =	1409. 7328,	-898.5501,	36,	0 !	! END!
483 !	X =	1411. 3094,	-898.2914,	36,	0!	! END!
484 ! 485	X = X =	1412.8860, 1414.4625	-898.0325, -897.7732	36, 36	01	! END!
486 !	X =	1416.0390,	-897.5136,	36,	0 !	! END!
487 !	X =	1417.6154,	-897.2538,	36,	0!	! END!
488 ! 489	X = X =	1381.0505,	-901.3194,	30, 32	01	I ENDI
490	X =	1384. 2047,	-900. 8122,	33,	0 !	! END!
491 !	X =	1385.7818,	-900.5582,	35,	0!	! END!
492 9	X = X =	1387. 3588,	-900. 3039,	33.	01	! END!
494	X =	1390. 5126,	-899.7945,	31,	0 !	! END!
495 !	X =	1392.0894,	-899.5393,	30, 21	0!	! END!
497	Λ = X =	1395. 2430.	-899.0281	36,	0 !	! END!
498	X =	1396. 8197,	-898.7721,	36,	0 !	! END!
499 ! 500 !	X = X -	1398.3963, 1399.0720	-898.5158, -898.2592	37, 36	0!	
501	X =	1401. 5495,	-898.0023,	36,	0 !	! END!
502	X =	1403.1260,	-897.7451,	36,	0!	! END!
503 ! 504 I	Λ = X =	1404. 7025, 1406, 2789,	-897.2298	30, 36	01	
505 !	X =	1407.8553,	-896. 9718,	36,	0 !	! END!

				CALPUFF. I NP		
506	X =	1409. 4316,	-896.7135,	36, 36	0 !	! END!
508	X =	1412. 5841,	-896. 1959,	36,	0 !	! END!
509	X =	1414. 1603,	-895.9367,	36,	0!	! END!
510	X =	1415. /364, 1417. 3125	-895.6772,	36, 36	0 !	! END!
512	X =	1382. 3322,	-899. 2284,	32,	0 !	! END!
513	X =	1383.9090,	-898.9748,	36,	0 !	! END!
514 !	X =	1385.4857, 1387.0623	-898. /208,	36,	0 !	! END!
516	X =	1388. 6389,	-898.2120,	30, 33,	0 !	! END!
517	X =	1390. 2155,	-897.9572,	31,	0!	! END!
518	X =	1391.7920, 1393.3684	-897.7021,	32,	0 1	! END!
520	X =	1394. 9448,	-897.1910,	36,	0 !	! END!
521	X =	1396.5212,	-896.9351,	36,	0!	! END!
522	X =	1398.0975, 1399.6738	-896.6788, -896.4222	36, 36	0 1	I ENDI
524	X =	1401. 2500,	-896. 1654,	36,	0 !	! END!
525	X =	1402.8262,	-895.9083,	36,	0!	! END!
526	X =	1404. 4023, 1405. 9784.	-895.6508,	36, 36,	01	! END! ! FND!
528	X =	1407. 5545,	-895.1351,	36,	0 !	! END!
529	X =	1409.1304,	-894.8768,	36,	0 !	! END!
530	X =	1410. 7064, 1412, 2823,	-894.0183,	30, 36.	0 !	! END!
532	X =	1413.8581,	-894.1002,	36,	0 !	! END!
533	X =	1415.4339,	-893.8408,	36,	0 !	! END!
535	X =	1383. 6132.	-897.1374.	30, 36,	0 !	! END!
536	X =	1385.1895,	-896.8835,	36,	0!	! END!
537	X =	1386.7659,	-896.6293,	36,	0 !	! END!
539	X =	1389. 9183,	-896. 1200,	29,	0 !	! END!
540	X =	1391. 4945,	-895.8650,	36,	0!	! END!
541	X =	1393.0706, 1394.6467	-895.6096, -895.3540	36, 36	0 !	! END!
543	X =	1396. 2227,	-895.0981,	36,	0 !	! END!
544	X =	1397.7987,	-894.8419,	36,	0 !	! END!
545	X =	1399.3747, 1400.9505	-894.5854, -894.3286	36, 36	01	I ENDI
547	X =	1402. 5264,	-894.0715,	36,	0 !	! END!
548	X =	1404.1022,	-893.8141,	36,	0 !	! END!
550	X =	1407. 2536,	-893.2985,	30, 36,	0 !	! END!
551	X =	1408.8293,	-893.0403,	36,	0!	! END!
552	X =	1410. 4049,		36, 36	0 !	! END!
554	X =	1413. 5560,	-892.2639,	36,	0 !	! END!
555	X =	1415. 1314,	-892.0045,	36,	0!	! END!
556	X =	1416. 7068, 1384 8934	-891.7448, -895.0462	36, 37	01	! END!
558	X =	1386. 4694,	-894.7920,	35,	0 !	! END!
559	X =	1388.0453,	-894.5376,	30,	0!	! END!
561	X =	1389. 6212, 1391. 1971.	-894.2829,	30, 36.	0 !	! END!
562	X =	1392.7728,	-893.7726,	36,	0 !	! END!
563	X =	1394.3486,	-893.5170,	36,	0 !	! END!
565	X =	1397. 4999,	-893.0050,	36,	0 !	! END!
566	X =	1399.0755,	-892.7486,	36,	0!	! END!
567	X =	1400.6511, 1402.2266	-892.4918,	36, 36	0 !	! END!
569	X =	1403. 8020,	-891.9775,	36,	0 !	! END!
570	X =	1405.3775,	-891.7199,	36,	0 !	! END!
5/1 !	X =	1406. 9528, 1408. 5281	-891.4620, -891.2038	36, 36	0 1	! END!
573	X =	1410. 1034,	-890. 9454,	36,	0 !	! END!
574	X =	1411.6786,	-890.6866,	36,	0!	! END!
576	X =	1413.2538, 1414.8289.	-890.4276,	30, 36.	01	! END!
577	X =	1416. 4040,	-889. 9086,	36,	ŏ !	! END!
578	X =	1387.7486,	-892.7005,	36,	0!	! END!
580	× = X =	1390. 8996.	-092.4459, -892.1909.	30, 36.	0 !	! END!
581	X =	1392. 4751,	-891.9357,	36,	0 !	! END!
582	X =	1394.0505, 1395.6258	-891.6802, -891.4242	36, 36	0 !	
584	X =	1397. 2011,	-891. 1682,	36,	0 !	! END!
585	X =	1398.7764,	-890. 9119,	36,	0!	! END!
587 S	X =	1400.3516, 1401.9268	-890.6552,	30, 36	01	
588	X =	1403. 5019,	-890. 1410,	36,	0 !	! END!

F00		1405 0770	000 0004	CALPUFF. INP	~	
589	X =	1405.0770, 1406.6520,	-889.8834, -889.6256,	36, 36,	0	! ! END! ! ! END!
591	X =	1408.2270,	-889. 3675,	36,	0	! ! END!
592	X =	1409.8019, 1411.3768	-889.1090,	36, 36	0	! ! END! I I FNDI
594	X =	1412. 9516,	-888.5914,	36,	ŏ	! ! END!
595	X =	1414.5264,	-888.3321,	36,	0	! ! END!
590	X =	1390. 6022,	-888.0725, -890.3540,	30, 41,	0	! ! END!
598	X =	1392. 1773,	-890.0988,	37,	0	! ! END!
599	X =	1393.7524, 1395.3274	-889.8433,	36, 36	0	! ! END! I I ENDI
601	X =	1396. 9024,	-889. 3315,	36,	ŏ	! ! END!
602	X =	1398.4773,	-889.0752,	36,	0	! ! END!
604	X =	1400. 0322, 1401. 6270,	-888.5617,	36,	ő	! ! END!
605	X =	1403.2018,	-888.3045,	36,	0	! ! END!
607	X =	1406. 3512,	-887.7892,	36,	Ő	! ! END!
608	X =	1407.9259,	-887.5311,	36,	0	! ! END!
610	X =	1409. 5005, 1411. 0750,	-887.0141,	36, 36,	0	I ENDI
611	X =	1412.6495,	-886.7552,	36,	0	! ! END!
612	X =	1414. 2240, 1415. 7984.	-886. 4960,	36, 36.	0	! ! END! ! ! END!
614	X =	1393. 4543,	-888.0066,	36,	0	! ! END!
615	X =	1395.0290, 1396.6036.	-887.7509, -887.4949.	36, 36.	0	! ! END! ! ! END!
617	X =	1398. 1782,	-887.2386,	36,	Õ	! ! END!
618	X =	1399. 7528, 1401. 3272.	-886.9821,	36, 36,	0	! ! END! ! ! END!
620	X =	1402.9017,	-886.4681,	36,	Ō	! ! END!
621	X =	1404.4761, 1406.0504,	-886.2106, -885.9529.	36, 36,	0	! ! END! ! ! END!
623	X =	1407.6248,	-885.6949,	36,	Õ	! ! END!
624	X =	1409.1990, 1410.7732	-885.4366, -885.1780	36, 36	0	! ! END! ! ! END!
626	X =	1412. 3474,	-884.9191,	36,	ŏ	! ! END!
627	X =	1413. 9215, 1415. 4956	-884.6600,	36, 37	0	! ! END! I I ENDI
629	X =	1393. 1562,	-886. 1699,	37,	ŏ	! ! END!
630	X =	1394. 7306, 1396. 3049	-885.9143,	36, 36	0	! ! END! I I ENDI
632	X =	1397.8791,	-885. 4021,	36,	Ő	! ! END!
633	X =	1399.4533,	-885.1456,	36, 36	0	! ! END! I I ENDI
635	X =	1402. 6016,	-884.6317,	36,	ŏ	! ! END!
636	X =	1404.1757,	-884.3743,	36, 36	0	! ! END! I I ENDI
638	X =	1407. 3237,	-883.8587,	36,	Ő	! ! END!
639	X =	1408. 8976, 1410. 4714	-883.6005,	36, 36	0	! ! END!
641	X =	1412.0453,	-883.0831,	36,	Ő	! ! END!
642	X =	1394. 4322,	-884.0778,	37,	0	! ! END!
644	X =	1397. 5801,	-883.5657,	37,	Ő	! ! END!
645	X =	1399. 1539,	-883.3092,	37,	0	! ! END!
647	X =	1400. 7277, 1402. 3015,	-882. 7955,	37,	Ő	! ! END!
648	X =	1403.8752,	-882.5381,	37,	0	! ! END!
650	X =	1407. 0226,	-882.0226,	37,	Ő	! ! END!
651	X =	1408.5961,	-881.7644,	37,	0	! ! END!
653	X =	1397. 2810, 1398. 8545,	-881. 7293, -881. 4729,	37, 37,	0	I ENDI
654	X =	1400. 4280,	-881.2162,	37,	0	! ! END!
656	X =	1402.0015, 1403.5748,	-880. 9593, -880. 7020,	37, 37,	0	! ! END! ! ! END!
657	X =	1405. 1482,	-880. 4444,	37,	0	! ! END!
659	X =	1398. 5552,	-879.6367,	37, 37,	0	I ENDI
660	X =	1400. 1283,	-879.3801,	37,	0	! ! END!
662	X =	1401. 7014, 1403. 2745,	-878.8659,	37,	0	! ! END! ! ! END!
663	X =	1399.8286,	-877.5440,	37,	0	! ! END!
665	× = X =	1488. 6896,	-835. 1919,	37, 1,	0!	! END! okefenokee end
666	X =	1489.4721,	-835.0553,	1,	0!	!END!wolfisland begin
668	× = X =	1488. 5298, 1487. 4280,	-832. 5809,	1, 3,	0!	! END!
669	X =	1488. 2103,	-832.4444,	2,	0!	! END! LENDI
671	× = X =	1489. 7748,	-832. 3079, -832. 1714,	1,	0!	! END!

				CALPUFF. I NP			
672 673	! X =	1486. 4861, 1487. 2683	-831.8014, -831.6651	1, 1	0 !	! END! I ENDI	
674	! X =	1488.0505,	-831.5287,	1,	0!	END!	
675	! X =	1488.8327,	-831.3922,	1,	0!	! END!	
676	! X = ! X =	1489.6148, 1486. 3265.	-831.2556,	1,	01	I ENDI	
678	! X =	1487. 1087,	-830. 7493,	1,	0!	! END!	
679 680	! X =	1487.8908,	-830. 6129,	1,	0 !	I ENDI	
681	! X =	1489. 4549,	-830. 3399,	1,	0!	END!	
682	! X =	1485.3849,	-830. 1061,	1,	0!	END!	
683 684	! X = ! X =	1486, 1670, 1486, 9490,	-829, 9699, -829, 8335,	1, 1.	0 !	! END! ! END!	
685	! X =	1487.7310,	-829.6972,	1,	0!	END!	
686 687	! X = I X =	1488.5130, 1489.2950	-829.5607, -829.4242	1, 1	0 !	! END! I ENDI	
688	! X =	1485. 2254,	-829. 1903,	1,	0!	END!	
689	! X =	1486.0074,	-829.0541,	1,	0!	! END!	
690 691	! ^ = ! X =	1487.5712,	-828.7814,	1,	0 !	END!	
692	! X =	1488.3532,	-828.6450,	1,	0!	END!	
693 694	! X = ! X =	1489. 1351, 1485. 8478,	-828. 5085,	1,	0 !	END!	fisland end
695	! X =	1273. 4399,	-416.5072,	1629,	0	! ! END!	shining rock begin
696 697	! X = ! X =	1274. 1840, 1274. 9281	-416.3904, -416.2736.	1586, 1370	0	! !END! ! !FND!	
698	! X =	1275. 6722,	-416. 1566,	1274,	ŏ	! ! END!	
699 700	! X =	1276. 4163, 1268. 8323	-416.0396,	1181, 1183	0	! ! END!	
701	! X =	1269. 5764,	-416. 1780,	1416,	Ő	! ! END!	
702	! X =	1270. 3205,	-416.0616,	1541,	0	! ! END!	
703	! X =	1271.8086,	-415. 8285,	1640,	0	! ! END!	
705	! X =	1272.5527,	-415.7118,	1770,	0	! ! END!	
706	! X = ! X =	1273.2967, 1274.0408,	-415. 5951,	1585,	0	! ! END! ! ! END!	
708	! X =	1274.7848,	-415.3614,	1529,	0	! ! END!	
709	! X = ! X =	1275.5288, 1276.2728.	-415.2445,	1309, 1128.	0	! !END!	
711	! X =	1267.9457,	-415.4985,	1097,	Ő	! ! END!	
/12 713	! X = X =	1268.6897, 1269.4337	-415.3822, -415.2658	1217, 1536	0	! ! END!	
714	! X =	1270. 1777,	-415. 1493,	1463,	Ő	! ! END!	
715	! X =	1270. 9217,	-415.0328,	1436, 1629	0	! ! END!	
717	! X =	1272. 4096,	-414. 7996,	1771,	0	! ! END!	
718	! X =	1273.1536,	-414.6829,	1622,	0	! ! END!	
720	! X =	1273. 6415,	-414. 5001,	1312,	0	! ! END!	
721	! X =	1275. 3854,	-414. 3324,	1362,	0	! ! END!	
723	! X = ! X =	1276. 1293, 1276. 8732,	-414.2154,	1162,	0	! ! END!	
724	! X =	1277.6171,	-413.9812,	1399,	0	! ! END!	
725	! X = ! X =	1267.0592, 1267.8031	-414.7024, -414.5862.	1029, 1227	0	! !END! ! !FND!	
727	! X =	1268.5470,	-414.4699,	1505,	Ő	! ! END!	
728 729	! X = I X =	1269.2910, 1270.0349	-414.3536, -414.2371	1347, 1317	0	! ! END!	
730	! X =	1270. 7788,	-414. 1206,	1536,	Ő	! ! END!	
731	! X = X =	1271.5227, 1272.2666	-414.0041, -413.8874	1675, 1729	0	! !END!	
733	! X =	1273.0104,	-413.7707,	1523,	Ő	! ! END!	
734	! X =	1273.7543, 1274.4981	-413.6540, -413.5371	1544, 1429	0	! ! END!	
736	! X =	1275. 2420,	-413. 4202,	1315,	0	! ! END!	
737	! X =	1275. 9858,	-413.3033,	1068,	0	! ! END!	
739	! X =	1277. 4734,	-413.0691,	1352,	0	! ! END!	
740	! X =	1266. 1728,	-413.9063,	1024,	0	! ! END!	
742	: ^ = ! X =	1267. 6606,	-413. 6740,	1404,	0	! ! END!	
743	! X =	1268.4044,	-413.5577,	1373,	0	! ! END!	
745	:	1269. 1482, 1269. 8921.	-413. 4414, -413. 3249.	1198, 1198.	0	! ! END!	
746	! X =	1270. 6359,	-413. 2085,	1419,	Ő	! ! END!	
747 748	! X = ! X =	1271.3797, 1272.1235.	-413.0919, -412.9753.	1571, 1741.	0	! ! END! ! ! END!	
749	! X =	1272. 8673,	-412.8586,	1717,	Ő	! ! END!	
750 751	! X = ! X =	1273.6111, 1274.3548.	-412. /418, -412. 6250	1616, 1569.	0	! !END! ! !END!	
752	! X =	1275.0986,	-412.5081,	1422,	0	! ! END!	
753 754	! X = ! X =	1275.8423, 1265.2866,	-412.3912, -413.1101,	1161, 968,	0	! ! END! ! ! END!	

766 1		1266 0204	412 0041	CALPUFF. INP	0.1	
755 !	X =	1266. 0304,	-412.9941,	1198,	0 !	
/50 !	· X =	1200. 7742,	-412.8/19,	1302,	0 !	! END!
/5/ !	X =	1267.5180,	-412.7617,	1470,	0 !	! END!
/58 !	X =	1268. 2618,	-412.6455,	1248,	0 !	! END!
/59 !	X =	1269.0055,	-412.5291,	1058,	0 !	! END!
/60 !	X =	1269. 7493,	-412.4127,	1170,	0 !	! END!
761	X =	1270. 4930,	-412.2963,	1415,	0 !	! END!
762 !	X =	1271.2367,	-412.1797,	1689,	0 !	! END!
763 !	! X =	1271. 9804,	-412.0631,	1547,	0 !	! END!
764 !	! X =	1272. 7242,	-411.9465,	1550,	0!	! END!
765 !	! X =	1273. 4678,	-411.8297,	1437,	0!	! END!
766 !	! X =	1274. 2115,	-411.7129,	1508,	0!	! END!
767 !	! X =	1274.9552,	-411. 5960,	1300,	0!	! END!
768 !	! X =	1275. 6989,	-411.4791,	1176,	0!	! END!
769 !	! X =	1268.8628,	-411.6170,	1012,	0!	! END!
770 !	! X =	1269.6065,	-411.5006,	1285,	0!	! END!
771	X =	1270.3501	-411.3841	1366	0 !	! END!
772	X =	1271.0938	-411.2676	1566	Õ !	! END!
773	X =	1271.8374	-411, 1510,	1451	Õ !	! END!
774	X =	1272.5810	-411.0343	1359	Õ !	! END!
775	X =	1273. 3246	-410.9176	1273	0 I	IENDI
776	i X =	1274 0682	-410 8008	1274	ŏi	IENDI
777	i X =	1274 8118	-410 6839	1280	ŏi	IENDI
778 1	. X =	1275 5554	-410 5670	1155	0 i	IENDI
779 1	. X =	1270 2072	-410.0070,	1179	ŏi	I ENDI
780 1	X -	1270.2072,	-410.3554	13/18	01	
781	X -	1270. 7500,	_/10 2389	1/88	01	
782	· X -	1270 8078	-410.2307,	1400,	01	
702 :		1270.0070,	-409.4433,	1565		
703 :		1271.3313,	-409.3207,	1505,		
704 1		1272.2747,	409.2101,	1400		
705 :		1273.0302,	409.0934,	1200	0 1	
700 :		1273.7010,	-400.9700,	1202		
707 1		1274.0200,	-400.0070,	1303,		
700 1		1275.2004,	-400.7429,	1104,	0 !	
707 1		1209.9213,	-400.0470,	1500,		
790 9		1271.4002,	-400.4140,	1070,		
791 1		1272. 1310,	-400.2900,	1/0/,		
792 1		1272.0930,	-400. 1013,	1010,	0 !	
793 !		1273.0383,	-408.0045,	1321,	0 !	
794 !	X =	1274.3816,		1219,	0 !	! END!
795 !	X =	1271.2052,	-407.5025,	1394,	0 !	! END!
/96 !	X =	1272.0085,	-407.3859,	1522,	0 !	! END!
/9/ !	X =	1272. 7517,	-407.2692,	1411,	0 !	! END!
798 !	X =	1273.4950,	-407.1525,	1234,	0 !	! END!
/99 !	! X =	1271.1221,	-406.5904,	1189,	0 !	! END!
800	! X =	12/1.8653,	-406.4/38,	1343,	0 !	! END!
801	! X =	1272.6085,	-406.3571,	1265,	0 !	! END!
802	! X =	1270.9791,	-405.6/83,	1045,	0!	! END!
803	X =	1271. 7222,	-405.5617,	1235,	0 !	! END!
804 !	! X =	1272. 4653,	-405.4451,	1066,	0!	!END! shining rock end

a Data for each receptor are treated as a separate input subgroup and therefore must end with an input group terminator.

b Receptor height above ground is optional. If no value is entered, the receptor is placed on the ground.

Volume III, Attachment F –

Agency Correspondence Relating to the Class I AQRV and PSD Increment Modeling Protocol

Jon Bandzul

From:	Jon Bandzul [jbandzul@smithaldridge.com]
Sent:	Monday, July 25, 2011 12:27 PM
То:	'Catherine_Collins@fws.gov'; 'Tim_Allen@fws.gov'; 'Peter Courtney'
Cc:	'Craig Smith Ph. D.'; 'Jason' 'Goodwin'
Subject:	AQRV Analysis for Proposed PSD Major Facility

Catherine,

Thank you for taking the time to speak with me this morning.

This e-mail is to confirm our conversation regarding the proposed CARBO Ceramics, Inc. proppant manufacturing facility in Millen, Jenkins County, Georgia. There are 4 Class I areas within 300 km of the facility, 3 of which are FWS wildlife refuges and have a Q/D ratio greater than 10:

Cape Romain - >15

Okefenokee - >17

Wolf Island - >20

Based on our conversation, I am proceeding with developing a protocol to address application of CALPUFF for LTR AQRV analysis; the closest Class I area is Wolf Island and is 164 km from the proposed project site. Project coordinates are 32.766451 latitude and -81.899474 longitude. Tim Allen confirmed that the CALMET 5.8 data set is the appropriate meteorology for PSD applicants.

Again, thank you for your time this morning and we are looking forward to working with FWS on another PSD project.

Jon Bandzul, Principal Smith Aldridge, Inc. 6000 Lake Forrest Drive Suite 385 Atlanta, Georgia 30328

(office) 404-255-0928 x 117 (fax) 404-255-0948

The information transmitted is intended only for the person(s) to which it is addressed and may contain privileged or confidential information. Any review, retransmission, dissemination or other use of this information by persons other than the intended recipient(s) is prohibited. If you received this in error, please contact the sender and delete the material received.

Jon Bandzul

From:	Jon Bandzul [jbandzul@smithaldridge.com]
Sent:	Monday, July 25, 2011 7:42 PM
То:	'Melanie Pitrolo'; 'bjackson02@fs.fed.us'; 'Peter Courtney'
Cc:	'Craig Smith Ph. D.'; 'Jason' 'Goodwin'
Subject:	RE: Class I Modeling Analysis - Request for Determination Form

Attachments:

USFS Request for Determination CARBO Ceramics Millen Facility.pdf

USFS Request for Determination...

Melanie,

Thank you for taking the time to speak with me this afternoon.

This e-mail is to confirm our conversation regarding the proposed CARBO Ceramics, Inc. proppant manufacturing facility in Millen, Jenkins County, Georgia. Please find attached the completed "Request for Applicability of Class I Area Modeling Analysis" form you requested. There are 4 Class I areas within 300 km of the facility, 1 of which is a USFS wilderness area and has a Q/D ratio greater than 10:

Shining Rock - >11

FWS has requested that an AQRV analysis be performed for Cape Romain, Okefenokee and Wolf Island. Based on our conversation, I am proceeding with developing a protocol to address application of CALPUFF for LTR AQRV analysis; Shining Rock is 297 km from the proposed project site and we are planning to include this area in the protocol. I spoke with Tim Allen at FWS this morning and he confirmed that the CALMET 5.8 data set is the appropriate meteorology for PSD applicants.

Again, thank you for your time this afternoon and we are looking forward to working with USFS on another PSD project.

Jon Bandzul, Principal Smith Aldridge, Inc. 6000 Lake Forrest Drive Suite 385 Atlanta, Georgia 30328

(office) 404-255-0928 x 117 (fax) 404-255-0948

The information transmitted is intended only for the person(s) to which it is addressed and may contain privileged or confidential information. Any review, retransmission, dissemination or other use of this information by persons other than the intended recipient(s) is prohibited. If you received this in error, please contact the sender and delete the material received.

From: Melanie Pitrolo [mailto:mpitrolo@fs.fed.us]
Sent: Monday, July 25, 2011 4:22 PM

Per our conversation this afternoon, attached please find the "Request for Applicability of Class I Area Modeling Analysis" form. If you could complete the form and submit it back to me, I will work with our FLM to make a determination as to whether a Modeling Analysis will be requested for any Forest Service Class I Areas. If you have any questions about the form, just let me know.

Thanks, Melanie

Melanie Caudle Pitrolo Air Quality Specialist U.S. Forest Service 160 Zillicoa Street, Suite A Asheville, NC 28801 phone: (828) 257-4213 fax: (828) 257-4263 email: mpitrolo@fs.fed.us

Jon Bandzul

From:Melanie Pitrolo [mpitrolo@fs.fed.us]

Sent: Monday, July 25, 2011 4:22 PM

To: jbandzul@smithaldridge.com

Subject: Class I Modeling Analysis - Request for Determination Form

Attachments: Request for Determination.doc

Per our conversation this afternoon, attached please find the "Request for Applicability of Class I Area Modeling Analysis" form. If you could complete the form and submit it back to me, I will work with our FLM to make a determination as to whether a Modeling Analysis will be requested for any Forest Service Class I Areas. If you have any questions about the form, just let me know.

Thanks, Melanie

Melanie Caudle Pitrolo Air Quality Specialist U.S. Forest Service 160 Zillicoa Street, Suite A Asheville, NC 28801 phone: (828) 257-4213 fax: (828) 257-4263 email: mpitrolo@fs.fed.us

Request for Applicability of Class I Area Modeling Analysis Southern Region, U.S. Forest Service

0,	
Facility Name (Company Name)	CARBO Ceramics, Inc.
New Facility or Modification?	New Facility
Source Type/BART Applicability	Nonmetallic Minerals Processing (kaolin clay)
Project Location (County/State/ Lat. & Long. in decimal degrees)	Millen, Jenkins County, Georgia (32.766451 lat., -81.899474 long.)

Application Contacts

Applicant		Consultant		Air Agency Permit Engineer		
Company	CARBO Ceramics, Inc.	Company	Smith Aldridge, Inc.	Agency	Georgia EPD Air Protection Branch	
Contact	Jason Goodwin	Contact	Jon Bandzul	Contact	Eric Cornwell	
Address	575 N. Dairy Ashford, Suite 300 Houston, Texas 77079	Address	6000 Lake Forrest Drive Suite 385 Atlanta, Georgia 30328	Address	4244 International Parkway Suite 120 Atlanta, Georgia 30354	
Phone #	(281) 921-6472	Phone #	(404) 255-0928 x117	Phone #	(404) 363-7020	
Email	jason.goodwin@carboceramics.com	Email	jbandzul@smithaldridge.com	Email	Eric.Cornwell@dnr.state.ga.us	

Briefly Describe the Proposed Project

Greenfield major PSD source for the manufacturer of proppant which are used in oil and natural gas production. Facility will have 4 "wet" processing lines to form proppant from kaolin clay slurry. Each processing line will consist of 2 spray dryers (fluidizers), 1 direct-fired rotary kiln, 1 natural gas-fired boiler, and associated material handling and storage (pellet feed, kiln product, storage silos, and railcar loadout systems).

Proposed Emissions and BACT

	Emissions			Proposed BACT	
Criteria Pollutant	MaximumProposedhourlyAnnual(lb/hr)(tons/yr)		Emission Factor (AP-42, Stack Test, Other?)		
Nitrogen Oxides	558.4	2,446	BACT	Low-NO _x technology	
Sulfur Dioxide	141.0	618	BACT	Wet scrubber	
Particulate Matter	56.8	249	BACT	High efficiency fabric filters/baghouses/bin vents	
Sulfuric Acid Mist	<1.6	<7	PSD Avoidance	Not subject to PSD review	

Proximity to U.S. Forest Service Class I Areas

Class I Area	Shining Rock	Cohutta/Joyce Kilmer- Slickrock	Bradwell Bay
Distance from Facility (km)	297	339/342	376

Jon Bandzul

From:	Melanie	Pitrolo	[mpitrolo@fs.fed.us]
-------	---------	---------	----------------------

Sent: Wednesday, July 27, 2011 4:35 PM

To: Jon Bandzul

Cc: Bill Jackson

Subject: RE: Class I Modeling Analysis - Request for Determination Form

Jon,

Thank you for submitting the information regarding the proposed CARBO Ceramics, Inc. facility in Jenkins County, GA. Based on the information submitted, the USDA Forest Service is requesting a Class I AQRV Analysis for Shining Rock Wilderness Area. In order to facilitate review of the modeling analysis, a modeling protocol should be developed and submitted to us prior to conducting the analysis. Please refer to the latest version of FLAG (<u>http://www.nature.nps.gov/air/permits/flag/index.cfm</u>) for guidance on developing the modeling <u>protocol.</u>

Bill Jackson will be reviewing the modeling protocol and analysis, although I may be assisting him with the review. Should you wish to discuss this project in more detail prior to submitting the protocol, either Bill Jackson or I would be happy to set up a time in the near future to talk with you. I have copied Bill on this email, and his direct number is (828) 257-4815.

Melanie

Melanie Caudle Pitrolo Air Quality Specialist U.S. Forest Service 160 Zillicoa Street, Suite A Asheville, NC 28801 phone: (828) 257-4213 fax: (828) 257-4263 email: mpitrolo@fs.fed.us

"Jon Bandzul" <jbandzul@smithaldridge.com>

07/25/2011 07:41 PM

To "'Melanie Pitrolo'" <mpitrolo@fs.fed.us>, <bjackson02@fs.fed.us>, "'Peter Courtney'" <Peter.Courtney@dnr.state.ga.us>

cc "Craig Smith Ph. D." <csmith@smithaldridge.com>, "Jason' 'Goodwin'" <Jason.Goodwin@carboceramics.com>

Subject RE: Class I Modeling Analysis - Request for Determination Form

Melanie,

Thank you for taking the time to speak with me this afternoon.

This e-mail is to confirm our conversation regarding the proposed CARBO Ceramics, Inc. proppant manufacturing facility in Millen, Jenkins County, Georgia. Please find attached the completed "Request for Applicability of Class I Area Modeling Analysis" form you requested. There are 4 Class I areas within 300 km of the facility, 1 of which is a USFS wilderness area and has a Q/D ratio greater than 10:

Shining Rock - >11

FWS has requested that an AQRV analysis be performed for Cape Romain, Okefenokee and Wolf Island. Based on our conversation, I am proceeding with developing a protocol to address application of CALPUFF for LTR AQRV analysis; Shining Rock is 297 km from the proposed project site and we are planning to include this area in the protocol. I spoke with Tim Allen at FWS this morning and he confirmed that the CALMET 5.8 data set is the appropriate meteorology for PSD applicants.

Again, thank you for your time this afternoon and we are looking forward to working with USFS on another PSD project.

Jon Bandzul, Principal Smith Aldridge, Inc. 6000 Lake Forrest Drive Suite 385 Atlanta, Georgia 30328

(office) 404-255-0928 x 117 (fax) 404-255-0948

The information transmitted is intended only for the person(s) to which it is addressed and may contain privileged or confidential information. Any review, retransmission, dissemination or other use of this information by persons other than the intended recipient(s) is prohibited. If you received this in error, please contact the sender and delete the material received.

From: Melanie Pitrolo [mailto:mpitrolo@fs.fed.us] Sent: Monday, July 25, 2011 4:22 PM To: jbandzul@smithaldridge.com Subject: Class I Modeling Analysis - Request for Determination Form

Per our conversation this afternoon, attached please find the "Request for Applicability of Class I Area Modeling Analysis" form. If you could complete the form and submit it back to me, I will work with our FLM to make a determination as to whether a Modeling Analysis will be requested for any Forest Service Class I Areas. If you have any questions about the form, just let me know.

Thanks, Melanie

7/27/2011

[attachment "USFS Request for Determination CARBO Ceramics Millen Facility.pdf" deleted by Melanie Pitrolo/R8/USDAFS]

Volume III, Attachment G –

NAAQS and PSD Increment Inventories

SMITH ALDRIDGE, INC.

P:\Carbo Ceramics\Millen\2010-07 Lines 5-8 PSD Permit App\Volume III- Modeling + Toxics\Vol III Attachment Covers.doc

Table 1. Baseline Minor and Major Source Regional Inventory (Georgia and South Carolina) and Q/D Screening for Nearby Sources

АВС	Facilities that are highlighted in red in Column D are included in the 1-hour NO2 and SO2 NAAQS inventories D	EFGHIJKLMN	Potential emissions listed for each pollutant in Columns O, P, Q, and R are facility-wide and are based on maximum hourly allowable emissions and do not take into account annualized emission limitations (e.g., SM sources will be >100 tpy) O P Q R	Short-term distance (d) codes are "CB" for county- boundary, "2" for postal code, and "S" for source-to source S T	SIA's listed for each pollutant in Columns U, V W, and X are the maximum for each averaging period, excluding 1-hour NO ₂ and SO ₂ No Q/D screening is performed for the new 1- hour NO ₂ and SO ₂ NAAQS U V W X	Q/d screening values listed for each pollutant in Columns Y, Z, AA, and BB are for <u>short-erm</u> <u>averaing periods</u> and are based on the source to-source distance listed in Column S <u>Screening values highlighed in red are</u> controlling for the 2-km source groupings listed in Column E <u>Y</u> Z AA BB	Q/d screening values listed for each pollutant in Columns CC, DD, EE, and FF are for <u>long-term</u> <u>averaging periods</u> and are based on the distance from the source to the outer edge of the SIA (D = d - SIA), except PM ₂₅ which is based on the source-to-source distance using lower 2d threshold (Z = DD) Screening values highlighed in red are controlling for the 2-km source groupings listed in Column E CC DD EE FF	Facilites, or groups of facilities, highlighted in red exceed 20 (or 2 for PM _{2.5}) for the Q/d screening value and are modeled Facilites, or red exceed Facilites, or groups of facilities, highlighted in blue were below 20 for the Q/d screening value but were included in the certain quality analyses (~10 or more) Facilites, or blue were below 20 for the Q/d screening value but were included in the certain quality analyses (~10 or more) GG HH II KK	· groups of facilities, highlighted in ed 20 (or 2 for PM _{2.0}) for the O/d ning value and are modeled r groups of facilities, highlighted in slow 20 for the O/D screening valu e included in the certain quality analyses (-10 or more) <u>MM NN OO</u>
		Geographic Coordinates UTM NAD83 Coordinates 30° Wind Sector Distance based General, PBR,	"Q", Allowable Emissions, (tpy)	"d"	Significant Impact Area, SIA, (km)	"Q/d", Short-term	"Q/D", Long-term	Short-term "Q/d" < 20 (PM _{2.5} <2) Long-	-term "Q/D" < 20 (PM _{2.5} < 2)
State County AIRS	Facility Name	Groups Latitude (dd) Longitude (dd) East (m) North (m) blowing from wind speed (km) Elevation (m) Title V, PSD Status	PM ₁₀ PM _{2.5} NO _x SO ₂	Distance, (km) Code	e PM ₁₀ PM _{2.5} NOx SO ₂	PM ₁₀ PM _{2.5} NOx SO ₂	PM ₁₀ PM _{2.5} NOx SO ₂	PM ₁₀ PM _{2.5} NOx SO ₂ PM ₁₀	PM _{2.5} NOx SO ₂
GA Bulloch 03100002	Tillman & Deal Farm Supply Inc	32.47845 -81.76562 428,060.20 3,593,728.40 6 41.00 51.88 Minor Active	63.3 11.2 6.2 0.7	34.3 S	<u>3.4 4.4 6.5 4.0</u>	1.85 0.33 N/A 0.02	2.05 0.33 0.22 0.02	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Bulloch 03100003	Jones W K Lumber Co W M. Shenpard Lumber Company	32.29509 -81.70915 433,231.70 3,573,365.70 6 41.00 40.76 Minor No Files	83.9 83.9 66 55	50.9 S	34 44 65 40	1.65 1.65 N/A 0.11	1.77 1.65 0.15 0.12	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Bulloch 03100011	Reeves Construction Company	031-1 32.37297 -81.84944 420,091.10 3,582,095.00 6 41.00 52.16 Minor Active	52.0 52.0 60.2 556.9	43.6 S	3.4 4.4 6.5 4.0	<u>3.49 1.94</u> N/A <u>13.08</u>	<u>3.80 1.94 2.62 14.43</u>	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Bulloch 03100012	Emerson Electric Co (Brodie Meter)	031-2 32.44965 -81.77966 426,717.60 3,590,545.30 6 41.00 71.91 Minor Active	26.3 26.3 0.7 0.0	36.8 S	3.4 4.4 6.5 4.0	<u>3.84 3.84</u> N/A <u>0.53</u>	<u>4.24 3.84 0.47 0.60</u>	Yes No N/A Yes Yes	No Yes Yes
GA Bulloch 03100020	Braswell A M Food Co Inc	031-2 32.45692 -81.77690 426,982.90 3,591,349.30 6 41.00 61.71 Minor Active	0.8 0.8 5.6 14.9	36.2 S	3.4 4.4 6.5 4.0	3.84 3.84 N/A 0.53	4.24 3.84 0.47 0.60	Yes No N/A Yes Yes	No Yes Yes
GA Bulloch 03100031	Evans Concrete	031-2 32.43638 -81.77892 426,776.50 3,589,073.80 6 41.00 63.35 PBR Active	4.7 4.7 0.0 0.0	38.1 S	3.4 4.4 6.5 4.0	3.84 3.84 N/A 0.53	4.24 3.84 0.47 0.60	Yes No N/A Yes Yes	No Yes Yes
GA Bulloch 03100036	Robbins Packing Plant	32.46502 -81.79989 424,828.90 3,592,263.20 6 41.00 76.30 Minor Active	0.2 0.2 2.9 0.0	34.7 S	3.4 4.4 6.5 4.0	0.01 0.01 N/A 0.00	0.01 0.01 0.10 0.00	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Bulloch 03100042	Denmark Feed	32.32906 -81.69711 434,389.80 3,577,123.90 6 41.00 46.99 Minor No Files	700 50 00 00	46.4 6	24 44 65 40	4.55 0.42 N/A 0.00	1.67 0.12 0.00 0.00		Vac Vac Vac
GA Bulloch 03100043	Briggs & Stratton	031-1 32.38213 -81.84249 420,752.90 3,583,105.30 6 41.00 60.84 Minor Active	23.9 23.9 34.2 1.1	40.4 3	3.4 4.4 6.5 4.0	3.49 1.94 N/A 13.08	3.80 1.94 2.62 14.43	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Bulloch 03100045	Southern States Coop	031-1 32.37365 -81.84689 420,331.60 3,582,168.50 6 41.00 55.50 PBR Active	72.0 5.8 0.0 0.0	43.6 S	3.4 4.4 6.5 4.0	3.49 1.94 N/A 13.08	3.80 1.94 2.62 14.43	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Bulloch 03100046	Custom Cabinets	32.44371 -81.72961 431,417.60 3,589,853.60 6 41.00 61.52 PBR Active	20.0 20.0 0.0 0.0	39.1 S	3.4 4.4 6.5 4.0	0.51 0.51 N/A 0.00	0.56 0.51 0.00 0.00	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Bulloch 03100047 GA Bulloch 03100048	Coastal Countertops	031-2 32,45084 -81.77873 426,806.00 3,590,676.60 6 41.00 68.58 PBR Active	20.0 20.0 0.0 0.0	28.6 S	3.4 4.4 6.5 4.0	0.70 0.70 N/A 0.00 3.84 3.84 N/A 0.53	4.24 3.84 0.47 0.60	Yes Yes N/A Yes Yes Yes No N/A Yes Yes	No Yes Yes
GA Bulloch 03100049	Kitchen Craft Cabinets	32.37690 -81.65749 438,151.40 3,582,403.50 6 41.00 45.37 PBR Active	20.0 20.0 0.0 0.0	48.8 S	3.4 4.4 6.5 4.0	0.41 0.41 N/A 0.00	0.44 0.41 0.00 0.00	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Bulloch 03100050	Harry Shurling Cabinets	32.32608 -81.55255 447,993.90 3,576,714.20 5 41.00 32.25 PBR Active	20.0 20.0 0.0 0.0	58.6 S	3.4 4.4 6.5 4.0	N/A N/A N/A N/A	N/A N/A N/A N/A	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Bulloch 03100052	East Geogia Regional Medical Center	031.1 32 38170 -81 84621 427,614.40 3,586,628.80 6 41.00 63.86 Minor Active	2.6 2.5 15.7 55.8	40.9 S	3.4 4.4 6.5 4.0	0.06 0.06 N/A 1.36	0.07 0.06 0.46 1.51 3.80 1.94 2.62 14.43	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Bulloch 03100055	Ellis Wood Contracting Co.	031-1 32.38238 -81.83594 421,369.20 3,583,128.10 6 41.00 61.07 Minor Active	1.2 1.2 0.4 0.0	42.7 S	3.4 4.4 6.5 4.0	3.49 1.94 N/A 13.08	3.80 1.94 2.62 14.43	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Bulloch 03100056	Franklin Chevrolet	031-2 32.43582 -81.75792 428,750.20 3,588,997.50 6 41.00 68.71 Minor Active	0.0 0.0 0.0 0.0	39.0 S	3.4 4.4 6.5 4.0	3.84 3.84 N/A 0.53	4.24 3.84 0.47 0.60	Yes No N/A Yes Yes	No Yes Yes
GA Bulloch 03100057	Rozier Ford Lincoln-Mercury	031-3 32.40883 -81.80655 424,155.90 3,586,039.00 6 41.00 61.84 Minor Active	0.0 0.0 0.0 0.0	40.6 S	3.4 4.4 6.5 4.0	0.00 0.00 N/A 0.00	0.00 0.00 0.00 0.00	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Bulloch 03100058 GA Bulloch 03100059	Southern Eagle Collision Center South 301 Auto Body Collision Center	031-1 32.37/53 -81.8395/ 421,023.50 3,382,393.20 6 41.00 57.79 Millior Active	0.0 0.0 0.0 0.0	43.4 S	3.4 4.4 6.5 4.0	0.00 0.00 N/A 0.00	0.00 0.00 0.00 0.00	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Bulloch 03100060	Valli's Precision Collision	32.38888 -81.74976 429,480.80 3,583,788.60 6 41.00 60.25 Minor Active	0.0 0.0 0.0 0.0	44.1 S	3.4 4.4 6.5 4.0	0.00 0.00 N/A 0.00	0.00 0.00 0.00 0.00	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Bulloch 03100061	Hall's Paint & Body	031-2 32.45704 -81.79031 425,722.70 3,591,371.90 6 41.00 75.82 Minor Active	0.0 0.0 0.0 0.0	35.8 S	3.4 4.4 6.5 4.0	3.84 3.84 N/A 0.53	4.24 3.84 0.47 0.60	Yes No N/A Yes Yes	No Yes Yes
GA Bulloch 03100062	Rempe's Collision & Auto Restoration	031-2 32.46167 -81.76978 427,655.90 3,591,871.00 6 41.00 60.81 Minor Active	0.0 0.0 0.0 0.0	35.9 S	3.4 4.4 6.5 4.0	3.84 3.84 N/A 0.53	4.24 3.84 0.47 0.60	Yes No N/A Yes Yes	No Yes Yes
GA Burke 03300001 GA Burke 03300002	McBride Gin & Farm Supply Mundy, Inc.	033-1 33.08915 -82.24755 383,504.90 3,656,155.70 11 41.00 107.33 Minor Active	72.0 5.8 0.0 0.0 58.6 4.7 0.0 0.0	44.3 S	3.4 4.4 6.5 4.0	1.63 0.13 N/A 0.00 6.31 3.05 N/A 15.67	1.76 0.13 0.00 0.00 6.95 3.05 2.07 17.57	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Burke 03300004	Rayonier	033-2 32.81916 -82.23305 384,575.50 3,631,912.50 10 41.00 58.98 No Files							
GA Burke 03300007	Halliburton Industrial Services	033-1 33.09000 -82.01585 405,198.00 3,661,723.30 12 41.00 88.37 Minor No Files							
GA Burke 03300008	Allen B. Wilson Combustion Turbine Plant	033-3 33.13770 -81.74835 430,200.30 3,666,801.70 1 41.00 62.99 PSD Active	293.8 284.1 22,478.9 12,899.8	43.7 S	3.4 4.4 6.5 4.0	<u>10.11 9.84 N/A 311.44</u>	<u>10.96 9.84 730.38 342.82</u> 2.51 0.18 0.00 0.00	Yes No N/A No Yes Ves Ves N/A Ves Ves	No No No
GA Burke 03300011	Sardis Lumber Company	32.97527 -81.75783 429,186.10 3,648,800.30 1 41.00 72.81 Closed	72.0 0.0 0.0 0.0	32.1 0	0.4 4.4 0.5 4.0	2220 000 100 000	2.01 0.10 0.00 0.00	163 163 WA 163 163	103 103
GA Burke 03300013	Waynesboro Concrete Products Co.	033-1 33.09876 -82.00840 405,902.60 3.662,687.80 12 41.00 88.85 Minor Active	4.7 4.7 0.0 0.0	38.2 S	3.4 4.4 6.5 4.0	6.31 3.05 N/A 15.67	6.95 3.05 2.07 17.57	Yes No N/A Yes Yes	No Yes Yes
GA Burke 03300019	Lamb C B Lumber Co.	033-2 32.81724 -82.24078 383,849.40 3,631,708.10 10 41.00 56.74 Minor No Files	47 47 00 00				0.05 0.05 0.03 43.53	Yes No. No. Yes	No. Mar. No.
GA Burke 03300020 GA Burke 03300021	McKinney Wholesale Co	033-1 33.09478 -82.02756 404,110.30 3,662,263.90 12 41.00 95.57 Minor Active	4.7 4.7 0.0 0.0 10.2 10.2 0.0 0.0	38.3 S	3.4 4.4 6.5 4.0	6.31 3.05 N/A 15.67 6.31 0.00 N/A 0.00	0.00 0.00 0.00 0.00	Yes No N/A Yes Yes Yes Yes N/A Yes Yes	Yes Yes Yes
GA Burke 03300025	Perfection-Schwank	033-1 33.10214 -82.00215 406,489.40 3,663,056.90 12 41.00 97.88 Minor No Files							
GA Burke 03300027	Southern States Cooperative (Gold Kist Grain)	33.08724 -82.01186 405,567.40 3,661,413.70 12 41.00 82.20 Closed							
GA Burke 03300028 GA Burke 03300029	Collins Gin Farmers Gin Co.	33.02401 -82.05036 401,904.10 3,654,438.80 12 41.00 85.35 Minor Active	<u>43.1</u> <u>3.4</u> <u>0.0</u> <u>0.0</u> 72.0 <u>5.8</u> <u>0.0</u> <u>0.0</u>	31.8 S	3.4 4.4 6.5 4.0	1.35 0.11 N/A 0.00 6.31 3.05 N/A 15.67	<u>1.52</u> 0.11 0.00 0.00 0.00 3.05 0.00 0.00	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Burke 03300030	Vogtle Electric Generating Plant	033-3 33.14203 -81.76176 428,952.90 3,667,290.80 1 41.00 63.98 PSD Active	147.9 145.8 4,691.3 710.0	43.7 S	3.4 4.4 6.5 4.0	10.11 9.84 N/A 311.44	10.96 9.84 730.38 342.82	Yes No N/A No Yes	No No No
GA Burke 03300031	Midville Warehouse	32.82952 -82.22580 385,267.50 3,633,053.20 10 41.00 68.61 Denied							
GA Burke 03300034 GA Burke 03300037	Fiamm Technologies Reeves Construction Company	U33-1 33.1U511 -82.01164 405,607.00 3,663,394.70 12 41.00 87.79 Minor Active	17.8 17.8 9.9 0.1 65.1 65.1 48.2 578.8	39.2 S 37.3 S	<u>3.4 4.4 6.5 4.0</u> <u>3.4 4.4 65 4.0</u>	6.31 3.05 N/A 15.67 6.31 3.05 N/A 15.67	6.95 3.05 2.07 17.57 6.95 3.05 2.07 17.57	Yes No N/A Yes Yes Yes No N/A Yes Yes	No Yes Yes
GA Burke 03300038	ASTA	033-1 33.10395 -82.01750 405,059.00 3,663,271.40 12 41.00 88.00 Minor Active	0.0 0.0 5.0 0.0	39.2 S	3.4 4.4 6.5 4.0	6.31 3.05 N/A 15.67	6.95 3.05 2.07 17.57	Yes No N/A Yes Yes	No Yes Yes
GA Burke 03300039	Shaw Group, Inc. (for Vogtle Units 3 & 4)	033-3 33.14203 -81.76176 428,952.90 3,667,290.80 1 41.00 63.98							
GA Burke 03300040	Burke County Concrete #29	33.16328 -81.80786 424,671.40 3,669,678.90 1 41.00 75.19 Minor Active	99.4 99.4 0.0 0.0	45.0 S	3.4 4.4 6.5 4.0	2.21 2.21 N/A 0.00	2.39 2.21 0.00 0.00	Yes No N/A Yes Yes	No Yes Yes
GA Candler 04300003	Candler Gin & Warehouse	043-1 32.39682 -82.05726 400.566.20 3.584.913.10 7 41.00 63.73 Minor Active	64.6 5.2 0.0 0.0	43.5 9	3.4 4.4 65 40	3.94 0.70 N/A 0.00	4.29 0.70 0.10 0.00	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Candler 04300004	Metter Concrete Products Co	043-1 32.39976 -82.05162 401,099.90 3,585,233.80 7 41.00 60.52 Minor Active	3.4 3.4 0.0 0.0	43.1 S	3.4 4.4 6.5 4.0	3.94 0.70 N/A 0.00	4.29 0.70 0.10 0.00	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Candler 04300008	Allied Metals	043-1 32.40024 -82.03399 402,758.50 3,585,270.90 7 41.00 63.82 Minor Active	13.0 13.0 0.0 0.0	42.3 S	3.4 4.4 6.5 4.0	3.94 0.70 N/A 0.00	4.29 0.70 0.10 0.00	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Candler 04300009	Growers Gin & Warehouse	043-1 32.39885 -82.04202 402,001.80 3,585,124.10 7 41.00 66.84 PBR Active	84.1 6.7 0.0 0.0	42.7 S	3.4 4.4 6.5 4.0	3.94 0.70 N/A 0.00	4.29 0.70 0.10 0.00	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Effingham 10200012	GA Transmission Corn	Union Occupation Cocupation Cocupation </td <td>1.4 1.4 3.7 U.0</td> <td>43.U S</td> <td>34 44 65 4.0</td> <td>0.07 0.07 N/A 0.00</td> <td>4.29 0.70 0.10 0.00</td> <td>Yes Yes N/A Yes Yes</td> <td>Yes Ves Ves</td>	1.4 1.4 3.7 U.0	43.U S	34 44 65 4.0	0.07 0.07 N/A 0.00	4.29 0.70 0.10 0.00	Yes Yes N/A Yes Yes	Yes Ves Ves
GA Emanuel 10700010	Swainsboro Concrete Products	107-1 32.59604 -82.33098 375.097.10 3.607.287.00 8 41.00 95.70 Minor Active	34 34 00 00	44.6 9	3.4 4.4 65 4.0	0.86 0.86 0.18 0.02	0.92 0.86 0.21 0.02	Yes Yes N/A Yes Voc	Yes Yes Ves
GA Emanuel 10700011	Rayonier Wood Products Swainsboro	32.50967 -82.33176 374.904.20 3,597,712.50 8 41.00 76.17 TV Active	44.1 44.1 15.5 17.2	49.4 S	3.4 4.4 6.5 4.0	0.89 0.89 N/A 0.35	0.96 0.89 0.36 0.38	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Emanuel 10700013	Lifeline Industries	107-1 32.59880 -82.32950 375,239.90 3,607,591.20 8 41.00 89.22 Minor Active	14.3 14.3 6.1 0.7	44.4 S	3.4 4.4 6.5 4.0	0.86 0.86 N/A 0.02	0.92 0.86 0.21 0.02	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Emanuel 10700016 GA Emanuel 10700017	American Yard Product Rolander Bros Construction Co	107-2 32.58230 -82.31788 376,307.70 3,605,748.40 8 41.00 93.57 Minor No Files							
GA Emanuel 10700019	American Steel Products	107-1 32.60209 -82.33565 374,667.30 3,607,963.20 8 41.00 96.42 Minor Active	0.2 0.2 1.9 0.0	44.7 S	3.4 4.4 6.5 4.0	0.86 0.86 N/A 0.02	0.92 0.86 0.21 0.02	Yes Yes N/A Yes Yes	Yes Yes Yes
GA Emanuel 10700020	Swainsboro Electro Plating	32.56510 -82.33198 374,960.40 3,603,858.00 8 41.00 76.83 Closed							

Table 1. Baseline Minor and Major Source Regional Inventory (Georgia and South Carolina) and Q/D Screening for Nearby Sources

V Build No. 2010 000000000000000000000000000000000	Facilities that are highlighted in red		Potential emissions listed for each pollutant in Columns O, P, Q, and R are facility-wide and are based on maximum houry allowable emissions and do not take into account missions and do not take into account initiations of the second second the second seco	Short-term distance (d) codes are "CB" for county- boundary, "2" for postal ordo and "2" for postal	SIA's listed for each pollutant in Columns U, V, W, and X are the maximum for each averaging period, excluding 1-hour NO ₂ and SO ₂	Q/d screening values listed for each pollutant in Columns Y, Z, AA, and BB are for <u>short-term</u> <u>averaging periods</u> and are based on the source- to-source distance listed in Column S <u>Screening values highlighed in red are</u> controllied to the Q term concentrol listed	Q/d screening values listed for each pollutant in Columns CC, DD, EE, and FF are for long-term averaging periods and are based on the distance from the source to the outer edge of the SIA (D = d - SIA), except PM ₂₄ which is based on the source-to-source distance using lower 2d threshold (Z = DD) Screening values highlighed in red are centrallies of the Q ten group more them to lower an enter of the Q ten group of the lower to lower an enter of the Q ten group of the lower to lower an enter of the Q ten group of the lower to lower an enter of the Q ten group of the lower to lower an enter of the Q ten group of the lower to lower an enter of the Q ten group of the lower to lower an enter of the Q ten group of the lower to lower an enter of the lower of the lower to lower an enter of the lower of the lower to lower an enter of the lower of the lower of the lower to lower an enter of the lower of t	Facilites, or groups of facilities, highlighted in red exceed 20 (or 2 for PM _{2.0}) for the Q/d screening value and are modeled Facilities, or groups of facilities, highlighted in blue were below 20 for the Q/d screening value between eventoe in order	Facilites, or groups of facilities, highlighted in red exceed 20 (or 2 for PMs_2) for the Q/d screening value and are modeled Facilites, or groups of facilities, highlighted in blue were below 20 for the Q/D screening value to be were membre
b C	1-hour NO2 and SO2 NAAQS inventories		(e.g., SM sources will be >100 tpy)	source	hour NO ₂ and SO ₂ NAAQS	in Column E	in Column E	analyses (~10 or more)	analyses (~10 or more)
Area Area Area Area A		E F G H I J K L M N Geographic Coordinates UTM NAD83 Coordinates 30 ⁰ Wind Sector Distance based Constal DBP	"Q", Allowable Emissions, (tpy)	5 I	Significant Impact Area, SIA, (km)	"Q/d", Short-term	"Q/D", Long-term	Short-term "Q/d" < 20 (PM _{2.5} <2)	LL MM NN 00 Long-term "Q/D" < 20 (PM _{2.5} < 2)
Added Added <th< th=""><th>State County AIRS Eacility Name Grou</th><th>km Wind on fastest sector Minor, Permitting Jups Latitude (dd) Longitude (dd) East (m) North (m) blowing from, wind speed (km) Elevation (m) Title V. PSD Status</th><th>PM₁₀ PM₂₅ NO₂ SO₂</th><th>Short-term Distance. (km) Code</th><th>PMto PMts NOX SO:</th><th>PM₁₀ PM₂₅ NOx SO₂</th><th>PM10 PM06 NOX SO0</th><th>PM₁₀ PM₂₅ NOx SO₂</th><th>PM₁₀ PM₂₅ NOX SO₂</th></th<>	State County AIRS Eacility Name Grou	km Wind on fastest sector Minor, Permitting Jups Latitude (dd) Longitude (dd) East (m) North (m) blowing from, wind speed (km) Elevation (m) Title V. PSD Status	PM ₁₀ PM ₂₅ NO ₂ SO ₂	Short-term Distance. (km) Code	PMto PMts NOX SO:	PM ₁₀ PM ₂₅ NOx SO ₂	PM10 PM06 NOX SO0	PM ₁₀ PM ₂₅ NOx SO ₂	PM ₁₀ PM ₂₅ NOX SO ₂
Name Name Name Name N	GA Emanuel 10700021 Cabinet Masters Inc. 107	17.2 32.57888 .82.31217 376.830.00 3.605.362.60 8 .41.00 02.80 PBP Artiva	20.0 20.0 0.0 0.0	43.9 S	34 44 65 40	0.00 0.00 N/A 0.00	0.00 0.00 0.00 0.00		Vec Vec Vec Vec
A. Alloya Mathewa Mathawa	GA Emanuel 10700021 Cabinet Masters inc 107	17-1 32,59706 -82,33167 375,033.80 3,607,400.90 8 41.00 95.16 PBR Active	20.0 20.0 0.0 0.0	44.6	34 44 6.5 4.0	0.86 0.86 N/A 0.02	0.92 0.86 0.21 0.02	Yes Yes N/A Yes	Yes Yes Yes Yes
Diam Diam <th< th=""><th>GA Emanuel 1070025 Crider Poultry</th><th>32.42792 -82.21256 385,998.70 3,588,515.90 8 41.00 78.95 Minor Active</th><th>1.8 1.8 33.3 3.8</th><th>47.4 S</th><th>3.4 4.4 6.5 4.0</th><th>0.04 0.04 N/A 0.08</th><th>0.04 0.04 0.81 0.09</th><th>Yes Yes N/A Yes</th><th>Yes Yes Yes Yes</th></th<>	GA Emanuel 1070025 Crider Poultry	32.42792 -82.21256 385,998.70 3,588,515.90 8 41.00 78.95 Minor Active	1.8 1.8 33.3 3.8	47.4 S	3.4 4.4 6.5 4.0	0.04 0.04 N/A 0.08	0.04 0.04 0.81 0.09	Yes Yes N/A Yes	Yes Yes Yes Yes
Adder Norme Adder Norme Adder Norme Adder Norme Adder Norme Adder Norme Adder Adder <th< th=""><th>GA Jefferson 16300007 Thermo King Corp</th><th>33.00277 -82.38831 370.308.70 3.652.450.00 10 41.00 99.26 Minor Active</th><th>1.9 1.9 21.3 2.8</th><th>52.8 S</th><th>3.4 4.4 6.5 4.0</th><th>0.04 0.04 N/A 0.05</th><th>0.04 0.04 0.46 0.06</th><th>Yes Yes N/A Yes</th><th>Yes Yes Yes Yes</th></th<>	GA Jefferson 16300007 Thermo King Corp	33.00277 -82.38831 370.308.70 3.652.450.00 10 41.00 99.26 Minor Active	1.9 1.9 21.3 2.8	52.8 S	3.4 4.4 6.5 4.0	0.04 0.04 N/A 0.05	0.04 0.04 0.46 0.06	Yes Yes N/A Yes	Yes Yes Yes Yes
Alter Alter Alter Alter Al	GA Jefferson 16300008 Farmers Gin & Storage 163-	i3-1 32.86065 -82.39629 369,354.40 3,636,702.60 10 41.00 69.59 PBR Active	87.2 12.7 5.0 0.6	47.7 S	3.4 4.4 6.5 4.0	4.41 2.69 N/A 0.17	<u>4.75 2.69 1.75 0.19</u>	Yes No N/A Yes	Yes No Yes Yes
Al Allene None None None None <	GA Jefferson 16300012 Battle Lumber Company 163-	i3-1 32.85708 -82.39358 369,602.80 3,636,303.50 10 41.00 67.91 Minor Active	95.2 88.3 64.6 7.3	47.3 S	3.4 4.4 6.5 4.0	4.41 2.69 N/A 0.17	4.75 2.69 1.75 0.19	Yes No N/A Yes	Yes No Yes Yes
Add A	GA Jefferson 16300027 Fulghum Industries 163-	33-1 32.85366 -82.40274 368,740.50 3,635,935.60 10 41.00 67.25 Minor Active	26.2 26.2 1.9 0.1	48.1 S	3.4 4.4 6.5 4.0	4.41 2.69 N/A 0.17	4.75 2.69 1.75 0.19	Yes No N/A Yes	Yes No Yes Yes
And wite wird wird wird wird wird wird wird wird	GA Jefferson 16300033 Melvin Dye Body Shop	33.02467 -82.34402 374,477.50 3,654,824.30 10 41.00 95.64 Minor Active	0.0 0.0 0.0 0.0	50.4 S	3.4 4.4 6.5 4.0	0.00 0.00 N/A 0.00	0.00 0.00 0.00 0.00	Yes Yes N/A Yes	Yes Yes Yes Yes
A. series 440.000 11100 440.000 10100 440.000 10100 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000 1000000 10000000 100000000 1000000000000000000000000000000000000	GA Jenkins 16500006 Thompson Company	32.80378 -81.94924 411,128.31 3,629,933.18 11 41.00 62.31 Closed							
A desity dimension Centrol of dimension Single A S	GA Jenkins 16500011 MI Metals	32.80250 -81.91806 414,046.60 3,629,765.50 12 41.00 57.71 Closed						1	
A serve 21000 9/mes 41.00 342.00 44.00 342.00 44.00 342.00 40.00 50.00 Mode Mode <th< th=""><th>GA Jenkins Greenfield CARBO Ceramics Millen Facility</th><th>32.76645 -81.89947 415,753.10 3,625,754.00 65.53 PSD Proposed</th><th>249.0 129.4 2,446.0 618.0</th><th></th><th></th><th></th><th></th><th>No No No No</th><th>No No No No</th></th<>	GA Jenkins Greenfield CARBO Ceramics Millen Facility	32.76645 -81.89947 415,753.10 3,625,754.00 65.53 PSD Proposed	249.0 129.4 2,446.0 618.0					No No No No	No No No No
A Server 21000 Med Server 21000 Med Ne Med Ne Med Ne A server 21000 Med Ne Med Ne </th <th>GA Screven 25100002 Sylvania Yarn Systems 251-</th> <th>1-1 32.75274 -81.65301 438,828.40 3,624,064.80 4 41.00 58.22 Closed</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	GA Screven 25100002 Sylvania Yarn Systems 251-	1-1 32.75274 -81.65301 438,828.40 3,624,064.80 4 41.00 58.22 Closed							
A Server Strong along Kong America (MA) Kong America (MA	GA Screven 25100003 Feed Seed & Farm Supply 251-	1-1 32.75446 -81.64802 439,297.00 3,624,252.60 4 41.00 55.08 Minor Active	49.6 8.8 5.1 0.0	23.6 S	3.4 4.4 6.5 4.0	8.00 2.42 N/A 0.00	<u>8.00 2.42 0.22 0.00</u>	Yes No N/A Yes	Yes No Yes Yes
A Serve Strip Rec David W Company 21:1 27:37 -0.4 0.4 0.0 0.0 2.42 0.0 0.0 0.4 0.0 0.0 0.0 <	GA Screven 25100004 Koyo Bearings USA	32.75770 -81.61908 442,010.10 3,624,595.60 4 41.00 55.77 Minor Active	74.9 56.9 93.8 669.6	26.3 S	3.4 4.4 6.5 4.0	2.85 2.17 N/A 25.50	3.27 2.17 4.75 30.08	Yes No N/A No	Yes No Yes No
GA Server 250003 Mag ag Mag Mag <th< th=""><th>GA Screven 25100005 Reed David W Company 251-</th><th>i1-1 32.75137 -81.64007 440,039.70 3,623,905.50 4 41.00 64.32 Minor Active</th><th>36.8 2.9 0.0 0.0</th><th>24.3 S</th><th>3.4 4.4 6.5 4.0</th><th>8.00 2.42 N/A 0.00</th><th>8.00 2.42 0.22 0.00</th><th>Yes No N/A Yes</th><th>Yes No Yes Yes</th></th<>	GA Screven 25100005 Reed David W Company 251-	i1-1 32.75137 -81.64007 440,039.70 3,623,905.50 4 41.00 64.32 Minor Active	36.8 2.9 0.0 0.0	24.3 S	3.4 4.4 6.5 4.0	8.00 2.42 N/A 0.00	8.00 2.42 0.22 0.00	Yes No N/A Yes	Yes No Yes Yes
G A Striven 2510000 Synthe Redgrine Concerner 2511 2.7559 4.54.44 4.90.0 556 More Active A	GA Screven 25100008 King America Finishing	32.60403 -81.74023 430,542.80 3,607,632.80 5 41.00 48.18 PSD Active	37.1 36.0 376.6 770.7	23.2 S	3.4 4.4 6.5 4.0	1.60 1.56 N/A 33.29	1.88 1.56 22.62 40.24	Yes Yes N/A No	Yes Yes No No
GA Screen 25(1) Modely Lunder Go 52(1) 32(1) 410001 64.4 Clease	GA Screven 25100009 Sylvania Readymix Concrete 251-	i1-1 32.75559 -81.64431 439,645.30 3,624,375.80 4 41.00 55.65 Minor Active	4.7 4.7 0.0 0.0	23.9 S	3.4 4.4 6.5 4.0	8.00 2.42 N/A 0.00	8.00 2.42 0.22 0.00	Yes No N/A Yes	Yes No Yes Yes
GA Screene Streene	GA Screven 25100010 Mobley Lumber Co	32.71352 -81.60031 443,740.60 3,619,687.80 4 41.00 64.43 Closed						4	
G A Screwn 25100025 Biascon Gin Company Jass 23843 #166054 437 3750 Jass 24844 #100 3613 Minor Active 105 7.85 0.0 0.0 22.00 S 3.4 4.4 6.5 4.0 1.85 0.12 0.00 0.00 Ves es	GA Screven 25100024 Cargill Peanut Products 251	11-1 32.75257 -81.64149 439,907.40 3,624,039.40 4 41.00 60.97 Minor Active	95.0 39.9 0.0 0.0	24.8 S	3.4 4.4 6.5 4.0	8.00 2.42 N/A 0.00	8.00 2.42 0.22 0.00	Yes No N/A Yes	Yes No Yes Yes
GA Screven 250002 Screven Screven	GA Screven 25100026 Bascom Gin Company	32,83943 -81,66904 437,387.50 3,633,684.60 3 41.00 36.13 Minor Active	35.9 2.9 0.0 0.0	23.0 S		1.56 0.12 N/A 0.00	1.83 0.12 0.00 0.00	Yes Yes N/A Yes	Yes Yes Yes Yes
Sold vertice Sold vertice<	GA Screven 25100027 Screven Gin Company	32.80533 -81.66035 438,177.20 3,629,899.20 3 41.00 39.19 MINOF ACTIVE	107.7 8.6 0.0 0.0	22.8 5		4.73 0.38 N/A 0.00	5.56 0.38 0.00 0.00	Yes Yes N/A Yes	Yes Yes Yes Yes
Origo Concernen Die Greenen Die Greenen <thdie greenen<="" th=""></thdie>	GA Screven 25100029 Site Woodclin Gate Compressor Station	32 93039 -81 70911 433 705 20 3 643 793 00 2 41 00 64 32 Minor Active		25.5 \$	34 44 65 40	0.00 0.00 N/A 0.00	0.00 0.00 0.00 0.00	Yes Yes N/A Yes	Yes Yes Yes Yes
GA Screen 2510032 McBride's Hill Paint & Body Shop 2511 3.274620 -81.64550 439,527.50 3.623,335.50 4 41.00 7.2.9 Minor Active 0.0 0.0 0.0 2.1.0 3.2.4 4.4 6.5 4.0 0.00 2.42 N.A V.A V.A Ves V	GA Screven 25100031 Wallis Paint & Body 251	11-1 32 73160 -81 65440 438 683 70 3 621 722 10 4 41.00 54.91 Minor Active		23.3 S	34 44 65 40	8.00 2.42 N/A 0.00	8.00 2.42 0.22 0.00	Yes No N/A Yes	Yes No Yes Yes
GA Scruen 2510003 Southeastern Aircraft Paining 3.26493 -81.5964 44.066.0 3.612,57.90 4 41.00 53.39 Minor Active 0.0 0.0 1.00 0.00	GA Screven 25100032 McBride's Hill Paint & Body Shop 251-	11-1 32,74620 -81,64550 439,527,50 3,623,335,50 4 41,00 72,39 Minor Active	0.0 0.0 0.0 0.0	23.9 S	3.4 4.4 6.5 4.0	8.00 2.42 N/A 0.00	8.00 2.42 0.22 0.00	Yes No N/A Yes	Yes No Yes Yes
Sc Aiken 0080041 Savanah River Nuclear Solutions SRS 008-6 3.2789 -81.7076 434.02.0 3.682,437.60 1 41.00 40.83 PSD Active 2.07.4 2.492.5 59.4 59.7 5 3.4 4.4 6.5 4.0 NA	GA Screven 25100033 Southeastern Aircraft Painting	32.64934 -81.59641 444,066.10 3,612,570.90 4 41.00 53.39 Minor Active	0.0 0.0 0.0 0.0	31.2 S	3.4 4.4 6.5 4.0	0.00 0.00 N/A 0.00	0.00 0.00 0.00 0.00	Yes Yes N/A Yes	Yes Yes Yes Yes
SC Aiken 00800112 Three Rivers Landfill 008-6 33.26025 -81.73631 43.14.8.9 3.680.380.60 1 41.00 71.90 TV Active 15.4	SC Aiken 00800041 Savannah River Nuclear Solutions SRS 008-	18-6 33.27897 -81.70765 434,102.40 3,682,437.60 1 41.00 40.83 PSD Active	207.4 207.4 2.492.5 59.4	59.7 S	3.4 4.4 6.5 4.0	N/A N/A N/A N/A	N/A N/A N/A N/A	Yes Yes N/A Yes	Yes Yes Yes Yes
SC Alken 008014 Ameresco Federal Solutions 0.08 3.2740 -81.687.4 43.99.9 3.681.87.40 1 41.00 79.32 PSD Active 63.4 59.8 S 3.4 4.4 6.5 4.0 N/A N/A N/A N/A N/A N/A Yes	SC Aiken 00800112 Three Rivers Landfill 008-	18-6 33.26025 -81.73631 431,418.90 3,680,380.60 1 41.00 71.90 TV Active	15.4 15.4 134.5 22.3	57.0 S	3.4 4.4 6.5 4.0	N/A N/A N/A N/A	N/A N/A N/A N/A	Yes Yes N/A Yes	Yes Yes Yes Yes
Sc Allendale 0160006 Clariant Corporation 33,03899 -81,48098 455,084.0 3,655,712.0 2 41,00 49,62 Minor Active 62,5 62,5 87,6 1,2 49,6 S 3,4 4,4 6,5 4,0 1,26 1,26 N/A 0,03 1,35 1,26 2,03 0,03 Yes Yes N/A Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	SC Aiken 00800144 Ameresco Federal Solutions 008-	18-6 33.27405 -81.68724 435,999.50 3,681,879.40 1 41.00 79.32 PSD Active	63.4 63.4 302.1 1,005.1	59.8 S	3.4 4.4 6.5 4.0	N/A N/A N/A N/A	N/A N/A N/A N/A	Yes Yes N/A Yes	Yes Yes Yes Yes
	SC Allendale 01600006 Clariant Corporation	33.03899 -81.48098 455,088.40 3,655,712.20 2 41.00 49.62 Minor Active	62.5 62.5 87.6 1.2	49.6 S	3.4 4.4 6.5 4.0	1.26 1.26 N/A 0.03	1.35 1.26 2.03 0.03	Yes Yes N/A Yes	Yes Yes Yes Yes
SC Barnwell 03000036 Savannah River Nuclear Solutions SRS Area-D 33.20253 -81.73970 431,057.80 3,673,983.50 1 41.00 39.31 PSD Active 707.8 707.8 2,794.9 9,664.0 50.8 S 3.4 4.4 6.5 4.0 13.94 13.94 NA 190.35 14.94 13.94 63.13 206.63 Yes No N/A No Yes No No No	SC Barnwell 03000036 Savannah River Nuclear Solutions SRS Area-D	33.20253 -81.73970 431,057.80 3,673,983.50 1 41.00 39.31 PSD Active	707.8 707.8 2,794.9 9,664.0	50.8 S	3.4 4.4 6.5 4.0	13.94 13.94 N/A 190.35	14.94 13.94 63.13 206.63	Yes No N/A No	Yes No No No

Table 2. Refined PM_{2.5} Screening using AERMOD

АВС	D	E F	G	н	1 J	Potential emissions listed for each pollutant in Column K are facility-wide and are based on maximum hourly allowable emissions and do not take into account annualized emission limitations (e.g., SM sources will be >100 tpy) K	Distance (d) codes for county-bounda postal code, and source-to-sou L	s are "CB" ry, "Z" for l "S" for urce M	SIA listed in Column N for PM _{2.5} is the maximum for the 24- hour and annual averaging periods based on the form of the NAAQS (5 year average of highest first-highs) N	Q/d screening values listed for PM _{2.5} in Column O are valid for both 24-hr and annual averaging periods and are based on the source-to-source distance listed in Column P Screening values highlighed in red are controlling for the 2-km source groupings listed in Column E O	Facilites, or groups of facilities, highlighted in red exceed 2 for the Q/d screening value and are evaluated using a refined method for screening PM2.5	For facilities, or the "0/d" scree determine the m for the 24-hour. the 4.4 km SL stack with p developmen Q	groups of fact ening value, / naximum sign and annual a A using "Q" e parameters ba to of the 20d s R	cilites, that exceed 2 fo AERMOD was used to ificant impact for PM ₂ veraging periods withi mitted from a default sed on the original screening procedure S T	br b.5. n	Concentratio annual sign facility, or g characteris surface char "Q", default usir Screening val km source g U	ons in Columns fifcant impact fr group of facilitie tics. Columns acteristics. Sig stack paramete stack paramete stack paramete stack paramete stack parameter stack parameter stack parameter stack parameter N	U and N are th or the PM2.5 NAX s, for the airport W and X use th inificant impacts ers, and running efault control op in red are control in red are control bit red by xxxxxC W	e 24-hour and AQS for each t site surface e project site are based on J AERMOD in tions rolling for the 2- odeled source ax) X X	Facilites, or the PM _{2.5} N/ Facilites, or below the l	groups of faciliti IAQS SIL and a impact as groups of faciliti NAAQS que NAQS que	es, highlighted in re ire included in the c ssessment ties, highlighted in t SIL but were incluc ality analyses W	ed exceed cumulative blue were ded in the X
		Geograph	ic Coordinates	UTM NAD83	Coordinates	"Q", Allowable Emissions, (tpy)				"Q/d"	"Q/d" < 2	Scre	eening Stack	Parameters		PM _{2.5} Signit Airpo DNLFF	ficant Impact ort Site C06-110	PM _{2.5} Signit Proje CBOFF	ficant Impact ct Site C06-110	PM _{2.5} Signi Airpo DNLFF	rt Site C06-110	PM _{2.5} Significan Project S CBOFFC0f	it Impact Site 6-110
		2-km		=		DM	"d"		514	54	DM	Release	Exit	Exit Exit Velocity, Diameter,	Modeled Group	24-hour,	Annual,	24-hour,	Annual,			1.0.01	
State County AIRS	Facility Name	Groups Latitude (dd)	Longitude (dd)	East (m)	North (m) Elevation (n) PM _{2.5}	Distance, (km)	Code	PW _{2.5}	PM2.5	P1M _{2.5}	Height, (III)	emp., (K)	(11/5) (11)	ID OF AIRS	(µg/m)	(µg/m)	(µg/m)	(µg/m)	< 1.2 SIL	< 0.3 SIL	< 1.2 SIL	< 0.3 SIL
GA Bulloch 03100002 GA Bulloch 03100003	Jones W K Lumber Co	32.47845	-81.76562	428,060.20	3,593,728.40 51.88 3,573,365.70 40.76	11.2	34.3	5	4.4	0.33	Yes												
GA Bulloch 03100005	W.M. Sheppard Lumber Company	32.35441	-81.65564	438,310.10	3,579,909.40 39.04	83.9	50.9	S	4.4	1.65	Yes												
GA Bulloch 03100011	Reeves Construction Company	031-1 32.37297	-81.84944	420,091.10	3,582,095.00 52.16	52.0	43.6	S	4.4	<u>1.94</u>	Yes	10	0	0.01 1	031000G1	0.48	0.02	0.17	0.01	Yes	Yes	Yes	Yes
GA Bulloch 03100012 GA Bulloch 03100020	Braswell A M Food Co Inc	031-2 32.44965	-81.77966	426,717.60	3,590,545.30 71.91 3,591,349.30 61.71	0.8	36.8	S	4.4	3.84 3.84	No	10	0	0.01 1	031000G2 031000G2	0.91	0.04	0.36	0.02	Yes	Yes	Yes	Yes
GA Bulloch 03100028	Claude Howard Lumber Company	031-2 32.43370	-81.77433	427,205.80	3,588,773.50 60.47	85.6	38.5	S	4.4	3.84	No	10	0	0.01 1	031000G2	0.91	0.04	0.36	0.02	Yes	Yes	Yes	Yes
GA Bulloch 03100031	Evans Concrete	031-2 32.43638	-81.77892	426,776.50	3,589,073.80 63.35	4.7	38.1	S	4.4	3.84	No	10	0	0.01 1	031000G2	0.91	0.04	0.36	0.02	Yes	Yes	Yes	Yes
GA Bulloch 03100036	Robbins Packing Plant	32.46502	-81.79989	424,828.90	3,592,263.20 76.30 3,577,123,90 46,99	0.2	34.7	S	4.4	0.01	Yes												
GA Bulloch 03100043	Bulloch Gin Co	32.32900	-81.66580	437,383.50	3,584,633.10 52.90	5.8	46.4	S	4.4	0.12	Yes												
GA Bulloch 03100044	Briggs & Stratton	031-1 32.38213	-81.84249	420,752.90	3,583,105.30 60.84	23.9	42.7	S	4.4	1.94	Yes	10	0	0.01 1	031000G1	0.48	0.02	0.17	0.01	Yes	Yes	Yes	Yes
GA Bulloch 03100045	Southern States Coop	031-1 32.37365	-81.84689	420,331.60	3,582,168.50 55.50	5.8	43.6	S	4.4	1.94	Yes	10	0	0.01 1	031000G1	0.48	0.02	0.17	0.01	Yes	Yes	Yes	Yes
GA Bulloch 03100046 GA Bulloch 03100047	Northside Cabinets	32.44371 32.50996	-81.72961	431,417.60	3,589,853.60 61.52 3.597.293.50 79.58	20.0	39.1 28.6	s	4.4	0.51	Yes												
GA Bulloch 03100048	Coastal Countertops	031-2 32.45084	-81.77873	426,806.00	3,590,676.60 68.58	20.0	36.8	S	4.4	3.84	No	10	0	0.01 1	031000G2	0.91	0.04	0.36	0.02	Yes	Yes	Yes	Yes
GA Bulloch 03100049	Kitchen Craft Cabinets	32.37690	-81.65749	438,151.40	3,582,403.50 45.37	20.0	48.8	S	4.4	0.41	Yes												
GA Bulloch 03100050	Harry Shurling Cabinets	32.32608	-81.55255	447,993.90	3,576,714.20 32.25	20.0	58.6	S	4.4	N/A	Yes												
GA Bulloch 03100052	Viracon-Statesboro	031-1 32.38179	-81.84621	420,402.70	3,583,070.30 56.73	0.0	40.9	S	4.4	1.94	Yes	10	0	0.01 1	031000G1	0.48	0.02	0.17	0.01	Yes	Yes	Yes	Yes
GA Bulloch 03100055	Ellis Wood Contracting Co.	031-1 32.38238	-81.83594	421,369.20	3,583,128.10 61.07	1.2	42.7	S	4.4	1.94	Yes	10	0	0.01 1	031000G1	0.48	0.02	0.17	0.01	Yes	Yes	Yes	Yes
GA Bulloch 03100056	Franklin Chevrolet	031-2 32.43582	-81.75792	428,750.20	3,588,997.50 68.71	0.0	39.0	S	4.4	3.84	No	10	0	0.01 1	031000G2	0.91	0.04	0.36	0.02	Yes	Yes	Yes	Yes
GA Bulloch 03100057 GA Bulloch 03100058	Rozier Ford Lincoln-Mercury	031-3 32.40883	-81.80655	424,155.90	3,586,039.00 61.84 3 582 593 20 57 79	0.0	40.6	s	4.4	<u>0.00</u> 1 94	Yes	10	0	0.01 1	031000G1	0.48	0.02	0.17	0.01	Yes	Yes	Yes	Yes
GA Bulloch 03100059	South 301 Auto Body Collision Center	031-3 32.41435	-81.80271	424,521.60	3,586,648.20 61.49	0.0	40.0	S	4.4	0.00	Yes												
GA Bulloch 03100060	Valli's Precision Collision	32.38888	-81.74976	429,480.80	3,583,788.60 60.25	0.0	44.1	S	4.4	0.00	Yes				<u> </u>								
GA Bulloch 03100061	Hall's Paint & Body	031-2 32.45704	-81.79031	425,722.70	3,591,371.90 75.82	0.0	35.8	S	4.4	3.84	No	10	0	0.01 1	031000G2	0.91	0.04	0.36	0.02	Yes	Yes	Yes	Yes
GA Burke 03300001	McBride Cin & Farm Supply	33.03768	-82 24755	383 504 90	3,556,155,70 107,33	5.8	44.3	3	4.4	0.13	Ves	10	0	0.01 1	03100032	0.91	0.04	0.30	0.02	165	165	165	165
GA Burke 03300002	Mundy, Inc.	033-1 33.08915	-82.00872	405,862.50	3,661,622.60 77.55	4.7	37.4	s	4.4	<u>3.05</u>	No	10	0	0.01 1	033000G1	<u>0.31</u>	<u>0.02</u>	<u>0.12</u>	<u>0.01</u>	Yes	Yes	Yes	Yes
GA Burke 03300004	Rayonier	033-2 32.81916	-82.23305	384,575.50	3,631,912.50 58.98																		
GA Burke 03300007	Halliburton Industrial Services	033-1 33.09000	-82.01585	405,198.00	3,661,723.30 88.37	004.4	10.7			0.04		40	<u> </u>	0.04 4		0.00	0.40		0.04	N.	Yee	Nee	Ver
GA Burke 03300008	Kelleys Gin	033-3 33.13770	-81.74835	384,215.30	3,666,801.70 62.99 3,631,698.30 55.87	5.8	43.7 32.1	s	4.4	<u>9.84</u> 0.18	Yes	10	0	0.01 1	03300063	<u>3.00</u>	<u>0.10</u>	<u>1.11</u>	<u>0.04</u>	NO	Tes	res	Tes
GA Burke 03300011	Sardis Lumber Company	32.97527	-81.75783	429,186.10	3,648,800.30 72.81																		
GA Burke 03300013	Waynesboro Concrete Products Co.	033-1 33.09876	-82.00840	405,902.60	3,662,687.80 88.85	4.7	38.2	S	4.4	3.05	No	10	0	0.01 1	033000G1	0.31	0.02	0.12	0.01	Yes	Yes	Yes	Yes
GA Burke 03300019	Lamb C B Lumber Co.	033-2 32.81724	-82.24078	383,849.40	3,631,708.10 56.74 3,662,263,90 95.57	47	39.3	s	4.4	3.05	No	10	0	0.01 1	03300001	0.31	0.02	0.12	0.01	Vec	Vec	Vec	Voc
GA Burke 03300021	McKinney Wholesale Co	033-1 33.09541	-82.00561	406,159.40	3,662,313.90 87.36	10.2	38.8	s	4.4	0.00	Yes	10		0.01 1	05500001	0.51	0.02	0.12	0.01	163	163	165	165
GA Burke 03300025	Perfection-Schwank	033-1 33.10214	-82.00215	406,489.40	3,663,056.90 97.88																		
GA Burke 03300027	Southern States Cooperative (Gold Kist Grain)	33.08724	-82.01186	405,567.40	3,661,413.70 82.20			-															
GA Burke 03300028 GA Burke 03300029	Collins Gin Farmers Gin Co.	033-1 33.08724	-82.05036	401,904.10	3,654,438.80 85.35 3,661,413.70 82.20	3.4	31.8	s s	4.4	0.11 3.05	Yes	10	0	0.01 1	033000G1	0.31	0.02	0.12	0.01	Yes	Yes	Yes	Yes
GA Burke 03300030	Vogtle Electric Generating Plant	033-3 33.14203	-81.76176	428,952.90	3,667,290.80 63.98	145.8	43.7	S	4.4	9.84	No	10	0	0.01 1	033000G3	3.00	0.10	1.11	0.04	No	Yes	Yes	Yes
GA Burke 03300031	Midville Warehouse	32.82952	-82.22580	385,267.50	3,633,053.20 68.61										1								
GA Burke 03300034	Fiamm Technologies	033-1 33.10511	-82.01164	405,607.00	3,663,394.70 87.79 3,661,986,90 77.40	17.8	39.2	S	4.4	3.05	No	10	0	0.01 1	033000G1	0.31	0.02	0.12	0.01	Yes	Yes	Yes	Yes
GA Burke 03300038	ASTA	033-1 33.10395	-82.01750	405,059.00	3,663,271.40 88.00	0.0	39.2	S	4.4	3.05	No	10	0	0.01 1	033000G1	0.31	0.02	0.12	0.01	Yes	Yes	Yes	Yes
GA Burke 03300039	Shaw Group, Inc. (for Vogtle Units 3 & 4)	033-3 33.14203	-81.76176	428,952.90	3,667,290.80 63.98																		
GA Burke 03300040	Burke County Concrete #29	33.16328	-81.80786	424,671.40	3,669,678.90 75.19	99.4	45.0	S	4.4	2.21	No	10	0	0.01 1	03300040	0.70	0.02	0.43	0.01	Yes	Yes	Yes	Yes
GA BURKE 03300041	Burke County Body Shop	033-1 33.08626	-82.01071	405,673.70	3,304.00 81.12	0.0	36.9	5	4.4	3.05	NO	10	U	0.01 1	033000G1	0.31	0.02	0.12	0.01	res	res	res	res

Table 2. Refined PM_{2.5} Screening using AERMOD

					Π	П						IT
			Potential emissions									1
			listed for each			Q/d screening values listed for				Concentrations in	n Columns U and N are the 24-hour and	1
			pollutant in Column K are facility-wide and		SIA listed in Column	PM _{2.5} in Column O are valid for both 24-hr and annual				facility, or group	o of facilities, for the airport site surface	1
			are based on		N for $PM_{2.5}$ is the	averaging periods and are	Facilites, or groups of			characteristics.	Columns W and X use the project site	(I
			maximum hourly allowable emissions		maximum for the 24- bour and annual	based on the source-to-source distance listed in Column P	facilities, highlighted in red exceed 2 for	For facilities, or groups of facilites, that exceed 2 for the "O/d" screening value. AERMOD was used to		surface character	ristics. Significant impacts are based on	Facilites, or groups of facilities, highlighted in red exceed the PMor NAAQS SIL and are included in the cumulative
			and do not take into		averaging periods		the Q/d screening	determine the maximum significant impact for PM _{2.5}		using re	egulatory default control options	impact assessment
			account annualized	Distance (d) codes are "CB" for county boundary, "7" for	based on the form of	Screening values highlighed in red are controlling for the 2-km	value and are	for the 24-hour and annual averaging periods within		Screeping values	highlighed in red are controlling for the 2	Expilitor, or groups of facilities, highlighted in blue work
			(e.g., SM sources will	postal code, and "S" for	(5 year average of	source groupings listed in	refined method for	stack with parameters based on the original		km source groupi	ings listed in Column E (modeled source	below the PM2.5 NAAQS SIL but were included in the
			be >100 tpy)	source-to-source	highest first-highs)	Column E	screening	development of the 20d screening procedure		group	os are denoted by xxxxxGx)	NAAQS quality analyses
A B C	D	E F G H I J	K "O"	L M	N	0	PM2.5	Q R S T		U PMos Significan	N W X	U N W X PMos Significant Impact PMos Significant Impact
			Allowable							Airport Si	te Project Site	Airport Site Project Site
		Geographic Coordinates UTM NAD83 Coordinates	Emissions, (tpy)			"Q/d"	"Q/d" < 2	Screening Stack Parameters	Madalad	DNLFFC06	-110 CBOFFC06-110	DNLFFC06-110 CBOFFC06-110
		2-km		"d"				Release Exit Velocity, Diameter,	Group	24-hour,	Annual, 24-hour, Annual,	1
State County AIRS	Facility Name	Groups Latitude (dd) Longitude (dd) East (m) North (m) Elevation (m)	PM _{2.5}	Distance, (km) Code	PM _{2.5}	PM _{2.5}	PM _{2.5}	Height, (m) Temp., (K) (m/s) (m)	ID or AIRS	(µg/m ³)	(μg/m ³) (μg/m ³) (μg/m ³)	< 1.2 SIL < 0.3 SIL < 1.2 SIL < 0.3 SIL
GA Candler 04300003	Candler Gin & Warehouse	043-1 32.39682 -82.05726 400.566.20 3,584.913.10 63.73	5.2	43.5 S	4.4	0.70	Yes					
GA Candler 04300004	Metter Concrete Products Co	043-1 32,39976 -82,05162 401,099,90 3,585,233,80 60,52	3.4	43.1 S	4.4	0.70	Yes					
GA Candler 04300008	Allied Metals	043-1 32 40024 -82 03399 402 758 50 3 585 270 90 63 82	13.0	42.3 S	4.4	0.70	Yes					
GA Candler 04300009	Growers Gin & Warehouse	043-1 32 39885 -82 04202 402 001 80 3 585 124 10 66 84	67	42.7 S	44	0.70	Yes					
GA Candler 04300011	Moore Wallace Inc		14	43.0 9	т. т Д Д	0.70	Vee					
			1.4	10.0 0								
GA Effingham 10300013	GA Transmission Corp	32.49562 -81.43150 459,463.10 3,595,455.60 39.34	3.7	53.0 S	4.4	0.07	Yes					6
GA Emanuel 10700010	Swainsboro Concrete Products	107-1 32.59604 -82.33098 375,097.10 3,607,287.00 95.70	3.4	44.6 S	4.4	<u>0.86</u>	Yes					
GA Emanuel 10700011	Rayonier Wood Products Swainsboro	32.50967 -82.33176 374,904.20 3,597,712.50 76.17	44.1	49.4 S	4.4	0.89	Yes					
GA Emanuel 10700013	Lifeline Industries	107-1 32.59880 -82.32950 375,239.90 3,607,591.20 89.22	14.3	44.4 S	4.4	0.86	Yes					l
GA Emanuel 10700016	American Yard Product	107-2 32.58230 -82.31788 376,307.70 3,605,748.40 93.57										
GA Emanuel 10700017	Rolander Bros Construction Co	32.81042 -82.39569 369,337.00 3,631,132.80 75.31										
GA Emanuel 10700019	American Steel Product	107-1 32.60209 -82.33565 374,667.30 3,607,963.20 96.42	0.2	44.7 S	4.4	0.86	Yes					
GA Emanuel 10700020	Swainsboro Electro Plating	32.56510 -82.33198 374,960.40 3,603,858.00 76.83										
GA Emanuel 10700021	Cabinet Masters Inc	107-2 32.57888 -82.31217 376,839.00 3,605,362.60 92.80	20.0	43.9 S	4.4	0.00	Yes					
GA Emanuel 10700022	Boulineau's Cabinet Shop	107-1 32.59706 -82.33167 375,033.80 3,607,400.90 95.16	20.0	44.6	4.4	0.86	Yes					
GA Emanuel 10700025	Crider Poultry	32,42792 -82,21256 385,998,70 3,588,515,90 78,95	1.8	47.4 S	4.4	0.04	Yes					
0.4 1-# 40000007	The same King Open		10	50.0		0.04						
GA Jefferson 16300007		33.00277 -82.38831 370,308.70 3,652,450.00 99.26	1.9	52.8 5	4.4	0.04	Yes			1.01		
GA Jefferson 16300008	Farmers Gin & Storage		12.7	47.7 S	4.4	2.69	No		163000G1	<u>1.01</u>	0.04 0.31 0.01	Yes Yes Yes Yes
GA Jefferson 16300012	Battle Lumber Company		88.3	47.3 S	4.4	2.69	No	10 0 0.01 1	163000G1	1.01	0.04 0.31 0.01	Yes Yes Yes Yes
GA Jefferson 16300027	Fulghum Industries		26.2	48.1 S	4.4	2.69	NO	10 0 0.01 1	163000G1	1.01	0.04 0.31 0.01	Yes Yes Yes Yes
GA Jefferson 16300033	Melvin Dye Body Shop	33.02467 -82.34402 374,477.50 3,654,824.30 95.64	0.0	50.4 S	4.4	0.00	Yes					/
GA Jenkins 16500006	Thompson Company	32.80378 -81.94924 411,128.31 3,629,933.18 62.31										J
GA Jenkins 16500011	MI Metals	32.80250 -81.91806 414,046.60 3,629,765.50 57.71										J
GA Jenkins Greenfield	CARBO Ceramics Millen Facility	32.76645 -81.89947 415,753.10 3,625,754.00 65.53	129.4				No					
GA Screven 25100002	Sylvania Yarn Systems	251-1 32.75274 -81.65301 438,828.40 3,624,064.80 58.22										
GA Screven 25100003	Feed Seed & Farm Supply	251-1 32.75446 -81.64802 439,297.00 3,624,252.60 55.08	8.8	23.6 S	4.4	2.42	No	10 0 0.01 1	251000G1	<u>1.12</u>	<u>0.04</u> <u>0.99</u> <u>0.</u> 03	Yes Yes Yes Yes
GA Screven 25100004	Koyo Bearings USA	32.75770 -81.61908 442,010.10 3,624,595.60 55.77	56.9	26.3 S	4.4	2.17	No	10 0 0.01 1	25100004	0.92	0.03 0.88 0.02	Yes Yes Yes Yes
GA Screven 25100005	Reed David W Company	251-1 32.75137 -81.64007 440,039.70 3.623,905.50 64.32	2.9	24.3 S	4.4	2.42	No	10 0 0.01 1	251000G1	1.12	0.04 0.99 0.03	Yes Yes Yes Yes
GA Screven 25100008	King America Finishing	32.60403 -81.74023 430,542.80 3,607,632.80 48.18	36.0	23.2 S	4.4	1.56	Yes					
GA Screven 25100009	Sylvania Readvmix Concrete	251-1 32.75559 -81.64431 439.645.30 3.624.375.80 55.65	4.7	23.9 S	4.4	2.42	No	10 0 0.01 1	251000G1	1.12	0.04 0.99 0.03	Yes Yes Yes Yes
GA Screven 25100010	Mobley Lumber Co	32.71352 -81.60031 443.740.60 3.619.687.80 64.43								_		
GA Screven 25100024	Cargill Peanut Products	251-1 32.75257 -81.64149 439.907.40 3.624.039.40 60.97	39.9	24.8 S	4.4	2.42	No	10 0 0.01 1	251000G1	1.12	0.04 0.99 0.03	Yes Yes Yes Yes
GA Screven 25100024	Bascom Gin Company	32,83943 -81,66904 437,387,50 3,633,684,60 36,13	2.9	23.0 5	4.4	0.12	Yes					100 100
GA Screven 25100027	Screven Gin Company	32 80533 -81 66035 438 177 20 3 620 800 20 30 10	86	22.8 9	4.4	0.38	Yee					
GA Screven 25100027	SNG Woodcliff Gate Compressor Station	32 75076 -81 77416 427 477 60 3 623 021 80 95 00	1.6	11.8 9	4.4	0.14	Vac					
GA Screven 25100029	Mickey Loyatt Body Shop	32 03030 _84 70014 _423 705 20 _2 642 702 00 _64 20	0.0	25.5 9	 A A	0.00	Vae					
GA Screven 25100030	Wollie Point & Ports	251.1 32 73160 _94 65440 439 693 70 3 634 703 40 54 64	0.0	20.0 5	4.4	0.00	res	10 0 0.01 1	25100004	1.10	0.04 0.00 0.02	Ves Ves Ves V
GA Screven 25100031	MaBridde Hill Delet 2 Delet 2	201-1 32.73100 -01.00440 438,083.70 3,021,722.10 54.91	0.0	23.3 8	4.4	2.42	NO NO		251000G1	1.12	0.04 0.99 0.03	Tes Tes Yes Yes
GA Screven 25100032	McBride's Hill Paint & Body Shop	251-1 32.74620 -81.64550 439,527.50 3,623,335.50 72.39	0.0	23.9 S	4.4	2.42	No	0.01 1 0.01	251000G1	1.12	0.04 0.99 0.03	res res res res
GA Screven 25100033	Southeastern Aircraft Painting	32.64934 -81.59641 444,066.10 3,612,570.90 53.39	0.0	31.2 S	4.4	0.00	Yes					8
SC Aiken 00800041	Savannah River Nuclear Solutions SRS	008-6 33.27897 -81.70765 434,102.40 3,682,437.60 40.83	207.4	59.7 S	4.4	<u>N/A</u>	Yes					J
SC Aiken 00800112	Three Rivers Landfill	008-6 33.26025 -81.73631 431,418.90 3,680,380.60 71.90	15.4	57.0 S	4.4	N/A	Yes					
SC Aiken 00800144	Ameresco Federal Solutions	008-6 33.27405 -81.68724 435,999.50 3,681,879.40 79.32	63.4	59.8 S	4.4	N/A	Yes					1
SC Allendale 01600006	Clariant Corporation	33.03899 -81.48098 455,088.40 3.655.712.20 49.62	62.5	49.6 S	4.4	1.26	Yes					
SC Permuell 02000000	Sayannah River Nuclear Selutions ODC A		707.0	50.9	4.4	12.04	Ale.	10 0 0.01 1	03000036	3 71	0.11 1.74 0.05	No. You He You
C Damwell 03000036	Gavarinan river Nuclear Solutions SKS Area	-01./39/U 431,037.8U 3,6/3,983.5U 39.31	101.0	JU.0 S	4.4	13.94	NO	io v v.01 1	03000036	3./1	0.11 1.74 0.05	internet int

A	ВС	D	E F	G	н і	J K	L	M N O	P Q	R S	T U	v w	х ү	Z	AA BB CC	DD	EE FF GG HH II JJ KK
	Unit Description				Operating L	Levels used for	Maximum Al	Ilowable Emissions	Nitro	ogen Oxides (NO _x)	Su	Ifur Dioxide (SO ₂)		Particulate Ma	atter <10 mm (PM ₁₀)		Particulate Matter <2.5 mm (PM _{2.5})
Modeled Source ID	Permitted Source ID Source Description	Control Device Description	Construction Date Modification Date	d Maximum Hourly B Processing Weight Rate	www.wa.ximum Rated Reat Input Aaximum Rated da Brake Horsepower	Maximum Hourly Fuel Consumption An	Fuel Type	Actual Echauat Actual Echauat Dry Sandard Echanat Dry Sandard Echanata Dry Sandard Echanata Dry Sandard Echanata	Maximum Alforebé Emission Limitation of Potential-to-Emit sti	e e e e e e e e e e e e e e e e e e e	Maximum Altowable Emission Limitation or Potential-to-Emit stu	e e cossie u see W Banin bhr	filterable units	Maximum Allowable Emission Lim Basis	itation or Potential-to-Emit condensable units Basis	편 Mass Emission Rate 것 (sum of filterable)	Maximum Allowable Emission Limitation or Potential-to-Emit W 101
<u>-</u>	Georgia - Bulloch County																
0310000201	AIR'S 03100002 Tillman & Deal Farm Supply Inc 1 Grain Dryer Seoraia - Bulloch County AIRS 03100003 Jones W K Lumber Co Jones W K Lumber Company is listed as a lumber and saw Seoraia - Bulloch County AIRS 03100005 W.M. Sheppard Lumber Company	None wmill. No application files could b	1976 De found for this facility	19.20	10.00	109 gph	Propane	3/30/1982	13 lb/mgal	1.42E+00 AP42 1.5-1	1.5 lb/mgal	AP42 1.5-1 1.84E-01 15 gr/mcf	0.75 lb/ton	AP42 9.9.1-1	0.5 lb/mgal AP42 1.5-1	1.45E+01	0.13 lb/ton AP42 9.9.1-1 0.5 lb/mgal AP42 1.5-1 2.55E+00
										098-022394A-1K098 5.58 thousand board				098-022394B-1K098 5.58 thousand board feet			
03100005K4	DK04 Direct-fired Lumber Drying Kiln #4	None	1998	13.93	25.00	5,556 pph	Green Sawdust	#19736	0.135 lb/mbf	feet (mbf) per hour 7.53E-01 #19736	0.025 lb/mmBtu	6.25E-01 AP42 1.6-2	0.384 lb/mbf	(mbf) per hour #19736	included in NCASI emission facto	or 2.14E+00	Same as PM10 2.14E+00
										NCASI 098-022394A-1K098				NCASI 098-022394B-1K098			
021000051/5	DK05 Direct fired Lumber Davies Kils #5	Nene	1000	12.02	25.00	5 550 pph	Green	#10726	0.125 lb/mbf	5.58 thousand board feet (mbf) per hour	0.025 lk/mmBtu	6 255 01 AD42 1 6 2	0.294 lb/mbf	5.58 thousand board feet (mbf) per hour	included in NCASI emission factor	2.145.00	Same as DM40 - 2.445-00
03100005K5	Georgia - Bulloch County	None	1999	13.93	25.00	5,556 ppn	Sawdust	#19736	0.135 10/1101	7.532-01 #19736	0.025 ID/IIIIIBIU	0.25E-01 AP42 1.0-2	0.384 10/1101	#19730	Included in NCASI emission facto	DI 2.14E+00	Same as PWITU 2.14E+0
4	AIRS 03100011 Reeves Construction Company Plant 10	2						#19283 and 8/10/2010 stack				S-01-0 2.2.a 1.5% sulfur max of 50% or 0.1		S-01-0 5.a.			
0310001101	Hot Mix Asphalt Plant Dryer Stack Georgia - Bulloch County	Baghouse	unk	250.00	100.00	714 gph	No. 2	37,092 20,512 test	0.055 lb/ton	1.38E+01 AP42 11.1-7	0.51 lb/ton	1.27E+02 lb/ton sulfur retained	0.04 gr/dsct	NSPST	0.0194 lb/ton AP42 11.1-3	1.19E+01	Same as PM10 1.19E+0
E E	AIRS 03100012 Emerson Electric Co Emerson Electric Company is a manufacturer of electric me	etering equipment. On June 20, 2	2000, Emerson provid	 led GA EPD noti	ification of the shut	down of its rotation	nal molding opera	ations (#12160). According to a January 15	5, 1990 letter, prior to ins	stallation of the rotational molding oper	ations, the facility only o	pperated 2 exhaust stacks for spray pai	int booths.				
1	This would indicate that the 3.6 mmBtuhr natural gas-fired b Since the facility is a minor PSD source and was originally o	boilers (Source Code 5 and 6) in constructed prior to the major so	stalled in 1955 and au ource baselines dates,	thorized by the . emission change	June 9, 1976 permi es at this facility to	it to operate are no do affect the availa	longer in operati ble increments.	ion.									
H	For the NAAQS, this source is assumed to be included in the	he background air quality concen	ntrations.	<u> </u>													
4	AIRS 03100020 Braswell A M Food Co Inc														AD42122		0.067 DM2 5/DM ratio from CARR/SCAOMD CEDAIRS Table A
0310002001	1-1 200-hp Fitz Gibbon Boiler	None	1969		6.70	48 gph	No. 2	10/19/1973	20 lb/mgal	9.56E-01 AP42 1.3-1	0.5 % sulfur	3.40E+00 AP42 1.3-1	2 lb/mgal	AP42 1.3-1	1.3 lb/mgal Total CPM	1.58E-01	Liquid fuel except residual oil 1.53E-01
0310002002	1-2 100-hp Titusville Boiler	None	1964		3.35	3,256 scfh	Nat. Gas	10/19/1973	100 lb/mmscf	3.26E-01 AP42 1.4-1	0.6 lb/mmscf	1.95E-03 AP42 1.4-2	1.9 lb/mmsc	f AP42 1.4-2	5.7 lb/mmscf AP42 1.4-2	2.47E-02	Same as PM10 2.47E-02
	AIRS 03100028 Claude Howard Lumber Company						Dry Wood			NCASI 098-022394A-1K098 6.28 thousand board feet (mbf) per hour				NCASI 098-022394B-1K098 6.28 thousand board feet (mbf) per hour			
03100028K1	DFK1 Direct-fired Lumber Drying Kiln #1	None	1980	7.90	18.00	2,308 pph	Sawdust	#17314	0.135 lb/mbf	8.48E-01 #17314 NCASI 098-022394A-1K098 6.28 thousand board	0.025 lb/mmBtu	4.50E-01 AP42 1.6-2	0.384 lb/mbf	#17314 NCASI 098-022394B-1K098 6.28 thousand board feet	included in NCASI emission facto	or 2.41E+00	Same as PM10 2.41E+00
03100028K2	DFK2 Direct-fired Lumber Drying Kiln #2	None	1980	7.90	20.00	4,444 pph	Green Sawdust	#17314	0.135 lb/mbf	feet (mbf) per hour 8.48E-01 #17314	0.025 lb/mmBtu	5.00E-01 AP42 1.6-2	0.384 lb/mbf	(mbf) per hour #17314	included in NCASI emission factor	or 2.41E+00	Same as PM10 2.41E+00
<u>q</u>	Georgia - Bulloch County AIRS 03100031 Evans Concrete																
E	Evans Concrete is a Permit-by-Rule (PBR) dry batch ready The facility will not have a significant concentration gradient	r mix (truck) concrete plant. Appl t for the PM10 and PM2.5 NAAQ	lication files indicate th QS and increments bas	at the facility is a ed on 20*D with	a source of particul 12-km grouping.	late matter only.											
H	For the NAAQS, this source is assumed to be included in the Georgia - Bulloch County	he background air quality concen	ntrations.														
1	AIRS 03100036 Robbins Packing Co																
0310003602	2 80-hp Boiler	None	1949		3.35	3,256 scfh	Nat. Gas	10/21/1974	100 lb/mmscf	3.26E-01 AP42 1.4-1	0.6 lb/mmscf	1.95E-03 AP42 1.4-2	1.9 lb/mmsc	f AP42 1.4-2	5.7 lb/mmscf AP42 1.4-2	2.47E-02	Same as PM10 2.47E-02
0310003603	3 100-hp Boiler Georgia - Bulloch County	None	1949		3.35	3,256 scfh	Nat. Gas	10/21/1974	100 lb/mmscf	3.26E-01 AP42 1.4-1	0.6 lb/mmscf	1.95E-03 AP42 1.4-2	1.9 lb/mmsc	f AP42 1.4-2	5.7 lb/mmscf AP42 1.4-2	2.47E-02	Same as PM10 2.47E-02
1	AIRS 03100042 Denmark Feed	application files sould be found i	for this focility														
<u> </u>	Service no air quality permit for the facility could be found in the Since no air quality permit for the facility could be found in the since no air quality permit for the facility could be found in the since no air quality permit for the facility could be found in the since no air quality permit for the facility could be found in the since no air quality permit for the facility could be found in the since no air quality permit for the facility could be found in the since no air quality permit for the facility could be found in the since no air quality permit for the facility could be found in the since no air quality permit for the facility could be found in the since no air quality permit for the facility could be found in the since no air quality permit for the facility could be found in the since no air quality permit for the facility could be found in the since no air quality permit for the facility could be found in the since no air quality permit for the facility could be found in the since no air quality permit for the facility could be found in the since no air quality permit for the facility could be found in the since no air quality permit for the facility could be found in the since no air quality permit for the facility could be found in the since no air quality permit for the facility could be found in the since no air quality permit for the facility could be found in the since no air quality permit for the facility could be found in the since no air quality permit for the facility could be since no air quality permit for the facility for the since no air quality permit for the facility for the since no air quality permit for the facility for the since no air quality for the since no air qua	plication files could be found for t the application files, particulate m	this facility. natter emissions are a	ssumed to be ba	ased on 120,000 sta	andard bales of cot	ton per year (39	1-3-103(11)(b)6.(i)(ll)).									
, i i i i i i i i i i i i i i i i i i i	i ne raciiity will not have a significant concentration gradient For all NAAQS, this source is assumed to be included in the	t for the PM10 and PM2.5 NAAQ e background air quality concent	and increments bas trations.	ed on 20*D with	ı ∠-ĸm grouping.												
<u>0</u>	<u>Georgia - Bulloch County</u> AIRS 03100044 Briggs & Stratton																
031000441B	P01 Aluminum Melting Tower P01B Aluminum Melting Furnace		1995 2001	Allowable emi	issions determined	from October 3, 20	005 application #	16438; BriggsInput2000.xls		3.70E+00 #16438		1.00E-02 #16438		#16438	#16438	1.02E+00	Same as PM10 1.02E+00
0310004402	P02 Die Casting Machines		1995							8.00E-02 #16438		1.70E-01 #16438		#16438	#16438	4.17E+00	Same as PM10 4.17E+00
0310004403	P03 Landis Grinders		unk	" <u>Disc</u>	charges inside build	ding (emissions co	nsidered zero); N	March 27, 2006 EPD memo		0.00E+00 #16438		0.00E+00 #16438		#16438	#16438	0.00E+00	Same as PM10 0.00E+00
031000445A	P05A Stress Relief Oven	Dust Collector	1995	<u> </u>						6.10E-01 #16438		2.40E-03 #16438		#16438	#16438	3.00E-02	Same as PM10 3.00E-02
031000446A	P06A Four-stage Aqueous Parts Washer		1995	<u> </u>						3.10E-01 #16438		1.20E-03 #16438		#16438	#16438	2.00E-02	Same as PM10 2.00E-02
0310004407	P07 Engine Testing Stations		1995							4.80E-03 #16438		3.00E-02 #16438		#16438	#16438	4.00E-02	Same as PM10 4.00E-02
0310004411	P11 Dynamometer Testing Stands		1995							1.20E-01 #16438		1.00E-02 #16438		#16438	#16438	1.00E-02	Same as PM10 1.00E-02
0310004412	P12 Epxoy Drying Ovens		2004							3.10E-01 #16438		1.20E-03 #16438		#16438	#16438	2.00E-02	Same as PM10 2.00E-02
0310004413	P13 Outdoor Endurance Test Stands		2005		· · · · ·					1.20E-01 #16438		1.00E-02 #16438		#16438	#16438	1.00E-02	Same as PM10 1.00E-02
03100044B1	B10A Boiler Georgia - Bulloch County		1995	<u> </u>						2.56E+00 #16438		1.00E-02 #16438		#16438	#16438	1.30E-01	Same as PM10 1.30E-01
	AIRS 03100045 Southern States Coop Southern States Cooperative is a Permit-by-Rule (PBR) cot The facility will not have a significant concentration graded for all MAOS this source is accurate to be included in the	tton ginning operation. Applicatio t for the PM10 and PM2.5 NAAQ	ion files indicate that th QS and increments bas trations	e facility is a sou ed on 20*D with	urce of particulate r 2-km grouping.	matter only.											
2	Georgia - Bulloch County AIRS 03100046 Custom Cabinete	o saonground an quanty colloent															
<u>-</u>									11		11		- 11				

А	ВС	D	E F	G H I	J K	L M I	N O	P Q	R S	T U	V W	X Y Z	AA
	Unit Description			Operating	Levels used for	Maximum Allowable Emis	ssions	Nitrog	gen Oxides (NO _x)	Sul	fur Dioxide (SO ₂)	Particu	late Matter <10
Modele Source II	d Permitted D Source ID Source Description	Control Device Description	Construction Date Modification Date	di Maximum Hourly Se Processang Vieght Rate Bezimme Ratect Bezimmum Ratect Maximum Ratect Bestect	Maximum Hourly Fuel Consumption	Einel Town and Market	and the second s	Mazimum Alovable Emission Limitation or Noerride b-Emit	oppus underson Rates	Maximum Alovable Emission Linhadon or Poeride b-Emit un	e generation Vale Second Market Mark	Maximum Allowabie En fiterable units. Basis	nission Limitation or Pr
	Custom Cabinets is a wood furniture manufacturer and is P Since the facility does not have an air quality permit, particu The facility will not have a significant concentration gradient for all MAOS, this owned a superior do to be isolated in the	Permit-by-Rule (PBR) coating and glu ulate matter emissions are assumed i at for the PM10 and PM2.5 NAAQS are because and are a plus	ing operation. Appl to be less than 20 t nd increments base	lication files (August 28, 1996; 07 py (the SIP permitting threshold f ed on 20*D with 2-km grouping.	7-WFM00130) indica for non-exempt sour	ate that the facility is a source of v rce activities)	VOC/HAP (area source) o	only with no quantifiable pa	articulate matter emissions.		LUTTI		Condensa
	For all NAACS, this source is assume to be included in the Georgia - Bulloch County AIRS 03100047 Northside Cabinets Northside Cabinets is a wood fumiture manufacturer and is Since the facility does not have an air quality permit, particu The facility will not have a significant concentration gradient For all NAACS, this source is assumed to be included in the Georgia - Bulloch County AIRS 03100048 Coastal Counter Tops Coastal Counter Tops is a manufacture of laminate counte Since the facility does not have an air quality permit, particu	The background air quality concentration s Permit-by-Rule (PBR) coating and g ulate matter emissions are assumed in the tor the PM10 and PM2.5 NAAOS are background air quality concentration are tops and is Permit-by-Rule (PBR) of ulate matter emissions are assumed in	ns. luing operation. Ap to be less than 20 tr nd increments base ns. coating and gluing o to be less than 20 tr	oplication files (September 11, 19 py (the SIP permitting threshold I d on 20°D with 2-km grouping. peration. Application files (Augu py (the SIP permitting threshold I	996; 07-WFM00296) for non-exempt sour ist 26, 1996; 07-WFI for non-exempt sour	indicate that the facility is a sour ce activities) M00641) indicate that the facility i rce activities)	ce of VOC/HAP (area sou	irce) only with no quantifia	ble particulate matter emissions. quantifiable particulate matter emiss	ions.			
	The facility will not have a significant concentration gradient For all NAAQS, this source is assumed to be included in the	nt for the PM10 and PM2.5 NAAQS ar ne background air quality concentratio	nd increments base	ed on 20*D with 2-km grouping.									
	Georgia - Bulloch County <u>AIRS 03100049 Kitchen Craft</u> Kitchen Craft is a wood furniture manufacturer and is Permit Since the facility does not have an air quality permit, particu The facility will not have a significant concentration gradient For all MAQS this source is easestmed to the included in the	nit-by-Rule (PBR) coating and gluing o ulate matter emissions are assumed at for the PM10 and PM2.5 NAAQS an a background air gualith concentration	operation. Applicati to be less than 20 t nd increments base	ion files (September 26, 1996; 07 py (the SIP permitting threshold f d on 20*D with 2-km grouping.	7-WFM00238) indica for non-exempt sour	ate that the facility is a source of V ce activities)	/OC/HAP (area source) c	nly with no quantifiable pa	nticulate matter emissions.				
	Georgia - Bulloch County AIRS 03100050 Harry Shurling Cabinets Harry Shurling Cabinets is a wood furniture manufacturer an Since the facility does not have an air quality permit, particu The facility will not have a significant concentration gradient For all INAAOS, this source is assumed to be included in the Georgia - Bulloch County	and is Permit-by-Rule (PBR) coating a ulate matter emissions are assumed in th for the PM10 and PM2.5 NAAOS ar te background air quality concentratio	and gluing operation to be less than 20 t nd increments base ns.	 Application files (October 24, py (the SIP permitting threshold I d on 20*D with 2-km grouping. 	1996; 07-WFM0103 for non-exempt sour	3) indicate that the facility is a sou ce activities)	urce of VOC/HAP (area s	ource) only with no quantii	fiable particulate matter emissions.				
03100052B	AIRS 03100052 East Geogia Regional Medical Center 1 B1 Cleaver-Brooks CB200-300-125HW Boiler	None	1999	12.55	90 gph	No. 2	#11635	20 lb/mgal	1.79E+00 AP42 1.3-1	0.5 % sulfur	B-01-1 2.2 NSPS Dc 6.36E+00 AP42 1.3-1	2 lb/mgal AP42 1.3-1	1
				12.55	12,208 scfh	Nat. Gas	#11635	100 lb/mmscf	1.22E+00 AP42 1.4-1	0.6 lb/mmscf	7.32E-03 AP42 1.4-2	1.9 lb/mmscf AP42 1.4-2	5
03100052B2	2 B2 Cleaver-Brooks CB200-300-125HW Boiler	None	1999	12.55	90 gph	No. 2	#11635	20 lb/mgal	1.79E+00 AP42 1.3-1	0.5 % sulfur	B-01-1 2.2 6.36E+00 NSPS Dc	2 lb/mgal AP42 1.3-1	1
				12.55	12,208 scfh	Nat. Gas	#11635	100 lb/mmscf	1.22E+00 AP42 1.4-1	0.6 lb/mmscf	7.32E-03 AP42 1.4-2	1.9 lb/mmscf AP42 1.4-2	5
	Boilers B1 and B2 use natural gas as primary	rv fuel: No. 2 fuel oil as backup during	a emergency (8/18/	1999 #11635 Section III-A form):	NOx and SO2 emis	sion scenario sare assumed to be	e "intermittent" for the 1-h	our NAAQS					
	EDG Emergency Generator Georgia - Bulloch County AIRS 03100054 Viracon-Statesboro Viracon-Statesboro is a manfuacturer of glass windows and The facility will not affects the available increments. For all NAAQS, this source is assumed to be included in the Georgia - Bulloch County AIRS 03100056 Franklin Chevrolet Co., Inc. Franklin Chevrolet is listed as an automotive painting and re The only record in the application files is an initial notificatio The facility is assumed to not have a significant concentratic For all NAAQS, this source is assumed to be included in the for all NAAQS, this source is assumed to be included in the	None d is Permit-by-Rule (PBR) coating an ne background air quality concentratio refinishing operation. The facility doe on/compliance certification submitted fion gradient for the NAAQS and incre the background air quality concentratio	1999 d gluing operation. ins. s not have any qua on December 28, 2 iments. ins.	Operation of the emergency die Application files indicate that the ntifiable PM10, PM2.5, NOx or S 2009 for the paint stripping and m	sel generator is assi e facility is a source o 202 emissions. hiscellaneous surface	umed to be "intermittent" of VOC/HAP (area source) only a e coating operations area source	nd no other emission are	quantifiable (electric over	ı).				
	Georgia - Bulloch County AIRS 03100057 Rozier Ford Lincoln-Mercury, Inc. Rozier Ford Lincoln-Mercury is listed as an automotive pain No application files could be found for this facility. The only The facility is assumed to not have a significant concentratis For all NAACS, this source is assumed to be included in the	nting and refinishing operation. The f y record likely to exist for this facility is ion gradient for the NAAQS and incre be background air quality concentratio	acility does not hav s an initial notificatio ments. ns.	re any quantifiable PM10, PM2.5, on for the paint stripping and mis	, NOx or SO2 emiss cellaneous surface o	ions. coating operations area source M	IACT rule (40 CFR 63 Su	bpart HHHHH).					
	Georgia - Bulloch County AIRS 03100058 Southern Eatle Collision Center Southern Eagle Collision Center is listed as an automotive p No application files could be found for this facility. The only The facility is assumed to not have a significant concentratic For all NAAQS, this source is assumed to be included in the	painting and refinishing operation. Tr. y record likely to exist for this facility i tion gradient for the NAAQS and incre te background air quality concentratio	he facility does not is an initial notification ments.	have any quantifiable PM10, PM on for the paint stripping and mis	12.5, NOx or SO2 en cellaneous surface o	nissions. coating operations area source M	IACT rule (40 CFR 63 Su	bpart HHHHH).					
	Georgia - Bulloch County AIRS 03100059 South 301 Auto Body Collision Center South 301 Auto Body Collision Center is listed as an autom The only record in the application files is an initial notificatio The facility is assumed to not have a significant concentratic For all NAAQS, this source is assumed to be included in the	notive collision and repair operation. on/compliance certification submitted ion gradient for the NAAQS and incre e background air quality concentratio	The facility does no on January 11, 201 ements. ns.	nt have any quantifiable PM10, Pl 10 for the paint stripping and misc	M2.5, NOx or SO2 e cellaneous surface c	emissions. coating operations area source M.	ACT rule (40 CFR 63 Sul	bpart HHHHH).					
	Georgia - Bulloch County AIRS 03100060 Valif's Precision Collision Valif's Precision Collision is listed as an automotive collision The only record in the application files is an initial notificatio The facility is assumed to not have a significant concentrati For all NAACS, this source is assumed to be included in the	n and repair operation. The facility do on/compliance certification submitted ion gradient for the NAAQS and incre e background air quality concentratio	ces not have any qu on January 12, 201 ements. Ins.	uantifiable PM10, PM2.5, NOx or 10 for the paint stripping and misc	r SO2 emissions. cellaneous surface c	coating operations area source M	ACT rule (40 CFR 63 Sul	ppart HHHHH).					
	Georala - Bulloch County AIRS 03100051 Hall's Paint & Body Hall's Paint & Body is listed as an automotive collision and I No application files could be found for this facility. The only The facility is assumed to not have a significant concentration For all NAACS, this source is assumed to be included in the Georala - Bulloch County AIRS 03100062 Barmede Collision & the Destruction	repair operation. The facility does no y record likely to exist for this facility i ion gradient for the NAAQS and incre e background air quality concentratio	ot have any quantifia s an initial notificatio ments. Ins.	able PM10, PM2.5, NOx or SO2 on for the paint stripping and mis	emissions. cellaneous surface o	coating operations area source M	IACT rule (40 CFR 63 Su	bpart HHHHH).					
	Remps Collowork retingers Collision & Auto Restoration Remps's Collision & Auto Restoration is listed as an autom No application files could be found for this facility. The only The facility is assumed to not have a significant concentration For all NAAQS, this source is assumed to be included in the Georgia - Bulloch County AIRS 03100055 Ellis Wood Contracting Co.	notive collision and repair operation. y record likely to exist for this facility i ion gradient for the NAAQS and incre ne background air quality concentratio	The facility does no s an initial notificati ements. Ins.	t have any quantifiable PM10, PI on for the paint stripping and mis	M2.5, NOx or SO2 e cellaneous surface o	missions. coating operations area source M	IACT rule (40 CFR 63 Su	 bpart HHHHH). 					

AA	BB	сс	DD	EE	FF	GG	нн	"	IJ	КК
er <10 i	mm (₽₩₁	0)				Particulat	e watter <2	.5 mm (Pi	M _{2.5})	
			lensable)							lensable)
			ite nd cond							ite nd cond
			sion Ra erable a							sion Ra erable a
			ass Emis um of filk							ass Emis um of filt
on or Poter Indensable	ntial-to-Emit units	Basis	₩ 18 Ib/hr	filterable	Maxim units	um Allowable Emiss Basis	ion Limitation or F condensable	Potential-to-Emi a units	t Basis	W Ib/hr
		AP42 1 3-2			0.96	7 PM2 5/PM rati	o from CARB			
1.3	lb/mgal	Total CPM	2.96E-01		0.90	r r wiz.o/r wi tau		Liquid fuel e	xcept residual oil	2.86E-01
5.7	lb/mmscf	AP42 1.4-2 AP42 1.3-2	9.28E-02		0.96	7 PM2.5/PM rati	io from CARB	SCAQMD C	Same as PM10 EDAIRS Table A	9.28E-02
1.3	lb/mgal	Total CPM	2.96E-01					Liquid fuel e	Some on PM10	2.86E-01
5.7	ib/mmscr	AP42 1.4-2	9.28E-02						Same as PM10	9.28E-02
				-						
			11							

А	ВС	D	E F	G H I	J K	L M N O	P Q	R S	T U	v w	X Y Z	AA BB CC	DD	EE FF GG	HH II JJ	КК
	Unit Descriptio	n		Operating Le	evels used for Max	imum Allowable Emissions	Nitro	ogen Oxides (NO _x)	Si	Ilfur Dioxide (SO ₂)	Particul	ate Matter <10 mm (PM ₁₀)		Particulate	Matter <2.5 mm (PM _{2.5})	
Modeled Source ID	Permitted Source ID Source Description	Control Device Description	or Constituction Date Modification	au Maaamum Hounly suo Processing Wagh Rate Processing Wagh Rate Maamum Rated Rate Foreign	Maximum Houny Fuel Consumption Out	area and a set of the	Monimum Alconable Emission Limitation of Potential: to Emit	eperator ogsjuli Libite Basis	Maximum All orable Emission Limitation or Potential- b-Emit stat	e c c c s s s c c s s c c s s c c s s c c c s s c c c s s c c c c s s c c c c s s c c c c s s c c c c s s c c c c s s c c c c s c	Maximum Allowable Em fiterable units Basis	ission Limitation or Potential-to-Emit condensable units Basis	편 Mass Emission Rate 것 (sum of filerable and condensable)	Maximum Allovable Emissi filterable units Basis	on Limitation or Potential-to-Emit condensable units Basis	j∰ Mass Emission Rate ⊃ (sum of filerable and condensable)
E T F E	Ellis Wood Contracting conducts land clearing operation The ACD will not have a significant concentration gradie For the 1-hr NO2 and SO2 NAAOS, the ACD emissions Based on information provided in December 10, 2009 al For other NAAOS, this source is assumed to be included	ns as part of its business and ent for all NAAQS (exluding 1- are "intermittent" and do not pplication #19357, the ACD o d in the background air qualit	operates an air curtain destruct -hr NO2 and SO2) and increment coccur frequently enough to con- operates on six days per year. the concentrations.	or (ACD) to dispose of tree trunks, ints based on 20*D with 2-km grou tribute significantly to the annual (stumps, limbs, and oth ping. listribution of daily maxi	ner small brush from clearing activities. imum 1-hour concentrations.										
2 2 4 5 7 7 7 7	Seorgia - Burke County <u>URS 03300001 McBride Gin & Farm Supply</u> McBride Gin & Farm Supply is listed as a cottong ginnin Since no air quality permit for the facility could be found fine facility will not have a significant concentration grad For all NAAQS, this source is assumed to be included ir	g operation. No application f in the application files, partic lient for the PM10 and PM2.5 the background air quality c	files could be found for this facili ulate matter emissions are assu 5 NAAQS and increments based concentrations.	ity. urmed to be based on 120,000 star d on 20°D with 2-km grouping.	dard bales of cotton pe	er year (391-3-103(11)(b)6.(i)(ll)).										
4 N 1 F	ABCIGIT - BURKE COUNTY AIRS 03300002 Mundy, Inc. Aundy Inc. is a Permit-by-Rule cotton ginning operation (The facility will not have a significant concentration grad For the NAAQS, this source is assumed to be included it (The NAAQS) and the source of	. Application files indicate the lient for the PM10 and PM2.5 in the background air quality o	at the facility is a source of parti 5 NAAQS and increments based concentrations.	iculate matter only. d on 20*D with 2-km grouping.												
<u></u>	Seorgia - Burke County NRS 03300004 Rayonier Iones W K Lumber Company is listed as a pulp wood cl Jeorgia - Burke County	hips operation. No application	on files could be found for this fa	acility.												
4 + 	AIRS 03300007 Halliburton Industrial Services Halliburton Industrial Services is listed as a chemical sto Seorgia - Burke County USE 03200008 Alles P. Wilcon Combustion Turbion	prage operation. No applicati	ion files could be found for this fi	facility.												
003000086A	CTA6A Peaking Combustion Turbine	None	1972	972.00	7.018 aph Di	esel #19931	0.88 lb/mmBtu	8.55E+02 AP42 3.1-1	0.5 % sulfur	4.91E+02 AP42 3.1-2a	0.0043 lb/mmBtu AP42 3.1-2a	0.0072 lb/mmBtu AP42 3.1-2a	1.12E+01	0.967 PM2.5/PM ratic	from CARB/SCAQMD CEDAIRS Table	eA Ioil 1.08E+01
003000086B	CTA6B Peaking Combustion Turbine	None	1972	972.00	7,018 gph Di	esel #19931	0.88 lb/mmBtu	8.55E+02 AP42 3.1-1	0.5 % sulfur	4.91E+02 AP42 3.1-2a	0.0043 lb/mmBtu AP42 3.1-2a	0.0072 lb/mmBtu AP42 3.1-2a	1.12E+01	0.967 PM2.5/PM ratio	from CARB/SCAQMD CEDAIRS Table Liquid fuel except residual	⇒A Ioil 1.08E+01
003000086C	CTA6C Peaking Combustion Turbine	None	1972	972.00	7,018 gph Di	esel #19931	0.88 lb/mmBtu	8.55E+02 AP42 3.1-1	0.5 % sulfur	4.91E+02 AP42 3.1-2a	0.0043 lb/mmBtu AP42 3.1-2a	0.0072 lb/mmBtu AP42 3.1-2a	1.12E+01	0.967 PM2.5/PM ratio	from CARB/SCAQMD CEDAIRS Table Liquid fuel except residual	→ A oil 1.08E+01
003000086D	CTA6D Peaking Combustion Turbine	None	1973	972.00	7,018 gph Di	esel #19931	0.88 lb/mmBtu	8.55E+02 AP42 3.1-1	0.5 % sulfur	4.91E+02 AP42 3.1-2a	0.0043 lb/mmBtu AP42 3.1-2a	0.0072 lb/mmBtu AP42 3.1-2a	1.12E+01	0.967 PM2.5/PM ratio	Liquid fuel except residual	oil 1.08E+01
003000086E	CTA6E Peaking Combustion Turbine	None	1973	972.00	7,018 gph Di	esel #19931	0.88 lb/mmBtu	8.55E+02 AP42 3.1-1	0.5 % sulfur	4.91E+02 AP42 3.1-2a	0.0043 lb/mmBtu AP42 3.1-2a	0.0072 lb/mmBtu AP42 3.1-2a	1.12E+01	0.967 PM2.5/PM ratic	Liquid fuel except residual	oil 1.08E+01 e A
2 4 5 7 7	Seorgia - Burke County <u>URS 03300010 Kelleys Gin Inc</u> Kelleys Gin is listed as a cottong ginning operation. No Since no air quality permit for the facility could be found fine facility will not have a significant concentration grad or all NAAQS, this source is assumed to be included ir	application files could be four in the application files, partic lient for the PM10 and PM2.5 n the background air quality co	Ind for this facility. Lulate matter emissions are assu 5 NAAQS and increments based concentrations.	umed to be based on 120,000 star d on 20°D with 2-km grouping.	dard bales of cotton pe	r year (391-3-103(11)(b)6.(i)(ll)).										
<u> </u>	Georgia - Burke County <u> NRS 03300011 Sardis Lumber Co</u> A 1985 inspection of Sardis Lumber concluded that the l	facility has been abandoned a	and operations discontinued pe	ermanently (please see February :	2, 1985 letter from Alfre	ed T. Bazemore, Environmental Specialist, Middle	e Georgia Region)									
	Seorala - Burke County IRS 0330013 Waynesboro Concrete Products Co I Waynesboro Concrete Products Co is listed as a concre since no air quality permit for the facility could be found the facility will not have a significant concentration grad For all NAAQS, this source is assumed to be included in Seoraia - Burke County	Inc te products facility. No perm in the application files, partic lient for the PM10 and PM2.5 n the background air quality c	nit could be found for this facility. sulate matter emissions are assu 5 NAAQS and increments based concentrations.	'. urned to be based on 600,000 cub d on 20°D with 2-km grouping.	ic yards of production p	er year (391-3-103(11)(b)4.(i)(li)).										
<u> </u>	AIRS 03300019 Lamb C B Lumber Co amb C B Lumber is listed as a lumber mill operation. N	No application files could be fo	found for this facility.													
2 2 7 7 7 7	Jeorgia - Burke County NRS 03300020 Builders Supply Co Waynesboro Concrete Products Co is listed as a concre Since no air quality permit for the facility could be found The facility will not have a significant concentration grad or all NAAQS, this source is assumed to be included in	ete products facility. Applicati in the application files, partic lient for the PM10 and PM2.5 the background air quality c	ion files indicate that the facility sulate matter emissions are assu SNAAQS and increments based concentrations.	is a source of particulate matter or umed to be based on 600,000 cub d on 20*D with 2-km grouping.	nly (cement silo loading ic yards of production p	and unioading). er year (391-3-1-,03(11)(b)4.(i)(l1)).										
2 2 7 7 7 7 8	Seorgia - Burke County URS 03300021 McKinney Wholesale Co Inc McKinney Wholesale is listed as a ready mix concrete fit for facility will not have a significant concentration grad For all NAAOS, this source is assumed to be included ir Seorgia - Burke County URS 03300025 Perfection-Schwank Inc	acility. Application files indica lient for the PM10 and PM2.5 n the background air quality c	ate that the facility is a source of 5 NAAQS and increments based concentrations.	f particulate matter only (150 yards 1 on 20°D with 2-km grouping.	per hour of concrete n	nixing).										
F	Perfection-Schwank is listed as a manufacturer of room Georgia - Burke County	heating equipment. No appli	lication files could be found for th	his facility.												
4	AIRS 03300027 Southern States Cooperative Southern States Coop is listed as a grain storage opera	tion. A May 7, 1996 letter ind	dicates that this facility has perm	nanently ceased operation.												
2 2 7 7 8 9 8 8 8 8 7 8 8 8 7 7 8 8 8 8 8 8	Secrala - Burke County IRES 03300226 Collins Gin Collins Gin is a cotton ginning operation (12 bales per h fre facility will not have a significant concentration grad or the NAAOS, this source is assumed to be included i Bergina - Burke County URS 03300029 Farmers Gin Co Inc Farmers Gin Co is listed as a cottong ginning operation. Since no air quality permit for the facility could be found the facility will no have a significant concentration grad For all NAAQS, this source is assumed to be included if	our). Application files indicate lient for the PM10 and PM2.5 in the background air quality of No application files could be in the application files, partic tient for the PM10 and PM2.5 in the background air quality of	te that the facility is a source of p NAAQS and increments based concentrations. e found for this facility. ulate matter emissions are assus NAAQS and increments based concentrations.	particulate matter only. 1 on 20°D with 2-km grouping. urmed to be based on 120,000 star d on 20°D with 2-km grouping.	dard bales of cotton pe	r year (391-3-103(11)(b)6.(i)(ll)).										
<u> </u>	seorgia - Burke County NRS 03300030 Vogtle Electric Generating Plant															
03300030\/D1	VD01 Unit 1 Emergency Diesel Generator 14	None	1981	60.00 0.700	505 aph	esel #18086	0.024 lb/bbp br	2 33E+02 AP42 3 4-4	0.5 % cultur	3 92E+01 AP/2 3 /-1	0.0496 lb/mmBtu AD42 3.4-2	0 0077 lb/mmBtu	4 01E±00	0.0479 lb/mmBtu AP42.3.4.2	0.0077 lb/mmBtu 4D42 2.4.2	3 805-01
03300030VD2	VD01 Unit 1 Emergency Diesel Generator 1A	None	1981	69.90 9,700	505 gph Di	esel #18986	0.024 lb/bhp-hr	2.33E+02 AP42 3.4-1	0.5 % sulfur	3.92E+01 AP42 3.4-1	0.0496 lb/mmBtu AP42 3.4-2	0.0077 lb/mmBtu AP42 3.4-2	4.01E+00 4.01E+00	0.0479 lb/mmBtu AP42 3.4-2	0.0077 lb/mmBtu AP42 3.4-2	3.89E+00
03300030VD3	VD03 Unit 2 Emergency Diesel Generator 2A	None	1981	69.90 9,700	505 gph Di	esel #18986	0.024 lb/bhp-hr	2.33E+02 AP42 3.4-1	0.5 % sulfur	3.92E+01 AP42 3.4-1	0.0496 lb/mmBtu AP42 3.4-2	0.0077 lb/mmBtu AP42 3.4-2	4.01E+00	0.0479 lb/mmBtu AP42 3.4-2	0.0077 lb/mmBtu AP42 3.4-2	3.89E+00
03300030VD4	VD04 Unit 2 Emergency Diesel Generator 2B	None	1981	69.90 9,700	505 gph Di	esel #18986	0.024 lb/bhp-hr	2.33E+02 AP42 3.4-1	0.5 % sulfur	3.92E+01 AP42 3.4-1	0.0496 lb/mmBtu AP42 3.4-2	0.0077 lb/mmBtu AP42 3.4-2	4.01E+00	0.0479 lb/mmBtu AP42 3.4-2	0.0077 lb/mmBtu AP42 3.4-2	3.89E+00

A	ВС	D	E F	G H I	J K L	M N O	P Q R S	T U V W	х ү z	AA BB CC DD	EE FF GG HH II JJ KK
	Unit Description			Operating L	evels used for Maximu	m Allowable Emissions	Nitrogen Oxides (NO _x)	Sulfur Dioxide (SO ₂)	Particulate	Matter <10 mm (PM ₁₀)	Particulate Matter <2.5 mm (PM _{2.5})
Modelad Source ID	Permitted Source ID Source Description	Control Device Description	Construction Date Modification Date	og Maximum Houny a Processing Weight Rate Maximum Rated Maximum Rated Maximum Rated Maximum Rated	Vuojaluunsuon yh Vuonen uunojaan Uunits Fuel Typ	e Actual Echanat py Volumetric Flow Kate Dy Sametard Environt Volumetric Flow Rate	Maximum Alovashe Emission Limitation or Potentia-to-Emit Mass Emission Rate Mass Emission Rate	S the second sec	Maximum Allowable Emissio filterable units Basis	1 Limitation or Potential-to-Emit Basis Ubfr	Maximum Allowable Emission Limitation or Potential-to-Emit sais bhr filterable units Basis condensable units Basis bhr
						#19578	V-02-4 3.3.19.a	V-02-4 3.3.20 ppm NSPS III	V-02-4 3.3.19.c	assumed to be included in	
03300030FD1	FPD1 Replacement Fire Pump Diesel Unit 1	None	2010	2.12 350	15 gph Diesel	502(b)(10)	7.8 g/bhp-hr 6.02E+00 NSPS IIII	15 sulfur 3.24E-03 diesel 7.05 lb/gal	0.4 g/bhp-hr NSPS IIII	NSPS IIII PM emission limitation 3.09E-01 assumed to be included in	Same as PM10 3.09E-01
03300030FD2	FPD2 Fire Pump Diesel Unit 2	None	1977	2.30 380	17 gph Diesel	#18986	0.031 lb/bhp-hr 1.18E+01 AP42 3.3-1	0.00205 lb/bhp-hr 7.79E-01 AP42 3.3-1	0.0022 lb/bhp-hr AP42 3.3-1	PM10 emission factor 8.36E-01	Same as PM10 8.36E-01
03300030SD1	SD01 Security Diesel	None	1986	8.03 1,000	58 gph Diesel	#18986	0.024 lb/bhp-hr 2.40E+01 AP42 3.4-1	0.5 % sulfur 4.05E+00 AP42 3.4-1	0.0496 lb/mmBtu AP42 3.4-2	0.0077 lb/mmBtu AP42 3.4-2 4.60E-01 assumed to be included in	0.0479 lb/mmBtu AP42 3.4-2 0.0077 lb/mmBtu AP42 3.4-2 4.46E-01
0330003CWS1	CWS1 Circulating Water System Cooling Tower 1	Drift Eliminator	unk			Same as CWS3	0.00E+00	0.00E+00	1.8 lb/hr Same as CWS3	emission estimate for PM 1.80E+00 assumed to be included in	Same as PM10 1.80E+00
0330003CWS2	SWS1 Service Water System Cooling Tower 1	Drift Eliminator	unk			Same as SWS3	0.00E+00	0.00E+00	0.08 lb/br Same as SWS3	emission estimate for PM 1.80E+00 assumed to be included in emission estimate for PM 8.00E-02	Same as PM10 8.00F-02
0330003SWS2	SWS2 Service Water System Cooling Tower 2	Drift Eliminator	unk			Same as SWS4	0.00E+00	0.00E+00	0.08 lb/hr Same as SWS4	assumed to be included in emission estimate for PM 8.00E-02	Same as PM10 8.00E-02
Ne	w Equipment (Units 3 and 4)							ppm V-02-3 3.3.10		assumed to be included in BACT	
03300030VD5	VD05 Unit 3 Emergency Diesel Generator 1	None	2010	45.00 7,456	325 gph Diesel	#18986	1.2 g/bhp-hr 1.97E+01 V-02-3 3.3.7.b	15 sulfur 6.87E-02 diesel 7.05 lb/gal ppm V-02-3 3.3.10	0.11 g/bhp-hr V-02-3 3.3.7.d	emission limitation based on NSPS 1.81E+00 assumed to be included in BACT	Same as PM10 1.81E+00
03300030VD6	VD06 Unit 3 Emergency Diesel Generator 2	None	2010	45.00 7,456	325 gph Diesel	#18986	1.2 g/bhp-hr 1.97E+01 V-02-3 3.3.7.b	15 sulfur 6.87E-02 diesel 7.05 lb/gal ppm V-02-3 3.3.10	0.11 g/bhp-hr V-02-3 3.3.7.d	emission limitation based on NSPS 1.81E+00 assumed to be included in BACT	Same as PM10 1.81E+00
03300030VD7	VD07 Unit 4 Emergency Diesel Generator 1	None	2010	45.00 7,456	325 gph Diesel	#18986	1.2 g/bhp-hr 1.97E+01 V-02-3 3.3.7.b	15 sulfur 6.87E-02 diesel 7.05 lb/gal ppm V-02-3 3.3.10 15 sulfur 0.075 00 diesel 7.05 lb/gal	0.11 g/bhp-hr V-02-3 3.3.7.d	emission limitation based on NSPS 1.81E+00 assumed to be included in BACT	Same as PM10 1.81E+00
03300030VD8	VD08 Unit 4 Emergency Diesel Generator 2	None	2010	45.00 7,456	325 gph Diesel	#18986	1.2 g/bhp-hr 1.9/E+01 V-02-3 3.3.7.b	15 sulfur 6.8/E-02 diesel /.05 lb/gal ppm V-02-3 3.3.10 15 sulfur 2.44E 02 diesel 7.05 lb/gal	0.11 g/bhp-hr V-02-3 3.3.7.d	emission limitation based on NSPS 1.81E+00 assumed to be included in BACT omission limitation based on NSPS 5.46E-02	Same as PM10 1.81E+00
03300030FD4	FPD3 Units 3 and 4 Fire Pump Diesel 1	None	2010	1.60 225	12 gph Diesel	#18986	2.44 g/bhp-hr 1.21E+00 V-02-3 3.3.9.b	ppm V-02-3 3.10 15 sulfur 2 44E-03 diesel 7.05 lb/gal	0.11 g/bhp-hr V-02-3 3 3 9 d	assumed to be included in BACT emission limitation based on NSPS 5 46E-02	Same as PM10 5.46E-02 Same as PM10 5.46E-02
03300030FD5	FPD5 Units 3 and 4 Fire Pump Diesel 3	None	2010	1.60 225	12 gph Diesel	#18986	2.44 g/bhp-hr 1.21E+00 V-02-3 3.3.9.b	ppm V-02-3 3.3.10 15 sulfur 2.44E-03 diesel 7.05 lb/gal	0.11 g/bhp-hr V-02-3 3.3.9.d	assumed to be included in BACT emission limitation based on NSPS 5.46E-02	Same as PM10 5.46E-02
03300030AX1	AUX1 Units 3 and 4 Ancillary Diesel Generator 1	None	2010	0.73 100	5 gph Diesel	#18986	5.63 g/bhp-hr 1.24E+00 V-02-3 3.3.8.b	ppm V-02-3 3.3.10 15 sulfur 1.11E-03 diesel 7.05 lb/gal	0.3 g/bhp-hr V-02-3 3.3.8.d	assumed to be included in BACT emission limitation based on NSPS 6.61E-02	Same as PM10 6.61E-02
03300030AX2	AUX2 Units 3 and 4 Ancillary Diesel Generator 2	None	2010	0.73 100	5 gph Diesel	#18986	5.63 g/bhp-hr 1.24E+00 V-02-3 3.3.8.b	ppm V-02-3 3.3.10 15 sulfur 1.11E-03 diesel 7.05 lb/gal	0.3 g/bhp-hr V-02-3 3.3.8.d	assumed to be included in BACT emission limitation based on NSPS 6.61E-02	Same as PM10 6.61E-02
03300030AX3	AUX3 Units 3 and 4 Ancillary Diesel Generator 3	None	2010	0.73 100	5 gph Diesel	#18986	5.63 g/bhp-hr 1.24E+00 V-02-3 3.3.8.b	ppm V-02-3 3.3.10 15 sulfur 1.11E-03 diesel 7.05 lb/gal	0.3 g/bhp-hr V-02-3 3.3.8.d	assumed to be included in BACT emission limitation based on NSPS 6.61E-02	Same as PM10 6.61E-02
03300030AX4	AUX4 Units 3 and 4 Ancillary Diesel Generator 4	None	2010	0.73 100	5 gph Diesel	#18986	5.63 g/bhp-hr 1.24E+00 V-02-3 3.3.8.b	ppm V-02-3 3.3.10 15 sulfur 1.11E-03 diesel 7.05 lb/gal	0.3 g/bhp-hr V-02-3 3.3.8.d	assumed to be included in BACT emission limitation based on NSPS 6.61E-02	Same as PM10 6.61E-02
03300030RWD	ODG1 Units 3 and 4 Raw Water Diesel Generator	None	2010	13.00 2,000	94 gph Diesel	#18986	1.2 g/bhp-hr 5.29E+00 V-02-3 3.3.7.b	ppm V-02-3 3.3.10 15 sulfur 1.99E-02 diesel 7.05 lb/gal ppm V 02 3 2 10	0.11 g/bhp-hr V-02-3 3.3.7.d	emission limitation based on NSPS 4.85E-01	Same as PM10 4.85E-01
03300030TSC	TSC1 Technical Support Center Disel Generator	None	2010	13.00 2,000	94 gph Diesel	#18986	1.2 g/bhp-hr 5.29E+00 V-02-3 3.3.7.b	15 sulfur 1.99E-02 diesel 7.05 lb/gal	0.11 g/bhp-hr V-02-3 3.3.7.d	emission limitation based on NSPS 4.85E-01	Same as PM10 4.85E-01
0330003CWS3	CWS3 Circulating Water System Cooling Tower 3	Drift Eliminator	2010			#18986	0.00E+00	0.00E+00	1.8 lb/hr #18986 Table 3.1-6 AP42 13.4	emission estimate for PM 1.80E+00 assumed to be included in	Same as PM10 1.80E+00
0330003CWS4	CWS4 Circulating Water System Cooling Tower 4	Drift Eliminator	2010			#18986	0.00E+00	0.00E+00	1.8 lb/hr #18986 Table 3.1-6 AP42 13.4	emission estimate for PM 1.80E+00 assumed to be included in	Same as PM10 1.80E+00
0330003SWS3	SWS3 Service Water System Cooling Tower 3	Drift Eliminator	2010			#18986	0.00E+00	0.00E+00	0.08 lb/hr #18986 Table 3.1-6 AP42 13.4	emission estimate for PM 8.00E-02 assumed to be included in	Same as PM10 8.00E-02
0330003SWS4	SWS4 Service Water System Cooling Tower 4 orgia - Burke County	Drift Eliminator	2010			#18986	0.00E+00	0.00E+00	0.08 lb/hr #18986 Table 3.1-6	emission estimate for PM 8.00E-02	Same as PM10 8.00E-02
Alf	RS 03300031 Midville Warehouse dville Warehouse is listed as a cottong ginning operation.	Application files for this facility	/ indicate that an opera	ting permit was denied (please refer	to March 24, 1995 letter reg	arding #6308).					
<u>Ge</u> <u>Alf</u>	<u>orgia - Burke County</u> RS 03300034 Fiamm Technologies, Inc.										
03300034SC6	P1A Lead Cylinder Production P2 Grid Casting	Scrubber	2001	3.78	3,677 scfh Nat. G	#11916 includes melting, casting and post- as 11,362 10,791 casting pots	100 lb/mmscf 3.68E-01 AP42 1.4-1	0.6 lb/mmscf 2.21E-03 AP42 1.4-2	S-02-2 2.1.a 0.000176 gr/dscf NSPS KK	assumed to be included in NSPS KK PM emission limitation PM assumed 10°Pb based on AP42 1.63E-01	Same as PM10 1.63E-01
03300034B1A	P1B Lead Oxide Production	Baghouse	2001			846 759 #11916	0.00E+00	0.00E+00	S-02-2 2.1.e 0.00044 gr/dscf NSPS KK	NSPS KK PM emission limitation PM assumed 10*Pb based on AP42 2.86E-02 assumed to be included in	Same as PM10 2.86E-02
03300034B1B	P1B Lead Oxide Production	Baghouse	2001			920 828 #11916	0.00E+00	0.00E+00	S-02-2 2.1.e 0.00044 gr/dscf NSPS KK	NSPS KK PM emission limitation PM assumed 10*Pb based on AP42 3.12E-02	Same as PM10 3.12E-02
									S-02-2 2.1.d NSPS KK	assumed to be included in NSPS KK PM emission limitation	
03300034B03	P1C Lead Oxide Mill	Baghouse	2001	0.63		1,309 949 #11916	0.00E+00	0.00E+00	0.01 lb/ton 5 mg/kg	PM assumed 10*Pb based on AP42 6.25E-02 assumed to be included in	Same as PM10 6.25E-02
03300034SC7	P3 Paste Mixing	Scrubber	2001			14,635 13,987 #11916	0.00E+00	0.00E+00	S-02-2 2.1.b 0.00044 gr/dscf NSPS KK	PM assumed 10*Pb based on AP42 5.27E-01	Same as PM10 5.27E-01
02200024002	P5 P6 P7 Three Breeses Operation	Dashausa	2001	0.72	0.450 asfb Not C	#11916 includes drying and	100 lb/mmont 0.455 01 4D42 1.4.1	0.6 lb/mmont = 5.675.02 AD42.4.4.2	S-02-2 2.1.c	assumed to be included in NSPS KK PM emission limitation	Same as DM10 4 505 (0)
03300034802	P5	Bagnouse	2001	9.72	9,450 SCI1 Nat. G	#11916	100 ID/IIIIIISCI 9.43E-01 AP42 1.4-1	0.6 ID/IIIIISCI 5.07E-03 AP42 1.4-2	0.00044 gi/dsci NSPS KK	assumed to be included in	Same as PWTU 1.39E+00
03300034B05	P7 Three-Process Operation	Baghouse	2001	9.72	9,450 scfh Nat. G	as 15,653 15,105 curing ovens	100 lb/mmscf 9.45E-01 AP42 1.4-1	0.6 lb/mmscf 5.67E-03 AP42 1.4-2	0.00044 gr/dscf NSPS KK AP42 12 15-2	PM assumed 10*Pb based on AP42 5.70E-01	Same as PM10 5.70E-01
									pounds per 1,000 batteries at 1,200 units		
									per day; 60% control based on	assumed to be included in emission factor	
03300034DM8	P8A SLAH Charging Area	Demister	2000			12,446 12,028 #11916	0.00E+00	0.00E+00	12.96 lb/1000 11/3/2009 stack test AP42 12.15-2	PM assumed as PM10 6.48E-01	Same as PM10 6.48E-01
									pounds per 1,000 batteries at 1,200 units		
033000340M0	P8B SI & Charging Area	Demister	2000			15 208 1/ 125 #11016	0.005±00	0.005±00	per day; 73% control based on 8 748 lb/1000 11/3/2000 stock test	assumed to be included in emission factor PM assumed on PM40 4 275 04	Sama an DM10 4 275 A4
Ge	ergia - Burke County		2000			10,200 14,120 #11910	0.002700	0.001100	0.740 10/1000 11/0/2009 Stack test	r w assumed as PWTU 4.3/E-U1	Same as Pivito 4.3/E-0
Alf	KS USSUUUS/ REEVES CONSTRUCTION COMPANY GFL Way	mesporo Plant				#10282 and		S-01-0 2.3.a			
0330003701	Hot Mix Asphalt Plant Dryer Stack	Baghouse	unk	200.00 100.00	714 gph No. 2	8/10/2010 stack 43,099 32,051 test	0.055 lb/ton 1.10E+01 AP42 11.1-7	max of 50% or 0.1 0.66 lb/ton 1.32E+02 lb/ton sulfur retained	S-03-0 2.1.a 0.04 gr/dscf NSPS I	0.0194 lb/ton AP42 11.1-3 1.49E+01	Same as PM10 1.49E+01
<u>Ge</u> Alf	orgia - Burke County RS 03300038 ASTA, Inc.										
							4/28/2008 Nuova Tecno Tau letter				
0330003801 E	3C01-BC06 Electric Enamel Base Coat Ovens	Catalytic Oxidizer	2008			#18225	9.78E-01 included in #18225 4/28/2008 Nuova	0.00E+00 Oxidizer for VOC's		0.00E+00	0.00E+00
0330003802 5	SB01-SB02 Self-bonding Coating Ovens	Catalytic Oxidizer	2008			#18225	Tecno Tau letter 1.63E-01 included in #18225	0.00E+00 Oxidizer for VOC's		0.00E+00	0.00E+00

A	B C Unit Description	D	E F	G H I Operation	J K ng Levels used for	L r Maximum Allow	M N O vable Emissions	P Q Nitro	R S ogen Oxides (NO _x)	T U Sul	V W fur Dioxide (SO ₂)	X Y Z Particulate	AA BB CC DD P Matter <10 mm (PM ₁₀)	EE FF GG HH II JJ KK Particulate Matter <2.5 mm (PM _{2.5})
Modeled Source ID	Permited Source ID Source Description	Control Device Description	Construction Date Medification Date	Maximum Houriy Processing Veigh Rate Maximum Rated P Heat Input Maximum Rated	Brake Horsepower Maximum Hourly Fuel Consumption		A-cha Echaust Voumetic Row Rate Dry Standard Echaust Voumetic Row Rate	Maximum Alovabe Emission Limitation or Potential-to-Emit	Mass Entision Rate	Maximum Alovable Emission Limitation of Potential- b-Einit us	e page Basis V Basis	Maximum Allowable Emissi	ap ar upper state of the state	Per vojstan vo
G A E	eorgia - Burke County IRS 03300040 Burke County Concrete #29 vans Concrete is a Permit-by-Rule (PBR) dry batch ready he facility will not have a significant concentration gradien	r mix (truck) concrete plant.	Application files indicate tha	tons mmBtu at the facility is a source of particle on 20°D with 2-km arouping	hp Units ticulate matter only.	Fuel Type	acfm dscfm Basis	units	lb/hr Basis		lb/hr	filterable units Basis	condensable units Basis Ib/	r filterable units Basis condensable units Basis Ibh
F G A B T T T	or the NAAQS, this source is assumed to be included in the eorgia - Burke County IRS 03300041 Burke County Body. Shop. Inc. urke County Body Shop is listed as an automotive painting he only record in the application files is an initial notification for facility is assumed to not have a significant concentration and IMMOR.	he background air quality co g and refinishing operation. on/compliance certification s ion gradient for the NAAQS	ncentrations. The facility does not have a ubmitted on January 26, 20 and increments.	any quantifiable PM10, PM2.5 10 for the paint stripping and r	, NOx or SO2 emission niscellaneous surface o	ns. coating operations ar	ree source MACT rule (40 CFR 63 Su	bpart HHHHH).						
G A C T	or air VAAQS, mis source is assumed to be included in the <u>sorgia - Candler County</u> IRS 04300003 Candler Gin & Warehouse andler Gin & Warehouse is a cotton ginning operation (18 he facility will not have a significant concentration gradien	te background air quality con B bales per hour). Applicatio It for the PM10 and PM2.5 N	n files indicate that the facili IAAQS and increments base	lity is a source of particulate m ed on 20°D with 2-km grouping	atter only. J.									
н G А М Т Л Б	or the NAAOS, this source is assumed to be included in the englia - Candler County. IRS 04300004 Metter Concrete Products Co. letter Concrete Products is listed as a ready mix concrete he facility will not have a significant concentration gradieni or all NAAQS, this source is assumed to be included in the	he background air quality co facility. Application files ind the PM10 and PM2.5 N te background air quality cor	ncentrations. licate that the facility is a sou IAAQS and increments base icentrations.	urce of particulate matter only ed on 20°D with 2-km grouping	(50 yards per hour of t	truck loading and silo	filling).							
G A 0430000801	eorgia - Candler County IRS 04300008 Allied Metals Automobile Shredder	Cyclone	1994 2008	80.00			6,832 6,285 #6519		0.00E+00		0.00E+00	0.055 gr/dscf 4/30/2009 stack test	automobile shredder is not expected to be associated with condensable PM 2.96E+0	Same as PM10 2.96E+00
G G T F	eorgia - Candler County IRS 04300009 Growers Gin and Warehouse rowers Gin and Warehouse is a cotton ginning operation. he facility will not have a significant concentration gradient or the NAAQS, this source is assumed to be included in th eorgia - Candler County	. Application files indicate th ht for the PM10 and PM2.5 N he background air quality co	nat the facility is a source of IAAQS and increments base ncentrations.	particulate matter only. ed on 20*D with 2-km grouping	<i>].</i>									
04300011B1	IRS 04300011 Moore Wallace Inc B1 Kewanee Boiler eorgia - Effingham County IRS 10300013 Georgia Transmission	None	1980	4.19	46 gph	Propane	#14513	13 lb/mgal	5.95E-01 AP42 1.5-1	1.5 lb/mgal	AP42 1.5-1 6.86E-02 15 gr/mcf	0.2 lb/mgal AP42 1.5-1	0.5 lb/mgal AP42 1.5-1 3.20E-0	2. Same as PM10 3.20E-02
10300013G1	G1 Caterpillar CAT 3516 B TA Generator Set	None	2001	16.69 2,4	50 120.50 gph	Diesel	#12924	6.9 g/bhp-hr	40 CFR Part 89 Tier 1 3.73E+01 #12924	0.05 % sulfur	S-01-0 6. 9.91E-01 AP42 3.4-1	40 CFR Part 89 Tier 1 0.4 g/bhp-hr #12924	assumed to be included in emission estimate for PM 2.16E+0	Same as PM10 2.16E+00
10300013G2	G2 Caterpillar CAT 3516 B TA Generator Set	None	2001	16.69 2,4	50 120.50 gph	Diesel	#12924	6.9 g/bhp-hr	40 CFR Part 89 Tier 1 3.73E+01 #12924 40 CFR Part 89 Tier 1	0.05 % sulfur	9.91E-01 AP42 3.4-1 S-01-0 6.	40 CFR Part 89 Tier 1 0.4 g/bhp-hr #12924 40 CFR Part 89 Tier 1	emission estimate for PM 2.16E+0 assumed to be included in	Same as PM10 2.16E+00
10300013G3	G3 Caterpillar CAT 3516 B TA Generator Set	None	2001	16.69 2,4	50 120.50 gph	Diesel	#12924	6.9 g/bhp-hr	3.73E+01 #12924 40 CFR Part 89 Tier 1	0.05 % sulfur	9.91E-01 AP42 3.4-1 S-01-0 6.	0.4 g/bhp-hr #12924 40 CFR Part 89 Tier 1	emission estimate for PM 2.16E+0 assumed to be included in	Same as PM10 2.16E+00
10300013G4	G4 Caterpillar CAT 3516 B TA Generator Set	None	2001	16.69 2,4	50 120.50 gph	Diesel	#12924	6.9 g/bhp-hr	3.73E+01 #12924 40 CFR Part 89 Tier 1 3.73E+01 #12924	0.05 % sulfur	9.91E-01 AP42 3.4-1 S-01-0 6. 9.91E-01 AP42 3.4-1	0.4 g/bhp-hr #12924 40 CFR Part 89 Tier 1 0.4 g/bbp-br #12924	emission estimate for PM 2.16E+0 assumed to be included in emission estimate for PM 2.16E+0	Same as PM10 2.16E+00 Same as PM10 2.16E+00
G G G G	eorgia - Emanuel County IRS 10700010 Swainsboro Concrete Products Co wainsboro Concrete Products is listed as a ready mix con- he facility will not have a significant concentration gradiem or all NAAQS, this source is assumed to be included in the eorgia - Emanuel County IRS 10700011 Rayonier Wood Products Swainsboro	acrete facility. Application file It for the PM10 and PM2.5 N Ie background air quality cor	es indicate that the facility is IAAOS and increments base centrations.	s a source of particulate matte ed on 20°D with 2-km grouping	only (50 yards per hou	ur of truck loading an	d silo filling).		NCASI			NCASI 090 022204P 4K009		
10700011K09	Direct-fired Lumber Drying Kiln #7 (batch) DK09 converted to Kiln #9 (continuous)	None	2005	78.60	10,077 pph	Dry Wood Sawdust	#17314	0.135 lb/mbf	13.1 thousand board feet (mbf) per hour 1.77E+00 #19880 NCASI 098-022394A-1K098 13.1 thousand board	0.025 lb/mmBtu	1.97E+00 AP42 1.6-2	13.1 thousand board f (mbf) per hour 0.384 lb/mbf #19980 NCASI 098-022394B-1K098 12.1 thousand board f	eet included in NCASI emission factor 5.03E+0	D Same as PM10 5.03E+00
10700011K10	Direct-fired Lumber Drying Kiln #8 (batch) DK10 converted to Kiln #10 (continuous)	None	2005	78.60	10,077 pph	Dry Wood Sawdust	#17314	0.135 lb/mbf	feet (mbf) per hour 1.77E+00 #19880	0.025 lb/mmBtu	1.97E+00 AP42 1.6-2	(mbf) per hour 0.384 lb/mbf #19880	included in NCASI emission factor <u>5</u> .03E+0	Same as PM10 5.03E+00
<u>G</u> A	eorgia - Emanuel County IRS 10700013 Lifeline Industries					Dry Wood								
10700013B1	B1 Bell Industries Lumber Drying Kiln Boiler eorgia - Emanuel County	Multicyclone	1983	6.32	790 pph	Sawdust	#1056	0.22 lb/mmBtu	u 1.39E+00 AP42 1.6-2	0.025 lb/mmBtu	1.58E-01 AP42 1.6-2	0.500 lb/mmBtu Rule (d)	0.017 lb/mmBtu AP42 1.6-1 3.27E+0	Same as PM10 3.27E+00
A A	IRS 10700016 American Yard Product merican Yard Products is listed as a lawnmower manufac	cturer. No application files co	ould be found for this facility	4										
<u>G</u> A	eorgia - Emanuel County IRS 10700017 Rolander Bros Construction Co													
R	olander Bros Construction is listed as a wood lumber dryin lease refer to the facility location map provided in #4474 (.	ing kiln. After review of appl (July 5, 1990); Latitude 32.5	ication files available for this 97290, Longitude -82.33415	s facility, it was determined tha 52.	t Rolander is no longe	r in operation and the	e land on which the facility was built h	as been reclaimed.						
<u>G</u> <u>A</u>	eorgia - Emanuel County IRS 10700019 American Steel Products													
10700019D1	D01 D02 D03 3 Maxon Size PM 1200 Drving Ovens	None	unk	4.50	4.377 scfh	Nat. Gas	#5885	100 lb/mmscf	f 4.38E-01 AP42 1.4-1	0.6 lb/mmscf	2.63E-03 AP42 1.4-2	1.9 lb/mmscf AP42 1.4-2	5.7 lb/mmscf AP42 1.4-2 3.33E-0	Same as PM10 3.33E-02
G	eorgia - Emanuel County IRS 10700020 Swainsboro Electro Plating													
S <u>G</u>	wainsboro Electro Plating is listed as a decorative plating eorgia - Emanuel County	operation. A November 12,	2003 letter indicates that th	he air quality permit for the fac	ility was revoked (#279	96-053-12406; #1473	3).							
A C S Th	IRS 10700021 Cabinet Masters Inc abinets Masters is a wood furniture manufacturer and is F ince the facility does not have an air quality permit, particu- he facility will not have a significant concentration gradient	Permit-by-Rule (PBR) coating ulate matter emissions are a at for the PM10 and PM2.5 N	g and gluing operation. App issumed to be less than 20 t IAAQS and increments base	plication files (August 12, 1996 tpy (the SIP permitting thresho ed on 20*D with 2-km grouping	; 07-WFM00075) indic old for non-exempt sour j.	cate that the facility is rce activities)	a source of VOC/HAP (area source)	only with no quantifiable	particulate matter emissions.					
F G A B S	or an INARQS, this source is assumed to be included in the eorgia - Emanuel County IRS 10700022 Boulineau's Cabinet oulineau's is a wood furniture manufacturer and is Permit- ince the facility does not have an air quality permit, particu	e background air quality con -by-Rule (PBR) coating and ulate matter emissions are a	icentrations. gluing operation. Applicatio issumed to be less than 20 t	on files (August 30, 1996; 07-V tpy (the SIP permitting thresho	VFM00053) indicate the	at the facility is a sou rce activities)	rce of VOC/HAP (area source) only w	ith no quantifiable partice	ulate matter emissions.					
Т. Б	he facility will not have a significant concentration gradien or all NAAQS, this source is assumed to be included in the	nt for the PM10 and PM2.5 N ne background air quality cor	IAAQS and increments base acentrations.	ed on 20*D with 2-km grouping	<i>ą.</i>									

А	ВС	D	E F	G H	I J K	ί L	M N O	P Q	R S	τu	V W	ХҮ	z	AA BB CC	DD	EE FF GG	HH II JJ	кк
	Unit Description			Ope	rating Levels used fo	or Maximum A	Ilowable Emissions	Nitro	ogen Oxides (NO _x)	Sul	fur Dioxide (SO ₂)		Particulate M	/latter <10 mm (PM ₁₀)		Particulate M	atter <2.5 mm (PM _{2.5})	
Modeled Source ID	Permitted Source ID Source Description	Control Device Description	Construction Date Modification Date	Maximum Hourly us Processing Weight Rate Bailton Rated Preating view	Maximum Rated Rate Horapower Maximum Houny Fuel Consumption	Fuel Type	b Athal Erhaust D Voumetric How Rate D Yo Santin C Frauest D Yo Santin C Frauest D Voumetric How Rate state	Maximum Allowable Emission Limitation or Potential-to-Emit sti	ere Lusser Basis Whr Basis	Maximum Allonable Emission Limitation or Potential-to-Emit sti	ee Babis Soort Babis Dhr	Max fiterable units Basis	imum Allowable Emission L	imitation or Potential-to-Emit condensable units Basis	편 Mass Emission Rate 국 (sum of filerable and condensable)	Maximum Allowable Emission Li filterable units Basis	mitation or Potential-to-Emit ondensable units Basis	∰ Mass Emission Rate ⊉ (sum of filterable and condensable)
G	eorgia - Emanuel County				onp onto	r dei Type		uno			10/11				10/11			
A	RS 10700025 Crider Poultry										AP42 1.5-1							
10700025B1	BL1 600-hp Boiler 1	None	2000	20.09	220 gph	Propane	#12119	13 lb/mgal	2.85E+00 AP42 1.5-1	1.5 lb/mgal	3.29E-01 15 gr/mcf AP42 1.5-1	0.2 lb/mgal AP4	42 1.5-1	0.5 lb/mgal AP42 1.5-1	1.54E-01		Same as PM	0 1.54E-01
10700025B2	BL2 300-hp Boiler 2	None	2000	10.04	110 gph	Propane	#12119	13 lb/mgal	1.43E+00 AP42 1.5-1	1.5 lb/mgal	1.65E-01 15 gr/mcf	0.2 lb/mgal AP4	42 1.5-1	0.5 lb/mgal AP42 1.5-1	7.68E-02		Same as PM	0 7.68E-02
10700025B5	BL5 700-hp Boiler 5	None	2002	23.43	22,794 scfh	Nat. Gas	#13548	100 lb/mmscf	2.28E+00 AP42 1.4-1	0.6 lb/mmscf	1.37E-02 AP42 1.4-2 AP42 1.5-1	1.9 lb/mmscf AP4	42 1.4-2	5.7 lb/mmscf AP42 1.4-2	1.73E-01		Same as PM	1.73E-01
6	eorgia - Jefferson County			23.43	256 gph	Propane	#13548	13 lb/mgal	3.33E+00 AP42 1.5-1	1.5 lb/mgal	3.84E-01 15 gr/mcf	0.2 lb/mgal AP4	42 1.5-1	0.5 lb/mgal AP42 1.5-1	1.79E-01		Same as PM	0 1.79E-01
A	IRS 16300007 Thermo King Corp																	
16300007107	107 Coil Oven	None	1995	0.40	389 scfh	Nat. Gas	#7737	100 lb/mmscf	3.89E-02 AP42 1.4-1	0.6 lb/mmscf	2.33E-04 AP42 1.4-2	1.9 lb/mmscf AP4	42 1.4-2	5.7 lb/mmscf AP42 1.4-2	2.96E-03		Same as PM	10 2.96E-03
16300007306	306 Pretreat Oven	None	1995	0.80	778 scfh	Nat. Gas	#7737	100 lb/mmscf	7.78E-02 AP42 1.4-1	0.6 lb/mmscf	4.67E-04 AP42 1.4-2	1.9 lb/mmscf AP4	42 1.4-2	5.7 lb/mmscf AP42 1.4-2	5.91E-03		Same as PM	10 5.91E-03
16300007014	14 14 Diesel Testing Stands	None	1992	0.85	333 6 gph	Diesel	#16090	0.0115 lb/hp-hr	#16090 3.83E+00 Table 3 vendor data	0.0021 lb/hp-hr	#16090 7.00E-01 Table 3 vendor data	#16 0.001 lb/hp-hr Tab	5090 ble 3 vendor data	assumed to be included in emission estimate for PM	3.33E-01		Same as PM	10 3.33E-01
<u>Gi</u> Al	eorgia - Jefferson County IRS 16300008 Farmers Gin and Storage																	
_											AP42 1 5-1	#19 Sun	9448 Attach. D	cotton ainning is not expected to be		0.080 PM2 5/PM ratio	from CARB Modeling PM Size Profil	9
16300008CG	Cotton Ginning Process	Cyclones	1975 2010	8.00	87 gph	Propane	#19448	13 lb/mgal	1.14E+00 AP42 1.5-1	1.5 lb/mgal	1.31E-01 15 gr/mcf	18.49 lb/hr equ	upment	associated with condensable PM	1.85E+01	http://www.arb.ca.gov	ei/speciate/pmsizeprofile07282009.	ds 1.48E+00
1620000000	Croin Descriving/Shipping Drasses	Rin Vente	1075 2010				#10140		0.005.00		0.005.00	#15 Sun	m of all grain	grain receiving/shipping is not expected to be	1 425 .00		Sama as DM	10 1 425.00
<u>Gi</u>	eorgia - Jefferson County	bin vents	1975 2010				#19440		0.002+00		0.002+00	1.42 lb/lli equ	upment	associated with condensable PM	1.42E+00		Same as PM	0 1.42E+00
A	IRS 16300012 Battle Lumber Company					Green								assumed to be included in		0.927 PM2.5/PM ratio fro	m CARB/SCAQMD CEDAIRS Table	A
16300012B1	B1 Steam Boiler for Lumber Drying Kilns	Cyclone	1992	9.60	2,133 pph	Sawdust Green	#19713	0.22 lb/mmBtu	2.11E+00 AP42 1.6-2	0.025 lb/mmBtu	2.40E-01 AP42 1.6-2	0.5 lb/mmBtu B-0	01-0 2.2	emission limitation for PM assumed to be included in	4.80E+00	0.927 PM2.5/PM ratio fro	Wood/bark was m CARB/SCAQMD CEDAIRS Table	te 4.45E+00
16300012B2	B2 Steam Boiler for Lumber Drying Kilns	Cyclone	1998	28.70	6,378 pph	Sawdust Green	#19713	0.22 lb/mmBtu	6.31E+00 AP42 1.6-2	0.025 lb/mmBtu	7.18E-01 AP42 1.6-2	0.295 lb/mmBtu B-0	01-0 2.1	emission limitation for PM assumed to be included in	8.47E+00	0.927 PM2.5/PM ratio fro	Wood/bark was m CARB/SCAQMD CEDAIRS Table	te 7.85E+00
16300012B3	B3 Steam Boiler for Lumber Drying Kilns	Cyclone	2010	28.70	6,378 pph	Sawdust	#19713	0.22 lb/mmBtu	6.31E+00 AP42 1.6-2	0.025 lb/mmBtu	7.18E-01 AP42 1.6-2	0.295 lb/mmBtu B-0	01-0 2.1	emission limitation for PM	8.47E+00		Wood/bark was	te 7.85E+00
Al Fi Ti Po	IRS 16300027 Fulphum Industries Jghum Industries manufactures equipment for the foress he facility will not have a significant concentration gradieu cential emissions of NOx and SO2 result from propane-	t products industry. Potential emis nt for all NAAQS (exluding 1-hr N fired space heaters.	issions of criteria polluta IO2 and SO2) and incre	ants primarily result from p ments based on 20*D wit	painting, welding and sand h 2-km grouping.	lblasting operation	15.											
Fo	or the 1-hr NO2 and SO2 NAAQS, these sources are as	sumed to be included in the backg	ground air quality conce	entrations.														
AI M No Ti	IRS 16300033 Melvin Dye Paint & Body elvin Dye Paint & Body is listed as an automotive collisic o application files could be found for this facility. The on he facility is assumed to not have a significant concentra	on and repair operation. The facili ly record likely to exist for this faci tion gradient for the NAAQS and i	lity does not have any q ility is an initial notificati increments.	uantifiable PM10, PM2.5, ion for the paint stripping	NOx or SO2 emissions. and miscellaneous surface	e coating operation	ns area source MACT rule (40 CFR 63 Su	bpart HHHHHH).										
Fc	or all NAAQS, this source is assumed to be included in ti eorgia - Jenkins County	he background air quality concent	trations.															
A	IRS 16500006 Thomson Co	the last correspondence from the f	facility found in the appli	ination files was in March	1075													
TI	he facility is not part of the list of companies contained in	the Jenkins County Chamber of (Commerce business di	rectory (http://www.jenkin	scountyga.com/business_	directory.html). T	This facility is assumed to have ceased ope	ration.										
Gi	eorgia - Jenkins County IRS 16500011 MI Metals																	
M	I Metals is an aluminum door and window frame manufa	acturing and coating facility. GA E	PD's PSD resources so	ource listing (http://www.g	eorgiaair.org/airpermit/dov	wnloads/sspp/sou	rcelist.xls) indicates that the facility has cel	ased operation, as of Aug	gust 24, 2010.									
G	eorgia - Screven County	5, 2011 and no renewal has been	n submittea.															
Al	RS 25100002 Sylvania Yarn Systems	essing facility. The facility has cea	ased operations as of th	he end of 2009 Please s	ee http://www.floordaily.ne	et/flooring-news/R	Recession Forces Closing of Sylvania Vi	Systems asox										
	he Screven County Chamber of Commerce also lists the	acilities existing building as for-s	sale. Please see http://	www.screvencounty.com/	pdf/bldg-yarn.pdf.	sensoring nonarr	00000001_1 01000_0100011g_01_07/101110_1											
A	<u>eorgia - Screven County</u> IRS 25100003 Feed Seed & Farm Supply																	
2510000307	7 Grain Dryer eorgia - Screven County	None	1957	15.00 12.00	11,673 scfh	Nat. Gas	11/13/1973	100 lb/mmscf	1.17E+00 AP42 1.4-1	0.6 lb/mmscf	7.00E-03 AP42 1.4-2	0.75 lb/ton AP4	42 9.9.1-1	5.7 lb/mmscf AP42 1.4-2	1.13E+01	0.13 lb/ton AP42 9.9.1-1	5.7 lb/mmscf AP42 1.4-2	2.02E+00
25100004P1	P1 700 bo Poilor 1	Nono	1074	20.24	00 444 -	Not Con	27440	100 lb/mmf	2 845-00 4842 4 4 4	0.6 lb/mm	1 70E 02 AD42 4 4 2	10 lk/mmanf AD	42 1 4 2	5.7 lb/mmcef AD43.4.4.3	2 165 01		Come - DH	10 2465 04
25100004B1			1974	29.21	20,414 SCII	Nat. Gas	#7113	55 lb/minisci	AP42 1.3-1	0.5 % autos	V-03-0 3.4.4	0.000 lb/minisci AP2	42 1.4-2	assumed to be included in	2.102-01	0.760 PM2.5/PM ratio fro	m CARB/SCAQMD CEDAIRS Table	A 0.405-01
0510000100	Do 700 ks Dellas 0	Nara	1071	29.21	195 gph	No. 5	#7113	55 ib/rigai		2.5 % sullul	7.64E+01 AP42 1.3-1	0.293 lb/minBtu Rui			0.55E+00		Residual ruel on except unity bolie	<u>s</u> 0.49E+00
23100004B2		None	1974	29.21	20,414 SCIII	Nat. Gas	#7113	Too ib/minisci	AP42 1.3-1	0.6 ib/minisci	V-03-0 3.4.4		42 1.4-2	assumed to be included in	2.102-01	0.760 PM2.5/PM ratio fro	m CARB/SCAQMD CEDAIRS Table	A
Gu Al Ra Ti	No. 5 backup during curtailment (11/13/199 eorgia - Screven County IRS 25100005 Reed David W Co eed David is a cotton ginning operation (7 bales per hou he facility will not have a significant concentration gradieu	is memo); "intermittent" ir). Application files indicate that ti nt for the PM10 and PM2.5 NAAG	the facility is a source of QS and increments base	f particulate matter only. ed on 20*D with 2-km grou	195 gpn	N0. 5	#/113	55 lb/mgal	1.07E+01 Normal Firing	2.5 % sultur	7.64E+01 AP42 1.3-1	0.293 lb/mmBtu Rui	e (d) for No. 5 FO	emission limitation for PM	8.55E+00		Residual fuel oil except utility boile	<u>'s 6.49E+00</u>
Fc	or the NAAQS, this source is assumed to be included in eorgia - Screven County	the background air quality concern	ntrations.															
A	RS 25100008 King America Finishing. Inc.								AP42 1.4-1									
25100008B01	B001 Babcock & Wilcox Boiler	None	1970 2010	150.00	145,914 scfh	Nat. Gas	#16554	280 lb/mmscf	4.09E+01 Pre-NSPS	0.6 lb/mmscf	8.75E-02 AP42 1.4-2 #20427	1.9 lb/mmscf AP4	42 1.4-2	5.7 lb/mmscf AP42 1.4-2	1.11E+00	0 967 PM2 5/PM ratio fro	Same as PM	10 1.11E+00
				150.00	1,071 gph	No. 2	#16554	24 lb/mgal	2.57E+01 Normal Firing	0.5 % sulfur	8.41E+01 SO2 PSD Avoidance	2 lb/mgal AP4	42 1.3-1	1.3 lb/mgal Total CPM	3.54E+00	0.507 T WZ.5/F W Tall0 IIC	Liquid fuel except residual	oil 3.42E+00
	TV application #20427 is for the repair of B	oiler B001, including replacing boi	iler water tubes and oth	ner boiler components with	no change in boiler capa	city or rating. As	part of PSD avoidance, King America Finis	shing will only combust N	o. 2 fuel oil in the boiler with a maxim	um sulfur content of 0.5%	, by weight. Increment expansion is no	ot included in the modeling and	<u>alys</u> es.					
25100008B02	B002 Babcock & Wilcox Boiler	None	1998	181.00	176,070 scfh	Nat. Gas	#10444 #16554 #10444	0.2 lb/mmBtu	3.62E+01 V-03-0 3.3.3.a	0.6 lb/mmscf	1.06E-01 AP42 1.4-2	1.9 lb/mmscf AP4	42 1.4-2	5.7 lb/mmscf AP42 1.4-2	1.34E+00	O DET DMO E/DM rol'- f	Same as PM	10 1.11E+00
	Replaced 233 mmBtu/hr coal-fired boiler lis	ated in PSDINVEN 1.xls in 1998.		181.00	1,293 gph	No. 2	#10444 #16554	0.2 lb/mmBtu	3.62E+01 V-03-0 3.3.3.a	0.5 % sulfur	9.18E+01 NSPS Db	2 lb/mgal AP4	42 1.3-1	1.3 lb/mgal Total CPM	4.27E+00	0.907 PINI2.5/PM ratio fro	Liquid fuel except residual	oil 4.13E+00
25100008DNR	DNR1 Dye Narrow Range Pad Application	None	1976 1993	4.60	4,475 scfh	Nat. Gas	#16554	100 lb/mmscf	4.47E-01 AP42 1.4-1	0.6 lb/mmscf	2.68E-03 AP42 1.4-2	1.9 lb/mmscf AP4	42 1.4-2	5.7 lb/mmscf AP42 1.4-2	3.40E-02		Same as PM	10 3.40E-02
25100008DWR	DWR1 Dye Wide Range Pad Application	None	1966 1994	4.60	4,475 scfh	Nat. Gas	#16554	100 lb/mmscf	4.47E-01 AP42 1.4-1	0.6 lb/mmscf	2.68E-03 AP42 1.4-2	1.9 lb/mmscf AP4	42 1.4-2	5.7 lb/mmscf AP42 1.4-2	3.40E-02		Same as PM	10 3.40E-02
054000000	HD01 Dry Range No. 3 Predryer, Hot Flame Drye	er and	0000			N-1 0	#18171	105 11 /					10.1.1.0	FTH lower to the test				40 4
25100008PHT		Noné	2008	21.00	20,428 scfh	Nat. Gas	502(b)(10)	100 ib/mmscf	2.04E+00 AP42 1.4-1	U.6 Ib/mmscf	1.23E-U2 AP42 1.4-2	1.9 ID/mmscf AP4	42 1.4-2	5.7 ID/IMISCE AP42 1.4-2	1.55E-01		Same as PM	U 1.55E-01
∠510008R40	FR40 Aztec Finishing Range	NORÊ	1976	12.00	11,673 scfh	Nat. Gas	#16554	100 lb/mmscf	1.1/E+UU AP42 1.4-1	U.6 Ib/mmscf	7.00E-03 AP42 1.4-2	1.9 lb/mmscf AP4	42 1.4-2	5.7 ID/IMMSCT AP42 1.4-2	8.8/E-02		Same as PM	U 8.87E-02

А В С	D E F	GHIJ	K L M N	O P Q R S	TUV W	X Y Z	AA BB CC DD	EE FF GG HH II JJ KK
Unit Description		Operating Levels use	ed for Maximum Allowable Emissions	Nitrogen Oxides (NO _x)	Sulfur Dioxide (SO ₂)	Particula	te Matter <10 mm (PM ₁₀)	Particulate Matter <2.5 mm (PM _{2.5})
Modeled Permitted	an and the state and state	aramum Hounly cosasing Warght Rate animum Rated animum Rated animum Rated animum Rated animum Hounly und Consumption	ctual Echnuist dumetic Plow Rate y Standard Echanast olumetic Plow Rate	antaron Alonable Emission mataron of Powrate Emis	antimum Algovable Emission Initiation of Potentials to Emit ass Emission Rate		ans Fairlion Rab	ass Entition Rate Officiation Rate Conferences
Source ID Source Description Control De	evice Description ඊద ≥ద	≥⊂. ≥± ≥∞. ≥⊄ tons mmBtu bhp U	حَ⊃ ⊡⊃ Units Fuel Type acfm dscfm Basis	units Ib/hr Basis	≥ ⊐ units ≥ Basis Ib/hr	Maximum Allowable Emis filterable units Basis	sion Limitation or Potential-to-Emit condensable units Basis Ib/h	r filterable units Basis condensable units Basis Ib/hr
25100008R51 FR51 Aztec Finishing Range None	1988	3.90 3,794 s	scfh Nat. Gas #165	554 100 lb/mmscf 3.79E-01 AP42 1.4-1	0.6 lb/mmscf 2.28E-03 AP42 1.4-2	1.9 lb/mmscf AP42 1.4-2	5.7 lb/mmscf AP42 1.4-2 2.88E-02	Same as PM10 2.88E-02
25100008R58 FR58 Aztec Finishing Range None	1969	9.00 8,755 s	scfh Nat. Gas #165	554 100 lb/mmscf 8.75E-01 AP42 1.4-1	0.6 lb/mmscf 5.25E-03 AP42 1.4-2	1.9 lb/mmscf AP42 1.4-2	5.7 lb/mmscf AP42 1.4-2 6.65E-02	Same as PM10 6.65E-02
25100008R59 FR59 Aztec Finishing Range None	1976	12.00 11,673 s	scfh Nat. Gas #165	554 100 lb/mmscf 1.17E+00 AP42 1.4-1	0.6 lb/mmscf 7.00E-03 AP42 1.4-2	1.9 lb/mmscf AP42 1.4-2	5.7 lb/mmscf AP42 1.4-2 8.87E-02	Same as PM10 8.87E-02
25100008FR1 FRL1 Flame Retardant Fabric Finishing Line 1 None		Steam heated	#165	5540.00E+00	0.00E+00		0.00E+00	0.00E+00
25100008FR2 FRL2 Flame Retardant Fabric Finishing Line 2 None		Steam heated	#165	554 0.00E+00	0.00E+00		0.00E+00	0.00E+00
25100008PHS PHS1 Heat Setting None	1978	6.00 5,837 s	scfh Nat. Gas #165	554 100 lb/mmscf 5.84E-01 AP42 1.4-1	0.6 lb/mmscf 3.50E-03 AP42 1.4-2	1.9 lb/mmscf AP42 1.4-2	5.7 lb/mmscf AP42 1.4-2 4.44E-02	Same as PM10 4.44E-02
25100008POW POW1 Preparation Open Width Range None	1970	Bleaching operation	#165	554 0.00E+00	0.00E+00		0.00E+00	0.00E+00
25100008PRR PRR1 Rope Range None	1966 1999	9 1.70 1,654 s	scfh Nat. Gas #165	554 100 lb/mmscf 1.65E-01 AP42 1.4-1	0.6 lb/mmscf 9.92E-04 AP42 1.4-2	1.9 lb/mmscf AP42 1.4-2	5.7 lb/mmscf AP42 1.4-2 1.26E-02	Same as PM10 1.26E-02
25100008PYP PYP1 Yarn Preparation None	1994	1.00 973 s	scfh Nat. Gas #165	554 100 lb/mmscf 9.73E-02 AP42 1.4-1	0.6 lb/mmscf 5.84E-04 AP42 1.4-2	1.9 lb/mmscf AP42 1.4-2	5.7 lb/mmscf AP42 1.4-2 7.39E-03	Same as PM10 7.39E-03
25100008P01 P001 Zimmer Printer & Aztec Tubular Jet Print Dryer 1 None	1991	8.00 7,782 s	scfh Nat. Gas #165	554 100 lb/mmscf 7.78E-01 AP42 1.4-1	0.6 lb/mmscf 4.67E-03 AP42 1.4-2	1.9 lb/mmscf AP42 1.4-2	5.7 lb/mmscf AP42 1.4-2 5.91E-02	2 Same as PM10 5.91E-02
25100008P02 P002 Zimmer Printer & Aztec Tubular Jet Print Dryer 2 None Georgia - Screven County AIRS 25100009 Sylvania Readymix Concrete is listed as a concrete products facility. No is Sylvania Readymix Concrete is listed as a concrete products facility. No is Since no air quality permit for the facility could be found in the application The facility will not have a significant concentration gradient for the PM10	1993 application files could be found for this fe files, particulate matter emissions are as and PM2.5 NAAQS and increments bas	8.00 7,782 s acility. ssumed to be based on 600,000 cubic yards of p sed on 20*D with 2-km grouping.	sch Nat. Gas #165 production per year (391-3-103(11)(b)4.(i)(l1)).	554 100 lb/mmscl 7.78E-01 AP42 1.4-1	0.6 lb/mmsct 4.67E-03 AP42 1.4-2	1.9 lb/mmscf AP421.4-2	5.7 lb/mmscf AP421.4-2 5.91E-02	2 Same as PM10 5.91E-02
For all NAAQS, this source is assumed to be included in the background a Georgia - Screven County	air quality concentrations.							
AIRS 25100010 Mobley Lumber Co Inc Mobley Lumber is listed as operating a wood refuse conic burner. The las	st correspondence from the facility found	d in the application files was in February 1977. 1	This facility is assumed to have ceased operation.					
Georgia - Screven County AIRS 25100024 Carcill (Sylvania) Peanut Products Cargill is a peanut shelling operation. Application files indicate that the fa AP42 Chapter 9.10.2.2 also indicates that the facility would be a source o The facility will not have a significant concentration gradient for the PM10 For the NAAQS, this source is assumed to be included in the background Georgia - Screven County AIPS 2510026 Bascom Gin Company	cility is a source of particulate matter on I particulate matter only (peanut drying i and PM2.5 NAAQS and increments bas air quality concentrations.	M is an open-air, mechnical process). sed on 20°D with 2-km grouping.						
Bascom Gin Company is a cotton ginning operation (10 bales per hour) The facility will not have a significant concentration gradient for the PM10	Application files indicate that the facility and PM2.5 NAAQS and increments bas	is a source of particulate matter only. sed on 20*D with 2-km grouping.						
For the NAAOS, this source is assumed to be included in the background Georgia - Screven County AIRS 25100027 Screven Gin Company Screven Gin Company is a cotton ginning operation (30 bales per hour). The facility will not have a significant concentration gradient for the PM10 For the NAAOS, this source is assumed to be included in the background Company Screven County is	air quality concentrations. Application files indicate that the facility and PM2.5 NAAQS and increments bas air quality concentrations.	is a source of particulate matter only. sed on 20'D with 2-km grouping.						
AIRS 25100029 Southern Natural Gas Company-Woodcliff Gate Com	pressor Station			V-03-0 3.3.	AD42.3.1.2a			
25100029T1 PT01 Natural Gas-Fired Turbine Allison Model 501-KC None Georgia - Screven County AIRS 25100030 Mickey Lovett Body Shop Mickey Lovett Body Shop is listed as an automotive painting and refinishi No application files could be found for this facility. The only record likely to The facility is assumed to not have a significant concentration gradient for For WH 200 this paint provide the paint the the paint the theory of theory of the theory of theory of the theory of theory of the theory of theory of the theory of theory of the theory of theory of theory of the theory of theory of the theory of theory of the theory of theory of theory of the theory of theor	2005 ng operation. The facility does not have o exist for this facility is an initial notifica the NAAQS and increments.	55.42 5,278 53,911 s any quantifiable PM10, PM2.5, NOx or SO2 em tion for the paint stripping and miscellaneous su	scfh Nat. Gas #171 nissions. urface coating operations area source MACT rule (4	143 150 15% O2 3.06E+01 RM19 19-1 (40 CFR 63 Subpart HHHHHH).	0.0034 lb/mmBtu 1.77E-01 footnote h	0.0019 lb/mmBtu AP42 3.1-2a	4.70E-03 lb/mmBtu AP42.3.1-2a 3.66E-01	Same as PM10 3.66E-01
For all NAAOS, this source is assumed to be included in the background is Georgia - Screven County AIRS 25100031 Wallis Paint & Body, Inc. is Wallis Paint & Body, Inc. is listed as an automotive painting and refinishin, No application files could be found for this facility. The only record likely t The facility is assumed to not have a significant concentration gradient for Even (II MAOS, this ource is non-work to be lock due to the background in the background of Even (II MAOS).	air quality concentrations. g operation. The facility does not have a o exist for this facility is an initial notifica the NAAQS and increments.	any quantifiable PM10, PM2.5, NOx or SO2 emis tion for the paint stripping and miscellaneous su	issions. Irface coating operations area source MACT rule (-	(40 CFR 63 Subpart HHHHH).				
Georgia - Screven County AIRS 25100032 McBride's Hill Paint & Body Shop, Inc. McBride's Hill Paint & Body Shop, Inc. is listed as an automotive painting No application files could be found for this facility. The only record likely t The facility is assumed to not have a significant concentration gradient for For all MAOS this source is assumed to be included in the background.	and refinishing operation. The facility do o exist for this facility is an initial notifica r the NAAQS and increments. eir quality concentrations.	ces not have any quantifiable PM10, PM2.5, NO. tion for the paint stripping and miscellaneous su	Ix or SO2 emissions. Inface coating operations area source MACT rule (4	(40 CFR 63 Subpart HHHHHH).				
Georgia - Screven County AIRS 25100033 Southeastern Aircraft Painting. Inc. Southeastern Aircraft Painting, Inc. is listed as an automotive collision and The only record in the application files is an initial notification/compliance. The facility is assumed to not have a significant concentration gradient for Ever all MAOS, this courge is assumed to be lock/ducit in the background for all MAOS.	d repair operation (likely aircraft). The fa certification submitted on March 1, 2010 rthe NAAQS and increments.	cility does not have any quantifiable PM10, PM2 of the paint stripping and miscellaneous surfac	2.5, NOx or SO2 emissions. coating operations area source MACT rule (40 (CFR 63 Subpart HHHHHH).				

Table 4a. PSD Point Source Inventory for the 1-hour NO2 and SO2 NAAQS

	Unit Description					Stack Pa	arameters						
Modeled Source ID	Permitted Source ID Source Description	Contruction Date	Modification Date	UTM NAD 83 B Easting	UTTM NAD 83 3 Northing	AERMAP NED 1 arc-sec 3 Elevation	tt Stack Release Height	႕ Stack Exit Temperature	<mark>형</mark> Stack Exit Velocity	∋. Stack Exit Diameter	NO _x Ib/hr	SO _z Ib/hr	In-Stack NO2/NOx Ratio
2	<u>seorgia - Builoon County</u> AIRS 03100002 Tillman & Deal Farm Supply Inc												
0310000201	1 Grain Dryer	1976		428,060.20	3,593,728.40	51.88	40.0	78	7.80	14.00	1.421E+00	1.639E-01	0.50
2	Georgia - Bulloch County AIRS 03100011 Reeves Construction Company Plant #10												
0310001101	Hot Mix Asphalt Plant Dryer Stack	unk		420,058.18	3,582,140.49	52.01	28.5	286	64.25	42.00	1.375E+01	1.271E+02	0.50
<u>4</u>	<u>Georgia - Bulloch County</u> AIRS 03100020 Braswell A M Food Co Inc												
0310002001	1-1 200-hp Fitz Gibbon Boiler	1969		424,828.90	3,592,263.20	76.30	30.0	350	17.32	18.00	9.564E-01	3.395E+00	0.50
0310002002	1-2 100-hp Titusville Boiler	1964		424,828.90	3,592,263.20	76.30	40.0	350	8.66	18.00	3.256E-01	1.954E-03	0.50
<u> </u>	<u>Georgia - Bulloch County</u> AIRS 03100036 Robbins Packing Co												
0310003602	2 80-hp Boiler	1949		426,982.90	3,591,349.30	61.71	40.0	425	21.00	24.00	3.256E-01	1.954E-03	0.50
0310003603	3 100-hp Boiler Georgia - Bulloch County	1949		426,982.90	3,591,349.30	61.71	40.0	425	21.00	24.00	3.256E-01	1.954E-03	0.50
4	AIRS 03100044 Briggs & Stratton	1005											
031000441B	P01B Aluminum Melting Tower and Furnace	2001		420,753.57	3,583,049.15	61.40	32.0	350	47.16	36.00	3.700E+00	1.000E-02	0.50
0310004402	P02 Die Casting Machines	1995		420,753.57	3,583,049.15	61.40	32.0	200	50.88	64.00	8.000E-02	1.700E-01	0.50
031000445A	P05A Stress Relief Oven	1995		420,753.57	3,583,049.15	61.40	32.0	305	49.62	28.00	6.100E-01	2.400E-03	0.50
031000446A	P06A Four-stage Aqueous Parts Washer	1995		420,753.57	3,583,049.15	61.40	32.0	105	47.33	52.00	3.100E-01	1.200E-03	0.50
0310004407	P07 Engine Testing Stations	1995		420,753.57	3,583,049.15	61.40	42.0	74	8.10	32.50	4.800E-03	3.000E-02	0.50
0310004411	P11 Dynamometer Testing Stands	1995		420.753.57	3.583.049.15	61.40	32.0	74	91.13	32.50	1.200E-01	1.000E-02	0.50
0310004412	P12 Epxov Drving Ovens	2004		420 753 57	3 583 049 15	61 40	32.0	249	48 47	18.00	3 100E-01	1 200E-03	0.50
0210004413	P12 Outdoor Endurance Test Stands	2005		420 752 57	3 583 040 15	61.40	32.0	74	52.07	32.50	1 200E-01	1.000E-02	0.50
0310004413		2005		420,753.57	3,363,049.15	01.40	32.0	14	32.07	32.50	1.2002-01	1.000E-02	0.50
03100044B1	Georgia - Bulloch County	1995		420,753.57	3,583,049.15	61.40	32.0	121	49.27	14.00	2.560E+00	1.000E-02	0.50
	AIRS 03100052 East Geogia Regional Medical Center	4000		107 505 00	0.500.040.00	04.00	07.0	005			4 0045 00	7 0055 00	
03100052B1	B1 Cleaver-Brooks CB200-300-125HW Boller	1999	225 5	427,535.99	3,586,613.62	64.02	27.8	325	27.69	20.00	1.221E+00	7.325E-03	0.50
03100052B2	B2 Cleaver-Brooks CB200-300-125HW Boiler	1000	555 3	427 535 99	3 586 613 62	64.02	27.8	325	27.69	20.00	1 221E±00	7 325E-03	0.50
Boiler B2 uses natur	al gas as primary fuel; No. 2 fuel oil as backup during emergency	(8/18/1999 #116	635 S	Section III-A form	n); NOx and SO2	emission scer	nario are "inte	ermittent" fo	r the 1-hour	NAAQS	1.2212100	1.0202.00	0.00
2	Georgia - Burke County AIRS 03300008 Allen B. Wilson Combustion Turbine Plant												
003000086A	CTA6A Peaking Combustion Turbine	1972		430,217.17	3,666,866.79	63.43	50.0	760	97.64	195.28	8.554E+02	4.909E+02	0.20
003000086B	CTA6B Peaking Combustion Turbine	1972		430,216.79	3,666,840.85	63.29	50.0	760	97.64	195.28	8.554E+02	4.909E+02	0.20
003000086C	CTA6C Peaking Combustion Turbine	1972		430,216.54	3,666,815.11	63.22	50.0	760	97.64	195.28	8.554E+02	4.909E+02	0.20
003000086D	CTA6D Peaking Combustion Turbine	1973		430,216.19	3,666,789.11	63.31	50.0	760	97.64	195.28	8.554E+02	4.909E+02	0.20
003000086E	CTA6E Peaking Combustion Turbine	1973		430,215.75	3,666,762.95	63.70	50.0	760	97.64	195.28	8.554E+02	4.909E+02	0.20
003000086F	CTA6F Peaking Combustion Turbine	1973		430,215.53	3,666,736.94	63.86	50.0	760	97.64	195.28	8.554E+02	4.909E+02	0.20
	Georgia - Burke County AIRS 03300034 Fiamm Technologies, Inc.									T			
03300034SC6	P1A P1A P2 Lead Cylinder Production and Grid Casting	2001		405,054.23	3,663,711.27	86.00	35.0	82	38.58	30.00	3.677E-01	2.206E-03	0.50
03300034B02	P5 P6 Three-Process Operation	2001		405,132.33	3,663,704.32	86.11	35.0	80	37.21	60.00	9.450E-01	5.670E-03	0.50
03300034B05	P5 P6 Three-Process Operation	2001		405,050.68	3,663,711.91	85.97	35.0	76	36.91	36.00	9.450E-01	5.670E-03	0.50
	<u>Georgia - Burke County</u> AIRS 03300037 Reeves Construction Company GFL Waynest	oro Plant											

Table 4a. PSD Point Source Inventory for the 1-hour NO2 and SO2 NAAQS

	Unit Description				Stack Pa	arameters						
Modeled Source ID	Permitted Source ID Source Description	Contruction Date Modification Date	UTM NAD 83 Beating	UTM NAD 83 3 Northing	AERMAP NED 1 arc-sec 3 Elevation	⊯ Stack Release Height	ு Stack Exit Temperature	ਲ੍ਹੋ Stack Exit Velocity	5: Stack Exit Diameter	NO _x Ib/hr	SO ₂ lb/hr	In-Stack NO2/NOx Ratio
0330003701	Hot Mix Asphalt Plant Dryer Stack	unk	407,980.29	3,661,898.82	76.85	34.0	250	74.66	42.00	1.100E+01	1.321E+02	0.50
<u>c</u> <u>A</u>	Beorgia - Burke County JIRS 03300038 ASTA, Inc.											
0330003801	BC01-BC06 Electric Enamel Base Coat Ovens	2008	404,857.25	3,663,545.69	88.45	40.0	1,000	47.00	6.50	9.785E-01	0.000E+00	0.50
0330003802	SB01-SB02 Self-bonding Coating Ovens	2008	404,857.25	3,663,545.69	88.45	40.0	1,300	28.00	6.50	1.631E-01	0.000E+00	0.50
A	IRS 04300011 Moore Wallace Inc											
04300011B1	B1 Kewanee Boiler	1980	401,976.90	3,584,983.60	66.64	30.0	350	10.26	18.00	5.946E-01	6.861E-02	0.50
Ā	IRS 10300013 Georgia Transmission											
10300013G1	G1 Caterpillar CAT 3516 B TA Generator Set	2001	459,487.70	3,595,455.40	38.97	25.0	847	241.38	14.00	3.727E+01	beyond screening area	0.50
10300013G2	G2 Caterpillar CAT 3516 B TA Generator Set	2001	459,482.57	3,595,460.68	39.16	25.0	847	241.38	14.00	3.727E+01		0.50
10300013G3	G3 Caterpillar CAT 3516 B TA Generator Set	2001	459,478.34	3,595,465.92	39.32	25.0	847	241.38	14.00	3.727E+01		0.50
10300013G4	G4 Caterpillar CAT 3516 B TA Generator Set	2001	459,473.52	3,595,471.08	39.40	25.0	847	241.38	14.00	3.727E+01		0.50
10300013G5	G5 Caterpillar CAT 3516 B TA Generator Set	2001	459,469.32	3,595,475.40	39.45	25.0	847	241.38	14.00	3.727E+01	<u></u>	0.50
4070004004	D4 Dell le ductrice lumber Device Kile Deiles	1000	075 000 00	0.007.504.00			450		40.00	4 0005 00	1 5005 04	0.50
10700013B1	B1 Beil Industries Lumber Drying Kin Boller <u>Beorgia - Emanuel County</u> <u>IRS 10700019 American Steel Products</u> D01	1983	375,239.90	3,607,591.20	89.22	30.0	450	30.00	16.00	1.390E+00	1.580E-01	0.50
10700019D1	D02 D03 3 Maxon Size PM 1200 Drving Ovens	unk	374 667 30	3 607 963 20	06.42	24.0	70	37.40	14.00	4.377E-01	2 6265-02	0.50
<u>G</u>	Beorgia - Emanuel County	unix	014,001.00	0,001,000.20	30.42	24.0	10	07.40	14.00	4.0172-01	2.0202 00	0.00
10700025B1	PL1 600 bp Pailer 1	2000	286.060.02	2 500 425 04	75.00	24.0	200	20.07	24.00	2.9545.00	beyond	0.50
10700025B1	PL 2 200 hp Boiler 2	2000	386,000.03	2 599 424 57	76.00	24.0	300	14.54	24.00	1.427E+00	screening area	0.50
1070002582		2000	386,047.67	3,300,434.37	76.20	24.0	390	14.54	24.00	1.4272+00		0.50
1070002585 	BLS 700-hp Boller S Seorgia - Jefferson County IRS 16300007 Thermo King Corp	2002	386,078.09	3,588,436.38	75.60	24.0	350	34.11	24.00	3.329E+00	boyond	0.50
16300007107	107 Coil Oven	1995	370,309.00	3,652,450.28	99.26	20.0	130	11.50	12.00	3.891E-02	screening area	0.50
16300007306	306 Pretreat Oven	1995	370,309.00	3,652,450.28	99.26	20.0	130	11.50	12.00	7.782E-02	<u> </u>	0.50
16300007014	14 14 Diesel Testing Stands	1992	370,309.00	3,652,450.28	99.26	4.0	450	75.62	4.00	3.832E+00		0.50
<u>e</u>	ieorgia - Jefferson County IRS 16300008 Farmers Gin and Storage											
16300008CG	Cotton Ginning Process	1975 2010	369,360.88	3,636,743.00	69.91	26.0	75	36.88	16.00	1.137E+00	screening area	0.50
2	eorgia - Jefferson County JRS 16300012 Battle Lumber Company											
16300012B1	B1 Steam Boiler for Lumber Drving Kilos	1992	369.557.87	3.636.201.85	67.88	35.0	400	52.00	16.80	2.112E+00	beyond screening area	0.50
16300012B2	B2 Steam Boiler for Lumber Drving Kilns	1998	369 557 87	3 636 201 85	67.88	40.0	865	47.67	30.25	6 314E+00		0.50
16300012B2	R3 Steam Boiler for Lumber Drying Kilos	2010	360 557 97	3 636 201 85	67.99	40.0	965	47.67	30.25	6.314E+00		0.50
10300012B3	Beorgia - Screven County	2010	309,337.07	3,030,201.03	07.00	40.0	005	47.07	30.23	0.3142+00		0.50
A	IRS 25100003 Feed Seed & Farm Supply											
2510000307	7 Grain Dryer Seorgia - Screven County	1957	428,060.20	3,593,728.40	51.88	40.0	78	7.80	14.00	1.167E+00	7.004E-03	0.50
A	IRS 25100004 Koyo Bearings USA, LLC											
25100004B1	B1 700-hp Boiler 1	1974	442,044.99	3,624,657.32	55.30	38.7	315	86.74	16.00	2.841E+00	1.705E-02	0.50
Boiler B1 uses No. 5	fuel oil only during curtailment (11/13/1996 memo); NOx and SO2 (emission scenario a	are "intermittent	" for the 1-hour N	AAQS							
25100004B2	B2 700-hp Boiler 2	1974	442,044.99	3,624,657.32	55.30	38.7	315	86.74	16.00	2.841E+00	1.705E-02	0.50
Boiler B2 uses No. 5	fuel oil only during curtailment (11/13/1996 memo): NOx and SO2 - seorgia - Screven County JRS 25100008 King America Finishing, Inc.	emission scenario a	are "intermittent	<u>" for the 1-hour N/</u>	<u>AAQS</u>							
25100008B01	B001 Babcock & Wilcox Boiler	1970 2010	430,543.80	3,607,588.13	47.76	140.0	500	41.40	60.00	4.086E+01	8.411E+01	0.50
25100008B02	B002 Babcock & Wilcox Boiler	1998	430,534.13	3,607,576.97	47.59	60.0	450	32.89	72.00	3.620E+01	9.179E+01	0.50
05405		1070	100 6	0.007.000	40							
25100008DNR	טע דאמע Uye Narrow Range Pad Application	1976 1993	430,657.92	3,607,626.13	48.73	38.0	140	29.11	22.00	4.4/5E-01	2.685E-03	0.50

P:\Carbo Ceramics\Willen\2010-07 Lines 5-8 PSD Permit App\\Volume III- Modeling + Toxics\G PSD Inventory\CARBO Millen PSD Q over d Screening and Inventories.xls Tab: 1hr NO2&SO2 NAAQS Point Sources Page 13 of 26

Table 4a. PSD Point Source Inventory for the 1-hour NO2 and SO2 NAAQS

	Unit Description					Stack P	arameters				1		
Modeled Source ID	Permitted Source ID Source Description	Contruction Date	Modification Date	UTM NAD 83 3 Easting	UTM NAD 83 3 Northing	AERMAP NED 1 arc-sec 3 Elevation	⇒ Stack Release Height	_ਜ Stack Exit Temperature	<mark>정</mark> Stack Exit Velocity	∋. Stack Exit Diameter	NO _x Ib/hr	SO ₂ Ib/hr	In-Stack NO2/NOx Ratio
25100008DWR	DWR1 Dye Wide Range Pad Application	1966	1994	430,657.92	3,607,626.13	48.73	38.0	140	29.11	22.00	4.475E-01	2.685E-03	0.50
25100008PHT	PD01 Dry Range No. 3 Predryer, Hot Flame Dryer and HD01 Thermosol	2008		430,464.05	3,607,785.12	49.10	38.0	140	29.11	22.00	2.043E+00	1.226E-02	0.50
25100008R40	FR40 Aztec Finishing Range	1976		430,568.88	3,607,693.97	48.69	38.0	140	29.11	22.00	1.167E+00	7.004E-03	0.50
25100008R51	FR51 Aztec Finishing Range	1988		430,568.88	3,607,693.97	48.69	38.0	140	29.11	22.00	3.794E-01	2.276E-03	0.50
25100008R58	FR58 Aztec Finishing Range	1969		430,568.88	3,607,693.97	48.69	38.0	140	29.11	22.00	8.755E-01	5.253E-03	0.50
25100008R59	FR59 Aztec Finishing Range	1976		430,568.88	3,607,693.97	48.69	38.0	140	29.11	22.00	1.167E+00	7.004E-03	0.50
25100008PHS	PHS1 Heat Setting	1978		430,482.52	3,607,699.59	48.62	38.0	140	29.11	22.00	5.837E-01	3.502E-03	0.50
25100008PRR	PRR1 Rope Range	1966	1999	430,554.56	3,607,682.53	48.56	38.0	140	29.11	22.00	1.654E-01	9.922E-04	0.50
25100008PYP	PYP1 Yarn Preparation	1994		430,579.21	3,607,648.21	48.47	38.0	140	29.11	22.00	9.728E-02	5.837E-04	0.50
25100008P01	P001 Zimmer Printer & Aztec Tubular Jet Print Dryer 1	1991		430,534.46	3,607,777.31	49.21	38.0	140	29.11	22.00	7.782E-01	4.669E-03	0.50
25100008P02	P002 Zimmer Printer & Aztec Tubular Jet Print Dryer 2	1993		430,534.46	3,607,777.31	49.21	38.0	140	29.11	22.00	7.782E-01	4.669E-03	0.50
	Georgia - Screven County AIRS 25100029 Southern Natural Gas Company-Woodcliff Gate Co	ompress	or Stati	 on									
25100029T1	PT01 Natural Gas-Fired Turbine Allison Model 501-KC	2005		427,200.00	3,623,900.00	80.40	37.7	1,073	13.76	66.50	3.062E+01	1.771E-01	0.20
	South Carolina - Aiken County Permit No. 0080-0041 Savannah River Nuclear Solutions LLC - Sav	/annah	River Si										
0080004101	APE2 - 784-78 Steam Facility Biomass Boiler	2008		431 534 89	3 680 173 83	110.25	50.0	350	44.00	35.00	1 317E±01	beyond	0.50
0080004102	APE3 - 784-7A Steam Facility Oil Fired Boiler	2008		431 559 32	3 689 180 83	119.15	45.0	458	47.00	30.00	2 857E+00	<u>screening area</u>	0.50
0080004102	ROH1 - 735-18 Lab Hotwater Heater/Roiler 1 2 & 3	1008		431 835 06	3 692 011 05	02.47	33.0	500	0.00328	26.29	1.675E+00		0.50
0080004105	HSE12 - 254-10H 800 k// Production Diagol Engine A	2000		440,409,08	3 693 561 32	02.47	12.0	000	0.00328	0.06	2.675E+01		0.50
0080004105	HSE12 - 254-19H 600 KW Production Diesel Engine A	2000		440,409.08	3 693 566 37	93.75	12.0	999	0.00328	9.90	2.675E+01		0.50
0080004100	HSE 13 - 234-13H 600 KW Froduction Diese Engine B	1095		440,410.33	3 693 435 62	01.05	200.0	79	59.60	120.00	3 373E+02		0.50
0080004107	NR 128 - 725-1N Abrasiva Blasting	1075	1002	440,407.00	2 670 021 55	01.10	200.0	460	0.00229	0.00	0.000E+02		0.50
0080004100	NGE44 - 2 Portable Air Compressors in D-Area	2000	2010	430,962,28	3 673 001 55	37.56	7.7	994	215.00	5.09	2.278E+01		0.50
0080004105	NGE44 - 2 Portable Air Compressors	2000	2010	430,002.20	3 680 032 21	112.42	77	994	215.00	5.00	1 1/3E+02		0.50
0080004110	SDP7 - 221-S Zone 2 Stack 221-S Prod. etc.	1099	2010	431,202.34	3 684 003 70	94.11	147.0	80	85.00	60.00	2 249E+01		0.50
	South Carolina - Aiken County Permit No. 0080-0112 Three Rivers Landfill	1300	2004	440,230.10	3,004,003.70	04.11	147.0	00	03.00	00.00	2.3432+01		0.00
0080011201	Tub Grinder Engine	2005		431,419.00	3,680,380.00	71.88	11.6	800	305.53	6.00	1.102E+01	screening area	0.50
0080011202	Scalping Screen Engine	unk		431,419.00	3,680,380.00	71.88	10.0	800	76.41	3.96	2.600E+00	<u> </u>	0.50
0080011203	Terminator Grinder Engine	unk		431,419.00	3,680,380.00	71.88	10.3	800	305.53	6.00	9.740E+00		0.50
0080011204	Trommel Screen Engine	unk		431,419.00	3,680,380.00	71.88	9.4	800	305.53	6.00	2.240E+00	<u> </u>	0.50
0080011206	Flare	unk		431,455.35	3,679,828.44	60.12	42.0	1,832	65.62	60.00	5.100E+00	<u> </u>	0.50
	South Carolina - Aiken County Permit No. 0080-0144 Ameresco Federal Solutions												
0080014401	1STACK - Biomass Cogeneration Boiler	2008		436,002.16	3,681,877.04	79.25	100.0	325	59.61	66.14	3.150E+01	beyond screening area	0.50
0080014402	2STACK - Biomass Cogeneration Boiler	2008		436,015.32	3,681,858.30	78.28	100.0	325	59.61	66.14	3.150E+01	<u></u>	0.50
0080014403	KBIOB - Biomass Steam Generation Unit	2008		438,359.75	3,674,696.84	82.96	49.0	450	53.71	19.68	2.980E+00	<u> </u>	0.50
0080014404	LBIOB - Biomass Steam Generation Unit	2008		441,886.13	3,674,882.91	76.85	49.0	450	53.71	19.68	2.980E+00	<u> </u>	0.50
	South Carolina - Allendale County Permit No. 0160-0006 Clariant Corporation												
0160000601	Boiler #1	1999		455,144.27	3,655,701.15	48.69	42.0	350	34.50	39.96	1.000E+01	beyond screening area	0.50
0160000602	Boiler #2	1999		455,147.76	3,655,700.35	48.61	42.0	350	40.00	39.96	1.000E+01		0.50
0160000603	Scrubbers	1999		454,885.43	3,655,126.55	43.16	94.8	70	53.95	39.96	0.000E+00		0.50
	South Carolina - Barnwell County Permit No. 0300-0036 Savannah River Nuclear Solutions LLC Sava	nnah P	iver Site	- D-Area Power	erhouse								
0300003601	DPF1 - 484-D 396 x 106 btu/br Pulverized Coal Boiler #	1952		431,022.38	3.673,996.77	39.08	125.0	370	35.00	118.56	3.191E+02	beyond screening area	0.50
0300003602	DPF2 - 484-D 396 x 106 btu/hr Pulverized Coal Boiler #	1952		431,020.71	3,673,999.52	39.07	125.0	370	35.00	118.56	3.191E+02		0.50

Table 4b. PSD Volume Source Inventory for the 1-hour NO2 and SO2 NAAQS

	Unit Description				Volume S	ource Pa	arameters	5				
Modeled Source ID	Permitted Source ID Source Description	Contruction Date	Modification Date	UTM NAD 83 Easting	UTM NAD 83 3 Northing	AERMAP NED 1 arc-sec 3 Elevation	⊯ Release Height		과 Vertical Dimension	NO _x Ib/hr	SO ₂ Ib/hr	In-Stack NO2/NOx Ratio
G	eorgia - Bulloch County											
A	IRS 03100005 W.M. Sheppard Lumber Company											
03100005K4	DK04 Direct-fired Lumber Drying Kiln #4	1998		438,293.75	3,579,706.34	38.29	35	10.72	16.28	7.535E-01	6.250E-01	0.50
03100005K5	DK05 Direct-fired Lumber Drying Kiln #5	1999		438,375.83	3,579,700.40	37.85	35	10.72	16.28	7.535E-01	6.250E-01	0.50
G A	<u>ieorgia - Bulloch County</u> IRS 03100028 Claude Howard Lumber Company											
03100028K1	DFK1 Direct-fired Lumber Drying Kiln #1	1980		427,118.28	3,588,883.68	62.05	42	68.90	74.80	8.476E-01	4.500E-01	0.50
03100028K2	DFK2 Direct-fired Lumber Drying Kiln #2	1980		427,145.49	3,588,874.80	61.55	42	68.90	74.80	8.476E-01	5.000E-01	0.50
G	Beorgia - Emanuel County											
-	Direct-fired Lumber Drying Kiln #7 (batch) converted										beyond	
10700011K09	DK09 to Kiln #9 (continuous)	2005		374,904.36	3,597,713.56	76.19	27	14.71	12.56	1.769E+00	screening area	0.50
10700011K10	DK10 to Kiln #10 (continuous)	2005		374,942.32	3,597,713.56	75.84	27	14.71	12.56	1.769E+00	<u></u>	0.50

Table 5. PSD Inventory for the PM10 and PM2.5 24-hour and Annual NAAQS and Increments

	Unit Description			Incre	ement			Stack P	arameters					
Modeled Source ID	Permitted Source ID Source Description	Contruction Date	Modification Date	PM ₁₀	PM _{2.5}	UTM NAD 83 3 Easting	UTM NAD 83 Northing	AERMAP NED 1 arc-sec 3 Elevation	p Stack Release Height	н Stack Exit Temperature	<mark>ज</mark> े Stack Exit Velocity	∃. Stack Exit Diameter	PM ₁₀ lb/hr	PM _{2.5} Ib/hr
2	Georgia - Burke County													
4	AIRS 03300008 Allen B. Wilson Combustion Turbine Plant													
003000086A	CTA6A Peaking Combustion Turbine	1972				430,217.17	3,666,866.79	63.43	50.0	760	97.64	195.28	1.118E+01	1.081E+01
003000086B	CTA6B Peaking Combustion Turbine	1972				430,216.79	3,666,840.85	63.29	50.0	760	97.64	195.28	1.118E+01	1.081E+01
003000086C	CTA6C Peaking Combustion Turbine	1972				430,216.54	3,666,815.11	63.22	50.0	760	97.64	195.28	1.118E+01	1.081E+01
003000086D	CTA6D Peaking Combustion Turbine	1973				430,216.19	3,666,789.11	63.31	50.0	760	97.64	195.28	1.118E+01	1.081E+01
003000086E	CTA6E Peaking Compustion Turbine	1973				430 215 75	3 666 762 95	63 70	50.0	760	97 64	195 28	1 118E+01	1 081E+01
00000002		1010				100,210.10	0,000,102.000	00.10	00.0	100	01.01	100.20		1.0012101
003000086F	CTA6F Peaking Combustion Turbine Georgia - Burke County	1973				430,215.53	3,666,736.94	63.86	50.0	760	97.64	195.28	1.118E+01	1.081E+01
4	AIRS 03300030 Vogtle Electric Generating Plant													
03300030VD1	VD01 Unit 1 Emergency Diesel Generator 1A	1981		1		428.765.22	3.667.265.29	65.40	63.0	700	0.00328	42.00	4.005E+00	3.886E+00
03300030VD2	VD02 Unit 1 Emergency Diesel Generator 1B	1981		1		428,778.92	3,667,265.05	65.07	63.0	700	0.00328	42.00	4.005E+00	3.886E+00
03300030VD3	VD03 Unit 2 Emergency Diesel Generator 2A	1981		1		428,981.22	3,667,262.56	64.53	63.0	700	0.00328	42.00	4.005E+00	3.886E+00
03300030VD4	VD04 Unit 2 Emergency Diesel Generator 2B	1981		1		428,994.88	3,667,262.28	64.56	63.0	700	0.00328	42.00	4.005E+00	3.886E+00
03300030FD1	FPD1 Replacement Fire Pump Diesel Unit 1	2010		1		429,083.94	3,667,465.93	61.41	25.0	850	153.00	5.00	3.086E-01	3.086E-01
03300030FD2	FPD2 Fire Pump Diesel Unit 2	1977		1		429,091.18	3,667,465.87	61.57	25.0	850	153.00	5.00	8.360E-01	8.360E-01
03300030SD1	SD01 Security Diesel	1986		1		429,136.56	3,667,260.08	65.29	30.0	850	245.00	6.00	4.601E-01	4.465E-01
0330003CWS1	CWS1 Circulating Water System Cooling Tower 1	unk		1		429,450.43	3,667,305.53	65.79	600.0	80	9.74	3960.00	1.800E+00	1.800E+00
0330003CWS2	CWS2 Circulating Water System Cooling Tower 2	unk		1		429,448.13	3,667,514.53	63.01	600.0	80	9.74	3960.00	1.800E+00	1.800E+00
0330003SWS1	SWS1 Service Water System Cooling Tower 1	unk		1		428,985.11	3,667,307.90	63.93	600.0	106	24.78	268.80	8.000E-02	8.000E-02
0330003SWS2	SWS2 Service Water System Cooling Tower 2	unk		1		428,786.46	3,667,310.41	65.15	600.0	106	24.78	268.80	8.000E-02	8.000E-02
1	New Equipment (Units 3 and 4)													
03300030VD5	VD05 Unit 3 Emergency Diesel Generator 1	2010		· ·		428,406.35	3,667,182.63	69.37	35.5	710	364.50	18.00	1.808E+00	1.808E+00
03300030VD6	VD06 Unit 3 Emergency Diesel Generator 2	2010		· ·		428,413.71	3,667,182.63	69.42	35.5	710	364.50	18.00	1.808E+00	1.808E+00
03300030VD7	VD07 Unit 4 Emergency Diesel Generator 1	2010		×		428,160.59	3,667,178.43	69.13	35.5	710	364.50	18.00	1.808E+00	1.808E+00
03300030VD8	VD08 Unit 4 Emergency Diesei Generator 2	2010		*		428,167.33	3,667,178.43	69.17	35.5	710	364.50	18.00	1.808E+00	1.808E+00
03300030FD3	FPD3 Units 3 and 4 Fire Pump Diesel 1	2010		· ·		428,275.84	3,667,271.06	69.05	12.0	868	168.30	5.00	5.456E-02	5.456E-02
03300030FD4	EDDE Units 3 and 4 Fire Pump Diesel 2	2010		• •		428,028.78	3,007,200.87	74.00	12.0	808	168.30	5.00	5.456E-02	5.456E-02
033000301 D3	ALIVI Linits 3 and 4 Ancillary Diesel Generator 1	2010				420,451.22	3 667 110 60	70.22	12.0	800	160.90	3.00	6.614E-02	6.614E-02
03300030AX2	ALIX2 Units 3 and 4 Ancillary Diesel Generator 2	2010				428 364 04	3 667 119 69	70.33	12.0	800	169.80	3.00	6.614E-02	6.614E-02
03300030AX3	AUX3 Units 3 and 4 Ancillary Diesel Generator 3	2010		1		428,116,71	3.667.116.86	69.28	12.0	800	169.80	3.00	6.614E-02	6.614E-02
03300030AX4	AUX4 Units 3 and 4 Ancillary Diesel Generator 4	2010		1		428.116.71	3.667.116.86	69.28	12.0	800	169.80	3.00	6.614E-02	6.614E-02
03300030RWD	ODG1 Units 3 and 4 Raw Water Diesel Generator	2010		1		428.398.28	3.666.578.01	74.18	20.0	851	252.10	12.00	4.850E-01	4.850E-01
03300030TSC	TSC1 Technical Support Center Disel Generator	2010		1		428,663.17	3,667,142.45	72.04	20.0	851	252.10	12.00	4.850E-01	4.850E-01
0330003CWS3	CWS3 Circulating Water System Cooling Tower 3	2010		1		427,985.26	3,666,795.15	71.31	600.0	80	9.74	3960.00	1.800E+00	1.800E+00
0330003CWS4	CWS4 Circulating Water System Cooling Tower 4	2010		1		428,321.88	3,666,798.14	76.73	600.0	80	9.74	3960.00	1.800E+00	1.800E+00
0330003SWS3	SWS3 Service Water System Cooling Tower 3	2010		1		428,022.65	3,667, <u>2</u> 51.06	69.09	600.0	106	<u>2</u> 4.78	268.80	8.000E-02	8.000E-02
0330003SWS4	SWS4 Service Water System Cooling Tower 4	2010		1		428,269.78	3,667,252.78	69.05	600.0	106	24.78	268.80	8.000E-02	8.000E-02
5	South Carolina - Barnwell County Permit No. 0300-0036 Savannah River Nuclear Solutions LLC Sa	vannah Rive	er Site	- D-Area	Powerho	use						T		
0300003601	DPF1 - 484-D 396 x 106 btu/hr Pulverized Coal Boiler	# 1952				431,022.38	3,673,996.77	39.08	125.0	370	35.00	118.56	7.230E+01	7.230E+01
0300003602	DPF2 - 484-D 396 x 106 btu/hr Pulverized Coal Boiler	# 1952				431,020.71	3,673,999.52	39.07	125.0	370	35.00	118.56	7.230E+01	7.230E+01

Table 6. PSD Inventory for the NO2 Annual NAAQS and Increment

	Unit Description		T	Increment			Stack Pa	rameters				
Modeled Source ID	Permitted Source ID Source Description	Contruction Date	Modification Date	NOx	UTM NAD 83 Besting	UTM NAD 83 3 Northing	AERMAP NED 1 arc-sec 3 Elevation	⇔ Stack Release Height	ᆔ Stack Exit Temperature	ਕ੍ਰੋ Stack Exit Velocity	∋: Stack Exit Diameter	NO; Ib/hi
G	Beorgia - Burke County		┦									
A	IRS 03300008 Allen B. Wilson Compustion Turbine Plant											
003000086A	CTA6A Peaking Combustion Turbine	1972			430,217.17	3,666,866.79	63.43	50.0	760	97.64	195.28	8.554E+02
003000086B	CTA6B Peaking Combustion Turbine	1972			430,216.79	3,666,840.85	63.29	50.0	760	97.64	195.28	8.554E+02
003000086C	CTA6C Peaking Combustion Turbine	1972			430,216.54	3,666,815.11	63.22	50.0	760	97.64	195.28	8.554E+02
003000086D	CTA6D Peaking Combustion Turbine	1973			430,216.19	3,666,789.11	63.31	50.0	760	97.64	195.28	8.554E+02
003000086E	CTA6E Peaking Combustion Turbine	1973			430,215.75	3,666,762.95	63.70	50.0	760	97.64	195.28	8.554E+02
003000086F G	CTA6F Peaking Combustion Turbine Seorgia - Burke County	1973	╢		430,215.53	3,666,736.94	63.86	50.0	760	97.64	195.28	8.554E+02
A	<u>IRS 03300030 Vogtle Electric Generating Plant</u> Existing Equipment (Units 1 and 2)											
03300030VD1	VD01 Unit 1 Emergency Diesel Generator 1A	1981			428,765.22	3,667,265.29	65.40	63.0	700	<u>0.00328</u>	42.00	2.328E+02
03300030VD2	VD02 Unit 1 Emergency Diesel Generator 1B	1981			428,778.92	3,667,265.05	65.07	63.0	700	<u>0.00328</u>	42.00	2.328E+02
03300030VD3	VD03 Unit 2 Emergency Diesel Generator 2A	1981			428,981.22	3,667,262.56	64.53	63.0	700	0.00328	42.00	2.328E+02
03300030VD4	VD04 Unit 2 Emergency Diesel Generator 2B	1981			428,994.88	3,667,262.28	64.56	63.0	700	<u>0.00328</u>	42.00	2.328E+02
03300030FD1	FPD1 Replacement Fire Pump Diesel Unit 1	2010		1	429,083.94	3,667,465.93	61.41	25.0	850	153.00	5.00	6.019E+00
03300030FD2	FPD2 Fire Pump Diesel Unit 2	1977			429,091.18	3,667,465.87	61.57	25.0	850	153.00	5.00	1.178E+01
03300030SD1	SD01 Security Diesel	1986	4		429,136.56	3,667,260.08	65.29	30.0	850	245.00	6.00	2.400E+01
03300030VD5	VD05 Unit 3 Emergency Diesel Generator 1	2010		1	428,406.35	3,667,182.63	69.37	35.5	710	364.50	18.00	1.973E+01
03300030VD6	VD06 Unit 3 Emergency Diesel Generator 2	2010	4	1	428,413.71	3,667,182.63	69.42	35.5	710	364.50	18.00	1.973E+01
03300030VD7	VD07 Unit 4 Emergency Diesel Generator 1	2010		1	428,160.59	3,667,178.43	69.13	35.5	710	364.50	18.00	1.973E+01
03300030VD8	VD08 Unit 4 Emergency Diesel Generator 2	2010	4	1	428,167.33	3,667,178.43	69.17	35.5	710	364.50	18.00	1.973E+01
03300030FD3	FPD3 Units 3 and 4 Fire Pump Diesel 1	2010		1	428,275.84	3,667,271.06	69.05	12.0	868	168.30	5.00	1.210E+00
03300030FD4	FPD4 Units 3 and 4 Fire Pump Diesel 2	2010	4	1	428,028.78	3,667,266.87	69.22	12.0	868	168.30	5.00	1.210E+00
03300030FD5	FPD5 Units 3 and 4 Fire Pump Diesel 3	2010	-	1	428,431.22	3,666,576.29	74.00	12.0	868	168.30	5.00	1.210E+00
03300030AX1	AUX1 Units 3 and 4 Ancillary Diesel Generator 1	2010			428,364.04	3,667,119.69	70.33	12.0	800	169.80	3.00	1.241E+00
03300030AX2	AUX2 Units 3 and 4 Ancillary Diesel Generator 2	2010	-	· ·	428,364.04	3,667,119.69	70.33	12.0	800	169.80	3.00	1.241E+00
03300030AX3	AUX3 Units 3 and 4 Ancillary Diesel Generator 3	2010			428,116.71	3,667,116.86	69.28	12.0	800	169.80	3.00	1.241E+00
03300030RM/D	ODG1 Units 3 and 4 Raw Water Diesel Generator	2010			428 398 28	3,666,578,01	74 18	20.0	851	252 10	12.00	5 291E+00
03300030TSC	TSC1 Technical Support Center Disel Generator	2010			428,663,17	3.667.142.45	72.04	20.0	851	252.10	12.00	5.291E+00
G	Beorgia - Screven County		T									
25100008B01	B001 Babcock & Wilcox Boiler	1970 201	10	expanding moc <u>in 2010</u> not considered for increment	430,543.80	3,607,588.13	47.76	140.0	500	41.40	60.00	4.086E+01
254000000000	P002 Pahanak & Wilson Pailor	1000			120 524 40	2 607 570 07	47 50	60.0	450	22.00	70.00	2 6005 - 64
2010008B02	DUUZ DAUCUUK & WIICUX BOIIER	1998		• • • • • • • • • • • • • • • • • • •	430,534.13	3,007,370.97	47.59	0.0	450	32.89	12.00	3.02UE+01
25100008DNR	DNR1 Dye Narrow Range Pad Application	1976 199	93	~	430,657.92	3,607,626.13	48.73	38.0	140	29.11	22.00	4.475E-01
25100008DWR	DWR1 Dye Wide Range Pad Application	1966 199	94	~	430,657.92	3,607,626.13	48.73	38.0	140	29.11	22.00	4.475E-01
25100008PHT	HD01 Thermosol	2008		1	430,464.05	3,607,785.12	49.10	38.0	140	29.11	22.00	2.043E+00
25100008R40	FR40 Aztec Finishing Range	1976	\downarrow		430,568.88	3,607,693.97	48.69	38.0	140	29.11	22.00	1.167E+00
25100008R51	FR51 Aztec Finishing Range	1988		1	430,568.88	3,607,693.97	48.69	38.0	140	29.11	22.00	3.794E-01

Table 6. PSD Inventory for the NO2 Annual NAAQS and Increment

Unit Description				Increment			Stack Pa	arameters	<u>i</u>			
Modeled Source ID	Permitted Source ID Source Description	Contruction Date	Modification Date	NO _x	UTM NAD 83 Basting	UTM NAD 83 3 Northing	AERMAP NED 1 arc-sec B Elevation	⇔ Stack Release Height	п Stack Exit Temperature	ලී Stack Exit Velocity	⊟. Stack Exit Diameter	NO _x lb/hr
25100008R58	FR58 Aztec Finishing Range	1969			430.568.88	3.607.693.97	48.69	38.0	140	29.11	22.00	8.755E-01
25100008R59	FR59 Aztec Finishing Range	1976			430,568.88	3,607,693.97	48.69	38.0	140	29.11	22.00	1.167E+00
25100008PHS	PHS1 Heat Setting	1978			430,482.52	3,607,699.59	48.62	38.0	140	29.11	22.00	5.837E-01
25100008PRR	PRR1 Rope Range	1966	1999	1	430,554.56	3,607,682.53	48.56	38.0	140	29.11	22.00	1.654E-01
25100008PYP	PYP1 Yarn Preparation	1994		*	430,579.21	3,607,648.21	48.47	38.0	140	29.11	22.00	9.728E-02
25100008P01	P001 Zimmer Printer & Aztec Tubular Jet Print Dryer 1	1991		*	430,534.46	3,607,777.31	49.21	38.0	140	29.11	22.00	7.782E-01
25100008P02	P002 Zimmer Printer & Aztec Tubular Jet Print Dryer 2	1993		1	430,534.46	3,607,777.31	49.21	38.0	140	29.11	22.00	7.782E-01
<u>0</u> 4	<u>Seorgia - Screven County</u> NRS 25100029 Southern Natural Gas Company-Woodcliff Gate (Compres	sor St	ation								
- 25100029T1	PT01 Natural Gas-Fired Turbine Allison Model 501-KC	2005			427,200.00	3.623.900.00	80.40	37.7	1.073	13.76	66.50	3.062E+01
5	South Carolina - Aiken County		Disco	0/1-				••••	.,			
100000000	ADE2 - 204 ZA Steem Eesility Dismoor Deilor	avannan	River	Site	404 504 00	0 000 470 00	440.05	50.0	050	44.00	05.00	4.0475.04
0080004101	AFF2 - 704-7A Steam Facility Diumass Bullet	2008			431,534.09	3,009,173.03	119.25	45.0	350	44.00	30.00	1.317E+01
0080004102	APF3 - 784-7A Steam Facility Oil Filed Boller	2008		•	431,559.32	3,689,180.83	119.15	45.0	458	47.00	30.00	2.857E+00
0080004103	HSE12 - 254-19H 800 kW Production Diesel Engine	1998		· ·	431,835.06	3,682,911.95	92.47	33.0	500	0.00328	26.38	1.675E+00
0080004105	A HSE13 - 254-19H 800 kW Production Diesel Engine	2000		~	440,409.08	3,683,561.32	93.75	12.0	999	<u>0.00328</u>	9.96	2.675E+01
0080004106	В	2000		~	440,416.53	3,683,566.37	93.60	12.0	999	0.00328	9.96	2.675E+01
0080004107	HSP2 - H Canyon, HB Line, 221-H, etc.	1985		1	440,467.08	3,683,435.62	91.95	200.0	78	59.60	120.00	3.373E+02
0080004109	NGE44 - 2 Portable Air Compressors in D-Area	2000	2010	1	430,862.28	3,673,991.55	37.56	7.7	884	215.00	5.08	2.278E+01
0080004110	NGE45 - 10 Portable Air Compressors	2000	2010	1	431,282.94	3,689,932.21	113.43	7.7	884	215.00	5.08	1.143E+02
0080004111	SDP7 - 221-S Zone 2 Stack, 221-S Prod., etc	1988	2004	1	440,290.18	3,684,003.70	84.11	147.0	80	85.00	60.00	2.349E+01
Ē	Permit No. 0080-0112 Three Rivers Landfill											
0080011201	Tub Grinder Engine	2005		1	431,419.00	3,680,380.00	71.88	11.6	800	305.53	6.00	1.102E+01
0080011202	Scalping Screen Engine	unk		1	431,419.00	3,680,380.00	71.88	10.0	800	76.41	3.96	2.600E+00
0080011203	Terminator Grinder Engine	unk		1	431,419.00	3,680,380.00	71.88	10.3	800	305.53	6.00	9.740E+00
0080011204	Trommel Screen Engine	unk		1	431,419.00	3,680,380.00	71.88	9.4	800	305.53	6.00	2.240E+00
0080011206	Flare	unk		1	431,455.35	3,679,828.44	60.12	42.0	1,832	65.62	60.00	5.100E+00
S	South Carolina - Aiken County Permit No. 0080-0144 Ameresco Federal Solutions											
0080014401	1STACK - Biomass Cogeneration Boiler	2008		1	436 002 16	3 681 877 04	79 25	100.0	325	59.61	66 14	3 150E+01
0080014402	2STACK - Biomass Cogeneration Boiler	2008			436 015 32	3 681 858 30	78.28	100.0	325	59.61	66.14	3 150E+01
0080014403	KBIOB - Biomass Steam Generation Unit	2008		4	438 359 75	3 674 696 84	82.96	49.0	450	53 71	19.68	2 980E+00
0080014404	I RIOB - Biomass Steam Constant Unit	2008			441 886 13	3 674 882 01	76.85	49.0	450	53 71	10.68	2.000E+00
0000014404	South Carolina - Barnwell County	2000			441,000.13	0,077,002.91	10.00	43.0	400	55.71	19.00	2.3000000
E E	Permit No. 0300-0036 Savannah River Nuclear Solutions LLC Sav	vannah F	River S	ite - D-Area Power	<u>house</u>							
0300003601	DPF1 - 484-D 396 x 106 btu/hr Pulverized Coal Boiler	1952			431,022.38	3,673,996.77	39.08	125.0	370	35.00	118.56	3.191E+02
0300003602	DPF2 - 484-D 396 x 106 btu/hr Pulverized Coal Boiler	1952			431,020.71	3,673,999.52	39.07	125.0	370	35.00	118.56	3.191E+02

Table 7. PSD Inventory for the SO2 3-hour, 24-hour and Annual NAAQS and Increments

	Unit Description		l	Increment			Stack Pa	arameters				
Modeled Source ID	Permitted Source ID Source Description	Contruction Date Modification Date	Modification Date	SO ₂	UTM NAD 83 B Easting	UTM NAD 83 3 Northing	AERMAP NED 1 arc-sec 3 Elevation	과 Stack Release Height	ᆔ Stack Exit Temperature	ಥೆ Stack Exit Velocity	<u>s</u> : Stack Exit Diameter	SO; Ib/hi
<u>.</u>	Georgia - Bulloch County											
4	AIRS 03100011 Reeves Construction Company Plant #10											
0310001101	Georgia - Burke County AIRS 03300008 Allen B. Wilson Combustion Turbine Plant	unk			420,058.18	3,582,140.49	52.01	28.5	286	64.25	42.00	1.271E+02
003000086A	CTA6A Peaking Combustion Turbine	1972			430,217.17	3,666,866.79	63.43	50.0	760	97.64	195.28	4.909E+02
003000086B	CTA6B Peaking Combustion Turbine	1972			430.216.79	3.666.840.85	63.29	50.0	760	97.64	195.28	4.909E+02
003000086C	CTA6C Peaking Combustion Turbine	1972			430,216.54	3,666,815.11	63.22	50.0	760	97.64	195.28	4.909E+02
003000086D	CTA6D Peaking Combustion Turbine	1973			430,216.19	3,666,789.11	63.31	50.0	760	97.64	195.28	4.909E+02
003000086E	CTA6E Peaking Combustion Turbine	1973			430,215.75	3,666,762.95	63.70	50.0	760	97.64	195.28	4.909E+02
003000086E	CTA6E Peaking Compustion Turbine	1973			430 215 53	3 666 736 94	63.86	50.0	760	97 64	195 28	4 909E+02
	Georgia - Burke County AIRS 03300030 Vogtle Electric Generating Plant Existing Equipment (Units 1 and 2)	1010			100,210,00	0,000,700,01	00.00	00.0		01101	100.20	
03300030VD1	VD01 Unit 1 Emergency Diesel Generator 1A	1981		1	428,765.22	3,667,265.29	65.40	63.0	700	<u>0.00328</u>	42.00	3.924E+01
03300030VD2	VD02 Unit 1 Emergency Diesel Generator 1B	1981		1	428,778.92	3,667,265.05	65.07	63.0	700	0.00328	42.00	3.924E+01
03300030VD3	VD03 Unit 2 Emergency Diesel Generator 2A	1981		1	428,981.22	3,667,262.56	64.53	63.0	700	<u>0.00328</u>	42.00	3.924E+01
03300030VD4	VD04 Unit 2 Emergency Diesel Generator 2B	1981		1	428,994.88	3,667,262.28	64.56	63.0	700	<u>0.00328</u>	42.00	3.924E+01
03300030FD1	FPD1 Replacement Fire Pump Diesel Unit 1	2010		1	429,083.94	3,667,465.93	61.41	25.0	850	153.00	5.00	3.237E-03
03300030FD2	FPD2 Fire Pump Diesel Unit 2	1977		1	429,091.18	3,667,465.87	61.57	25.0	850	153.00	5.00	7.790E-01
03300030SD1	SD01 Security Diesel	1986		1	429,136.56	3,667,260.08	65.29	30.0	850	245.00	6.00	4.045E+00
	New Equipment (Units 3 and 4)	0010		,	100, 100, 05	0.007.400.00	00.07	05.5	740	004 50	40.00	0.0705.00
03300030VD5	VD05 Unit 3 Emergency Diesel Generator 1	2010		*	428,406.35	3,667,182.63	69.37	35.5	710	364.50	18.00	6.872E-02
03300030VD6	VD06 Unit 3 Emergency Diesel Generator 2	2010		•	420,413.71	3,007,102.03	69.42	35.5	710	364.50	10.00	6.072E-02
03300030VD7	VD07 Unit 4 Emergency Diesel Cenerator 1	2010		•	428,160.59	3,007,178.43	09.13	35.5	710	364.50	10.00	0.072E-02
03300030VD8	VD08 Unit 4 Emergency Dieser Generator 2	2010		•	428,167.33	3,667,178.43	69.17	35.5	710	364.50	18.00	0.872E-02
03300030FD3		2010		•	420,275.04	3,007,271.00	69.05	12.0	000	168.30	5.00	2.443E-03
03300030FD4	EPD5 Units 3 and 4 Fire Pump Diesel 2	2010		•	420,020.70	3,007,200.07	74.00	12.0	000	169.30	5.00	2.443E-03
03300030421	ALIX1 Linits 3 and 4 Appillany Diesel Generator 1	2010			428,451.22	3,667,110,60	70.33	12.0	800	169.80	3.00	1 115E-03
033000304X1	AUX2 Units 3 and 4 Ancillary Diesel Generator 2	2010			428,364.04	3,667,119,69	70.33	12.0	800	169.80	3.00	1 115E-03
03300030AX2	AUX2 Units 3 and 4 Ancillary Diesel Generator 3	2010			428,304.04	3 667 116 86	60.28	12.0	800	169.80	3.00	1 115E-03
03300030AX3	AUX4 Units 3 and 4 Ancillary Diesel Generator 4	2010			428,116,71	3,667,116,86	60.28	12.0	800	169.80	3.00	1 115E-03
03300030RWD	ODG1 Units 3 and 4 Raw Water Diesel Generator	2010			428 398 28	3 666 578 01	74 18	20.0	851	252 10	12.00	1 985E-02
03300030TSC	TSC1 Technical Support Center Disel Generator	2010			428 663 17	3 667 142 45	72.04	20.0	851	252.10	12.00	1.985E-02
9	Georgia - Burke County	2010	Î		420,000.17	0,007,142.40	72.04	20.0	001	202.10	12.00	1.0002 02
	AIRS 03300037 Reeves Construction Company GFL Waynes	DOFO Plant			407.005.55	0.00/ 005	70.67	<u></u>	0.5-5			4 6 6 4 -
0330003701	Georgia - Screven County	UNK	\parallel		407,980.29	3,001,898.82	70.85	34.0	250	74.66	42.00	1.321E+02
2510004P1	R1 700-bp Boiler 1	1974			442 044 00	3 624 657 32	55 30	38 7	315	86 74	16.00	7 6435+04
2510000401	B2 700-hp Boiler 2	1074			442 044 00	3 624 657 32	55 30	30.7	315	86 74	16.00	7 6435+01
2310000482	Georgia - Screven County AIRS 25100008 King America Finishing, Inc.	13/4	ex	xpanding moc <u>in 2</u> 010	772,044.33	0,027,007.02	00.00	JO.1	313	00.74	10.00	1.043ETU
25100008B01	B001 Babcock & Wilcox Boiler	1970 201	0 <u>fo</u>	ot considered for increment	430,543.80	3,607,588.13	47.76	140.0	500	41.40	60.00	8.411E+01

Table 7. PSD Inventory for the SO2 3-hour, 24-hour and Annual NAAQS and Increments

	Unit Description			Increment			Stack Pa	arameters												
Modeled Source ID	Permitted Source ID Source Description	Contruction Date	Modification Date	SO ₂	UTM NAD 83 B Easting	UTM NAD 83 B Northing	AERMAP NED 1 arc-sec 3 Elevation	⇔ Stack Release Height	ு Stack Exit Temperature	ਕ੍ਰੋ Stack Exit Velocity	∋: Stack Exit Diameter	SO ₂ lb/hr								
25100008B02	B002 Babcock & Wilcox Boiler	1998			430,534.13	3,607,576.97	47.59	60.0	450	32.89	72.00	9.179E+01								
25100008DNR	DNR1 Dye Narrow Range Pad Application	1976	1993	1	430,657.92	3,607,626.13	48.73	38.0	140	29.11	22.00	2.685E-03								
25100008DWR	DWR1 Dye Wide Range Pad Application	1966	1994	1	430,657.92	3,607,626.13	48.73	38.0	140	29.11	22.00	2.685E-03								
25100008PHT	HD01 Thermosol	2008		1	430,464.05	3,607,785.12	49.10	38.0	140	29.11	22.00	1.226E-02								
25100008R40	FR40 Aztec Finishing Range	1976		1	430,568.88	3,607,693.97	48.69	38.0	140	29.11	22.00	7.004E-03								
25100008R51	FR51 Aztec Finishing Range	1988		1	430,568.88	3,607,693.97	48.69	38.0	140	29.11	22.00	2.276E-03								
25100008R58	FR58 Aztec Finishing Range	1969			430,568.88	3,607,693.97	48.69	38.0	140	29.11	22.00	5.253E-03								
25100008R59	FR59 Aztec Finishing Range	1976		1	430,568.88	3,607,693.97	48.69	38.0	140	29.11	22.00	7.004E-03								
25100008PHS	PHS1 Heat Setting	1978		1	430,482.52	3,607,699.59	48.62	38.0	140	29.11	22.00	3.502E-03								
25100008PRR	PRR1 Rope Range	1966	1999	1	430,554.56	3,607,682.53	48.56	38.0	140	29.11	22.00	9.922E-04								
25100008PYP	PYP1 Yarn Preparation	1994		1	430,579.21	3,607,648.21	48.47	38.0	140	29.11	22.00	5.837E-04								
25100008P01	P001 Zimmer Printer & Aztec Tubular Jet Print Dryer 1	1991		1	430,534.46	3,607,777.31	49.21	38.0	140	29.11	22.00	4.669E-03								
25100008P02	P002 Zimmer Printer & Aztec Tubular Jet Print Dryer 2	1993		1	430,534.46	3,607,777.31	49.21	38.0	140	29.11	22.00	4.669E-03								
<u>Sc</u>	outh Carolina - Aiken County Jarmit No. 0090-0041 Sayangab River Nuclear Solutions I.I.C., Si	avannal	Divor	Sito																
0080004101	ADE2 724 7A Steam Eaglity Diamage Boiler	2009	TIME		421 524 90	2 690 172 92	110.25	50.0	250	44.00	25.00	1.0005.00								
0080004101	APE2 704-7A Steam Facility Oil Fired Boiler	2000			421 550 22	2 690 190 92	110.15	45.0	459	44.00	20.00	2.064E+00								
0080004102		1009			421 925 06	2 692 011 05	02.47	43.0	400	0.00228	26.20	6 022E 01								
0000004105	HSE12 - 254-19H 800 kW Production Diesel Engine	1990			431,835.00	3,002,911.95	92.47	33.0	000	0.00328	20.30	0.032E-01								
0080004105	HSE13 - 254-19H 800 kW Production Diesel Engine	2000			440,409.08	3,003,501.32	93.75	12.0	999	0.00328	9.90	3.30TE-01								
0080004108		2000	0010	•	440,416.53	3,003,000.37	93.60	12.0	999	0.00328	9.90	4.222E-01								
0080004109	NGE44 - 2 Portable Air Compressors in D-Area	2000	2010	*	430,862.28	3,673,991.55	37.56		884	215.00	5.08	1.500E+00								
0080004110		2000	2010	•	431,282.94	3,689,932.21	113.43	1.1	884	215.00	5.08	7.500E+00								
0080004111 <u>Sr</u>	SDP7 - 221-S Zone 2 Stack, 221-S Prod., etc iouth Carolina - Aiken County	1988	2004		440,290.18	3,684,003.70	84.11	147.0	80	85.00	60.00	1.246E-01								
Pe	ermit No. 0080-0112 Three Rivers Landfill																			
0080011201	Tub Grinder Engine	2005			431,419.00	3,680,380.00	71.88	11.6	800	305.53	6.00	1.740E+00								
0080011202	Scalping Screen Engine	unk			431,419.00	3,680,380.00	71.88	10.0	800	76.41	3.96	4.100E-01								
0080011203	Terminator Grinder Engine	unk			431,419.00	3,680,380.00	71.88	10.3	800	305.53	6.00	1.540E+00								
0080011204	Trommel Screen Engine	unk			431,419.00	3,680,380.00	71.88	9.4	800	305.53	6.00	3.500E-01								
0080011206	Flare	unk			431,455.35	3,679,828.44	60.12	42.0	1,832	65.62	60.00	1.046E+00								
<u></u>	ermit No. 0080-0144 Ameresco Federal Solutions																			
0080014401	1STACK - Biomass Cogeneration Boiler	2008		1	436,002.16	3,681,877.04	79.25	100.0	325	59.61	66.14	1.144E+02								
0080014402	2STACK - Biomass Cogeneration Boiler	2008		1	436,015.32	3,681,858.30	78.28	100.0	325	59.61	66.14	1.144E+02								
0080014403	KBIOB - Biomass Steam Generation Unit	2008		1	438,359.75	3,674,696.84	82.96	49.0	450	53.71	19.68	3.720E-01								
0080014404	LBIOB - Biomass Steam Generation Unit	2008		1	441,886.13	3,674,882.91	76.85	49.0	450	53.71	19.68	3.720E-01								
<u>Sc</u> Pi	outh Carolina - Barnwell County fermit No. 0300-0036 Sayannah River Nuclear Solutions LLC Say	/annah	River S	ite - D-Area Powe	rhouse															
0300003601	DPF1 - 484-D 396 x 106 btu/hr Pulverized Coal Boiler	1952			431,022.38	3.673,996.77	39.08	125.0	370	35.00	118.56	1.103E+03								
0300003602	DPF2 - 484-D 396 x 106 btu/hr Pulverized Coal Boiler	1952			431,020.71	3,673,999.52	39.07	125.0	370	35.00	118.56	1.103E+03								
Unit Description		Increment	Increment Stack Parameters										Short-term					Long-term		
--	---------------------------------------	---	----------------------------	------------------------	-------------------------------------	------------------------	--------------------------	-----------------------	---	--	---	--------------------------	--------------------------	---------------------------	---------------------------	--------------------------	--------------------------	---------------------------	-------------------	--
Modeled Permitted Source ID Source Description	Contruction Date Modification Date	NO _x SO ₂ PM ₁₀ PM ₂₂	UTM NAD 83 Besting	UTM NAD 83 Northing	AERMAP NED 1 arc-sec 3 Elevation	⊯ Stack Release Height	႕ Stack Exit Temperature	뎛 Stack Exit Velocity	 Stack Exit Diameter 	e Actual Exhaust Volumetric Flow Rate	Bp Dry Standard Exhaust Dry Vaumetric Flow Kate sis	NO _x Ib/hr	SO ₂ Ib/hr	PM ₁₀ Ib/hr	PM ₂₅ Ib/hr	NO _x Ib/hr	SO ₂ Ib/hr	PM ₁₀ Ib/hr	PM ₂ ,	
Georgia - Bulloch County AIRS 03100002 Tillman & Deal Farm Supply Inc 0310000201 1 Grain Dryer	1976		428,060.20 3,5	593,728.40	51.88	40.0	78	7.80	14.00		2002 NEI SCC 30200504 Food and Agriculture, Feed and Grain Terminal Elevators, Drying	1.421E+00	1.639E-01	1.445E+01 2	.551E+00 Sa	me as short-te	rm emission i	rates		
Georgia - Bulloch County AIRS 03100005 W.M. Sheppard Lumber Company																				
03100005K4 DK04 Direct-fired Lumber Drying Kiln # 4	1998	Volume Source. Please r	efer to Tabe 9									7.535E-01	6.250E-01	2.143E+00_2	.143E+00 Sa	me as short-te	rm emission	ates		
03100005K5 DK05 Direct-fired Lumber Drying Kiln # 5 Georgia - Bulloch County	1999	• •										7.535E-01	6.250E-01	2.143E+00 2	.143E+00 " "					
AIRS 03100011 Reves Construction Company Plant #10 0310001101 Hot Mix Asphalt Plant Dryer Stack Georgia - Bulloch County	unk	+	420,058.18 3,	582,140.49	52.01	28.5	286	64.25	42.00	37,092	#19283 and 20,512 8/10/2010 stack test	1.375E+01 1	.271E+02	1.188E+01 1	.188E+01 Sa	me as short-te	rm emission	ates		
AIKS USTURIZU Braswell A M FOOD LO INC											10/19/1973 <u>dscfm at 9,190 dscf/mmBtu,</u> <u>maximum heat input and 3%</u> <u>O2</u>									
0310002001 1-1 200-hp Fitz Gibbon Boiler	1969		424,828.90 3,5	592,263.20	76.30	30.0	350	17.32	18.00	1,837	1,197 <u>assumed temp. for tps</u>	9.564E-01	1.054E-02	1.578E-01 1	475E 02 " "	me as short-te	rm emission i	ates		
Georgia - Bulloch County AIRS 03100028 Claude Howard Lumber Company	1304		424,020.30 3,3	552,205.20	10.00	40.0	330	0.00	10.00	510	335 Game as 651002201	5.250E-01	1.3542-03	2.4730-02 2						
03100028K1 DFK1 Direct-fired Lumber Drying Kiln # 1	1980	Volume Source. Please r	efer to Tabe 9									8.476E-01	4.500E-01	2.411E+00 2	.411E+00 Sa	me as short-te	rm emission	ates		
03100028K2 DFK2 Direct-fired Lumber Drying Kiln # 2	1980	<u>• •</u>										8.476E-01	5.000E-01	2.411E+00 2	.411E+00 " "					
AIRS 03100036 Robbins Packing Co											2002 NEI SCC 10300701 External Combustion, CI Boilers, Natural Gas,									
0310003602 2 80-hp Boiler	1949		426,982.90 3,5	591,349.30	61.71	40.0	425	21.00	24.00		<10 Million Btu/hr	3.256E-01	1.954E-03	2.475E-02 2	2.475E-02 Sa	me as short-te	rm emission	ates		
0310003603 3 100-hp Boiler Georgia - Bulloch County AIRS 03100044 Briggs & Stratton	1949		426,982.90 3,5	591,349.30	61.71	40.0	425	21.00	24.00		Same as 0310003602	3.256E-01	1.954E-03	2.475E-02 2	2.475E-02 " "					
P01 Aluminum Melting Tower 031000441B P01B Aluminum Melting Furnace	1995 2001		420,753.57 3,	583,049.15	61.40	32.0	350	47.16	36.00	20,000	13,037 #16438 BriggsInput2000.xls	3.700E+00	1.000E-02	1.020E+00 1	.020E+00 Sa	me as short-te	rm emission i	ates		
0310004402 P02 Die Casting Machines	1995	1	420,753.57 3,	583,049.15	61.40	32.0	200	50.88	64.00	68,200	54,560 The application files contained complete modeling	8.000E-02	1.700E-01	4.170E+00 4	.170E+00 " "					
0310004403 P03 Landis Grinders	unk	Discharges inside building	(emissions consider	red zero); Mar	ch 27, 2006 E	EPD memo					information only for P07, P11, and P13. Stack release	0.000E+00 0	0.000E+00	0.000E+00 0	.000E+00 " "					
031000445A P05A Stress Relief Oven	1995	1	420,753.57 3,	,583,049.15	61.40	32.0	305	49.62	28.00	12,730	8,786 flow rates were provided for the remaining emission points.	6.100E-01	2.400E-03	3.000E-02 3	8.000E-02 * *					
031000446A P06A Four-stage Aqueous Parts Washer	1995	1	420,753.57 3,	,583,049.15	61.40	32.0	105	47.33	52.00	41,885	39,142 Exit diameters for the remaining stacks were	3.100E-01	1.200E-03	2.000E-02 2	2.000E-02 * *					
0310004407 P07 Engine Testing Stations	1995	-	420,753.57 3,	583,049.15	61.40	42.0	74	8.10	32.50	2,800	assumed to result in a 2,769 reasonalbe velocity.	4.800E-03	3.000E-02	4.000E-02 4	1.000E-02 * *					
0310004411 P11 Dynamometer Testing Stands	1995	-	420,753.57 3,	583,049.15	61.40	32.0	74	91.13	32.50	31,500	31,146	1.200E-01	1.000E-02	1.000E-02 1	.000E-02 * *					
0310004412 P12 Epxoy Drying Ovens	2004	1	420,753.57 3,	583,049.15	61.40	32.0	249	48.47	18.00	5,139	3,827	3.100E-01	1.200E-03	2.000E-02 2	2.000E-02 * *					
0310004413 P13 Outdoor Endurance Test Stands	2005	1	420,753.57 3,	583,049.15	61.40	32.0	74	52.07	32.50	18,000	17,798	1.200E-01	1.000E-02	1.000E-02 1	.000E-02 **					
03100044B1 B10A Boiler	1995	1	420,753.57 3,	583,049.15	61.40	32.0	121	49.27	14.00	3,160	2,872	2.560E+00	1.000E-02	1.300E-01 1	.300E-01 " "					
AIRS 03100052 East Geogia Regional Medical Center	4000		407 505 00				005	07.00				4 7005 07 7	0055 05							
0310005282 B2 Cleaver-Brooks CB200-300-125HW Boiler	1999		427,535.99 3,5	586 613 62	64.02	27.8	325	27.69	20.00		#11635	1.793E+00 6	365E±00	2.958E-01 2		ne as short-te	in emission i	ates		
Georgia - Burke County	1999		721,000.00 3,0	333,013.02	07.02	21.0	520	21.03	20.00		#11050	1.7332700 0		L.000L*01 Z						
003000086A CTA6A Peaking Combustion Turbine	1972		430,217.17 3,	666,866.79	63.43	50.0	760	97.64	195.28	1,218,571	#19931 CAIR Monitoring Plan 527,381 13' x 16' dia.	8.554E+02 4	1.909E+02	1. <u>118E+01</u> 1	.081E+01 Sa	me as short-te	rm emission	ates		

	Unit Description		Increm	nent					Stac	k Parame	eters				Short-te	erm			Long-teri	<u>n</u>	
Modeled Source ID	Permitted Source ID Source Description	contruction Date Modification Date	NO _x SO ₂	PM10 PM25	UTM NAD 83 5 Easting	UTM NAD 83 s Northing	AERMAP NED 1 arc-sec 8 Elevation	Stack Release Height	n Stack Exit Temperature	Stack Exit Velocity	s Stack Exit Diameter	는 Actual Exhaust 하 Volumetric Flow Rate	t volumetric Flow Kate Volumetric Flow Kate	NO _x	SO ₂	PM ₁₀ PI	N _{2.5}	NOx	SO ₂	PM ₁₀	PM _{2.1}
Course 15					m	m	m	n.		ips	in	acim	#19931 CAIR Monitoring Plan	ib/nr	iD/hi	id/nr i	vni i	D/NI	ib/nr	io/nr	
003000086B	CTA6B Peaking Combustion Turbine	1972			430,216.79	3,666,840.85	63.29	50.0	760	97.64	195.28	1,218,571	527,381 13' x 16' dia.	8.554E+02 4	4.909E+02 1	1.118E+01 1.081E	-01				
00300086C	CTASC Peaking Combustion Turbine	1972			430 216 54	3 666 815 11	63.22	50.0	760	97 64	195.28	1 218 571	CAIR Monitoring Plan	8 554E+02 4	1909E+02 1	1 118E+01 1 081E	.01				
000000000		1012			100,210.01	0,000,010.11	00.22	00.0	100	01.01	100.20	1,210,071	#19931 CAIR Monitoring Plan	0.0012102							
003000086D	CTA6D Peaking Combustion Turbine	1973			430,216.19	3,666,789.11	63.31	50.0	760	97.64	195.28	1,218,571	527,381 13' x 16' dia. #19931	8.554E+02 4	4.909E+02 1	1.118E+01 1.081E	-01 " "				
00300086E	CTA6E Peaking Combustion Turbine	1973			430.215.75	3.666.762.95	63.70	50.0	760	97.64	195.28	1.218.571	CAIR Monitoring Plan 527.381 13' x 16' dia.	8.554E+02 4	4.909E+02 1	1.118E+01 1.081E	01				
													#19931 CAIR Monitoring Plan								
003000086F Ge	CTA6F Peaking Combustion Turbine	1973			430,215.53	3,666,736.94	63.86	50.0	760	97.64	195.28	1,218,571	527,381 13' x 16' dia.	8.554E+02 4	4.909E+02 1	1.118E+01 1.081E	01 "				
All	RS 03300030 Vogtle Electric Generating Plant																				
03300030VD1	VD01 Unit 1 Emergency Diesel Generator 1A	1981			428 765 22	3 667 265 29	65.40	63.0	700	0.00328	42.00	raincan	Vogtle Units 3 and 4 PSD #18986	2 328E+02 3	3 924E+01 4	1005E+00 3.886E	00 Same as	short-terr	n emission r	ates	
03300030VD2	VD01 Unit 1 Emergency Diesel Generator 18	1981			428 778 92	3 667 265 05	65.07	63.0	700	0.00328	42.00	raincan	Vogtle Units 3 and 4 PSD #18986	2 328E+02 3	3 924E+01 4	1005E+00 3.886E	-00 " "	SHOREGIN	remission	aico	
03300030VD3	VD03 Unit 2 Emergency Diesel Generator 2A	1981	1	1	428.981.22	3.667.262.56	64.53	63.0	700	0.00328	42.00	raincap	Vogtle Units 3 and 4 PSD #18986	2.328E+02 3	3.924E+01 4	4.005E+00 3.886E	-00 " "				
03300030VD4	VD04 Unit 2 Emergency Diesel Generator 2B	1981	1	1	428,994,88	3.667.262.28	64.56	63.0	700	0.00328	42.00	raincap	Vogtle Units 3 and 4 PSD #18986	2.328E+02 3	3.924E+01 4	4.005E+00 3.886E	-00 " "				
03300030FD1	FPD1 Replacement Fire Pump Diesel Unit 1	2010	1	1	429.083.94	3.667.465.93	61.41	25.0	850	153.00	5.00	1.252	Vogtle Units 3 and 4 PSD 505 #18986	6.019E+00	3.237E-03	3.086E-01 3.086E	01				
03300030FD2	FPD2 Fire Pump Diesel Unit 2	1977	1		429,091.18	3,667,465.87	61.57	25.0	850	153.00	5.00	1,252	Vogtle Units 3 and 4 PSD 505 #18986	1.178E+01	7.790E-01	8.360E-01 8.360E	01 .				
03300030SD1	SD01 Security Diesel	1986	1		429,136.56	3,667,260.08	65.29	30.0	850	245.00	6.00	2,886	Vogtle Units 3 and 4 PSD 1,163 #18986	2.400E+01 4	4.045E+00	4.601E-01 4.465E	01 .				
0330003CWS1	CWS1 Circulating Water System Cooling Tower 1	unk			429,450.43	3,667,305.53	65.79	600.0	80	9.74	3960.00	50,000,000	Same as 0330003CWS3	0.000E+00 0	0.000E+00 1	1.800E+00 1.800E	-00 " "				
0330003CWS2	CWS2 Circulating Water System Cooling Tower 2	unk			429,448.13	3,667,514.53	63.01	600.0	80	9.74	3960.00	50,000,000	Same as 0330003CWS4	0.000E+00 0	0.000E+00 1	1.800E+00 1.800E	-00 " "				
0330003SWS1	SWS1 Service Water System Cooling Tower 1	unk		1	428,985.11	3,667,307.90	63.93	600.0	106	24.78	268.80	586,000	Same as 0330003SWS3	0.000E+00 0	0.000E+00	8.000E-02 8.000E	.02 " "				
0330003SWS2	SWS2 Service Water System Cooling Tower 2	unk		1	428,786.46	3,667,310.41	65.15	600.0	106	24.78	268.80	586,000	Same as 0330003SWS4	0.000E+00 0	0.000E+00	8.000E-02 8.000E	.02 " "				
Ne	w Equipment (Units 3 and 4)												Vogtle Units 3 and 4 PSD								
03300030VD5	VD05 Unit 3 Emergency Diesel Generator 1	2010	1 1	1	428,406.35	3,667,182.63	69.37	35.5	710	364.50	18.00	38,647	17,441 #18986 Vogtle Units 3 and 4 PSD	1.973E+01	6.872E-02 1	1.808E+00 1.808E	00 Same as	short-terr	n emission r	ates	
03300030VD6	VD06 Unit 3 Emergency Diesel Generator 2	2010		1	428,413.71	3,667,182.63	69.42	35.5	710	364.50	18.00	38,647	17,441 #18986 Vogtle Units 3 and 4 PSD	1.973E+01	6.872E-02 1	1.808E+00 1.808E	-00 " "				
03300030VD7	VD07 Unit 4 Emergency Diesel Generator 1	2010	· ·	1	428,160.59	3,667,178.43	69.13	35.5	710	364.50	18.00	38,647	17,441 #18986 Vogtle Units 3 and 4 PSD	1.973E+01	6.872E-02 1	1.808E+00 1.808E	-00 " "				
03300030VD8	VD08 Unit 4 Emergency Diesel Generator 2	2010		1	428,167.33	3,667,178.43	69.17	35.5	710	364.50	18.00	38,647	17,441 #18986 Vogtle Units 3 and 4 PSD	1.973E+01	6.872E-02 1	1.808E+00 1.808E	-00 " "				
03300030FD3	FPD3 Units 3 and 4 Fire Pump Diesel 1	2010		1	428,275.84	3,667,271.06	69.05	12.0	868	168.30	5.00	1,377	547 #18986 Vogtle Units 3 and 4 PSD	1.210E+00	2.443E-03	5.456E-02 5.456E	02 " "				
03300030FD4	FPD4 Units 3 and 4 Fire Pump Diesel 2	2010		1	428,028.78	3,667,266.87	69.22	12.0	868	168.30	5.00	1,377	547 #18986 Vogtle Units 3 and 4 PSD	1.210E+00	2.443E-03	5.456E-02 5.456E	.02				
03300030FD5	FPD5 Units 3 and 4 Fire Pump Diesel 3	2010		1	428,431.22	3,666,576.29	74.00	12.0	868	168.30	5.00	1,377	547 #18986 Vogtle Units 3 and 4 PSD	1.210E+00	2.443E-03	5.456E-02 5.456E	02 "				
03300030AX1	AUX1 Units 3 and 4 Ancillary Diesel Generator 1	2010	1 1	1	428,364.04	3,667,119.69	70.33	12.0	800	169.80	3.00	500	210 #18986 Vogtle Units 3 and 4 PSD	1.241E+00	1.115E-03	6.614E-02 6.614E	.02 " "				
03300030AX2	AUX2 Units 3 and 4 Ancillary Diesel Generator 2	2010		-	428,364.04	3,667,119.69	70.33	12.0	800	169.80	3.00	500	210 #18986 Vogtle Units 3 and 4 PSD	1.241E+00	1.115E-03	6.614E-02 6.614E	.02				
03300030AX3	AUX3 Units 3 and 4 Ancillary Diesel Generator 3	2010		✓	428,116.71	3,667,116.86	69.28	12.0	800	169.80	3.00	500	210 #18986 Vogtle Units 3 and 4 PSD	1.241E+00	1.115E-03	6.614E-02 6.614E	.02 " "				
03300030AX4	AUX4 Units 3 and 4 Ancillary Diesel Generator 4	2010		<i>.</i>	428,116.71	3,667,116.86	69.28	12.0	800	169.80	3.00	500	210 #18986 Vogtle Units 3 and 4 PSD	1.241E+00	1.115E-03	6.614E-02 6.614E	.02				
03300030RWD	ODG1 Units 3 and 4 Raw Water Diesel Generator	2010			428,398.28	3,666,578.01	74.18	20.0	851	252.10	12.00	11,880	4,785 #18986 Vogtle Units 3 and 4 PSD	5.291E+00	1.985E-02	4.850E-01 4.850E	01				
03300030TSC	TSC1 Technical Support Center Disel Generator	2010		·	428,663.17	3,667,142.45	72.04	20.0	851	252.10	12.00	11,880	4,785 #18986 Vogtle Units 3 and 4 PSD	5.291E+00	1.985E-02	4.850E-01 4.850E	01				
0330003CWS3	CWS3 Circulating Water System Cooling Tower 3	2010	#	*	427,985.26	3,666,795.15	71.31	600.0	80	9.74	3960.00	50,000,000	#18986 Vogtle Units 3 and 4 PSD	0.000E+00 0	J.UUUE+00 1	1.800E+00 1.800E					
0330003CWS4	CWS4 Circulating Water System Cooling Tower 4	2010	H	*	428,321.88	3,666,798.14	76.73	600.0	80	9.74	3960.00	50,000,000	#18986 Vogtle Units 3 and 4 PSD	0.000E+00 C	J.UUUE+00 1	1.800E+00 1.800E					
03300035WS3	SWS3 Service Water System Cooling Tower 3	2010		•	428,022.65	3,067,251.06	69.09	600.0	106	24.78	268.80	586,000	Wogtle Units 3 and 4 PSD	0.000E+00 0	000E+00	0.000E-02 8.000E	02				
0330003SWS4	sorgia - Burke County	2010		•	428,269.78	3,067,252.78	69.05	600.0	106	24.78	268.80	586,000	#18986	0.000E+00 0	0.000E+00	0.UUUE-UZ 8.000E	02				
Alf	RS 03300034 Fiamm Technologies, Inc. P1A Lead Cylinder Production		∥.										#11916 and								
03300034SC6	P2 Grid Casting	2001			405,054.23	3,663,711.27	86.00	35.0	82	38.58	30.00	11,362	10,791 11/2/2009 stack test #11916 and	3.677E-01	2.206E-03	1.628E-01 1.628E	01 Same as	short-tern	n emission r	ates	
03300034B1A	P1B Lead Oxide Production	2001	II. *		405,048.19	3,663,709.06	85.95	35.0	119	10.09	16.00	846	759 10/28/2009 stack test	0.000E+00 0	0.000E+00	2.861E-02 2.861E	02				

	Unit Description		Increment					Stac	k Paramet	ers				Short-ter	<u>m</u>		<u>I</u>	ong-tern	<u>1</u>	
						sec	E	ance			Ð	e st								
						1 arc	Heigl	perat	city	neter	v Rat	v Rat								
		Date		83	83	RED	ease	Tem	Velo	Dian	Elov	ard E								
		tion [DAN Bi	NAD	MAP	Rele	Exit	Exit	Exit	al Exh netric	netric								
Modeled	Permitted	ntruc	NO _x SO ₂ PM ₁₀ PM _{2.5}	UTM Easti	North	AERI	Stack	Stack	Stack	Stack	Actua	D Basis	NOx	SO ₂	PM ₁₀ PM _{2.9}	5	NOx	SO ₂	PM ₁₀	PM _{2.5}
Source ID	Source ID Source Description	<u>°</u> №		m	m	m	ft	F	fps	in	acfm	dscfm #11916 and	lb/hr	lb/hr	lb/hr lb/h	r	lb/hr	lb/hr	lb/hr	lb/hr
03300034B1B	P1B Lead Oxide Production	2001	1	405,048.19	3,663,709.06	85.95	35.0	119	10.99	16.00	920	828 10/28/2009 stack test	0.000E+00 0	.000E+00 3.1	124E-02 3.124E-02	2				
03300034B03	P1C Lead Oxide Production	2001	1	405,118.45	3,663,701.28	86.19	35.0	202	15.63	16.00	1,309	949 10/28/2009 stack test	0.000E+00 0	.000E+00 6.2	250E-02 6.250E-02	2				
03300034SC7	P3 Paste Mixing	2001	1	405,043.63	3,663,660.55	86.03	35.0	83	34.51	36.00	14,635	#11916 and 13,987 11/2/2009 stack test	0.000E+00 0	.000E+00 5.2	275E-01 5.275E-01	1				
03300034B02	P5 P6 Three-Process Operation	2001	1	405,132.33	3,663,704.32	86.11	35.0	80	37.21	60.00	43,839	#11916 and 42,064 11/2/2009 stack test	9.450E-01 5	6.670E-03 1.5	86E+00 1.586E+00					
03300034805	P5 P6 Three-Process Operation	2001	1	405 050 68	3 663 711 91	85.97	35.0	76	36.91	36.00	15 653	#11916 and 15 105 11/2/2009 stack test	9.450E-01 F	670E-03 5 6	397E-01 5 697E-01					
00000001000		2001		405 400 00	0,000,01100	05.04	25.0		00.01	20.00	40,440	#11916 and	0.0005.00.0	0005.00 0.0	400E 04 0 400E 04	1				
03300034DM8	Poa SLan Charging Area	2000		405,163.90	3,003,091.30	00.01	35.0	00	29.35	36.00	12,440	#11916 and	0.000E+00 0	.000E+00 6.4	+80E-01 6.480E-01	1				
03300034DM9	P8B SLA Charging Area eorgia - Burke County	2000		405,183.90	3,663,691.30	85.81	35.0	87	35.86	36.00	15,208	14,125 11/3/2009 stack test	0.000E+00 0	.000E+00 4.3	374E-01 4.374E-01	1				
AI	RS 03300037 Reeves Construction Company GFL Waynesbo	ro Plant																		
0330003701	Hot Mix Asphalt Plant Dryer Stack	unk	1	407,980.29	3,661,898.82	76.85	34.0	250	74.66	42.00	43,099	32,051 10/4/2007 SCREEN3	1.100E+01 1	.321E+02 1.4	87E+01 1.487E+01	1 Same a	as short-term	emission ra	ites	
G	eorgia - Burke County RS 03300038 ASTA. Inc.																			
0220002801		2008	4	404 957 25	2 662 646 60	00 AE	40.0	1 000	47.00	6 50	6E0	025 #19225 COREENS	0.7855.01.0	000E.00 0.0	005.00 0.0005.00	Some	a chart tarm	omission r		
0330003801	SCOT BCOD Electric Entantiel Base Coat Ovens	2008		404,037.23	3,003,345.09	00.40	40.0	1,000	47.00	0.50	050	235 #18225 3GREENS	9.785E=01 0	.000E+00 0.0	002+00 0.0002+00	Joannea	as short-term	emission	lies	
0330003802 G	SB01-SB02 Self-bonding Coating Ovens progia - Candler County	2008	~	404,857.25	3,663,545.69	88.45	40.0	1,300	28.00	6.50	387	116 #18225 SCREEN3	1.631E-01 0	.000E+00 0.0	00E+00 0.000E+00					
AI	RS 04300008 Allied Metals																			
0430000801	Automobile Shredder	1995 2008	1	402,849.86	3,585,229.95	62.98	28.0	95	20.39	32.00	6,832	6,285 4/30/2009 stack test	0.000E+00 0	.000E+00 2.9	63E+00 2.963E+00) Same a	as short-term	emission ra	ites	
G	eorgia - Candler County RS 04300011 Moore Wallace Inc																			
0400004484	D4 Kewasa Ballas	4000		404 070 00	0 504 000 00	00.04	20.0	250	40.00	40.00	4 000	Same as 0310002001	5 040E 04 0	0045 00 04	000E 00 0 000E 00	0				
04300011B1	eorgia - Effingham County	1960		401,976.90	3,564,963.00	00.04	30.0	350	10.26	18.00	1,066	109 8,710 dsci/mmblu	5.940E-01 C	0.001E-02 3.2	202E-02 3.202E-02	z Same a	as short-term	emission ra	lites	
A	RS 10300013 Georgia Transmission																			
10300013G1	G1 Caterpillar CAT 3516 B TA Generator Set	2001	1	459,487.70	3,595,455.40	38.97	25.0	847	241.38	14.00	15,482	6,254 #12924	3.727E+01 9	.910E-01 2.1	61E+00 2.161E+00) Same a	as short-term	emission ra	ites	
10300013G2	G2 Caterpillar CAT 3516 B TA Generator Set	2001	1	459,482.57	3,595,460.68	39.16	25.0	847	241.38	14.00	15,482	6,254 #12924	3.727E+01 9	.910E-01 2.1	61E+00 2.161E+00	o				
10300013G3	G3 Caterpillar CAT 3516 B TA Generator Set	2001	1	459,478.34	3,595,465.92	39.32	25.0	847	241.38	14.00	15,482	6,254 #12924	3.727E+01 9	.910E-01 2.1	61E+00 2.161E+00	o • •				
10300013G4	G4 Caterpillar CAT 3516 B TA Generator Set	2001		459.473.52	3.595.471.08	39.40	25.0	847	241.38	14.00	15.482	6.254 #12924	3.727E+01 9	.910E-01 2.1	61E+00 2.161E+00					
1030001365	G5 Caternillar CAT 3516 B TA Generator Set	2001	1	459 469 32	3 595 475 40	39.45	25.0	847	241 38	14.00	15 482	6 254 #12924	3 727E+01	910E-01 21	61E+00 2 161E+00					
G	eorgia - Emanuel County	2001		455,405.52	3,333,473.40	33.43	20.0	047	241.50	14.00	13,402	0,234 #12324	5.7272401 8		2.1012+00					
A	RS 10700011 Ravonier Wood Products Swainsboro Direct-fired Lumber Drying Kiln #7 (batch) converted																			
10700011K09	DK09 to Kiln #9 (continuous) Direct-fired Lumber Drving Kiln #8 (batch) converted	2005	Volume Source. Please re	efer to Tabe 9									1.769E+00 1	.965E+00 5.0	30E+00 5.030E+00	Same a	as short-term	emission ra	ites	
10700011K10	DK10 to Kiln #10 (continuous)	2005	• •										1.769E+00 1	.965E+00 5.0	30E+00 5.030E+00	o • •				
A	<u>sorgia - Emanuel County</u> RS 10700013 Lifeline Industries																			
10700013B1	B1 Bell Industries Lumber Drving Kiln Boiler	1983		375 239 90	3 607 591 20	89.22	30.0	450	30.00	16.00		#1056	1 390E+00 1	580E-01 3.2	67E+00 3 267E+00	Same a	as short-term	emission ra	ites	
G	eorgia - Emanuel County	1000		010,200.00	0,007,007.20	UU.LL	00.0	100	00.00	10.00		#1000	1.0002100		0.2012100	o cumo c		onnoolon ne		
A	RS 10700019 American Steel Products D01																			
10700019D1	D02 D03 3 Maxon Size PM 1200 Drving Ovens	unk		374,667,30	3.607.963.20	96.42	24.0	70	37.40	14.00		#5885	4.377E-01 2	626E-03 3.3	327E-02 3.327E-02	Same a	as short-term	emission ra	tes	
G	eorgia - Emanuel County				.,															-
A	RS 10700025 Crider Poultry																			
10700025B1	BL1 600-hp Boiler 1	2000		386,060.03	3,588,435.81	75.92	24.0	390	29.07	24.00	5,480	3,404 #12119	2.854E+00 3	3.293E-01 1.5	537E-01 1.537E-01	1 Same a	as short-term	emission ra	tes	
10700025B2	BL2 300-hp Boiler 2	2000	.	386,047.67	3,588,434.57	76.20	24.0	390	14.54	24.00	2,740	1,702 #12119	1.427E+00 1	.646E-01 7.6	683E-02 7.683E-02	2				
10700025B5	BL5 700-hp Boiler 5	2002	1	386,078.09	3,588,436.38	75.60	24.0	350	34.11	24.00	6,429	4,191 #13548	3.329E+00 3	8.841E-01 1.7	793E-01 1.793E-01	1				
G	eorgia - Jefferson County RS 16300007 Thermo King Corp																			
16200007407	107 Coll Over	1005		270 200 00	2 662 460 20	00.26	20.0	120	11 50	12.00	E42	405 #7707	2 901E 00	2255 04 07	DETE 02 2 DETE 02	Some -	a abort to	omission	too	
10300007107		1990	<u>∥ · · · · · · · · · · · · · · · · · · ·</u>	370,309.00	0,002,400.20	33.20	20.0	130	11.50	12.00	042	405 #7707	3.091E-02 2		2.95/E-03	Joanne a	aa short-term	orniosiun fa	1100	
16300007306	306 Pretreat Oven	1995		370,309.00	3,652,450.28	99.26	20.0	130	11.50	12.00	542	485 #7737	7.782E-02 4	1.009E-04 5.9	914E-03 5.914E-03	si -				
16300007014	14 14 Diesel Testing Stands	1992	↓ ✓	370,309.00	3,652,450.28	99.26	4.0	450	75.62	4.00	396	230 #16090	3.832E+00 6	6.997E-01 3.3	332E-01 3.332E-01	1				
AI	RS 16300008 Farmers Gin and Storage												11							

	Unit Description		Π	Increment						Stac	k Parame	ters			S	hort-ter	<u>rm</u>			Long-t	erm	
Modeled Source ID	Permitted Source ID Source Description	Contruction Date Modification Date	NOx	ς SO ₂ PM ₁₀	PM _{2.5}	UTM NAD 83 Easting	UTM NAD 83 Northing	AERMAP NED 1 arc-sec 3 Elevation	14 Stack Release Height	내 Stack Exit Temperature	명 Stack Exit Velocity	5. Stack Exit Diameter	e Actual Exhaust S Volumetric Flow Rate	tsranger ADA Basis Basis dedtm 2020 NFI	NO _x Ib/hr	SO ₂ Ib/hr	PM ₁₀ Ib/hr	PM _{2.5} Ib/hr	NO _x lb/hr	SO ₂ Ib/hr	PM ₁₀ Ib/hr	PM _{2.6} Ib/hi
16300008CG	Cotton Ginning Process	1975 2010				369,360.88	3,636,743.00	69.91	26.0	75	36.88	16.00	3,090	SCC 30200410 Cotton Ginning, General - Entire Process, Sum of Typical 3,049 Equip Used	1.137E+00 1.311	1E-01_1./	.849E+01	1.479E+00	Same as sho	rt-term emissir	on rates	
														2002 NEI SCC 30200501 Feed and Grain Terminal								
16300008GE G A	Grain Receiving/Shipping Process leorgia - Jefferson County IRS 16300012 Battle Lumber Company	1975 2010				369,360.88	3,636,743.00	69.91	60.0	80	47.63	26.50	10,946	10,703 Elevators, Shipping/Receiving	0.000E+00 0.000	<u>E+00 1.4</u>	<u>416E+00</u>	1.416E+00				
16300012B1	B1 Steam Boiler for Lumber Drying Kilns	1992	*			369,557.87	3,636,201.85	67.88	35.0	400	52.00	16.80	4,803	2,949 #5645 #9990	2.112E+00 2.400	<u>)E-01 4.8</u>	800E+00	4.450E+00	Same as sho	rt-term emissic	n rates	
16300012B2	B2 Steam Boiler for Lumber Drying Kilns	1998	–			369,557.87	3,636,201.85	67.88	40.0	865	47.67	30.25	14,706	6,586 7/21/1998 stack test	6.314E+00 7.175	E-01 8.4	471E+00	7.852E+00				
16300012B3 G A	B3 Steam Boiler for Lumber Drying Kilns ieorgia - Screven County IRS 25100003 Feed Seed & Farm Supply	2010	-			369,557.87	3,636,201.85	67.88	40.0	865	47.67	30.25	14,706	6,586 Same as 16300012B2	6.314E+00 7.175	E-01 8.4	471E+00	7.852E+00				
2510000307 G	7 Grain Dryer eorgia - Screven County IRS 25100004 Koyo Bearings USA, LLC	1957	-			428,060.20 3	3,593,728.40	51.88	40.0	78	7.80	14.00		Same as 0310000201	1.167E+00 7.004	<u>IE-03 1.1</u>	<u>132E+01</u>	2.017E+00	Same as sho	rt-term emissio	n rates	
25100004B1	B1 700-hp Boiler 1	1974				442,044.99	3,624,657.32	55.30	38.7	315	86.74	16.00	7,267	4,951 3/22/1976 application	1.071E+01 7.643	E+01 8.	545E+00	6.495E+00	Same as sho	rt-term emissic	n rates	
25100004B2	B2 700-hp Boiler 2	1974				442,044.99	3,624,657.32	55.30	38.7	315	86.74	16.00	7,267	4,951 3/22/1976 application	1.071E+01 7.643	iE+01 8.{	545E+00	6.495E+00	• •			
<u>G</u> A	<u>eorgia - Screven County IRS 25100008 King America Finishing, In</u> c.													GA EPD PDSINVEN_1.xls								
25100008B01	B001 Babcock & Wilcox Boiler	1970 2010	¶	Expanding		430,543.80	3,607,588.13	47.76	140.0	500	41.40	60.00	48,774	26,826 #16554	4.086E+01 8.411	E+01 3.5	536E+00	3.419E+00	Same as sho	rt-term emissio	n rates	
25100008B02	B002 Babcock & Wilcox Boiler	1998		• •		430,534.13	3,607,576.97	47.59	60.0	450	32.89	72.00	55,788	32,370 #10444 2002 NEI SCC 33000599 Textile Products, Fabric	3.620E+01 9.179	<u>E+01 4.2</u>	266E+00	4.126E+00				
25100008DNR	DNR1 Dye Narrow Range Pad Application	1976 1993	"	· ·		430,657.92	3,607,626.13	48.73	38.0	140	29.11	22.00	4,611	4,057 Finishing, Other Not Classified	4.475E-01 2.685	E-03 3.	.401E-02	3.401E-02				
25100008DWR	DWR1 Dye Wide Range Pad Application PD01 Dry Range No. 3 Predryer, Hot Flame Dryer and	1966 1994	· ·	• •		430,657.92	3,607,626.13	48.73	38.0	140	29.11	22.00	4,611	4,057 Same as 25100008DNR	4.475E-01 2.685	E-03 3.	401E-02	3.401E-02				
25100008PH1	HD01 Thermosol	2008	<u></u> ✓	· · ·		430,464.05	3,607,785.12	49.10	38.0	140	29.11	22.00	4,611	4,057 Same as 25100008DNR	2.043E+00 1.226	E-02 1.	.553E-01	1.553E-01				
25100008R40	FR40 Aztec Finishing Range	1976	<u> </u>	· ·		430,568.88	3,607,693.97	48.69	38.0	140	29.11	22.00	4,611	4,057 Same as 25100008DNR	1.167E+00 7.004	E-03 8.	.872E-02	8.872E-02				
25100008R51	FR51 Aztec Finishing Range	1988	.	v v		430,568.88	3,607,693.97	48.69	38.0	140	29.11	22.00	4,611	4,057 Same as 25100008DNR	3.794E-01 2.276	/E-03 2.	.883E-02	2.883E-02				
25100008R58	FR58 Aztec Finishing Range	1969	+			430,568.88	3,607,693.97	48.69	38.0	140	29.11	22.00	4,611	4,057 Same as 25100008DNR	8.755E-01 5.253	E-03 6.	.654E-02	6.654E-02				
25100008R59	FR59 Aztec Finishing Range	1976	+	· · ·		430,568.88	3,607,693.97	48.69	38.0	140	29.11	22.00	4,611	4,057 Same as 25100008DNR	1.167E+00 7.004	E-03 8.	.872E-02	8.872E-02				
25100008PHS	PHS1 Heat Setting	1978	<u></u>			430,482.52	3,607,699.59	48.62	38.0	140	29.11	22.00	4,611	4,057 Same as 25100008DNR	5.837E-01 3.502	.E-03 4.4	.436E-02	4.436E-02				
25100008PRR	PKR1 Kope Kange	1966 1999	.			430,554.56	3,607,682.53	48.56	38.0	140	29.11	22.00	4,611	4,057 Same as 25100008DNR	1.654E-01 9.922	.E-04 1.	257E-02	1.257E-02				
25100008PYP	PYP1 Yarn Preparation	1994	.			430,579.21	3,607,648.21	48.47	38.0	140	29.11	22.00	4,611	4,057 Same as 25100008DNR	9.728E-02 5.837	E-04 7.	.393E-03	7.393E-03				
25100008P01	Puul Zimmer Printer & Aztec Tubular Jet Print Dryer 1	1991	<u>ا</u>			430,534.46	3,607,777.31	49.21	38.0	140	29.11	22.00	4,611	4,057 Same as 25100008DNR	7.782E-01 4.669	/E-03 5.	.914E-02	5.914E-02				
25100008P02 G A	eorgia - Screven County IRS 25100029 Southern Natural Gas Company-Woodcliff Gate	Compressor S	tation	•••		430,534.46	3,607,777.31	49.21	38.0	140	29.11	22.00	4,611	4,057 Same as 25100008DNR	7.782E-01 4.665	<u>E-03 5.</u>	914E-02	5.914E-02				
25100029T1	PT01 Natural Gas-Fired Turbine Allison Model 501-KC	2005	1			427,200.00	3,623,900.00	80.40	37.7	1,073	13.76	66.50	19,831	6,830 #17143	3.062E+01 1.771	IE-01 3.	.658E-01	3.658E-01	Same as sho	rt-term emissic	n rates	
<u>S</u> P	outh Carolina - Aiken County ermit No. 0080-0041 Savannah River Nuclear Solutions LLC -	Savannah River	 <u>r Si</u> te																			
0080004101	APF2 - 784-7A Steam Facility Biomass Boiler	2008	1			431,534.89	3,689,173.83	119.25	50.0	350	44.00	35.99	18,649	SC DEHC 12,156 Aik_0080.xls	1.317E+01 1.000	E+00 2.2	278E+00	2.278E+00	Same as sho	rt-term emissic	n rates	
0080004102	APF3 - 784-7A Steam Facility Oil Fired Boiler	2008	1			431,559.32	3,689,180.83	119.15	45.0	458	47.00	30.00	13,843	SC DEHC 7,962 Aik_0080.xls	2.857E+00 2.064	E+00 6.	.572E-01	6.572E-01				
0080004103	BQH1 - 735-1B Lab Hotwater Heater/Boiler 1, 2, & 3	1998		1 1		431,835.06	3,682,911.95	92.47	33.0	500	<u>0.00328</u>	26.38	raincap	SC DEHC Aik_0080.xls	1.675E+00 6.032	2E-01 1.	.984E-01	1.984E-01				
0080004104	FPJ6 - 288-F Ash Basin (Fugitive Emissions)	1985	Area :	source not in	cluded ii	n modeling ass	essment (locat	ed beyond t	the inventor	<u>y screenin</u>	g are			SC DEHC Aik_0080.xls	0.000E+00 0.000	E+00 1.	409E+01	1.409E+01				
0080004105	HSE12 - 254-19H 800 kW Production Diesel Engine	A 2000	/			440,409.08	3,683,561.32	93.75	12.0	999	<u>0.00328</u>	9.96	raincap	SC DEHC Aik_0080.xls	2.675E+01 3.381	IE-01 6.	.873E-01	6.873E-01				
0080004106	HSE13 - 254-19H 800 kW Production Diesel Engine	B 2000	1			440,416.53	3,683,566.37	93.60	12.0	999	0.00328	9.96	raincap	SC DEHC Aik_0080.xls	2.675E+01 4.222	2E-01 6.	.873E-01	6.873E-01	• •			

	Unit Description			Incre	ment					Stac	k Param	eters			Short-term	Long-term
Modeled Source ID	Permitted Source ID Source Description	Contruction Date Modification Date	NO _x	SO2	PM ₁₀ PM ₂	uTM NAD 83 Easting	a Northing	AERMAP NED 1 arc-sec 3 Elevation	a Stack Release Height	႕ Stack Exit Temperature	정 Stack Exit Velocity	Stack Exit Diameter	ରୁ Actual Exhaust ସୁ Volumetric Flow Rate	Pry Standard Exhaust Wolumetric Flow Rate sis	NO _A SO ₂ PM ₁₀ PM ₂₀ Ib/hr Ib/hr Ib/hr Ib/h	2.5 NO ₆ SO ₂ PM ₁₀ PM ₂₃ ητ Ιδήτε Ιδήτε Ιδήτε Ιδήτε
0080004107	HSP2 - H Canyon, HB Line, 221-H, etc.	1985	1	1	1	440,467.08 3,683,43	5.62	91.95	200.0	78	59.60	120.00	280,858	SC DEHC 275,638 Aik_0080.xls	3.373E+02 0.000E+00 0.000E+00 0.000E+0	.0
0080004108	NBJ28 - 725-1N Abrasive Blasting	1975 1992	1	1	1	439,318.70 3,679,03	1.55	91.19	6.0	<u>-460</u>	0.00328	0.00	virtual	SC DEHC Aik_0080.xls	0.000E+00 0.000E+00 1.172E+01 1.172E+0	a
0080004109	NGE44 - 2 Portable Air Compressors in D-Area	2000 2010	1	1		430,862.28 3,673,99	1.55	37.56	7.7	884	215.00	5.08	1,813	SC DEHC 712 Aik_0080.xls	2.278E+01 1.500E+00 1.603E+00 1.603E+0	o • •
0080004110	NGE45 - 10 Portable Air Compressors	2000 2010	1	1		431,282.94 3,689,93	2.21 1	13.43	7.7	884	215.00	5.08	1,813	SC DEHC 712 Aik_0080.xls	1.143E+02 7.500E+00 8.016E+00 8.016E+0	o • •
0080004111	SDP7 - 221-S Zone 2 Stack, 221-S Prod., etc	1988 2004	1	1	1	440,290.18 3,684,00	3.70	84.11	147.0	80	85.00	60.00	100,138	SC DEHC 97,913 Aik_0080.xls	2.349E+01 1.246E-01 7.413E+00 7.413E+0	o • •
0080011201 0080011202	outh Carolina - Alken County ermit No. 0080-0112 Three Rivers Landfill Tub Grinder Engine Scalping Screen Engine	2005 unk	•			431,419.00 3,680,38 431,419.00 3,680,38	0.00	71.88	11.6	800	305.53	6.00	3,599	SC DEHC 1,508 Aik_0080.xls SC DEHC 164 Aik_0080.xls	1.102E+01 1.740E+00 2.000E-01 2.000E-0 2.600E+00 4.100E-01 5.000E-02 5.000E-0	Same as short-term emission rates 2 * *
0080011203	Terminator Grinder Engine	unk	1			431,419.00 3,680,38	0.00	71.88	10.3	800	305.53	6.00	3,599	SC DEHC 1,508 Aik_0080.xls	9.740E+00 1.540E+00 1.700E-01 1.700E-0	ul
0080011204	Trommel Screen Engine	unk	1			431,419.00 3,680,38	0.00	71.88	9.4	800	305.53	6.00	3,599	SC DEHC 1,508 Aik_0080.xls	2.240E+00 3.500E-01 4.000E-02 4.000E-0	12 " "
0080011205	Truck Traffic	unk	Volume	Sour	ce. Please i	refer to Tabe 9								SC DEHC Aik_0080.xls	0.000E+00 0.000E+00 1.784E+00 1.784E+0	0
0080011206	Flare	unk	1			431.455.35 3.679.82	8.44	60.12	42.0	1.832	65.62	60.00	77.307	SC DEHC 17.809 Aik 0080.xls	5.100E+00 1.046E+00 1.275E+00 1.275E+0	0
<u>S</u> <u>P</u>	outh Carolina - Aiken County ermit No. 0080-0144 Ameresco Federal Solutions													SC DEHC		
0080014401	1STACK - Biomass Cogeneration Boiler	2008	1	1	1	436,002.16 3,681,87	7.04	79.25	100.0	325	59.61	66.14	85,343	57,403 Aik_0080.xls	3.150E+01 1.144E+02 4.263E+00 4.263E+0	0 Same as short-term emission rates
0080014402	2STACK - Biomass Cogeneration Boiler	2008	1	1	1	436,015.32 3,681,85	8.30	78.28	100.0	325	59.61	66.14	85,343	57,403 Aik_0080.xls	3.150E+01 1.144E+02 4.263E+00 4.263E+0	o
0080014403	KBIOB - Biomass Steam Generation Unit	2008	1	1	1	438,359.75 3,674,69	6.84	82.96	49.0	450	53.71	19.68	6,807	3,950 Aik_0080.xls	2.980E+00 3.720E-01 2.980E+00 2.980E+0	0
0080014404	LBIOB - Biomass Steam Generation Unit	2008	1	1	1	441,886.13 3,674,88	2.91	76.85	49.0	450	53.71	19.68	6,807	3,950 Aik_0080.xls	2.980E+00 3.720E-01 2.980E+00 2.980E+0	.0
<u>S</u>	outh Carolina - Allendale County ermit No. 0160-0006 Clariant Corporation															
0160000601	Boiler #1	1999	1			455,144.27 3,655,70	1.15	48.69	42.0	350	34.50	39.96	18,028	SC DEHC 11,752 All_0160.xls	1.000E+01 1.686E-01 3.700E-01 3.700E-0	1 Same as short-term emission rates
0160000602	Boiler #2	1999	1			455,147.76 3,655,70	0.35	48.61	42.0	350	40.00	39.96	20,902	SC DEHC 13,625 All_0160.xls	1.000E+01 1.153E-01 2.526E-01 2.526E-0	n
0160000603	Scrubbers	1999	1			454,885.43 3,655,12	6.55	43.16	94.8	70	53.95	39.96	28,192	SC DEHC 28,085 All_0160.xls	0.000E+00 0.000E+00 1.364E+01 1.364E+0	J1 " =
<u>s</u> P	outh Carolina - Barnwell County ermit No. 0300-0036 Savannah River Nuclear Solutions LLC	Savannah River	Site - D-A	rea P	<u>owerhou</u> se									SC DEHC		
0300003601	DPF1 - 484-D 396 x 106 btu/hr Pulverized Coal Bo	iler 1952				431,022.38 3,673,99	6.77	39.08	125.0	370	35.00	118.56	160,999	102,419 Bar_0300.xls	3.191E+02 1.103E+03 7.230E+01 7.230E+0	1 Same as short-term emission rates
0300003602	DPF2 - 484-D 396 x 106 btu/hr Pulverized Coal Bo	iler 1952	 			431,020.71 3,673,99	9.52	39.07	125.0	370	35.00	118.56	160,999	102,419 Bar_0300.xls	3.191E+02 1.103E+03 7.230E+01 7.230E+0	1
	DPF3 - 484-D 396 x 106 btu/hr Pulverized Coal Bo	iler 1952	Only tw	o of th	e four DPF b	oilers may operate at any o	iven time.	Modeled	units 1 and	2.				Bar_0300.xls		
	DPF4 - 484-D 396 x 106 btu/hr Pulverized Coal Bo	iler 1952	<u></u>			<u>II</u>								SC DEHC Bar_0300.xls		
0300003605	DPJ19	unk	Area so	ource	not included	d in modeling assessmen	(screenin	ig value is	s less than	20; only p	oint sourc	es are inclu	ded)	SC DEHC Bar_0300.xls	0.000E+00 0.000E+00 4.082E+00 4.082E+0	0 Same as short-term emission rates
0300003606	DPJ5 - 484-D Coal Handling Operations	1952												SC DEHC Bar_0300.xls	0.000E+00 0.000E+00 1.080E+01 1.080E+0	a
0300003607	DPJ6 - Coal Storage Pile	1952												SC DEHC Bar_0300.xls	0.000E+00 0.000E+00 2.101E+00 2.101E+0	.0

	Unit Description		Increment			Volume S	ource P	arameter	<u>'S</u>		Short-te	erm_		Long-term				
Modeled Source ID	Permitted Source ID Source Description	Contruction Date Modification Date	NO _x SO ₂ PM ₁₀ PM ₂₅	UTM NAD 83 3 Easting	UTM NAD 83 3 Northing	AERMAP NED 1 arc-sec 3 Elevation	⊯ Release Height	Horizontal Dimension	unities Dimension Basiss tt	NO _x lb/hr	SO ₂ Ib/hr	PM ₁₀ lb/hr	PM _{2.5} lb/hr	NO _x Ib/hr	SO ₂ Ib/hr	PM ₁₀ lb/hr	PM _{2.5} lb/hr	
<u>Ge</u> <u>Alf</u>	orgia - Bulloch County RS 03100005 W.M. Sheppard Lumber Company								single elevated volume source on or adj to building									
03100005K4	DK04 Direct-fired Lumber Drying Kiln #4	1998	1	438,293.75	3,579,706.34	38.29	35	10.72	16.28 25' w x 85' l x 35' h	7.535E-01	6.250E-01 2	2.143E+00 2	2.143E+00	Same as short-te	erm emission r	ates		
03100005K5	DK05 Direct-fired Lumber Drying Kiln #5	1999	1	438,375.83	3,579,700.40	37.85	35	10.72	16.28 same as 03100005K4	7.535E-01	6.250E-01 2	2.143E+00 2	2.143E+00					
<u>Ge</u> <u>AIF</u>	orgia - Bulloch County RS 03100028 Claude Howard Lumber Company																	
03100028K1	DFK1 Direct-fired Lumber Drying Kiln #1	1980		427,118.28	3,588,883.68	62.05	42	68.90	74.80 10/11/2006 SCREEN3	8.476E-01	4.500E-01 2	2.411E+00 2	2.411E+00	Same as short-te	erm emission r	ates		
03100028K2	DFK2 Direct-fired Lumber Drying Kiln #2	1980		427,145.49	3,588,874.80	61.55	42	68.90	74.80 same as 03100028K1	8.476E-01	5.000E-01 2	2.411E+00 2	2.411E+00					
<u>Ge</u> <u>Al</u> F	orgia - Emanuel County 13 10700011 Rayonier Wood Products Swainsboro Direct-fired Lumber Drying Kiln #7 (hatch) conve	ited to							single elevated volume source on or adj to building									
10700011K09	DK09 Kiln #9 (continuous)	2005	1	374,904.36	3,597,713.56	76.19	27	14.71	12.56 40' w x 100' l x 27' h	1.769E+00	1.965E+00 5	5.030E+00 5	5.030E+00	Same as short-te	erm emission r	ates		
407000441440	Direct-fired Lumber Drying Kiln #8 (batch) conve	rted to		074 040 00	0 507 740 50	75.04	07	44.74	40 50 como oo 10711K00	4 7005 - 00	4.0055.00	0005.00	- 0005 - 00					
0080011205	DR ID Kin # 10 (contanuous) uth Carolina - Aiken County mit No. 0080-0112 Three Rivers Landfill Truck Traffic	2005		431,419.00	3,597,713.56	71.88	3	45.77	SC DEHC 5.05 Aik 0080.xls	0.000E+00	0.000E+00 1	1.784E+00	1.784E+00	Same as short-tr	erm emission r	rates		

Volume III, Attachment H –

Electronic Files

SMITH ALDRIDGE, INC.