

ENVIRONMENTAL PROTECTION DIVISION

Air Protection Branch 4244 International Parkway Suite 120 Atlanta, Georgia 30354 404-363-7000

NARRATIVE

TO:	Heather	Brown

- FROM: Tyneshia Tate
- DATE: April 5, 2022

Facility Name:	Southwire Company – Carrollton North Campus
AIRS No.:	045-00080
Location:	Carrollton, GA (Carroll County)
Application #:	28337
Date of Application:	March 15, 2022

Background Information

Southwire Company (Southwire) owns and operates a facility located at 5152 Columbia Drive in Carrollton, Georgia. The facility manufactures electrical wire and cable products. The facility operates under a synthetic minor permit (Air Quality Permit Number 3357-045-0080-S-01-0 which was issued on June 25, 2014). Southwire Company - North Campus' HAPs emissions are limited below the applicable major source thresholds. Southwire's permit was modified by Air Quality Permit Amendment Number 3357-045-0080-S-01-1 which was issued on January 2, 2015, to allow the construction and operation of five natural gas-fired steam generators. Southwire's permit was again modified by Air Quality Permit Amendment Number 3357-045-0080-S-01-2 which was issued on January 13, 2017, to allow the construction and operation of new equipment at its North Campus facility. The facility was issued Air Quality Permit Amendment Number 3357-045-0080-S-01-3 which was issued on July 29, 2019 to construct and operate wire manufacturing equipment, install and operate a backup lighting generator, modify wire manufacturing equipment, and replace fire pump Engine F002. The facility was issued Air Quality Permit Amendment Number 3357-045-0080-S-01-4 on June 9, 2020 to install three (3) natural gas-fired annealing ovens (P148, P149, P150), three (3) multi-wire drawing machines with annealers (P145, P146, P147), two (2) floater printers (P152, P153) and one (1) armoring line (P151). The permit also modified to include existing equipment in Attachment A.

Purpose of Application

According to Application Number 28337, Southwire proposes to add equipment to the facility in addition to equipment previously added during previous cumulative modifications discussed below. The facility proposes to add a 3,640 pounds per hour (lbs/hr) Ethylene-Propylene Rubber (EPR) Compounding Line with extrusion and mixing (R102) that will convert raw rubber resin into useful materials through the addition of fillers, reinforcers, stabilizers, pigments, etc. The equipment involved to achieve these processes include additive systems, blenders, dry blend hoppers, weight feeder, mixer, pelletizer, water system, dryer, pellet classifier, bagging system, polymer bag unloading, polymer scale, filler bag unloading, filler scales, filler scale hopper, drum oil pumping, small chemical system, mixer, kneader, batch off system and antitank application. The small chemical system will be controlled by a fabric filter CR03, and the mixer will be controlled by fabric filter CR04.

Southwire also proposes to add an extrusion line (P161) which includes the extruder, hoppers, and ink application system. The extruder will include 6" PVC, 4.5" XLPE, 4.5" PVC and 3.5" Nylon with a throughput of 1,200 lb/hr, 1,000 lb/hr, 1,000 lb/hr, and 500 lb/hr respectively. The hopper has a throughput of 1,700 lb/hr. The ink application system will include two printers with a capacity of 60 gal/yr each.

Emission estimates (particulate matter, VOC, and various HAPs (acetophenone, carbonyl sulfide, cumene, hexane, methylene chloride, naphthalene, and toluene)) are based upon draft AP-42 Section 4.12 and associated emission factors spreadsheet. Emission estimates for the extruders (VOC, and HAP (toluene and methanol)) and pellet feed systems (particulate matter) are based on equipment throughput and previously Division approved emission factors determined from test data on similar equipment located at the Southwire Carrollton facility. Emission estimates for printing operations (VOC and toluene) are based on mass balance calculations.

The facility has previously made the following facility modifications as allowed per Georgia Rule 391-3-1-.03(6)(i)3. since the issuance of its last permit modification:

- Extruder and Jacket Line (August 2020)
 - Extruder (P105) changed its current 4.5" XLPE extrusion to a 4.5" XLPE Stripe extrusion process. Throughput of the XLPE extrusion line has increased from 800 lb/hr to 1,250 lb/hr but the hopper size remains the same at 1,400 lb/hr. The PVC and Nylon extrusion throughputs also remain unchanged.
 - Jacket line (P154) includes the PVC extruder and hoppers.
 - The extrusion line includes extruders, pellet feed hopper systems and ink application systems. Emission estimates for the extruders (VOC and HAP (methanol)) and pellet feed systems (particulate matter) are based on equipment throughput and previously Division approved emission factors determined from test data on similar equipment located at the Southwire Carrollton facility.
- Extrusion Line, Armoring Line, and Floater Printer (September 2020)
 - Extrusion line (P155) includes the extruder, hoppers, and ink application system. The extruder will include 6" PVC, 6" XLPE, and 3.5" Nylon with a throughput of 1,500 lb/hr, 1,500 lb/hr, and 160 lb/hr respectively. The hopper has a throughput of 1,660 lb/hr. The ink application system will include two printers with a capacity of 60 (gallons per year) (gal/yr) each.
 - Single strip armoring line (P156) will utilize 2 gal/day of lubricant oil.

- Floater inkjet printer (P157) with an expected capacity of 60 gal/yr will be used as the ink application system for the bunchers.
- Emission estimates for the extruders (VOC, and HAP (toluene and methanol) and pellet feed systems (particulate matter) are based on equipment throughput and previously Division approved emission factors determined from test data on similar equipment located at the Southwire Carrollton facility. Emission estimates for the armoring line is based on equipment throughput and previously Division approved emission factors determined from test data on similar equipment from test data on similar equipment located at the Southwire Carrollton facility. Emission approved emission factors determined from test data on similar equipment located at the Southwire Carrollton facility. Emission estimates for printing operations (VOC and toluene) are based on mass balance calculations.
- Annealing Oven and Cooling Tower (March 2021)
 - Annealing Oven 1080-21 (P158) was previously permitted as part of Southwire Company Carrollton (Permit ID 3357-045-0008-V-05-0) and was located at One Southwire Drive Carrollton, Georgia 30119. It is now moved to Southwire – North Campus and is being added as part of this modification. The heat input capacity is 5.21 x 10⁶ Btu/hr.
 - Cooling tower (CT8) has a capacity of 1,200 gallons per minute.
 - Annealing emission estimates (VOC and particulate matter) are based on equipment throughput and previously Division approved emission factors determined from test data on similar equipment located at the Southwire Carrollton facility. Emission estimates resulting from P158 natural gas combustion [carbon monoxide (CO), sulfur dioxide (SO₂), nitrogen oxides (NO_x) and lead (Pb)] are based on AP-42 emission factors for natural gas (Section 1.4) combustion. Cooling tower particulate emissions are based on AP-42 Section 13.4 Wet Cooling Towers emission factors.
- Drawing Machine and Oven (November 2021)
 - Aluminum dual wire drawing machine with an annealer (P159) has a throughput capacity of 8,000 lb/hr.
 - $\circ~$ Oven (P160) has a heat input capacity of 2.0 million British Thermal Units per hour (10⁶ Btu/hr).
 - Drawing emission estimates (VOC and particulate matter) are based on equipment throughput and previously Division approved emission factors determined from test data on similar equipment located at the Southwire Carrollton facility. Emission estimates resulting from P160 natural gas combustion [CO and NO_x] are based on AP-42 emission factors for natural gas (Section 1.4) combustion.

The proposed permit modification will update the facility equipment list in the permit to include these previously completed modifications discussed above.

A public advisory was issued for this application and expired May 6, 2022. No comments were received.

Updated Equipment List

Emission Units				Associated Control Devices		
Source Code	Description	Installation Date	Source Code	Description		
P101	PVC Extrusion Line	June 2014	NA	None		
P102	PVC Extrusion Line	June 2014	NA	None		
P103	PVC Extrusion Line	June 2014	NA	None		
P104	PVC Extrusion Line	June 2014	NA	None		
P105	PVC/Nylon Extrusion Line in Tandem with P106	June 2014 December 2016 August 2020	NA	None		
P106	Drawing/Annealing Machine in Tandem with P105	June 2014	NA	None		
P107	PVC/Nylon Extrusion Line in Tandem with P108	June 2014	NA	None		
P108	Drawing/Annealing Machine in Tandem with P107	June 2014	NA	None		
P109	PVC/Nylon Extrusion Line in Tandem with P110	June 2014	NA	None		
P110	Drawing/Annealing Machine in Tandem with P109	June 2014	NA	None		
P111	PVC/Nylon Extrusion Line	June 2014	NA	None		
P112	PVC/Nylon Extrusion Line	June 2014	NA	None		
P113	PVC/Nylon Extrusion Line	June 2014 March 2019	NA	None		
P114	PVC/Nylon Extrusion Line	June 2014 March 2019	NA	None		
P115	PVC Extrusion Line	June 2014 May 2020	NA	None		
P116	PVC Extrusion Line	June 2014 May 2020	NA	None		
P117	XLPE/PVC/Nylon Extrusion Line	June 2014 May 2020	NA	None		
P118	Drawing/Annealing Machine	June 2014	NA	None		
P119	Drawing/Annealing Machine	June 2014	NA	None		
P120	Drawing/Annealing Machine	June 2014 October 2019	NA	None		
P121	Drawing/Annealing Machine	June 2014	NA	None		

	Emission Units			Associated Control Devices		
Source Code	Description	Installation Date	Source Code	Description		
P122	Drawing/Annealing Machine	June 2014	NA	None		
P123	Drawing/Annealing Machine	June 2014	NA	None		
P124	Drawing Machine	June 2014	NA	None		
P125	Drawing Machine	June 2014	NA	None		
P126	Drawing Machine	June 2014	NA	None		
P127	Drawing Machine	June 2014	NA	None		
P128	Drawing Machine	June 2014 May 2018	NA	None		
P129	Drawing Machine	June 2014	NA	None		
P130	XLPE/PVC/Nylon Co-Extrusion Line	December 2016 September 2019	NA	None		
P131	Drawing/Annealing Machine in Tandem with P130	December 2016	NA	None		
P132	PVC/Nylon Co-Extrusion Line	December 2016	NA	None		
P133	Drawing/Annealing Machine in Tandem with P132	December 2016	NA	None		
P134	Multi-wire Drawing Machine	December 2016	NA	None		
P135	PVC Jacket Extrusion Line	December 2016	NA	None		
P136	PVC Jacket Extrusion Line	December 2016	NA	None		
P137	PVC Jacket Extrusion Line	December 2016	NA	None		
P138	PVC Jacket Extrusion Line	December 2016	NA	None		
P139	XLPE/PVC/Nylon Co-Extrusion Line	December 2016 May 2020	NA	None		

	Emission Units		Associated Control Devices	
Source Code	Description	Installation Date	Source Code	Description
P140	XLPE/PVC/Nylon Co-Extrusion Line	December 2016 May 2020	NA	None
P141	Multi-wire Drawing Machine	December 2016	NA	None
P142	Multi-wire Drawing Machine	2019	NA	None
P143	Multi-wire Drawing Machine	2019	NA	None
P144	Multi-wire Drawing Machine	May 2018	NA	None
P145	Multi-Wire Drawing Machine with Annealer	May 2020	NA	None
P146	Multi-Wire Drawing Machine with Annealer	May 2020	NA	None
P147	Multi-Wire Drawing Machine with Annealer	May 2020	NA	None
P148	2.0 x 10 ⁶ Btu/hr Natural Gas-Fired Annealing Oven	May 2020	NA	None
P149	2.0 x 10 ⁶ Btu/hr Natural Gas-Fired Annealing Oven	May 2020	NA	None
P150	2.0 x 10 ⁶ Btu/hr Natural Gas-Fired Annealing Oven	May 2020	NA	None
P151	Armoring Line	May 2020	NA	None
P152	Floater Printer	May 2020	NA	None
P153	Floater Printer	May 2020	NA	None
P154	Jacket Line including PVC Extruder and Hoppers	August 2020	NA	None
P155	XLPE/PVC/Nylon Extrusion Line	September 2020	NA	None
P156	Single Strip Armoring Line	September 2020	NA	None
P157	Floater Ink Jet Printer	September 2020	NA	None
P158	5.21 x 10 ⁶ Btu/hr Natural Gas-Fired Annealing Oven 1080-21	March 2021	NA	None
P159	Aluminum Dual Wire Drawing Machine with Annealer	November 2021	NA	None
P160	2.0 x 10 ⁶ Btu/hr Natural Gas-Fired Oven	November 2021	NA	None
P161	XLPE/PVC/Nylon Extrusion Line	April 2022	NA	None
892-01	Coil Pak Machine	December 2016	NA	None

Emission Units			Associated Control Devices		
Source Code	Description	Installation Date	Source Code	Description	
892-02	Coil Pak Machine	December 2016	NA	None	
892-03	Coil Pak Machine	December 2016	NA	None	
892-04	Coil Pak Machine	December 2016	NA	None	
892-05	Coil Pak Machine	December 2016	NA	None	
892-06	Coil Pak Machine	December 2016	NA	None	
892-07	Coil Pak Machine	December 2016	NA	None	
P201	Rubber CV Extrusion Line	June 2014 August 2017	NA	None	
P202	Rubber CV Extrusion Line	June 2014 August 2017	NA	None	
P203	Rubber CV Extrusion Line	June 2014 August 2017	NA	None	
P204	Rubber CV Extrusion Line	June 2014	NA	None	
P205	Rubber CV Extrusion Line	June 2014	NA	None	
P206	Rubber CV Extrusion Line	June 2014	NA	None	
P207	Rubber CV Extrusion Line	June 2014 August 2017	NA	None	
P208	CV Line Spare Ink Jet Printer	August 2017	NA	None	
E001	Ink Wash Station	June 2014	NA	None	
E002	Stranding/Bunching Naphtha Usage	June 2014	NA	None	
B001	12.4 x 10 ⁶ Btu/hr Natural Gas-Fired Boiler with No. 2 Fuel Oil as Backup Fuel ¹	-	NA	None	
B002	12.4 x 10 ⁶ Btu/hr Natural Gas-Fired Boiler with No. 2 Fuel Oil as Backup Fuel ¹	-	NA	None	
B003	12.4 x 10 ⁶ Btu/hr Natural Gas-Fired Boiler with No. 2 Fuel Oil as Backup Fuel ¹	-	NA	None	
N101	Nylon Compounding System	June 2014 December 2016	CN01 and CN02	Fabric Filter and Wet Collection ²	
N111	Nylon Chip Silo	June 2014	NA	None	
N112	Nylon Chip Silo	June 2014	NA	None	

Emission Units			Associated Control Devices		
Source Code	Description	Installation Date	Source Code	Description	
N113	Nylon Chip Silo	December 2016	CN13	Bin Vent Filter	
X111	Raw Materials Silo	December 2016	CN14	Bin Vent Filter	
X112	Raw Materials Silo	December 2016	CN15	Bin Vent Filter	
X113	Raw Materials Silo	December 2016	CN16	Bin Vent Filter	
R101	Rubber Compounding System	June 2014	CR01 ³ and CR02 ³	Fabric Filter	
R102	Rubber Compounding System	April 2022	CR03 ⁴ and CR04 ⁴	Fabric Filter	
TC1	Fluidized Bed Tooling Cleaning Unit	June 2014 Removed December 2016	NA	None	
TC2	Gas Tooling Cleaning Oven with Afterburner	June 2014 December 2016 2019	NA	None	
TC3	Jet Cleaner Tooling Cleaning Unit (Replaced TC1)	December 2016 2019	NA	None	
CT1	Cooling Tower ¹	-	NA	None	
CT2	Cooling Tower ¹	-	NA	None	
CT3	Cooling Tower	December 2016	NA	None	
CT4	Cooling Tower	December 2016	NA	None	
CT5	Cooling Tower	December 2016	NA	None	
CT6	Cooling Tower	December 2016	NA	None	
CT7	Cooling Tower	December 2016	NA	None	
СТ8	Cooling Tower	March 2021	NA	None	
G001	235 Hp Diesel Emergency Generator Engine Set ¹	-	NA	None	
G002	70 Hp Diesel Emergency Generator Engine Set ¹	-	NA	None	
G003	Natural Gas-Fired Emergency Lighting Generator Engine	2019	NA	None	
F001	274 Hp Diesel Emergency Fire Pump Engine	2019	NA	None	

Emission Units			Associated Control Devices	
Source Code	Description	Installation Date	Source Code	Description
F002	Diesel Emergency Fire Pump Engine ¹	-	NA	None
T001	8,000-gallon No. 2 Fuel Oil Storage Tank	2019	NA	None
B004	4.08 x 10 ⁶ Btu/hr Natural Gas-Fired Boiler	January 2015	NA	None
B005	4.08 x 10 ⁶ Btu/hr Natural Gas-Fired Boiler	January 2015	NA	None
B006	6.12 x 10 ⁶ Btu/hr Natural Gas-Fired Boiler	January 2015	NA	None
B007	6.12 x 10 ⁶ Btu/hr Natural Gas-Fired Boiler	January 2015	NA	None
B008	6.12 x 10 ⁶ Btu/hr Natural Gas-Fired Boiler	January 2015	NA	None
	Extrusion Proc	cess Line 740-8	5	
P665	Extruder	October 2016	NA	None
P666	Hopper	October 2016	NA	None
P667	Ink Application System	October 2016	NA	None

¹This source was already in located at the facility prior to Southwire's purchase of the facility. Southwire proposes to use this existing equipment. According to Application Number 22435, the boilers were built in 1993. No construction date(s) were provided in Application Number 22435 for the fire pump engine, emergency generator engines, fuel oil storage tank, or cooling towers.

²According to Application Number 22435, this wet scrubber will control particulate matter emissions with a 70% efficiency and VOC emission with 50% efficiency. The scrubbant will be water.

³According to Application Number 22435, this fabric filter will control particulate matter emissions with 99+% efficiency.

⁴According to Application Number 28337, this fabric filter will control particulate matter emissions; efficiency not provided.

Bold text indicates equipment added and/or modified per Application Number 28337.

Emissions Summary

It is important to note that the rubber compounding system (R101), permitted as part the initial application for Southwire – North Campus facility in 2014, emission estimates [particulate matter, VOC, and various HAPs (acetophenone, methylene chloride, xylenes, and t-butyl methyl ether)] were based upon a draft AP-42 Section 4.12 and associated emission factors spreadsheet. Worst-case emission factors were determined to include curing (autoclave), extruding, and mixing for each of the proposed rubbers (compound numbers 6, 9, 15, and 21) by adding all possible compounds and potential processes.

With this revision, Application Number 28337, Southwire is seeking to revise the previously permitted emission factors for R101. The previously permitted emission factors incorrectly included curing (autoclave) values which are already accounted for by the CV line extrusion process emission factors. Thus, the facility was essentially double counting the emissions from curing (autoclave). Therefore, with this revision total calculated potential emissions from the line will decrease because the resulting worst-case emission factor is less than the emission factor used in the initial application.

While permitting the new rubber line R102, the facility used emission factors that accurately reflect the actual process. This action was proposed independently of the significance limits. Since the two rubber lines are similar, the facility wants to make sure the calculation methods are the same in the permit. Therefore, the facility proposes to modify the existing line and permit R102 using the emission factors most accurately reflecting the processes involved. For a detailed discussion of the emissions estimates changes to R101 please see pages four and five of Application Amendment Number 28337.

Emissions are as provided in Form 1.00 of Application Amendment Number 28337. For detailed emissions estimates, see Appendix B of Application Amendment Number 28337.

	Pot	ential Emiss	ions	Actual Emissions ¹			
Pollutant	Before Mod.	After Mod.	Emissions Change	Before Mod.	After Mod.	Emissions Change	
PM/PM ₁₀ /PM _{2.5}	82.57	88.46	+5.89				
NOx	39.44	42.60	+3.16				
SO_2	82.97	82.98	+0.01				
СО	28.04	30.69	+2.65				
VOC	83.31	82.02	-1.29				
Max. Individual HAP ² (Acetophenone)	<10	<10	-				
Total HAP	<25	<25	-				
Total GHG (if applicable) ³	43,461	43,461	-				

Facility-Wide Emissions

(in tons per year)

¹No facility wide actual emissions are provided in Application Number 28337.

²Facility has accepted emission limits to keep facility wide HAP emission below the applicable major source thresholds.

³In terms of carbon dioxide equivalence (CO2e).

Regulatory Applicability

Regulatory applicability discussed below is related to the proposed modification only. For a detailed discussion of the regulatory applicability for this facility see the narrative dated May 16, 2014 associated with Application Number 22435 (Air Quality Permit Number 3357-045-0080-S-01-0 which was issued on June 25, 2014).

Georgia Rule)391-3-1-.02(2)(b) Emission Limitations and Standards Visible Emissions

All emission units which are subject to any emission limitations under 391-3-1-.02(2) are subject to Georgia Rule 391-3-1-.02(2)(b), which limits opacity to less than forty percent, unless they are subject to a more stringent opacity standard. This regulation is applicable to the proposed equipment, and other supporting equipment with the capability of emitting particulates.

Georgia Rule 391-3-1-.02(2)(e) – Emission Limitations and Standards – Particulate Emission from Manufacturing Processes

Southwire Company – North Campus facility proposed equipment are subject to this regulation because it is a source of particulate emissions and will be put into operation or extensively altered after July 2, 1968. Georgia Rule 391-3-1-.02(2)(e)1(i) limits PM emissions based on the following equations:

 $E = 4.1P^{0.67}$; for process input weight rate up to and including 30 tons per hour. $E = 55P^{0.11}$ - 40; for process input weight rate greater than 30 tons per hour.

In the equation, E is the emission rate in pounds per hour and P is the process input weight rate in tons per hour.

Georgia Rule 391-3-1-.02(2)(g) Emission Limitations and Standards Sulfur Dioxide

The fuel burning equipment at this facility, all below 100 million Btus of heat input will be able to comply with this regulation's fuel sulfur content limitation of 0.5 percent. Annealing Oven P158 and Oven P160 will be able to comply with this regulation since they will each fire natural gas.

Georgia Rule 391-3-1-.02(2)(tt) – VOC Emissions from Major Sources

This regulation is applicable to equipment at applicable sites with potential VOC emissions from Georgia Rule (tt) activities on a combined basis exceed 100 tons per year. Southwire Company – North Campus potential VOC emissions are below 100 tons per year, therefore this regulation does not apply.

Georgia Rule 391-3-1-.02(2)(yy) - Emissions of Nitrogen Oxides (NO_x) from Major Sources

This regulation is applicable to equipment located at a site in Carroll County with potential NO_x emissions from Georgia Rule (yy) activities on a combined basis exceed 100 tons per year. Southwire Company – North Campus potential NO_x emissions are below 100 tons per year, therefore this regulation does not apply.

The facility is currently required to record and maintain records from all sources of HAPs to ensure that facility can comply with the existing HAPs emissions limits including in the facility's permit. In addition, the facility is required to maintain a sufficient supply of spare filter media for fabric filters (ID No. CR03 and CR04) for EPR Line (ID No. R102). This requirement is also already included in the permit.

Georgia Rule 391-3-1-.03(6)(i)3(b)3 – SIP Exemptions Boilers

Under this regulation, any fuel-burning equipment with a rated input capacity of 2.5 million BTUs per hour or less is exempted from obtaining an SIP construction permit. This exemption is applicable to Oven P160 because it is a fuel burning source with a heat input of 2.0×10^6 Btu/hr.

Permit Conditions

Permit conditions discussed below is related to the proposed modification only. For a detailed discussion of permit conditions for this facility see the narrative dated May 16, 2014 associated with Application Number 22435 (Air Quality Permit Number 3357-045-0080-S-01-0 which was issued on June 25, 2014).

Appendix A

The equipment list was updated to add and/or modify facility equipment as described above in this document.

Toxic Impact Assessment

According to the State's *Guideline for Ambient Impact Assessment of Toxic Air Pollutant (TAP)Emissions (Revised March 2017)*, existing facilities that require a State Implementation Plan (SIP) permit that are either adding new equipment or modifying existing equipment that results in an increase in the emission of specified toxic air pollutants must demonstrate compliance with the Allowable Ambient Concentration (AAC) for each air toxic. If the facility-wide annual emission rate of a given toxic air pollutant (TAP) is less than the Minimum Emission Rate (MER) no further analysis is required. However, if the facility-wide emission rate exceeds the MER, the facility must show that the resulting maximum ground- level concentration (MGLC) determined by air dispersion analysis does not exceed the ACC of the TAP in question.

The facility conducted a toxic impact assessment and submitted it to the Division. The facility's assessment was reviewed by the Division's Data Management Unit. The results of the Division's review are summarized in the table below.

			Max	Receptor UTM		
ТАР	Averaging Period	AAC $(\mu g/m^3)$	Modeled	Zo	Zone: <u>16</u>	
			$(\mu g/m^3)$	Easting (meter)	Northing (meter)	
Acetophenone	24-hour	177	7.46	675,309.67	3,720,024.33	
Methylene chloride	Annual	21.3	0.71	675,310.00	3,720,118.00	
	15-minute	43,460	112.41	675,300.00	3,720,000.00	
Methyl tert-butyl ether (MTBE)	Annual	3,000	0.53	675,310.00	3,720,118.00	
Xylene	Annual	100	0.28	675,310.00	3,720,118.00	
	15-minute	65,500	11.66	675,300.00	3,720,000.00	

Therefore, the proposed modification complies with the toxic impact assessment requirements.

Summary & Recommendations

Based on the proposed facility modification, Southwire Company – North Campus is still considered a Title V synthetic source for all applicable pollutants. It is recommended that Permit Number 3357-045-0080-S-01-5 be issued to the facility.

A public advisory was issued for this application and expired May 6, 2022. No comments were received. Inspection responsibility will continue to be with the Air Protection Branch Stationary Source Compliance Program Central Office.