Hartsfield-Jackson Atlanta International Airport

Documentation for the CY 2014 Criteria Air Pollutant Emission Inventory

Prepared for: City of Atlanta/Department of Aviation P.O. Box 20509 Atlanta, Georgia 30320

Prepared by: KB Environmental Sciences, Inc.

January 2020

Contents

1.	Introduction	.1
2.	Emissions Inventory Results	.1
3.	Emissions Inventory Methodology	2
3.1.	Aircraft	2
3.2.	Auxiliary Power Units	6
3.3.	Ground Service Equipment	6
4.	Operational Profiles	6

List of Tables

Table 1 – CY 2014 Annual Emissions Inventory (Tons)	. 2
Table 2 –Aircraft Fleet Mix and Number of LTOs	. 4
Table 3 – EDMS Default GSE	. 7
Table 4 - Operational Profiles	. 8
Table 5 - CY 2014 Emissions Inventory for a Weekday in July (Tons)	. 8

1. Introduction

Presented herein is an emissions inventory of calendar year (CY) 2014 air emissions from nonpermitted sources operating at Hartsfield-Jackson Atlanta International Airport (H-JAIA). The inventory was prepared for inclusion in the State Implementation Plan (SIP) for the year 2015 ozone (O3) National Ambient Air Quality Standard (NAAQS) that is being prepared by the Georgia Department of Natural Resources Environmental Protection Division (EPD). Accordingly, emissions of nitrogen oxides (NO_x) and volatile organic compounds (VOC), which are precursors to O₃ formation, are presented.

Although the SIP is being prepared for the purposes of O_3 compliance, the provided inventory also includes estimates of the U.S. Environmental Protection Agency's (EPA's) other criteria pollutants which are: carbon monoxide (CO), particulate matter measuring ten micrometers or less in diameter (PM₁₀), particulate matter measuring 2.5 micrometers or less in diameter (PM_{2.5}), and sulfur dioxide (SO₂).¹

The H-JAIA sources for which emissions are provided in this report are: aircraft, auxiliary power units (APUs), and ground service equipment (GSE). The detailed methodologies, input data and assumptions that were used to develop the CY 2014 emissions inventory are also provided.

2. Emissions Inventory Results

CY 2014 emissions from aircraft, APUs and GSE are summarized on **Table 1**. As shown, in CY 2014 these sources are estimated to have emitted 7,975 tons of CO, 5,013 tons of NO_x , 103 tons of PM_{10} , 102 tons of $PM_{2.5}$, 581 tons of SO₂, and 708 tons of VOC.

¹ Of note, emissions of lead (Pb) are discounted from this inventory because there is only a nominal amount of activity at H-JAIA that is performed by piston engine powered aircraft fueled by leaded aviation gasoline.

Source	СО	NO _x	PM ₁₀	PM _{2.5}	SO ₂	VOC
Aircraft	5,561	4,630	71	71	554	617
Startup ^a						145
Taxi-Out	3,420	690	25	25	201	294
Takeoff	39	1,961	15	15	104	5
Climb Out	26	1,070	9	9	65	3
Approach	287	482	9	9	73	18
Taxi-in	1,789	428	14	14	112	153
APUs	204	132	22	22	20	15
GSE	2,210	251	9	9	7	76
Total	7,975	5,013	103	102	581	708

 TABLE 1 – CY 2014 ANNUAL EMISSIONS INVENTORY (TONS)

^a EDMS only provides estimates of VOCs from starting an engine(s) on an aircraft.

Values may reflect rounding.

Source: Emissions and Dispersion Modeling System (EDMS) version 5.1.4.1

Prepared by KB Environmental Sciences, Inc., 2020.

3. Emissions Inventory Methodology

The calculation methodologies, input data, and assumptions that were used to develop the CY 2014 emissions estimate are described in the following sections of this report.

3.1. Aircraft

The number of aircraft operations and the type of aircraft that operate at an airport (the aircraft fleet mix) are important factors in estimating the level of air pollutant/precursor emissions. In the year 2014, there were 868,359 annual operations. The Federal Aviation Administration's (FAA's) Emissions and Dispersion Modeling System EDMS v.5.1.4.1 was used to estimate emissions from aircraft operating within Landing/Take-Off cycles (LTOs). One LTO includes one aircraft arrival and one aircraft departure where are comprised of the following aircraft operational modes: approach, taxi-in, startup, taxi-out, take-off, and climb-out. The EDMS definitions of each of these operational modes is provided below:

- Approach" begins when an aircraft descends below the atmospheric mixing height and ends when an aircraft touches down on a runway
- "Taxi-in" includes the time an aircraft taxis between the runway and a terminal and all ground-based delay incurred through the aircraft route.

- "Startup" begins with fuel flowing into an aircraft engine's annular combustor. At this point, any emissions are unburned, raw fuel vapor (i.e., VOC).²
- "Taxi/out" includes the time aircraft taxi between a terminal and a runway and all groundbased delay incurred through the aircraft route.
- "Takeoff" begins when full power is applied to an aircraft and ends when an aircraft reaches approximately 500 to 1,000 feet. At this altitude, pilots typically power back for a gradual ascent.
- "Climb Out" begins when an aircraft powers back from the takeoff mode and ascends to the height of the atmospheric mixing zone.

Area-specific atmospheric mixing height data was used in the EDMS. Notably, the mixing height affects only the time and aircraft is in the operational modes of approach for arrivals and climb out for departures. For the purpose of preparing the year 2014 emissions inventory, the EDMS default mixing height of 3,000 feet was assumed.

The CY 2014 aircraft fleet mix was developed using H-JAIA-specific data that was extracted from the City of Atlanta Department of Aviation's (DOA's) Noise and Operations Monitoring System (NOMS). Because aircraft destination data (i.e., trip or stage length data) were not available for the year 2014, EDMS default trip lengths were assumed.

Table 2 provides the number of LTOs by each EDMS aircraft airframe and engine combination as well as aircraft category (i.e., passenger air carrier aircraft, passenger commuter aircraft, etc.). For the purpose of estimating emissions associated with the aircraft taxi mode, average airportwide taxi times were obtained from the FAA's Aviation Performance System Metrics (ASPM) database. For CY 2014, the average ASPM taxi in time for arrivals was 11.43 minutes and the average taxi out time for departures was 22.02 minutes.

² Engine Startup Emissions, International Civil Aviation Organization (ICAO)/Committee on Aviation Environmental Protection (CAEP) Working Group 3, May 2006.

Aircraft Category	EDMS Aircraft	EDMS Engine	Number of LTOs	
Category	Airbus A319-100 Series	CFM56-5A5	13,952	
Passenger –	Airbus A320-100 Series	CFM56-5-A1	5,144	
Air Carrier	Airbus A320-100 Series	CFM56-5B4	5,144	
	Airbus A320-100 Series	CFM56-5B4	1,193	
	Airbus A320-100 Series	V2527-A5	1,193	
	AirbusA321-200Series	CFM56-5B3/P	1,13	
	AirbusA330-300Series	CF6-80E1A3	109	
	AirbusA330-300Series	PW4168TalonII	1,364	
	AirbusA330-300Series	Trent772	1,30	
	AirbusA380-800Series	GP7270	220	
	Boeing717-200Series	BR700-715A1-30	53,229	
	Boeing737-700Series	CFM56-7B20	5,65	
	Boeing737-700Series	CFM56-7B22	17,323	
	Boeing737-700Series	CFM56-7B26(8CM051)	5,859	
	Boeing737-800Series	CFM56-7B26(8CM051)	28,049	
	Boeing747-400Series	RB211-524H	680	
	Boeing747-8	GEnx-2B67TAPS(11GE139)	23	
	Boeing757-200Series	PW2037(4PW072)	47,66	
	Boeing757-300Series	PW2043	3,19	
	Boeing767-200ER	CF6-80A2	3,32	
	Boeing767-300ER	CF6-80C2B6	3,32	
	Boeing767-300ER	PW4060PhaseIII	3,32	
	Boeing767-400	CF6-80C2B8F	2,37	
	Boeing777-200-ER	GE90-115B	2,37	
	Boeing777-200-ER	GE90-85BDACII(3GE064)	1,21	
	Boeing777-200-ER	GE90-90BDACII(6GE090)	1,21	
	BoeingDC-9-50Series	JT8D-17Reducedemissions	1,21	
	BoeingMD-82	JT8D-217	93	
	BoeingMD-82	JT8D-217 JT8D-217	39,54	
	BoeingMD-83		<u> </u>	
	BoeingMD-85	JT8D-219EnvironmentalKit(E_Kit) V2525-D5		
	BombardierCRJ-700	CF34-8C1	<u> </u>	
	BombardierCRJ-900		21,14	
	EmbraerERJ170	CF34-8C5LEC(8GE110)		
	EmbraerERJ190	CF34-8E5LEC(8GE108)	4,754	
	BombardierCRJ-200-LR	CF34-10E6SAC CF34-3B	55,95	
Passenger -	EmbraerERJ135-LR	AE3007A1E	,	
Commuter	EmbraerERJ145-LR		1,09	
e officiation		AE3007A1Type3(reducedemissions)	3,41	
	Saab340-B-Plus	CT7-9B	2,39	
Cargo –	AirbusA300B4-600Series	CF6-80C2A5(1GE020)	29	
Air Carrier	AirbusA300B4-600Series	PW4158	29	
	AirbusA340-300Series	CFM56-5C4	28	
	Boeing747-300Series	CF6-80C2B1	24	
	Boeing747-400Freighter	PW4056	24 24	
	Boeing747-400Series			
	Boeing747-400Series Boeing747-8Freighter	RB211-524H	24	

TABLE 2 – AIRCRAFT FLEET MIX AND NUMBER OF LTOS

Aircraft Category	EDMS Aircraft	EDMS Engine	Number of LTOs
	Boeing757-200SeriesFreighter	PW2040(4PW073)	444
	Boeing757-200SeriesFreighter	RB211-535E4(3RR028)	268
	Boeing767-200Series	PW4060PhaseIII	57
	Boeing767-200SeriesFreighter	CF6-80A	57
	Boeing767-300Series	CF6-80C2B6	472
	Boeing777-200-LRFreighter	GE90-110B1	151
	Boeing777-200-LRFreighter	GE90-115B	151
	BoeingDC-10-30ER	CF6-50C2	626
	BoeingMD-11Freighter	CF6-80C2D1F	382
	BombardierChallenger600	ALF502L-2	97
Cargo –	BombardierLearjet31	TFE731-2-2B	263
General	Cessna208Caravan	PT6A-114A	529
Aviation	Cessna560CitationV	PW530	126
	Cessna560CitationXLS	JT15D-5,-5A,-5B	263
	Cessna750CitationX	AE3007CType2	112
	deHavillandDHC-6- 200TwinOtter	PT6A-20	122
	deHavillandDHC-8-100	PW121	151
	RaytheonBeech1900-D	PT6A-67D	261
	RaytheonBeechjet400	JT15D-5,-5A,-5B	125
	BombardierGlobalExpress5000	BR700-710A2-20	105
General	BombardierLearjet45	TFE731-2-2B	154
Aviation	Cessna172Skyhawk	IO-320-D1AD	215
	Cessna441ConquestII	TPE331-10	182
	Cessna500CitationI	JT15D-1series	99
	Cessna525CitationJet	JT15D-1series	99
	Cessna560CitationXLS	JT15D-5,-5A,-5B	129
	DassaultFalcon2000	PW308C	178
	deHavillandDHC-6- 200TwinOtter	РТ6А-20	153
	GulfstreamIV-SP	TAY611-8C	123
	MitsubishiMU-300Diamond	JT15D-4series(1PW036)	126
	PiaggioP.180Avanti	PT6A-66	102
	RaytheonBeechBaron58	TIO-540-J2B2	143
	RaytheonHawker800	aytheonHawker800 TFE731-3	
Total			434,180

3.2. Auxiliary Power Units

An APU is a small turbine engine that is used on some aircraft to generate electricity and compressed air. APUs operate the aircraft's instruments, lights, ventilation and other equipment when the aircraft's main engines are shut down. An APU also provides power to restart the aircraft's main engines after shutdown. APU's may be activated when an aircraft is on approach and may also be used during taxiing. However typically pilots use APUs shortly before departing a gate and prior to the time when pre-flight instrument checks are performed.

For the purpose of estimating emissions from APUs, and because recent airport-specific data was unavailable, the EDMS default APU usage (i.e., run time) of 26 minutes per LTO was assumed.

3.3. Ground Service Equipment

EDMS calculates emissions from GSE as a function of the fuel type, operating hours per LTO, and the estimated horsepower of the equipment. As with APUs and because recent airport-specific data was unavailable, the EDMS default GSE assignments by aircraft type as well as GSE usage (i.e., run times) by aircraft type were assumed. The EDMS default GSE and default run times are listed in **Table 3**.

4. Operational Profiles

For the purpose of generally distributing the annual emissions presented in Table 1 to any month, day, or hour of CY 2014, operational profiles that describe the level of activity at the airport were derived using data from the NOMS. The profiles are provided in **Table 4**. At the request of the Georgia Environmental Protection Division (GA EPD), daily operational profiles specific to the month of July were also derived. Using the profiles, the level of aircraft, APU, and GSE air pollutant and pollutant precursor emissions that occurred on an average workday (i.e., Monday through Friday) in July of CY 2014 was also estimated. These data are provided in **Table 5**.

TABLE 3 – EDMS DEFAULT GSE

			Load	Operating Time (minutes)	
GSE	Fuel Type	Horsepower	Factor	Departure	Arrival
F250 / F350	Diesel	235	0.20	8	7
FMC Commander 15	Diesel	80	0.50	40	40
Hi-Way / TUG 660 Chassis	Diesel	71	0.53	5	5
Hi-Way F650	Diesel	210	0.53	8	7
Hi-Way F650	Diesel	210	0.53	10	10
Hi-Way F650	Diesel	210	0.53	18	17
Stewart & Stevenson TUG 660	Gasoline	107	0.50	15	15
Stewart & Stevenson TUG 660	Gasoline	107	0.50	18	17
Stewart & Stevenson TUG 660	Gasoline	107	0.50	24	24
Stewart & Stevenson TUG MA 50	Gasoline	107	0.55	18	17
Stewart & Stevenson TUG MA 50	Gasoline	107	0.55	38	37
Stewart & Stevenson TUG MA 50	Gasoline	107	0.55	60	60
TLD 1410	Diesel	56	0.25	0	15
Wollard TLS-770 / F350	Diesel	235	0.25	0	25

Monthly Profile		Daily P	rofile	Hourly Profile	
January	0.863	Monday	1.000	0	0.051
February	0.801	Tuesday	0.978	1	0.023
March	1.000	Wednesday	0.968	2	0.014
April	0.950	Thursday	0.990	3	0.012
May	0.981	Friday	0.997	4	0.026
June	0.967	Saturday	0.847	5	0.095
July	0.992	Sunday	0.957	6	0.206
August	0.980			7	0.485
September	0.928			8	0.907
October	0.967			9	0.914
November	0.901			10	0.916
December	0.930			11	0.808
				12	0.847
				13	0.776
				14	0.889
				15	1.000
				16	0.874
				17	0.854
				18	0.859
				19	0.998
				20	0.799
				21	0.654
				22	0.478
				23	0.180

TABLE 4 - OPERATIONAL PROFILES

 TABLE 5 – CY 2014 Emissions Inventory for a Weekday in July (Tons)

Source	СО	NO _x	PM ₁₀	PM _{2.5}	SO ₂	VOC
Aircraft	14.5	12.0	0.2	0.2	1.4	1.6
APUs	0.5	0.3	0.1	0.1	0.1	<0.1
GSE	5.7	0.7	< 0.1	< 0.1	< 0.1	0.2
Total	20.7	13.0	0.3	0.3	1.5	1.8

^a EDMS only provides estimates of VOCs from starting an engine(s) on an aircraft.

^b The level of emissions that occurred on an average weekday in July in CY 2014 is estimated to be approximately 0.26 percent of the total annual emissions in Table 1.

Values may reflect rounding.

Source: Emissions and Dispersion Modeling System (EDMS) version 5.1.4.1

Prepared by KB Environmental Sciences, Inc., 2020.