From:	McDowell, Sara
To:	Aponte, Anna; Holmes, Jill R
Cc:	Allison, Steve; Hamby, Terri; Gijon-felix, Ruben; Boylan, James; Brown, Delveccio; Zufall, Maria J; Kuhlman, Steve J; Wright, Jay B
Subject:	RE: Updates to your Regional Haze 4 Factor Analysis based on EPA comments
Date:	Tuesday, June 14, 2022 9:47:01 AM
Attachments:	<u>image001.png</u> Brunswick Regional Haze Analysis (2022-06-13)v2.pdf

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Anna,

Additional information on EPA's comments is provided below in blue and in the attached file. Please let us know if you have any questions or need anything else.

Thanks, Sara McDowell GP Environmental Affairs Cell: 830-243-8061 <u>sara.mcdowell@gapac.com</u>

From: Aponte, Anna <Anna.Aponte1@dnr.ga.gov>

Sent: Friday, June 10, 2022 4:09 PM

To: McDowell, Sara <SARA.MCDOWELL@GAPAC.COM>; Holmes, Jill R <JILL.HOLMES@GAPAC.com> Cc: Allison, Steve <Steve.Allison2@dnr.ga.gov>; Hamby, Terri <Terri.Hamby@dnr.ga.gov>; Gijonfelix, Ruben <ruben.gijon-felix@dnr.ga.gov>; Boylan, James <James.Boylan@dnr.ga.gov>; Brown, Delveccio <delveccio.brown@dnr.ga.gov>

Subject: Re: Updates to your Regional Haze 4 Factor Analysis based on EPA comments

Sent by an external sender

Ok thank you for the update. We understand it takes time to gather the type of information we requested.

Anna Aponte Unit Manager Planning & Regulatory Development Unit Air Protection Branch Phone: (470) 251-2942

<u>4244 International Parkway, Suite #120</u> <u>Atlanta, GA 30354</u> From: McDowell, Sara <<u>SARA.MCDOWELL@GAPAC.COM</u>>

Sent: Friday, June 10, 2022 5:08:19 PM

To: Aponte, Anna <<u>Anna.Aponte1@dnr.ga.gov</u>>; Holmes, Jill R <<u>JILL.HOLMES@GAPAC.com</u>> **Cc:** Allison, Steve <<u>Steve.Allison2@dnr.ga.gov</u>>; Hamby, Terri <<u>Terri.Hamby@dnr.ga.gov</u>>; Gijon-felix, Ruben <<u>ruben.gijon-felix@dnr.ga.gov</u>>; Boylan, James <<u>James.Boylan@dnr.ga.gov</u>>; Brown, Delveccio <<u>delveccio.brown@dnr.ga.gov</u>>

Subject: RE: Updates to your Regional Haze 4 Factor Analysis based on EPA comments

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Anna,

Just to follow up with you, I am preparing responses to the two comments below but don't have the responses ready for you yet. I should be able to send them early next week though.

Thanks, Sara McDowell GP Environmental Affairs Cell: 830-243-8061 sara.mcdowell@gapac.com

From: Aponte, Anna <<u>Anna.Aponte1@dnr.ga.gov</u>>

Sent: Friday, June 3, 2022 2:03 PM

To: Holmes, Jill R <<u>JILL.HOLMES@GAPAC.com</u>>; McDowell, Sara <<u>SARA.MCDOWELL@GAPAC.COM</u>>
Cc: Allison, Steve <<u>Steve.Allison2@dnr.ga.gov</u>>; Hamby, Terri <<u>Terri.Hamby@dnr.ga.gov</u>>; Gijon-felix, Ruben <<u>ruben.gijon-felix@dnr.ga.gov</u>>; Boylan, James <<u>James.Boylan@dnr.ga.gov</u>>; Brown, Delveccio <<u>delveccio.brown@dnr.ga.gov</u>>

Subject: Updates to your Regional Haze 4 Factor Analysis based on EPA comments

Sent by an external sender

Jill,

To continue our conversation from last week, we have come up with a list of items that we need your help addressing from the EPA Region 4 comments on our pre-draft SIP.

 Key Comment 1.b - Evaluate emissions of Recovery Furnace No. 5 and Recovery Furnace No. 6. EPA identified these units as being uncontrolled and they don't have any Monitoring, Recordkeeping or Reporting Requirements (MRR).
GP Response: Monitoring of the quantity of fuel oil fired in the No. 5 Recovery Furnace is required by existing permit condition 3.2.11 and the associated recordkeeping is specified in condition 5.2.3.d.iii. SO₂ emissions from the No. 6 Recovery Furnace are limited by existing permit conditions 3.2.12.d. and 3.2.12.e. Monitoring of the quantity of fuel oil fired in the No. 6 Recovery Furnace is required by existing permit condition 3.2.14 and the associated recordkeeping is specified in condition 5.2.3.d.iv. Reporting of any exceedances of the annual fuel oil firing limits for the recovery furnaces is required in existing conditions 6.1.7.b.iii(A) for the No. 6 Recovery Furnace and 6.1.7.b.iii(B) for the No. 5 Recovery Furnace.

2)

General Comment 8.a – EPA asked for additional justification on how the costeffectiveness of the replacement of the No. 6 fuel oil with one percent fuel oil factored into the decision of the cost effectiveness values listed - \$4,221/ton and \$4,154/ton. GP Response: The attached calculations provide some additional information on the cost effectiveness of firing the lower sulfur fuel oil blend (new information is in the blue highlighted cells). The No. 4 Power Boiler has been excluded from the updated analysis since GP has already agreed to eliminate TDF firing and reduce fuel oil firing to reduce SO_2 emissions from that unit. This essentially means that the analysis is looking at the cost effectiveness of firing a lower sulfur fuel oil blend in the No. 5 Recovery Furnace or the No. 5 Recovery Furnace and the No. 5 Lime Kiln.

Note that in this analysis, adjustments were made to the No. 5 Recovery Furnace emissions because sulfur emissions fuels are lower in a recovery furnace than conventional combustion due to the reducing conditions and fume particles which "capture" SO₂. NCASI's Technical Bulletin 578 examined the impact of burning No. 6 fuel oil in non-direct contact recovery furnaces equipped with ESPs and showed that actual SO₂ emissions from the tested units while firing No. 6 fuel oil as a supplemental fuel were consistently lower than the emissions predicted by assuming all the sulfur in the fuel oil was emitted. The reduction in emissions from calculated to measured ranged from 35% to 90% due to the recovery furnace environment. The attached calculations show that if the actual SO₂ emissions are even 20% lower than the calculated SO₂ emissions for the No. 5 Recovery Furnace, the cost per ton of the use of a lower sulfur fuel oil blend would exceed \$5,000.

The information requested can be submitted as a supplement to your 4 Factor Analysis and we would appreciate your response by June 10th. Of course, if you have any questions, feel free to reach out to me.

Anna Aponte Unit Manager Planning & Regulatory Development Unit Air Protection Branch Phone: (470) 251-2942

4244 International Parkway, Suite #120 Atlanta, GA 30354

ENVIRONMENTAL PROTECTION DIVISION

Cost Evaluation for the Use of a Lower Sulfur Fuel Oil (Includes the No 5 Lime Kiln)

					1.5% Sulfur Fuel Oil					1% Sulfur Fuel Oil					No. 2 Fuel Oil					
No. 6 Fuel Oil N Usage - Total Excl for all Units (Mgal)	lo. 6 Fuel Oil Usage luding the No. 5 Lime Kiln (Mgal)	Heat Input from No. 6 Fuel Oil (MMBtu)	SO ₂ Emissions from No. 6 Fuel Oil Combustion (tpy)	Heat Content of 1.5% Sulfur Fuel Oil (Btu/gal)	Additional 1.5% Sulfur Fuel Required (Mgal)	SO ₂ Emissions from 1.5% Sulfur Fuel Oil (tpy)	Cost of Fuel Replacement (\$)	Cost per ton (\$/ton)	Heat Content of 1% Sulfur Fuel Oil (Btu/gal)	Additional 1% Sulfur Fuel Required (Mgal)	SO ₂ Emissions from 1% Sulfur Fuel Oil (tpy)	Cost of Fuel Replacement (\$)	Cost per ton (\$/ton)	Heat Content o No. 2 Fuel Oil (Btu/gal)	f Additional No. 2 Fuel Oil Required (Mgal)	SO ₂ Emissions from No. 2 Fuel Oil (tpy)	Cost of Fuel Replacement (\$)	Cost per ton (\$/ton)	Scenario	
1,613	1,135	245,565	149	147,506	51	140	\$120,794	\$14,909	145,465	75	95	\$186,798	\$3,846	138,000	166	2.20	\$937,212	\$6,511	Original	
1,613	1,135	245,565	115	147,506	51	107	\$120,794	\$19,326	145,465	75	73	\$186,798	\$5,028	138,000	166	2.20	\$937,212	\$8,527	Reduced 5RF Emiss	
1,493	1,014	227,158	99	147,506	47	93	\$111,645	\$20,993	145,465	69	63	\$172,701	\$5,448	138,000	153	2.18	\$866,867	\$9,184	Reduced 4PB	
1,240	761	188,625	66	147,506	39	62	\$92,412	\$28,503	145,465	57	42	\$143,111	\$7,051	138,000	127	2.10	\$719,526	\$11,631	No 4PB	

Capital & Operating Cost Evaluation for Combustion Unit Modifications

Cost Category	Value	Notes	
Approximate Combustion Modification Costs (\$) =	\$345,000	Includes modifications for all three emission u	nits
Total Capital Investment (TCI)	\$345,000		
Capital Recovery			
Capital Recovery Factor (CRF)	0.06320945	CRF = 4.75% interest (current bank prime rate	as of 6/16/2022) and 30-yr equipment life based on July 2020 Draft Section 5 Control Cost Manu
Capital Recovery Cost (CRC)	\$21,807	CRC = TCI × CRF	
Total Annualized Cost (AC) =	\$21,807	AC = CRC + DOC + IOC	

Cost Evaluation for the Use of a Lower Sulfur Fuel Oil in the No. 4 Power Boiler, No. 5 Recovery Furnace, and No 5 Lime Kiln, continued

Notes

1. Fuel consumption values and SO₂ emissions from combusting No. 6 fuel oil are based on the most recent 3 calendar years of operating data (2017 - 2019).

2. Cost data and blended fuel heat content provided by the fuel vendor.

	Cost of No. 6 Fuel Oil =	\$60.66 \$/bbl
	Incremental Additional Cost for Blended Fuel =	\$1.18 \$/bbl for 1.5% Sulfur Fuel Oil
		\$1.96 \$/bbl for 1% Sulfur Fuel Oil
	Cost of No. 2 Fuel Oil =	\$77.12 \$/bbl, average value
3. Other data used in the calc	ulations:	
	Emission Factor for No. 6 Fuel Oil =	157 S lb/Mgal, Table 1.3-1 of AP-42, where S is the fuel sulfur content as a percentage
	Emission Factor for No. 2 Fuel Oil =	142 S lb/Mgal, Table 1.3-1 of AP-42, where S is the fuel sulfur content as a percentage
	Sulfur Content of No. 2 Fuel Oil =	0.0015 %S for ULSD

4. The additional fuel required for each blended fuel is calculated as follows:

Additional Fuel Required (Mgal) = [Heat Input from No. 6 Fuel Oil (MMBtu) * 1,000,000 Btu/MMBtu / Heat Content of Blended Fuel (Btu/gal)] / 1000 gal/Mgal - No. 6 Fuel Oil Usage for All Three Units (Mgal)

The additional fuel requirement for e	ach emission unit is	calculated as follows:									
		Or	iginal			Reduced	No 4PB				
				Additional 1%			Additional	1% Sulfur			Additional 1.5%
	No. 6 Fuel Oil		Additional 1.5% Sulfur		No. 6 Fuel Oil	No. 6 Fuel Oil	1.5% Sulfur	Fuel	No. 6 Fuel Oil	No. 6 Fuel Oil	Sulfur Fuel
	Usage	No. 6 Fuel Oil Heat	Fuel Required	Required	Usage	Heat Input	Fuel Required	Required	Usage	Heat Input	Required
Emission Unit	(Mgal)	Input (MMBtu)	(Mgal)	(Mgal)	(Mgal)	(MMBtu)	(Mgal)	(Mgal)	(Mgal)	(MMBtu)	(Mgal)
No. 4 Power Boiler	374	56,939	12	18	253	38,533	8	12	0	0	0
No. 5 Recovery Furnace	761	115,817	24	35	761	115,817	24	35	761	115,817	24
No. 5 Lime Kiln	479	72.808	15	22	479	72.808	15	22	479	72.808	15

5. The SO2 emission rate for the blended fuels was calculated as follows:

SO₂ Emissions from Blended Fuel Combustion (tpy) = [Existing Fuel Oil Usage for the No. 4 Power Boiler and No. 5 Recovery Furnace (Mgal) + Additional Fuel Oil Required for the No. 4 Power Boiler and No. 5 Recovery Furnace (Mgal)] * [157 * Fuel Sulfur Content (%)] lb SO₂/Mgal / 2,000 lb/ton + 3-Year Average SO₂ Emission Rate for the No. 5 Lime Kiln

6. The cost of fuel replacement is calculated as follows:

Cost (\$) = Fuel Oil Usage for All Three Units (Mgal) * 1000 gal/Mgal / 42 gal/bbl * Incremental Cost of Blended Fuel (\$/bbl) + Additional Fuel Required (Mgal) * 1000 gal/Mgal / 42 gal/bbl * (Cost of No. 6 Fuel Oil (\$/bbl) + Incremental Cost of Blended Fuel (\$/bbl)

7. The cost per ton of SO_2 removed is calculated as follows:

Cost per ton (\$/ton) = [Cost of Fuel Replacement (\$) + Annualized Cost of Equipment Modifications (\$)] / [SO₂ Emissions from Firing No. 6 Fuel Oil (tons) - SO₂ Emissions from Firing Blended Fuel (tons)]

Additional 19 Sulfur Fuel Required (Mgal) 0 35 22

Cost Evaluation for the Use of a Lower Sulfur Fuel Oil (Excludes the No. 5 Lime Kiln)

				1.5	5% Sulfur Fuel Oil					1% Sulfur Fuel Oil					No. 2 Fuel Oil			
		SO ₂ Emissions	Heat Content of		${\rm SO}_2$ Emissions from			Heat Content of	Additional 19	6 SO ₂ Emissions			Heat Content		SO ₂ Emissions			
	Heat Input from No. 6	from No. 6 Fuel	1.5% Sulfur Fuel	Additional 1.5%	1.5% Sulfur Fuel	Cost of Fuel		1% Sulfur Fuel	Sulfur Fuel	from 1% Sulfur	Cost of Fuel		of No. 2 Fuel	Additional No. 2	from No. 2 Fuel	Cost of Fuel		
No. 6 Fuel Oil Usage	Fuel Oil	Oil Combustion	Oil	Sulfur Fuel Required	Oil	Replacement	Cost per ton	Oil	Required	Fuel Oil	Replacement	Cost per ton	Oil	Fuel Oil Required	Oil	Replacement	Cost per ton	
(Mgal)	(MMBtu)	(tpy)	(Btu/gal)	(Mgal)	(tpy)	(\$)	(\$/ton)	(Btu/gal)	(Mgal)	(tpy)	(\$)	(\$/ton)	(Btu/gal)	(Mgal)	(tpy)	(\$)	(\$/ton)	Scenario
1,135	172,756	147	147,506	36	138	\$85,284	\$17,258	145,465	53	93	\$131,718	\$3,899	138,000	117	0.13	\$659,639	\$5,019	Original
1,135	172,756	113	147,506	36	105	\$85,284	\$22,371	145,465	53	71	\$131,718	\$5,098	138,000	117	0.13	\$659,639	\$6,571	Reduced 5RF Emissions
1,014	154,350	97	147,506	32	91	\$76,135	\$24,527	145,465	47	60	\$117,621	\$5,401	138,000	104	0.12	\$589,295	\$6,911	Reduced 4PB
761	115,817	64	147,506	24	60	\$56,902	\$34,109	145,465	35	40	\$88,032	\$7,007	138,000	78	0.06	\$441,954	\$8,181	No 4PB

Capital & Operating Cost Evaluation for Combustion Modifications and a New Fuel Oil Tank

Cost Category	Value	Notes	
Approximate Combustion Modification Costs (\$) =	\$230,000		
Approximate Tank Costs (\$) =	\$700,000	Approximate cost for a 500,000-gal fuel oil ta	nk based on similar installations at other sites
Total Capital Investment (TCI)	\$930,000		
Capital Recovery			
Capital Recovery Factor (CRF)	0.063209454	CRF = 4.75% interest (current bank prime rate	e as of 6/16/2022) and 30-yr equipment life based on July 2020 Draft Section 5 Control Cost M
Capital Recovery Cost (CRC)	\$58,785	CRC = TCI × CRF	
Indirect Operating Costs (IOC) - New Storage Tank Only			
Insurance	\$7,000	$J = 1\% \times TCI$	
Administrative Charges	\$14,000	K = 2% × TCI	
Total Indirect Operating Costs (IOC)	\$21,000	IOC = H + I + J + K	
Total Annualized Cost (AC) =	\$79,785	AC = CRC + DOC + IOC	

Cost Evaluation for the Use of a Lower Sulfur Fuel Oil in the No. 4 Power Boiler and No. 5 Recovery Furnace, continued

Notes

1. Fuel consumption values in this table are based on the most recent 3 calendar years of operating data (2017 - 2019). 2. Cost data and blended fuel heat content provided by the fuel vendor.

	the fuel vehicle.	
	Cost of No. 6 Fuel Oil =	\$60.66 \$/bbl
	Incremental Additional Cost for Blended Fuel =	\$1.18 \$/bbl for 1.5% Sulfur Fuel Oil
		\$1.96 \$/bbl for 1% Sulfur Fuel Oil
	Cost of No. 2 Fuel Oil =	\$77.12 \$/bbl, average value
3. Other data used in the calculations:		
	Emission Factor for No. 6 Fuel Oil =	157 S lb/Mgal, Table 1.3-1 of AP-42, where S is the fuel sulfur content as a percentage
	Emission Factor for No. 2 Fuel Oil =	142 S lb/Mgal, Table 1.3-1 of AP-42, where S is the fuel sulfur content as a percentage
	Sulfur Content of No. 2 Fuel Oil =	0.0015 %S for ULSD

4. The additional fuel required for each blended fuel is calculated as follows:

Additional Fuel Required (Mgal) = [Heat Input from No. 6 Fuel Oil (MMBtu) * 1,000,000 Btu/MMBtu / Heat Content of Blended Fuel (Btu/gal)] / 1000 gal/Mgal - No. 6 Fuel Oil Usage for No. 4 Power Boiler and No. 5 Recovery Furnace (Mgal)

The additional fuel requirement was calculate	ed separately for eac	h emission unit as	follows:									
		(Reduced 4PB					No 4	PB			
											Additional	
				Additional 1%			Additional 1.5%	Additional 1%			1.5% Sulfur	Additional 1%
	No. 6 Fuel Oil	No. 6 Fuel Oil	Additional 1.5%	Sulfur Fuel	No. 6 Fuel Oil	No. 6 Fuel Oil	Sulfur Fuel	Sulfur Fuel	No. 6 Fuel Oil	No. 6 Fuel Oil	Fuel	Sulfur Fuel
	Usage	Heat Input	Sulfur Fuel Required	Required	Usage	Heat Input	Required	Required	Usage	Heat Input	Required	Required
Emission Unit	(Mgal)	(MMBtu)	(Mgal)	(Mgal)	(Mgal)	(MMBtu)	(Mgal)	(Mgal)	(Mgal)	(MMBtu)	(Mgal)	(Mgal)
No. 4 Power Boiler	374	56,939	12	18	253	38,533	8	12	0	0	0	0
No. 5 Recovery Furnace	761	115,817	24	35	761	115,817	24	35	761	115,817	24	35

5. The SO2 emission rate for the blended fuels was calculated as follows:

SO₂ Emissions from Blended Fuel Combustion (tpy) = [Existing Fuel Oil Usage for the No. 4 Power Boiler and No. 5 Recovery Furnace (Mgal) + Additional Fuel Oil Required for the No. 4 Power Boiler and No. 5 Recovery Furnace (Mgal)] * [157 * Fuel Sulfur Content (%)] Ib SO₂/Mgal / 2,000 lb/ton + 3-Year Average SO₂ Emission Rate for the No. 5 Lime Kiln

6. The cost of fuel replacement is calculated as follows:

Cost (\$) = Fuel Oil Usage for All Three Units (Mgal) * 1000 gal/Mgal / 42 gal/bbl * Incremental Cost of Blended Fuel (\$/bbl) + Additional Fuel Required (Mgal) * 1000 gal/Mgal / 42 gal/bbl * (Cost of No. 6 Fuel Oil (\$/bbl) + Incremental Cost of Alternative Fuel (\$/bbl)

7. The cost per ton of SO₂ removed is calculated as follows:

Cost per ton (\$/ton) = [Cost of Fuel Replacement (\$) + Annualized Cost of Equipment Modifications and Storage Tank (\$)] / [SO₂ Emissions from Firing No. 6 Fuel Oil (tons) - SO₂ Emissions from Firing Alternative Fuel (tons)]