Voluntary Investigation and Remediation Plan Application Form and Checklist

VRP APPLICANT INFORMATION							
COMPANY NAME	Hull Real Estate, LLC						
CONTACT PERSON/TITLE	c/o Charles H. MacPherso	on, Jr., Exec.	Vice President, Tech	nical Director		N	
ADDRESS	Peachtree Environmental.	Inc., 5384 C	haversham Lane, No	orcross, GA 300)92		
PHONE	770.559.8050	FAX	770.559.8051	E-MAIL	cmacpherso	on@pead	chtreeenvironmental.com
GEORGIA CER	TIFIED PROFESSION	IAL GEOL	OGIST OR PRO	FESSIONAL	. ENGINEE	R OVE	RSEEING CLEANUP
NAME	William H. Lucas, III			GA PE/PG I	NUMBER	1255	
COMPANY	Peachtree Environmental,	Inc.				•	
ADDRESS	5384 Chaversham Lane, I	Norcross, GA	30092				
PHONE	(770) 449-6100	FAX	(770) 449-6119	E-MAIL	wlucas@pe	achtreee	environmental.com
		APPL	ICANT'S CERTIF	ICATION			
APPLICANT'S CERTIFICATION In order to be considered a qualifying property for the VRP: (1) The property must have a release of regulated substances into the environment; (2) The property shall not be: (A) Listed on the federal National Priorities List pursuant to the federal Comprehensive Environmental Response, Compensation, and Liability Act, 42 U.S.C. Section 9801. (B) Currently undergoing response activities required by an order of the regional administrator of the federal Environmental Protection Agency; or (C) A facility required to have a permit under Code Section 12-8-66. (3) Qualifying the property under this part would not violate the terms and conditions under which the division operates and administers remedial programs by delegation or similar authorization from the United States Environmental Protection Agency. (4) Any lien filed under subsection (e) of Code Section 12-43-6 or subsection (b) of Code Section 12-43-8 or subsection (b) of Code Section 12-43-8 or subsection (b) of Code Section 12-43-8 or subsection (b) of Code Section 12-43-8. In order to be considered a participant under the VRP: (1) The participant must be the property owner of the voluntary remediation property or have express permission to enter another's property to perform corrective action. (2) The participant must be the involation of any order, judgment, statute, rule, or regulation subject to the enforcement authority of the director. I certify under penalty of law that this document and all attachments were prepared under my direction on supervision in accordance with a system designed to assure that qualified personnel property gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering th							

Revised 12/1/2010

Voluntary Investigation and Remediation Plan Application Form and Checklist

VRP APPLICANT INFORMATION						
COMPANY NAME	Hull Real Estate, LLC					
CONTACT PERSON/TITLE	c/o Charles H. MacPherso	n, Jr., Exec.	Vice President, Tech	nical Director		
ADDRESS	Peachtree Environmental.	Inc., 5384 C	haversham Lane, No	orcross, GA 30	092	
PHONE	770.559.8050	FAX	770.559.8051	E-MAIL	cmacphers	on@peachtreeenvironmental.com
GEORGIA CER	TIFIED PROFESSION	IAL GEOL	OGIST OR PRO	FESSIONAL	ENGINEE	R OVERSEEING CLEANUP
NAME	William H. Lucas, III			GA PE/PG	NUMBER	1255
COMPANY	Peachtree Environmental,	Inc.				
ADDRESS	5384 Chaversham Lane,	Norcross, GA	30092			
PHONE	(770) 449-6100	FAX	(770) 449-6119	E-MAIL	wlucas@pe	eachtreeenvironmental.com
		APPL	ICANT'S CERTI	FICATION		
 (1) The property must have a (2) The property shall not be: (A) Listed on the federal Section 9601. (B) Currently undergoing (C) A facility required to (3) Qualifying the property undor similar authorization from the endergy of the property undor similar authorization from the endergy of the ende	release of regulated substa release of regulated substa I National Priorities List purs g response activities require have a permit under Code der this part would not viola the United States Environme tion (e) of Code Section 12- ction 12-8-94 or Code Section 12-8-94 or Code Section 12- to the property owner of the thet property owner of the that this document and all a lather and evaluate the infor- information, the informatio itting false information, inclu- is eligible for the Voluntary for Hull Real Est BY Sharon Loef	nces into the suant to the f ed by an orde Section 12-8 te the terms antal Protection 8-96 or subsection and 12-13-6. The voluntary re- rder, judgme ttachments we mation submitted uding the pos Remediation f ate, LLC , Fred 1	environment; ederal Comprehensi er of the regional adr -66. and conditions unde on Agency. ection (b) of Code Se mediation property of nt, statute, rule, or ra- vere prepared under itted. Based on my i sis, to the best of my ssibility of fine and in Program (VRP) as de	ve Environmen ninistrator of the r which the divis ction 12-13-12 : r have express egulation subject my direction or nequiry of the per knowledge and prisonment for stined in Code S	tal Response, e federal Envir sion operates : against the pro permission to ct to the enforce supervision ir rson or person d belief, true, a knowing viola ection 12-8-10	Compensation, and Liability Act, 42 U.S.C. ronmental Protection Agency; or and administers remedial programs by delegation operty shall be satisfied or settled and released by the enter another's property to perform corrective action. cement authority of the director. In accordance with a system designed to assure that as who manage the system, or those persons directly accurate, and complete. I am aware that there are tions. 5 and I am eligible as a participant as defined in Code

Revised 12/1/2010

QUALIFYING PROPERTY INFORMATION (For additional qualifying properties, please refer to the last page of application form)					
HAZARDOUS SITE INVENTORY INFORMATION (if applicable)					
HSI Number	10376	Date HSI Site listed	June 9, 1995		
HSI Facility Name	The Loef Company, Inc.	NAICS CODE	423930		
	PROPERTY	Y INFORMATION	1		
TAX PARCEL ID	221 002C, 221 001, & 162 037	PROPERTY SIZE (ACRES)	21.34 Acres (total)		
PROPERTY ADDRESS	0 Old Hull Road, 590 Old Hull Road, and 305 At	hena Dr.	1		
CITY	Athens	COUNTY	Clarke		
STATE	Georgia	ZIPCODE	30601		
LATITUDE(decimal format)	33.982764	LONGITUDE (decimal format)	83.342111		
	PROPERTY OW	VNER INFORMATION	1		
PROPERTY OWNER(S)	Omnisource, Athens Division, LLC	PHONE #	706.613.5201		
MAILING ADDRESS	C/O Omnisource Southeast, P.O. Box 578	1	1		
CITY	Lyman	STATE/ZIPCODE	South Carolina / 29365	5	
ITEM #	DESCRIPTION OF REC	QUIREMENT	Location in VRP (i.e. pg., Table #, Figure #, etc.)	For EPD Comment Only (Leave Blank)	
1.	\$5,000 APPLICATION FEE IN THE FORM OF GEORGIA DEPARTMENT OF NATURAL RESO (PLEASE LIST CHECK DATE AND CHECK NU "LOCATION IN VRP." PLEASE DO NOT INCLO IN ELECTRONIC COPY OF APPLICATION.)	Included with VRP Application			
2.	WARRANTY DEED(S) FOR QUALIFYING PRO	Refer to Appendix A			
3.	TAX PLAT OR OTHER FIGURE INCLUDING QUALIFYING PROPERTY BOUNDARIES, ABUTTING PROPERTIES, AND TAX PARCEL IDENTIFICATION NUMBER(S).		Refer to Appendix A		
4.	ONE (1) PAPER COPY AND TWO (2) COMPA VOLUNTARY REMEDIATION PLAN IN A SEAF FORMAT (PDF).	CT DISC (CD) COPIES OF THE RCHABLE PORTABLE DOCUMENT	Attached to Application Package		
5.	The VRP participant's initial plan and applic reasonably available current information to application, a graphic three-dimensional pre- (CSM) including a preliminary remediation p standards, brief supporting text, charts, and total) that illustrates the site's surface and s suspected source(s) of contamination, how the environment, the potential human health complete or incomplete exposure pathways preliminary CSM must be updated as the in progresses and an up-to-date CSM must be status report submitted to the director by the MILESTONE SCHEDULE for investigation after enrollment as a participant, must updated	cation must include, using all the extent known at the time of eliminary conceptual site model plan with a table of delineation d figures (no more than 10 pages, subsurface setting, the known or contamination might move within h and ecological receptors, and the s that may exist at the site; the neestigation and remediation e included in each semi-annual e participant; a PROJECTED and remediation of the site, and ate the schedule in each semi-	Refer to Attached VRP Application Report		

	annual status report to the director describing implementation of the plan during the preceding period. A Gantt chart format is preferred for the		
	milestone schedule.		
	The following four (4) generic milestones are required in all initial plans with the results reported in the participant's next applicable semi-annual reports to the director. The director may extend the time for or waive these or other milestones in the participant's plan where the director determines, based on a showing by the participant, that a longer time period is reasonably necessary:		
5.a.	Within the first 12 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern on property where access is available at the time of enrollment;	Refer to Appendix G	
5.b.	Within the first 24 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern extending onto property for which access was not available at the time of enrollment;	Refer to Appendix G	
5.c.	Within 30 months after enrollment, the participant must update the site CSM to include vertical delineation, finalize the remediation plan and provide a preliminary cost estimate for implementation of remediation and associated continuing actions; and	Refer to Appendix G	
5.d.	Within 60 months after enrollment, the participant must submit the compliance	Refer to	
6.	Signature and Startpoint required under the VKP, including the requisite certifications. Signature and Startpoint Signature and Startpoint	Appendix G	

ADDITIONAL QUALIFYING PROPERTIES (COPY THIS PAGE AS NEEDED)

PROPERTY INFORMATION						
TAX PARCEL ID	221 002C	PROPERTY SIZE (ACRES)	1.63 Acres			
PROPERTY ADDRESS	0 Old Hull Road					
CITY	Athens	COUNTY	Clarke			
STATE	Georgia	ZIPCODE	30601			
LATITUDE (decimal format)	33.984069	LONGITUDE (decimal format)	83.341436			
	PROPERTY OWNER INFORMATION					
PROPERTY OWNER(S)	Omnisource Athens Division, LLC	PHONE #	706.613.5201			
MAILING ADDRESS	C/O Omnisource Southeast P.O. Box 578					
CITY	Lyman	STATE/ZIPCODE	South Carolina / 29365			

PROPERTY INFORMATION				
TAX PARCEL ID	221 001	PROPERTY SIZE (ACRES)	15 Acres	
PROPERTY ADDRESS	590 Old Hull Road			
CITY	Athens	COUNTY	Clarke	
STATE	Georgia	ZIPCODE	30601	
LATITUDE (decimal format)	33.981769	LONGITUDE (decimal format)	83.342617	
	PROPERTY OW	NER INFORMATION		
PROPERTY OWNER(S)	Omnisource Athens Division, LLC	PHONE #	706.613.5201	
MAILING ADDRESS	C/O Omnisource Southeast P.O. Box 578			
CITY	Lyman	STATE/ZIPCODE	South Carolina / 29365	

PROPERTY INFORMATION				
TAX PARCEL ID	162 037	PROPERTY SIZE (ACRES)	4.71 Acres	
PROPERTY ADDRESS	305 Athena Drive			
CITY		COUNTY	Clarke	
STATE	Georgia	ZIPCODE	30601	
LATITUDE (decimal format)	33.980097	LONGITUDE (decimal format)	83.343344	
	PROPERTY OW	/NER INFORMATION		
PROPERTY OWNER(S)	Omnisource Athens Division, LLC	PHONE #	706.613.5201	
MAILING ADDRESS	C/O Omnisource Southeast P.O. Box 578			
CITY	Lyman	STATE/ZIPCODE	South Carolina / 29365	

VOLUNTARY INVESTIGATION AND REMEDIATION PLAN (VIRP) AND APPLICATION FOR THE FORMER LOEF FACILITY (HULL) ATHENS, CLARKE COUNTY, GEORGIA[©] HSI#10376

> DOCUMENT PREPARED FOR: HULL REAL ESTATE, LLC

DOCUMENT PRESENTED TO: GEORGIA DEPARTMENT OF NATURAL RESOURCES 2 MARTIN LUTHER KING, JR. DRIVE, SE, SUITE 1154 ATLANTA, GEORGIA 30334

DOCUMENT PREPARED BY:

PEACHTREE ENVIRONMENTAL, INC. 5384 CHAVERSHAM LANE NORCROSS, GEORGIA 30092-2167 (770)559-8050 • (770)559-8051 FAX

NOVEMBER 2011

copyright © 2011, Peachtree Environmental, Inc.

THE INFORMATION CONTAINED IN THIS REPORT TITLED "VOLUNTARY INVESTIGATION AND REMEDIATION PLAN (VIRP) AND APPLICATION FOR THE FORMER LOEF FACILITY (HULL) ATHENS, CLARKE COUNTY, GEORGIA[©]" HSI#10376

IS INTENDED FOR THE USE OF HULL REAL ESTATE, THEIR OFFICERS AND DESIGNEES AND THE GEORGIA DEPARTMENT OF NATURAL RESOURCES HAZARDOUS SITE RESPONSE PROGRAM

Project No. 2318

DOCUMENT PREPARED BY:

MICHAEL H. WILSON, PROJECT MANAGER

DOCUMENT REVIEWED BY:

WILLIAM H. LUCAS, P.G., SR. PROJECT MANAGER

CHARLES H. MacPHERSON, JR., TECHNICAL DIRECTOR

NOVEMBER 2011 copyright © 2011, Peachtree Environmental, Inc.

VOLUNTARY INVESTIGATION AND REMEDIATION PLAN (VIRP) AND APPLICATION FOR THE FORMER LOEF FACILITY (HULL) 590 OLD HULL ROAD ATHENS, CLARKE COUNTY, GEORGIA[®] HSI#10389

copyright © 2011, Peachtree Environmental, Inc.

TABLE OF CONTENTS

ACR	ONYMS	-iν-
1.0	INTR	ODUCTION AND BACKGROUND
	1.1	INTRODUCTION
	1.2	VIRP PROPERTY DESCRIPTION1-
	1.3	QUALIFICATIONS OF THE VIRP PROPERTY AND VRP APPLICANT
2.0	VIRP	PROPERTY INVESTIGATION AND CORRECTIVE ACTION HISTORY4-
	2.1	BAUMGARTNER & ASSOCIATES (ENVIRONMENTAL SITE ASSESSMENT)
	2.2	KIBER ENVIRONMENTAL SERVICES (CSR)
	2.3	KIBER ENVIRONMENTAL SERVICES (REVISED CSR & CAP)
	2.4	Peachtree Environmental (CAP)
	2.5	PEACHTREE ENVIRONMENTAL (CSR)
	2.6	PEACHTREE ENVIRONMENTAL (REMEDIAL TECHNOLOGY PILOT STUDY EFFECTIVENESS
		Report)
	2.7	PEACHTREE ENVIRONMENTAL (SUPPLEMENTAL CSR INFORMATION)6-
	2.8	December 14, 2005 Meeting (GEPD & Peachtree Environmental)
	2.9	Peachtree Environmental (July 2006 Groundwater Assessment Report)7-
	2.10	June 2009 Groundwater Sampling Event
	2.11	August 17, 2009 Meeting With the GEPD
	2.12	NOVEMBER 16, 2011 GEPD COMMENT LETTER AND RESPONSES
	2.13	PEACHTREE ENVIRONMENTAL (GROUNDWATER CORRECTIVE ACTION PLAN
		Addendum, October 2010)
3.0	CON	-9-
	3.1	Regional and Site Geology
	3.2	Regional Hydrogeology
	3.3	Vicinity Topography and Geology
	3.4	VICINITY HYDROGEOLOGY
	3.5	REGULATED SUBSTANCES RELEASED
	3.6	POTENTIAL HUMAN AND ECOLOGICAL RECEPTOR EVALUATION
		3.6.1 Chemical Source and Release Mechanisms
		3.6.2 Environmental Transport Media
		3.6.2.1 Soil
		3.6.2.2 Groundwater

 3.6.2.3 Surface Water Route.
 -16

 3.6.3 Potential Routes of Migration.
 -16

 3.6.3.1 Soils and Soil Vapor.
 -16

 3.6.3.2 Groundwater.
 -16

SECTION

Page

		3.6.3.3 Surface Water	-16-
		3.6.4 Potential Receptors.	-17-
		3.6.5 Potential Exposure Points.	-17-
		3.6.5.1 Soils and Soil Vapor.	-17-
		3.6.5.2 Groundwater	-18-
		3.6.5.3 Surface Water	-18-
		3.6.6 Survey of Potential Receptors.	-18-
		3.6.6.1 Human Health Risk Evaluation.	-18-
		3.6.6.2 Ecological Risk Evaluation	-19-
4.0	PREI	LIMINARY VIRP PROPERTY INVESTIGATION PLAN.	-20-
	4.1	PRELIMINARY GROUNDWATER INVESTIGATION	-20-
		4.1.1 Groundwater Elevation	-20-
		4.1.2 Well Purging	-21-
		4.1.3 Sampling Procedures	-21-
		4.1.4 Decontamination Procedures.	-22-
		4.1.5 Analytical Procedures	-22-
		4.1.6 Results	-22-
	4.2	VIRP PROPERTY DELINEATION STANDARDS.	-23-
		4.2.1 Soil Delineation Standards.	-24-
		4.2.2 Groundwater Delineation Standards	-24-
		4.2.3 Point of Demonstration Monitoring for Groundwater	-26-
	4.3	Groundwater Predictive Fate & Transport Modeling and Corrective	
			-26-
		4.3.1 Groundwater Predictive Fate & Transport Modeling	-26-
		4.3.2 Corrective Action Alternatives Currently Under Consideration.	-30-
5.0	SCH	EDULE	-31-
6.0	PRE	PARATION OF COMPLIANCE STATUS REPORT	-32-
7.0	PRO	FESSIONAL CERTIFICATION.	-33-

LIST OF TABLES

- Table 1 Summary of Groundwater Elevation Data
- Table 2 Summary of Groundwater Analytical Data
- Table 3 Summary of Natural Attenuation Parameters Analytical Data
- Table 4 Summary of Slug Testing Results

LIST OF FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Layout Map
- Figure 3 Conceptual Site Model
- Figure 4 USGS Topographic Map
- Figure 5 Cross-Section Location Map
- Figure 6A Cross-Section A A'
- Figure 6B Cross-Section B B'
- Figure 7 Former Source Area Location Map
- Figure 8 Potentiometric Surface Map August 4, 2011
- Figure 9 VOCs Detected in Groundwater August 4, 2011
- Figure 10 Extent of Trichloroethene (and breakdown constituents) in Groundwater Isocontour Map
- Figure 11 Extent of Benzene (and petroleum-related constituents) in Groundwater Isocontour Map
- Figure 12 Proposed Horizontal and Vertical Delineation Monitoring Well Location Map

LIST OF APPENDICES

- Appendix A Warranty Deed and Tax Plat Information
- Appendix B Field Water Quality Sampling Forms
- Appendix C August 2011 Analytical Testing Data Report
- Appendix D Natural Attenuation Input and Output Parameters
- Appendix E Slug Testing Data Tables and Graphs
- Appendix F Historic Groundwater Concentration Trend Graph
- Appendix G Schedule
- Appendix H Summary of Professional Geologist Hours

ACRONYMS

AES	Analytical Environmental Services, Inc.
AFCEE	Air Force Center for Environmental Excellence
APLS	Aqueous Phase Liquids
Applicant	Hull Real Estate, LLC
bgs	Below Ground Surface
bls	Below Land Surface
CAP	Corrective Action Plan
cis-1,2-DCE	cis-1,2-Dichloroethene
CSR	Compliance Status Report
COCs	Constituents of Concern
COPC	Constituent of Potential Concern
CSM	Conceptual Site Model
EMNA	Enhanced Monitored Natural Attenuation
Georgia EPD	Georgia Environmental Protection Division
GHWMA	Georgia Hazardous Waste Management Act
HRC	Hydrogen Releasing Compound
HSI	Hazardous Site Inventory
HSRA	Hazardous Site Response Act
HSRP	Hazardous Site Response Program
НШМА	Hazardous Waste Management Act
IRIS	Integrated Risk Information System
ISCO	In-situ Chemical Oxidation
MCL	Maximum Contaminant Levels
µq/L	Micrograms per Liter (same as ppb)
mg/Kg	Milligrams per Kilogram (same as ppm)
mg/L	Milligrams per Liter (same as ppm)
NAPLS	Non-Aqueous Phase Liquids
NC	Notification Concentration
Peachtree	Peachtree Environmental. Inc.
PCE	Tetrachloroethene
POD	Point of Demonstration
ppb	Parts per Billion
ppm	Parts per Million
PRE	Preliminary Risk Evaluation
Property	Former Loef Facility
RAGS	Risk Assessment Guidance for Superfund
RBCA	Risk Based Corrective Action
REC	Recognized Environmental Conditions
RN	Release Notification
RQSM	Reportable Quantities Screening Method
RRS	Risk Reduction Standard
Site	Former Loef Facility
SVE	Soil Vapor Extraction
SVOCs	Semi-Volatile Organic Compounds
TCLP	Toxicity Characteristic Leaching Procedure
TCE	Trichloroethene
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey
VIRP	Voluntary Investigation and Remediation Plan
VRP	Voluntary Remediation Program
VOCs	Volatile Organic Compounds

1.0 INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION

PEACHTREE ENVIRONMENTAL, INC. (Peachtree) is submitting this Voluntary Investigation and Remediation Plan (VIRP) and Application on behalf of the applicant, **Hull Real Estate, LLC** (Hull and/or "Applicant"), for the former Loef Facility located northeast of the intersection of Old Hull Road and Athena Drive in Athens, Clarke County, Georgia (the "VIRP Property"); HSI# 10376 (the "Site"). Hull is comprised of two member entities: Terry Realty, LLC and Fred Realty LLC. The purpose of this VIRP and Application is to provide supporting documentation in completing the State's March 30, 2010 Voluntary Remediation Program (VRP) Application Form and Checklist. Part of the VRP Application Form and Checklist is to detail a Conceptual Site Model for the property including a preliminary VIRP, a table of delineation standards, supporting text, tables, charts and figures that illustrates the Site's surface and subsurface setting, sources of contamination, contaminant migration pathways, and potential human and environmental receptors and complete exposure pathways.

1.2 VIRP PROPERTY DESCRIPTION

The VIRP Property consists of three (3) parcels of land totaling 21.34 acres which are more fully described as follows:

- 0 Old Hull Road Parcel ID: 221 002 C (1.63 Acres);
- 590 Old Hull Road Parcel ID: 221 001 (15 Acres); and
- 305 Athena Drive Parcel ID 162 037 (4.71 Acres).

The VIRP Property has a latitude coordinate of 33° 58' 57.95" North and a longitude coordinate of 83° 20' 31.60" West. A VIRP Property Location Map is included as **Figure 1**.

The former Loef Facility, hereinafter referred to as the "facility", is located approximately three (3) miles east of the central business district of the City of Athens, Clarke County, Georgia on Old Hull Road (County Road 127). The facility is bounded by:

- West Old Hull Road;
- South A natural gas line easement and a vacant wooded lot with Athena Drive beyond;
- North Unpaved and unused dead-end easement of Calhoun Drive; and
- East CSXT / Former Seaboard Coastline rail line.

The facility operates as an industrial scrap metal recycling facility and includes an office, warehouse, maintenance building, shredder, bailer, and other buildings and equipment used in its operations. The Site (area impacted by releases of COCs) consists of adjacent property to the north and to the south (natural gas line easement to Athena Drive) and to

the east including Seaboard Coastline rail line right-of-way on the west side of the tracks. A VIRP Property Layout Map is provided as **Figure 2**.

1.3 QUALIFICATIONS OF THE VIRP PROPERTY AND VIRP APPLICANT

The Participant is submitting this VIRP and Application under the Georgia Voluntary Remediation Act (VRA and/or VRP), (O.C.G.A. § 12-8-100, et seq. (the "Act") for the VIRP Property, Athens Clarke County, Georgia. In order to be considered a "qualifying property", the Property must be, according to O.C.G.A. § 12-8-105;

1) Listed on the Georgia Hazardous Site Inventory (HSI); or meet the criteria of the Georgia Hazardous Site Reuse and Redevelopment Act ("Brownfields Act") O.C.G.A. § 12-8-205; or have a release of regulated substances to the environment.

Under O.C.G.A. § 12-8-105 the property shall also not:

- 2) Be listed on the federal National Priorities List;
- 3) Be currently undergoing response activities required by an Order of the Regional Administration of the United States Environmental Protection Agency;
- 4) Be a facility required to have a permit under the Georgia Hazardous Waste Management Act ("HWMA"); O.C.G.A. § 12-8-66; and
- 5) Violate the terms and conditions under which the Environmental Protection Division operates and administers remedial programs by delegation or similar authorization from the United States Environmental Protection Agency.

Finally, under O.C.G.A. § 12-8-105 the property shall:

6) Have any lien filed under subsection (e) of the HWM Act O.C.G.A. § 12-8-66 or subsection (b) of the Georgia Underground Storage Tank Management Act O.C.G.A. § 12-13-12 be satisfied or settled and released by the Georgia EPD Director pursuant to the HWM Act O.C.G.A. § 12-8-66.

The VIRP Property is included in HSI#10376 and none of the other criteria listed in items 2 - 6 apply. Therefore, the VIRP Property qualifies under the Act.

In order for the Participant to meet the qualifications of the VRP according to O.C.G.A. § 12-8-106 the following criteria must be met:

- 1) The Applicant must be the property owner of the VIRP Property or have express permission to enter another's property to perform corrective action including, to the extent applicable, implementing controls for the VIRP Property pursuant to written lease, license, order or indenture;
- 2) Not be in violation of any order, judgement, statute, rule or regulation subject to the enforcement authority of the Director; and
- 3) Meet other such criteria as may be established by the DNR Board pursuant to O.C.G.A. § 12-8-103.

As the Participant meets all the criteria stated above, the Participant is "qualified" under the Act.

The contact for the Applicant is as follows:

Hull Real Estate, LLC

c/o Peachtree Environmental, Inc. 5384 Chaversham Lane Norcross, GA 30092

Attn: Charles H. MacPherson, Jr. (770) 559-8050

Appendix A contains the Warranty Deed(s) and Tax Plat(s) for the Qualifying Property(s).

2.0 VIRP PROPERTY INVESTIGATION AND CORRECTIVE ACTION HISTORY

Detailed below are annotated descriptions of the findings of past investigations and regulatory correspondence which were developed as part of the previous assessments conducted for the subject facility. These reports include the following:

2.1 BAUMGARTNER & ASSOCIATES (ENVIRONMENTAL SITE ASSESSMENT)

Baumgartner & Associates, Inc. (Baumgartner) conducted a Phase I Environmental Site Assessment (ESA) in/around January 1995. Based on the findings of the ESA, the facility submitted a Hazardous Substance Release Notification/Reporting Form in February 1995. The notification form indicated the following regulated substances were detected above the soil Notification Concentrations (NCs): Copper, Lead, Manganese, PCBs, Silver, and Zinc. The following regulated substances were also reported as exceeding the groundwater notification concentrations: Barium, Trichloroethene (TCE), and Xylene.

A well survey provided by Baumgartner identified only one private drinking water well within a one-mile radius of the Site, this being an onsite production well. The nearest public water supply well was identified to be located just under 2 miles southeast of the Site. In addition, a public drinking water intake on the Oconee River was identified approximately 2.7 miles west of the Site. The on-Site production well was disconnected from all drinking water connections in June 1993 after samples revealed TCE concentrations above the laboratory detection method limit. Subsequent to the discontinuance of the use of the on-Site well for consumptive purposes, the Notification Form reported the public water supply well as the closest identified well to the Site.

The GEPD responded to the facility's notification in a letter dated June 9, 1995, which concurred that a reportable release of regulated substances had occurred at the Site and listed the Site on the Hazardous Site Inventory (HSI). Based on the information provided to the GEPD (the data from the Baumgartner ESA), groundwater and on-Site exposure pathway scores were calculated using the Reportable Quantities Screening Method (RQSM). The groundwater pathway score was calculated to be 4.88 out of a possible maximum score of 100. The on-Site exposure pathway score for soil was calculated to be 55.56 out of a possible maximum score of 100 ¹. These scores were compared to threshold scores of 10 for groundwater and 20 for soil to evaluate the need for corrective action and the listing category under the HSRA Regulations for the Site (i.e., Class I, Class II, Class III or Class IV). The Site was listed on the HSI as a Class II Site on June 9, 1995. The HSI number for the Site is 10376.

¹ These scores are not intended to present a quantitative risk assessment; they are designed to be used for identifying sites where a release has occurred that may pose a threat to human health and/or the environment.

2.2 KIBER ENVIRONMENTAL SERVICES (CSR)

In April 1995, Kiber Environmental Services, Inc. (Kiber) was retained by the facility to complete additional Site assessment activities. These activities included the completion of a Compliance Status Report (CSR), as well as preliminary activities related to planned soil removal for those impacted soils exceeding applicable RRS.

From November 1995 to May 1996, Kiber conducted soil removal activities in areas of the Site identified as having impacted soils exceeding applicable Type 3 RRS (i.e., non-residential property). As required in Section 391-3-19-.07(8) of the Hazardous Site Response Rules, prior to the implementation of the removal activities, Kiber evaluated and calculated Type 3 RRS for the following regulated substances of concern or constituents of concern (COCs): Copper, Lead, Silver, and Polychlorinated biphenyls (PCBs).

Verification samples were collected to evaluate whether excavated areas were in compliance with the Type 3 RRS or whether additional soil removal was necessary. As a result of the 1995 /1996 corrective action activities, compliance with Type 3 RRS was reportedly achieved for all of the identified COCs with the exception of Zinc. No additional corrective action activities were performed at that time.

Kiber subsequently submitted a CSR in March of 1997. The GEPD reviewed and commented on the March 1997 CSR with a Notice of Deficiency letter, dated July 18, 1997.

2.3 KIBER ENVIRONMENTAL SERVICES (REVISED CSR & CAP)

A Revised CSR was submitted by Kiber in August 1997, followed by a CAP in October 1997. Portions of the work described in the Revised CSR and CAP were implemented by the previous owner (The Loef Company, the owner immediately prior to Hull Real Estate, LLC's ownership). In summary, previous environmental assessment and corrective action activities at the Site principally focused on assessing soil conditions across portions of the Site and removal of soils from potential source areas identified as Area 4 (Shredder Source Area), Area 5 (Bailer Source Area), and Area 6 (South Run-off Area). Limited groundwater quality assessment activities were performed by previous property owners. Based upon the limited groundwater assessment data, the GEPD determined that further groundwater assessment work was required.

2.4 PEACHTREE ENVIRONMENTAL (CAP)

Peachtree Environmental, Inc. (Peachtree) was retained by Hull in 2000 to complete additional assessment activities for the purpose of designing, preparing, and implementing a CAP. These activities included additional groundwater assessment activities to evaluate both the horizontal and vertical extent of impact both on the Site (facility), as well as adjacent properties, and a surface and subsurface soils assessment.

Based on these additional assessment activities, it was determined that areas of impacted surface and subsurface soils and groundwater existed at the Site which required additional corrective action activities. The extent of the COCs in the soils and groundwater were not fully defined to background levels during CAP assessment activities, however, the data acquired was considered to be sufficient to develop and implement the approved CAP. Peachtree submitted the CAP to the GEPD on October 5, 2001. The CAP was conditionally approved by the GEPD on February 28, 2002.

2.5 PEACHTREE ENVIRONMENTAL (CSR)

Peachtree, on behalf of Hull, submitted a CSR to the GEPD on February 6, 2004 to document compliance with soil RRS following the implementation and completion of CAP activities from the time period of November of 2002 to September of 2003. The CSR was formally accepted by the GEPD on November 16, 2009. Further detail relative to CAP implementation activities is presented in Section 3.0.

2.6 PEACHTREE ENVIRONMENTAL (REMEDIAL TECHNOLOGY PILOT STUDY EFFECTIVENESS REPORT)

The approved CAP for the Site was principally designed to remediate regulated constituents in soil to applicable RRS. In addition, the CAP specified a pilot-scale groundwater remedial technology for addressing substances detected in Site groundwater (principally volatile organics). The selected technology utilized the injection of a Hydrogen Releasing Compound (HRCTM) into the soils and groundwater in and around the area where monitoring well MW-2A is located.

The HRC[™] was injected in a grid pattern on 20 foot centers, covering an area approximately 80 feet by 100 feet at a depth extending down to 25 feet (within the groundwater table). The HRC[™] was applied to each injection point at depth (25 feet) across the grid matrix. Post-injection results were evaluated from the time period of June 2003 to September 2004. The results of the technology evaluation were detailed in a Remedial Technology Pilot Study Effectiveness Report submitted to the GEPD on February 11, 2005.

2.7 PEACHTREE ENVIRONMENTAL (SUPPLEMENTAL CSR INFORMATION)

The GEPD requested, in a letter dated December 1, 2004, supplemental information to complete their review of the February 2004 CSR. The information requested included revised CSR text, figures, and legal description of the property. Peachtree responded with a submission of the requested information on February 22, 2005.

2.8 DECEMBER 14, 2005 MEETING (GEPD & PEACHTREE ENVIRONMENTAL)

Peachtree, on behalf of Hull, met with the GEPD to discuss the February 2004 CSR and the Groundwater Remedial Technology Pilot Study Effectiveness Report submitted in

February 2005. EPD requested further sampling of Site soils to determine the extent of compliance with calculated background concentrations, compliance with applicable RRS, and text changes. The requested information was submitted in a revised CSR Addendum submitted to the GEPD on December 19, 2006.

2.9 PEACHTREE ENVIRONMENTAL (JULY 2006 GROUNDWATER ASSESSMENT REPORT)

The GEPD responded to the February 2005 Groundwater Remedial Technology Pilot Study Effectiveness Report with a letter dated January 30, 2006. The letter required Hull to investigate the soil and groundwater up-gradient of MW-2A to identify any potential source of VOC impact in soil and to characterize the distribution of the groundwater plume in the up-gradient direction. In addition, all other on-site permanent wells were required to be sampled such that a design of additional groundwater corrective action activities could be completed.

Peachtree initiated the collection of temporary groundwater samples, in conjunction with soil sampling activities described above, on May 4, 2006 and sampled permanent groundwater wells on May 9, 2006. The primary objective of the groundwater sampling activities was twofold: the identification and characterization of the up-gradient extent of the groundwater plume observed around MW-2A; and to provide an indication of the current extent of groundwater impact. A total of five (5) temporary groundwater wells were installed and sampled during the May 4, 2006 sampling effort. A total of seven (7) permanent wells were developed and sampled as part of the May 9, 2006 sampling event.

Analytical testing results did not identify the presence of any soil source areas upgradient of MW-2A. Additionally, groundwater concentrations were not elevated in the temporary monitoring wells to an extent indicative of an upgradient source of groundwater impact.

2.10 JUNE 2009 GROUNDWATER SAMPLING EVENT

A groundwater sampling event was conducted in June of 2009. A total of seven (7) groundwater monitoring wells (MW-2A to MW-4A, MW-6, and MW-7A to MW-9A) were sampled on June 17, 2009 in order to assess the condition of the groundwater plume at that time. Analytical testing results indicated a dramatic decrease in concentrations of regulated substances in monitoring well MW-2A, as well as decreasing concentrations of regulated substances in monitoring wells MW-3A and MW-4A as compared to the results of prior sampling events. Please refer to **Table 2** for those concentration comparisons.

2.11 AUGUST 17, 2009 MEETING WITH THE GEPD

Representatives of Peachtree and Hull met with the GEPD on August 17, 2009 to discuss the approval of the soil CSR submitted in February 2004 and revised in December 2006, and the status of the Groundwater Assessment Report submitted in July 2006. A copy of the June 2009 groundwater sampling data was also provided to the GEPD during that meeting, and groundwater corrective action utilizing a Monitored Natural Attenuation (MNA)

approach was discussed as a potential corrective action alternative for addressing impacted groundwater at the Site.

2.12 NOVEMBER 16, 2009 GEPD COMMENT LETTER AND RESPONSES

The GEPD issued a letter on November 16, 2009 with technical comments on the July 2006 Groundwater Assessment Report and the June 2009 groundwater data provided during the August 17, 2009 meeting. The GEPD requested that the comments be addressed in a revised CAP by January 15, 2010. The January 13, 2010 response stated that Hull was currently evaluating the most effective corrective action alternatives to address impacted groundwater at the Site. Hull also provided a Supplemental Response to the November 16, 2009 Comments, dated January 29, 2010 which provided more detail on a proposed CAP employing MNA as a remedy, and a schedule for implementation of the revised CAP. On February 11, 2010, the GEPD approved the submittal of a groundwater CAP that addressed the GEPD comments of November 16, 2009.

2.13 PEACHTREE ENVIRONMENTAL (GROUNDWATER CORRECTIVE ACTION PLAN ADDENDUM, OCTOBER 2010)

A groundwater CAP Addendum was submitted to the GEPD on October 14, 2010. The CAP summarized previous assessment and corrective action efforts, evaluated risk relative to current groundwater conditions, established corrective action objectives, evaluated and selected an applicable remedial technology, and proposed a schedule for monitoring and reporting corrective action progress. The evaluation of applicable remedial technologies led to the selection of Monitored Natural Attenuation (MNA) to address groundwater impacts at the Site.

The October 2010 CAP Addendum has not been commented on by the GEPD to date. Nonetheless, Hull implemented the semi-annual groundwater sampling evaluation to monitor the geometry and concentration of the groundwater plume. This data will be summarized and discussed as part of this VRP application. This application is being submitted in place of the Annual Groundwater Monitoring Report as outlined in the 2010 CAP Addendum Schedule.

3.0 CONCEPTUAL SITE MODEL

Detections of potentially regulated substances at the former Loef Facility were initially reported to the GEPD in February 1995. The Hazardous Substance Release Notification/Reporting Form indicated the following regulated substances were detected above the soil Notification Concentrations (NCs):

• Copper, Lead, Manganese, PCBs, Silver, and Zinc.

The following substances were also reported as exceeding the groundwater notification concentrations:

Barium, Trichloroethene (TCE), and Xylene.

The GEPD utilized the data provided in the February 1995 Release Notification to evaluate groundwater and on-Site exposure pathway scores via the Reportable Quantities Screening Method (RQSM). The groundwater pathway score was calculated to be 4.88 and the onsite exposure pathway score for soil was calculated to be 55.56. These scores were compared to threshold scores of 10 for groundwater and 20 for on-site exposure to evaluate the need for corrective action and the listing category under the HSRA Regulations for the Site (i.e., Class I, Class II, Class III or Class IV). The VRP Property was listed on the HSI for on-Site exposure as a Class II Site on June 9, 1995. The HSI number for the VIRP Property is 10376.

Various investigations of the horizontal and vertical extent of soil and groundwater impact and have been conducted at the VIRP Property dating back to 1995. During that time period, corrective measures were also implemented to bring impacted media (principally soil, but groundwater also) into compliance with applicable RRS. The data gathered over the course of the various assessment and corrective action activities was utilized to develop a Conceptual Site Model (CSM) for the VIRP Property. The CSM is illustrated on **Figure 3**.

3.1 REGIONAL AND SITE GEOLOGY

The VIRP Property lies within the Piedmont Physiographic Province of Georgia which is characterized by broad rolling upland or plateau underlain by a variety of metamorphosed plutonic, volcanic, and sedimentary rocks including gneiss, schist, amphibolite, and diabase and by un-metamorphosed granite plutons and diabase dikes. Regional stresses have warped the rocks into numerous folds and the sequence has been extensively faulted. The Property is situated in an area where the rock unit consists of thinly laminated muscovite gneiss that retains distinctive layering when weathered.

Rock units in this physiographic province generally range in thickness from less than 1,000 feet to possibly more than 10,000 feet. Bedrock in the area is generally covered by

unconsolidated material composed of saprolite, alluvium, and soil, collectively referred to as regolith. This material ranges in depth from 0 to approximately 200 feet. These soils are relatively porous and, depending on the thickness and topographic setting, have the potential to absorb and store large quantities of precipitation.

3.2 REGIONAL HYDROGEOLOGY

Groundwater in the Piedmont province occupies joints, fractures, and other secondary openings in the bedrock and pore spaces in the overlying regolith. Unweathered and unfractured bedrock in the area has very low porosity. Thus, the quantity of water that a rock unit can store and transmit to wells is determined by the number, capacity, and interconnection of the secondary openings. A previous production well located on the Site was completed to a depth 320 feet with a 6-inch diameter casing to 84 feet and a open rock borehole thereafter. Wells screened and/or completed to similar depths typically yield from 20 to 300 gallons per minute of water with well casing depths ranging from 16 to 200 feet.

3.3 VICINITY TOPOGRAPHY AND GEOLOGY

Topographic and geologic information regarding the VIRP Property has been obtained from past assessments. The topographic relief across the VIRP Property follows a northwest to southeast gradient with elevations of approximately 720 feet above mean sea level (AMSL) at the northern property boundary to approximately 695 feet AMSL at the southeastern property boundary. A USGS Topographic Map is provided as **Figure 4**.

Native soils across the VIRP Property consist primarily of sandy and clayey silt. The developed portions of the Site have varying thicknesses of fill on top of native soils. Based on the construction details of the aforementioned production well, the depth to bedrock is greater than 50 feet.

3.4 VICINITY HYDROGEOLOGY

According to the Groundwater Pollution Susceptibility Map of Georgia², the VIRP Property is located in an area classified as having a low groundwater pollution susceptibility. Hydraulic characteristics of the VIRP Property have been evaluated in prior groundwater assessments.

Generally, the topography slopes from northwest to southeast across the VIRP Property with higher elevations of approximately 720 feet AMSL occurring near the northern property boundaries and the lower elevation of approximately 695 feet AMSL located on the southeast property boundary, in the vicinity of the CSX rail line. Measured depths to groundwater are generally consistent with topographic elevation and slope. During the

² Groundwater Pollution Susceptibility Map of Georgia, Georgia Department of Natural Resources, Environmental Protection Division and The Georgia Geological Survey, 1970

August 2011 groundwater monitoring event, depths to groundwater as measured from the top-of-casing in each of the shallow monitoring wells ranged from 16.87 feet (MW-8A) to 26.15 feet (MW-3A). The resulting groundwater flow direction at the VIRP Property, based on depth to groundwater gauging, suggests an overall southeasterly flow.

The principal water bearing zone appears to be a continuous, unconfined aquifer extending in depth up to approximately 50 feet below ground surface. As evidenced through the installation of various monitoring wells and soil borings at the VIRP Property, soils generally consist of sandy silty clays grading to a more sandy silty matrix which were saturated with groundwater. There are also surficial backfill areas where non-native soils and debris have been observed. As typical in the Piedmont Physiographic Providence, zones of partially weathered rock and saprolite are generally encountered prior to the top of competent bedrock. A cross-section has been prepared for the VIRP Property based upon information obtained during prior assessments. A cross-section location map is included as **Figure 5**, while **Figures 6A** and **6B** depict cross-sections A-A' and B-B', respectively.

Slug tests were performed in June 2010 to evaluate site-specific hydrologic characteristics. The calculated hydraulic gradient, based upon the 2010 hydrogeologic characterization, was 0.0145 feet/foot. The groundwater flow direction was also estimated from groundwater elevations measured at the property to be in a southeasterly direction. The hydraulic conductivity was estimated to average 4.44×10^{-4} cm/s (1.261 ft/day). Based on the gradient and hydraulic conductivity, groundwater in the surficial water bearing zone is estimated to be traveling to the southeast at a horizontal velocity of 0.091 feet per day or approximately 33.215 feet per year.

3.5 REGULATED SUBSTANCES RELEASED

As a result of previous investigation activities, the following regulated substances have been detected/reported at concentrations exceeding the laboratory method detection limit during past and current VIRP Property assessment events:

<u>Soil</u>

<u>Inorganic Constituents</u>: Antimony (CAS No. 7440360) Beryllium (CAS No. 7440417) Cadmium (CAS No. 7440439) Copper (CAS No. 7440508) Lead (CAS No.7439921) Silver (CAS No.7440224) Zinc (CAS No.7440666) <u>Organic Constituents:</u> Polychlorinated Biphenyls (CAS No. 80386) Trichloroethene (CAS No. 79016)

GROUNDWATER

Inorganic Constituents:

Organic Constituents:

Lead (CAS No.7439921)

1,1,1-Trichloroethane (CAS No. 71556) 1,1,2-Trichloroethane (CAS No. 70005) 1,1-Dichloroethane (CAS No. 75343) 1,1-Dichloroethene (CAS No. 75354) 2-Butanone (CAS No. 78933) 2-Hexanone (CAS No. 591786) 4-Methyl-2-Pentanone (CAS No. 108101) Acetone (CAS No. 67641) Benzene (CAS No. 71432) Carbon Disulfide (CAS No. 75150) Chloroform (CAS No. 67663) cis-1,2-Dichloroethene (CAS No. 156592) Ethylbenzene (CAS No. 100414) Methyl Tert-butyl Ether (CAS No. 1634044) Tetrachloroethene (CAS No.127184) Toluene (CAS No. 108883) Trichloroethene (CAS No. 79016) Trichlorofluoromethane (CAS No. 75694) Vinyl Chloride (CAS No. 75014) Xylene, Total (CAS No. 1330207)

3.6 POTENTIAL HUMAN AND ECOLOGICAL RECEPTOR EVALUATION

An environmental exposure pathway consists of four elements:

- 1) chemical source and release mechanisms;
- 2) environmental transport media;
- 3) a receptor at the exposure point, and;
- 4) an exposure route at the exposure point.

The following sections describe each of the elements as they exist at the VIRP Property.

3.6.1 Chemical Source and Release Mechanisms

Several areas which have contributed to a release of COCs at the VIRP Property have been identified in previous characterization work and were remediated during soil CAP activities completed in 2002/2003. The quantity and nature of releases associated with the identified potential sources are unknown since they likely occurred over a long period of time rather than from one or more discrete events. The COCs identified for the VIRP Property are principally associated with scrap metal processing operations.

Operations at the VIRP Property can generally be divided into the following areas which have been designated as potential COCs source areas. Soil CAP implementation activities were put into effect extending over the time period of November 2002 to October 2003 and resulting in the removal of a total of 43,108

tons of soils exceeding regulatory standards. Specifically, former soil source area details are as follows:

- Area 1: Oil / Water Separator Area Lead and Copper concentrations were identified in excess of their respective Type 3 RRS within the Oil / Water Separator Area (Area 1). An estimated total of 271 tons of soil exceeding RRS were removed from Area 1 during CAP implementation activities.
- Area 2: Eastern Runoff Area Lead, Copper and Zinc were detected at concentrations in excess of the approved Type 3 RRS within the Eastern Runoff Area (Area 2). An estimated total of 459 tons of soil were removed from Area 2 during CAP implementation activities.
- Area 3: Fluff Storage Area No COCs, including Lead, were detected above Type 3 RRS in soil samples collected from Area 3 soil borings utilized to design soil corrective action activities. This area was the focal point of the previous corrective action activities completed in 1995 during which a total of 1,500 tons of soil were excavated and removed from the Site. Therefore, no additional corrective action activities were required for this area of the Facility.
- Area 4: Shredder Area Antimony, Lead, Copper, Zinc, and PCBs were detected at concentrations in excess of the approved Type 3 and Type 4 RRS within the Shredder Area (Area 4). TCE was also detected above the laboratory detection limit, but below the applicable RRS. An estimated total of 23,060 tons of impacted soil exceeding applicable RRS were removed from Area 4 during CAP implementation activities.
- Area 5: Baler Area Antimony, Cadmium, Copper, Zinc, and PCBs were detected above their respective Type 3 and Type 4 RRS within the Baler Area (Area 5). An estimated total of **11,350 tons** of impacted soil exceeding applicable RRS were removed from Area 5 during CAP implementation activities.
- Area 6: Southern Runoff Area Lead and Zinc were detected at concentrations in excess of the approved Type 3 RRS within the South Run-Off Area (Area 6). An estimated total of 2,200 tons of impacted soils exceeding applicable RRS were removed from Area 6 during CAP implementation activities.

The former source areas described in the preceding paragraphs are depicted on **Figure 7**.

3.6.2 Environmental Transport Media

3.6.2.1 Soil and Soil Vapor

In general, the organic constituents tend to have a high affinity for binding with the organic fraction of soils and relatively low solubilities in water. Therefore, in soils, these compounds tend to be transmitted through the soil via surface water infiltration and diffusion. Volatilization of some lighter compounds may also occur and accumulate in soil vapor. Soil vapor may then intrude into cracks, pipe penetrations, and other conduits through building slabs and into the interior of structures.

Surface and subsurface soils at or near identified potential sources appear to be the first medium impacted by the release of constituents. Aqueous phase liquids (APLS) and non-aqueous phase liquids (NAPLS), if previously present at the VIRP Property, may have also migrated through the subsurface. The migration of these constituents occurs principally along preferential pathways where changes in permeability occur. These types of areas include utility lines, former landfill areas, backfilled areas, or areas where partially weathered rock and/or sandy-type soils are present.

3.6.2.2 Groundwater

Those chemicals with higher water solubility values and low water/carbon partitioning coefficients are more likely to be dissolved into groundwater, while those with high water/carbon partitioning coefficients are much more likely to become bound to the organic fraction of soils. Chemicals with relatively high vapor pressures are likely to volatilize when they come in contact with air.

The depth to groundwater in the vicinity of the VIRP Property is located approximately 15 to 25 feet below land surface and is principally flowing in a southeasterly direction. No points of groundwater withdrawal are believed to be located within one mile or in a downgradient direction relative to the VIRP Property and groundwater flow direction. The nearest public water supply well was identified to be located just under 2 miles southeast of the VIRP Property. In addition, a public drinking water intake on the Oconee River was identified approximately 2.7 miles west of the VIRP Property.

3.6.2.3 Surface Water Route

The nearest named surface water body is East Fork Trail Creek located approximately 1,000 feet southeast of the VIRP Property's southern property boundary.

3.6.3 Potential Routes of Migration

3.6.3.1 Soils and Soil Vapor

Surface and subsurface soils at or near identified sources appear to be the first medium impacted by the release of COCs. Aqueous phase liquids and non-aqueous phase liquids, if previously present at the site, may have also migrated through the subsurface along preferential pathways where changes in permeability occur. These types of areas include utility lines, backfilled areas, or areas where partially weathered rock and/or sand are present. Likewise, volatilization of COCs into the air spaces in soils may form a vapor plume that can potentially enter building spaces via cracks, penetrations in the slab, or other structural imperfections.

Erosion of surface soils can be caused by wind, rain (surface water) and human disruptions (i.e., surface water discharges, etc.). If present in exposed surface soils, migration of COCs from eroded surface soils would follow surface topography (except for wind carried particulates) to the primary drainage pathway (i.e., overland flow across unimproved areas of the site). Prior corrective action activities have removed former impacted soils exceeding applicable RRS and have therefore eliminated this potential migration route.

3.6.3.2 Groundwater

Another principal mechanism of migration of constituents away from the former source area, based upon field investigations, has been groundwater.

The groundwater immediately downgradient from the VIRP Property is principally flowing in a southeasterly direction across the top of weathered and competent bedrock surfaces beneath the surface soils. No points of drinking water withdrawal are known to be located within one mile of the VIRP Property, nor in a downgradient direction relative to the VIRP Property and the groundwater flow direction.

3.6.3.3 Surface Water

A portion of the groundwater flow from the VIRP Property appears to travel in a southeasterly direction to discharge within East Fork Trail Creek, approximately 1,000 feet southeast of the VIRP Property.

To date, no surface water samples have been collected from East Fork Trail Creek. However, based on groundwater fate and transport modeling and historic non-detect concentrations of COCs at downgradient monitoring wells MW-7A, MW-8A, and MW-9A; it is unlikely that East Fork Trail Creek has been or ever will be impacted by past releases at the VIRP Property.

3.6.4 Potential Receptors

Potential human receptors identified in and around the VIRP Property are:

- 1) On-site workers;
- 2) Local residents;
- 3) Visitors;
- 4) Trespassers; and
- 5) Utility/construction workers.

Long term exposures would be limited to onsite workers. All others would constitute short term receptors. On the VIRP Property, exposures would be consistent with non-residential scenario described in the HSRA rules for Type 3 or 4RRS.

3.6.5 Potential Exposure Points

Exposure points include any area where COCs in the soils, soil vapor, groundwater, and surface seeps that may be accessible to human or ecological receptors. A brief summary of each exposure point is presented below.

3.6.5.1 Soils and Soil Vapor

Surface soils include those soils in the upper 0 to 2 feet of the ground. However, as indicated previously, engineered surface covers (i.e., concrete) exists in areas where previously impacted soils were identified. Such soils (as discussed in Section 3.6.1) have been physically removed from the property and disposed of off-site.

COCs were also previously detected in subsurface soils (i.e., deeper than 2 feet bgs). Access to these soils would be limited to construction/repair work associated with underground utilities. Such contact would be limited to short duration commercial/industrial adult exposure scenarios. Again, however, such soils have been physically removed from the property and disposed offsite, therefore, no exposure point exists.

Soil vapor can originate from volatilization from a soil source area or from volatilization from impacted groundwater. Soil vapors may be present in the unsaturated, vadose-zone soil beneath the scrap metal staging areas. However, no occupied structures exist over or downgradient from these areas of impact. As such, the soil vapor exposure pathway is incomplete.

3.6.5.2 Groundwater and Vapor Intrusion Risk

Groundwater generally exists at depths ranging from approximately 15 to 25 feet beneath the ground surface. Drinking water standards were exceeded in three (3) monitoring wells (MW-2A, MW-3A, and MW-4A) of the seven (7) monitoring wells sampled on the VIRP Property in August of 2011. However, no groundwater points of withdrawal are known from this shallow depth, while the area and surrounding vicinity is supplied with a municipal drinking water source. As such, an exposure point does not exist for ingestion of groundwater.

Soil vapor can originate from volatilization from impacted groundwater. However, no occupied structures exist over or downgradient from these areas of impact. As such, the soil vapor exposure pathway from groundwater volatilization is incomplete.

3.6.5.3 Surface Water

As previously discussed, no surface water samples have been collected from East Fork Trail Creek. However, based on groundwater fate and transport modeling and the historic non-detect concentrations of COCs at downgradient monitoring wells MW-7A, MW-8A, and MW-9A; it is unlikely that East Fork Trail Creek has been or ever will be impacted by past releases at the VIRP Property. As such, an exposure point does not exist for ingestion of surface water.

3.6.6 Survey of Potential Receptors

The VIRP Property area is considered an urbanized/industrialized area. The closest potential receptor is considered East Fork Trail Creek, which flows from the northeast to southwest and is located approximately 1,000 feet downgradient of the VIRP Property.

The VRP specifies in Section 12-8-108(4) that concentrations of regulated constituents detected on a VIRP Property shall be measured and evaluated at a "point of demonstration" (POD) well. The purpose of the POD well is to demonstrate that groundwater concentrations are protective of any established downgradient point of exposure. Currently, monitoring well MW-9A is designated as the POD well at the VIRP Property.

3.6.6.1 Human Health Risk Evaluation

The August 2011 groundwater sampling data indicates that groundwater at the VIRP Property contains detectable levels of regulated substances. As such, a preliminary risk evaluation will be conducted to evaluate whether constituents detected at the VIRP Property pose a risk to human receptors. The evaluation of risk to human receptors will generally involve four (4) steps:

- 1. Data evaluation and identification of constituent of potential concern (COPC);
- 2. Exposure Assessment;
- 3. Toxicity Assessment; and
- 4. Risk Characterization.

3.6.6.2 Ecological Risk Evaluation

No ecological receptors exist on the VIRP Property. The nearest named surface water body is East Fork Trail Creek located approximately 1,000 feet from the southeastern corner of the VIRP Property.

Predictive groundwater fate and transport modeling was completed utilizing the August 2011 data. The model indicates that the POD well will not be impacted by COCs at concentrations exceeding applicable VRP standards. Based on the results of the groundwater fate and transport model, it may also be concluded that the East Fork Trail Creek would not be impacted by COCs detected in groundwater on the VIRP Property.

Further discussion regarding the groundwater fate and transport modeling activities are presented in **Section 4.3**.

4.0 PRELIMINARY VRP PROPERTY INVESTIGATION PLAN

Areas of the VIRP Property have been previously investigated and remediated to applicable regulatory standards (i.e., Type 3 and 4 RRS) during soil corrective action activities implemented from November 2002 to September of 2003. In addition, the extent of soil impacts were defined to background levels in subsequent investigations. A CSR for soil documenting compliance with Type 3 and 4 RRS and delineation to background levels was submitted to the GEPD on February 24, 2004 with revisions through December 19, 2006. The CSR was formally accepted by the GEPD on November 16, 2009. As such, no further soil delineation or corrective action activities are planned as part of this VIRP and Application.

4.1 PRELIMINARY GROUNDWATER INVESTIGATION

Peachtree completed groundwater sampling activities at the VIRP Property in August 2011. This data has been utilized for the preparation of figures and tables depicting the delineation of COC-impacted groundwater. Water level gauging and groundwater sampling activities were conducted on August 4, 2011.

Groundwater monitoring wells were sampled to evaluate the size and concentration of the existing groundwater plume, as well as groundwater MNA parameters such that corrective measures could be designed to comply with applicable RRS. Peachtree collected groundwater samples from the seven (7) existing shallow water-bearing zone monitoring wells. **Figure 2** depicts the locations of existing monitoring well locations. The August 2011 groundwater sampling event included the following monitoring wells and analytical parameters:

- MW-2A: VOCs and MNA Parameters;
- MW-3A: VOCs and MNA Parameters;
- MW-4A: VOCs and MNA Parameters;
- MW-6: VOCs and MNA Parameters;
- MW-7A: VOCs;
- ► MW-8A: VOCs; and
- ► MW-9A: VOCs.

The measurement of MNA parameters in monitoring well MW-2A, MW-3A, and MW-4A was conducted due to historic detections of regulated substances such that a natural attenuation based corrective action approach could be evaluated. Monitoring well MW-6 was evaluated in order to have a background MNA monitoring location to compare parameters to those in the groundwater plume.

4.1.1 Groundwater Elevation

Water level information from the August 2011 sampling event is summarized on **Table 1**. The water level data was used to determine the volume of water to be purged from each well prior to sample collection, as well as the static groundwater elevation in each well.

Prior to well purging and sampling, the depth to water in each monitoring well was measured from the top of the casing using an electronic water level indicator. Each well measurement was recorded to one-hundredth (1/100) of a foot. The well data was recorded on field logs which are included in the Monitoring Well Purging & Sampling Information Sheets of **Appendix B**. The groundwater elevation of each monitoring well was utilized to prepare a potentiometric map for the August 2011 sampling event, included as **Figure 8**.

4.1.2 Well Purging

Well purging and sampling activities were conducted in accordance with the U.S. Environmental Protection Agency (EPA) Science and Ecosystem Support Division (SESD) Operating Procedure (OP) for Groundwater Sampling (SESDPROC-301-R1, November 2007; Section 3.2.1.2). Prior to sample collection, each of the wells was purged of a minimum of three (3) well volumes to remove stagnant water from the screened portion of the well and to allow for the collection of groundwater samples that are representative of the surrounding formation. In the event that a monitoring well was purged dry, a sample was collected subsequent to recharge. Individual monitoring well purge volumes were calculated as follows: Depth of well (ft) - Static water level (ft) = Column of water (ft)

Column of water (linear ft) x 0.17 gallons x 3 = Gallons of water to purge

In instances where a sufficient quantity of water was present, purging was accomplished using a clean stainless steel adjustable flow rate submersible pump equipped with one-time use teflon-coated disposable tubing to remove a minimum of three well volumes of water and until the pH, temperature and specific conductivity had equilibrated in each well. In instances where an insufficient guantity of water was present to allow the use of the submersible pump (i.e., MW-1 during the 2011 investigation activities), a one-time use disposable teflon bailer equipped with teflon-coated wire lead was used to purge/collect a representative sample. During the well purging process, discrete samples were collected at predetermined intervals and analyzed for field parameters which included temperature, pH, specific conductance, turbidity, dissolved oxygen (DO), total dissolved solids (TDS), and oxidation-reduction potential (ORP). The results of these measurements are presented on the Field Water Quality Sampling Forms in **Appendix B.** The wells were purged of a minimum of three well volumes, until the field parameters stabilized, or until the wells were purged dry, whichever occurred first.

4.1.3 Sampling Procedures

Groundwater sampling was conducted in accordance with procedures outlined in SESD Operating Procedures for Groundwater Sampling (SESDPROC-301-R1, November 2007; Section 4.3.1.3). Groundwater samples were collected following well purging and appropriate recharge. Copies of the data recorded during purging activities are included in the Field Water Quality Sampling Forms shown in **Appendix B**.

Required sample volumes, types of containers, sample preservatives, and holding times followed guidelines presented in SESD guidelines, November 2007. Sample containers were labeled and placed in iced containers for storage to maintain a temperature of 4° C. Chain-of-Custody procedures were used to record and document sample times and changes of possession.

4.1.4 Decontamination Procedures

All downhole and/or re-usable field monitoring and/or sampling equipment was properly decontaminated between monitoring/sampling locations in accordance with the SESD Operating Procedures for Field Equipment and Decontamination (SESDPROC-205-R1, November 2007; Sections 3.3, 3.5, and 3.6).

4.1.5 Analytical Procedures

Samples collected from monitoring wells were analyzed for volatile organic constituents (VOCs) via EPA Method 8260 and Lead via EPA Method 6010. MNA parameters included the following analytes:

- Total Organic Carbon
- Sulfate
- Sulfide
- Methane
- Ethane
- Ethene
- Ferrous Iron
- Dissolved Oxygen
- Nitrate

After collection, all sample coolers were delivered to Analytical Environmental Services, Inc. (AES) located in Atlanta, Georgia under proper Chain-of-Custody protocol for laboratory analyses for Constituents of Concern.

4.1.6 Results

Fourteen (14) COCs were reported at concentrations in excess of the laboratory method detection limit in groundwater samples collected at the VIRP Property during the August 2011 sampling event. These constituents included:

- ► 1,1-Dichloroethane
- ► 1,1-Dichloroethene
- 2-Butanone
- 2-Hexanone
- ► 4-methyl-2-pentanone
- Acetone
- Benzene
- Carbon Disulfide
- ► cis-1,2-Dichloroethene
- ► MTBE
- Toluene
- Trichloroethene
- Vinyl Chloride
- m, o, and p-Xylene (Total Xylene)

Horizontal Extent of Impacted Groundwater

The COCs detected in groundwater during the August 2011 sampling event are depicted on **Figure 9**. The principal constituents of concern at the VRP Property are TCE (and its associated breakdown products), BTEX, and various petroleum related COCs. **Figures 10** and **11** depict isocontour maps for TCE (and its associated breakdown products) and BTEX, respectively. A summary of the historic groundwater analytical data findings is provided in **Table 2**. MNA parameters analytical results are summarized in **Table 3**. A copy of the August 2011 analytical testing results and accompanying chain-of-custody documentation is provided in **Appendix C**.

Based on both historical groundwater and the August 2011 groundwater analytical results, further horizontal delineation will be required east-southeast of the VIRP Property (downgradient from MW-4A), and west of the VRP property from MW-2A, and north-northeast of MW-4A. Discussions and data associated with vertical extent delineation activities will be provided in subsequent semi-annual groundwater monitoring reports and the final VIRP CSR.

Vertical Extent of Impacted Groundwater

The vertical extent of impacted groundwater has yet to be defined at the VIRP Property. Discussions and data associated with vertical extent delineation activities will be provided in subsequent semi-annual groundwater monitoring reports and the final VIRP CSR.

4.2 VRP PROPERTY DELINEATION STANDARDS

The Georgia VRP outlines the standards for horizontal and vertical delineation of regulated substances in soil and groundwater utilizing the following criteria:

- (A) Concentrations from an appropriate number of samples that are representative of local ambient or anthropogenic background conditions not affected by the subject site release;
- (B) Soil concentrations less than those concentrations that require notification under standards promulgated by the Board pursuant to Part 2 of this article;
- (C) Two times the laboratory lower detection limit concentration using an applicable analytical test method recognized by the United States Environmental Protection Agency, provided that such concentrations do not exceed all cleanup standards;
- (D) For metals in soils, the concentrations reported for Georgia undisturbed native soil samples as reported in the United States Geological Survey (USGS) Open File Report 8 1-197 (Boerngen and Shacklette, 1981), or such later version as may be adopted by rule or regulation of the board; or
- (E) Default, residential cleanup standards.

The VRP statute also provides that the provisions of subparagraphs (B) and (C) of the standards listed above shall not be used if the concentrations are higher than as provided in item (E), the default Type 1 residential cleanup criteria.

4.2.1 Soil Delineation Standards

Soil CAP was implemented from November 2002 to October 2003 and resulted in the removal of a total of 43,108 tons of soils exceeding regulatory standards. A CSR for soil was submitted to the GEPD in February of 2004 with supplemental CSR information submitted in February of 2005. The CSR certified compliance with non-residential Type 3 and Type 4 RRS for soils and EPD concurred that those standards were met in a letter dated November 16, 2009. In addition, soils were delineated to background concentrations for constituents of concern. As such, the delineation criteria for the VRP has been previously addressed as part of the CSR activities for soil and, as such, no further soil delineation activities are planned at this time as part of this VIRP.

4.2.2 Groundwater Delineation Standards

Nineteen (19) HSRA-regulated substances have been historically detected in groundwater samples collected at the VIRP Property. The resulting groundwater delineation standards are provided on the table on the following page:

REGULATED CONSTITUENT	Highest Detected Concentration (August 2011)	Type 1 RRS (μg/L)
1,1-Dichloroethane	21 (MW-2A)	4,000
1,1-Dichloroethene	18 (MW-2A)	7
1,1,1-Trichloroethane	<5	200
1,1,2-Trichloroethane	<5	5
2-Butanone	150 (MW-2A)	2,000
2-Hexanone	10 (MW-2A)	NR
4-Methyl-2-Pentanone	79 (MW-2A)	2,000
Acetone	630 (MW-2A)	4,000
Benzene	29 (MW-4A)	5
Carbon Disulfide	7.2	4,000
Chloroform	<5	80
cis-1,2-Dichloroethene	310	70
Ethylbenzene	<5	700
Methyl-tert-butyl ether (MTBE)	38	NR
Toluene	11	1,000
Tetrachloroethene (PCE)	<5	5
Trichloroethene (TCE)	680	5
Trichlorofluoromethane	<5	2,000
Vinyl Chloride	55	2
Xylenes (o,m,p)	13.9	10,000

GROUNDWATER DELINEATION STANDARDS

Notes:

Bolded constituents exceed the Type 1 RRS.

NR - Not regulated.

"-" Risk reduction standard not calculated.

The following HSRA-regulated substances were detected above applicable groundwater RRS during the August 2011 sampling event:

• 1,1-Dichloroethene, Benzene, Trichloroethene, and Vinyl Chloride.

No HSRA-regulated substance were detected above laboratory reporting limits at the POD well (MW-9A).

4.2.3 Point of Demonstration Monitoring for Groundwater

The Georgia Voluntary Remediation Program Act specifies in Section 12-8-108(4) that concentration of regulated constituents detected on a VIRP Property shall be measured and evaluated at a "point of demonstration" (POD) well. The purpose of the POD well is to demonstrate that groundwater concentration are protective of any established downgradient point of exposure. As previously stated, monitoring well MW-9A is designated as the POD well at the VIRP Property.

4.3 GROUNDWATER PREDICTIVE FATE & TRANSPORT MODELING AND CORRECTIVE ACTION EVALUATION ACTIVITIES

Pusuant to the Georgia Voluntary Remediation Act, (O.C.G.A. § 12-8-100, et seq. (the "Act"), the Point of Demonstration Monitoring for Groundwater is defined as "concentrations of site-specific constituents of concern in groundwater shall be measured and evaluated at a point of demonstration well to demonstrate that groundwater concentrations are protective of any established downgradient point of exposure", where a Point of Exposure is defined as the nearest of the following locations:

- The closest existing downgradient drinking water supply well;
- The likely nearest future location of a downgradient drinking water supply well where public supply water is not currently available and is not likely to be made available within the foreseeable future; or
- ► The hypothetical point of drinking water exposure located at a distance of 1,000 feet downgradient from the delineated site contamination.

The Act further defines Point of Demonstration Wells as "monitoring wells located between the source of site groundwater contamination and the actual or estimated downgradient point of exposure".

Field evidence indicates that groundwater may intercept a potential point of exposure 1,000 feet downgradient (East Fork Trail Creek). Groundwater predictive fate and transport modeling activities were performed to predict contaminant plume characteristics over time. The following sections provide information of the groundwater predictive fate and transport modeling activities and results.

4.3.1 Groundwater Predictive Fate & Transport Modeling

BIOCHLOR Natural Attenuation Decision Support System, Version 2.2, dated March 2002 is a screening model that simulates remediation by natural attenuation (RNA) of dissolved solvents in groundwater. The software, programmed in the Microsoft[®] Excel spreadsheet environment and based on the Domenico analytical solute transport model, has the ability to simulate 1-D advection, 3-D dispersion,
linear adsorption, and biotransformation via reductive dechlorination (the dominant biotransformation process at most chlorinated solvent sites). Dissolved solvent degradation is assumed to follow a sequential first order decay process.

BIOCHLOR includes three different model types:

- 1. Solute transport without decay,
- 2. Solute transport with biotransformation modeled as a sequential first-order decay process,
- 3. Solute transport with biotransformation modeled as a sequential first-order decay process with 2 different reaction zones (i.e., each zone has a different set of rate coefficient values).

Groundwater Services, Inc., Houston, Texas, developed BIOCHLOR for the Air Force Center for Environmental Excellence (AFCEE) Technology Transfer Division at Brooks Air Force Base. The mathematical technique to solve the coupled reactive transport equations was developed by researchers formerly with the Battelle Pacific Northwest National Laboratory.

Peachtree performed groundwater predictive fate & transport modeling activities utilizing BIOCHLOR for the COC-impacted plume as part of the 2010 CAP Addendum submission. Peachtree repeated the model utilizing the August 2011 groundwater analytical testing data model types 1 and 2 discussed above. The area modeled extended from the source area well (i.e., MW-2A which is the well with the highest noted impacts) through the farthest downgradient well (MW-8A) which does not have any COC impacts based on analytical testing data), and to the downgradient property boundary located approximately 675 feet from well MW-2A. The premise being modeled was the evaluation of the groundwater plume and whether the remaining impacted groundwater would attenuate over time and not migrate to or beyond the downgradient property boundary at concentrations exceeding any applicable RRS. Newly obtained analytical testing data from the calibration of the model.

As a preliminary part of the groundwater predictive fate & transport modeling activities, Peachtree completed the natural attenuation screening protocol scoring sheet which is included as part of the BIOCHLOR model. This scoring sheet utilizes various chemical and geochemical field parameter input parameters derived from analytical testing and/or field measurements collected in August 2011 to evaluate whether or not the VRP Property is conducive for natural attenuation. Input parameters include the following:

Oxygen, Nitrate, Iron II, Sulfate, Sulfide, Methane, Oxidation Reduction Potential (ORP), pH, Total Organic Carbon (TOC),

2318-200 VIRP Report.wpd

Temperature, Carbon Dioxide, Alkalinity, Chlorde, Hydrogen, Volatile Fatty Acids, BTEX, PCE, TCE, DCE, VC, DCA, Chloroethane, Ethene/Ethane, Chloroform, and Dichloromethane.

The analytical results of the natural attenuation parameter inputs are summarized in **Table 3**. Based on the inputs, a score is derived indicating the potential or favorability for natural attenuation processes to occur at the VIRP Property. Scoring ranges are as follows:

INTERPRETATION

<u>Score</u>

Inadequate evidence for anaerobic biodegradation of chlorinated organics = 0 - 5Limited evidence for anaerobic biodegradation of chlorinated organics = 6 - 14Adequate evidence for anaerobic biodegradation of chlorinated organics = 15 - 20Strong evidence for anaerobic biodegradation of chlorinated organics = 20 - 5

Monitoring well MW-2A, the most highly impacted well, was utilized in the natural attenuation scoring. The resulting score, based on input values, was 25; thus indicating strong evidence exists for anaerobic biodegradation of chlorinated organics at the site. The natural attenuation screening protocol inputs and output is included as **Appendix D**.

A series of slug tests were conducted on existing monitoring wells MW-2A, MW-4A, and MW-9A as part of the June 2010 sampling activities; the data from which was also utilized as input parameters as part of the groundwater modeling activities. Initially, static water levels were measured within each well prior to performing slug testing activities. A Hermit Model 3000 datalogger with a pressure transducer was then lowered into the well along with a solid-core slug equipped with nylon cord. The water was then allowed to return to static conditions prior to initiating the slug test. Upon the return of water to static conditions, the slug test was initiated by quickly removing the solid-core slug from the well with the rate of groundwater recovery being measured using the datalogger and pressure transducer until water levels approached or returned to static conditions.

Resulting data obtained during the performance of the rising head slug testing was evaluated using the AQTESOLV[®] Aquifer Test Design and Analysis Computer Software.

This information, together with published and/or available literature, resulted in the following estimated and/or calculated aquifer parameters for shallow monitoring wells:

Aquifer Thickness, b	=	50 feet (estimated)
Hydraulic Conductivity, K	=	1.261 feet/day (average of MW-2A, MW-4A &
		MW-9A)
Hydraulic Gradient, <u>dh</u>	=	0.0145 feet/foot (between MW-2A & MW-8A)
DI		
Porosity, n	=	0.2 (estimated)

The hydraulic gradient is determined by dividing the piezometric difference between two wells by the horizontal difference between those wells. Based on groundwater measurements collected from all Site monitoring wells, the groundwater flow at the Site was determined to generally be in a southeasterly direction.

The hydraulic gradient for the surficial water bearing zone was calculated between monitoring wells MW-2A and MW-8A. The calculated hydraulic gradient was as follows:

Surficial water bearing zone gradient

689.20 - 683.93 / 364.59 or 0.0145 feet/foot

The estimated horizontal velocity (Vh) was calculated for the surficial water bearing zone using the following form of Darcy's Equation:

Vh = K_i / n

Where:

- K = estimated hydraulic conductivity of the soils within the aquifer at the Property (average of MW-2A, MW-4A, and MW-9A)
- i = estimated hydraulic gradient determined from the groundwater elevations measured in the wells across the Property (average value as described above)
- n = estimated effective porosity of the soils within the aquifer at the Property (based on published literature)

Based on the gradient and hydraulic conductivity, groundwater in the surficial water bearing zone is estimated to be traveling to the southeast at a horizontal velocity of 0.091 feet per day or approximately 33.215 feet per year.

Table 4 summarizes the results of slug tests performed during the June 2010 sampling event and indicates the depth to which each well was screened. **Appendix E** contains copies of Peachtree's time and head data and graphs from the slug tests.

2318-200 VIRP Report.wpd

Utilizing the contaminant plume concentration analytical testing data, aquifer slug testing and MNA parameter results as part of the BIOCHLOR modeling activities, yielded model results that indicated that with biotransformation (i.e., reductive dechlorination) the COC-impacted groundwater at well MW-2A would not migrate to the POD well MW-9A or past the downgradient property boundary.

Based on historic groundwater analytical testing data, the concentrations of COCs within the area of impact have decreased over time. Historic trend graphs are included as **Appendix F**. We have therefore concluded that reductive dechlorination processes are indeed occurring at the VIRP Property and has been occurring historically since 2000 as evidenced by TCE and breakdown components reported during sampling activities. Based on the foregoing, no active means of corrective action is required for the COC-impacted groundwater plume.

Additional VIRP activities will include the delineation of the horizontal and vertical extent of groundwater impacts. Data from delineation activities will be utilized to determine if the groundwater fate and transport model still supports the conclusion that there are no exceedances or the RRS at the POD well. If the model is verified with the new data, Hull intends to prepare a CSR and request delisting. Should the data indicate that the RRS are exceeded at the POD well, then Hull will evaluate other corrective action alternatives.

BIOCHLOR model inputs and outputs are included as **Appendix D** to this report.

4.3.2 Corrective Action Alternatives Currently Under Consideration

Based on the August 2011 analytical data, 1,1-Dichloroethene, Benzene, Trichloroethene, and Vinyl Chloride were detected at the VIRP Property in excess of RRS. To the extent further assessment (vertical delineation of groundwater and horizontal delineation of groundwater east of the VIRP Property) identifies impacts requiring corrective action, the Applicant expects to consider natural attenuation as the remedial approach. Should the data be consistent with groundwater model predictions and no further corrective action is warranted, then Hull intends to submit a CSR and pursue delisting of the property. The proposed locations of the horizontal and vertical delineation monitoring well are depicted on **Figure 12**.

A schedule for completion of the horizontal and vertical delineation activities and updating of the CSM for the VIRP Property is presented in **Appendix G**.

5.0 SCHEDULE

Appendix G contains a schedule of implementation that includes dates for milestones, including semi-annual progress reports and submittal of a VIRP Compliance Status Report (CSR).

6.0 PREPARATION OF COMPLIANCE STATUS REPORT

A Compliance Status Report (CSR) will be prepared on behalf of the Applicant upon either: verification of the groundwater model subsequent to the completion of groundwater delineation activities; or at the conclusion of corrective action should data indicate that the RRS are exceeded at the POD well subsequent to delineation activities. The written report will consist of information in the format required for submission to the Georgia EPD and will include, at a minimum, the following:

- A description of each known source of release;
- A description of the Applicant's properties which are part of the VIRP Property (i.e. legal description of the area affected by the release);
- A summary of previously collected field and laboratory data;
- Delineation of the horizontal and vertical extent of on-property and off-property groundwater contamination to default residential cleanup standards or other applicable delineation criteria;
- Description of geologic and hydrogeologic conditions at the VIRP Property;
- A description of VIRP Property-specific human or environmental receptors and exposure pathways;
- A verification that the VIRP Property meets Risk Based Corrective Action remediation goals through a USEPA-recognized fate and transport model and groundwater sampling verification;
- Documentation of characterization, transportation, and disposal of impacted materials (if any); and
- A summary statement of the findings of the report including the Applicant's certification of compliance with the appropriate groundwater standards, within the VRP framework.

7.0 PROFESSIONAL CERTIFICATION

I certify that I am a qualified groundwater scientist who has received a baccalaureate or post-graduate degree in the natural sciences or engineering, and have sufficient training and experience in groundwater hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound professional judgements regarding groundwater monitoring and contaminant fate and transport. I further certify that this report was prepared by me or by a subordinate working under my direction.

William H. Lucas, III, P.G. Georgia Professional Geologist Registration Number 1255

A summary of Professional Geologists hours associated with the preparation of this VIRP Report are included in **Appendix H**.

VOLUNTARY REMEDIATION PLAN APPLICATION FORMER LOEF FACILITY ATHENS, CLARKE COUNTY, GEORGIA

TABLE 1 SUMMARY OF GROUNDWATER ELEVATION MEASUREMENTS

Well Number	Date Measured	TOC Elevation	Screen Interval (BGS)	Depth to Water (BTOC)	Water Table Elevation
MW-2A*	6/17/2009	710.20	33.15 to 23.15 FT	22.87	687.33
	6/24/2010			21.00	689.20
	2/24/2011			18.05	692.15
	8/4/2011*	706.70	20.0 to 30.0 FT	18.00	688.70
MW-3A	6/17/2009	712.23	20.0 to 30.0 FT	26.79	685.44
	6/24/2010			24.82	687.41
	2/24/2011			25.15	687.08
	8/4/2011			26.15	686.08
MW-4A	6/17/2009	709.18	29.5 to 19.5 FT	24.76	684.42
	6/24/2010			23.21	685.97
	2/24/2011			22.94	686.24
	8/4/2011			25.49	683.69
MW-6	6/17/2009	720.15	30.0 to 20.0 FT	23.00	697.15
	6/24/2010			20.42	699.73
	2/24/2011			20.62	699.53
	8/4/2011			20.50	699.65
MW-7A	6/17/2009	696.08	19.5 to 9.5 FT	15.47	680.61
	6/24/2010			12.46	683.62
	2/24/2011			12.81	683.27
	8/4/2011			18.05	678.03
MW-8A	6/17/2009	695.23	19.5 to 9.5 FT	14.02	681.21
	6/24/2010			11.3	683.93
	2/24/2011			11.54	683.69
	8/4/2011			16.87	678.36
MW-9A	6/17/2009	697.13	10.0 to 20.0 FT	16.51	680.62
	6/24/2010			12.79	684.34
	2/24/2010			12.65	684.48
	8/4/2011			19.80	677.33

Notes:

TOC = Top of Casing BTOC = Below Top of Casing

BGS = Below Ground Surface

VOLUNTARY REMEDIATION PLAN APPLICATION FORMER LOEF FACILITY (HULL) ATHENS, CLARKE COUNTY, GEORGIA HSI#10376

	TABLE 2 SUMMARY OF HISTORIC GROUNDWATER ANALYTICAL RESULTS																					
achtree Well/Sample ID	Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	4-Methyl-2-Pentanone	2-Butanone	2-Hexanone	Acetone	Benzene	Carbon Disulfide	Chloroform	Toluene	Ethylbenzene	Xylenes (o)	Xylenes (m,p)	MTBE**	Trichloroethene	Tetrachloroethene	Trichlorofluoromethane	Cis-1,2-Dihloroethene	Vinyl Chloride
Ъе			л			1	1				ANALYI	ICAL RESULT	S (ug/L)		1		1	1	1			
										Permanent	Monitoring	Wells										
MW-1*	6/23/2000	<1	<1	1.5	<1	-	-	-		1.5	-	-	<1	<1	<3	-	<1	8.2	<1	-	<1	<3
	6/23/2000	<10	<10	12	26	-	-	-	-	<10	-	-	<10	<10	<30	-	42	570	<5	-	100	31
	6/26/2003	9.7	<5	30	43	-	-	-	-	11	-	-	<5	<5	11	-	150	1800	<5	-	250	52
	8/12/2003	32	<5	110	78	-	-	-	-	18	-	-	8.9	<5	17	•	250	6500	<5	-	1300	170
	9/19/2003	28	<5	70	65	-	-	-	•	17	-	-	9.3	<5	18	•	200	4700	<5	-	700	98
	10/22/2003	28	<5	90	80	-	-	-	-	36		-	13	6.4	26		250	3000	<5	-	590	140
	11/18/2003	21	<5	71	58	-	-	-	-	18	-	-	9.1	<5	17	-	250	8100	<5	-	1000	110
	12/24/2003	34	<5	91	70	-	-	-	-	16	-	-	9.4	<5	22	-	280	9600	<5	-	1500	130
	1/23/2004	<50	<5	55	60	-	-	-	-	<50	-	-	<50	<5	<50	-	370	4000	<5	-	560	130
	3/29/2004	16	<5	54	46	-	-	-	-	22	-	-	6.9	<5	14	-	250	4000	<5	-	790	83
MW-2A	5/7/2004	11	<5	34	42	-	-	-	-	20	-	-	<5	5.8	14	-	210	2500	<5	-	420	54
	7/15/2004	11		38	32	-	-	-	-	25	-	-	7.1	8.5	18	-	280	1900	<5	-	420	67
	9/30/2004	<5	<5	10	23	-	-	-	-	21	-	-	130	46	58	-	190	430	<5	-	130	32
	5/9/2006	9.4	<5	54	38	-	-	-	-	13	-	-	<5	<5	10	-	77	2600	<5	-	720	51
	6/17/2009	<5	<5	<5	<5	-	-	-	-	14	-	-	<5	<5	<10	-	<5	70	<5	-	31	7
	6/24/2010	<5	<5	23	17	-	-	-	-	12	-	-	<5	<5	1.9	•	15	710	<5	-	300	54
	2/24/2011	<5	<5	19	14	11	-	-	90	7.2	-	-	<5	<5	<5	•	20	730	<5	120	370	33
	3/18/2011***	<5	<5	6	10	11	•	-	<50	7.8	•	7	<5	<5	<5	•	9.4	210	<5	<5	120	19
	8/4/2011	<5	<5	21	19	90	210	12	670	13	9	<5	13	<5	7.6	7.8	43	810	<5	<5	390	61
	8/4/2011 (DUP)	<5	<5	21	18	79	150	10	630	11	7.2	<5	11	<5	6.8	7.1	38	680	<5	<5	310	55
	6/23/2000	<1	<5	<1	<1	-	-	-	-	36	-	-	<1	<1	<3	-	<1	30	<5	•	<1	<3
	5/7/2004	<5	<5	<5	<5	-	-	-	-	<5	-	-	<5	<5	<5	-	<5	11	<5	-	<5	<2
MIN/ 2 A	5/9/2006	<5	<5	<5	<5	-	-	-	-	7.4	-	-	<5	<5	<5	-	<5	22	<5	-	<5	<2
WIW-3A	6/21/2009	<0	<0	<0	<0	-	-	-	-	13	-	-	<0	<0	<0	-	<0	15	<0	-	<0	<2
	2/24/2011	<5	<5	<5	<5	<10	~50	<10	<50	14	~5	<5	<5	<5	<5	~5	<5	13	<5	<5	<5	<2
	8/4/2011	<5	<5	<5	<5	<10	<50	<10	<50	14	<5	<5	<5	<5	<5	<5	<5	13	<5	<5	<5	-2
	6/23/2000	<1	<5	<1	<1	-	-	-	-	12	-	-	<1	<1	<1	-	<1	<1	2.7	-	<1	<1
	5/7/2004	<5	<5	<5	<5	-	-	-	-	27	-	-	<5	<5	<5	-	<5	29	<5	-	<5	<5
	5/9/2006	<5	<5	<5	<5	-	-	-		37	-	-	<5	<5	<5	-	<5	51	<5	-	<5	<2
MW-4A	6/17/2009	<5	<5	<5	<5	-	-	-	-	<5	-	-	<5	<5	<5	-	<5	7.2	<5	-	<5	<2
	6/24/2010	<5	<5	<5	<5	-	-	-	-	4.9	-	-	<5	<5	<5	-	<5	6.1	<5	-	<5	<2
	2/24/2011	<5	<5	<5	<5	<10	<50	<10	<50	7	<5	<5	<5	<5	<5	<5	<5	13	<5	<5	<5	<2
	8/4/2011	<5	<5	<5	<5	<10	<50	<10	<50	29	<5	<5	<5	<5	<5	<5	<5	51	<5	<5	9.5	<2
MW-5	6/23/2000	1.5	<1	<1	<1	-	-	-	-	<1	-	-	<1	<1	<1	-	<1	<1	<1	-	<1	<1
	11/5/2000	NT	<5	<1	NT	-	-	-	-	<1	-	-	NT	NT	NT	-	NT	<1	<1	-	<1	NT
	6/17/2009	<5	<5	<5	<5	-	-	-	-	<5	-	-	<5	<5	<5	-	<5	<5	<5	-	<5	<2
MW-6	6/24/2010	<5	<5	<5	<5	-	-	-	-	<5	-	-	<5	<5	<5	-	<5	<5	<5	-	<5	<2
	2/24/2011	<5	<5	<5	<5	<10	<50	<10	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<2
	8/4/2011	<5	<5	<5	<5	<10	<50	<10	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<2

VOLUNTARY REMEDIATION PLAN APPLICATION FORMER LOEF FACILITY (HULL) ATHENS, CLARKE COUNTY, GEORGIA HSI#10376

TABLE 2

	SUMMARY OF HISTORIC GROUNDWATER ANALYTICAL RESULTS																					
eachtree Well/Sample ID	Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	4-Methyl-2-Pentanone	2-Butanone	2-Hexanone	Acetone	Benzene	Carbon Disuffide	Chloroform	Toluene	Ethylbenzene	Xylenes (o)	Xylenes (m,p)	MTBE**	Trichloroethene	Tetrachloroethene	Trichlorofluoromethane	Cis-1,2-Dihloroethene	Vinyl Chloride
	ANALYTICAL RESULTS (ug/L)																					
	11/5/2000	NT	NT	<1	NT	-	-	-	-	<1	-	-	NT	NT	NT	-	NT	5.4	<1	-	2.1	NT
	5/7/2004	<5	<5	<5	<5	-	-	-	-	<5	-	-	<5	<5	<5	-	<5	<5	<5	-	<5	<2
	5/9/2006	<5	<5	<5	<5	-	-	-	-	<5	-	-	<5	<5	<5	-	<5	<5	<5	-	<5	<2
MW-7A	6/17/2009	<5	<5	<5	<5	-	-	-	-	<5	-	-	<5	<5	<5	-	<5	<5	<5	-	<5	<2
	6/24/2010	<5	<5	<5	<5	-	-	-	-	<5	-	-	<5	<5	<5	-	<5	<5	<5	-	<5	<2
	2/24/2011	<5	<5	<5	<5	<10	<50	<10	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<2
	8/4/2011	<5	<5	<5	<5	<10	<50	<10	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<2
	11/5/2000	NT	NT	<1	NT	-	-	-	-	<1	-	-	NT	NT	NT	-	NT	15	<1	-	<1	NT
	5/7/2004	<5	<5	<5	<5	-	-	-	-	<5	-	-	<5	<5	<5	-	<5	<5	<5	-	<5	<2
MW-8A	5/9/2006	<5	<5	<5	<5	-	-	-	-	<5	-	-	<5	<5	<5	-	<5	<5	<5	-	<5	<2
	6/17/2009	<5	<5	<5	<5	-	-	-	-	<5	-	-	<5	<5	<5	-	<5	<5	<5	-	<5	<2
	6/24/2010	<5	<5	<5	<5	-	-	-	-	<5	-	-	<5	<5	<5	-	<5	<5	<5	-	<5	<2
	2/24/2011	<5	<5	<5	<5	<10	<50	<10	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<2
	8/4/2011	<5	<5	<5	<5	<10	<50	<10	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<2
	5/7/2004	<5	<5	<5	<5	-	-	-	-	<5	-	-	<5	<5	<5	-	<5	<5	<5	-	<5	<2
	5/9/2006	<5	<5	<5	<5	-	-	-	-	<5	-	-	<5	<5	<5	-	<5	<5	<5	-	<5	<2
MW-94	6/17/2009	<5	<5	<5	<5	-	-	-	-	<5	-	-	<5	<5	<5	-	<5	<5	<5	-	<5	<2
	6/24/2010	<5	<5	<5	<5	-	-	-	-	<5	-	-	<5	<5	<5	-	<5	<5	<5	-	<5	<2
	2/24/2011	<5	<5	<5	<5	<10	<50	<10	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<2
	8/4/2011	<5	<5	<5	<5	<10	<50	<10	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<2
		1	1	T		1			Te	emporary M	onitoring W	ell Data							1			
TW-1	5/4/2006	<5	<5	<5	<5	-	-	-	-	38	-	-	<5	<5	<5	-	<5	10	<5	-	<5	<5
TW-2	5/4/2006	<5	<5	<5	<5	-	-	-	-	100	-	-	<5	<5	<5	-	<5	15	6.6	-	<5	<5
TW-3	5/4/2006	<5	<5	<5	29	-	-	-	-	<5	-	-	<5	<5	<5	-	<5	8.2	<5	-	<5	<5
TW-4	5/4/2006	<5	5.9	<5	150	-	-	-	-	<5	-	-	<5	<5	<5	-	<5	<5	<5	-	<5	<5
TW-5	5/4/2006	<5	<5	<5	<5	-	-	-	-	24	-	-	<5	<5	<5	-	<5	<5	<5	-	<5	<5
Equipment Blank	2/24/2011	<5	<5	<5	<5	<10	<50	<10	59	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<2
Trip Blank	8/5/2011	<5	<5	<5	<5	<10	<50	<10	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<2

 NOTES:
 Composition

 "250" - Numbers in bold exceed the applicable Risk Reduction Standard criteria.

 * - Casing for MW-1 is damaged. Sampling access is not available.

 ** - Currently, there is no Type 1/3 Groundwater Risk Reduction Standard.

 *** - MW-2A overdrilled and replaced 3/18/11.

 NT - Not Tested.

VOLUNTARY REMEDIATION PLAN APPLICATION FORMER LOEF FACILITY (HULL) ATHENS, CLARKE COUNTY, GEORGIA HSI#10376

TABLE 3 SUMMARY OF MONITORED NATURAL ATTENUATION PARAMETER RESULTS

Well/Sample ID	Date	На	Temperature (°C)	Conductivity (uS/cm)	Total Dissolved Solids (g/L)	Oxidation-Reduction Potential (mV)	Ethane	Ethene	Methane	Disslved Oxygen	Total Organic Carbon	Iron II	Nitrate	Sulfate	Sulfide					
	FIELD-MEASURED PARAMETERS							L	ABORATORY	ANALYTICAL I	RESULTS (mg	/L)								
MW-2A	6/24/2010	4.65	18.1	0.581	0.037	450	0.16	<0.007	3.2	10.2	8.2	7.25	0.49	<1	<2					
WIW-ZA	8/4/2011	5.45	20.78	0.295	NM	10	0.78	<0.007	3.1	0.54	60.8	47	<0.25	<1	<2					
MW-3 A	6/24/2010	4.63	19.2	0.852	0.054	398	0.36	<0.007	4.2	9.64	2.34	<0.1	1.8	2	<2					
WIW-5A	8/4/2011	4.4	20.94	0.57	NM	301	0.12	<0.007	1.7	1.34	1.42	<0.1	1.7	<1	<2					
MW-44	6/24/2010	4.66	18.8	0.164	0.11	414	0.029	<0.007	0.34	9.54	2.98	<0.1	0.88	1.9	<2					
WW-4A	8/4/2011	4.62	21.76	0.093	NM	330	0.026	<0.007	0.44	2.1	<5	<.1	0.84	1.7	<2					
MW-6*	6/24/2010	4.9	19.7	0.044	0.03	443	<0.009	<0.007	<0.004	10.5	1.79	<0.1	0.44	<1	<2					
14144-0	8/4/2011	4.25	19.7	0.03	NM	366	<0.009	<0.007	<0.004	8.51	<1	<0.1	0.43	<1	<2					

NOTES: * - Background Well

Former Loef Facility Athens, Clarke County, Georgia HSI#10376 2318-200 October 2011 VRP Tables 1-4

VOLUNTARY REMEDIATION PLAN APPLICATION HULL (FORMER LOEF FACILITY) ATHENS, CLARKE COUNTY, GEORGIA HSI SITE #10376

TABLE 4

SUMMARY OF AQUIFER SLUG TESTING DATA

Well Number	Test Date	Well Depth (Feet Below TOC)	Water Level (Feet Below TOC)	Screened Interval (Feet Below TOC)	Hydraulic Conductivity (Ft/Day)		
		Shallow Wells					
MW-2A	6/24/10	33.15	21.00	23.15 - 33.15	2.160		
MW-4A	6/24/10	29.50	23.21	19.50 - 29.50	0.360		
MW-9A	6/24/10	30.00	12.79	20.00 - 30.00	0.002		
Combined Hydraulic Conductivity Average of Shallow Wells =>							

NOTES:

TOC = Top of Casing

GROUNDWATER FLOW VELOCITY CALCULATIONS

V = k* i/n_e Where:

V = groundwater flow velocity

k = hydraulic conductivity

i = hydraulic gradient

n_e = effective porosity

Groundwater Flow Velocity Calculations - Shallow Aquifer

Hydraulic gradient between MW-2A and MW-8A and average hydraulic conductivity for the shallow aquifer => 689.20' - 683.93' / 364.59' = 0.0145 feet/foot.

1. V = k* i/n_e

V = 1.261* 0.0145/0.2 = 0.091

V = 0.091 feet/day or 33.215 feet/year

FIGURES

TREES/BRUSH MW-7A + 4.71 ACS. TREES/BRUSH MW-9A	ASPHAIT ASPHAIT BERM BERM BERM CONC. SHREDDE DIRT B BALER CONC. SHREDDE DIRT B STELL FENCE	APPROXIMATE PROPE OLD HULL ROAD BERM COOLING TOWER CONC. RUNSFORMER CONC. CONC. CONC. MW-3A CONC. DRIVE CONC. DRIVE CONC. DRIVE CONC. DRIVE CONC. DRIVE CONC. DRIVE	ERTY BOUNDARY OF CURRE 60' R/W BERM DIRT DIRT CONC. DRIVE DIRT DIRT DIRT DIRT DIRT DIRT DIRT DIRT DIRT DIRT CONC. DRIVE DIRT DIRT DIRT CONC. DRIVE DIRT DIRT DIRT CONC. DRIVE DIRT DIRT DIRT CONC. DRIVE DIRT DIRT DIRT CONC. DRIVE DIRT DIRT CONC. DRIVE DIRT DIRT CONC. DRIVE DIRT DIRT CONC. DRIVE DIRT DIRT CONC. DRIVE DIRT DIRT CONC. DRIVE DIRT DIRT DIRT CONC. DRIVE DIRT	ENT SCRAP METAL PROCE	SPIALT CONC: CURB SPIALT CONC: CURB CONC: CURB CO
				x x x x	
	RAIL	CSX RAILROAD	00' R/W		C:
		10			
			_ <u> </u>		

APPENDIX A WARRANTY DEED AND TAX PLAT INFORMATION

Prepared by & Return to Upshaw C. Bentley, Jr. Fortson, Bentley and Griffin, P.A. P.O. Box 1744 Athens, Georgia 30603-1744

CLERK OF SUPERIOR COURT ATHENS-CLARKE COUNTY, GEORGIA TRANSFER TAX PAID S. 3, 500 DATE 000 000 BECORDING CLERK'S INITIALS WARRANTY DEED

ED IN OFFICE SUPERIOR COURT COUNTY, GEORGI 02 0CT -8 PM 2: 07 P:0012

627452

STATE OF GEORGIA COUNTY OF ATHENS-CLARKE

Mr. Nieles

. (J. S.)

THIS INDENTURE, made the $2n^2$ day of October, 2002, between HULL REAL ESTATE, L.L.C., a Georgia limited liability company, (hereinafter referred to as "Grantor") and OMNISOURCE ATHENS DIVISION, LLC, an Indiana limited liability company, (hereinafter referred to as "Grantee") (the words "Grantor" and "Grantee" shall include their respective heirs, executors, administrators, successors and assigns, where the context requires or permits):

WITNESSETH:

That Grantor, for and in consideration of the sum of Ten Dollars (\$10,00) and other good and valuable consideration to Grantor in hand paid, at and before the sealing and delivery of these presents, the receipt whereof is hereby acknowledged, has granted, bargained, sold and conveyed and does by these presents grant, bargain, sell and convey unto Grantee, the following described real property located in Athens-Clarke County, Georgia:

SEE EXHIBIT "A" ATTACHED HERETO AND MADE A PART HEREOF.

The property herein described is conveyed subject to those matters set forth on Exhibit "B" attached hereto and incorporated herein by reference.

TO HAVE AND TO HOLD the said described property, with all and singular the rights, members and appurtenances thereunto appertaining, to the only proper use, benefit and behoof of Grantee, in FEE SIMPLE,

And Grantor will warrant and forever defend the right and title to the above-described property unto Grantee against the lawful claims of all persons whomsoever.

BOOK 2278 PAGE 487

IN WITNESS WHEREOF, Grantor has caused this Warranty Deed to be executed by its duly authorized officers and its corporate seal affixed, the day and year first above written.

Signed, sealed and delivered, in the presence of:

GRANTOR:

GRANTOR:

limited liability company

NON Unofficial Witness

HULL REAL ESTATE, L.L.C., a Georgia limited liability company

By: FRED REALTY, INC., a Georgia corporation, Manager

By: Frederick J. Loef, President

[Corporate Seal]

STATE OF FLORIDA COUNTY OF SARASOTA Signed, sealed and delivered, in the presence of:

Unofficial Witness ÛЙ

Notary Public

[Notary Seal]

By: TERRY REALTY, INC., a Georgia corporation. Manager

HULL REAL ESTATE, L.L.C., a Georgia

By: lobér 6.

[Corporate Seal]

BOOK 2278 PAGE 488

EXHIBIT "A" Legal Description

PARCEL A:

All that tract or parcel of land situate, lying and being in Athens-Clarke County, Georgia. containing 15.63 acres, more or less, lying on the southeasterly side of the Old Hull Road bounded on the north by said Old Hull Road; on the east by lands conveyed by George F. Strother, Jr. and Elizabeth Strother Hawkins to Athena, Inc., on May 31, 1963; on the south by said lands to Athena, Inc., the south line being the centerline of the Seaboard Air Line Railroad right of way; and on the west by the former Comer lands of Athens, Inc. Said 15.63 acres are more particularly described as beginning at its northeast corner on the centerline of said railroad right of way at the corner with the lands conveyed by George F. Strother, Jr., and Elizabeth Strother Hawkins to Athens, Inc., the deed of conveyance being recorded in Deed Book 218, page 348, in the Office of the Clerk of the Superior Court of Athens-Clarke County, Georgia, and from said beginning point running north 68 degrees 41 minutes west 516.3 feet along line of Athena, Inc., to an iron pin on the southeast side of said Old Hull Road; running thence south 29 degrees 42 minutes west 1,182.7 feet along said Old Hull Road to an iron pin at the corner of said Comer lands of Athens, Inc.; running thence south 55 degrees 47 minutes east 686 feet along the line of said Comer lands to the centerline of said Seaboard Air Line Railroad right of way; thence north 22 degrees 11 minutes east 1315 feet, more or less, along said centerline to the point of beginning.

PARCEL B:

All that tract or parcel of land lying and being in the 220th District, G.M., Athens-Clarke County, Georgia, containing 1.333 acres, more or less, and being shown and designated as Tract 7 according to a plat prepared by Ben McLeroy & Associates, dated December 13, 1972, as last revised May 16, 1977, entitled "Athena Industrial Park", said plat being recorded in Plat Book 16, page 153, in the Office of the Clerk of the Superior Court of Athens-Clarke County, Georgia, to which plat reference is hereby specifically made for a more detailed description. This being a portion of the property conveyed from Lane Limited, a New York corporation, to Stone Mountain Industrial Park, Inc., a Georgia corporation, by Warranty Deed dated May 3, 1983, recorded in Deed Book 436, page 593, Athens-Clarke County, Georgia Records.

Together with all that tract or parcel of land, together with all improvements thereon, situate, lying and being in Athens-Clarke County, Georgia, and being the southwesterly one-half of that certain street having a 60' right of way known as Calhoun Drive as shown on that certain Plat of survey entitled "Plat of Binkley Const. Co. Property" prepared by J.R. Holland, Registered Surveyor, dated October 10, 1964. The said property known as Calhoun Drive commencing on the easterly side of Old Hull Road and running thence in a southeasterly direction approximately 425 feet to the westerly right of way of Seaboard Coast Line Railroad.

3

BOOK 2278 PAGE 489

EXHIBIT "B"

Exceptions

- 1. All taxes for the year 2002, which are a lien and are not yet due and payable, and subsequent years and any additional taxes which may result from a reassessment of the subject property.
- 2. Railroad right of way dated June 3, 1890, recorded in Deed Book HH, page 735, Athens-Clarke County, Georgia Records.
- 3. Easements from George F. Strother, et al, in favor of Georgia Power Company dated June 19, 1946, recorded in Deed Book 99, page 92; and dated January 20, 1947, recorded in Deed Book 105, page 138, Athens-Clarke County, Georgia Records.
- Easement from Athena, Inc., in favor of Atlanta Gas Light Company, dated September 4, 1968, and recorded in Deed Book 308, page 438, Athens-Clarke County, Georgia Records.
- 5. Notice of environmental hazard contained in Affidavit recorded in Deed Book 2183, page 371, Athens-Clarke County, Georgia Records.
- 6.

Title to any portion of the subject property which lies within the Seaboard Coast Line Railroad right of way.

BOOK 2278 PAGE 490

Prepared by and Return to: Upshaw C. Bentley, Jr. Fortson, Bentley and Griffin, P.A. P.O. Box 1744 Athens, Georgia 30603-1744

STATE OF GEORGIA

ATHENS-CLARKE COUNT

[Notary Seal]

In astern

SATISFIED OF RECORD THE B DAY OF 2002 CLERK OF SUPERIOR COURT CLARKE COUNTY, GEORGIA DEPUTY CLERK'S INITIALS

CLERIC SUPERIOR COURT CLARKE COUNTY, GEORGIA 02 0CT -8 PM 2:07 8002 DAT LOGAN.

FILED IN OFFICE

RELEASE

The indebtedness referred to in that certain Deed to Secure Debt, Security Agreement, Assignment of Leases and Rents and Fixture Financing Statement from The Loef Company, Inc., a Georgia corporation, to Hull Road Associates, L.L.C., a Georgia limited liability company, dated June 30, 1995, and recorded in Deed Book 1519, page 228; UCC-2 Notice Filing for UCC Real Estate Related Collateral recorded in Deed Book 1519, page 280; and First Amendment to Deed to Secure Debt, Security Agreement, Assignment of Leases and Rents and Fixture Financing Statement dated December 30, 1997, and recorded in Deed Book 1680, page 412 (collectively, the "deed"); all in the Office of the Clerk of the Superior Court of Athens-Clarke County, Georgia, having been paid in full and the undersigned being the present record holder and owner of such deed by virtue of being the original Grantee the Clerk of such Superior Court is authorized and directed to cancel that deed of record as provided in Code Section 44-14-4 of the O.C.G.A. for other mortgage cancellations.

IN WITNESS WHEREOF, the undersigned have set their hands and seals, this 3rd October day of 2002Signed, sealed and delivered HULL ROAD ASSOCIATES, L.L.C. in the presence of: By: FRED REALTY, INC., a Georgia corporation, Manager INC **Unofficial Witness** ANN BURNING By Frederick J. Loef, President VOTARY Notary Public

[Corporate Seal]

007403

[Suparine Communed on next page]

BOOK 2278 PAGE 491

APPENDIX B

FIELD WATER QUALITY SAMPLING FORMS

	Monitoring Well Purging & Sampling Information						
Peachtree Project: Former L	oef Facility (Hu	ll)	Project No.: 2318				Date: 8/411
Well Information							
Well Identification No:	MW-2A	Location:	Athens, Georgia				
Well Diameter:	2-Inch	Well Constru	uction: Schedule 40 PVC				
Total Well Depth from T	OC:	33.15	5 feet				
Depth to Water from TO	C:	18.00) feet				
Length of Static Water C	Column:	15.15	5 feet				
NOTES:							
Well Observations							
General Condition of We	ell: Good		General Condition of surro	ounding area: Good			
LNAPL observation: NA			Method of measure: NA				
Volume of water in well	= Height (Ht) of water in w	vell x K				
where: K = 0.17	(2-inch well)						
0.571	(3-inch well)						
0.652	(4-inch well)						
Volume of water in well	(Ht. x K):	2.58	gallons			7.73	gallons
			(1 well volume)				(3 well volumes)
Well Purging							
Purging method: Electric	adjustable flo	ow rate submer	rissible pump.				
Well Volumes	I	рН	Conductivity (us/cm)	Dissolved Oxygen	Temperature (⁰ C)	ORP	Turbidity (NTUs)
1	5	.53	0.360	1.360	20.75	-0.37	355
2	5	.43	0.281	0.710	20.77	5.00	120
3	5	.45	0.295	0.540	20.78	10.00	2.7
4							
5							
6							
7							
Purged To Dryness:	Approximatl	ey 8 gallons p	ourged prior to sampling.				
Sample Information							
Method of sampling: Tef	lon bailer with	Teflon-coated	wire lead.				
Decontamination proced procedures.	lures: Dedica	ted, one time u	ise sampling equipment per ea	ach well per sampling event	. Non-disposal sampling equip	oment decontaminated pe	er applicable USEPA SESD
Sample ID	Con	tainer	Preservative		Analy	/ses	
HRE-0811-MW-2A	2 -	40 ml	HCL		Method 8260B V	olatile Organics	
Sample Transport and F	Preservation	Ice Filled Co	ooler				
Sample Destination: An	alytical Envir	onmental Sei	rvices, Inc.	Via: Hand Delivery via Pe	eachtree Personnel		
Chain of Custody compl	leted: Yes						
Peachtree Environmer	ntal Personi	nel: Michael H	I. Wilson & Jason P. Chapp	bell			

	Monitoring Well Purging & Sampling Information							
Peachtree Project: Former L	oef Facility (Hu	II)	Project No.: 2318				Date: 8/4/11	
Well Information								
Well Identification No:	MW-3A	Location:	Athens, Georgia					
Well Diameter:	2-Inch	Well Constr	uction: Schedule 40 PVC					
Total Well Depth from T	OC:	30.00) feet					
Depth to Water from TC	C:	26.15	5 feet					
Length of Static Water 0	Column:	3.85	5 feet					
NOTES:								
Well Observations								
General Condition of W	ell: Good		General Condition of surro	ounding area: Good				
LNAPL observation: NA			Method of measure: NA					
Volume of water in well	= Height (Ht) of water in v	vell x K					
where: K = 0.17	(2-inch well)							
0.571	(3-inch well)							
0.652	(4-inch well)							
Volume of water in well	(Ht. x K):	0.65	gallons			1.96	gallons	
			(1 well volume)				(3 well volumes)	
Well Purging								
Purging method: Electric	adjustable flo	w rate subme	rissible pump.					
Well Volumes	ł	рН	Conductivity (us/cm)	Dissolved Oxygen	Temperature (⁰ C)	ORP	Turbidity (NTUs)	
1	4	.30	0.060	2.64	20.82	326	45	
2	4	.40	0.057	1.91	20.96	304	8.9	
3	4	.40	0.057	1.34	20.94	301	6.2	
4								
5								
6								
7								
Purged To Dryness:	Approximate	ely 2 gallons p	ourged prior to sampling.					
Sample Information								
Method of sampling: Tef	lon bailer with	Teflon-coated	l wire lead.					
Decontamination proced	lures: Dedica	ted, one time u	use sampling equipment per ea	ach well per sampling event	. Non-disposal sampling equi	pment decontaminated pe	er applicable USEPA SESD	
Sample ID	Con	tainer	Preservative		Analy	/ses		
HRE-0811-MW-3	2 -	40 ml	HCL		Method 8260B V	olatile Organics		
						*		
Sample Transport and F	Preservation:	Ice Filled Co	ooler					
Sample Destination: An	alytical Envir	onmental Se	rvices, Inc.	Via: Hand Delivery via Pe	eachtree Personnel			
Chain of Custody comp	leted: Yes			*				
Peachtree Environmer	ntal Personr	nel: Michael H	I. Wilson & Jason P. Chapp	ell				

	Monitoring Well Purging & Sampling Information						
Peachtree Project: Former L	oef Facility (Hu	III)	Project No.: 2318				Date: 8/4/11
Well Information							
Well Identification No:	MW-4A	Location:	Athens, Georgia				
Well Diameter:	2-Inch	Well Constru	uction: Schedule 40 PVC				
Total Well Depth from T	OC:	29.50) feet				
Depth to Water from TC	C:	25.49	9 feet				
Length of Static Water (Column:	4.01	1 feet				
NOTES:							
Well Observations							
General Condition of W	ell: Good		General Condition of surro	ounding area: Good			
LNAPL observation: NA			Method of measure: NA				
Volume of water in well	= Height (Ht) of water in w	vell x K				
where: K = 0.17	(2-inch well)						
0.571	(3-inch well)						
0.652	(4-inch well)						
Volume of water in well	(Ht. x K):	0.68	gallons			2.05	gallons
			(1 well volume)				(3 well volumes)
Well Purging							
Purging method: Electric	adjustable flo	ow rate submer	rissible pump.		1		
Well Volumes	I	рН	Conductivity (us/cm)	Dissolved Oxygen	Temperature (⁰ C)	ORP	Turbidity (NTUs)
1	4	.60	0.950	3.11	21.45	314	360
2	4	.54	0.960	7.85	21.35	323	12.1
3	4	.62	0.930	2.10	21.76	330	9.7
4							
5							
6							
7							
Purged To Dryness:	Approximate	ely 2.5 gallons	s purged prior to sampling.				
Sample Information							
Method of sampling: Tef	lon bailer with	Teflon-coated	wire lead.				
Decontamination proced procedures.	lures: Dedica	ted, one time u	ise sampling equipment per ea	ach well per sampling event	. Non-disposal sampling equip	oment decontaminated p	er applicable USEPA SESD
Sample ID	Con	tainer	Preservative		Analy	/ses	
HRE-0811-MW-4	2 -	40 ml	HCL		Method 8260B V	olatile Organics	
Sample Transport and F	Preservation	: Ice Filled Co	ooler				
Sample Destination: An	alytical Envir	ronmental Sei	rvices, Inc.	Via: Hand Delivery via Pe	eachtree Personnel		
Chain of Custody comp	leted: Yes						
Peachtree Environmer	ntal Personi	nel: Michael H	I. Wilson & Jason P. Chapp	pell			

	Monitoring Well Purging & Sampling Information							
Peachtree Project: Former L	oef Facility (Hu	II)	Project No.: 2318				Date: 8/4/11	
Well Information								
Well Identification No:	MW-6	Location:	Athens, Georgia					
Well Diameter:	2-Inch	Well Constru	uction: Schedule 40 PVC					
Total Well Depth from T	OC:	30.00) feet					
Depth to Water from TC	C:	20.50) feet					
Length of Static Water (Column:	9.50) feet					
NOTES:								
Well Observations								
General Condition of W	ell: Good		General Condition of surro	ounding area: Good				
LNAPL observation: NA			Method of measure: NA	-				
Volume of water in well	= Height (Ht) of water in w	vell x K					
where: K = 0.17	(2-inch well)							
0.571	(3-inch well)							
0.652	(4-inch well)							
Volume of water in well	(Ht. x K):	1.62	gallons			4.85	gallons	
			(1 well volume)				(3 well volumes)	
Well Purging								
Purging method: Electric	adjustable flo	w rate submer	issible pump.					
Well Volumes	F	эΗ	Conductivity (us/cm)	Dissolved Oxygen	Temperature (⁰ C)	ORP	Turbidity (NTUs)	
1	4	.60	0.036	5.13	21.99	325	58	
2	4	.96	0.029	5.59	21.58	310	18	
3	4	.29	0.029	8.53	21.58	353	7.2	
4	4	.25	0.03	8.51	21.62	366	4.8	
5								
6								
7								
Purged To Dryness:	Approximate	ely gallons p	urged prior to sample colled	ction.				
			<u> </u>					
Sample Information								
Method of sampling: Tef	lon bailer with	Teflon-coated	wire lead.					
Decontamination proced	lures: Dedica	ted, one time u	ise sampling equipment per e	ach well per sampling event	. Non-disposal sampling equip	oment decontaminated p	er applicable USEPA SESD	
Sample ID	Con	tainer	Preservative		Analy	/ses		
HRE-0811-MW-6	2 -	40 ml	HCL		Method 8260B V	olatile Organics		
						0		
Sample Transport and F	Preservation:	Ice Filled Co	ooler					
Sample Destination: An	alytical Envir	onmental Ser	vices, Inc.	Via: Hand Delivery via Pe	eachtree Personnel			
Chain of Custody comp	leted: Yes		,					
Peachtree Environmer	ntal Personr	el: Michael H	I. Wilson & Jason P. Chapp	ell				

	Monitoring Well Purging & Sampling Information							
Peachtree Project: Former L	oef Facility (Hu	ill)	Project No.: 2318				Date: 8/4/11	
Well Information								
Well Identification No:	MW-7A	Location:	Athens, Georgia					
Well Diameter:	2-Inch	Well Constru	uction: Schedule 40 PVC					
Total Well Depth from T	OC:	19.50) feet					
Depth to Water from TC	C:	18.05	feet					
Length of Static Water (Column:	1.45	feet					
NOTES:								
Well Observations								
General Condition of W	ell: Good		General Condition of surro	ounding area: Good				
LNAPL observation: NA			Method of measure: NA					
Volume of water in well	= Height (Ht) of water in w	vell x K					
where: K = 0.17	(2-inch well)							
0.571	(3-inch well)							
0.652	(4-inch well))						
Volume of water in well	(Ht. x K):	0.25	gallons			0.74	gallons	
			(1 well volume)				(3 well volumes)	
Well Purging								
Purging method: Electric	adjustable flo	ow rate submer	issible pump.		1		1	
Well Volumes	I	рН	Conductivity (us/cm)	Dissolved Oxygen	Temperature (⁰ C)	ORP	Turbidity (NTUs)	
1	5	.27	0.551	5.44	20.77	98	327	
2	5	5.11	0.547	4.83	20.61	154	98	
3	5	.09	0.544	3.85	20.59	199	1.9	
4								
5								
6								
7								
Purged To Dryness:	Approximate	ely 1.5 gallons	purged prior to sample col	lection.				
Sample Information								
Method of sampling: Tef	lon bailer with	Teflon-coated	wire lead.					
Decontamination procect procedures.	lures: Dedica	ted, one time u	se sampling equipment per e	ach well per sampling event	. Non-disposal sampling equip	oment decontaminated p	er applicable USEPA SESD	
Sample ID	Con	tainer	Preservative		Analy	/ses		
HRE-0811-MW-7	2 -	40 ml	HCL		Method 8260B V	olatile Organics		
Sample Transport and F	Preservation	: Ice Filled Co	oler					
Sample Destination: An	alytical Envir	ronmental Ser	vices, Inc.	Via: Hand Delivery via Pe	eachtree Personnel			
Chain of Custody comp	leted: Yes							
Peachtree Environmer	ntal Personi	nel: Michael H	. Wilson & Jason P. Chapp	ell				

	Monitoring Well Purging & Sampling Information							
Peachtree Project: Former L	oef Facility (Hu	III)	Project No.: 2318				Date: 8/4/11	
Well Information			•					
Well Identification No:	MW-8A	Location:	Athens, Georgia					
Well Diameter:	2-Inch	Well Constru	uction: Schedule 40 PVC					
Total Well Depth from T	OC:	19.50) feet					
Depth to Water from TO	C:	16.87	feet					
Length of Static Water C	Column:	2.63	3 feet					
NOTES:								
Well Observations								
General Condition of We	ell: Good		General Condition of surro	ounding area: Good				
LNAPL observation: NA			Method of measure: NA	-				
Volume of water in well	= Height (Ht) of water in w	vell x K					
where: K = 0.17	(2-inch well))						
0.571	(3-inch well)							
0.652	(4-inch well))						
Volume of water in well	(Ht. x K):	0.45	gallons			1.34	gallons	
			(1 well volume)				(3 well volumes)	
Well Purging			· · ·				· · ·	
Purging method: Electric	adjustable flo	ow rate submer	issible pump.					
Well Volumes	I	рH	Conductivity (us/cm)	Dissolved Oxygen	Temperature (⁰ C)	ORP	Turbidity (NTUs)	
1	5	32	0.820	2 85	21.26	90	563	
2	5	11	0.817	2.56	20.83	168	112	
3	5	12	0.811	2.00	20.58	187	22	
4			0.011	2.12	20.00	101	<i>L.L</i>	
5								
6								
7								
Purged To Dryness	Purged app	roximately 2 () gallons prior to sample co	llection				
r urgeu to Dryness.	r urgeu app	TOXIMUTORY 2.0	galions phor to sample col					
Sample Information								
Method of sampling: Tef	lon bailer with	Teflon-coated	wire lead					
nonioù ei ounipinigi i ei			line load.		NI			
Decontamination proced	iures: Dedica	ted, one time u	ise sampling equipment per e	ach weil per sampling event	. Non-disposal sampling equip	oment decontaminated per	r applicable USEPA SESD	
Sample ID	Con	tainer	Preservative		Analy	/ses		
HRF-0811-MW-8	2-	40 ml	HCI		Method 8260B V	olatile Organics		
	1.6	500 ml	HNO3		Method 60			
	1-0		11100		Wicthod 00			
Sample Transport and F	Preservation	Lce Filled Co	oler					
Sample Destination: An	alvtical Envir	ronmental Sei	vices Inc	Via: Hand Delivery via Pe	Pachtree Personnel			
Chain of Custody compl	leted: Yes							
Peachtree Environmer	ntal Person	nel·Michael H	Wilson & Jason P. Chann	ell				

	Monitoring Well Purging & Sampling Information						
Peachtree Project: Former L	oef Facility (Hu	ll)	Project No.: 2318				Date: 8/4/11
Well Information							
Well Identification No:	MW-9A	Location:	Athens, Georgia				
Well Diameter:	2-Inch	Well Constru	uction: Schedule 40 PVC				
Total Well Depth from T	OC:	20.00) feet				
Depth to Water from TO	C:	14.80) feet				
Length of Static Water C	Column:	5.20) feet				
NOTES:							
Well Observations							
General Condition of We	ell: Good		General Condition of surro	ounding area: Good			
LNAPL observation: NA			Method of measure: NA				
Volume of water in well	= Height (Ht) of water in w	vell x K				
where: K = 0.17	(2-inch well)						
0.571	(3-inch well)						
0.652	(4-inch well)						
Volume of water in well	(Ht. x K):	0.88	gallons			2.65	gallons
			(1 well volume)				(3 well volumes)
Well Purging							
Purging method: Electric	adjustable flo	ow rate submer	rissible pump.				
Well Volumes	F	pH	Conductivity (us/cm)	Dissolved Oxygen	Temperature (⁰ C)	ORP	Turbidity (NTUs)
1	6	.34	0.688	4.77	21.55	-22	167
2	6	.22	0.677	4.61	21.40	-33	25
3	6	.20	0.670	4.57	21.38	-42	5.2
4		-					
5							
6							
7							
Purged To Dryness:	Approximate	ev 3 gallons g	ourged prior to sampling.				•
		, , , ,					
Sample Information							
Method of sampling: Tef	lon bailer with	Teflon-coated	wire lead.				
Decontamination proced	lures: Dedica	ted, one time u	ise sampling equipment per e	ach well per sampling event	. Non-disposal sampling equi	oment decontaminated pe	er applicable USEPA SESD
Sample ID	Con	tainer	Preservative		Δnaly	1995	
HRE-0811-MW-9	2.	40 ml	HCI		Method 8260B V	olatile Organice	
TIKE-0011-WW-9	1-5	40 ml	HNO3		Method 60		
	1-5	00 111	11103		Wethod 00	10 - Leau	
Sample Transport and E	Preservation	Ice Filled Cr	oler				
Sample Destination: An	alutical Envir	conmental Sa		Via: Hand Dolivory via Br	achtree Personnol		
Chain of Custody comp	ated. Yes	onneniai Sei	1000, 110.	VIA. I IAITU DEIIVELY VIA FE	CONTRECT CISCINE		
Boachtroo Environmer	tal Parson	ol. Michael L	Wilson & Jacon D. Chann				
reachtree Environmen	itai reisoni	ICI. MICHAEL F	1. WIISUII & JASUII F. Chapp				

APPENDIX C AUGUST 2011 ANALYTICAL TESTING DATA REPORT

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

August 10, 2011

Michael H. Wilson Peachtree Environmental 5384 Chaversham Lane Norcross GA 300922167

TEL: (770) 330-3327 FAX: (770) 559-8051

RE: Former Loef Facility

Dear Michael H. Wilson:

Order No: 1108440

Analytical Environmental Services, Inc. received 9 samples on 8/5/2011 9:20:00 AM for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative.

AES' certifications are as follows:

-NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water Microbiology, effective 07/01/11-06/30/12. -AIHA Certification ID #100671 for Industrial Hygiene samples (Organics, Inorganics), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) effective until 09/01/13.

These results relate only to the items tested. This report may only be reproduced in full.

If you have any questions regarding these test results, please feel free to call.

James Forrest Project Manager

ANALYTICAL ENVIRONMENTAL SERVICES, INC 3785 Presidential Parkway, Atlanta GA 30340-3704

CHAIN OF CUSTODY

Work Order: 1108440 / /

Charver Charter, Lin, MANTARS RIQ CISTID Visit our website 5, Ci A, 30072 80, Ci A, 30072 10, Ci Check on the status of our derivation from the sta
5. (A. 3002) 0. (A. 3002) 0. (A. 3002) 0. (A. 3002) 0. (A. 3002) 7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
デー・名のと「 では、「、「、「、」、」、、、、、、、、、、、、、、、、、、、、、、、、、、、、
All
The Contract of the second
THE E E E E E E 115 145 140 145 14 14 115 144 144 14 14 115 144 144 14 14 116 144 144 14 14 1145 144 144 14 14 1145 144 144 14 14 1145 144 144 144 14 1145 144 144 144 14 1145 144 144 144 144 1145 144 144 144 144 1145 144 144 144 144 1145 144 144 144 144 1146 144 144 144 144 1146 144 144 144 144 1146 144 144 144 144 1146 144 144 144 144 1144 144 144 144 144 1144 144 144 144 144 1144 144 144 144 144 <t< td=""></t<>
IOS GLN V V V 115 GLN V V 7 23.00 GLN V V 2 20.00 GLN N V 2 20.01 GLN N V 2 20.02 GLN N N 2 20.02 GLN N 1 1 20.02 M N 1 1 20.02 N N N 1 20.02 N <
315 Calo Colo Calo Colo Calo Colo Calo Colo Calo
IIS QW V V V V V T T QIS QW GW V V V Z
045 Calo V V V V V V V Z
145 GW C M E 3200 GW GW F F F 4000 GW F F F F 2001 F F F F F
3200 GW H H H H 1Q00 GW H H H H 1Q00 GW H H H H 1Q00 GW H H H H 1 DATE/TIME ROURCT INFORMATION RECEIPT RECEIPT 1 DATE/TIME REOLITY (HULL) Total a of "ontimes 1 DATE/TIME ROURCT in ZOTA RECEIPT 1 PROJECT in ZOTA Total a of "ontimes 1 M HULL HULL 1 M HULL 1 M <
100 100
Image: Constraint of the second state of the seco
ATE/INE DATE/INE RECEIPT ATE/INE DATE/INE RECEIPT BATE/INE PROJECT INPORTION RECEIPT ATE/INE PROJECT INPORTION RECEIPT ATERDISTION REPORTINE PROJECT INPORTION ATERDISTION REPORTINENTIANO REPORTINE ATERDISTION REPORTINE REPORTINE ATERDISTION REPORTINE REPORTINE
ATTENT RECEIPT DATE/TIME DATE/TIME DATE/TIME DATE/TIME DATE/TIME DATE/TIME DATE/TIME PROJECT INFORMATION RECEIPT RECEIPT Total # of "Continuers" PROJECT # 23.18 PROJECT # 23.18 PROJECT # 23.18 TATE ADDRESS PROJECT # 23.18 PROJECT # 200000000 PROJECT # 2000000000
All DATE/TME RECEIPT DATE/TME DATE/TME RECEIPT DATE/TME DATE/TME RECEIPT DATE/TME ROJECT INVORMATION RECEIPT All DATE/TME RECEIPT All DATE DATE/TACLIATY (Huw) All DATE DATE All DATE DATE DATE
BATE/TIME DATE/TIME PROJECT INFORMATION RECEIPT PROJECT NAME PROJECT INFORMATION RECEIPT PROJECT NAME PROJECT INFORMATION RECEIPT PROJECT # 2318 PROJECT # 2041 # of ("ontances") PROJECT # 2318 PROJECT # 2 Business Days PROJECT # 2318 PROJECT # 2 Business Days PROJECT # 2318 PROJECT # 2 Business Days PROJECT # 2 Business Days PROJECT # 2 Business Days PROJECT # 2 PROJECT # 2 Pusiness Days Project PROJECT # PROJECT # PROJECT # PROJECT # PROJECT # 2 PROJECT # PROJECT # PROJECT # PROJECT # PROJECT # PROJECT # PROJECT # PROJECT PROJECT # PROJECT #<
DATE/TIME DATE/TIME PROJECT INFORMATION RECEIPT BATE/TIME PROJECT INFORMATION RECEIPT BATE/TIME PROJECT INFORMATION RECEIPT Constances PROJECT IN CONTINUE PROJECT INFORMATION Constances PROJECT IN CONTINUE PROJECT INFORMATION Constances PROJECT IN CONTINUE PROJECT IN CONTINUE Constances PROJECT IN PROJECT IN PROJECT IN PROJECT IN PROJECT IN PROJECT IN PROJECT
DATE/TIME PROJECT INFORMATION RECEIPT DATE/TIME PROJECT NAME PROJECT INFORMATION RECEIPT PROJECT NAME PROJECT INTORNATION RECEIPT PROJECT NAME PROJECT NAME PROJECT NAME PROJECT NAME PROJECT NAME PROJECT NAME PROJECT NAME PROJECT NAME RECEIPT PROJECT NAME PROJECT NAME PROJECT NAME PROJECT NAME PROJECT NAME RECEIPT Total # of ("ontamers PROJECT NAME
PROJECT NAME PROJECT NAME PROJECT #: Dereme Loep Facility (Hull) Total # of Containets q.20 PROJECT #: 2318 Tumatound Time Request g.20 PROJECT #: 2318 Containets g.20 PROJECT #: 2318 Containets http://endition Send State Send State http://endition Send State Send State via Via Send Date Send Date via Via Dia Other via Dia Dia Dia via Dia Dia <
4.22 PROJECT # 2.318 Turnaround Time Request siffe ADDRESS Siffe ADDRESS Siffe ADDRESS Sindad 5 Husiness Days siffe ADDRESS ATHEROS, GEOBGAIA Sandard 5 Husiness Days sendard 5 model Sindard 5 Husiness Days Sindard 5 Husiness Days itemation Itemation Not Heros, GeobGAIA Sindard 5 Husiness Days itemation Na Not Heros, GeobGAIA Sindard 5 Husiness Days itemation Na Not Heros, GeobGAIA Sindard 5 Husiness Days itemation Na Not Heros, GeobGAIA Sindard 5 Husiness Days itemation Via Na Na via Via Sindard 5 Pasiness Days Na via Via Sindard 5 Husiness Days Na via Via Sindard 5 Husiness Days Na via Via Pole Data PackAGF 1 softler Pole Pole Data PackAGF 1 softler ARRANGEMENTS ARE MADE. Na Pole 1 1
SITE ADDRESS: ATHERS. ATHERS. Standard 5 Business Days REND REPORT TO. ATHERS. ATHERS. ATHERS. REID REPORT TO. ATHERS. ATHERS. ATHERS. REID REPORT TO. ATHERS. ATHERS. ATHERS. VIA INVOICE TO INVOICE TO ATHERS. ATHERS. VIA VIA Same Day Rush (auth req.) Other ND VIA STATE PROGRAM (if any) Invoice at the post ND OTHER PO# DATA PACKAGE: I II III SEO THER NATE BUSINESS DAY: IF NO TAT IS MARKED ON COC AES WILL PROCEED AS STANDARD TAT. DATA PACKAGE: I II III
FULTION FULTION FULTION Emails 2 Business Day Rush BEND REPORT TO Mediae U 50M 2 Business Day Rush BEND REPORT TO Mediae U 50M Next Business Day Rush VIA INVOICE TO Mediae U 50M Same Day Rush VIA UIA (IF DIFFERENT FROM ABOVE) Same Day Rush (auth req.) Other Difference ND VIA: VIA: COURLER E-mail? V/N; Fax? V/N ND OTHER QUOTE # RO# RO# DATA PACKAGE: I II II V StoTHE NEXT BUSINESS DAY; IF NO TAT IS MARKED ON COC AES WILL, PROCEED AS STANDARD TAT. DATA PACKAGE: I II II IV
HIPMENT METHOD INVOICE TO Same Day Rush (auth req.) VIA VIA Other Other VIA VIA Email? Y/N; Fav? Y/N dex UPS MAIL COURJEK ND OTHER PO# DATA PACKAGE: 1 SOTHER ARRANGEMENTS ARE MADE. SOTHER ARRANGEMENTS ARE MADE. 1 11 11
Characterization Control of the part
VIA. dex UPS MAIL COURIEK ND OTHER E-mail? Y/N, Fax? Y/N E-mail? Y/N, Fax? Y/N E-mail? Y/N, Fax? Y/N DATA PACKAGE: I II II IV ED ON THE NEXT BUSINESS DAY; IF NO TAT IS MARKED ON COC AES WILL PROCEED AS STANDARD TAT.
IND OTHER PO# DATA PACKAGE I III IV ED ON THE NEXT BUSINESS DAY; IF NO TAT IS MARKED ON COC AES WILL PROCEED AS STANDARD TAT. DATA PACKAGE I III IV SS OTHER ARRANGEMENTS ARE MADE. COC AES WILL PROCEED AS STANDARD TAT. COULD AD
VED ON THE NEXT BUSINESS DAY; IF NO TAT IS MARKED ON COC AES WILL PROCEED AS STANDARD TAT. SS OTHER ARRANGEMENTS ARE MADE.

Analytical Environmental Services, Inc

Client: Peachtree Environmental Project: Former Loef Facility Lab ID: 1108440

Case Narrative

The samples "HRE-0811-MW-6", "HRE-0811-MW-3A", and "HRE-0811-MW-4A" were received out of holding time of one day for Ferrous Iron by SM3500-FE D. Proceed with analysis per Jason Chappell on 8/5/11.

Sample Receiving Nonconformance:

A Trip Blank was provided but not listed on the Chain of Custody. Trip blank analyzed at no cost to the client.

Volatile Organic Compounds Analysis by Method 8260B:

Trichloroethene values for the QC samples 1108440-004AMS/MSD are "E" qualified indicating estimated values over linear calibration range due to the level of target analyte present in the unspiked sample.

Acetone, cis-1,2-Dichloroethene and Trichloroethene values for sample 1108440-004A are "E" qualified indicating an estimated value over linear calibration range. Sample could not be diluted and reanalyzed due to second vial used as MS/MSD.

Total Organic Carbon Analysis by Method 9060:

Due to sample matrix, sample 1108440-003C required a dilution during preparation and/or analysis resulting in elevated reporting limits.

Anarytical Environmental Services, Inc								
Client:Peachtree EnvironmentalProject Name:Former Loef FacilityLab ID:1108440-001			Client Sample ID: Collection Date: Matrix:			HRE-0811-MW-6 8/4/2011 7:05:00 AM Groundwater		
Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Total Organic Carbon (TOC) SW9060A								
Organic Carbon, Total	BRL	1.00		mg/L	R202632	2 1	08/05/2011 13:49	GR
TCL VOLATILE ORGANICS SW8260B				(SV	V5030B)			
1.1.1-Trichloroethane	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
1 1 2 2-Tetrachloroethane	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
1 1 2-Trichloroethane	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
1.1-Dichloroethane	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
1.1-Dichloroethene	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
1.2.4-Trichlorobenzene	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
1.2-Dibromo-3-chloropropane	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
1.2-Dibromoethane	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
1.2-Dichlorobenzene	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
1,2-Dichloroethane	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
1,2-Dichloropropane	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
1.3-Dichlorobenzene	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
1,4-Dichlorobenzene	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
2-Butanone	BRL	50		ug/L	150007	1	08/06/2011 02:04	SB
2-Hexanone	BRL	10		ug/L	150007	1	08/06/2011 02:04	SB
4-Methyl-2-pentanone	BRL	10		ug/L	150007	1	08/06/2011 02:04	SB
Acetone	BRL	50		ug/L	150007	1	08/06/2011 02:04	SB
Benzene	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Bromodichloromethane	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Bromoform	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Bromomethane	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Carbon disulfide	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Carbon tetrachloride	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Chlorobenzene	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Chloroethane	BRL	10		ug/L	150007	1	08/06/2011 02:04	SB
Chloroform	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Chloromethane	BRL	10		ug/L	150007	1	08/06/2011 02:04	SB
cis-1,2-Dichloroethene	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
cis-1,3-Dichloropropene	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Cyclohexane	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Dibromochloromethane	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Dichlorodifluoromethane	BRL	10		ug/L	150007	1	08/06/2011 02:04	SB
Ethylbenzene	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Freon-113	BRL	10		ug/L	150007	1	08/06/2011 02:04	SB
Isopropylbenzene	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
m,p-Xylene	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Methyl acetate	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Methyl tert-butyl ether	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB

Analytical Environmental Services, Inc

Date: 10-Aug-11

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

- N Analyte not NELAC certified
- B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

- S Spike Recovery outside limits due to matrix
- Narr See case narrative
- NC Not confirmed
- < Less than Result value
- J Estimated value detected below Reporting Limit

Analytical Environmental Services, In	ic					Date:	10-Aug-11	
Client:Peachtree EnvironmentalProject Name:Former Loef FacilityLab ID:1108440-001			Client Sample ID: Collection Date: Matrix:			HRE-081 8/4/2011 Groundw		
Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW8260)B			(SW	(5030B)			
Methylcyclohexane	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Methylene chloride	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
o-Xylene	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Styrene	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Tetrachloroethene	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Toluene	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
trans-1,2-Dichloroethene	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
trans-1,3-Dichloropropene	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Trichloroethene	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Trichlorofluoromethane	BRL	5.0		ug/L	150007	1	08/06/2011 02:04	SB
Vinyl chloride	BRL	2.0		ug/L	150007	1	08/06/2011 02:04	SB
Surr: 4-Bromofluorobenzene	81.9	64.7-130		%REC	150007	1	08/06/2011 02:04	SB
Surr: Dibromofluoromethane	102	80.7-129		%REC	150007	1	08/06/2011 02:04	SB
Surr: Toluene-d8	96.9	71.1-120		%REC	150007	1	08/06/2011 02:04	SB
Sulfide by SW9030B/9034				(SW	'9030B)			
Sulfide	BRL	2.00		mg/L	150089	1	08/09/2011 10:00	AS
ION SCAN SW9056A								
Nitrate	0.43	0.25		mg/L	R202648	8 1	08/05/2011 10:56	GR
Sulfate	BRL	1.0		mg/L	R202648	8 1	08/05/2011 10:56	GR
GC Analysis of Gaseous Samples SOP-	RSK 175			(RS	K175)			
Ethane	BRL	9		ug/L	150006	1	08/08/2011 10:19	AK
Ethylene	BRL	7		ug/L	150006	1	08/08/2011 10:19	AK
Methane	BRL	4		ug/L	150006	1	08/08/2011 10:19	AK
Ferrous Iron SM3500-Fe-B								
Iron, as Ferrous (Fe+2)	BRL	0.100	Н	mg/L	R202903	3 1	08/05/2011 10:35	CG

- * Value exceeds maximum contaminant level
- BRL Below reporting limit
- H Holding times for preparation or analysis exceeded
- Ν Analyte not NELAC certified
- Analyte detected in the associated method blank В
- > Greater than Result value

- E Estimated (value above quantitation range)
- Spike Recovery outside limits due to matrix S
- Narr See case narrative
- NC Not confirmed
- Less than Result value <
- J Estimated value detected below Reporting Limit

Analytical En	vironmental Services, Inc	2					Date:	10-Aug-11	
Client:Peachtree EnvironmentaProject Name:Former Loef FacilityLab ID:1108440-002					Client Sample ID: Collection Date: Matrix:		HRE-0811-MW-3A 8/4/2011 8:15:00 AM Groundwater		
Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Total Organic	Carbon (TOC) SW9060A								
Organic Carbo	on, Total	1.42	1.00		mg/L	R202632	2 1	08/05/2011 14:12	GR
TCL VOLATI	LE ORGANICS SW8260	B			(SV	V5030B)			
1 1 1-Trichlor	oethane	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
1 1 2 2-Tetracl	hloroethane	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
1 1 2-Trichlor	oethane	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
1 1-Dichloroet	thane	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
1 1-Dichloroet	thene	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
1.2.4-Trichlor	obenzene	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
1.2. Themory	3-chloropropane	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
1,2-Dibromoet	thane	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
1.2-Dictionioe	enzene	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
1,2-Dichloroet	thane	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
1.2-Dichlorop	ropane	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
1.3-Dichlorobe	enzene	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
1 4-Dichlorobe	enzene	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
2-Butanone		BRL	50		ug/L	150007	1	08/06/2011 02:33	SB
2-Hexanone		BRL	10		ug/L	150007	1	08/06/2011 02:33	SB
4-Methyl-2-ne	entanone	BRL	10		ug/L	150007	1	08/06/2011 02:33	SB
Acetone		BRL	50		ug/L	150007	1	08/06/2011 02:33	SB
Benzene		13	5.0		ug/L	150007	1	08/06/2011 02:33	SB
Bromodichloro	omethane	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
Bromoform		BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
Bromomethan	f	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
Carbon disulfi	de	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
Carbon tetrach	loride	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
Chlorobenzene	2	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
Chloroethane	-	BRL	10		ug/L	150007	1	08/06/2011 02:33	SB
Chloroform		BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
Chloromethan	f	BRL	10		ug/L	150007	1	08/06/2011 02:33	SB
cis-1 2-Dichlor	roethene	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
cis-1 3-Dichlor	ropropene	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
Cyclohexane	-opropente	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
Dibromochlor	omethane	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
Dichlorodifluo	promethane	BRL	10		ug/L	150007	1	08/06/2011 02:33	SB
Ethylbenzene		BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
Freon-113		BRL	10		ug/L	150007	1	08/06/2011 02:33	SB
Isopropylbenz	ene	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
m p-Xvlene		BRL	5.0		ug/L	150007	- 1	08/06/2011 02:33	SB
Methyl acetate	`	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
Methyl tert-bu	tvl ether	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
internyi tert bu		Ditt	0.0		0		•		55

BRL Below reporting limit

Bittl Below reporting init

*

H Holding times for preparation or analysis exceeded

Value exceeds maximum contaminant level

- N Analyte not NELAC certified
- B Analyte detected in the associated method blank
- > Greater than Result value

- E Estimated (value above quantitation range)
- S Spike Recovery outside limits due to matrix
- Narr See case narrative
- NC Not confirmed
- < Less than Result value
- J Estimated value detected below Reporting Limit

Analytical Environmental Services	, Inc					Date:	10-Aug-11	
Client:Peachtree EnvironmentalProject Name:Former Loef FacilityLab ID:1108440-002				Client Sam Collection Matrix:	ple ID: Date:	HRE-081 8/4/2011 Groundw	11-MW-3A 8:15:00 AM vater	
Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW8	260B			(SW	(5030B)			
Methylcyclohexane	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
Methylene chloride	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
o-Xylene	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
Styrene	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
Tetrachloroethene	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
Toluene	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
trans-1,2-Dichloroethene	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
trans-1,3-Dichloropropene	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
Trichloroethene	11	5.0		ug/L	150007	1	08/06/2011 02:33	SB
Trichlorofluoromethane	BRL	5.0		ug/L	150007	1	08/06/2011 02:33	SB
Vinyl chloride	BRL	2.0		ug/L	150007	1	08/06/2011 02:33	SB
Surr: 4-Bromofluorobenzene	82.9	64.7-130		%REC	150007	1	08/06/2011 02:33	SB
Surr: Dibromofluoromethane	105	80.7-129		%REC	150007	1	08/06/2011 02:33	SB
Surr: Toluene-d8	91.9	71.1-120		%REC	150007	1	08/06/2011 02:33	SB
Sulfide by SW9030B/9034				(SW	'9030B)			
Sulfide	BRL	2.00		mg/L	150089	1	08/09/2011 10:00	AS
ION SCAN SW9056A								
Nitrate	1.7	0.25		mg/L	R202648	8 1	08/05/2011 11:11	GR
Sulfate	BRL	1.0		mg/L	R202648	8 1	08/05/2011 11:11	GR
GC Analysis of Gaseous Samples SO	P-RSK 175			(RS	K175)			
Ethane	120	9		ug/L	150006	1	08/08/2011 10:37	AK
Ethylene	BRL	7		ug/L	150006	1	08/08/2011 10:37	AK
Methane	1700	80		ug/L	150006	20	08/08/2011 11:08	AK
Ferrous Iron SM3500-Fe-B								
Iron, as Ferrous (Fe+2)	BRL	0.100	Н	mg/L	R202903	3 1	08/05/2011 10:35	CG

- * Value exceeds maximum contaminant level
- BRL Below reporting limit
- H Holding times for preparation or analysis exceeded
- Ν Analyte not NELAC certified
- Analyte detected in the associated method blank В
- > Greater than Result value

- E Estimated (value above quantitation range)
- Spike Recovery outside limits due to matrix S
- Narr See case narrative
- NC Not confirmed
- Less than Result value <
- J Estimated value detected below Reporting Limit

Analytical En	vironmental Services, In	e					Date:	10-Aug-11	
Client: Project Name: Lab ID:	Peachtree Environmental Former Loef Facility 1108440-003				Client San Collection Matrix:	nple ID: Date:	HRE-08 8/4/2011 Groundw	11-MW-4A 9:15:00 AM vater	
Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Total Organic	Carbon (TOC) SW9060A								
Organic Carbo	n, Total	BRL	5.00		mg/L	R202632	2 5	08/05/2011 17:34	GR
TCL VOLATI	LE ORGANICS SW8260	В			(SV	V5030B)			
1 1 1-Trichloro	pethane	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
1 1 2 2-Tetrach	loroethane	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
1 1 2-Trichloro	bethane	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
1 1-Dichloroet	hane	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
1 1-Dichloroet	hene	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
1 2 4-Trichlord	benzene	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
1.2., 1 Triemore	-chloropropane	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
1,2 Dibromoet	hane	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
1.2-Dichlorobe	2nzene	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
1,2 Dichloroet	hane	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
1,2 Dichloropr	onane	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
1.3-Dichlorobe	enzene	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
1 4-Dichlorobe	enzene	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
2-Butanone		BRL	50		ug/L	150007	1	08/06/2011 03:01	SB
2-Hexanone		BRL	10		ug/L	150007	1	08/06/2011 03:01	SB
4-Methyl-2-ne	ntanone	BRL	10		ug/L	150007	1	08/06/2011 03:01	SB
A cetone	nunone	BRL	50		ug/L	150007	1	08/06/2011 03:01	SB
Benzene		29	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Bromodichloro	omethane	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Bromoform	sinouluito	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Bromomethan	a	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Carbon disulfu	e de	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Carbon tetrach	loride	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Chlorobenzene		BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Chloroethane		BRL	10		ug/L	150007	1	08/06/2011 03:01	SB
Chloroform		BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Chloromethane	a	BRL	10		ug/L	150007	1	08/06/2011 03:01	SB
cis-1 2-Dichlor	roethene	9.5	5.0		ug/L	150007	1	08/06/2011 03:01	SB
cis-1 3-Dichlor	ropropene	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Cyclohexane	lopiopene	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Dibromochloro	omethane	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Dichlorodifluo	romethane	BRL	10		ug/L	150007	1	08/06/2011 03:01	SB
Ethylbenzene	loneunune	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Freon-113		BRL	10		ug/L	150007	1	08/06/2011 03:01	SB
Isopronvlbenze	ene	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
m n-Xvlene		BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Methyl acetate		BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Methyl tert-but	tyl ether	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
incury i tort ou	· j · ••••••	5.02	0.0		0		•		22

BRL Below reporting limit

Bittl Below reporting init

*

H Holding times for preparation or analysis exceeded

Value exceeds maximum contaminant level

- N Analyte not NELAC certified
- B Analyte detected in the associated method blank
- > Greater than Result value

- E Estimated (value above quantitation range)
- S Spike Recovery outside limits due to matrix
- Narr See case narrative
- NC Not confirmed
- < Less than Result value
- J Estimated value detected below Reporting Limit

Analytical Environmental Services, l	Inc					Date:	10-Aug-11	
Client:Peachtree EnvironmentalProject Name:Former Loef FacilityLab ID:1108440-003				Client Sample ID: Collection Date: Matrix:		HRE-081 8/4/2011 Groundw	1-MW-4A 9:15:00 AM vater	
Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW82(50B			(SW	(5030B)			
Methylcyclohexane	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Methylene chloride	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
o-Xylene	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Styrene	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Tetrachloroethene	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Toluene	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
trans-1,2-Dichloroethene	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
trans-1,3-Dichloropropene	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Trichloroethene	51	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Trichlorofluoromethane	BRL	5.0		ug/L	150007	1	08/06/2011 03:01	SB
Vinyl chloride	BRL	2.0		ug/L	150007	1	08/06/2011 03:01	SB
Surr: 4-Bromofluorobenzene	85.6	64.7-130		%REC	150007	1	08/06/2011 03:01	SB
Surr: Dibromofluoromethane	96.2	80.7-129		%REC	150007	1	08/06/2011 03:01	SB
Surr: Toluene-d8	90.7	71.1-120		%REC	150007	1	08/06/2011 03:01	SB
Sulfide by SW9030B/9034				(SW	'9030B)			
Sulfide	BRL	2.00		mg/L	150089	1	08/09/2011 10:00	AS
ION SCAN SW9056A								
Nitrate	0.84	0.25		mg/L	R202648	8 1	08/05/2011 11:26	GR
Sulfate	1.7	1.0		mg/L	R202648	8 1	08/05/2011 11:26	GR
GC Analysis of Gaseous Samples SOP	-RSK 175			(RS	K175)			
Ethane	26	9		ug/L	150006	1	08/08/2011 10:41	AK
Ethylene	BRL	7		ug/L	150006	1	08/08/2011 10:41	AK
Methane	440	20		ug/L	150006	5	08/08/2011 11:14	AK
Ferrous Iron SM3500-Fe-B								
Iron, as Ferrous (Fe+2)	BRL	0.100	Н	mg/L	R202903	3 1	08/05/2011 10:35	CG

- * Value exceeds maximum contaminant level
- BRL Below reporting limit
- H Holding times for preparation or analysis exceeded
- Ν Analyte not NELAC certified
- Analyte detected in the associated method blank В
- > Greater than Result value

- E Estimated (value above quantitation range)
- Spike Recovery outside limits due to matrix S
- Narr See case narrative
- NC Not confirmed
- Less than Result value <
- J Estimated value detected below Reporting Limit

Analytical En	vironmental Services, In	c					Date:	10-Aug-11	
Client: Project Name: Lab ID:	Peachtree Environmental Former Loef Facility 1108440-004				Client San Collection Matrix:	nple ID: Date:	HRE-08 8/4/2011 Groundw	11-MW-2A 10:45:00 AM vater	
Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Total Organic	Carbon (TOC) SW9060A	`							
Organic Carbo	n, Total	60.8	5.00		mg/L	R202632	2 5	08/05/2011 15:04	GR
TCL VOLATI	LE ORGANICS SW8260	В			(SV	V5030B)			
1 1 1-Trichloro	oethane	BRL	5.0		ug/L	150007	1	08/06/2011 03:30	SB
1 1 2 2-Tetrack	hloroethane	BRL	5.0		ug/L	150007	1	08/06/2011 03:30	SB
1 1 2-Trichlor	bethane	BRL	5.0		ug/L	150007	1	08/06/2011 03:30	SB
1 1-Dichloroet	hane	21	5.0		ug/L	150007	1	08/06/2011 03:30	SB
1 1-Dichloroet	hene	19	5.0		ug/L	150007	1	08/06/2011 03:30	SB
1 2 4-Trichloro	benzene	BRL	5.0		ug/L	150007	1	08/06/2011 03:30	SB
1.2., 1 Triemore	S-chloropropane	BRL	5.0		ug/L	150007	1	08/06/2011 03:30	SB
1,2 Dibromoet	hane	BRL	5.0		ug/L	150007	1	08/06/2011 03:30	SB
1.2-Dichlorobe	enzene	BRL	5.0		ug/L	150007	1	08/06/2011 03:30	SB
1,2-Dichloroet	hane	BRL	5.0		ug/L	150007	1	08/06/2011 03:30	SB
1.2 Dichloropr	conane	BRL	5.0		ug/L	150007	1	08/06/2011 03:30	SB
1.3-Dichlorobe	enzene	BRL	5.0		ug/L	150007	1	08/06/2011 03:30	SB
1.4-Dichlorobe	enzene	BRL	5.0		ug/L	150007	1	08/06/2011 03:30	SB
2-Butanone	enzene	210	50		ug/L	150007	1	08/06/2011 03:30	SB
2-Butanone		12	10		ug/L	150007	1	08/06/2011 03:30	SB
4-Methyl-2-ne	ntanone	90	10		ug/L	150007	1	08/06/2011 03:30	SB
A cetone	nunone	670	50	Е	ug/L	150007	1	08/06/2011 03:30	SB
Benzene		13	5.0	Ľ	ug/L	150007	1	08/06/2011 03:30	SB
Bromodichlore	amethane	BRI	5.0		ug/L	150007	1	08/06/2011 03:30	SB
Bromoform	Jinemane	BRI	5.0		ug/L	150007	1	08/06/2011 03:30	SB
Bromomethan	a	BRI	5.0		ug/L	150007	1	08/06/2011 03:30	SB
Carbon disulfu	de	9.0	5.0		ug/L	150007	1	08/06/2011 03:30	SB
Carbon tetrach	loride	BRI	5.0		ug/L	150007	1	08/06/2011 03:30	SB
Chlorobenzene		BRI	5.0		ug/L	150007	1	08/06/2011 03:30	SB
Chloroethane	~	BRI	10		ug/L	150007	1	08/06/2011 03:30	SB
Chloroform		BRL	5.0		ug/L	150007	1	08/06/2011 03:30	SB
Chloromethan	a	BRI	10		ug/L	150007	1	08/06/2011 03:30	SB
cis-1 2-Dichlor	roethene	390	5.0	F	ug/L	150007	1	08/06/2011 03:30	SB
cis-1 3-Dichlor	ropropene	BRL	5.0	Ľ	ug/L	150007	1	08/06/2011 03:30	SB
Cyclohevane	TopTopene	BRL	5.0		ug/L	150007	1	08/06/2011 03:30	SB
Dibromochlor	omethane	BRI	5.0		ug/L	150007	1	08/06/2011 03:30	SB
Dichlorodifluo	vomethane	BRL	10		ug/L	150007	1	08/06/2011 03:30	SB
Ethylbenzene	Nomethane	BRI	5.0		ug/L	150007	1	08/06/2011 03:30	SB
Ereon-113		RRI	10		ug/L	150007	1	08/06/2011 03:30	SR
Isopropulberg	ene	RRI	5.0		119/L	150007	1	08/06/2011 03:30	SB
m n-Xylana		7 8	5.0		119/L	150007	1	08/06/2011 03:30	SB
Methyl acetata		RRI	5.0		119/L	150007	1	08/06/2011 03:30	SB
Methyl tort h	tyl ether	12	5.0		110/I	150007	1	08/06/2011 03:20	SD
wiennyi tert-bu	cyr culor		5.0			100007	1	00/00/2011 00.00	50

Qualifiers: * Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

- Analyte not NELAC certified Ν
- Analyte detected in the associated method blank В
- > Greater than Result value

- E Estimated (value above quantitation range)
- Spike Recovery outside limits due to matrix S
- Narr See case narrative
- NC Not confirmed
- Less than Result value <
- J Estimated value detected below Reporting Limit

Analytical Env	vironmental Services, Inc	:					Date:	10-Aug-11	
Client: Project Name: Lab ID:	Peachtree Environmental Former Loef Facility 1108440-004				Client Sample ID: Collection Date: Matrix:		HRE-081 8/4/2011 Groundw	1-MW-2A 10:45:00 AM rater	
Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATII	LE ORGANICS SW8260	3			(SW	/5030B)			
Methylcyclohe	xane	BRL	5.0		ug/L	150007	1	08/06/2011 03:30	SB
Methylene chlo	oride	BRL	5.0		ug/L	150007	1	08/06/2011 03:30	SB
o-Xylene		7.6	5.0		ug/L	150007	1	08/06/2011 03:30	SB
Styrene		BRL	5.0		ug/L	150007	1	08/06/2011 03:30	SB
Tetrachloroethe	ene	BRL	5.0		ug/L	150007	1	08/06/2011 03:30	SB
Toluene		13	5.0		ug/L	150007	1	08/06/2011 03:30	SB
trans-1,2-Dichl	oroethene	BRL	5.0		ug/L	150007	1	08/06/2011 03:30	SB
trans-1,3-Dichl	oropropene	BRL	5.0		ug/L	150007	1	08/06/2011 03:30	SB
Trichloroethene	2	810	5.0	Е	ug/L	150007	1	08/06/2011 03:30	SB
Trichlorofluoro	omethane	BRL	5.0		ug/L	150007	1	08/06/2011 03:30	SB
Vinyl chloride		61	2.0		ug/L	150007	1	08/06/2011 03:30	SB
Surr: 4-Brome	ofluorobenzene	101	64.7-130		%REC	150007	1	08/06/2011 03:30	SB
Surr: Dibrome	ofluoromethane	93	80.7-129		%REC	150007	1	08/06/2011 03:30	SB
Surr: Toluene-	-d8	105	71.1-120		%REC	150007	1	08/06/2011 03:30	SB
Sulfide by SW9	030B/9034				(SW	/9030B)			
Sulfide		BRL	2.00		mg/L	150089	1	08/09/2011 10:00	AS
ION SCAN S	W9056A								
Nitrate		BRL	0.25		mg/L	R202648	3 1	08/05/2011 11:40	GR
Sulfate		BRL	1.0		mg/L	R202648	3 1	08/05/2011 11:40	GR
GC Analysis of	Gaseous Samples SOP-R	SK 175			(RS	K175)			
Ethane		78	9		ug/L	150006	1	08/08/2011 10:46	AK
Ethylene		BRL	7		ug/L	150006	1	08/08/2011 10:46	AK
Methane		3100	200		ug/L	150006	50	08/08/2011 11:20	AK
Ferrous Iron	SM3500-Fe-B								
Iron, as Ferrous	s (Fe+2)	47.0	5.00		mg/L	R202903	3 50	08/05/2011 10:35	CG

- * Value exceeds maximum contaminant level
- BRL Below reporting limit
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank
- > Greater than Result value

- E Estimated (value above quantitation range)
- S Spike Recovery outside limits due to matrix
- Narr See case narrative
- NC Not confirmed
- < Less than Result value
- J Estimated value detected below Reporting Limit

Analytical Environmental Services, Inc						Date:	10-Aug-11	
Client:Peachtree EnvironmentalProject Name:Former Loef FacilityLab ID:1108440-005				Client Sar Collection Matrix:	nple ID: Date:	HRE-081 8/4/2011 Groundw	1-MW-9A 11:45:00 AM rater	
Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW8260B				(SV	V5030B)			
1,1,1-Trichloroethane	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
1,1,2,2-Tetrachloroethane	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
1,1,2-Trichloroethane	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
1,1-Dichloroethane	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
1,1-Dichloroethene	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
1,2,4-Trichlorobenzene	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
1,2-Dibromo-3-chloropropane	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
1,2-Dibromoethane	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
1,2-Dichlorobenzene	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
1,2-Dichloroethane	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
1,2-Dichloropropane	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
1,3-Dichlorobenzene	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
1,4-Dichlorobenzene	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
2-Butanone	BRL	50		ug/L	150007	1	08/08/2011 11:48	SB
2-Hexanone	BRL	10		ug/L	150007	1	08/08/2011 11:48	SB
4-Methyl-2-pentanone	BRL	10		ug/L	150007	1	08/08/2011 11:48	SB
Acetone	BRL	50		ug/L	150007	1	08/08/2011 11:48	SB
Benzene	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
Bromodichloromethane	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
Bromoform	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
Bromomethane	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
Carbon disulfide	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
Carbon tetrachloride	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
Chlorobenzene	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
Chloroethane	BRL	10		ug/L	150007	1	08/08/2011 11:48	SB
Chloroform	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
Chloromethane	BRL	10		ug/L	150007	1	08/08/2011 11:48	SB
cis-1 2-Dichloroethene	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
cis-1 3-Dichloropropene	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
Cyclohexane	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
Dibromochloromethane	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
Dichlorodifluoromethane	BRL	10		ug/L	150007	1	08/08/2011 11:48	SB
Ethylbenzene	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
Freon-113	BRL	10		ug/L	150007	1	08/08/2011 11:48	SB
Isopropulhenzene	BRI	5.0		ug/L	150007	1	08/08/2011 11:48	SB
m n-Xylene	BRI	5.0		ug/L	150007	1	08/08/2011 11:48	SB
mp-xytene Methyl acetate	BRI	5.0		119/L	150007	1	08/08/2011 11:48	SB
Methyl tert-hutyl ether	BRI	5.0		11g/L	150007	1	08/08/2011 11:40	SD SR
Methylevelohevane	BDI	5.0		110/I	150007	1	08/08/2011 11:40	SD
Methylene chloride	BDI	5.0		110/I	150007	1	08/08/2011 11:40	SD
	DIL	5.0		ug/L 110/Г	150007	1	08/08/2011 11.40	5D 6D
U-Ayiciic	DKL	5.0		ug/12	150007	1	00/00/2011 11.40	30

BRL Below reporting limit

Bith Below reporting init

*

H Holding times for preparation or analysis exceeded

Value exceeds maximum contaminant level

- N Analyte not NELAC certified
- B Analyte detected in the associated method blank
- > Greater than Result value

- E Estimated (value above quantitation range)
- S Spike Recovery outside limits due to matrix
- Narr See case narrative
- NC Not confirmed
- < Less than Result value
- J Estimated value detected below Reporting Limit

Analytical Environmental Services, Inc						Date:	10-Aug-11	
Client:Peachtree EnvironmentalProject Name:Former Loef FacilityLab ID:1108440-005				Client San Collection Matrix:	iple ID: Date:	HRE-081 8/4/2011 Groundw	1-MW-9A 11:45:00 AM ater	
Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW8260B				(SW	/5030B)			
Styrene	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
Tetrachloroethene	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
Toluene	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
trans-1,2-Dichloroethene	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
trans-1,3-Dichloropropene	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
Trichloroethene	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
Trichlorofluoromethane	BRL	5.0		ug/L	150007	1	08/08/2011 11:48	SB
Vinyl chloride	BRL	2.0		ug/L	150007	1	08/08/2011 11:48	SB
Surr: 4-Bromofluorobenzene	80.4	64.7-130		%REC	150007	1	08/08/2011 11:48	SB
Surr: Dibromofluoromethane	104	80.7-129		%REC	150007	1	08/08/2011 11:48	SB
Surr: Toluene-d8	93.2	71.1-120		%REC	150007	1	08/08/2011 11:48	SB

* Value exceeds maximum contaminant level

BRL Below reporting limit

- H Holding times for preparation or analysis exceeded
- Ν Analyte not NELAC certified
- Analyte detected in the associated method blank В
- > Greater than Result value

- E Estimated (value above quantitation range)
- Spike Recovery outside limits due to matrix S
- Narr See case narrative
- NC Not confirmed
- Less than Result value <
- J Estimated value detected below Reporting Limit

Analytical Environme	ntal Services, Inc						Date:	10-Aug-11	
Client:PeachtreeProject Name:Former LoLab ID:1108440-0	Environmental oef Facility 006				Client San Collection Matrix:	nple ID: Date:	HRE-081 8/4/2011 Groundw	1-MW-8A 11:45:00 AM rater	
Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGA	ANICS SW8260B				(SV	V5030B)			
1,1,1-Trichloroethane		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
1,1,2,2-Tetrachloroethane		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
1,1,2-Trichloroethane		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
1,1-Dichloroethane		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
1,1-Dichloroethene		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
1,2,4-Trichlorobenzene		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
1,2-Dibromo-3-chloropro	pane	BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
1,2-Dibromoethane		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
1,2-Dichlorobenzene		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
1,2-Dichloroethane		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
1,2-Dichloropropane		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
1,3-Dichlorobenzene		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
1,4-Dichlorobenzene		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
2-Butanone		BRL	50		ug/L	150007	1	08/08/2011 12:17	SB
2-Hexanone		BRL	10		ug/L	150007	1	08/08/2011 12:17	SB
4-Methyl-2-pentanone		BRL	10		ug/L	150007	1	08/08/2011 12:17	SB
Acetone		BRL	50		ug/L	150007	1	08/08/2011 12:17	SB
Benzene		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Bromodichloromethane		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Bromoform		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Bromomethane		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Carbon disulfide		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Carbon tetrachloride		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Chlorobenzene		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Chloroethane		BRL	10		ug/L	150007	1	08/08/2011 12:17	SB
Chloroform		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Chloromethane		BRL	10		ug/L	150007	1	08/08/2011 12:17	SB
cis-1,2-Dichloroethene		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
cis-1,3-Dichloropropene		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Cyclohexane		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Dibromochloromethane		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Dichlorodifluoromethane		BRL	10		ug/L	150007	1	08/08/2011 12:17	SB
Ethylbenzene		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Freon-113		BRL	10		ug/L	150007	1	08/08/2011 12:17	SB
Isopropylbenzene		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
m,p-Xylene		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Methyl acetate		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Methyl tert-butyl ether		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Methylcyclohexane		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Methylene chloride		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
o-Xylene		BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
-									

* Value exceeds maximum contaminant level

BRL Below reporting limit

Holding times for preparation or analysis exceeded Н

- Ν Analyte not NELAC certified
- Analyte detected in the associated method blank В

> Greater than Result value

- E Estimated (value above quantitation range)
- S Spike Recovery outside limits due to matrix
- Narr See case narrative
- NC Not confirmed
- Less than Result value <
- J Estimated value detected below Reporting Limit

Analytical Environmental Services, Inc						Date:	10-Aug-11	
Client:Peachtree EnvironmentalProject Name:Former Loef FacilityLab ID:1108440-006			Client Sample ID: Collection Date: Matrix:			HRE-081 8/4/2011 Groundw		
Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW8260B				(SW	/5030B)			
Styrene	BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Tetrachloroethene	BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Toluene	BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
trans-1,2-Dichloroethene	BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
trans-1,3-Dichloropropene	BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Trichloroethene	BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Trichlorofluoromethane	BRL	5.0		ug/L	150007	1	08/08/2011 12:17	SB
Vinyl chloride	BRL	2.0		ug/L	150007	1	08/08/2011 12:17	SB
Surr: 4-Bromofluorobenzene	83	64.7-130		%REC	150007	1	08/08/2011 12:17	SB
Surr: Dibromofluoromethane	101	80.7-129		%REC	150007	1	08/08/2011 12:17	SB
Surr: Toluene-d8	93	71.1-120		%REC	150007	1	08/08/2011 12:17	SB

* Value exceeds maximum contaminant level

BRL Below reporting limit

- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank
- > Greater than Result value

- E Estimated (value above quantitation range)
- S Spike Recovery outside limits due to matrix
- Narr See case narrative
- NC Not confirmed
- < Less than Result value
- J Estimated value detected below Reporting Limit

Analytical Environmental Services, Inc						Date:	10-Aug-11	
Client:Peachtree EnvironmentalProject Name:Former Loef FacilityLab ID:1108440-007				Client San Collection Matrix:	nple ID: Date:	HRE-081 8/4/2011 Groundw	1-MW-7A 1:00:00 PM rater	
Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW8260B				(SV	V5030B)			
1,1,1-Trichloroethane	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
1,1,2,2-Tetrachloroethane	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
1,1,2-Trichloroethane	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
1,1-Dichloroethane	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
1,1-Dichloroethene	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
1,2,4-Trichlorobenzene	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
1,2-Dibromo-3-chloropropane	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
1,2-Dibromoethane	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
1,2-Dichlorobenzene	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
1,2-Dichloroethane	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
1,2-Dichloropropane	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
1,3-Dichlorobenzene	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
1,4-Dichlorobenzene	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
2-Butanone	BRL	50		ug/L	150007	1	08/08/2011 12:45	SB
2-Hexanone	BRL	10		ug/L	150007	1	08/08/2011 12:45	SB
4-Methyl-2-pentanone	BRL	10		ug/L	150007	1	08/08/2011 12:45	SB
Acetone	BRL	50		ug/L	150007	1	08/08/2011 12:45	SB
Benzene	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Bromodichloromethane	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Bromoform	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Bromomethane	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Carbon disulfide	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Carbon tetrachloride	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Chlorobenzene	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Chloroethane	BRL	10		ug/L	150007	1	08/08/2011 12:45	SB
Chloroform	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Chloromethane	BRL	10		ug/L	150007	1	08/08/2011 12:45	SB
cis-1,2-Dichloroethene	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
cis-1,3-Dichloropropene	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Cyclohexane	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Dibromochloromethane	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Dichlorodifluoromethane	BRL	10		ug/L	150007	1	08/08/2011 12:45	SB
Ethylbenzene	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Freon-113	BRL	10		ug/L	150007	1	08/08/2011 12:45	SB
Isopropylbenzene	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
m,p-Xylene	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Methyl acetate	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Methyl tert-butyl ether	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Methylcyclohexane	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Methylene chloride	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
o-Xylene	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
-								

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

- E Estimated (value above quantitation range)
- S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Analytical Environmental Services, Inc						Date:	10-Aug-11	
Client:Peachtree EnvironmentalProject Name:Former Loef FacilityLab ID:1108440-007			Client Sample ID: Collection Date: Matrix:			HRE-081 8/4/2011 Groundw		
Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW8260B				(SV	V5030B)			
Styrene	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Tetrachloroethene	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Toluene	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
trans-1,2-Dichloroethene	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
trans-1,3-Dichloropropene	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Trichloroethene	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Trichlorofluoromethane	BRL	5.0		ug/L	150007	1	08/08/2011 12:45	SB
Vinyl chloride	BRL	2.0		ug/L	150007	1	08/08/2011 12:45	SB
Surr: 4-Bromofluorobenzene	83.2	64.7-130		%REC	150007	1	08/08/2011 12:45	SB
Surr: Dibromofluoromethane	105	80.7-129		%REC	150007	1	08/08/2011 12:45	SB
Surr: Toluene-d8	94	71.1-120		%REC	150007	1	08/08/2011 12:45	SB

* Value exceeds maximum contaminant level

BRL Below reporting limit

- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank
- > Greater than Result value

- E Estimated (value above quantitation range)
- S Spike Recovery outside limits due to matrix
- Narr See case narrative
- NC Not confirmed
- < Less than Result value
- J Estimated value detected below Reporting Limit

Analytical Environmental Services, Inc						Date:	10-Aug-11	
Client:Peachtree EnvironmentalProject Name:Former Loef FacilityLab ID:1108440-008				Client San Collection Matrix:	nple ID: Date:	HRE-081 8/4/2011 Groundw	1-DUP 2:00:00 PM rater	
Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW8260B				(SV	V5030B)			
1,1,1-Trichloroethane	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
1,1,2,2-Tetrachloroethane	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
1,1,2-Trichloroethane	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
1,1-Dichloroethane	21	5.0		ug/L	150007	1	08/08/2011 13:14	SB
1,1-Dichloroethene	18	5.0		ug/L	150007	1	08/08/2011 13:14	SB
1,2,4-Trichlorobenzene	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
1,2-Dibromo-3-chloropropane	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
1,2-Dibromoethane	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
1,2-Dichlorobenzene	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
1,2-Dichloroethane	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
1,2-Dichloropropane	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
1,3-Dichlorobenzene	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
1,4-Dichlorobenzene	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
2-Butanone	150	50		ug/L	150007	1	08/08/2011 13:14	SB
2-Hexanone	10	10		ug/L	150007	1	08/08/2011 13:14	SB
4-Methyl-2-pentanone	79	10		ug/L	150007	1	08/08/2011 13:14	SB
Acetone	630	500		ug/L	150007	10	08/08/2011 13:43	SB
Benzene	11	5.0		ug/L	150007	1	08/08/2011 13:14	SB
Bromodichloromethane	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
Bromoform	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
Bromomethane	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
Carbon disulfide	7.2	5.0		ug/L	150007	1	08/08/2011 13:14	SB
Carbon tetrachloride	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
Chlorobenzene	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
Chloroethane	BRL	10		ug/L	150007	1	08/08/2011 13:14	SB
Chloroform	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
Chloromethane	BRL	10		ug/L	150007	1	08/08/2011 13:14	SB
cis-1,2-Dichloroethene	310	50		ug/L	150007	10	08/08/2011 13:43	SB
cis-1,3-Dichloropropene	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
Cyclohexane	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
Dibromochloromethane	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
Dichlorodifluoromethane	BRL	10		ug/L	150007	1	08/08/2011 13:14	SB
Ethylbenzene	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
Freon-113	BRL	10		ug/L	150007	1	08/08/2011 13:14	SB
Isopropylbenzene	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
m,p-Xylene	7.1	5.0		ug/L	150007	1	08/08/2011 13:14	SB
Methyl acetate	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
Methyl tert-butyl ether	38	5.0		ug/L	150007	1	08/08/2011 13:14	SB
Methylcyclohexane	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
Methylene chloride	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
o-Xylene	6.8	5.0		ug/L	150007	1	08/08/2011 13:14	SB
-								

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

- E Estimated (value above quantitation range)
- S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Analytical Environmental Services, Inc						Date:	10-Aug-11	
Client:Peachtree EnvironmentalProject Name:Former Loef FacilityLab ID:1108440-008				Client Sar Collection Matrix:	nple ID: Date:	HRE-081 8/4/2011 Groundw	1-DUP 2:00:00 PM ater	
Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW8260B				(SV	V5030B)			
Styrene	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
Tetrachloroethene	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
Toluene	11	5.0		ug/L	150007	1	08/08/2011 13:14	SB
trans-1,2-Dichloroethene	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
trans-1,3-Dichloropropene	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
Trichloroethene	680	50		ug/L	150007	10	08/08/2011 13:43	SB
Trichlorofluoromethane	BRL	5.0		ug/L	150007	1	08/08/2011 13:14	SB
Vinyl chloride	55	2.0		ug/L	150007	1	08/08/2011 13:14	SB
Surr: 4-Bromofluorobenzene	85.6	64.7-130		%REC	150007	10	08/08/2011 13:43	SB
Surr: 4-Bromofluorobenzene	102	64.7-130		%REC	150007	1	08/08/2011 13:14	SB
Surr: Dibromofluoromethane	97.5	80.7-129		%REC	150007	1	08/08/2011 13:14	SB
Surr: Dibromofluoromethane	103	80.7-129		%REC	150007	10	08/08/2011 13:43	SB
Surr: Toluene-d8	97.6	71.1-120		%REC	150007	10	08/08/2011 13:43	SB
Surr: Toluene-d8	107	71.1-120		%REC	150007	1	08/08/2011 13:14	SB

* Value exceeds maximum contaminant level

BRL Below reporting limit

- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank
- > Greater than Result value

- E Estimated (value above quantitation range)
- S Spike Recovery outside limits due to matrix
- Narr See case narrative
- NC Not confirmed
- < Less than Result value
- J Estimated value detected below Reporting Limit

Analytical Environmental Services, Inc						Date:	10-Aug-11	
Client:Peachtree EnvironmentalProject Name:Former Loef FacilityLab ID:1108440-009				Client Sar Collection Matrix:	nple ID: Date:	TRIP BL 8/5/2011 Aqueous	ANK	Analyst
Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW8260B				(SV	V5030B)			
1,1,1-Trichloroethane	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
1,1,2,2-Tetrachloroethane	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
1,1,2-Trichloroethane	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
1,1-Dichloroethane	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
1,1-Dichloroethene	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
1,2,4-Trichlorobenzene	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
1,2-Dibromo-3-chloropropane	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
1,2-Dibromoethane	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
1,2-Dichlorobenzene	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
1,2-Dichloroethane	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
1,2-Dichloropropane	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
1,3-Dichlorobenzene	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
1,4-Dichlorobenzene	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
2-Butanone	BRL	50		ug/L	150007	1	08/05/2011 18:26	SB
2-Hexanone	BRL	10		ug/L	150007	1	08/05/2011 18:26	SB
4-Methyl-2-pentanone	BRL	10		ug/L	150007	1	08/05/2011 18:26	SB
Acetone	BRL	50		ug/L	150007	1	08/05/2011 18:26	SB
Benzene	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
Bromodichloromethane	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
Bromoform	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
Bromomethane	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
Carbon disulfide	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
Carbon tetrachloride	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
Chlorobenzene	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
Chloroethane	BRL	10		ug/L	150007	1	08/05/2011 18:26	SB
Chloroform	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
Chloromethane	BRL	10		ug/L	150007	1	08/05/2011 18:26	SB
cis-1,2-Dichloroethene	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
cis-1,3-Dichloropropene	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
Cyclohexane	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
Dibromochloromethane	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
Dichlorodifluoromethane	BRL	10		ug/L	150007	1	08/05/2011 18:26	SB
Ethylbenzene	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
Freon-113	BRL	10		ug/L	150007	1	08/05/2011 18:26	SB
Isopropylbenzene	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
m,p-Xylene	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
Methyl acetate	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
Methyl tert-butyl ether	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
Methylcyclohexane	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
Methylene chloride	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB
o-Xylene	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB

*

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

Ν Analyte not NELAC certified

Analyte detected in the associated method blank В

Value exceeds maximum contaminant level

> Greater than Result value

- E Estimated (value above quantitation range)
- Spike Recovery outside limits due to matrix S

Narr See case narrative

- NC Not confirmed
- Less than Result value <
- J Estimated value detected below Reporting Limit

Data 10 41 α 11

lettical Environmental Coursia

Analytical Environmental Services, Inc						Date:	10-Aug-11					
Client:Peachtree EnvironmentalProject Name:Former Loef FacilityLab ID:1108440-009				Client San Collection Matrix:	iple ID: Date:	TRIP BL 8/5/2011 Aqueous	ANK					
Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst				
TCL VOLATILE ORGANICS SW8260B				(SW	/5030B)							
Styrene	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB				
Tetrachloroethene	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB				
Toluene	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB				
trans-1,2-Dichloroethene	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB				
trans-1,3-Dichloropropene	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB				
Trichloroethene	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB				
Trichlorofluoromethane	BRL	5.0		ug/L	150007	1	08/05/2011 18:26	SB				
Vinyl chloride	BRL	2.0		ug/L	150007	1	08/05/2011 18:26	SB				
Surr: 4-Bromofluorobenzene	86.5	64.7-130		%REC	150007	1	08/05/2011 18:26	SB				
Surr: Dibromofluoromethane	95.3	80.7-129		%REC	150007	1	08/05/2011 18:26	SB				
Surr: Toluene-d8	92.2	71.1-120		%REC	150007	1	08/05/2011 18:26	SB				

* Value exceeds maximum contaminant level

BRL Below reporting limit

- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank
- > Greater than Result value

- E Estimated (value above quantitation range)
- S Spike Recovery outside limits due to matrix
- Narr See case narrative
- NC Not confirmed
- < Less than Result value
- J Estimated value detected below Reporting Limit

Analytical Environmental Services, Inc.

Sample/Cooler Receipt Checklist

Client Peachtree Eur.		Work Or	der Number	1108440
Checklist completed by	8/5/1	1]		
Carrier name: FedEx UPS Courier Client US	S Mail Othe	r		
Shipping container/cooler in good condition?	Yes	No	Not Present	_
Custody seals intact on shipping container/cooler?	Yes	No	Not Present	
Custody seals intact on sample bottles?	Yes	No	Not Present	
Container/Temp Blank temperature in compliance? (4°C±2)*	Yes_	No		
Cooler #1 3. 30 Cooler #2 Cooler #3	_ Cooler #4 _	C	Cooler#5	Cooler #6
Chain of custody present?	Yes _	No		
Chain of custody signed when relinquished and received?	Yes _ A	No		
Chain of custody agrees with sample labels?	Yes _40	No 1		
Samples in proper container/bottle?	$_{\rm Yes}$ _ V	No		
Sample containers intact?	Yes _	No		
Sufficient sample volume for indicated test?	Yes _	No		
All samples received within holding time?	Yes	No	レ	
Was TAT marked on the COC?	Yes	No		
Proceed with Standard TAT as per project history?	Yes	No	Not Applicab	le
Water - VOA vials have zero headspace? No VOA vials su	bmitted	Yes _	_{No}	
Water - pH acceptable upon receipt?	Yes _	No	Not Applicab	le
Adjusted?	Che	cked by	<u>P</u> [
Sample Condition: Good Other(Explain)			/	<u></u>
(For diffusive samples or AIHA lead) Is a known blank includ	ed? Yes		No	

See Case Narrative for resolution of the Non-Conformance.

* Samples do not have to comply with the given range for certain parameters.

 $\label{eq:lists} Assurance Checklists Procedures Sign-Off Templates Checklists Sample Receipt Checklists Sample Cooler_Receipt_Checklists Sample Cooler_Receipt Checklists Sample Cooler_Receipt Checklists Sample Cooler_Receipt Checklists Sample S$

Project: Lab Order:	Former Loef Facility 1108440				Dates R	Report		
Lab Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date	Prep Date	Analysis Date	
1108440-001A	HRE-0811-MW-6	8/4/2011 7:05:00AM	Groundwater	TCL VOLATILE ORGANICS		08/05/2011	08/06/2011	
1108440-001B	HRE-0811-MW-6	8/4/2011 7:05:00AM	Groundwater	GC Analysis of Gaseous Samples		08/08/2011	08/08/2011	
1108440-001C	HRE-0811-MW-6	8/4/2011 7:05:00AM	Groundwater	Total Organic Carbon (TOC)			08/05/2011	
1108440-001D	HRE-0811-MW-6	8/4/2011 7:05:00AM	Groundwater	Sulfide by SW9030/9034		08/09/2011	08/09/2011	
1108440-001E	HRE-0811-MW-6	8/4/2011 7:05:00AM	Groundwater	ION SCAN			08/05/2011	
1108440-001E	HRE-0811-MW-6	8/4/2011 7:05:00AM	Groundwater	Ferrous Iron			08/05/2011	
1108440-002A	HRE-0811-MW-3A	8/4/2011 8:15:00AM	Groundwater	TCL VOLATILE ORGANICS		08/05/2011	08/06/2011	
1108440-002B	HRE-0811-MW-3A	8/4/2011 8:15:00AM	Groundwater	GC Analysis of Gaseous Samples		08/08/2011	08/08/2011	
1108440-002C	HRE-0811-MW-3A	8/4/2011 8:15:00AM	Groundwater	Total Organic Carbon (TOC)			08/05/2011	
1108440-002D	HRE-0811-MW-3A	8/4/2011 8:15:00AM	Groundwater	Sulfide by SW9030/9034		08/09/2011	08/09/2011	
1108440-002E	HRE-0811-MW-3A	8/4/2011 8:15:00AM	Groundwater	ION SCAN			08/05/2011	
1108440-002E	HRE-0811-MW-3A	8/4/2011 8:15:00AM	Groundwater	Ferrous Iron			08/05/2011	
1108440-003A	HRE-0811-MW-4A	8/4/2011 9:15:00AM	Groundwater	TCL VOLATILE ORGANICS		08/05/2011	08/06/2011	
1108440-003B	HRE-0811-MW-4A	8/4/2011 9:15:00AM	Groundwater	GC Analysis of Gaseous Samples		08/08/2011	08/08/2011	
1108440-003C	HRE-0811-MW-4A	8/4/2011 9:15:00AM	Groundwater	Total Organic Carbon (TOC)			08/05/2011	
1108440-003D	HRE-0811-MW-4A	8/4/2011 9:15:00AM	Groundwater	Sulfide by SW9030/9034		08/09/2011	08/09/2011	
1108440-003E	HRE-0811-MW-4A	8/4/2011 9:15:00AM	Groundwater	ION SCAN			08/05/2011	
1108440-003E	HRE-0811-MW-4A	8/4/2011 9:15:00AM	Groundwater	Ferrous Iron			08/05/2011	
1108440-004A	HRE-0811-MW-2A	8/4/2011 10:45:00AM	Groundwater	TCL VOLATILE ORGANICS		08/05/2011	08/06/2011	
1108440-004A	HRE-0811-MW-2A	8/4/2011 10:45:00AM	Groundwater	Volatile Organic Compounds by GC/MS		08/05/2011	08/06/2011	
1108440-004B	HRE-0811-MW-2A	8/4/2011 10:45:00AM	Groundwater	GC Analysis of Gaseous Samples		08/08/2011	08/08/2011	
1108440-004C	HRE-0811-MW-2A	8/4/2011 10:45:00AM	Groundwater	Total Organic Carbon (TOC)			08/05/2011	
1108440-004D	HRE-0811-MW-2A	8/4/2011 10:45:00AM	Groundwater	Sulfide by SW9030/9034		08/09/2011	08/09/2011	
1108440-004E	HRE-0811-MW-2A	8/4/2011 10:45:00AM	Groundwater	ION SCAN			08/05/2011	
1108440-004E	HRE-0811-MW-2A	8/4/2011 10:45:00AM	Groundwater	Ferrous Iron			08/05/2011	
1108440-005A	HRE-0811-MW-9A	8/4/2011 11:45:00AM	Groundwater	TCL VOLATILE ORGANICS		08/05/2011	08/08/2011	
1108440-006A	HRE-0811-MW-8A	8/4/2011 11:45:00AM	Groundwater	TCL VOLATILE ORGANICS		08/05/2011	08/08/2011	
1108440-007A	HRE-0811-MW-7A	8/4/2011 1:00:00PM	Groundwater	TCL VOLATILE ORGANICS		08/05/2011	08/08/2011	
1108440-008A	HRE-0811-DUP	8/4/2011 2:00:00PM	Groundwater	TCL VOLATILE ORGANICS		08/05/2011	08/08/2011	

Client: Project: Lab Order:	Peachtree Environmental Former Loef Facility 1108440				Dates R	eport	
Lab Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date	Prep Date	Analysis Date
1108440-009A	TRIP BLANK	8/5/2011 12:00:00AM	Aqueous	TCL VOLATILE ORGANICS		08/05/2011	08/05/2011

Client:	Peachtree Environmental
Project Name:	Former Loef Facility
Workorder:	1108440

ANALYTICAL QC SUMMARY REPORT

BatchID: 150006

Sample ID: MB-150006	Client ID:				Un	its: ug/L	Prej	p Date: 08/08	/2011	Run No: 202659
SampleType: MBLK	TestCode: GC	Analysis of Gaseous	Samples SOP-R	ISK 175	Bat	ichID: 150006	Ana	alysis Date: 08/08	/2011	Seq No: 4235118
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Ethane	BRL	9	0	0	0	0	0	0	0	0
Ethylene	BRL	7	0	0	0	0	0	0	0	0
Methane	BRL	4	0	0	0	0	0	0	0	0
Sample ID: LCS-150006	Client ID:		Units: ug/L Prep Date:						/2011	Run No: 202659
SampleType: LCS	TestCode: GC	Analysis of Gaseous	Samples SOP-R	RSK 175	Bat	tchID: 150006	Ana	alysis Date: 08/08	/2011	Seq No: 4235123
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Ethane	114.3	9	200	0	57.1	37.8	115	0	0	0
Ethylene	76.56	7	200	0	38.3	24.4	115	0	0	0
Methane	121.7	4	200	0	60.9	38	115	0	0	0
Sample ID: LCSD-150006	Client ID:	Un	its: ug/L	Prej	p Date: 08/08	/2011	Run No: 202659			
SampleType: LCSD	TestCode: GC	C Analysis of Gaseous	Samples SOP-R	RSK 175	Bat	tchID: 150006	Ana	alysis Date: 08/08	/2011	Seq No: 4235125
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Ethane	114.5	9	200	0	57.2	37.8	115	114.3	0.177	20
Ethylene	76.90	7	200	0	38.4	24.4	115	76.56	0.439	20
Methane	124.2	4	200	0	62.1	38	115	121.7	1.99	20
Sample ID: 1108440-001BMS	Client ID: HI	RE-0811-MW-6			Un	its: ug/L	Prej	p Date: 08/08	/2011	Run No: 202659
SampleType: MS	TestCode: GC	Analysis of Gaseous	Samples SOP-R	RSK 175	Bat	tchID: 150006	Ana	alysis Date: 08/08	/2011	Seq No: 4235299
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Ethane	120.1	9	200	0	60	37.5	115	0	0	0
Ethylene	79.82	7	200	0	39.9	23.1	115	0	0	0
Methane	127.2	4	200	0	63.6	37.7	115	0	0	0

Qualifiers: > Greater than Result value < Less than Result value B Analyte detected in the associated method blank BRL Below reporting limit E Estimated (value above quantitation range) H Holding times for preparation or analysis exceeded J Estimated value detected below Reporting Limit N Analyte not NELAC certified R RPD outside limits due to matrix Rpt Lim Reporting Limit S Spike Recovery outside limits due to matrix

Client:Peachtree EnvironmentalProject Name:Former Loef FacilityWorkorder:1108440

ANALYTICAL QC SUMMARY REPORT

BatchID: 150006

Sample ID: 1108440-001BMSD	Client ID: HR	E-0811-MW-6			Uni	ts: ug/L	Prep	Date: 08/0	8/2011	Run No: 202659
SampleType: MSD	TestCode: GC Analysis of Gaseous Samples SOP-RSK 175			Bate	chID: 150006	Ana	Analysis Date: 08/08/2011		Seq No: 4235316	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Ethane	120.8	9	200	0	60.4	37.5	115	120.1	0.573	20
Ethylene	80.54	7	200	0	40.3	23.1	115	79.82	0.902	20
Methane	127.4	4	200	0	63.7	37.7	115	127.2	0.115	20

Qualifiers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

- < Less than Result value
- E Estimated (value above quantitation range)
- N Analyte not NELAC certified
- S Spike Recovery outside limits due to matrix

- B Analyte detected in the associated method blank
- H Holding times for preparation or analysis exceeded
- R RPD outside limits due to matrix

Client:Peachtree EnvironmentalProject Name:Former Loef FacilityWorkorder:1108440

ANALYTICAL QC SUMMARY REPORT

BatchID: 150007

Sample ID: MB-150007	Client ID:				Uni	its: ug/L	Prep	Date: 08/05/	2011 R	Run No: 202628	
SampleType: MBLK	TestCode: TCL VOLATILE ORGANICS SW8260B				Bat	chID: 150007	Anal	Analysis Date: 08/05/2011		Seq No: 4234439	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual	
1,1,1-Trichloroethane	BRL	5.0	0	0	0	0	0	0	0	0	
1,1,2,2-Tetrachloroethane	BRL	5.0	0	0	0	0	0	0	0	0	
1,1,2-Trichloroethane	BRL	5.0	0	0	0	0	0	0	0	0	
1,1-Dichloroethane	BRL	5.0	0	0	0	0	0	0	0	0	
1,1-Dichloroethene	BRL	5.0	0	0	0	0	0	0	0	0	
1,2,4-Trichlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0	
1,2-Dibromo-3-chloropropane	BRL	5.0	0	0	0	0	0	0	0	0	
1,2-Dibromoethane	BRL	5.0	0	0	0	0	0	0	0	0	
1,2-Dichlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0	
1,2-Dichloroethane	BRL	5.0	0	0	0	0	0	0	0	0	
1,2-Dichloropropane	BRL	5.0	0	0	0	0	0	0	0	0	
1,3-Dichlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0	
1,4-Dichlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0	
2-Butanone	BRL	50	0	0	0	0	0	0	0	0	
2-Hexanone	BRL	10	0	0	0	0	0	0	0	0	
4-Methyl-2-pentanone	BRL	10	0	0	0	0	0	0	0	0	
Acetone	BRL	50	0	0	0	0	0	0	0	0	
Benzene	BRL	5.0	0	0	0	0	0	0	0	0	
Bromodichloromethane	BRL	5.0	0	0	0	0	0	0	0	0	
Bromoform	BRL	5.0	0	0	0	0	0	0	0	0	
Bromomethane	BRL	5.0	0	0	0	0	0	0	0	0	
Carbon disulfide	BRL	5.0	0	0	0	0	0	0	0	0	
Carbon tetrachloride	BRL	5.0	0	0	0	0	0	0	0	0	
Chlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0	
Chloroethane	BRL	10	0	0	0	0	0	0	0	0	
Chloroform	BRL	5.0	0	0	0	0	0	0	0	0	
Chloromethane	BRL	10	0	0	0	0	0	0	0	0	

- Qualifiers: >
- > Greater than Result valueBRL Below reporting limit

- < Less than Result value
- E Estimated (value above quantitation range)
- N Analyte not NELAC certified

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

- J Estimated value detected below Reporting Limit
- Rpt Lim Reporting Limit

S Spike Recovery outside limits due to matrix

R RPD outside limits due to matrix
ANALYTICAL QC SUMMARY REPORT

BatchID: 150007

Sample ID: MB-150007 Client ID:			Units: ug/L Prep Date: 08/05/2011				/ 2011 F	1 Run No: 202628			
SampleType: MBLK	TestCode: TO	CL VOLATILE ORGA	ANICS SW8260	В	Bat	tchID: 150007	Ana	Analysis Date: 08/05/2011		Seq No: 4234439	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qua	ıl
cis-1,2-Dichloroethene	BRL	5.0	0	0	0	0	0	0	0	0	
cis-1,3-Dichloropropene	BRL	5.0	0	0	0	0	0	0	0	0	
Cyclohexane	BRL	5.0	0	0	0	0	0	0	0	0	
Dibromochloromethane	BRL	5.0	0	0	0	0	0	0	0	0	
Dichlorodifluoromethane	BRL	10	0	0	0	0	0	0	0	0	
Ethylbenzene	BRL	5.0	0	0	0	0	0	0	0	0	
Freon-113	BRL	10	0	0	0	0	0	0	0	0	
Isopropylbenzene	BRL	5.0	0	0	0	0	0	0	0	0	
m,p-Xylene	BRL	5.0	0	0	0	0	0	0	0	0	
Methyl acetate	BRL	5.0	0	0	0	0	0	0	0	0	
Methyl tert-butyl ether	BRL	5.0	0	0	0	0	0	0	0	0	
Methylcyclohexane	BRL	5.0	0	0	0	0	0	0	0	0	
Methylene chloride	BRL	5.0	0	0	0	0	0	0	0	0	
o-Xylene	BRL	5.0	0	0	0	0	0	0	0	0	
Styrene	BRL	5.0	0	0	0	0	0	0	0	0	
Tetrachloroethene	BRL	5.0	0	0	0	0	0	0	0	0	
Toluene	BRL	5.0	0	0	0	0	0	0	0	0	
trans-1,2-Dichloroethene	BRL	5.0	0	0	0	0	0	0	0	0	
trans-1,3-Dichloropropene	BRL	5.0	0	0	0	0	0	0	0	0	
Trichloroethene	BRL	5.0	0	0	0	0	0	0	0	0	
Trichlorofluoromethane	BRL	5.0	0	0	0	0	0	0	0	0	
Vinyl chloride	BRL	2.0	0	0	0	0	0	0	0	0	
Surr: 4-Bromofluorobenzene	43.93	0	50	0	87.9	64.7	130	0	0	0	
Surr: Dibromofluoromethane	46.94	0	50	0	93.9	80.7	129	0	0	0	
Surr: Toluene-d8	47.56	0	50	0	95.1	71.1	120	0	0	0	

Qualifiers: >

- > Greater than Result value
- BRL Below reporting limit
- J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

- E Estimated (value above quantitation range)
- N Analyte not NELAC certified
- S Spike Recovery outside limits due to matrix

- B Analyte detected in the associated method blank
- H Holding times for preparation or analysis exceeded
- R RPD outside limits due to matrix

Date: 10-Aug-11

ANALYTICAL QC SUMMARY REPORT

BatchID: 150007

Sample ID: LCS-150007	Client ID:				Un	its: ug/L	Pre	p Date: 08/05	/2011	Run No: 20262	8
SampleType: LCS	TestCode: TC	L VOLATILE ORGA	ANICS SW8260	В	Ba	tchID: 150007	An	alysis Date: 08/05	/2011	Seq No: 42344.	38
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
1,1-Dichloroethene	44.70	5.0	50	0	89.4	60	140	0	0	0	
Benzene	54.92	5.0	50	0	110	70	130	0	0	0	
Chlorobenzene	48.94	5.0	50	0	97.9	70	130	0	0	0	
Toluene	55.23	5.0	50	0	110	70	130	0	0	0	
Trichloroethene	55.95	5.0	50	0	112	70	130	0	0	0	
Surr: 4-Bromofluorobenzene	51.27	0	50	0	103	64.7	130	0	0	0	
Surr: Dibromofluoromethane	48.91	0	50	0	97.8	80.7	129	0	0	0	
Surr: Toluene-d8	53.06	0	50	0	106	71.1	120	0	0	0	
Sample ID: 1108440-004AMS SampleType: MS	Client ID: HI TestCode: TC	RE-0811-MW-2A L volatile org <i>a</i>	ANICS SW8260	В	Un Ba	its: ug/L tchID: 150007	Pre An	p Date: 08/05 alysis Date: 08/05	/2011 /2011	Run No: 20262 Seq No: 42344	8 43
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
1,1-Dichloroethene	74.25	5.0	50	19.49	110	46.2	183	0	0	0	
Benzene	70.44	5.0	50	12.73	115	62.2	143	0	0	0	
Chlorobenzene	54.05	5.0	50	0	108	72.2	137	0	0	0	
Toluene	73.61	5.0	50	12.87	121	57.8	149	0	0	0	
Trichloroethene	782.1	5.0	50	810.5	-56.8	70.5	149	0	0	0	SE
Surr: 4-Bromofluorobenzene	53.84	0	50	0	108	64.7	130	0	0	0	
Surr: Dibromofluoromethane	48.55	0	50	0	97.1	80.7	129	0	0	0	
Surr: Toluene-d8	51.52	0	50	0	103	71.1	120	0	0	0	
Sample ID: 1108440-004AMSD SampleType: MSD	Client ID: HI TestCode: TC	RE-0811-MW-2A L volatile org <i>a</i>	ANICS SW8260	В	Un Ba	its: ug/L tchID: 150007	Pre An	p Date: 08/05 alysis Date: 08/05	/2011 //2011	Run No: 20262 Seq No: 42344	8 44
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
1,1-Dichloroethene	80.22	5.0	50	19.49	121	46.2	183	74.25	7.73	20	
Benzene	77.18	5.0	50	12.73	129	62.2	143	70.44	9.13	20	
Qualifiers: > Greater than Result value	ue		< Less	than Result value			В	Analyte detected in the ass	ociated method	blank	
BRL Below reporting limit			E Estin	ated (value above quantit	ation range)		Н	Holding times for preparat	ion or analysis o	exceeded	
J Estimated value detect	ted below Reporting Limit	it	N Anal	yte not NELAC certified			R	RPD outside limits due to	matrix		
Rpt Lim Reporting Limit			S Spike	Recovery outside limits of	due to matrix						

ANALYTICAL QC SUMMARY REPORT

BatchID: 150007

Sample ID: 1108440-004AMSD	Client ID: HR	RE-0811-MW-2A			Uni	ts: ug/L	Prep	Date: 08/05	/ 2011 F	Run No: 202628	3
SampleType: MSD	TestCode: TCI	L VOLATILE ORGA	NICS SW82601	B	Bat	chID: 150007	Ana	lysis Date: 08/05	/2011 S	seq No: 423444	4
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Chlorobenzene	58.09	5.0	50	0	116	72.2	137	54.05	7.21	20	
Toluene	78.38	5.0	50	12.87	131	57.8	149	73.61	6.28	20	
Trichloroethene	850.3	5.0	50	810.5	79.7	70.5	149	782.1	8.36	20	Е
Surr: 4-Bromofluorobenzene	51.61	0	50	0	103	64.7	130	53.84	0	0	
Surr: Dibromofluoromethane	47.50	0	50	0	95	80.7	129	48.55	0	0	
Surr: Toluene-d8	52.69	0	50	0	105	71.1	120	51.52	0	0	

Qualifiers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

- < Less than Result value
- E Estimated (value above quantitation range)
- N Analyte not NELAC certified
- S Spike Recovery outside limits due to matrix

- B Analyte detected in the associated method blank
- H Holding times for preparation or analysis exceeded
- R RPD outside limits due to matrix

ANALYTICAL QC SUMMARY REPORT

BatchID: 150089

Sample ID: MB-150089	Client ID:				Un	its: mg/L	Prej	Date: 08/09	9/2011	Run No: 202781
SampleType: MBLK	TestCode:	Sulfide by SW9030B/903	4		Ba	tchID: 150089	Ana	lysis Date: 08/09	9/2011	Seq No: 4237657
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPE	O RPD Limit Qual
Sulfide	BRL	2.00	0	0	0	0	0	0	0	0
Sample ID: LCS-150089	Client ID:				Un	its: mg/L	Prej	o Date: 08/09	9/2011	Run No: 202781
SampleType: LCS	TestCode:	Sulfide by SW9030B/903	4		Ba	tchID: 150089	Ana	lysis Date: 08/09	9/2011	Seq No: 4237658
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPE	O RPD Limit Qual
Sulfide	356.0	2.00	356	0	100	40	120	0	0	0
Sample ID: 1108264-003CMS	Client ID:				Un	its: mg/L	Prej	o Date: 08/09	9/2011	Run No: 202781
SampleType: MS	TestCode:	Sulfide by SW9030B/903	4		Ba	tchID: 150089	Ana	lysis Date: 08/09	9/2011	Seq No: 4237662
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPE	O RPD Limit Qual
Sulfide	35.60	2.00	35.6	0	100	71.9	119	0	0	0
Sample ID: 1108264-003CMSD	Client ID:				Un	its: mg/L	Prej	o Date: 08/09	9/2011	Run No: 202781
SampleType: MSD	TestCode:	Sulfide by SW9030B/903	4		Ba	tchID: 150089	Ana	lysis Date: 08/09	9/2011	Seq No: 4237663
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPE	O RPD Limit Qual
Sulfide	35.60	2.00	35.6	0	100	71.9	119	35.60	0	30

Qualifiers: > Greater than Result value BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

- < Less than Result value
- E Estimated (value above quantitation range)
- N Analyte not NELAC certified
- S Spike Recovery outside limits due to matrix

- B Analyte detected in the associated method blank
- H Holding times for preparation or analysis exceeded
- R RPD outside limits due to matrix

ANALYTICAL QC SUMMARY REPORT

BatchID: R202632

Sample ID: MB-R202632	Client ID:	tal Arganic Carbon (1	COC) SW0060/	,	Un	its: mg/L	Prej	Date:		Run No: 202632
SampleType: WIBLK	TestCode: 10	tai Organic Carbon (1	(OC) 500007	x	Ва	teniD: R20263	2 Ana	liysis Date: 08/05	9/2011	Seq 100: 4234474
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Organic Carbon, Total	BRL	1.00	0	0	0	0	0	0	0	0
Sample ID: LCS-R202632	Client ID:				Un	its: mg/L	Prej	o Date:		Run No: 202632
SampleType: LCS	TestCode: To	tal Organic Carbon (1	TOC) SW90604	۱.	Ba	tchID: R20263	Ana Ana	lysis Date: 08/05	5/2011	Seq No: 4234471
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Organic Carbon, Total	25.07	1.00	25	0	100	90	110	0	0	0
Sample ID: 1108225-001AMS	Client ID:				Un	its: mg/L	Prej	o Date:		Run No: 202632
SampleType: MS	TestCode: To	tal Organic Carbon (1	FOC) SW90604	A Contraction of the second se	Ba	tchID: R20263	Ana Ana	lysis Date: 08/05	5/2011	Seq No: 4234478
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Organic Carbon, Total	35.12	1.00	25	9.831	101	80	120	0	0	0
Sample ID: 1108225-001AMSD	Client ID:				Un	its: mg/L	Prej	Date:		Run No: 202632
SampleType: MSD	TestCode: To	tal Organic Carbon (1	TOC) SW90604	N	Ba	tchID: R20263	Ana Ana	lysis Date: 08/05	5/2011	Seq No: 4234480
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Organic Carbon, Total	35.25	1.00	25	9.831	102	80	120	35.12	0.369	20

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

- B Analyte detected in the associated method blank
- H Holding times for preparation or analysis exceeded
- R RPD outside limits due to matrix

ANALYTICAL QC SUMMARY REPORT

BatchID: R202648

Sample ID: MB-R202648	Client ID:				Un	its: mg/L	Prej	p Date:		Run No: 202648
SampleType: MBLK	TestCode:	ION SCAN SW9056A			Ba	tchID: R20264	8 Ana	alysis Date: 08/05/	/2011	Seq No: 4234832
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Nitrate	BRL	0.25	0	0	0	0	0	0	0	0
Sulfate	BRL	1.0	0	0	0	0	0	0	0	0
Sample ID: LCS-R202648	Client ID:				Un	its: mg/L	Prej	p Date:		Run No: 202648
SampleType: LCS	TestCode:	ION SCAN SW9056A			Ba	tchID: R20264	8 Ana	alysis Date: 08/05/	/2011	Seq No: 4234837
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Nitrate	4.788	0.25	5	0	95.8	90	110	0	0	0
Sulfate	24.57	1.0	25	0	98.3	90	110	0	0	0
Sample ID: 1108440-001EMS	Client ID:	HRE-0811-MW-6			Un	its: mg/L	Prej	p Date:		Run No: 202648
SampleType: MS	TestCode:	ION SCAN SW9056A			Ba	tchID: R20264	8 Ana	alysis Date: 08/05/	/2011	Seq No: 4234868
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Nitrate	5.346	0.25	5	0.4275	98.4	90	110	0	0	0
Sulfate	24.96	1.0	25	0	99.8	90	110	0	0	0
Sample ID: 1108440-001EMSD	Client ID:	HRE-0811-MW-6			Un	its: mg/L	Prej	p Date:		Run No: 202648
SampleType: MSD	TestCode:	ION SCAN SW9056A			Ba	tchID: R20264	8 Ana	alysis Date: 08/05/	/2011	Seq No: 4234873
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Nitrate	5.364	0.25	5	0.4275	98.7	90	110	5.346	0.326	20
Sulfate	24.98	1.0	25	0	99.9	90	110	24.96	0.062	20

Qualifiers: > Gr

> Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

- B Analyte detected in the associated method blank
- H Holding times for preparation or analysis exceeded
- R RPD outside limits due to matrix

ANALYTICAL QC SUMMARY REPORT

BatchID: R202903

Sample ID: MB-R202903 Sample Type: MBLK	Client ID: TestCode: Fer	rous Iron SM35	00-Fe-B		Un Ba	iits: mg/L tchID [:] R20290	Prej 3 Ana	o Date: Ilvsis Date: 08/05	5/2.011	Run No: 202903 Sea No: 4240139
Analyte	Demilt		CDV		0/DEC	L L	Ilish Linsit		0/ DDD	RDD Limit Out
Analyte	Kesult	KP1 Limit	SPK value	SPK Rei vai	%REC	Low Limit	High Limit	RPD Kel val	%RPD	RPD Limit Quai
Iron, as Ferrous (Fe+2)	BRL	0.100	0	0	0	0	0	0	0	0
Sample ID: LCS-R202903	Client ID:				Un	its: mg/L	Prej	Date:		Run No: 202903
SampleType: LCS	TestCode: Fer	rous Iron SM35	00-Fe-B		Ba	tchID: R20290	Ana Ana	lysis Date: 08/05	5/2011	Seq No: 4240140
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Iron, as Ferrous (Fe+2)	0.5267	0.100	0.5	0	105	85	115	0	0	0
Sample ID: 1108440-004EMS	Client ID: HI	RE-0811-MW-2A			Un	its: mg/L	Prej	o Date:		Run No: 202903
SampleType: MS	TestCode: Fer	rous Iron SM35	00-Fe-B		Ba	tchID: R20290	Ana Ana	lysis Date: 08/05	5/2011	Seq No: 4240149
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Iron, as Ferrous (Fe+2)	69.37	5.00	25	46.96	89.6	80	120	0	0	0
Sample ID: 1108440-004EMSD	Client ID: H	RE-0811-MW-2A			Un	its: mg/L	Pre	Date:		Run No: 202903
SampleType: MSD	TestCode: Fer	rous Iron SM35	00-Fe-B		Ba	tchID: R20290	Ana Ana	lysis Date: 08/05	5/2011	Seq No: 4240151
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Iron, as Ferrous (Fe+2)	70.41	5.00	25	46.96	93.8	80	120	69.37	1.49	30

> Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

- B Analyte detected in the associated method blank
- H Holding times for preparation or analysis exceeded
- R RPD outside limits due to matrix

APPENDIX D

NATURAL ATTENUATION INPUT AND OUTPUT PARAMETERS

Natural A	Attenuation	Interpretation	Score		
Scr	eening	Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5		
Pro	otocol	Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14	Score:	25
The following is taken from the L	USEPA protocol (USEPA, 1998).	Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20		
significance.	iss have no regulatory	Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End	of Table
Analysis	Concentration in Most Contam. Zone	* reductive dechlorination	Yes	No	Points Awarded
Oxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	0	۲	0
	> 5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	۲	0
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	۲	0	2
Iron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	۲	0	3
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	۲	0	2
Sulfide*	>1 mg/L	Reductive pathway possible	0	۲	0
Methane*	>0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	۲	0	3
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	۲	0	1
Potential* (ORP)	<-100mV	Reductive pathway likely	0	۲	0
pH*	5 < pH < 9	Optimal range for reductive pathway	۲	0	0
TOC	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	۲	0	2
Temperature*	>20°C	At T >20°C biochemical process is accelerated	۲	0	1
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	0	0	
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	0	
Chloride*	>2x background	Daughter product of organic chlorine	0	0	
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	0	0	
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	0	0	
BTEX*	>0.1 mg/L	Carbon and energy source; drives dechlorination	0	۲	0
PCE*		Material released	0	۲	0
TCE*		Daughter product of PCE ^{a/}	۲	0	2
DCE*		Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of $TCE^{a'}$: 1 1-DCE can be a chem, reaction product of TCA	•	0	2
VC*		Daughter product of DCE ^{a/}			2
1,1,1- Trichloroethane*		Material released			

Natural A	Attenuation	Interpretation	Score			
Scr	eening	Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5			
Pro	otocol	Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14	Score:	25	;
The following is taken from the	USEPA protocol (USEPA, 1998).	Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20			
significance.	less have no regulatory	Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End	le	
Analysis	Concentration in Most Contam. Zone	reductive dechlorination	Yes	No	Point Award	ts ded
DCA		Daughter product of TCA under reducing conditions	۲	0	2	
Carbon Tetrachloride		Material released	0	0		
Chloroethane*		Daughter product of DCA or VC under reducing conditions	0	۲	0	
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene	0	۲	0	
	>0.1 mg/L	Daughter product of VC/ethene	۲	0	3	
Chloroform		Daughter product of Carbon Tetrachloride	0	۲	0	
Dichloromethane		Daughter product of Chloroform	0	۲	0	
* required analysis. a/ Points awarded only i	f it can be shown that the con	•	SCO		Reset	

(i.e., not a constituent of the source NAPL).

DISSOLVED CHLORINATED SOLVENT CONCENTRATIONS ALONG PLUME CENTERLINE

APPENDIX E SLUG TESTING DATA TABLES AND GRAPHS

WELL TEST ANALYSIS

 Data Set:
 \\SERVER\MY FILES\PROJECTS\2318-H~1\500-DR~1\GROUND~1\MW-2A.AQT

 Date:
 10/07/10
 Time:
 11:05:36

PROJECT INFORMATION

Company: <u>Peachtree Environmental, Inc.</u> Client: <u>Former Loef Facility</u> Project: <u>2318</u> Test Location: <u>Athens, GA</u> Test Well: <u>MW-2A</u> Test Date: <u>6/24/10</u>

AQUIFER DATA

Saturated Thickness: <u>12.15</u> ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: <u>1.</u> ft Casing Radius: <u>0.9</u> ft Screen Length: <u>10.</u> ft Water Column Height: <u>12.15</u> ft Wellbore Radius: <u>0.56</u> ft Gravel Pack Porosity: <u>0.2</u>

SOLUTION

Aquifer Model: <u>Unconfined</u> Solution Method: <u>Bouwer-Rice</u> K = 0.001541 ft/min y0 = 2.462 ft

PROJECT INFORMATION

Company: Peachtree Environmental, Inc. Client: Former Loef Facility Project: 2318 Location: Athens, GA Test Date: 6/24/10 Test Well: MW-2A

AQUIFER DATA

Saturated Thickness: 12.15 ft Anisotropy Ratio (Kz/Kr): 1.

OBSERVATION WELL DATA

Number of observation wells: 1

Observation Well No. 1: MW-2A

X Location: 0. ft Y Location: 0. ft

No. of observations: 107

		Observ	ation Data			
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	
0.011	2.133	0.5315	4.488	3.846	2.497	
0.022	2.231	0.5612	4.6	4.013	2.433	
0.033	2.335	0.5925	4.713	4.179	2.379	
0.044	2.405	0.6257	4.834	4.346	2.332	
0.055	2.491	0.6608	4.952	4.513	2.298	
0.066	2.558	0.6982	5.079	4.679	2.269	
0.077	2.618	0.7377	5.217	4.846	2.246	
0.088	2.682	0.7795	5.35	5.013	2.226	
0.099	2.728	0.8238	5.491	5.179	2.211	
0.11	2.788	0.8708	5.638	5.346	2.2	
0.121	2.84	0.9207	5.791	5.513	2.188	
0.132	2.895	0.9733	5.95	5.679	2.179	
0.143	2.947	1.029	6.117	5.846	2.165	
0.154	3.005	1.088	5.537	6.013	2.162	
0.165	3.048	1.151	5.114	6.179	2.159	
0.176	3.1	1.217	4.969	6.346	2.153	
0.187	3.152	1.288	4.845	6.513	2.151	
0.198	3.207	1.362	4.727	6.679	2.148	
0.209	3.256	1.441	4.606	6.846	2.139	
0.22	3.305	1.525	4.479	7.013	2.136	
0.231	3.351	1.613	4.329	7.179	2.133	
0.2427	3.406	1.707	4.219	7.346	2.13	
0.2552	3.455	1.807	4.101	7.513	2.127	
0.2683	3.507	1.912	3.974	7.679	2.125	
0.2823	3.562	2.023	3.847	7.846	2.122	
0.2972	3.619	2.142	3.717	8.013	2.119	
$0.3^{120}_{10/07/}$	10 3.68	2.267	3.591	8.179	2.116	
0.3∠95	3.746	2.399	3.461	8.346	2.113	

11:06:14

WELL TEST ANALYSIS

 Data Set:
 \\SERVER\MY FILES\PROJECTS\2318-H~1\500-DR~1\GROUND~1\MW-4A.AQT

 Date:
 10/07/10
 Time:
 11:16:03

PROJECT INFORMATION

Company: <u>Peachtree Environmental, Inc.</u> Client: <u>Former Loef Facility</u> Project: <u>2318</u> Test Location: <u>Athens, GA</u> Test Well: <u>MW-4A</u> Test Date: <u>6/24/10</u>

AQUIFER DATA

Saturated Thickness: 6.29 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 4.715 ft Casing Radius: 0.9 ft Screen Length: 10 ft Water Column Height: 6.29 ftWellbore Radius: 0.56 ftGravel Pack Porosity: 0.2

SOLUTION

Aquifer Model: <u>Unconfined</u> Solution Method: <u>Bouwer-Rice</u> K = 0.0002522 ft/min y0 = 3.945 ft

Data Set: \\SERVER\MY FILES\PROJECTS\2318-H~1\500-DR~1\GROUND~1\MW-4A.AQT Date: 10/07/10 Time: 11:04:55

PROJECT INFORMATION

Company: Peachtree Environmental, Inc. Client: Former Loef Facility Project: 2318 Location: Athens, GA Test Date: 6/24/10 Test Well: MW-2A

AQUIFER DATA

Saturated Thickness: 6.29 ft Anisotropy Ratio (Kz/Kr): 1.

OBSERVATION WELL DATA

Number of observation wells: 1

Observation Well No. 1: MW-4A

X Location: 0. ft Y Location: 0. ft

No. of observations: 189

Observation Data					
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
0.011	4.704	2.399	3.604	12.85	3.693
0.022	4.698	2.54	3.604	13.01	3.69
0.033	4.692	2.689	3.604	13.18	3.693
0.044	4.692	2.846	3.606	13.35	3.696
0.055	4.689	3.013	3.606	13.51	3.696
0.066	4.447	3.179	3.606	13.68	3.699
0.077	4.447	3.346	3.606	13.85	3.702
0.088	4.447	3.513	3.606	14.01	3.699
0.099	4.447	3.679	3.606	14.18	3.702
0.11	4.447	3.846	3.612	14.35	3.705
0.121	4.447	4.013	3.612	14.51	3.705
0.132	4.447	4.179	3.615	14.68	3.708
0.143	4.447	4.346	3.615	14.85	3.713
0.154	4.447	4.513	3.615	15.01	3.713
0.165	4.447	4.679	3.618	15.18	3.716
0.176	4.444	4.846	3.618	15.35	3.716
0.187	4.447	5.013	3.621	15.51	3.719
0.198	4.444	5.179	3.621	15.68	3.719
0.209	4.444	5.346	3.624	15.85	3.722
0.22	4.444	5.513	3.624	16.01	3.722

...

~ •

AQTESOLV for Windows

Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
0.231	4.444	5.679	3.624	16.18	3.725
0.2427	4.444	5.846	3.627	16.35	3.728
0.2552	4.444	6.013	3.624	16.51	3.731
0.2683	4.421	6.179	3.627	16.68	3.736
0.2823	4.069	6.346	3.627	16.85	3.736
0.2972	4.08	6.513	3.63	17.01	3.736
0.3128	4.08	6.679	3.632	17.18	3.736
0.3295	4.08	6.846	3.632	17.35	3.739
0.3472	4.08	7.013	3.635	17.51	3.742
0.3658	4.08	7.179	3.638	17.68	3.742
0.3857	4.08	7.346	3.638	17.85	3.745
0.4067	4.08	7.513	3.641	18.01	3.748
0.4288	4.083	7.679	3.641	18.18	3.751
0.4523	4.083	7.846	3.644	18.35	3.754
0.4772	4.083	8.013	3.65	18.51	3.751
0.5035	4.08	8.179	3.65	18.68	3.751
0.5315	4.086	8.346	3.65	18.85	3.754
0.5612	3.797	8.513	3.65	19.01	3.757
0.5925	3.797	8.679	3.653	19.18	3.757
0.6257	3.797	8.846	3.656	19.35	3.762
0.6608	3.797	9.013	3.658	19.51	3.762
0.6982	3.797	9.179	3.667	19.68	3.765
0.7377	3.794	9.346	3.667	19.85	3.765
0.7795	3.797	9.513	3.667	20.01	3.765
0.8238	3.546	9.679	3.67	20.18	3.765
0.8708	3.543	9.846	3.67	20.35	3.768
0.9207	3.543	10.01	3.673	20.51	3.771
0.9733	3.592	10.18	3.673	20.68	3.771
1.029	3.598	10.35	3.673	20.85	3.774
1.088	3.598	10.51	3.673	21.01	3.777
1.151	3.598	10.68	3.673	21.18	3.777
1.217	3.601	10.85	3.676	21.35	3.78
1.288	3.601	11.01	3.676	21.51	3.78
1.362	3.601	11.18	3.676	21.68	3.78
1.441	3.601	11.35	3.673	21.85	3.78
1.525	3.601	11.51	3.676	22.01	3.788
1.613	3.601	11.68	3.682	22.18	3.791
1.707	3.604	11.85	3.684	22.35	3.791
1.807	3.604	12.01	3.684	22.51	3.794
1.912	3.604	12.18	3.687	22.68	3.794
2.023	3.604	12.35	3.69	22.85	3.791
2.142	3.606	12.51	3.693	23.01	3.791
2.267	3.604	12.68	3.693	23.18	3.794

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	0.0002522	ft/min
у0	3.945	ft

AUTOMATIC ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	Std. Error	
K	0.0002522	4.438E-05	ft/min
y0	3.945	0.0299	ft

Parameter Correlations

	K	y0
Κ	1.00	0.74
y0	0.74	1.00

Residual Statistics

for weighted residuals

Sum of Squares	13.28 ft ²
Variance	0.07103 ft ²
Std. Deviation	0.2665 ft
Mean	4.731E-05 ft
No. of Residuals	189.
No. of Estimates	2

~

WELL TEST ANALYSIS

Data Set: <u>\\SERVER\MY FILES\PROJECTS\2318-H~1\500-DR~1\GROUND~1\MW-9A.AQT</u> Date: 10/07/10 Time: 11:14:34

PROJECT INFORMATION

Company: <u>Peachtree Environmental, Inc.</u> Client: <u>Former Loef Facility</u> Project: <u>2318</u> Test Location: <u>Athens, GA</u> Test Well: <u>MW-9A</u> Test Date: <u>6/24/10</u>

AQUIFER DATA

Saturated Thickness: 6.29 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 4.715 ft Casing Radius: 0.9 ft Screen Length: 10 ft Water Column Height: 6.29 ftWellbore Radius: 0.56 ftGravel Pack Porosity: 0.2

SOLUTION

Aquifer Model: <u>Unconfined</u> Solution Method: <u>Bouwer-Rice</u> $K = \frac{1.59E-06}{3.294}$ ft/min y0 = 3.294 ft

Data Set: \\SERVER\MY FILES\PROJECTS\2318-H~1\500-DR~1\GROUND~1\MW-9A.AQT Date: 10/07/10 Time: 11:15:04

PROJECT INFORMATION

Company: Peachtree Environmental, Inc. Client: Former Loef Facility Project: 2318 Location: Athens, GA Test Date: 6/24/10 Test Well: MW-9A

AQUIFER DATA

Saturated Thickness: 6.29 ft Anisotropy Ratio (Kz/Kr): 1.

OBSERVATION WELL DATA

Number of observation wells: 1

Observation Well No. 1: MW-9A

X Location: 0. ft Y Location: 0. ft

No. of observations: 188

Observation Data					
Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	
4.949	2.396	2.844	12.84	3.451	
4.935	2.536	2.841	13.01	3.451	
4.923	2.685	2.844	13.18	3.448	
4.918	2.843	2.841	13.34	3.451	
4.915	3.009	2.85	13.51	3.451	
4.912	3.176	2.85	13.68	3.453	
4.912	3.343	2.853	13.84	3.453	
4.909	3.509	2.856	14.01	3.456	
4.637	3.676	2.862	14.18	3.459	
4.64	3.843	2.864	14.34	3.459	
4.64	4.009	2.864	14.51	3.462	
4.637	4.176	2.867	14.68	3.465	
4.392	4.343	2.867	14.84	3.465	
4.401	4.509	2.867	15.01	3.468	
4.401	4.676	2.873	15.18	3.471	
4.401	4.843	2.876	15.34	3.474	
4.245	5.009	2.876	15.51	3.479	
4.175	5.176	2.876	15.68	3.479	
4.175	5.343	2.879	15.84	3.488	
4.175	5.509	2.882	16.01	3.491	
	Displacement (ft) 4.949 4.935 4.923 4.918 4.915 4.912 4.912 4.909 4.637 4.64 4.64 4.64 4.637 4.392 4.401 4.401 4.401 4.245 4.175 4.175 4.175	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

...

~ .
AQTESOLV for Windows

Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
0.2277	4.175	5.676	2.888	16.18	3.494
0.2393	3.947	5.843	2.888	16.34	3.497
0.2518	3.95	6.009	3.387	16.51	3.503
0.265	3.95	6.176	3.387	16.68	3.508
0.279	3.95	6.343	3.39	16.84	3.511
0.2938	3.722	6.509	3.39	17.01	3.511
0.3095	3.725	6.676	3.393	17.18	3.514
0.3262	3.725	6.843	3.393	17.34	3.517
0.3438	3.479	7.009	3.393	17.51	3.523
0.3625	3.5	7.176	3.393	17.68	3.526
0.3823	3.5	7.343	3.396	17.84	3.529
0.4033	3.234	7.509	3.396	18.01	3.531
0.4255	3.274	7.676	3.396	18.18	3.54
0.449	3.274	7.843	3.399	18.34	3.54
0.4738	3.067	8.009	3.399	18.51	3.546
0.5002	3.061	8.176	3.399	18.68	3.552
0.5282	2.862	8.343	3.401	18.84	3.555
0.5578	2.864	8.509	3.404	19.01	3.557
0.5892	2.668	8.676	3.404	19.18	3.563
0.6223	2.668	8.843	3.407	19.34	3.563
0.6575	2.449	9.009	3.407	19.51	3.569
0.6948	2.206	9.176	3.407	19.68	3.572
0.7343	2.004	9.343	3.407	19.84	3.578
0.7762	1.791	9.509	3.41	20.01	3.583
0.8205	1.791	9.676	3.413	20.18	3.592
0.8675	1.788	9.843	3.41	20.34	3.598
0.9173	1.788	10.01	3.413	20.51	3.604
0.97	1.788	10.18	3.413	20.68	3.606
1.026	1.788	10.34	3.416	20.84	3.612
1.085	1.788	10.51	3.419	21.01	3.618
1.148	1.788	10.68	3.422	21.18	3.624
1.214	1.846	10.84	3.419	21.34	3.63
1.284	2.833	11.01	3.422	21.51	3.632
1.359	2.833	11.18	3.425	21.68	3.638
1.438	2.836	11.34	3.427	21.84	3.644
1.522	2.836	11.51	3.43	22.01	3.647
1.61	2.836	11.68	3.433	22.18	3.65
1.704	2.836	11.84	3.43	22.34	3.656
1.803	2.836	12.01	3.439	22.51	3.658
1.909	2.838	12.18	3.439	22.68	3.667
2.02	2.838	12.34	3.439	22.84	3.673
2.138	2.838	12.51	3.439	23.01	3.679
2.263	2.841	12.68	3.445		

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	1.59E-06	ft/min
y0	3.294	ft

AUTOMATIC ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	Std. Error	
K	1.59E-06	0.000123	ft/min
y0	3.294	0.07099	ft

Parameter Correlations

	K	y0
Κ	1.00	0.75
y0	0.75	1.00

Residual Statistics

for weighted residuals

Sum of Squares	75.87 ft ²
Variance	0.4079 ft ²
Std. Deviation	0.6387 ft
Mean	0.09692 ft
No. of Residuals	188.
No. of Estimates	2

APPENDIX F

HISTORIC GROUNDWATER CONCENTRATION TREND GRAPHS

Former Loef Facility (Hull) Athens, Clarke County, Georgia

Analytical Data Trends - Monitoring Well MW-2A

Former Loef Facility (Hull) Athens, Clarke County, Georgia

Analytical Data Trends - Monitoring Well MW-3

Former Loef Facility (Hull) Athens, Clarke County, Georgia

Analytical Data Trends - Monitoring Well MW-4

APPENDIX G SCHEDULE

	VOLUNTARY INVESTIGATION AND REMEDIATION PLAN APPLICATION																			
	FORME LOEF FACILITY ATHENS, CLARKE COUNTY, GEORGIA HSI# 10376																			
ID	Task Name	Duration	Start	Finish	Oc	t No	v Dec	2 C	2012 Jan F	eb M	ar	Apr	May	Jun	Jul	Αυα	Sep	Oct	Nov	Dec
1	I. Submission of VRP Application Including Conceptual Site Model	3 days	Mon 10/24/11	Wed 10/26/11				-								1.1.9	1			
2	EPD Approval of VRP Application	45 days	Thu 10/27/11	Wed 12/28/11	-															
3	II. Semi-Annual Report/CSM Updates	960 days	Wed 12/28/11	Tue 9/1/15			I													
5	1st Semi-Annual Report Preparation	6 mons	Wed 12/28/11	Tue 6/12/12																
6	2nd Semi-Annual Report Preparation	6 mons	Wed 6/13/12	Tue 11/27/12															-	1
7	3rd Semi-Annual Report Preparation	6 mons	Wed 11/28/12	Tue 5/14/13	-															
8	4th Semi-Annual Report Preparation	6 mons	Wed 5/15/13	Tue 10/29/13																
9	5th Semi-Annual Report Preparation	6 mons	Wed 10/30/13	Tue 4/15/14																
10	6th Semi-Annual Report Preparation	6 mons	Wed 4/16/14	Tue 9/30/14																
11	7th Semi-Annual Report Preparation	6 mons	Wed 10/1/14	Tue 3/17/15																
12	8th Semi-Annual Report Preparation	6 mons	Wed 3/18/15	Tue 9/1/15]															
13																				
14	III. Project Milestones	1200 days	Wed 12/28/11	Tue 8/2/16			I													
15	Horizontal Delineation of Constituents of Concern on-Site	12 mons	Wed 12/28/11	Tue 11/27/12																
16	Horizontal Delineation of Constituents of Concern off-Site	24 mons	Wed 12/28/11	Tue 10/29/13																
17	Vertical Delineation, Remedial Plan Preparation, and Cost Estimate	30 mons	Wed 12/28/11	Tue 4/15/14																
18	Preparation of Compliance Status Report	60 mons	Wed 12/28/11	Tue 8/2/16	1															

Project: Former Loef Facility VRP Application Schedule Date: Mon 10/24/11	Task Split	Progress Milestone	•	Summary Project Summary	•	External Tasks External Milestone	Deadline	{
					Page 1			

c	2013 Jan	Feb	Mar	Apr	Mav	Jun	Jul	Aua	Sep	Oct	Nov
-				י ייי י			241	,~y	7-4	201	
										_	
Ł	Ļ										
\sim											
						Pea	chtre	e Env	vironn	nental	, Inc.

								VOLUN	TARY	INVES	TIGATIO		REME	DIATIC)N PLA	N APP	LICATI	ON					
										ATH	FOF ENS, C	RME LC LARKE HSI#	DEF FAC COUN 10376	CILITY FY, GE	ORGIA								
15	T 1 M		2014										T		2015			1.					
	Lask Name	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep C
	Nodel																						
2	EPD Approval of VRP Application																						
3																							
4	II. Semi-Annual Report/CSM Updates																						
5	1st Semi-Annual Report Preparation																					·	
6	2nd Semi-Annual Report Preparation	-																					
7	3rd Semi-Annual Report Preparation																						
8	4th Semi-Annual Report Preparation																						
9	5th Semi-Annual Report Preparation					Ŀ																	
10	6th Semi-Annual Report Preparation											L I											
11	7th Semi-Annual Report Preparation														i								
12	8th Semi-Annual Report Preparation																						
13																							
14	III. Project Milestones																						
15	Horizontal Delineation of Constituents of Concern on-Site																						
16	Horizontal Delineation of Constituents of Concern off-Site																						
17	Vertical Delineation, Remedial Plan Preparation, and Cost Estimate																						
18	Preparation of Compliance Status Report		·												:								

Project: Former Loef Facility VRP Application Schedule Date: Mon 10/24/11	Task Split	Progress Milestone	•	Summary Project Summary		External Tasks External Milestone	Deadline	۲
					Page 2			

Oct	Nov	Dec	2016	Feb	Mar	Apr	May	lun	lul	Aug
001	INOV	Dec	Jan	reb	Iviai	Арі	Iviay	Jun	Jui	Aug
$\hat{\nabla}$										
					Р	eacht	tree E	nviror	nmen	tal, Inc.

APPENDIX H

SUMMARY OF PROFESSIONAL GEOLOGISTS HOURS

HULL REAL ESTATE ATHENS, CLARKE COUNTY, GEORGIA

VOLUNTARY REMEDIATION PLAN APPLICATION SUMMARY OF PROFESSIONAL SERVICES HOURS

Activity	Hours
Preparation of VRP Application	10
Groundwater Modeling	10
Total =	⇒ 20