

ANNUAL DEMONSTRATION OF FUGITIVE EMISSIONS CONTROL SYSTEM PERFORMANCE

Becton, Dickinson and Company 8195 Industrial Blvd Covington, GA 30014

Ramboll US Corporation 1600 Parkwood Circle Suite 310 Atlanta, Georgia 30339

May 2021

ENVIRONMENT & HEALTH

TABLE OF CONTENTS

EXEC	CUTIVE SUMMARY	2
1.	BACKGROUND	3
2.	TESTING ACTIVITES	4
3.	ANALYTICAL LABORATORY RESULTS AND PERFORMANCE ASSESMENT	5
4.	CONCLUSIONS	6

FIGURES

Figure 1:	Site Location Map
Figure 2:	System Sampling Point Designation

TABLES

Table 1:	System 1 and	System 2 Air	Flow Rates
----------	--------------	--------------	------------

- Table 2:
 System 1 and System 2 Ethylene Oxide Sample Results
- Table 3: Performance Assessment

APPENDICES

- Appendix A: Stack Testing Scope
- Appendix B: Testing Subcontractor Final Report
- Appendix C: Laboratory Analytical Report (including Teflon Tubing Validation Study)
- Appendix D: System 1 and System 2 Process Log

EXECUTIVE SUMMARY

In fulfillment of obligations first set in a Consent Order with the Georgia Environmental Protection Division on October 28, 2019, Becton, Dickinson and Company installed two dry bed fugitive emission control systems at its Covington, Georgia, medical device sterilization facility for the reduction of potential emissions of ethylene oxide.

Under an EPD-approved Test Plan, these systems have been tested to assess their performance and effectiveness. The testing has found that the emissions to the atmosphere of ethylene oxide from both systems (System One and System Two) are consistent with the levels expected from the dry bed system outlets. The emission rate measured from the System One outlet on March 26, 2021 was 1.54 pounds-per-year if annualized over 8,760 hours. The emission rate measured from the System Two outlet on March 26, 2021 was 160.92 pounds-per-year if annualized over 8,760 hours. The total emission rate from both Systems' outlets combined on an annualized basis would be 162.46 pounds.

1. BACKGROUND

Becton, Dickinson and Company (BD) operates a medical device sterilization facility utilizing ethylene oxide (EO) at 8195 Industrial Boulevard in Covington, Georgia (see **Figure 1**). As a condition of a Consent Order with the Georgia Environmental Protection Division (EPD) dated October 28, 2019 BD installed two systems for the capture and control of fugitive emissions of ethylene oxide (EO) not captured by current emissions control equipment. The fugitive emissions control equipment include two systems comprised of multiple Advanced Air Technologies Model DR490 "Dry Bed Scrubbers".

System One (SYS1) captures potential fugitive emissions from the five Sterilization Vessel Rooms (VRM1, VRM2, VRM3, VRM4, VRM5), the Vessel to Aeration Transfer Corridor (NCO1), and the EO Dispensing Room (DRM1). System Two (SYS2) captures potential fugitive emissions from the Work In Progress (WIP) areas where product is stored after sterilization and prior to shipment. Details regarding these systems were presented in the air permit application for their installation submitted to the EPD on December 17, 2020.

The annual testing was performed on March 26, 2021. Mr. Bob Scott and Mr. Ray Shen of the EPD Stationary Source Compliance, Source Monitoring Unit were present to observe the testing activities.

2. **TESTING ACTIVITES**

The testing program for assessing the effectiveness of the dry bed fugitive emission control systems for fugitive releases captured in the facility was based on two primary elements:

- 1. Measurement of the air flow rates at the inlet ducts to the dry bed systems and the stack outlets utilizing EPA standard methods 1, 2, and 4; and,
- 2. Measurement of the concentration of EO in those inlet ducts and outlet stacks.

Measurement of the air flow rates was conducted by Advanced Industrial Resources (AIR) of Acworth, Georgia, a qualified stack testing contractor.

Ramboll personnel oversaw and coordinated the sample collection during the testing. Air samples were collected in 6-liter Summa canisters individually tested and certified by the laboratory to be free of EO. The samples were analyzed for EO via EPA Method TO-15 modified to achieve sub-part-per-billion detection limits for EO.

The Test Plan presented in **Appendix A** was followed for the flow measurement, and sample collection. **Figure 2** identifies the specific sampling points used for both SYS1 and SYS2.

As outlined in the Test Plan, duplicate samples were collected at two locations, the two stack outlets, to allow for precision and repeatability of analyses and the stability of EO samples in the Summa canisters. The duplicate samples were collected simultaneously from two separate segments of tubing introduced side-by-side in the sampling port.

Sample collection duration was 4 hours for both systems. Roughly 45 minutes into the testing period for SYS2, it was recognized that the flow regulator on the Summa canister for the Inlet Duct 1 was malfunctioning and the sample was not being collected. That canister was replaced by a backup canister and flow regulator at that point which operated properly and was submitted for analysis. Despite having to replace the Summa canister, the sample duration for the SYS2 Inlet Duct 1 was approximately 4 hours and the sample was collected at the same time as the SYS2 outlet.

3. ANALYTICAL LABORATORY RESULTS AND PERFORMANCE ASSESMENT

The collected samples were transferred to Eurofins Air Toxics, LLC (Eurofins), an independent laboratory with recognized expertise with EO analytical methods, for analysis using a modified EPA Method TO-15 with GC/MS in the Selective Ion Monitoring (SIM) acquisition mode to obtain detection limits sufficiently low for use in testing the dry bed system performance.

Two supplemental analyses were also performed by the laboratory to evaluate quality control parameters. Duplicate samples were collected from the SYS1 and SYS2 Outlet. Both were analyzed upon receipt at the laboratory to demonstrate the repeatability and precision of the sampling and analytical methods.

Table 1 presents the air flow rate and moisture results from the EPA Method 1, 2, and 4 tests performed by AIR. AIR's complete report is provided as **Appendix B.**

Table 2 presents the EO concentration results from Eurofins. The complete laboratory report is provided as **Appendix C**, including results from the quality control assessment described above.

All testing and analytical work met quality assurance and quality control set forth in the test plan. All measured EO concentrations were above the detection limits of the laboratory method – there were no "non-detect" results.

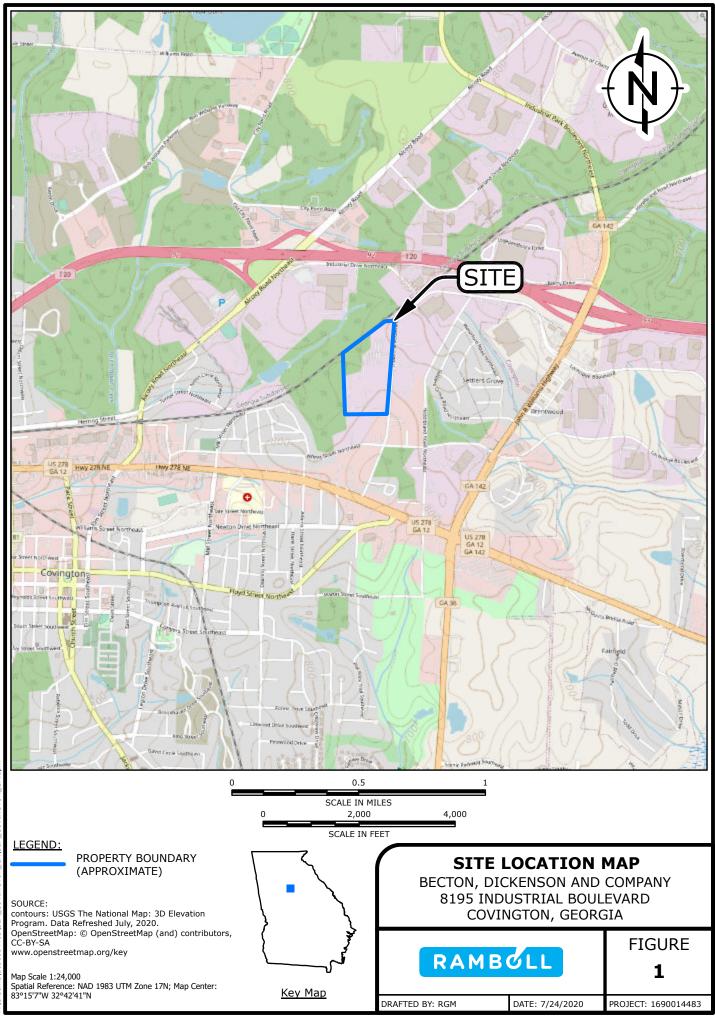
Table 3 combines the air flow and EO concentration data for an assessment of the performance of the dry bed fugitive emissions control systems.

SYS1 Performance Assessment

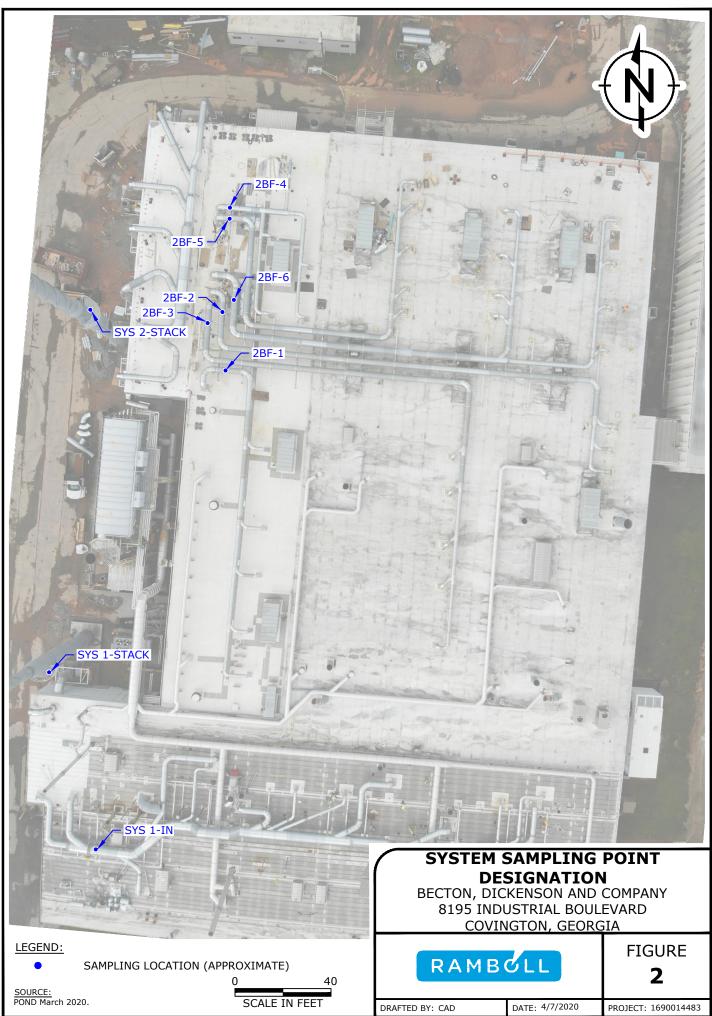
SYS1 captures and treats fugitive EO releases from the EO dispensing room, sterilization vessel rooms, and the vessel-to-aeration corridor. The exhaust mass rate from the SYS1 stack is 0.0002 lb/hour, or 1.54 lb/year if annualized over 8,760 hours.

SYS2 Performance Assessment

SYS2 captures and treats fugitive EO releases from multiple WIP areas within the facility where product is stored after sterilization and prior to shipment. The outlet mass rate of EO is 0.0184 lb/hr, or 160.91 lb/year if annualized over 8,760 hours.


4. CONCLUSIONS

The following conclusions can be drawn from this testing as an initial assessment of the performance of the dry bed fugitive emission control systems at the BD Covington facility:


- 1. Post-control-device emissions of EO from SYS1 are 0.0002 lb/hour.
- 2. Post-control-device emissions of EO from SYS2 are 0.0184 lb/hour.
- 3. The Summa canister testing and analytical approach applied for this testing successfully allowed monitoring of low EO concentrations that allowed calculation of control efficiency from the dry bed treatment system and achieved all stability and precision objectives.
- 4. The analytical method has been shown to have good sample stability.

FIGURES

\Graeme\1690014483\SLM_COVINGTON_GA\SLM_COVINGTON_GA.aprx

GMILES 4/21/20 F:\GRAEME\1690014483 < SITE_LAYOUT_COVINGTON_GA2 >

TABLES

TABLE 1 System 1 Airflow Rates Becton, Dickinson and Company Covington, Georgia Facility

Sample ID	Sample Location	Pre-Test Flow Rate (dscfm)	Pre-Test Average Temperature (°F)	Post-Test Flow Rate (dscfm)	Post-Test Average Temperature (°F)	Average Flow Rate (dscfm)	Average Temperature (°F)
			System 1				
SYS1-IN 20210326	SYS1 In	23,669	81	23,463	99	23,566	90
SYS1-STACK 20210326	SYS1 Out	26,377	84	25,809	87	26,093	86
		System 2					
2BF-1 20210326	2BF-1	9,205	74	9,004	81	9,104	78
2BF-2 20210326	2BF-2	8,837	76	9,093	87	8,965	82
2BF-3 20210326	2BF-3	8,820	74	9,027	87	8,924	81
2BF-4 20210326	2BF-4	9,172	72	9,187	83	9,179	78
2BF-5 20210326	2BF-5	8,911	74	8,986	84	8,948	79
2BF-6 20210326	2BF-6	12,552	73	12,425	85	12,489	79
SYS2-STACK 20210326	SYS2 Out	69,588	73	70,531	77	70,059	75
Notes: Pre and Post-Test averag	•	•	ded by Advanced In		f System 2 Inlets es, Inc. (AIR).	57,609	

dscfm - dry standard cubic feet per minute

TABLE 2 System 1 Ethylene Oxide Sample Results Becton, Dickinson and Company Covington, Georgia Facility

						Vacuum ¹		
Sample ID	Sample Location	Date	Start Time	Stop Time	Duration (hours)	Initial (In. Hg)	Final (In. Hg)	EO Concentration (μg/m ³)
	-	-		System 1				-
SYS1-IN 20210326	SYS1 In	3/26/2021	10:35	14:35	4:00	29.0	8.7	470
SYS1-STACK 20210326 ²	SYS1 Out	3/26/2021	10:35	14:35	4:00	27.0	6.5	1.8
SYS1-STACK DUP 20210326	SYS1 Out	3/26/2021	10:50	14:35	3:45	27.0	9.0	2.1
				System 2				
2BF-1 20210326	2BF-1	3/26/2021	10:35	11:22	0:47	26.5	26.5	2600
2BF-1R 20210326	2BF-1	3/26/2021	11:22	14:35	3:13	29.5	10.5	2300
2BF-2 20210326	2BF-2	3/26/2021	10:35	14:35	4:00	28.5	21.0	3600
2BF-3 20210326	2BF-3	3/26/2021	10:35	14:35	4:00	28.5	21.0	980
2BF-4 20210326	2BF-4	3/26/2021	10:35	14:35	4:00	28.0	8.0	6100
2BF-5 20210326	2BF-5	3/26/2021	10:35	14:35	4:00	28.8	7.0	5300
2BF-6 20210326	2BF-6	3/26/2021	10:35	14:35	4:00	29.0	11.0	2000
SYS2-STACK 20210326	SYS2 Out	3/26/2021	10:35	14:35	4:00	30.0	7.0	70
SYS2-STACK DUP 20210326 ³	SYS2 Out	3/26/2021	10:35	14:35	4:00	30.0	13.7	76

Notes:

¹Vacuum readings recorded in the field from the regulator gauge.

²The listed EO concentration is the average of SYS1 - STACK 20210326 (1.5 μ g/m³) and SYS1-STACK DUP 20210326 (2.1 μ g/m3) values.

³The laboratory conducted a lab duplicate for analytical repeatability; results were 73 and 79 μg/m3. Listed EO concentration is an average of the two values.

In. Hg - inches of mercury

 μ g/m³ - micrograms per cubic meter

EO - Ethylene Oxide

TABLE 3

System 1 Performance Assessment Becton, Dickinson and Company Covington, Georgia Facility

Sample ID	SampleEO ConcentrationLocation(μg/m³)		Duct Flow (dscfm)	EO Rate (lb/hr)					
	System 1								
SYS1-IN 20210326	SYS1 In	470	23,566	0.0415					
SYS1-STACK 20210326	SYS1 Out	1.8	26,093	0.0002					
		System 2							
2BF-1 20210326 ¹	2BF-1	2,359	9,104	0.0804					
2BF-2 20210326	2BF-2	3,600	8,965	0.1209					
2BF-3 20210326	2BF-3	980	8,924	0.0328					
2BF-4 20210326	2BF-4	6,100	9,179	0.2097					
2BF-5 20210326	2BF-5	5,300	8,948	0.1776					
2BF-6 20210326	2BF-6	2,000	12,489	0.0936					
SYS2-STACK 20210326	SYS2 Out	70	70,059	0.0184					
Total Inlet 57,609									
Flow-weighted average inlet (ug/m3)									
Notes:									

EO - Ethylene Oxide

 $\mu g/m^3$ - micrograms per cubic meter

dscfm - dry standard cubic feet per meter

lb/hr - pounds per hour

¹The EO concentration is a time-weighted average of the concentration reported for 2BF-1 20210326 and 2BF-1R 20210326.

	System 1	System 2
Potential Annual EO emissions (lb/year)	1.54	160.91
Concentration-based percent removal	99.6	97.9
Mass-based percent removal	99.6	97.4

APPENDIX A STACK TESTING SCOPE

Test Plan

for the

Performance Testing of the Fugitive Emissions Control System 1 Upgrades

at

Becton, Dickinson and Company (BD) Urology and Critical Care Division

Covington, Georgia

Proposed Test Date:

26 March 2021

Submitted By:

Becton, Dickinson and Company Urology and Critical Care Division 8195 Industrial Blvd Covington GA 30014

Table of Contents

		Page
I.	Introduction	1
II.	Process and Control Equipment Description and Operating Conditions	1
III.	Dry Bed Validation Testing Plan	2
IV.	Plant Entry and Safety	4

I. Introduction

Condition 13 of Attachment A to the October 28, 2019 Consent Order provides; "in accordance with an EPD-approved plan, BD shall conduct an initial demonstration of the fugitive emissions control system upgrades proposed in the permit application for the BD Covington facility no later than March 31, 2020." On March 25, 2020, a Second Amendment to the Consent Order was issued by EPD which extended the deadline for the Condition 13 testing to April 15, 2020.

BD has complied with the conditions set forth in the 2019 Consent Order by performing the initial control system demonstration on April 2, 2020 and again on June 19, 2020 following EPD-approved test plans submitted on March 27, 2020 and May 21, 2020.

Upon achieving a full year of operation of the fugitive emissions control system and as requested by EPD, BD will again test the system in an annual test scheduled to be performed on March 26, 2021 at the BD Sterilization Operation in Covington, Georgia. The purpose of the testing is to assess the removal efficiency of EO by the existing dry bed fugitive emissions control systems after one year of operation.

Both System 1 and System 2 control efficiency for EO will be tested and demonstrated on a concentration basis by withdrawing exhaust air from the ductwork at the inlet side of the dry beds and at the outlet stack from into Summa Canisters in accordance with EPA Method TO-15.

The air testing services of a reputable contractor will be obtained to conduct the required testing. Mr. John LaMontagne, of BD, and other BD personnel, will provide on-site coordination of the testing.

II. <u>Process and Control Equipment Description and Operating Conditions</u>

The equipment being tested is for the control of fugitive emissions of EO at an existing medical device sterilization facility. The existing regulated process which includes the Sterilization Chamber Exhaust Vent, Chamber Vent, Aeration Exhaust, and Thermal Oxidizer are not being modified and are excluded from this performance test.

Testing for this equipment is specific to the additional emission control systems being installed to capture and treat fugitive emissions of EO not captured by current emissions control equipment. The equipment to be tested includes one system comprised of multiple Advanced Air Technologies Model DR490 "Dry Bed Scrubbers".

System One (SYS1) captures potential emissions from the five Sterilization Vessel Rooms (VRM1, VRM2, VRM3, VRM4, VRM5), the Vessel to Aeration Transfer Corridor (NCO1), and the EO Dispensing Room (DRM1). System Two (SYS2) captures potential emissions from the Work in Progress Area (WIP1) where product is stored after Sterilization and prior to shipment.

III. Dry Bed Validation Testing Plan

Analytical Methods

The samples will be collected in Summa canisters and analyzed using EPA Method TO-15 with GC/MS in the Selective Ion Monitoring (SIM) acquisition mode to determine the concentration of ethylene oxide. The samples will be sent using overnight delivery to the analytical laboratory under formal chain of custody procedures. The analysis will be performed by Eurofins Air Toxics, an independent laboratory located in Folsom, California. Results will be reported in units of micrograms per cubic meter (ug/m³).

To accommodate the conditions relating to canister placement, sampling probes will be connected using flexible tubing (Teflon FEP, 1/4" OD), with the length not to exceed five (5) feet. Duplicate samples will be collected at the outlets from each dry bed system and submitted to the laboratory for precision and repeatability of sample collection.

Efficiency Assessment

The performance testing will be performed as follows:

Sample duration:	4 hours
System 1:	Inlet duct and outlet duct simultaneously across all of System 1.
System 2:	Inlet ducts to all of the 6 dry bed sets simultaneously with the outlet stack for System 2.
Sample Collection:	Samples will be collected at a single point within each corresponding stack or duct.
Parameters:	Outlet stack airflow rate and moisture will be measured simultaneously by EPA Methods 1, 2, and 4.
Velocity Profiles:	Velocity traverses of the inlet ducts will be performed periodically during the testing.
Efficiencies:	Control efficiency will be calculated on the basis of the reduction in concentration of EO across the dry beds for each System. Mass emission rate of EO (lb/hr) will be determined using the measured outlet concentration and airflow rate.

IV. Plant Entry and Safety

General safety rules must be adhered to when inside the plant area. Visitors must first sign in at the reception area at 8195 Industrial Blvd. prior to admission to the Sterilization Facility. Entry to the Sterilization Facility is restricted. John LaMontagne is responsible for this project. He can be reached at 770-784-6186 (office) or 770 652-2049 (cell).

APPENDIX B

TESTING SUBCONTRACTOR FINAL REPORT

Dry Bed System Annual Performance Test At Becton Dickinson Bard Covington Facility Project ID: KR-10687

PREPARED FOR:

PREPARED BY: ADVANCED INDUSTRIAL RESOURCES, INC. 3407 Novis pointe Acworth, Georgia 30101

> **TEST DATE:** MARCH 26, 2021

TABLE OF CONTENTS

<u>1.0</u>	INTRODUCTION	1
1.1	SUMMARY OF TEST PROGRAM	1
1.2	KEY PERSONNEL	1
2.0	PLANT AND SAMPLING LOCATION DESCRIPTIONS	2
2.1	PROCESS DESCRIPTION AND OPERATION	2
2.2	SAMPLING LOCATIONS	2 2
		-
<u>3.0</u>	SUMMARY AND DISCUSSION OF TEST RESULTS	4
<u></u>		<u> </u>
3.1	OBJECTIVES	4
	FIELD TEST CHANGES AND PROBLEMS	4
	PRESENTATION OF RATA TEST RESULTS	4
0.0		•
4.0	SAMPLING AND ANALYTICAL PROCEDURES	5
<u>4.0</u>	SAMI LING AND ANALT HCALT ROCEDURES	5
<u>5.0</u>	QUALITY ASSURANCE ACTIVITIES	6
5.1	INTERNAL QUALITY ASSURANCE	6
5.1.	1 SAMPLING TRAIN LEAK CHECKS	6
5.1.2	2 PROBE NOZZLE DIAMETER CHECKS	7
5.1.3		7
	4 METERING SYSTEM CALIBRATION	7
	5 TEMPERATURE GAUGE CALIBRATION	7
5.1.0	6 DATA REDUCTION CHECKS	8
C O		0
<u>0.U</u>	DATA QUALITY OBJECTIVES	9

LIST OF APPENDICES

- APPENDIX A TEST RESULTS
- APPENDIX B EXAMPLE CALCULATIONS AND NOMENCLATURE
- APPENDIX C FIELD DATA
- APPENDIX D CALIBRATION DATA

1.0 INTRODUCTION

1.1 SUMMARY OF TEST PROGRAM

Becton Dickinson Bard (BD Bard) operates a medical products sterilization facility located at 8195 Industrial Blvd, Covington, Georgia 30014. Sterilization is completed using ethylene oxide gas. The facility has installed two (2) dry bed systems designed to control fugitive and process ethylene oxide emissions from the interior of the facility.

The 2nd annual performance test of the dry bed systems was conducted on March 26, 2021 by Ramboll and Advanced Industrial Resources, Inc. (AIR). The purpose of the performance test was to confirm the respective control systems' ethylene oxide removal efficiencies. Testing was conducted by quantifying the inlet loading of ethylene oxide to the dry bed systems and simultaneously quantifying the emission rate of ethylene oxide at the outlet of the respective dry bed systems. US EPA Methods 1, 2, 4, and 18 were used to conduct testing.

Testing was conducted by Advanced Industrial Resources, Inc. (*AIR*) and Ramboll in accordance with approved USEPA Methods (i.e., 40 CFR 60 Appendix A, Methods 1, 2, 4, and 18).

1.2 KEY PERSONNEL

The key personnel who coordinated the test program and their telephone numbers are:

Keith A. Cole, P.E., Ramboll, Sr. Managing Consultant	678-388-1648
Derek Stephens, AIR, VP/QA Director	404-843-2100
Stephen Wilson, AIR, Chief Operations Officer	404-403-6079
Scott Wilson, AIR, Program Director	800-224-5007

2.0 PLANT AND SAMPLING LOCATION DESCRIPTIONS

2.1 PROCESS & CONTROL EQUIPMENT DESCRIPTION

Becton Dickinson Bard (BD Bard) operates a medical products sterilization facility in Covington, Georgia. Sterilization is completed using ethylene oxide gas in various chambers within the facility. The facility has installed two (2) dry bed systems designed to control fugitive and process ethylene oxide emissions from the interior of the facility.

2.2 SAMPLING LOCATION

Each sampling location has a circular cross section with at least two (2) sampling ports oriented 90 degrees from one another. The sampling locations are located at least two (2) equivalent diameters downstream from the nearest upstream flow disturbance and at least one-half (0.5) equivalent diameters upstream from the nearest downstream flow disturbance. In accordance with EPA Method 1, a minimum of sixteen (16) total traverse points (\geq 8 per port) were used to measure velocities within the respective ducts via EPA Method 2. The centroids of the respective ducts were used to collect the ethylene oxide samples.

The following table summarizes the sampling locations:

Source	Stack diameter (D _S)	Downstre disturbance (A	distance disturbanc		e distance	Traverse Points
	inches	inches	equiv. diameter	inches	equiv. diameter	(per port)
System 1 Outlet	73	45	0.62	252	3.45	24 (12)
System 1 Inlet	50.5	27	0.53	> 101	> 2	16 (8)
System 2 Outlet	73	45	0.62	252	3.45	24 (12)

Page 3 of 9

Source	Stack diameter (Ds)	Downstream flow disturbance distance (A)		Downstream flow disturbance distance (B)		Traverse Points
	inches	inches	equiv. diameter	inches	equiv. diameter	(per port)
System 2 Inlet 2BF-1	30	35.5	1.18	97	3.23	16 (8)
System 2 Inlet 2BF-2	30	26.5	0.88	151	5.03	16 (8)
System 2 Inlet 2BF-3	30	39	1.30	163	5.43	16 (8)
System Inlet 2 2BF-4	30	60.5	2.02	115.75	3.85	16 (8)
System 2 Inlet 2BF-5	30	36.5	1.22	63.5	2.12	16 (8)
System 2 Inlet 2BF-6	36	114.0	3.17	72.5	2.42	16 (8)

3.0 SUMMARY AND DISCUSSION OF TEST RESULTS

3.1 OBJECTIVES

The purpose of the annual performance test was to confirm the control systems' ethylene oxide removal efficiencies. Testing was conducted by quantifying the inlet loading of ethylene oxide to the dry bed systems and simultaneously quantifying the emission rate of ethylene oxide at the outlet of the respective dry bed systems.

3.2 FIELD TEST CHANGES AND PROBLEMS

No problems were encountered during testing that required deviation from the planned test protocol.

3.3 PRESENTATION OF TEST RESULTS

Volumetric flow rates and associated data are presented in Appendix A. Actual raw field data sheets are presented in Appendix C.

4.0 SAMPLING AND ANALYTICAL PROCEDURES

Testing were performed in accordance with 40 CFR 60 Appendix A. Specifically:

- EPA Method 1 was used for the qualification of the location of sampling ports and for the determination of the number and positions of stack traverse points, as applicable to sample traverses for EPA Method 2.
- EPA Method 2 was employed for the determination of the stack gas velocity and volumetric flow rate during sampling using Type "S" Pitot tubes. EPA Method 2 was conducted prior to and at the conclusion of the single ethylene oxide sample period and the average of the two (2) traverses, per sample location, were used to determine the volumetric flow rate used for calculating the mass rate (lb/hr) of ethylene oxide. The pre- and post-test velocity traverses for each sample location varied by less than 10%.
- EPA Method 3 was used for the calculation of the density and dry molecular weight of the effluent stack gas. The gas streams were assumed to be at ambient conditions (20.9% O2, 0.0% CO2).
- EPA Method 4 was employed for the determination of the stack gas moisture content of the respective system exhaust stacks. A single test run was conducted on each stack which lasted the duration of the test run (240 min.). Wet bulb/dry bulb measurements were conducted on each of the inlet ducts to determine moisture content.

5.0 QUALITY ASSURANCE ACTIVITIES

5.1 INTERNAL QUALITY ASSURANCE

The quality assurance/quality control (QA/QC) measures associated with the sampling and analysis procedures given in the noted EPA reference methodologies, in Subparts A of 40 *CFR* 60 and 40 *CFR* 63, and in the *EPA QA/QC Handbook*, Volume III (EPA 600/R-94/038c) were employed, as applicable. Such measures include, but are not limited to, the procedures detailed below.

5.1.1 SAMPLING TRAIN LEAK CHECKS

Determinations of the leakage rate of the Method 4 sampling trains were made before and after each sampling run using the procedure detailed in Section 8.1.3.2 of EPA Method 4. Before the sampling run, after the sampling trains had been assembled and probe and filter box temperatures had time enough to settle at their appropriate operating values, the probe inlet was plugged and the system was evacuated to a pressure of 15 inches of Hg below ambient pressure. The volumetric leakage rate was be measured by the dry gas meter over the course of one (1) minute. The leakage rate was less than 0.020 cfm for each run, thereby meeting the maximum allowable leakage rate.

After the sampling run, before the train was disassembled the probe inlet was plugged and the system depressurized to a vacuum equal to or greater than the maximum value reached during the sampling run. The dry gas meter measured the volumetric leakage rate over the course of one (1) minute. The leakage rate was determined to be less than 0.020 cfm, thereby meeting the maximum allowable leakage rate.

The Type "S" Pitot tube assemblies were also checked for leaks before and after sampling runs using the procedure in Section 8.1 of EPA Method 2. The impact opening of the Pitot tubes were blown through until a pressure of at least 3 inches of water registered on the manometer. The impact opening was quickly plugged and held for at least 15 seconds, during which time the manometer reading held. The same operation was performed on the static pressure side of the Pitot tubes, except suction was used to obtain the pressure differential.

5.1.2 PROBE NOZZLE DIAMETER CHECKS

No probe nozzles were used during this test program.

5.1.3 PITOT TUBE FACE PLANE ALIGNMENT CHECK

Before field testing, each Type S Pitot tube was examined in order to verify that the face planes of the tube were properly aligned, per Method 2 of 40 *CFR* 60, Appendix A. The external tubing diameter and base-to-face plane distances were measured in order to verify the use of 0.84 as the baseline (isolated) Pitot coefficient. At that time the entire probe assembly (i.e., the sampling probe, nozzle, thermocouple, and Pitot tube) was inspected in order to verify that its components met the interference-free alignment specifications given in EPA Method 2. Because the specifications were met, then the baseline Pitot coefficient was used for the entire probe assembly.

After field testing, the face plane alignment of each Pitot tube was checked. No damage to the tube orifices was noted.

5.1.4 METERING SYSTEM CALIBRATION

Every three months each dry gas meter (DGM) console is calibrated at five orifice settings according to Method 5 of 40 *CFR* 60, Appendix A. From the calibration data, calculations of the values of Y_m and $\Delta H_@$ are made, and an average of each set of values is obtained. The limit of total variation of Y_m values is ± 0.02 , and the limit for $\Delta H_@$ values is ± 0.20 .

After field testing, the calibration of the DGM console was checked by performing three calibration runs at a single intermediate orifice setting that is representative of the range used during field-testing. Each DGM was within the limit of acceptable relative variation from Y_m of 5.0%.

5.1.5 TEMPERATURE GAUGE CALIBRATION

After field testing, the temperature measuring instruments on each sampling train was calibrated against standardized mercury-in-glass reference thermometers. Each indicated temperature was within the limit of acceptable variation between the absolute reference temperature and the absolute indicated temperature of 1.5%.

5.1.6 DATA REDUCTION CHECKS

AIR ran an independent check (using a validated computer program) of the calculations with predetermined data before the field test, and the *AIR* Team Leader conducted spot checks on-site to assure that data was being recorded accurately. After the test, *AIR* checked the data input to assure that the raw data had been transferred to the computer accurately. Flow rates, temperatures and moisture levels were relatively constant (variation <5%) during the three test runs, which indicates that data recording and Method 2 and 4 sampling and calculation errors are not likely.

6.0 DATA QUALITY OBJECTIVES

The data quality objectives (DQOs) process is generally a seven-step iterative planning approach to ensure development of sampling designs for data collection activities that support decision making. The seven steps are as follows: (1) defining the problem; (2) stating decisions and alternative actions; (3) identifying inputs into the decision; (4) defining the study boundaries; (5) defining statistical parameters, specifying action levels, and developing action logic; (6) specifying acceptable error limits; and (7) selecting resource-effective sampling and analysis plan to meet the performance criteria. The first five steps are primarily focused on identifying qualitative criteria such as the type of data needed and defining how the data will be used. The sixth step defines quantitative criteria and the seventh step is used to develop a data collection design. In regards to emissions sampling, these steps have already been identified for typical monitoring parameters.

Monitoring methods presented in 40 *CFR* 60 Appendix A indicate the following regarding DQOs: Adherence to the requirements of this method will enhance the quality of the data obtained from air pollutant sampling methods. At a minimum, each method provides the following types of information: summary of method; equipment and supplies; reagents and standards; sample collection, preservation, storage, and transportation; quality control; calibration and standardization; analytical procedures, data analysis and calculations; and alternative procedures. These test methods have been designed and tested according to DQOs for emissions testing and analysis.

APPENDIX A

TEST RESULTS

Volumetric flow rate summary

	* **************	5				
	System 1					
Pre&Post - Average	Inlet	Difference	Outlet			
Γ	23,566	-2,527	26,093			
	System 1					
Pre-only	Inlets	Difference	Outlet			
Γ	23,669	-2,707	26,377			
	System 1					
Post-only	Inlets	Difference	Outlet			
	23,463	-2,346	25,809			

		Volumetric flow	v rate summary				
	System 2						
	DSCFM						
	Inlets		Difference	Outlet			
	2BF-1	9,104					
Pre&Post - Average	2BF-2	8,965					
riearost - Average	2BF-3	8,924					
	2BF-4	9,179					
	2BF-5	8,948					
	2BF-6	12,489					
	Total	57,609	-12,450	70,059			
	System 2						
	DSCFM						
	Inlets		Difference	Outlet			
	2BF-1	9,205					
Pre Only	2BF-2	8,837					
Fie Only	2BF-3	8,820					
	2BF-4	9,172					
	2BF-5	8,911					
	2BF-6	12,552					
	Total	57,496	-12,092	69,588			
	System 2						
	DSCFM						
	Inlets		Difference	Outlet			
	2BF-1	9,004					
Post Only	2BF-2	9,093					
r ost Onry	2BF-3	9,027					
	2BF-4	9,187					
	2BF-5	8,986					
	2BF-6	12,425					
	Total	57,723	-12,808	70,531			

Volumetric flow rate summary

APPENDIX B

EXAMPLE CALCULATIONS

AND

EXAMPLE CALCULATIONS

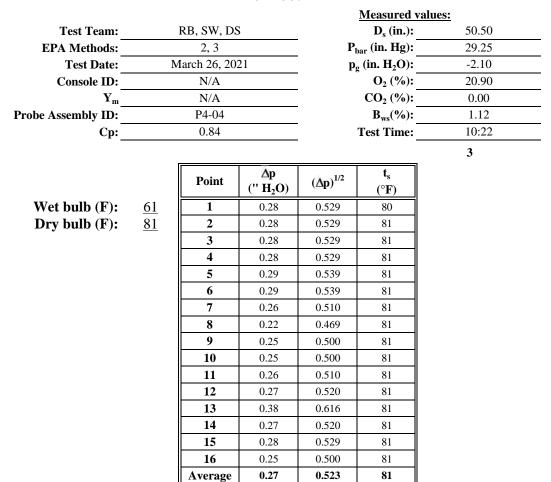
 $A_n = D_n^2 \pi / 4$ $A_{s} = D_{s}^{2} \pi / 4$ $\mathbf{B}_{ws} = \mathbf{V}_{w(std)} / (\mathbf{V}_{m(std)} + \mathbf{V}_{w(std)})$ $c_{analyte} = (m_{analyte} \ / \ V_{m(std)}) \ (35.31466 \ ft^3/m^3)$ $c_{analyte} = (m_{analyte} / V_{m(std)}) (0.015432 \text{ gr/mg})$ $c_{analyte} = c_{analyte} MW_{analyte} / 24.04 l/mol$ $CC = t_{0.975} (S_d / n^{1/2})$ $d = 1/n (Sd_i)$ $DE = (E_{Inlet} - E_{Outlet}) / E_{Inlet} \times 100\%$ $E_{analyte} = (m_{analyte} / V_{m(std)}) Q_{sd} (60 \text{ min/hr}) (2.2046 \text{x} 10^{-6} \text{ lb./mg})$ $E_{analyte} = c_{analyte} Q_{sd} (60 \text{ min/hr}) (2.2046 \text{x} 10^{-6} \text{ lb./mg})$ $I = 100 T_{s} (K_{3} V_{lc} + Y_{m} V_{m} P_{m} / T_{m}) / (60 \theta v_{s} P_{s} A_{n})$ where $K_3 = 0.002669$ (in. Hg ft³) / (mL °R) $K_{I} = [(2.0084 \times 10^{7} \Delta H_{@}) A_{n} (1 - B_{ws})]^{2} (M_{d} / M_{s}) (T_{m} / T_{s}) (P_{s} / P_{m})$ $M_d = 0.44 (\% CO_2) + 0.32 (\% O_2) + 0.28 (\% N_2 + \% CO)$ $M_{s} = M_{d} (1 - B_{ws}) + M_{w} B_{ws}$ P = Qsd / F-Factor x 60 x (20.9-O₂) / 20.9 $P_{\rm m} = P_{\rm bar} + \Delta H / 13.6$ $P_{s} = P_{bar} + p_{g} / 13.6$ $Q_a = (60 \text{ s/min}) v_s A_s$ $Q_{sd} = (60 \text{ s/min}) (1 - B_{ws}) v_s A_s (T_{std} / T_s) (P_s / P_{std})$ RA = [Abs(d) + Abs(CC)]/RM $S_d = [(Sd_i^2 - (Sdi)^2/n)/(n-1)]^{1/2}$ $T_{m} = t_{m} + 460^{\circ}$ $T_s = t_s + 460^{\circ}$ $V_{m(std)} = V_m Y_m (T_{std} / T_m) (P_m / P_{std})$ $V_{w(std)} = (V_{lc} \ \rho_w \ R \ T_{std}) \ / \ (M_w \ P_{std})$ $v_s = K_p C_p [\Delta p]^{1/2} [T_s / (P_s M_s)]^{1/2}$

Symbol	Units	Description				
Abs(x)	dimensionless	Absolute value of parameter x				
An	ft^2	Area of the nozzle				
As	ft^2	Area of the stack				
Bws	dimensionless	Volume proportion of water in the stack gas stream				
Cp	dimensionless	Type S pitot tube coefficient				
Canalyte	mg/dscm	Concentration of analyte in dry stack gas, standardized				
'Canalyte	gr./dscf	Concentration of analyte in dry stack gas, standardized				
'Canalyte	ppm	Concentration of analyte in dry stack gas, standardized				
CC	dimensionless	One-tailed 2.5% error confidence coefficient				
d	ppm	Arithmetic mean of differences				
di	ppm	Difference between individual CEM and reference method concentration value				
Dn	inches	Internal diameter of the nozzle at the entrance orifice				
Ds	inches	Internal diameter of the stack at sampling location				
DE	percent	Destruction efficiency				
UH	inches H ₂ O	Average pressure differential across the meter orifice				
U H @	inches H ₂ O	Orifice pressure differential that corresponds to 0.75 cfm of air at 68 °F and 29.92 inches of Hg				
Up	inches H ₂ O	Velocity head of stack gas				
Eanalyte	lb./hour	Emission rate of analyte, time basis				
Ι	percent	Isokinetic sampling ratio expressed as percentage				
KI	dimensionless	K-factor, ratio of DH to DP, ideal				
Kp	$\frac{ft[(lb/lb-mol)(in. Hg)]^{1/2}}{s[(^{\circ}R)(in. H_2O)]^{1/2}}$	Type S pitot tube constant, = 85.49				
Lp	cfm	Measured post-test leakage rate of the sampling train				
Md	lb./lbmole	Molecular weight of gas at the DGM				
Ms	lb./lbmole	Molecular weight of gas at the stack				

Symbol	Units	Description			
Mw	lb./lbmole	Molecular weight of water,			
		= 18.0			
M analyte	mg	Mass of analyte in the sample			
n	dimensionless	Number of data points			
Р	MMBtu	Fuel firing rate			
Pbar	inches Hg	Barometric pressure at measurement site			
Pinput	tons/hour	Process dry mass input rate			
pg	inches H ₂ O	Gauge (static) pressure of stack gas			
Pm	inches Hg	Absolute pressure of meter gases			
Ps	inches Hg	Absolute pressure of stack gases			
Pstd	inches Hg	Standard absolute pressure			
		= 29.92			
Qa	cfm	Volumetric flow rate of actual stack gas			
Qsd	dscfm	Volumetric flow rate of dry stack gas, standardized			
R	$(in. Hg)(ft^3)$	Ideal gas constant,			
	(lb-mole)(°R)	= 21.85			
RA	percent	Relative accuracy			
RE	percent	Removal efficiency			
RM	ppm	Average reference method concentration			
r _w	lb/mL	Density of water,			
		= 0.002201			
ra	g/mL	Density of acetone,			
		= 0.7899			
Sd	dimensionless	Standard deviation			
Tm	°R	Absolute temperature of dry gas meter			
Ts	°R	Absolute temperature of stack gas			
Tstd	°R	Standard absolute temperature,			
		= 528			
to.975	dimensionless	2.5 percent error t-value			
tm	°F	Temperature of DGM			
ts	°F	Temperature of stack gas			
"1	minutes	Total sampling time			
	1				

Symbol	Units	Description		
Vlc	mL	Total volume of liquid collected		
Vm	dcf	Volume of gas sample as measured by the DGM		
Vm(std)	dscf	Volume of gas sample as measured by the DGM, standardized		
Vw(std)	scf	Volume of water vapor in the gas sample, standardized		
Vs	ft./sec	Velocity of stack gas		
Ym	dimensionless	DGM calibration coefficient		
Yc	dimensionless	DGM calibration check value		
Yw	dimensionless	Reference (wet) gas meter calibration coefficient		
% CO2	percent	Percent CO ₂ by volume, dry basis		
% O2	percent	Percent O ₂ by volume, dry basis		
% N2	percent	Percent N ₂ by volume, dry basis		

APPENDIX C


FIELD DATA

System 1 Inlet

Input values:		Run Number		Me		
-		Pre-1	Post-1	Pre-1	Post-1	
T _{db}	F	81	99	27.2	37.2	С
T_{wb}	F	61	65	16.1	18.3	С
P_{g}	in H ₂ 0	-2.10	-1.60	-0.5	-0.4	kPa
P _{bar}	in Hg	29.25	29.25	99.0	99.0	kPa
O_2	%	20.9	20.9	20.9	20.9	%
CO_2	%	0.0	0.0	0.0	0.0	%
Calculat	ed values:					
Р	in Hg	29.10	29.13	98.5	98.6	kPa
MW_{air}	lb/mol	28.84	28.84	28.84	28.84	g/mol
p _{sat}	in Hg	0.54	0.62	1.83	2.11	kPa
р	in Hg	0.32	0.25	1.10	0.85	kPa
Н	lb H ₂ O/lb air	0.0070	0.0054	0.0070	0.0054	
\mathbf{B}_{ws}		1.1%	0.87%	1.12%	0.87%	

* Data entry in non-shaded cells only. Shaded cells contain calculations. <u>Note:</u> % O_2 and % CO_2 are not important variables. Use 21% and 0% if values have not been measured.

Advanced Industrial Resources BD Bard - Covington, GA Flow Measurements & Calculations System 1 Inlet Pre-Test

 $= \{(\%O_2 x 32) + (\%CO_2 x 44) + (\%N_2 x 28)\} x (1-B_{ws}/100))/100 + B_{ws}/100*18$ =85.49C_p x (Δ p)^{1/2} x {(t_s+460)/(P_{bar}+p_g/13.6)/M_s)}^{1/2} =v_s\piD_s²/4/144 x 60 x (t_{std}+460)/(t_s+460) x (P_{bar}+p_g/13.6)/29.92 x (1-B_{ws}/100) =v_s\piD_s²/4/144 x 60

- Flow Rate, $Q_{s,ds}$ = Flow Rate, $Q_{s,act}$ = Flow Rate, $Q_{s,std}$ =
- 23,669 dscfm 25,218 acfm 23,936 scfm
- $=v_s \pi D_s^2/4/144 \ge 60 \ge (t_{std}+460)/(t_s+460) \ge (P_{bar}+p_g/13.6)/29.92$

Advanced Industrial Resources BD Bard - Covington, GA Flow Measurements & Calculations System 1 Inlet

Post-Test

		Measured value	es:
Test Team:	RB, SW, DS	D _s (in.):	50.50
EPA Methods:	2, 3	P _{bar} (in. Hg):	29.25
Test Date:	March 26, 2021	pg (in. H ₂ O):	-1.60
Console ID:	N/A	O ₂ (%):	20.90
Ym	N/A	CO ₂ (%):	0.00
Probe Assembly ID:	P4-04	B _{ws} (%):	0.87
Cp:	0.84	Test Time:	14:40

	Point	Δp (" H ₂ O)	(Δp) ^{1/2}	t _s (°F)
<u>65</u>	1	0.30	0.548	99
<u>99</u>	2	0.30	0.548	99
	3	0.28	0.529	99
	4	0.29	0.539	99
	5	0.27	0.520	99
	6	0.28	0.529	99
	7	0.26	0.510	99
	8	0.24	0.490	99
	9	0.20	0.447	99
	10	0.25	0.500	99
	11	0.24	0.490	99
	12	0.25	0.500	99
	13	0.37	0.608	99
	14	0.30	0.548	99
	15	0.31	0.557	99
	16	0.30	0.548	99
	Average	0.28	0.526	99

Calculations:

Wet bulb (F):

Dry bulb (F):

Molar weight, $M_s =$	28.74 lb/mol	={(%O ₂ x 32)+(%CO ₂ x 44)+(%N ₂ x 28)} x (1-B _{ws} /100))/100+B _{ws} /100*18
Velocity, $v_s =$	30.84 ft/sec	$=85.49C_{p} \times (\Delta p)^{1/2} \times \{(t_{s}+460)/(P_{bar}+p_{g}/13.6)/M_{s})\}^{1/2}$
Flow Rate, Q _{s,ds} =	23,463 dscfm	$=v_{s}\pi D_{s}^{2}/4/144 \text{ x } 60 \text{ x } (t_{std}+460)/(t_{s}+460) \text{ x } (P_{bar}+p_{g}/13.6)/29.92 \text{ x } (1-B_{ws}/100)$
Flow Rate, Q _{s,act} =	25,736 acfm	$=v_{s}\pi D_{s}^{2}/4/144 \ge 60$
Flow Rate, Q _{s,std} =	23,668 scfm	$= v_s \pi D_s^2 / 4 / 144 \ x \ 60 \ x \ (t_{std} + 460) / (t_s + 460) \ x \ (P_{bar} + p_g / 13.6) / 29.92$

Advanced Industrial Resources Duct Velocity & Flow Calculation Sheet

Client:	BD Berol	Measured	values:
Location:	Covinition, GA	D _s (in.):	50-5
Source:	Syster 1 Inlet	$Y_m / \Delta H_{@}$:	
Test Team:	RB /SW/DS	· C _p :	0.34
EPA Methods:	1,23,4	t _{amb} (°F)	67
Test Date:	3/26/21	Assumed B _{ws} (%):	<i>I</i>
Console ID:	NIA	O ₂ (%): CO ₂ (%):	aby 21
Probe Assembly ID:	p4-04	CO ₂ (%):	210

 Start time:
 10:22
 Start time:
 14:40
 Start time:

 Stop time:
 Stop time:
 Stop time:
 Stop time:

. .

Start time: Stop time:

	Stop time.		otop tille,		otop timo:_			
Test #	Pre.	fart	Port	- Teit				
P _{bar} (in. Hg):	24.2	.5	29.	25			<i>N</i> .	
p _g (in. H ₂ O):			- 1.	Ğ				
Traverse	Δр	ts	Δp	t _s	Δp	t _s	Δp	t _s
Point	(" H ₂ O)	(°F)	(" H ₂ O)	(°F)	(" H ₂ O)	(°F)	(" H ₂ O)	(°F)
1	0.28	90	0.30	79				
2	0.28	31	0.30	99				
3	0.28	81	0.25	99				
4	1.28	ŝ,	6.29	99]
5	0.29	51	0.27	99				
6	0.29	51	D.23	99			∮	
7	0.26	03 60	026	99			╏┼	
8	0.22	<u> </u>	0.24	99			┃	
9	0.25	 0000	0.20	99			┦───┤	<u> </u>
10	0.25	037	0.25	99		<u> </u>	 	
11	0.26	81	0.24	99		<u></u>	┦	
12	0.27 0.38 0.27	81	0.25	99		-	+	
13	0.38	81	0.37	-99	<u> </u>			
14	0.27	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.30	99			<u> </u>	
15	0.23	81	0.31	99 97			· ·	
	0.25	81	0.30	- 97				
17				<u> </u>	ļ		┦────┤	
18	tol =	81			ļ			
19	Ew "	61	tow	65	<u> </u>			
20		ļ	ļ	ļ				<u> </u>
21			l	·				.'
22		<u> </u>			ļ	*	╂	
23				l	ļ			
24			<u> </u>	· .	<u> </u>			
Average	1	1						

Test Team Leader Review: Data Entry Review:

~7

Advanced Industrial Resources, Inc.

	Advanced I			es, 1nc	•	
	Sour	rce Descrij	ption Sheets	ala	1	
Client:	BD Bard		Date:	3/2	6/21	
Location:	Covingtor System 1	, GA	Test Team:	RB[5-1 1.	15
Source:	System 1	Inlef		ţ	·	
D _n (in.):	NA		[Point	Δp	t _s
$A_n(ft^2)$:	NA			1 01111	(in. H ₂ O)	(°F)
D _s (in.):	50.5			1	0.28	80
$A_s(ft^2)$:	13.91			2	0.23	81
Length A (in.):		·······	-	3	0.23	<u>81</u> 31
Length B (in.):				4	0.23	91
				5	0.29	31
t _{amb} (°F):	61			6	0.29	91
Assumed B _{ws} :	1			7	0.26	31
P _{bar} (in. Hg):	29.25			8	0.22	91
P _g (in. H ₂ O):	- 2.1			-9		
% O ₂ :	21			10		
% CO ₂ :	0			11		
Console ID:	N/A			/12		
Y:	N/A			C	Change Por	ts
ΔH _@ :	NA			1	0.25	91
	0.94			2	0.25	31
K-Factor:	NA			3	0.26	91
				4	0.27	31
	Sketch of Stac	<u>k</u>		5	6.39	31
				6	0.27	81
			~	7	0.23	G(
				. 8	0.25	9.1
				10		
				<u>~14</u>	1	
		-				

Test Team Leader Review: Ocs Data Entry Review:

Advanced Industrial Resources, Inc. Cyclonic Flow Absence Verification Field Data EPA Method 1

Client:	BN Beral
Location:	Covington GA
Source:	System 1 Inlet
Test Team: _	RB/SW/DS
Probe ID:	P4-04
C _p :	6.34

67
NA
N/A
NA
1
29.25

Date:	3/26/21
D _s (in.):	50.5
$A_s(ft^2)$:	13.91
D _n (in.):	N/A
A_n (ft ²):	N/X

Fond (in. $H_2O)$ (degrees) 1 0.0 \mathcal{O} 2 0.0 \mathcal{O} 3 0.0 \mathcal{O} 4 0.0 \mathcal{O} 5 0.0 \mathcal{O} 6 0.0 \mathcal{O} 7 0.0 \mathcal{O} 8 0.0 \mathcal{O} 9 0.0 \mathcal{O} 10 0.0 \mathcal{O} 11 0.0 \mathcal{O} 2 0.0 \mathcal{O} 11 0.0 \mathcal{O} 2 0.0 \mathcal{O} 3 0.0 \mathcal{O} 4 0.0 \mathcal{O} 5 0.0 \mathcal{O} 7 0.0 \mathcal{O} 8 0.0 \mathcal{O} 9 0.0 \mathcal{O}	Г			. 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ĺ	Point	Δp	α	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ļ			(degrees)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	0:0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	0.0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	0.0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7	0.0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	0.0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		P	0.0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		10			
Change Ports 1 0.0 0 2 0.0 0 3 0.0 0 4 0.0 0 5 0.0 0 6 0.0 0 7 0.0 0 8 0.0 0 9 0.0 0		11	0.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12	0.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C	hange Po	rts	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	0.0	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	0.0	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3		0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	4	0.0	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5	0.0	0	
8 0.0 C 9 0.0 10 0.0			0.0	1]
<u>9</u> 0.0 10 0.0	i		0.0	0	
10 0.0		8	0.0	<u>a</u>	<u> </u>
		2	0.0	·	ł
1 I X I				\square	
11 0.0		11	0.0	<u> </u>	
12 0.0		12	0.0		ŀ

Test Team Leader Review:

Data Entry Review:

REV021717

System 1 Outlet

Advanced Industrial Resources BD Bard - Covington, GA Moisture Measurements & Calculations System 1 Outlet

			Measured values:
Test Team:	GSC	G, KF	$\frac{\mathbf{P}_{\text{bar}}(\mathbf{in},\mathbf{Hg})}{\mathbf{P}_{\text{bar}}(\mathbf{in},\mathbf{Hg})}$
EPA Methods:		4	p_{g} (in. $H_{2}O$): 0.20
Test Date:	March	26, 2021	Y _m 1.000
Console ID:	C-	017	Probe Assembly ID: P7-01
Moisture Run	Run #1		
Used for flow runs:	Pre & Post		
Water recovery (ml):	44		
Start	980.415		
Stop	1161.400	_	
Sample volume (cf):	180.985	_	
Meter temperature (F):	77.6	_	
Calculations:			
Moisture volume, V _w =	2.07	scf	= ml x 0.04715
Sample volume, $V_s =$	173.86	scf	= $V_m x Y_m x \{528 / (T_m + 460)\} x \{(P_{bar} + P_g / 13.6) / 29.92$
Moisture content, $B_{ws} =$	1.18	%	$= \mathbf{V}_{w} / (\mathbf{V}_{w} + \mathbf{V}_{s})$

 Tm	
65	
67	
68	
69	
70	
72	
83	
89	
96	
97	

Advanced Industrial Resources BD Bard - Covington, GA Flow Measurements & Calculations System 1 Outlet

Pre-Test

		Measured valu	<u>1es:</u>
Test Team:	GSG KF	D _s (in.):	73.00
EPA Methods:	1, 2, 3, 4	P _{bar} (in. Hg):	29.25
Test Date:	March 26, 2021	p _g (in. H ₂ O):	0.20
Console ID:	C-017	O ₂ (%):	20.90
Ym	1.000	CO ₂ (%):	0.00
Probe Assembly ID:	P7-01	B _{ws} (%):	1.18
Cp:	0.84	Start Time:	9:32 - 9:44

Point	<u>Др</u> ('' H ₂ O)	(Δp) ^{1/2}	t _s (°F)
1	0.09	0.300	74
2	0.09	0.300	79
3	0.09	0.300	82
4	0.08	0.283	83
5	0.08	0.283	85
6	0.08	0.283	85
7	0.06	0.245	85
8	0.06	0.245	85
9	0.07	0.265	85
10	0.08	0.283	85
11	0.08	0.283	85
12	0.08	0.283	85
13	0.10	0.316	85
14	0.10	0.316	85
15	0.10	0.316	85
16	0.08	0.283	85
17	0.08	0.283	85
18	0.07	0.265	85
19	0.07	0.265	85
20	0.07	0.265	85
21	0.06	0.245	85
22	0.06	0.245	85
23	0.07	0.265	85
24	0.08	0.283	85
Average	0.08	0.279	84

Calculations:	
Molar weight, $M_s =$	28.71 lb/mol
Velocity, v _s =	16.13 ft/sec
Flow Rate, Q _{s,ds} =	26,377 dscfm
Flow Rate, Q _{s,act} =	28,121 acfm
Flow Rate, Q _{s,std} =	26,691 scfm

 $= \{(\%O_2 \ge 32) + (\%CO_2 \ge 44) + (\%N_2 \ge 28)\} \ge (1-B_{ws}/100))/100 + B_{ws}/100*18 \\ = 85.49C_p \ge (\Delta p)^{1/2} \ge \{(t_s+460)/(P_{bar}+p_g/13.6)/M_s)\}^{1/2}$

 $=v_{s}\pi D_{s}^{2}/4/144 \text{ x } 60 \text{ x } (t_{std}+460)/(t_{s}+460) \text{ x } (P_{bar}+p_{g}/13.6)/29.92 \text{ x } (1-B_{ws}/100)$

 $=v_s \pi D_s^2/4/144 \ge 60$

 $=v_s \pi D_s^2/4/144 \ x \ 60 \ x \ (t_{std}+460)/(t_s+460) \ x \ (P_{bar}+p_g/13.6)/29.92$

Advanced Industrial Resources BD Bard - Covington, GA Flow Measurements & Calculations System 1 Outlet Post-Test

		Measured val	ues:
Test Team:	GSG KF	D _s (in.):	73.00
EPA Methods:	1, 2, 3, 4	P _{bar} (in. Hg):	29.25
Test Date:	March 26, 2021	pg (in. H ₂ O):	0.20
Console ID:	C-017	O ₂ (%):	20.90
Ym	1.000	CO ₂ (%):	0.00
Probe Assembly ID:	P7-01	B _{ws} (%):	1.18
Cp:	0.84	Start Time:	14:52 - 15:04

Point	<u>Др</u> (" Н ₂ О)	(Δp) ^{1/2}	t _s (°F)
1	0.09	0.300	85
2	0.09	0.300	86
3	0.09	0.300	86
4	0.08	0.283	86
5	0.08	0.283	86
6	0.07	0.265	86
7	0.06	0.245	87
8	0.06	0.245	87
9	0.06	0.245	87
10	0.07	0.265	87
11	0.07	0.265	87
12	0.08	0.283	87
13	0.09	0.300	86
14	0.10	0.316	87
15	0.10	0.316	87
16	0.08	0.283	87
17	0.08	0.283	87
18	0.07	0.265	87
19	0.06	0.245	87
20	0.06	0.245	87
21	0.06	0.245	87
22	0.07	0.265	87
23	0.07	0.265	87
24	0.07	0.265	87
Average	0.08	0.274	87

Calculations:

Molar weight, M_s = 28.71 lb/mol Velocity, $v_s =$ 15.85 ft/sec Flow Rate, Q_{s,ds} = 25,809 dscfm

- Flow Rate, Q_{s,act} =
- Flow Rate, Q_{s,std} =

 $= \{(\%O_2 \ x \ 32) + (\%CO_2 \ x \ 44) + (\%N_2 \ x \ 28)\} \ x \ (1 - B_{ws}/100))/100 + B_{ws}/100*18$ $= 85.49 C_p x (\Delta p)^{1/2} x \{(t_s + 460)/(P_{bar} + p_g/13.6)/M_s)\}^{1/2}$ $= v_s \pi D_s^{-2/4/144} \ge 60 \ge (t_{std} + 460)/(t_s + 460) \ge (P_{bar} + p_g/13.6)/29.92 \ge (1 - B_{ws}/100)$

 $=v_s \pi D_s^2/4/144 \ge 60$

27,646 acfm 26,117 scfm

 $=v_s \pi D_s^2/4/144 \ x \ 60 \ x \ (t_{std}+460)/(t_s+460) \ x \ (P_{bar}+p_g/13.6)/29.92$

			Ad	vance	ed Ind				es, Inc	•		
			-	_	Fle	ad Dat	a Sheet					
		Client:		saed			Test Date:	3/24	21			
		Location:	COVIN	ANN	GA	C	Console ID:	c · 01	· · · · · · · · · · · · · · · · · · ·			
		Source:	SYSTE	m	ovter	-	$Y_m / \Delta H_{@}$:	1.000		9	•	
		Test Team:		KF			ng Box ID:	B -		-		
		EPA Methods:	1,2,1	34		-	sembly ID:		-01			
		D _s (in.):	- 73				D _n (in.):	14			•	
		% O ₂		9	<u> </u>	As	sumed B _{ws} :	<u> </u>			•	
		% CO ₂	0,	0			ar (in. Hg):	29.	25	· · · · · · ·	•	
		Start Run:	9:32	14	552		(in. H ₂ O):	0. 7				
		End Run:	9,44		104	Min	utes/Point:					
8	p.k	Run Number:			e.	OSTR	K-Factor:	<u>ы</u>	A			
		. 64 1		<u> </u>	<u>لا</u>	Tarno .	<u>-</u>	· · ·				1
	(-		s H ₂ O		171	Tempera	ature Read				
		Meter	PRE	1.00		POST	TS	Last	t,	n	Filter	Vacuum
.1	Point	(def)	Δр	ΔН	t _s		Filter Box	Impinger	Inlet	Outlet	Exit (M5 or CPM)	(in. Hg)
10:35	1	980.415	0.09	1.85	74	0.09	85	48	45	45		4
•	23		0.09		79	0.09	80 80		67	<u>[07</u>		<u> </u>
	4		0.08	· · · · · · · · · · · · · · · · · · ·	Bi	0.08	a.	52		68		
	5	995.94	0,08		85	0.08	BU		75	70		4
	6	>	0.08		85	0.07	87					
	7 8		0,00		85	0.06	87	51	72			
	9		0.04		83	0,04	87 87	51	<u> </u>	77		4
	10	· · ·	0.08		<u>BŠ</u>	0.07	87					
	11		0.03		85	0.07	61	~ ~ ~	83	83		
	12		008	<u> </u>	85	O. O B Change	87- Dorto	54				4
			0.10		87	0.09	blis bla	56	89	BS		
	2		0,10		85	0,10	· 87	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	3		0,10		85	0.10	87					
	4		0,08		85	0.08	· · ·					
	5.		0.07		85	0.07	87	55	86	9 L		4
	7		0.07	<u> </u>	85	200		57		? ~		
	8		0.07		85	0.04	67					
	9 10		0.04		65	0.01	87					4
	10		0.04	· · · · · · · · · · · · · · · · · · ·	85	0.07	81					
	12		0.08		35	007	87	43	- 4 年	- 98-		4-
14:33	End	Reve								· · ·		4
		1161.400	Initial		e Collected (g)	1	Com		Leak Checks (T . F)	
		Body:	200	Final	Net 7 1.		San	Pitot A:	<u>0001</u>		-	.i
		Silica Gel:	200.0	208,	e 6.0			Pitot B:		0°-	-	
		Gel Number:		Total	: 44.0				•		-	
							Sam		Leak Checks (
		1997 - 1996 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -					Jan	Pitot A:	0.00	(a)) (-	
		Silica Gel De	sc. (initial):					Pitot B:	/	<u>ر</u>	-	
		Silica Gel D				_					-	
		Test Team Lead	ler Review:		- 4-	•	Reagent 1:			Lot No:		
		Data En	try Review:	· د. بر		•	Reagent 2:			Lot No:		
						-	-	<u></u>		•		•

7

}

ŕ,

Advanced Industrial Resources, Inc. Source Description Sheets Client: BD BRRD 21 Date: GA COVINGTON Test Team: Location: 5 ouTRAT Source: SYSTEN D_n (in.): Δp t_s Point $A_n(ft^2)$: NA (in. H₂O) (°F) D_s (in.): 73 82 1 0,05 $A_s(ft^2)$: 29.045 2 0.09 83 45 3 Length A (in.): 0.09 05 0.08 BS Length B (in.): 252 4 5 0,08 ߌ 0.08 64 t_{amb} (°F): 6 કર Assumed B_{ws}: 7 0.04 RS 29.25 P_{bar} (in. Hg): 65 8 0,00 0,07 P_{α} (in. H_2O): Q.20 9 65 0.08 % O₂: 10 20.9 ess 08 11 85 % CO₂: Θ, $O_t \circ$ sв શ્રડ 6-017 12 .0, Console ID: Change Ports **Y**: 1.000 1.845 $\Delta H_{@}$: BS a10 1 ВК a 87 2 0.10 C_p: NA 95 3 0,10 K-Factor: 0, 9G 4 ЯŚ 0.98 **Sketch of Stack** 5 65 85 6 0.07 7 qς 0.07

8

9

10

11

12

07

0,06

0,06

0.0 F

RIDB

Q,

85

65

ÐŚ

କ୍ଷ୍ୟ

85

	1		
/			
 		<u> </u>	*
			A
	v	נם	t
			í n
			1 3
(
			L
<u> </u>			T

Test Team Leader Review:

Advanced Industrial Resources, Inc. Cyclonic Flow Absence Verification Field Data EPA Method 1

Client: BD BARD Location: COULNETON, GA Source: 145Thm 1 OUI Test Team: $G_{,}$ KF Probe ID: 17.01 0.84 C_p: 64 t_m (°F): Console ID: Calt 1,900 Y_m: 1,845 $\Delta \mathbf{H}_{\boldsymbol{\omega}}$: Assumed B_{ws}: Pbar (in. Hg): 29.25

Date:	3/24/21	
D _s (in.):	73	
$A_s(ft^2)$:	29.065	
D _n (in.):	NA	
$A_n(ft^2)$:	NA	

Point	$\Delta \mathbf{p}$	α
	$(in. H_2O)$	
1	0.0	Ô
$ \begin{array}{r} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ \end{array} $	0.0	0
3	0.0	10
4	0.0	0
5	0.0	0
6	0.0	0
7	0.0	0
8	0.0	0
9	0.0	
10	0.0	2
11	0.0	0
12	0.0	2
(hange Po	rts
1	0.0	0
2 3 4 5	0.0	0
3	0.0	D
4	0.0	0
5	0.0	0
6	0.0	0
7	0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8	0.0	0
9	0.0	0
10	0.0	0
11	0.0	0
12	0.0	0

Test Team Leader Review:

- {

Data Entry Review:

Mr S

System 2 Inlet

Wet bulb / Dry bulb moisture calculation worksheet BD Bard - Covington, GA

ues:	2B]	C 1	AD									
	201	F-1	2 B	F-2	2B.	F-3	2B	F-4	2B	F-5	2B	F-6
	Pre	Post	Pre	Post	Pre	Post	Pre	Post	Pre	Post	Pre	Post
F	74	81	76	87	74	87	72	83	74	84	73	85
F	55	60	56	59	55	58	55	57	55	58	55	58
in H ₂ 0	-0.82	-1.30	-0.45	-1.00	-1.60	-1.60	-0.90	-1.50	-1.00	-1.30	-0.80	-0.75
in Hg	29.25	29.25	29.25	29.25	29.25	29.25	29.25	29.25	29.25	29.25	29.25	29.25
%	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9
%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
d values:												
in Hg	29.19	29.15	29.22	29.18	29.13	29.13	29.18	29.14	29.18	29.15	29.19	29.19
lb/mol	28.84	28.84	28.84	28.84	28.84	28.84	28.84	28.84	28.84	28.84	28.84	28.84
in Hg	0.44	0.52	0.45	0.50	0.44	0.49	0.44	0.47	0.44	0.49	0.44	0.49
in Hg	0.23	0.29	0.23	0.20	0.23	0.17	0.25	0.19	0.23	0.21	0.24	0.19
lb H ₂ O/lb air	0.0050	0.0064	0.0051	0.0043	0.0050	0.0037	0.0054	0.0040	0.0050	0.0045	0.0052	0.0041
	0.8%	1.0%	0.8%	0.7%	0.8%	0.6%	0.9%	0.6%	0.8%	0.7%	0.8%	0.7%
	F in H ₂ 0 in Hg % % d values: in Hg lb/mol in Hg in Hg	F74F55in H_20 -0.82in Hg 29.25%20.9%0.0d values:	F7481F5560in H_20 -0.82-1.30in Hg 29.2529.25%20.920.9%0.00.0d values:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

* Data entry in non-shaded cells only. Shaded cells contain calculations.

Note: % O_2 and % CO_2 are not important variables. Use 21% and 0% if values have not been measured.

Advanced Industrial Resources BD Bard - Covington, GA Flow Measurements & Calculations 2BF-1

Pre-Test

		Measured value	es:
Test Team:	RB SW DS	D _s (in.):	30.00
EPA Methods:	1, 2, 3, 4	P _{bar} (in. Hg):	29.25
Test Date:	March 26, 2021	p _g (in. H ₂ O):	-0.82
Console ID:	N/A	O ₂ (%):	20.90
Ym	N/A	CO ₂ (%):	0.00
Probe Assembly ID:	P4-04	B _{ws} (%):	0.79
Cp:	0.84	Start Time:	9:10

Wet bulb (F): <u>55</u> 74 Dry bulb (F):

Point	Δp (" H ₂ O)	$(\Delta p)^{1/2}$	t _s (°F)
1	0.42	0.648	74
2	0.39	0.624	74
3	0.38	0.616	74
4	0.32	0.566	74
5	0.38	0.616	74
6	0.28	0.529	74
7	0.28	0.529	74
8	0.37	0.608	74
9	0.32	0.566	74
10	0.38	0.616	74
11	0.32	0.566	74
12	0.29	0.539	74
13	0.26	0.510	74
14	0.28	0.529	74
15	0.28	0.529	74
16	0.28	0.529	74
Average	0.33	0.570	74

Calculations:

Molar weight, M _s =	28.75 lb/mol	={(%O ₂ x 32)+(%CO ₂ x 44)+(%N ₂ x 28)} x (1-B _{ws} /100))/100+B _{ws} /100*18
Velocity, $v_s =$	32.66 ft/sec	=85.49C _p x $(\Delta p)^{1/2}$ x { $(t_s+460)/(P_{bar}+p_g/13.6)/M_s)$ } ^{1/2}
Flow Rate, Q _{s,ds} =	9,205 dscfm	$=v_{s}\pi D_{s}^{2}/4/144 \text{ x } 60 \text{ x } (t_{std}+460)/(t_{s}+460) \text{ x } (P_{bar}+p_{g}/13.6)/29.92 \text{ x } (1-B_{ws}/100)$
Flow Rate, Q _{s,act} =	9,618 acfm	$=v_s \pi D_s^2 / 4 / 144 \ge 60$
Flow Rate, Q _{s,std} =	9,278 scfm	$=v_s \pi D_s^2/4/144 \ge 60 \ge (t_{std}+460)/(t_s+460) \ge (P_{bar}+p_g/13.6)/29.92$

 $=\!\!v_s \pi {D_s}^2\!/\!4/144 \ x \ 60 \ x \ (t_{std}\!+\!460)/(t_s\!+\!460) \ x \ (P_{bar}\!+\!p_g/13.6)/29.92$

Advanced Industrial Resources BD Bard - Covington, GA Flow Measurements & Calculations 2BF-1 Post-Test

		Measured value	es:
Test Team:	RB SW DS	D _s (in.):	30.00
EPA Methods:	1, 2, 3, 4	P _{bar} (in. Hg):	29.25
Test Date:	March 26, 2021	p _g (in. H ₂ O):	-1.30
Console ID:	N/A	O ₂ (%):	20.90
Ym	N/A	CO ₂ (%):	0.00
Probe Assembly ID:	P4-04	B _{ws} (%):	1.01
Cp:	0.84	Start Time:	15:00

Wet bulb (F): 60 Dry bulb (F): 81 IF

28.73 lb/mol

32.47 ft/sec

9,004 dscfm

Point	Δp (" H ₂ O)	$(\Delta \mathbf{p})^{1/2}$	t _s (°F)
1	0.41	0.640	81
2	0.38	0.616	81
3	0.37	0.608	81
4	0.30	0.548	81
5	0.32	0.566	81
6	0.25	0.500	81
7	0.29	0.539	81
8	0.33	0.574	81
9	0.42	0.648	81
10	0.37	0.608	81
11	0.31	0.557	81
12	0.26	0.510	81
13	0.27	0.520	81
14	0.26	0.510	81
15	0.28	0.529	81
16	0.28	0.529	81
Average	0.32	0.563	81

Calculations: Molar weight, $M_s =$

Velocity, $v_s =$ Flow Rate, $Q_{s,ds} =$ Flow Rate, Q_{s,act} = $= \{(\%O_2 \ge 32) + (\%CO_2 \ge 44) + (\%N_2 \ge 28)\} \ge (1 - B_{ws}/100))/100 + B_{ws}/100*18$

 ${=}85.49 C_p \, x \, (\Delta p)^{1/2} \, x \, \left\{(t_s{+}460)/(P_{bar}{+}p_g/13.6)/M_s)\right\}^{1/2}$

 $=v_{s}\pi D_{s}^{2}/4/144 \text{ x } 60 \text{ x } (t_{std}+460)/(t_{s}+460) \text{ x } (P_{bar}+p_{g}/13.6)/29.92 \text{ x } (1-B_{ws}/100)$ $=v_s \pi D_s^2/4/144 \ge 60$

9,564 acfm Flow Rate, Q_{s,std} = 9,095 scfm

 $=v_s \pi D_s^2/4/144 \ x \ 60 \ x \ (t_{std}+460)/(t_s+460) \ x \ (P_{bar}+p_g/13.6)/29.92$

Advanced Industrial Resources Duct Velocity & Flow Calculation Sheet

£

Client:	BO Band	Measured	values:
Location:	Covinition, GA	D _s (in.):	30.0
	28F-1	$ = Y_m / \Delta H_{@}: $	N/A
-	RB/SW/DS	C _p :	0.34
EPA Methods:	1,234	t _{amb} (°F)	67
Test Date:	3/26/21	Assumed B _{ws} (%):	1
Console ID:	NIA	O ₂ (%):	21
Probe Assembly ID:	P4-04	CO ₂ (%):	0
-			

wb = 60 1:5

	he la "	2 2	<u> </u>					
	Start time:	9:10	Start time:	15:00	Start time:		_Start time:_	
	Stop time:	·····	Stop time:		Stop time:		Stop time:	
	Pr	e-1		Pre-2	Post-2;	Pre-3	Post	t-3
P _{bar} (in, Hg):	29.2	- 1	28.2	5				
p _g (in. H ₂ O):	-0.8	32	- 12	3				
Traverse	Δp	t _s	Δp	t _s	Δp	t _s	Δp	t _s
Point	("H ₂ O)	(°F)	(" H ₂ O)	(°F)	(" H ₂ O)	(°F)	("H ₂ O)	(°F)
1	0.42	74	0.41	31				
2	0.39	74	0.33	ЗI				
3	0.38	74	0.37	31				
4	0.32	74	0.30	31				
5	0.38	74	0.32	31	·			
6	0.28	74	0.25	31				
7	0.28	74	3.2.9	31				
8	0.37	74	0.33	81				
9	032	74	0.42	31				
10	0.38	74	0.37	31				
11	0.32	74	0.31	31				
12	0.29	74	0.26	21				
13	0.26	74	0.27	31	·			
14	0.2.8	74	0.26	31				17
15	0,28	74	0.28	31				
16	0.23	74	0.23	81				
Average								

Test Team Leader Review:

Advanced Industrial Resources, Inc. Cyclonic Flow Absence Verification Field Data EPA Method 1

BD Bard Client: Location: Contraction, 285.1 Source: Test Team: RBIS-105 Probe ID: 74-04 0.34 C_p:

t _m (°F):	67
Console ID:	NA
Y _m :	NA
ΔH_{a} :	MA
Assumed B _{ws} :	1 *
P _{bar} (in. Hg):	29.25

Date:	3/26/21	
D _s (in.):	30.0	
$A_s(ft^2):$	4.91	
D _n (in.):	NIA	
$A_n(ft^2)$:	NA	

_				
[Point	Δp	α	
	TOIIIT	(in. H ₂ O)	(degrees)	
	1	0.0	0	
	2	0.0	0	
ſ	3	0.0	0	
ſ	2 3 4	- 0.0 ⁻	2	
ſ	5	0.0	0 0 0 2 2 2 2 2 2	
ľ	5 6	0.0	2	
	7	0.0	0	
Ī	8	0.0	0	
- 7	2	0.0		
Ī	10	9.0		
Ī	11	0.0		
Ī	12	0.0	1	
	C	hange Po	rts	
	1	0.0	0	
j	2	0.0	C	
	2	0.0	<i>©</i> 2	
	4	0.0	3	
	5 ·	0.0	1	
	6	0.0	e	
	. 7	0.0	0	
	8	0.0	<u> </u>	
. i	C S	0.0		1
	10	200		
	11	0.0		1
	·12	- 0.0		

Test Team Leader Review:

200 Data Entry Review:

REV021717

Advanced Industrial Resources, Inc. **Source Description Sheets** 3/26/21 BN Bard Date: Client: Covington, GA Test Team: sw/ DS nnl Location: Source: 285-1 D_n (in.): NIA Δp t_s Point $A_{n}(ft^{2}):$ (in. H₂O) (°F) NIA 0.42 D_s (in.): 30.0 1 74 4. 91 0.39 $A_{s}(ft^{2}):$ 2 74 0.39 35.5 3 つら Length A (in.): 0.32 74 Length B (in.): 97.0 4 0.39 74 5 0.29 67 74 t_{amb} (°F): 6 0.31 74 ľ 7 Assumed B_{ws}: っぞ 0.3n 8 P_{bar} (in. Hg): 29.25 P_g (in. H₂O): 5 -0.92 ·% O₂: 10 21 % CO₂: 11 $\boldsymbol{\phi}$ NIA 12 Console ID: **Change Ports Y**: NIA ΔH_@: 0.32 1 74 N/A 0.34 0.33 74 2 C_p: 3 0:12 74 K-Factor: <u>n / A</u> 0.29 74 4 0.26 74 Sketch of Stack 5 0.23 6 74 0.23 7 74 0.23 14 8. 9 10

11 12

Test Team Leader Review:

Orr Data Entry Review:

Advanced Industrial Resources BD Bard - Covington, GA Flow Measurements & Calculations 2BF-2

Pre-Test

		Measured value	asured values:	
Test Team:	RB, SW, DS	D _s (in.):	30.00	
EPA Methods:	1, 2, 3, 4	P _{bar} (in. Hg):	29.25	
Test Date:	March 26, 2021	p _g (in. H ₂ O):	-0.45	
Console ID:	N/A	O ₂ (%):	20.90	
Ym	N/A	CO ₂ (%):	0.00	
Probe Assembly ID:	P4-04	B _{ws} (%):	0.80	
Cp:	0.84	Start Time:	9:20	

 Wet bulb (F):
 56

 Dry bulb (F):
 76

Point	Δp (" H ₂ O)	$(\Delta p)^{1/2}$	t _s (°F)
1	0.25	0.500	76
2	0.29	0.539	76
3	0.26	0.510	76
4	0.26	0.510	76
5	0.38	0.616	76
6	0.38	0.616	76
7	0.29	0.539	76
8	0.28	0.529	76
9	0.30	0.548	76
10	0.30	0.548	76
11	0.29	0.539	76
12	0.26	0.510	76
13	0.29	0.539	76
14	0.36	0.600	76
15	0.36	0.600	76
16	0.28	0.529	76
Average	0.30	0.548	76

Calculations:

Molar weight, M _s =	28.75 lb/mol	={(%O ₂ x 32)+(%CO ₂ x 44)+(%N ₂ x 28)} x (1-B _{ws} /100))/100+B _{ws} /100*18
Velocity, $v_s =$	31.44 ft/sec	$=85.49C_{p} x (\Delta p)^{1/2} x \{(t_{s}+460)/(P_{bar}+p_{g}/13.6)/M_{s})\}^{1/2}$
Flow Rate, Q _{s,ds} =	8,837 dscfm	$=v_{s}\pi D_{s}^{2}/4/144 \ge 60 \ge (t_{std}+460)/(t_{s}+460) \ge (P_{bar}+p_{g}/13.6)/29.92 \ge (1-B_{ws}/100)$
Flow Rate, Q _{s,act} =	9,261 acfm	$=v_{s}\pi D_{s}^{2}/4/144 \ge 60$
Flow Rate, Q _{s,std} =	8,908 scfm	$= v_s \pi D_s^2 / 4 / 144 \ x \ 60 \ x \ (t_{std} + 460) / (t_s + 460) \ x \ (P_{bar} + p_g / 13.6) / 29.92$

Advanced Industrial Resources BD Bard - Covington, GA Flow Measurements & Calculations 2BF-2 Post-Test

		Measured value	es:
Test Team:	RB, SW, DS	D _s (in.):	30.00
EPA Methods:	1, 2, 3, 4	P _{bar} (in. Hg):	29.25
Test Date:	March 26, 2021	p _g (in. H ₂ O):	-1.00
Console ID:	N/A	O ₂ (%):	20.90
Ym	N/A	CO ₂ (%):	0.00
Probe Assembly ID:	P4-04	B _{ws} (%):	0.68
Cp:	0.84	Start Time:	15:17

Wet bulb (F): Dry bulb (F): <u>59</u>

Dry bulb (F):	<u>87</u>
---------------	-----------

Point	Δp (" H ₂ O)	(Δp) ^{1/2}	t _s (°F)
1	0.32	0.566	87
2	0.31	0.557	87
3	0.31	0.557	87
4	0.30	0.548	87
5	0.31	0.557	87
6	0.29	0.539	87
7	0.30	0.548	87
8	0.33	0.574	87
9	0.34	0.583	87
10	0.34	0.583	87
11	0.33	0.574	87
12	0.30	0.548	87
13	0.39	0.624	87
14	0.36	0.600	87
15	0.35	0.592	87
16	0.32	0.566	87
Average	0.33	0.570	87

Calculations: Molar weight, $M_s =$ Velocity, $v_s =$

28.76 lb/mol

33.03 ft/sec

9,156 scfm

 $= \{(\%O_2 \ge 32) + (\%CO_2 \ge 44) + (\%N_2 \ge 28)\} \ge (1 - B_{ws}/100))/100 + B_{ws}/100*18$

 ${=}85.49 {C_p}\,x\,\left({\Delta p}\right)^{1/2}x\,\left\{(t_s{+}460){/}(P_{bar}{+}p_g{/}13.6){/}M_s)\right\}^{1/2}$

Flow Rate, $Q_{s,ds} =$ Flow Rate, Q_{s,act} =

 $=v_{s}\pi D_{s}^{2}/4/144 \text{ x } 60 \text{ x } (t_{std}+460)/(t_{s}+460) \text{ x } (P_{bar}+p_{g}/13.6)/29.92 \text{ x } (1-B_{ws}/100)$ 9,093 dscfm $=v_s \pi D_s^2/4/144 \ge 60$ 9,727 acfm

Flow Rate, Q_{s,std} =

 $=v_s \pi D_s^2/4/144 \ x \ 60 \ x \ (t_{std}+460)/(t_s+460) \ x \ (P_{bar}+p_g/13.6)/29.92$

Advanced Industrial Resources Duct Velocity & Flow Calculation Sheet

Client:	BD Bard	Measured	values:
Location:	Covington GA	D _s (in.):	30.0
Source:	2BF-2	$Y_m / \Delta H_{@}$:	NIA
Test Team:	RAISWAS	C_p:	6.94
EPA Methods:	1,2,3,4	t _{amb} (°F)	67
Test Date:	3/26/21	Assumed B _{ws} (%):	ŕ
Console ID:	NIA	O ₂ (%):	21
Probe Assembly ID:	P4-04	CO ₂ (%):	Ø

616:56

w1 = 59

	Start time: Stop time:		Start time: Stop time:		Start time: Stop time:		_Start time: _Stop time:	
	Pro	e-1	Post-1	Pre-2	Post-2;	Pre-3	Post	-3
P _{bar} (in. Hg):	29.25		29.9	5				
p _g (in. H ₂ O):	-0.4	15	- 1,	0				
Traverse	Δр	t _s	Δр	t _s	Δp	t _s	Δp	t _s
Point	("H ₂ O)	(°F)	("H ₂ O)	(°F)	("H ₂ O)	(°F)	("H ₂ O)	(°F)
1	0.25	76	0.32	97				
2	0.29	~7 (0.31	37				
3	0.26	76	0.31	97				
4	0.26	76	11.30	87				
5	0.38	76	11.31	87				
6	0.73	76	0.29	87				
7	0.29	7(0.30	87				
8	0.23	76	0.33	37				
9	2.30	76	0.34	37				
10	0.30	76	0.34	37				
11	0.29	·7(0.33	37				
12	0.26	76	0.30	37				
· 13	0.29	76	0.39	97 13				
14	0.36	.76	0.36	97	-	-		
15	0.36	-76	0.35	37				
16	0.23	76	0.32	37	Į			
Average						-		

Test Team Leader Review: _____ Data Entry Review:

Advanced Industrial Resources, Inc. Cyclonic Flow Absence Verification Field Data EPA Method 1

Client:	BD Bard
Location:	Covington GA
Source:	2BF-2 '
Test Team:	RBISW DS
Probe ID:	P4-04
· C _p :	0.94

t _m (°F):	67
Console ID:	Ala
Y _m :	AIN
ΔH_{a} :	NIA
Assumed B _{ws} :	1
P _{bar} (in. Hg):	29.25

21 31 Date: 26 D_s (in.): 30.0 $A_s(ft^2)$: 4.91 D_n (in.): NIA A_n (ft²):

ſ	Point	Δp	α	
İ	Point	(in. H ₂ O)	(degrees)	
[1	0.0	\mathcal{O}	
[2	0.0	3	
[3	0.0	0 3 1 0	
ſ	2 3 4	0.0	0	
ĺ	5	0.0	0	
ĺ	6	0.0	∂	
	7	0.0	Ø	
	8	0.0	Ö	
	2	0.0		
	10	0.0		
	11	7.0		
	12	0.0		
	C	hange Por	•ts	
	1	0.0	0	
	2	0.0	0 0 0	
	3	0.0	0	
	4	0.0	C	
	5	0.0	0 0	
	6	0.0	0	
	7	0.0	0	
and the second	8	0.0	<u></u>	Tankovarya
	-	0.0		
	10	>		
,	11-	0.0		Į
	12	0.0		

Test Team Leader Review:

Data Entry Review:

REV021717

Advanced Industrial Resources, Inc.

	Source 1	Description Sheets	1		
Client:	BD Band	Date:	3/20	5/21	
Location:	Covington, GA 2BF-2	Test Team:	nB1	Sw/DS	
Source:	2BF-2		1		
D _n (in.):	N/A		Point	Δр	t _s
A_n (ft ²):	NIN		roint	(in. H ₂ O)	(°F)
D _s (in.):_	30.0	· · ·	1	0.2.8	76
$A_s(ft^2)$:	30,0 4,91 26.5		2	0.29	76
Length A (in.):	26.5		3	0.26	76
Length B (in.): _	151		4	0.26	76
			5	0.33	76
t _{amb} (°F):	67 1 29.25		6	0.23	76
Assumed B _{ws} :	!		7	0.29	-6
P _{bar} (in. Hg):_	29.25		8	0.29	76
P_g (in. H_2O):	-0.45		~2		
% O ₂ :_	21		10		
% CO ₂ :_	O		11	\searrow	
Console ID:	NA		12		
· Y:_	NA	[C	Change Por	ts
ΔH _@ : _	N/A	[1	0.30	76
C _p :_	0.94		2	0.30	76
K-Factor:	N/A		3	0.29	76
	•		4	0.26	76
	Sketch of Stack		5	0.29	76
			6	0.36	76
			7	0.36	76
			8	0,23	76
<u> </u>			-9	<u> </u>	
			10	\triangleright	
			$\frac{11}{12}$		Descent of the second s
			-12	<u> </u>	

Test Team Leader Review:

Data Entry Review:

OUE

Advanced Industrial Resources BD Bard - Covington, GA Flow Measurements & Calculations 2BF-3 Pre-Test

		Measured value	es:
Test Team:	RB, SW, DS	D _s (in.):	30.00
EPA Methods:	1,2	P _{bar} (in. Hg):	29.25
Test Date:	March 26, 2021	p _g (in. H ₂ O):	-1.60
Console ID:	N/A	O ₂ (%):	20.90
Ym	N/A	CO ₂ (%):	0.00
Probe Assembly ID:	P4-04	B _{ws} (%):	0.79
Cp:	0.84	Start Time:	9:35

 Wet bulb (F):
 55

 Dry bulb (F):
 74

Point	Δp (" H ₂ O)	(Δ p) ^{1/2}	t _s (°F)
1	0.30	0.548	74
2	0.27	0.520	74
3	0.30	0.548	74
4	0.28	0.529	74
5	0.27	0.520	74
6	0.31	0.557	74
7	0.27	0.520	74
8	0.28	0.529	74
9	0.28	0.529	74
10	0.31	0.557	74
11	0.33	0.574	74
12	0.33	0.574	74
13	0.30	0.548	74
14	0.31	0.557	74
15	0.32	0.566	74
16	0.33	0.574	74
Average	0.30	0.547	74

Calculations:

Molar weight, M _s =	28.75 lb/mol	={(%O ₂ x 32)+(%CO ₂ x 44)+(%N ₂ x 28)} x (1-B _{ws} /100))/100+B _{ws} /100*18
Velocity, v _s =	31.35 ft/sec	=85.49 $C_p x (\Delta p)^{1/2} x \{(t_s+460)/(P_{bar}+p_g/13.6)/M_s)\}^{1/2}$
Flow Rate, Q _{s,ds} =	8,820 dscfm	$=v_{s}\pi D_{s}^{2}/4/144 \ge 60 \ge (t_{std}+460)/(t_{s}+460) \ge (P_{bar}+p_{g}/13.6)/29.92 \ge (1-B_{ws}/100)$
Flow Rate, Q _{s,act} =	9,234 acfm	$=v_{s}\pi D_{s}^{2}/4/144 \ge 60$
Flow Rate, Q _{s,std} =	8,890 scfm	$= v_s \pi D_s^2 / 4 / 144 \ x \ 60 \ x \ (t_{std} + 460) / (t_s + 460) \ x \ (P_{bar} + p_g / 13.6) / 29.92$

Advanced Industrial Resources BD Bard - Covington, GA Flow Measurements & Calculations 2BF-3 Post-Test

		Measured value	es:
Test Team:	RB, SW, DS	D _s (in.):	30.00
EPA Methods:	1,2	P _{bar} (in. Hg):	29.25
Test Date:	March 26, 2021	p _g (in. H ₂ O):	-1.60
Console ID:	N/A	O ₂ (%):	20.90
Ym	N/A	CO ₂ (%):	0.00
Probe Assembly ID:	P4-04	B _{ws} (%):	0.59
Cp:	0.84	Start Time:	15:07

Wet bulb (F): <u>58</u> Dry bulb (F): 87

Point	Δp ('' H ₂ O)	$(\Delta p)^{1/2}$	t _s (°F)
1	0.35	0.592	87
2	0.34	0.583	87
3	0.33	0.574	87
4	0.32	0.566	87
5	0.31	0.557	87
6	0.30	0.548	87
7	0.34	0.583	87
8	0.32	0.566	87
9	0.32	0.566	87
10	0.32	0.566	87
11	0.30	0.548	87
12	0.31	0.557	87
13	0.30	0.548	87
14	0.31	0.557	87
15	0.31	0.557	87
16	0.34	0.583	87
Average	0.32	0.566	87

Calculations: Molar weight, $M_s =$ Velocity, $v_s =$ Flow Rate, $Q_{s,ds} =$ Flow Rate, Q_{s,act} =

 $= \{(\%O_2 \ge 32) + (\%CO_2 \ge 44) + (\%N_2 \ge 28)\} \ge (1 - B_{ws}/100))/100 + B_{ws}/100*18$

 ${=}85.49 {C_p}\,x\,\left({\Delta p}\right)^{1/2}x\,\left\{(t_s{+}460){/}(P_{bar}{+}p_g{/}13.6){/}M_s)\right\}^{1/2}$

 $=v_{s}\pi D_{s}^{2}/4/144 \times 60 \times (t_{std}+460)/(t_{s}+460) \times (P_{bar}+p_{g}/13.6)/29.92 \times (1-B_{ws}/100)$ $=v_s \pi D_s^2/4/144 \ge 60$

9,662 acfm Flow Rate, Q_{s,std} = 9,081 scfm

28.77 lb/mol

32.81 ft/sec

9,027 dscfm

 $=v_s \pi D_s^2/4/144 \ x \ 60 \ x \ (t_{std}+460)/(t_s+460) \ x \ (P_{bar}+p_g/13.6)/29.92$

Advanced Industrial Resources Duct Velocity & Flow Calculation Sheet

Client:	BA Bard	Measured	values:
Location:	Covington GA	D _s (in.):	30,0
Source:	20F-3	$Y_m / \Delta H_{@}$:	NIA
Test Team:	RBISW/DS	C _p :	0.94
EPA Methods:	1,2,3,4	t _{amb} (°F)	67
Test Date:	3/26/21	Assumed B _{ws} (%):	í.
Console ID:	NIA	O ₂ (%):	21
Probe Assembly ID:	P4-04	CO ₂ (%):	0
-			

w16 = 55 w6=58

P_{bar} (in.

	Start time:	9:35	Start time:	15:07	Start time:		Start time:	
	Stop time:		Stop time:		Stop time:		Stop time:	
Test #	Pre "	Test	Pust	Test-				
P _{bar} (in. Hg):	29.25		29.25					
pg (in. H ₂ O):			as g.	4-1.6				
Traverse	Δp	t _s	Δp	t _s	Δр	t _s	Δp	t _s
Point	("H ₂ O)	(°F)						

p _g (in. H ₂ O):		- 1-6	The g.	4-1.6				
Traverse	Δp	t _s	Δp	t _s	Δр	t _s	Δp	t _s
Point	("H ₂ O)	(°F)	("H ₂ O)	(°F)	(" H ₂ O)	(°F)	(" H ₂ O)	(°F)
1	0.30	94	0.35	87				
2	0.27	74	0.34	87				
3	0.30	74	0.33	37				
4	0.23	74	0.32	37				
5	0.27	74	0.31	37				
6	0.31	74	0.30	.87				
7	0.27	74	0.34	37				
8	0.28	っち	0.32	87				
9	0.25	74	1.32	87				
10	0.31	74	0.32	27				
11	0.33	74	0.30	87 87				· .
12	0.33	74	0.31	87				
13	0.30	74	0.30	87				
14	0.31	74	0.31	87				
15	0.32	74	0.31	87				
16	0.33	74	0.34	31				
Average								

Test Team Leader Review: Data Entry Review:

Advanced Industrial Resources, Inc. Cyclonic Flow Absence Verification Field Data EPA Method 1

Client:	BD	Bard
Location:	Cov	ington GA
Source:	LBF	-3
Test Team:	PR	swins
Probe ID:	P4-	.04
C _p :	0	. 34
	t _m (°F):_	67
Co	nsole ID:	NIA
	Y _m :	NA
	∆H _@ :_	AIN
Assu	med B _{ws} :	1

P_{bar} (in. Hg): 29.25

Date:	3/26/21
D _s (in.):	30,0
$A_s(ft^2)$:	4.91
D _n (in.):	NIA
$A_n(ft^2):$	N/A

-				
ſ	Point	Δp	α	
-		(in. H ₂ O)		
ļ	1	0.0	\bigcirc	
	2 3	0.0	0	
	3	0.0	0 0 0	
	4	0.0	0	
	5	0.0	0	
	6	0.0	0	
	7	0.0	0	
	8	0.0	0	
	9	0.0		
	10	<u>0.0</u>		
	11	0.0		
	12	0.0		
	C	hange Por		
	1	0.0	<i>ල</i> ට	
!	2	0.0	0	
	2 3	0.0	0	
	4	0.0	0	
•	4 5 6	0.0	0	
		0.0	O]
	7	0.0	0]
	8	0.0	မ	
		0.0		
	10	<u> 00</u>		1
	11	0.0	\land	
	12	0.0		

Test Team Leader Review: prr Data Entry Review:

REV021717

Client:			ser ip no.	n Sheets	1)	
	BD Ba	r al	•	Date: Test Team:	3/2	6/21	
Location:	Covingit	un, CA	•	Test Team:	PB1	Sw/DS	·
Source:	Covingit 2BF-3	1			·	1	
_						· · · ·	
D _p (in.):	NIA		_		Point	Δp	ts
$A_n(ft^2)$:	N/A			* * *	roint	(in. H ₂ O)	(°F)
D _s (in.):	30.0		-		1	0.30	74
$A_s(ft^2)$:	4.91		-		2	0.27	74
ength A (in.):	39.0		-		3	0.30	74
ength B (in.):	163.0		_		4	0.29	74
					5	0.27	74
t _{amb} (°F):	67		_ ·		6	0.31	74
			_		7	0,27	74
P _{bar} (in. Hg):			_	e minist	. 8	0.23	74
P _g (in. H ₂ O):			-	u.	2		
% O ₂ :	21		_		10	\searrow	1
% CO ₂ :	ය		_		11		\leq
Console ID:	N/A				12		
Y:	A		_		ļ	Change Por	rts
$\Delta H_{@}$:	N/A		_		1	0,29	74
C _p :	0.84				2	0.31	74
K-Factor:	NIA				3	0.33	74
	Cleatel. a	f 044 al-			4 5	0.33	74
	Sketch o		1.		6	0.31	74
					7	0.32	74
					8	0.33	74
	-				2		
					10	\checkmark	
					11		
				-	12		
			- !			-	
	· · ·					-	

Data Entry Review:

Advanced Industrial Resources BD Bard - Covington, GA Flow Measurements & Calculations 2BF-4

Pre-Test

		Measured value	es:
Test Team:	RB, SW, DS	D _s (in.):	30.00
EPA Methods:	1,2	P _{bar} (in. Hg):	29.25
Test Date:	March 26, 2021	p _g (in. H ₂ O):	-0.90
Console ID:	N/A	O ₂ (%):	20.90
Ym	N/A	CO ₂ (%):	0.00
Probe Assembly ID:	P4-04	B _{ws} (%):	0.86
Cp:	0.84	Start Time:	9:51

Wet bulb (F): Dry bulb (F):

<u>55</u> 72

Point	Δp (" H ₂ O)	$(\Delta p)^{1/2}$	t _s (°F)
1	0.33	0.574	72
2	0.32	0.566	72
3	0.33	0.574	72
4	0.32	0.566	72
5	0.28	0.529	72
6	0.26	0.510	72
7	0.30	0.548	72
8	0.31	0.557	72
9	0.34	0.583	72
10	0.33	0.574	72
11	0.35	0.592	72
12	0.37	0.608	72
13	0.35	0.592	72
14	0.34	0.583	72
15	0.33	0.574	72
16	0.30	0.548	72
Average	0.32	0.567	72

Calculations:

Molar weight, M _s =	28.74 lb/mol	={(%O ₂ x 32)+(%CO ₂ x 44)+(%N ₂ x 28)} x (1-B _{ws} /100))/100+B _{ws} /100*18
Velocity, v _s =	32.45 ft/sec	$=85.49C_{p} x (\Delta p)^{1/2} x \{(t_{s}+460)/(P_{bar}+p_{g}/13.6)/M_{s})\}^{1/2}$
Flow Rate, Q _{s,ds} =	9,172 dscfm	$=v_{s}\pi D_{s}^{2}/4/144 \ge 60 \ge (t_{std}+460)/(t_{s}+460) \ge (P_{bar}+p_{g}/13.6)/29.92 \ge (1-B_{ws}/100)$
Flow Rate, Q _{s,act} =	9,557 acfm	$=v_{s}\pi D_{s}^{2}/4/144 \ge 60$
Flow Rate, Q _{s,std} =	9,251 scfm	$= v_s \pi D_s^2 / 4 / 144 \ x \ 60 \ x \ (t_{std} + 460) / (t_s + 460) \ x \ (P_{bar} + p_g / 13.6) / 29.92$

Advanced Industrial Resources BD Bard - Covington, GA Flow Measurements & Calculations 2BF-4 Post-Test ...

		Measured value	es:
Test Team:	RB, SW, DS	D _s (in.):	30.00
EPA Methods:	1,2,3,4	P _{bar} (in. Hg):	29.25
Test Date:	March 26, 2021	p _g (in. H ₂ O):	-1.50
Console ID:	N/A	O ₂ (%):	20.90
Ym	N/A	CO ₂ (%):	0.00
Probe Assembly ID:	P4-04	B _{ws} (%):	0.64
Cp:	0.84	Start Time:	15:28

Wet bulb (F): <u>57</u> Dry bulb (F): 83

Point	Δp (" H ₂ O)	$(\Delta p)^{1/2}$	t _s (°F)
1	0.30	0.548	83
2	0.30	0.548	83
3	0.34	0.583	83
4	0.33	0.574	83
5	0.35	0.592	83
6	0.36	0.600	83
7	0.35	0.592	83
8	0.36	0.600	83
9	0.27	0.520	83
10	0.29	0.539	83
11	0.31	0.560	83
12	0.31	0.557	83
13	0.34	0.583	83
14	0.35	0.592	83
15	0.35	0.592	83
16	0.36	0.600	83
Average	0.33	0.574	83

	Calculations:
Molar	weight, $M_s =$

Velocity, $v_s =$ Flow Rate, $Q_{s,ds} =$ Flow Rate, Q_{s,act} =

 $= \{(\%O_2 \ge 32) + (\%CO_2 \ge 44) + (\%N_2 \ge 28)\} \ge (1 - B_{ws}/100))/100 + B_{ws}/100*18$

 ${=}85.49 C_p \, x \, (\Delta p)^{1/2} \, x \, \left\{(t_s{+}460)/(P_{bar}{+}p_g/13.6)/M_s)\right\}^{1/2}$ $=v_{s}\pi D_{s}^{2}/4/144 \text{ x } 60 \text{ x } (t_{std}+460)/(t_{s}+460) \text{ x } (P_{bar}+p_{g}/13.6)/29.92 \text{ x } (1-B_{ws}/100)$

9,187 dscfm $=v_s \pi D_s^2/4/144 \ge 60$ 9,764 acfm

28.77 lb/mol

33.15 ft/sec

Flow Rate, Q_{s,std} = 9,247 scfm $=v_s \pi D_s^2/4/144 \ x \ 60 \ x \ (t_{std}+460)/(t_s+460) \ x \ (P_{bar}+p_g/13.6)/29.92$

Advanced Industrial Resources Duct Velocity & Flow Calculation Sheet

Client:	BD Bord	Measured	values:
Location:	Covinction GA	D _s (in.):	30.0
Source:	2BF-4	$Y_m / \Delta H_{@}$:	NIA
Test Team:	REISULOS	C _p :	0:34
EPA Methods:	1,2,8,4	t _{amb} (°F)_	67
Test Date:	3/26/21	Assumed B _{ws} (%):	1
Console ID:	N'A '	O ₂ (%):	21
Probe Assembly ID:	P4-04	CO ₂ (%):	Ø

- w 6 : 5 1 26=55

 Start time:
 9:57/
 Start time:
 Start time:
 Start time:

 Stop time:
 Stop time:
 Stop time:
 Stop time:

Test #	Pre	Test	Puit	Terf		•		
P _{bar} (in. Hg):	29.2	25-	29.2	5				
P _{bar} (in. Hg): p _g (in. H ₂ O):	0,	90	= 1.5	TRANSFE A				
Traverse	Δp	ts	Δр	t _s	Δр	ts	Δp	ts
Point	("H ₂ O)	(°F)	('' H ₂ O)	(°F)	(" H ₂ O)	(°F)	("H ₂ O)	(°F)
1	0.33	72	0.30	93 33				
2	0.32	72 72	0.30	33		<u>.</u>		
3	0.33	72	0.34	53				
4	0.32	72	3.33	53				
5	0.25	72	0.35 8.36	33			-	
6	0.29	72	9.3C	00000000000000000000000000000000000000	ļ1		 	
1 7	0.30	72	0.35	93				
8	0.31	72	0.36	<u>3</u> 3			┨────┤	
9	12.34	72	0.27	33			ļļ	
10	1.33	72	0.29	33	ļļ		┨────┼	
11	0.35	72	0.31	1400 CO CO CO CO CO CO CO CO CO CO CO CO CO C		•		
12	0.37		5.31	35				
13	0.35	72	0.34	33			{	
14	0.34	72	0.36 0.35	- 2 3	{		 	
15	0.33	72	0.35 0.36 -	33			∦	
10	<u>v. 39</u>							
17	· · ·		} -	<u> </u>	∦∔			
10		-	∦					
20			1					
20	<u> </u>							
22								
23	1							
24								
Average			1	1				

Test Team Leader Review: Data Entry Review:

Advanced Industrial Resources, Inc. Cyclonic Flow Absence Verification Field Data

EPA Method 1

Client:	BD Baral
Location:	Covinction GA
Source:	1BF-4
Test Team:	RBISWINS
Probe ID:	P4-4
C _p :	0.34

t _m (°F):	67
Console ID:	NIA
Y _m :	NIA
ΔH_{a} :	ALM
Assumed B _{ws} :	;
P _{bar} (in. Hg):	29.25

Date:	3/26/21
D _s (in.):	30.0
$A_s(ft^2)$:	4.91
D _n (in.):	Alv
A_n (ft ²):	N/A

Г		Δp	α	
	Point	(in. H ₂ O)		
ŀ	1	0.0	3	
Ī	2	0.0	3	
ľ	3	0.0	3	
Ī	1 2 3 4	· 0.0 [.]	4	
Ī	5	0.0	4	
	6	0.0	5	_
ſ	7	0.0	7.	
ſ	8	0.0	2	
	- 9	0.0	and the second se	
	10	0.0		
	11	0.0]
	12	0.0		
	C	hange Po	rts]
	1	0.0	2]
	2	0.0	2	
	2 3 4 5	0.0	4	
	4	0.0	4	
	5	0.0	2_	1
	6	0.0	3	1
	7	0.0	5	1
	8	0.0		The Local Division of the
	-9-	0.0	ALL REAL PROPERTY.	-
	10	00	Į	4
	11-	0.0	\mid	4
	12	0.0		<u>'</u>

Test Team Leader Review:

Data Entry Review:

REV021717

Advanced Industrial Resources, Inc. Source Description Sheets 3/26/21 Date: Client: BD Bard Test Team: Location: Covington GA RBI 500/15 Source: 2 BE-4 ſ Т D_n (in.): N/AÅπ $A_n(ft^2): \wedge / A$ D_s (in.): 30.0 $A_{s}(ft^{2}): 4, 97$ Length A (in.): 60.5 Length B (in.): 115.75 t_{amb} (°F): <u>6 7</u> Assumed B_{ws}: / (in. Ho): 782.

P _{bar} (in. Hg):	29.25
P _g (in. H ₂ O):	-0.40
% O ₂ :	21
% CO ₂ :	Ø
Console ID:	N/A
Y:	NIA
$\Delta H_{@}$:	NA
C _p :	0.84
K-Factor:	NIA

 \mathbb{N}_{q}

P	oint	Δp (in. H ₂ O)	t _s (°F)	
 	1		(°F) 72 72 72 72 72 72 72 72 72 72	
	2	0.33 0.32 0.33 0.32 6.23 0.76 0.30 0.31	72	
	3	0.33	72	
	4	0.32	72	
	5	6.23	ית	
	6	0.26	72	
	7	6.30	72	
	8	0.31	72	
	9	WORKER STORES		
	10	\searrow		
	11			
	12			
		Change Por	ts	
		Change Por		
	(Change Por 6.74 6.19		
	1 2 3	Change Por 6.74 0.19 0.15		
	(1 2 3 4	Change Por 6.74 0.19 0.15 0.37		
	1 2 3 4 5	Change Por 6.74 0.13 0.15 0.15 0.37 0.35		
	1 2 3	Change Por 6.74 0.37 0.35 0.35 0.35		
	1 2 3 4 5 6 7	0.74 0.37 0.35 0.37 0.35 0.35 0.34		
	I 2 3 4 5 6 7 8	Change Por 0.74 0.37 0.35 0.35 0.35 0.34 0.33 0.30	ts 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	C 1 2 3 4 5 6 7 8 9	0.74 0.37 0.35 0.37 0.35 0.35 0.34		
	C 1 2 3 4 5 6 7 8 9 10	0.74 0.37 0.35 0.37 0.35 0.35 0.34		
	C 1 2 3 4 5 6 7 8 9	0.74 0.37 0.35 0.37 0.35 0.35 0.34		

Test Team Leader Review:

Advanced Industrial Resources BD Bard - Covington, GA Flow Measurements & Calculations 2BF-5

Pre-Test

		Measured value	lues:	
Test Team:	RB, SW, DS	D _s (in.):	30.00	
EPA Methods:	1, 2, 3, 4	P _{bar} (in. Hg):	29.25	
Test Date:	March 26, 2021	p _g (in. H ₂ O):	-1.00	
Console ID:	N/A	O ₂ (%):	20.90	
Ym	N/A	CO ₂ (%):	0.00	
Probe Assembly ID:	P4-04	B _{ws} (%):	0.79	
Cp:	0.84	Start Time:	9:45	

 Wet bulb (F):
 55

 Dry bulb (F):
 74

Point	Δp (" H ₂ O)	$(\Delta p)^{1/2}$	t _s (°F)
1	0.29	0.539	74
2	0.30	0.548	74
3	0.26	0.510	74
4	0.29	0.539	74
5	0.34	0.583	74
6	6 0.38		74
7	0.29	0.539	74
8	0.29	0.539	74
9	0.30	0.548	74
10	0.36	0.600	74
11	0.35	0.592	74
12	0.31	0.557	74
13	0.28	0.529	74
14	0.27	0.520	74
15	0.28	0.529	74
16	0.30	0.548	74
Average	0.31	0.552	74

Calculations:

Molar weight, M _s =	28.75 lb/mol	={(%O ₂ x 32)+(%CO ₂ x 44)+(%N ₂ x 28)} x (1-B _{ws} /100))/100+B _{ws} /100*18
Velocity, v _s =	31.63 ft/sec	=85.49 $C_p x (\Delta p)^{1/2} x \{(t_s+460)/(P_{bar}+p_g/13.6)/M_s)\}^{1/2}$
Flow Rate, Q _{s,ds} =	8,911 dscfm	$=v_{s}\pi D_{s}^{2}/4/144 \ge 60 \ge (t_{std}+460)/(t_{s}+460) \ge (P_{bar}+p_{g}/13.6)/29.92 \ge (1-B_{ws}/100)$
Flow Rate, Q _{s,act} =	9,316 acfm	$=v_{s}\pi D_{s}^{2}/4/144 \ge 60$
Flow Rate, Q _{s,std} =	8,982 scfm	$= v_s \pi D_s^2 / 4 / 144 \ge 60 \ge (t_{std} + 460) / (t_s + 460) \ge (P_{bar} + p_g / 13.6) / 29.92$

Advanced Industrial Resources BD Bard - Covington, GA Flow Measurements & Calculations 2BF-5 Post-Test

		Measured value	es:
Test Team:	RB, SW, DS	D _s (in.):	30.00
EPA Methods: 1, 2, 3, 4		P _{bar} (in. Hg):	29.25
Test Date:	March 26, 2021	p _g (in. H ₂ O):	-1.30
Console ID:	N/A	O ₂ (%):	20.90
Ym	N/A	CO ₂ (%):	0.00
Probe Assembly ID:	P4-04	B _{ws} (%):	0.71
Cp:	0.84	Start Time:	15:23

<u>58</u> Wet bulb (F): hall (F 84

Dry bu	lb (F):
--------	-------	----

Point	Δp (" H ₂ O)	$(\Delta p)^{1/2}$	t _s (°F)
1	0.37	0.608	83
2	0.36	0.600	83
3	0.30	0.548	83
4	0.30	0.548	83
5	0.31	0.557	84
6	0.33	0.574	83
7 0.30		0.548	84
8	0.27	0.520	84
9 0.33		0.574	84
10	0.38	0.616	84
11	0.35	0.592	84
12	12 0.33		84
13	13 0.30		84
14	0.29	0.539	84
15	0.27	0.520	84
16	0.27	0.520	84
Average	0.32	0.562	84

 $=v_s \pi D_s^2/4/144 \ge 60$

Calculations: Molar weight, $M_s =$

Velocity, $v_s =$ Flow Rate, $Q_{s,ds} =$ $= \{(\%O_2 \ge 32) + (\%CO_2 \ge 44) + (\%N_2 \ge 28)\} \ge (1 - B_{ws}/100))/100 + B_{ws}/100*18$

 ${=}85.49 {C_p\,x}\,\left({\Delta p}\right)^{1/2}x\,\left\{{(t_s{+}460)}{/(P_{bar}{+}p_g{/}13.6)}{/M_s}\right\}^{1/2}$ $=v_{s}\pi D_{s}^{2}/4/144 \text{ x } 60 \text{ x } (t_{std}+460)/(t_{s}+460) \text{ x } (P_{bar}+p_{g}/13.6)/29.92 \text{ x } (1-B_{ws}/100)$

Flow Rate, Q_{s,act} = 9,564 acfm Flow Rate, Q_{s,std} =

28.76 lb/mol

32.47 ft/sec

8,986 dscfm

9,050 scfm

 $=v_s \pi D_s^2/4/144 \ x \ 60 \ x \ (t_{std}+460)/(t_s+460) \ x \ (P_{bar}+p_g/13.6)/29.92$

Advanced Industrial Resources Duct Velocity & Flow Calculation Sheet

Client:	BD Baral	Measured	values:
Location:	Covinition GA	D _s (in.):	30.0
Source:	2BF-5	$Y_m / \Delta H_{@}$:	NA
Test Team:	RB SW DS	C _p :	0.34
EPA Methods:	1,2,3,4	t _{amb} (°F)	6.7
Test Date:	3/26/21	Assumed B _{ws} (%):	í
Console ID:	NIA	O ₂ (%):	21
Probe Assembly ID:	74-04	CO ₂ (%):	y o
			•

6. 55

ŧ

ub: 58

	Start time: Stop time:		Start time: Stop time:		Start time: Stop time:		_Start time:Stop time:	
Test #	Pro	Tait	Port	Test				
P _{bar} (in. Hg):	29.2	5-	29.2					
p _g (in. H ₂ O):			-1.3					
Traverse	Δр	t _s	Δp	t _s	Δp	ts	Δр	ts
Point	(" H ₂ O)	(°F)	("H ₂ O)	(°F)	(" H ₂ O)	(°F)	(" H ₂ O)	(°F)
1	0.29	74	0.37	63				
2	8.30	74	0.36	83				
3	0.26	74	0.30	83				
4	0.29	74	0.30	83				
5	0.34	74	0.31	84				
6	0.33	74	0.33	33				
7	0.29	24	0.30	34				
8	0.29	24	0.27	84				
9	0.30	74	0.33	84				
10	0.36	-74	0.38	૬4				
11	0.35	.74	0.35	ક્રમ	-			
12	0.31	74	0.33	ુ.પ				
13	0.28	74	0.30	84				
14	0.27	フリ	0.29	84				
15	0.23	-74	0.21	84				
16	0.30	74	0.27	84				
Average								

Test Team Leader Review:

Advanced Industrial Resources, Inc. Cyclonic Flow Absence Verification Field Data

EPA Method 1

Client:	BD Bard
Location:	Covington, GA
Source:	285-5
Test Team:	RB(Sw)ns
Probe ID:	P4-04
C _p :	0.54

t _m (°F):_	67
Console ID:	AIN
Y _m :	Ala
ΔH_{a} :	NIN
Assumed B _{ws} :	
P _{bar} (in. Hg):	29.25
· · ·	

Date:	3/26/21	
D _s (in.):	30.0	
$A_s(ft^2):$	4.91	
D _n (in.):	NA	
$A_n(ft^2)$:	N/A	

-	······································			
	Point	Δp	α	
ļ		(in. H ₂ O)	(degrees)	
	1	0.0	3	
	2	0.0	2	
	3	0.0	1	
	4	0.0	4	
	5	0.0	3	
	1 2 3 4 5 6 7	0.0	2 2	
	7	0.0		
	8	0.0	0	
	2	0.0		
	10	0.0		
	11	0.0		
	<u>, 12</u>	0.0		
	C	Change Po	rts	
	1	0.0	0	
	2	0.0	Z	
	3	0.0	.0	
	4	0.0	7	
	5	0.0	3	
	$ \begin{array}{r} 2\\ 3\\ 4\\ 5\\ 6\\ \end{array} $	0.0	2	
	7	0.0	0 2 2 3 7 2 0	
_	8	0.0	0	
	9	0.0		
	10	280		
	11	0.0		
	< <u>12</u>	0.0		

Test Team Leader Review:

Data Entry Review:

608

REV021717

Client: $\underline{\beta} \ \underline{\beta} \$		Source Description Sheets						
Source: $2 \beta \beta - 3$ D _n (in.): M / A A _a (ft ²): N / A D _s (in.): $\beta \circ \circ$ A _a (ft ²): N / A D _s (in.): $\beta \circ \circ$ A _a (ft ²): N / A Charge Point $(in. H_2O)$ (°F) Length A (in.): $\beta \circ \circ$ $\beta \circ \beta$ $\beta \circ \beta$ Length B (in.): $\beta \circ \circ$ $\beta \circ \beta$ $\beta \circ \beta$ k -factor: N / A Y: M / A		BD Baro	l		Date:	3/2	6/21	
Source: $2 \beta \beta - 3$ D _n (in.): M / A A _a (ft ²): N / A D _s (in.): $\beta \circ \circ$ A _a (ft ²): N / A D _s (in.): $\beta \circ \circ$ A _a (ft ²): N / A Charge Point $(in. H_2O)$ (°F) Length A (in.): $\beta \circ \circ$ $\beta \circ \beta$ $\beta \circ \beta$ Length B (in.): $\beta \circ \circ$ $\beta \circ \beta$ $\beta \circ \beta$ k -factor: N / A Y: M / A	Location:	Covinston	GA	•.	Test Team:	RB	50-105	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Source:	2BF-5	1				- 12-	
A_n (ft ²): $N \mid A$ D_s (in.): $\mathcal{G} \circ , \circ >$ A_s (ft ²): $\mathcal{A}' , 9 / I$ Length A (in.): $\mathcal{G} \mathcal{L} , 5$ Length B (in.): $\mathcal{G} \mathcal{L} , 5$ Length B (in.): $\mathcal{G} \mathcal{L} , 5$ $A_s (q^2F)$: $\mathcal{L} / , 9 / I$ Length B (in.): $\mathcal{G} \mathcal{L} , 5$ $\mathcal{G} \mathcal{J} , 5$ $\mathcal{L} / , 9 / I$ $A_sumed B_{ws}$: I I $\mathcal{L} \mathcal{D} , 7 / I$ $A_sumed B_{ws}$: I I $\mathcal{L} \mathcal{D} , 7 / I$ $A_sumed B_{ws}$: I P_g (in. H ₂ O): $- f , \infty$ γ'_{0} O ₂ : \mathcal{L} / I γ'_{0} O ₂ : \mathcal{L} / I γ'_{0} O ₂ : $\mathcal{D} /$								
A_n (ft ²): $M \mid A$ P D_s (in.): $\exists \circ, \circ \circ$ $\exists \circ, t \circ ?$ $\neg t \circ ?$ A_s (ft ²): $\forall \cdot ? ? t$ 2 $\sigma, t \circ ?$ γt A_s (ft ²): $\forall \cdot ? ? t$ 2 $\sigma, t \circ ?$ γt Length A (in.): $\exists c. t \circ . \cdot ?$ $a c. t \circ . \cdot ? t$ 3 $c. t \circ . \cdot ? t$ Length B (in.): $G : t \circ . \cdot ? t$ 3 $c. t \circ . \cdot ? t$ 4 $o. t \circ ? t$ Length B (m.): $G : t \circ . \cdot ? t$ 4 $o. t \circ ? t$ 7 Assumed B_{vs} : $t \cdot . \cdot $	D _n (in.):	A/N					Δp	t.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A_n (ft ²):	NIA		- A		Point		1 1
As (ft ²): $4'$, $9'$ Length A (in.): $3C$, $5''$ Length B (in.): C , $5''$ C and C $7''$ 4 0.2 , $5''$ 4 0.2 , $5''$ 4 0.2 , $5''$ 4 0.2 , $5''$ 4 0.2 , $5'''$ 4 0.2 , $5'''$ 4 0.2 , $5'''$ 4 0.2 , $5'''$ $7''$ 6 $7''$ $7'''$ 6 0.3 , $5''''$ $7'''$ $7''''$ 8 0.2 , $5''''''''''''''''''''''''''''''''''''$		30,0				1		
Length A (in.): $3 & 6.7 & 7.7 \\ 3 & 0.7 & 7.7 \\ 3 & 0.7 & 7.7 \\ 3 & 0.7 & 7.7 \\ 4 & 0.7 & 7.7 \\ 4 & 0.7 & 7.7 \\ 4 & 0.7 & 7.7 \\ 7 & 7.7 & 7.7 \\ 5 & 0.7 & 7.7 \\ 6 & 0.33 & 7.7 \\ 7 & 0.7 & 7.7$								
Length B (in.): $G J. S$ t_{amb} (°F): $C 7$ Assumed B_{ws} : I P_{bar} (in. Hg): $Q \P, Z G$ $Q \P, Z G$ Q $\gamma 0.19$ 74 $\gamma 0.29$			· · · ·	-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Length B (in.):	63.5						74
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				_				7
Assumed B_{w_s} : 1 P_{bar} (in. Hg): $2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	t _{amb} (°F):	67						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Assumed B _{ws} :							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P _{bar} (in. Hg):	29.25		_	-			74
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P_g (in. H_2O):			-			(appaces)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	2			
Console ID: N / A Y: N / A $\Delta H_{@}$: N / A C_p : $O \cdot G \cdot G$ K -Factor: M / A Sketch of Stack 1 $G \cdot 2 \neg 7 + 4$ $G \cdot 2 \neg 7 $	% CO ₂ :			-			\succ	
Y: N/A $\Delta H_{@:}$ N/A $C_{p}:$ $O.G.G.4/$ K-Factor: N/A Sketch of Stack 1 $o.30$ 74 Sketch of Stack 5 $o.7.3$ 74 6 $o.7.2$ 74 6 $o.7.2$ 74 7 $o.7.2$ 74 8 $o.30$ 74 9 10 11	Console ID:	NA		_			F	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Y:			-	· .		Change Por	
$ \begin{array}{c} C_{p}: \\ \hline O \cdot G \cdot 4 \\ K-Factor: \\ \hline M/A \\ \hline Sketch of Stack \\ \hline \hline 0 \cdot 1 \\ \hline 2 \\ \hline 0 \cdot 1 \\ \hline 3 \\ \hline 0 \cdot 1 \\ \hline 1 \\ \hline 4 \\ \hline 0 \cdot 1 \\ \hline 7 \\ \hline 0 \cdot 2 \\ \hline 7 \\ \hline 0 \cdot 2 \\ \hline 7 \\ \hline 9 \\ \hline 10 \\ \hline 11 \\ \hline \end{array} $	ΔH_{a} :			_	ľ			
K-Factor: h/A 3 0.7% 74 Sketch of Stack 3 0.7% 74 Sketch of Stack 5 0.7% 74 6 0.27 74 7 0.29 74 8 0.10 74 9 10 11				-				
4 6.11 74 Sketch of Stack 4 6.11 74 6 6.23 74 6 6.27 74 7 6 6.27 74 8 6.29 74 8 6.20 74 8 6.20 74 8 6.20 74 8 6.20 74 8 6.20 74 8 6.20 74 9 10 11 11 11 11 11 11 11				-	ŀ			
Sketch of Stack 5 $0, 2.9$ 7.4 6 $0, 2.9$ 7.4 7 $0.2.9$ 7.4 8 $0.2.9$ 7.4 9 10 11 11 11	-			-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Sketch of Sta	ack		ŀ			
$ \begin{array}{c cccccccccccccccccccccccccccccccccc$			1					
8 0.20 74 9 10 11						7	0.29	
						8		
						-9_		
							\searrow	
		~~~~~					$\leq$	
						12		
				:				
			+		:			
					ł.			

Test Team Leader Review: Data Entry Review: 00E

## Advanced Industrial Resources BD Bard - Covington, GA Flow Measurements & Calculations 2BF-6

## Pre-Test

		Measured value	es:
Test Team:	RB, DG	<b>D</b> _s (in.):	36.00
EPA Methods:	1, 2, 3, 4	P _{bar} (in. Hg):	29.25
Test Date:	March 26, 2021	<b>p</b> _g (in. <b>H</b> ₂ <b>O</b> ):	-0.80
Console ID:	N/A	O ₂ (%):	20.90
Ym	N/A	CO ₂ (%):	0.00
Probe Assembly ID:	P4-04	<b>B</b> _{ws} (%):	0.82
Cp:	0.84	Start Time:	9:38

 Wet bulb (F):
 55

 Dry bulb (F):
 73

Point	Δp (" H ₂ O)	$(\Delta p)^{1/2}$	t _s (°F)
1	0.33	0.574	73
2	0.35	0.592	73
3	0.32	0.566	73
4	0.29	0.539	73
5	0.23	0.480	73
6	0.25	0.500	73
7	0.27	0.520	73
8	0.28	0.529	73
9	0.35	0.592	73
10	0.35	0.592	73
11	0.31	0.557	73
12	0.30	0.548	73
13	0.31	0.557	73
14	0.27	0.520	73
15	0.23	0.480	73
16	0.24	0.490	73
Average	0.29	0.540	73

**Calculations:** 

Molar weight, M _s =	28.75 lb/mol	={(%O ₂ x 32)+(%CO ₂ x 44)+(%N ₂ x 28)} x (1-B _{ws} /100))/100+B _{ws} /100*18
Velocity, v _s =	30.88 ft/sec	=85.49C _p x $(\Delta p)^{1/2}$ x $\{(t_s+460)/(P_{bar}+p_g/13.6)/M_s)\}^{1/2}$
Flow Rate, Q _{s,ds} =	12,552 dscfm	$=v_{s}\pi D_{s}^{2}/4/144 \ge 60 \ge (t_{std}+460)/(t_{s}+460) \ge (P_{bar}+p_{g}/13.6)/29.92 \ge (1-B_{ws}/100)$
Flow Rate, Q _{s,act} =	13,095 acfm	$=v_{s}\pi D_{s}^{2}/4/144 \ge 60$
Flow Rate, Q _{s,std} =	12,656 scfm	$= v_s \pi D_s^2 / 4 / 144 \ x \ 60 \ x \ (t_{std} + 460) / (t_s + 460) \ x \ (P_{bar} + p_g / 13.6) / 29.92$

### Advanced Industrial Resources BD Bard - Covington, GA Flow Measurements & Calculations 2BF-6 Post-Test

		Measured value	es:
Test Team:	RB, SW, DS	<b>D</b> _s (in.):	36.00
EPA Methods:	1, 2, 3, 4	P _{bar} (in. Hg):	29.25
Test Date:	March 26, 2021	<b>p</b> _g (in. <b>H</b> ₂ <b>O</b> ):	-0.75
Console ID:	N/A	O ₂ (%):	20.90
Ym	N/A	CO ₂ (%):	0.00
Probe Assembly ID:	P4-04	B _{ws} (%):	0.66
Cp:	0.84	Start Time:	15:17

Wet bulb (F): 58 Dry bulb (F): 85

Point	Δp ('' H ₂ O)	(Δ <b>p</b> ) ^{1/2}	t _s (°F)
1	0.31	0.557	85
2	0.33	0.574	85
3	0.33	0.574	85
4	0.30	0.548	85
5	0.25	0.500	85
6	0.24	0.490	85
7	0.28	0.529	85
8	0.32	0.566	85
9	0.34	0.583	85
10	0.34	0.583	85
11	0.31	0.557	85
12	0.27	0.520	85
13	0.29	0.539	85
14	0.27	0.520	85
15	0.25	0.500	85
16	0.24	0.490	85
Average	0.29	0.539	85

**Calculations:** 

Molar weight,  $M_s =$ Velocity,  $v_s =$ Flow Rate,  $Q_{s,ds} =$ Flow Rate, Q_{s,act} =  $= \{(\%O_2 \ge 32) + (\%CO_2 \ge 44) + (\%N_2 \ge 28)\} \ge (1 - B_{ws}/100))/100 + B_{ws}/100*18$ 

 ${=}85.49 {C_p\,x}\,\left({\Delta p}\right)^{1/2}x\,\left\{{(t_s{+}460)}{/(P_{bar}{+}p_g{/}13.6)}{/M_s}\right\}^{1/2}$  $=v_{s}\pi D_{s}^{2}/4/144 \times 60 \times (t_{std}+460)/(t_{s}+460) \times (P_{bar}+p_{g}/13.6)/29.92 \times (1-B_{ws}/100)$ 

12,425 dscfm

 $=v_s \pi D_s^2/4/144 \ge 60$ 13,232 acfm

28.76 lb/mol

31.20 ft/sec

Flow Rate, Q_{s,std} = 12,508 scfm  $=v_s \pi D_s^2/4/144 \ x \ 60 \ x \ (t_{std}+460)/(t_s+460) \ x \ (P_{bar}+p_g/13.6)/29.92$ 

# Advanced Industrial Resources Duct Velocity & Flow Calculation Sheet

3	<u>,</u>		
Client:	BD Bard	Measured	values:
Location:	Covington, GA	. D _s (in.):	36.0
Source:	2BF-6	$Y_m / \Delta H_{@}$ :	NIA
Test Team:	RBISWINS	C _p :	0.54
EPA Methods:	1,2,3,4	t _{amb} (°F)_	67
Test Date:	3/26/21	Assumed B _{ws} (%):	1
Console ID:	NIA	O ₂ (%):	21
Probe Assembly ID:	84-04	CO ₂ (%):	0
-			

W6= 55

w R= 58

Start time: 9:3 5	Start time: 15:17	Start time:	Start time:
Stop time:	Stop time:	Stop time:	Stop time:

			1				1	
Test #	Pre-	Test	Pust	Tert				
P _{bar} (in. Hg):			29.1	- 1				
p _g (in. H ₂ O):	-0.	30	- 0.	75				
Traverse	Δp	ts	Δp	t _s	Δp	t _s	Δp	t _s
Point	(" H ₂ O)	(°F)	("H ₂ O)	(°F)	(" H ₂ O)	(°F)	("H ₂ O)	(°F)
1	0.33	73	0.31	85				
2	0.35	73	0.33	3				
3	0.32	73	0.33	30				
4	0.29	73	0.30	95				
5	0.23	73	0.25	85				
6	0.25	73	0.24	85				
7	0.27	73	0.28	85				
8	0.28	73	0.32	35				
9	0.35		0.34	35				
10	0.35	73	0.34	35				
11	0.31	73	0.31	85				
12	0.30	73	0.27	85				
13	0.31	73	0.29	85				
14	0.27	73	0.27	85		<u> </u>		
15	0.23	73	0.25	35				
16	0.24	73	0.24	35	· ·	<u>,</u>		
Average				,				

Test Team Leader Review: _____ Data Entry Review:

## Advanced Industrial Resources, Inc. Cyclonic Flow Absence Verification Field Data EPA Method 1

Client: BD Barod Location: Covington GA Source: 2 BF - GTest Team:  $DB \int Sou \int DS$ Probe ID: P4 - 04 $C_p$ : 0, G, 4

t _m (°F):	67
Console ID:	N/A
Y _m :	~/A
$\Delta H_{a}$ :	NIA
Assumed B _{ws} :	1
P _{bar} (in. Hg):	2.9.25
•	

26/21 31 Date: D_s (in.): 36.0 A_s (ft²): 7.07 D_n (in.): NA  $A_n$  (ft²): NIA

	Point	Δp	α	
	гүшт	(in. H ₂ O)	(degrees)	
	1	0.0	0	
	2	0.0	0	
	23	0.0	0	
	4	0.0	0	
	5	0.0	0 0 0 0 0 0	
	6	0.0	0	
	7	0.0	0	
	8	0.0	0	
	Å	0.0		
	10	0.0		
	11	0.0		
	12	0.0		
ĺ	C	hange Por	rts	
	1	0.0	0	
	2	0.0	0	
	3	0.0	0	
	4	0.0	0	
	5	0.0	0	
	6	0.0	0	
	7	0.0	0	
	8	0.0	0	
	- 2	0.0		
	10	0.0	Ţ	
	11		L	
	12	0.0		]

Test Team Leader Review:

REV021717

	Source De	scription Sheets	,		
Client:	BD Baral	- Date:	3/2	6/21	
Location:	Contrition, GA 2BF-G	Test Team:	281	5~105	
Source:	2BF-G		1	I	
_		r.			
D _n (in.):	AIN		Point	Δp	t _s
$A_n$ (ft ² ):	NIA		LOINT	$(in. H_2O)$	(°F)
D _s (in.):		-	.1	0.33	73
$A_s(ft^2)$ :		-	2	0.18	71
Length A (in.):	114.0	-	3	6.32	73
Length B (in.):		- 	4	0.2.9	73
			5	0.23	73
t _{amb} (°F):	67	_	6	0.25	73
Assumed B _{ws} :			7	0.27	73
P _{bar} (in. Hg):	29.25		8	0.29	73
P _g (in. H ₂ O):	-0.30	_	2		$\square$
- % O ₂ :	21	-	10	$\searrow$	
% CO ₂ :	0		11		
Console ID:	NIA	_	12		
Y:	NÍA	_	(	Change Port	s
$\Delta H_{a}$ :	NIA		1	0.35	73
C _p :	0.54		2	0.35	71
K-Factor:	NIA		3	0.31	73
_			4	0.30	73
1	Sketch of Stack		5	0.31	73
			6	0.27	73
			7	0.23	73
			8	0.24	
			10		
					$\overline{}$
· · · · · · · · · · · · · · · · · · ·	// // // // // // // // // // //		12		
			L		
	v v				
L					

Test Team Leader Review:

.

# SYSTEM 2 OUTLET

## Advanced Industrial Resources BD Bard - Covington, GA Moisture Measurements & Calculations System 2 Outlet

		Measured values:	
Test Team:	GE, GSG, DZ	P _{bar} (in. Hg):	29.25
EPA Methods:	4	<b>p</b> _g (in. <b>H</b> ₂ <b>O</b> ):	0.13
Test Date:	March 26, 2021	Y _m	0.955
Console ID:	C-009	Probe Assembly ID:	P7-04
Moisture Run Used for flow runs: Water recovery (ml):	Run #1 Run 1 22.5		
Start	114.865		
Stop	294.843		
Sample volume (cf):	179.978		
Meter temperature (F):	72.3		

Calculations:			
Moisture volume, V _w =	1.06	scf	= ml x 0.04715
Sample volume, $V_s =$	166.74	scf	$= V_m x Y_m x \{528 / (T_m + 460)\} x \{(P_{bar} + P_g / 13.6) / 29.92\}$
Moisture content, $B_{ws} =$	0.63%	%	$= \mathbf{V}_{w} / (\mathbf{V}_{w} + \mathbf{V}_{s})$

86

## Advanced Industrial Resources BD Bard - Covington, GA Flow Measurements & Calculations System 2 Outlet Pre-Test

		Measured val	ues:
Test Team:	GSG, DK	<b>D</b> _s (in.):	73.00
EPA Methods:	1,2	P _{bar} (in. Hg):	29.25
Test Date:	March 26, 2021	pg (in. H ₂ O):	0.13
Console ID:	C-09	O ₂ (%):	20.90
Ym	0.955	CO ₂ (%):	0.00
Probe Assembly ID:	P7-04	B _{ws} (%):	0.63%
Cp:	0.84	Start Time:	9:10 - 9:24

Point	Δp ('' H ₂ O)	(Δp) ^{1/2}	t _s (°F)
1	0.86	0.927	66
2	0.90	0.949	67
3	0.78	0.883	68
4	0.68	0.825	70
5	0.64	0.800	73
6	0.54	0.735	74
7	0.41	0.640	74
8	0.36	0.600	74
9	0.29	0.539	74
10	0.28	0.529	74
11	0.25	0.500	74
12	0.24	0.490	74
13	0.80	0.894	74
14	0.79	0.889	74
15	0.78	0.883	74
16	0.75	0.866	74
17	0.67	0.819	74
18	0.58	0.762	74
19	0.40	0.632	74
20	0.40	0.632	74
21	0.40	0.632	74
22	0.44	0.663	74
23	0.44	0.663	74
24	0.43	0.656	74
Average	0.55	0.725	73

#### **Calculations:**

Molar weight, M_s = 28.77 lb/mol Velocity,  $v_s =$ 41.45 ft/sec Flow Rate, Q_{s,ds} =

Flow Rate, Q_{s,act} =

69,588 dscfm 72,279 acfm 70,031 scfm

 $= \{(\%O_2 \ge 32) + (\%CO_2 \ge 44) + (\%N_2 \ge 28)\} \ge (1 - B_{ws}/100))/100 + B_{ws}/100*18$  $= 85.49 C_{p} x (\Delta p)^{1/2} x \{(t_{s}+460)/(P_{bar}+p_{g}/13.6)/M_{s})\}^{1/2}$ 

 $= v_s \pi D_s^{-2/4/144} \ x \ 60 \ x \ (t_{std} + 460) / (t_s + 460) \ x \ (P_{bar} + p_g / 13.6) / 29.92 \ x \ (1 - B_{ws} / 100)$  $=v_s \pi D_s^2/4/144 \ge 60$ 

Flow Rate, Q_{s,std} =

 $=v_s \pi D_s^2/4/144 \text{ x } 60 \text{ x } (t_{std}+460)/(t_s+460) \text{ x } (P_{bar}+p_g/13.6)/29.92$ 

## Advanced Industrial Resources BD Bard - Covington, GA Flow Measurements & Calculations System 2 Outlet Post-Test

		Measured val	ues:
Test Team:	GSG, DK	<b>D</b> _s (in.):	73.00
EPA Methods:	1, 2, 3A & 4	P _{bar} (in. Hg):	29.25
Test Date:	March 26, 2021	p _g (in. H ₂ O):	0.13
Console ID:	C-09	<b>O</b> ₂ (%):	20.90
Ym	0.955	CO ₂ (%):	0.00
Probe Assembly ID:	P7-04	<b>B</b> _{ws} (%):	0.63%
Cp:	0.84	Start Time:	14:39-14:50

Point	oint $\Delta p$ $(\Delta p)^{1/2}$		t _s (°F)
1	0.86	0.927	77
2	0.83	0.911	77
3	0.77	0.877	77
4	0.68	0.825	77
5	0.65	0.806	77
6	0.60	0.775	77
7	0.43	0.656	77
8	0.38	0.616	77
9	0.42	0.648	77
10	0.33	0.574	77
11	0.30	0.548	77
12	0.28	0.529	77
13	0.80	0.894	77
14	0.78	0.883	77
15	0.74	0.860	77
16	0.75	0.866	77
17	0.66	0.812	77
18	0.57	0.755	77
19	0.46	0.678	77
20	0.40	0.632	77
21	0.40	0.632	77
22	0.44	0.663	77
23	0.44	0.663	77
24	0.46	0.678	77
Average	0.56	0.738	77

#### **Calculations:**

Molar weight,  $M_s =$ 28.77 lb/mol Velocity,  $v_s =$ 42.33 ft/sec Flow Rate, Q_{s,ds} = 70,531 dscfm 73,819 acfm

Flow Rate, Q_{s,act} =

Flow Rate, Q_{s,std} =

 $= \{(\%O_2 \ x \ 32) + (\%CO_2 \ x \ 44) + (\%N_2 \ x \ 28)\} \ x \ (1 - B_{ws}/100))/100 + B_{ws}/100*18$  $=\!85.49 C_p x \left(\Delta p\right)^{1/2} x \left\{(t_s\!+\!460)/(P_{bar}\!+\!p_g\!/13.6)/M_s)\right\}^{1/2}$ 

 $= v_s \pi D_s^{-2/4/144} \ge 60 \ge (t_{std} + 460)/(t_s + 460) \ge (P_{bar} + p_g/13.6)/29.92 \ge (1 - B_{ws}/100)$  $=v_s \pi D_s^2/4/144 \ge 60$ 

70,979 scfm

 $=v_s \pi D_s^2/4/144 \ x \ 60 \ x \ (t_{std}+460)/(t_s+460) \ x \ (P_{bar}+p_g/13.6)/29.92$ 

Advanced Industrial Resources, Inc.								• •				
Field Data Sheet												
		Client:	BD B	ARD			Test Date:	3/21	151			
		Location:	COVIN			Ċ	Console ID:	Č- L	29		-	
			SYSTE	MLX	NTUT_	-	$Y_m / \Delta H_{@}$ :	0.95		113	-	
		Test Team:	656	DK		-	ng Box ID:	<u> </u>	<u>09'</u>		-	
		EPA Methods:	<u> </u>	<u>3,4</u>		Probe As	sembly ID:	· · · · ·	07-	<u> </u>	-	
		D _s (in.): % O ₂	20.9	>	<u> </u>		D _n (in.): sumed B _{ws} :	MA	2		-	
		% O ₂ % CO ₂	0,0		. <u>-</u>	+	bar (in. Hg):	29,	15		-	
		Start Run:	9:10	110	139		(in. H ₂ O):	0.1	3		-	
		End Run:			2550	- Min	utes/Point:		<u> </u>		-	
	PR	Run Number:			£	ost Frad	K-Factor:	N	A		-	
	TAN	ng 🕼 🛛	Inche	s H ₂ O	-	71	Tempera	ature Readi	ings (°F)			1
		Meter	PRE		PRE	POST	1-51	Last			Filter	Vacuum
	Point		Δp	ΔH	t _s		Filter(Box				Exit	
whet		(dcf)						Impinger	Inlet	Outlet	(M5 or CPM)	(in. Hg)
10:35	1	119,845	0.86	1,60	44	9.86	77	49	42	42		3
	2	· · · · · · · · · · · · · · · · · · ·	0.90	1	43	0,07	77		62	42	łł	
	4	30.70	0.68		70	0.68	71		G4	44		
	5	985.955	0.04		75	0.65	14	50	64	4	<b> </b>	
	7		0.54	ļ	-14-	0.43	75		67	lis		
	8	÷	0.36		74	0.38	77					
	9 10		0.29		74	0.3-2	71 77	52	74	74		3
	11		0.25		74	0.30	77		40	-		
	12	<u> </u>	0.24		- A	0.28	57	58				3
	1	1	060		74				- 35	83	1	~
	2		0.19		54	0.78	71					
	3		0.78		74	9.74	77	60				
. •	4		0.75		74-	0.75	77					3
	6	3)	0.50		74-	0 57	77	62				•
	7		040	·	79	0.40	$\frac{77}{71}$		86	860		3
	9		0.40		74	0.40	71	1.4			1	
	10		0.44		34	0.44	77					
	11 12		0.47	<u> </u>	77	0.44	77	-irl	BL	86		3
12:35	End	294,843		L	1. <b>F</b> 1		1 1 1				4	🥓
•		•	Initial	T	e Collected (g)	) 1	Sam	Pre-Run I pling Line:	Leak Checks (	defm @ "Hg	)	
	•	Body:	Initial ZOO	Final	Net 18	1	Jan	Pitot A:		tu	-	
		Silica Gel:	200.0	204.	\$ 4.5	]		Pitot B:	(	m	-	
		Gel Number:	·	Total	22.5	]		Post-Run 1	Leak Checks (	ˈdefm @ "Hə	)	
							Sam	pling Line:	0.00	l@ 87	-	
			/					Pitot A:	0.00	02		
		Silica Gel De	esc. (initial):		<u> </u>	-		Pitot B:			-	

Silica Gel Desc. (initial):	
Silica Gel Desc. (final):	
Test Team Leader Review:	di,
Data Entry Review:	UNU

ł

Lot No: Lot No: Reagent 1: Reagent 2:

20

.

# Advanced Industrial Resources, Inc. Cyclonic Flow Absence Verification Field Data EPA Method 1

Client:	BD B	HRD
Location:	COUTRI	iton Ga
Source:	<u>SYSTEN</u>	2 OUTVET
Fest Team:	દપ્રુ	MTK
Probe D:	P7-6	>2
C _p :	<u> </u>	:4-
Co	t _m (°F): onsole ID: Υ _m : ΔH _@ :	63 C209 0,955
Assu	imed B _{ws} :	
P _{ba}	r (in. Hg):	29.25

Date:	3(24)21	
D _s (in.):	73	
$A_s(ft^2)$ :	29.065	
<b>D</b> _n (in.):	MA	
$A_n(ft^2)$ :	NA	_

Point	Δp	α
TAUIT	(in. H ₂ O)	(degrees)
1	0.0	ы
2	0.0	(
3	0.0	(
4	0.0	l
5	0.0	2
2 3 4 5 6 7	0.0	
	0.0	(
8	0.0	0
9	0.0	0
10	0.0	1
11	0.0	3
12	0.0	r
C	hange Por	rts
	0.0	l
$ \begin{array}{r} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ \end{array} $	0.0	2
3	0.0	l
4	0.0	1
5	0.0	0
6	0.0	0
7	0.0	(
8	0.0	0     2
9	0.0	(
10	0.0	0
11	0.0	(
12	0.0	0

Test Team Leader Review:

Data Entry Review:

008

## Advanced Industrial Resources, Inc. Source Description Sheets

t_s (°F) 72 73 74

> > 14

γł

10

11

12

44 0.

94 Q.

0.43

	S	ource Descr	iption Sheets		1	
Client:	BD BARD		Date:	32	121	
Location:	CAILUGTON	GA	Test Team:	ىكى	DK	
Source:	SYSTEM	2 outer				
	λ.		7			
D _n (in.):	NA			Point	Δp	
$A_n(ft^2)$ :	NA			I UIII	(in. H ₂ O)	
D _s (in.):	73			1	0.66	-
$A_s(ft^2)$ :	29.045			2	0.90	-
Length A (in.):	45			3	0.7R	
Length B (in.):	252			4	0.68	-
	1 -			5	0.64	
t _{amb} (°F):	<u>(3</u>			6	0.54	
Assumed B _{ws} :	l			7	0.41	
P _{bar} (in. Hg):	29,25			8	0.36	
P _g (in. H ₂ O):	0.13			9	9.29	,
% O ₂ :	20.9			10	0.28	
% CO ₂ :	0:0			11	0.25	
Console ID:	C-009.			12	0.24	
Y:	0.955			(	Change Por	ts
ΔH _@ :	1.63	<b>_</b>		1	0.60	Ĺ
C _p :	0. BJ			2	0.79	
K-Factor:	NIA			3	0.78_	
				4	0.75	
1	Sketch of S	stack		5	0.67	
				6	0.58	<u> </u>
				7	040	
	{			8	0,90	<u> </u>
				9	0.40	

Α

B

ЖÐ

₩

Test Team Leader Review: an Data Entry Review:

0

# **APPENDIX D**

# **CALIBRATION DATA**

Dry Gas Meter Calibration Data

C-17 1306025		Met	ter ID:		3.5-		
1306025	Ca		M5RFM1				
	04	libration Facto	or, Y _w :		0	).998	
11/06/20		Perform	ed Bv:			LS	
ure, P _b (in. Hg):	29.30	Review	•				
	Data						
		Temper	atures	(° <b>F</b> )		Time	
Reference	Dry Gas	Reference	Dry	Gas N	<b>1</b> eter	Elapsed	
Meter Volume	Meter Volume	Meter	init.	final	avg.	θ	
$V_w(ft^3)$	$V_{m}$ (ft ³ )	t _w	t _i	t _f	t _m	(min.)	
5.100	5.232	68	72.0	74.0	73.0	13.40	
5.110	5.051	69	74.0	76.0	75.0	9.20	
5.065	5.112	69	76.0	79.0	77.5	6.50	
6.437	6.506	69	79.0	81.0	80.0	6.60	
6.261	6.342	69	81.0	83.0	82.0	5.60	
	6.261						

	Calculations											
ΔH	Y _m Variation			$\Delta \mathbf{H}_{@}$	Variation							
(inches H ₂ O)	(dimensionless)			(inches H ₂ O)	(dimensionless)							
0.50	0.981	-0.019	PASS	1.961	0.114	PASS						
1.00	1.019	0.019	PASS	1.842	-0.005	PASS						
2.00	1.000	0.000	PASS	1.863	0.016	PASS						
3.00	1.000	0.001	PASS	1.775	-0.072	PASS						
4.00	0.999	0.000	PASS	1.795	-0.052	PASS						
Averages:	1.000	PA	SS	1.847	PA	SS						

Where:

 $\mathbf{Y}_{m}$  is the ratio of the reading of the reference meter to that of the dry gas meter (DGM); variance limit:  $\pm 0.02$ .

$$\mathbf{Y}_{m} = \frac{Y_{w} V_{w} P_{b} (t_{m} + 460)}{V_{m} (P_{b} + \Delta H / 13.6) (t_{w} + 460)}$$

 $\Delta H_{@}$  is the orifice pressure differential (inches H₂O) that corresponds to 0.75 cfm of air at 68 °F and 29.92 inches of mercury; variance limit: ±0.20.

$$\Delta \mathbf{H}_{@} = \frac{0.0317 \,\Delta \mathrm{H} \left( (t_{\mathrm{w}} + 460) \,\theta \right)^{2}}{\mathrm{P}_{\mathrm{b}} \left( t_{\mathrm{m}} + 460 \right) \left( \mathbf{Y}_{\mathrm{w}} \, \mathbf{V}_{\mathrm{w}} \right)^{2}}$$

Dry Gas Meter Calibration Data

	Dry Ga	as Meter			Reference Meter							
C	Console ID:	C-017			Meter ID:					M5 RFM 1		
Seria	l Number:				Calibration	n Facto	or, Y _w :		0.9980			
		Date:	04	4/27/21	А	ccepte	ed Y _m :	1.000				
Bar	ometric Pre	ssure, P _b (in. Hg):		29.16		rform				KF		
				Da	ata							
		Net		Net	Tem	iperati	ures (°	F)		,	Гіте	
		Reference	D	ry Gas	Reference	•	Dry	Gas M	leter	E	lapsed	
Vacuum	$\Delta H$	Meter Volume	Mete	er Volume	Meter		init.	final	avg.		θ	
(in. Hg)	(in. H ₂ O)	$V_{w}(ft^{3})$	١	$V_{\rm m}({\rm ft}^3)$	t _w		t _i	t _f	t _m	(	min.)	
5.0	3.00	5.162		5.122	75		73	74	73.5		5.25	
5.0	3.00	5.169		5.140	75		74	77	75.5		5.25	
5.0	3.00	4.938	4.934 75				77	79	78.0		5.00	
				Calcu	lations							
	ΔH	Ym		Vari	ation		$\Delta \mathbf{H}_{@}$			Varia	tion	
(in	ches H ₂ O)		(di	nensionless)		(in	ches H	(2 <b>0</b> )	(dimen	sionles	s)	
	3.00	0.995		-0.0010	PASS		1.817		0.01	14	PASS	
	3.00	0.997		0.0006	PASS		1.805		0.00	)3	PASS	
	3.00	0.997	0.0004		PASS		1.786		-0.0	17	PASS	
	Avei	rages: 0.996		PASS 1.80			1.803			PAS	S	
				Calcu	lations							
**Note	Ava V conn	ot be (< or >) 5% of	the L	ow Tolerance	High Tolerance		% diff	-	]	Pass or	Fail?	
11010.1	1.5 Im cann		int									

W	here:	

Accepted Y_M

 $\mathbf{Y}_{\mathbf{m}}$  is the ratio of the reading of the reference meter to that of the dry gas meter (DGM); variance limit:  $\pm 0.02$ .

1.050

0%

PASS

0.950

$$\mathbf{Y_{m}} = \frac{Y_{w} V_{w} P_{b} (t_{m} + 460)}{V_{m} (P_{b} + \Delta H/13.6) (t_{w} + 460)}$$

 $\Delta H_{@}$  is the orifice pressure differential (inches H₂O) that corresponds to 0.75 cfm of air at 68 °F and 29.92 inches of mercury; variance limit: ±0.20.

$$\Delta \mathbf{H}_{@} = \frac{0.0317 \,\Delta H \left( (t_{w} + 460) \,\theta \right)^{2}}{P_{b} \left( t_{m} + 460 \right) \left( Y_{w} \, V_{w} \right)^{2}}$$

Dry Gas Meter Calibration Data

	Dry Ga	s Meter		R	eferen	ce M	eter	
	Console ID:	C-009		Me	ter ID:		M	SRFM1
Seri	al Number:			Calibration Fact	or, Y _w :		(	).998
	Date:							SS
Bar	ometric Pres	ssure, P _b (in. Hg):	29.80	Review	ed By:			
			Data					
				Temper	ratures	(° <b>F</b> )		Time
		Reference	Dry Gas	Reference	Dry	Gas N	<b>Ieter</b>	Elapsed
Vacuum	ΔH	Meter Volume	Meter Volum	e Meter	init.	final	avg.	θ
(in. Hg)	(in. H ₂ O)	$V_w(ft^3)$	$V_{m}$ (ft ³ )	t _w	t _i	$\mathbf{t}_{\mathbf{f}}$	t _m	( <b>min.</b> )
5.0	0.50	6.004	6.305	76	75.0	77.0	76.0	14.00
5.0	1.00	5.897	6.168	78	77.0	80.0	78.5	10.00
5.0	2.00	5.923	6.140	80	80.0	82.0	81.0	7.00
5.0	3.00	6.230	6.456	82	82.0	84.0	83.0	6.00
5.0	4.00	6.543	6.786	84	84.0	85.0	84.5	5.50

		Calculatio	ns				
ΔH	Y _m	Varia	ation	$\Delta \mathbf{H}_{@}$	Variation (dimensionless)		
(inches H ₂ O)	(dim	ensionless)		(inches H ₂ O)			
0.50	0.949	-0.005	PASS	1.556	-0.056	PASS	
1.00	0.953	-0.002	PASS	1.651	0.038	PASS	
2.00	0.960	0.005	PASS	1.608	-0.005	PASS	
3.00	0.958	0.003	PASS	1.608	-0.005	PASS	
4.00	0.954	-0.001	PASS	1.641	0.028	PASS	
Averages:	0.955	PA	SS	1.613	PA	SS	

Where:

 $\mathbf{Y}_{\mathbf{m}}$  is the ratio of the reading of the reference meter to that of the dry gas meter (DGM); variance limit:  $\pm 0.02$ .

$$\mathbf{Y}_{m} = \frac{Y_{w} V_{w} P_{b} (t_{m} + 460)}{V_{m} (P_{b} + \Delta H/13.6) (t_{w} + 460)}$$

 $\Delta H_{@}$  is the orifice pressure differential (inches H₂O) that corresponds to 0.75 cfm of air at 68 °F and 29.92 inches of mercury; variance limit: ±0.20.

$$\Delta \mathbf{H}_{@} = \frac{0.0317 \,\Delta \mathrm{H} \left( (t_{\mathrm{w}} + 460) \,\theta \right)^2}{\mathrm{P}_{\mathrm{b}} \left( t_{\mathrm{m}} + 460 \right) \left( \mathbf{Y}_{\mathrm{w}} \, \mathbf{V}_{\mathrm{w}} \right)^2}$$

Dry Gas Meter Calibration Data

	Dry Ga	as Mete	er				Refe	rence	Meter				
0	Console ID:		C-009			Meter ID:					M5 RFM 1		
Seria	l Number:					Calibration	Facto	or, Y _w :		(	).9980		
			Date:	04	/27/21	А	ccept	ed Y _m :	0.955				
Bar	ometric Pre	ssure, l	P _b (in. Hg):	2	29.16   Performed By:						KF		
					Da	ata							
			Net		Net	perat	ures (°	F)		Time			
		Re	ference	Dr	y Gas	Reference			Gas M	eter	Elapsed		
Vacuum	$\Delta H$	Mete	r Volume	Meter	r Volume	Meter		init.	final	avg.	θ		
(in. Hg)	(in. H ₂ O)	V	$_{\rm w}$ (ft ³ )	V,	_n (ft ³ )	t _w		t _i	t _f	t _m	( <b>min.</b> )		
5.0	3.00	5	5.002		.116	75		69	72	70.5	4.75		
5.0	3.00	5	5.002	5.134		75	75		74	73.0	4.75		
5.0	3.00	4	1.999	5	.142	75	75		77	76.0	4.75		
					Calcu	lations							
	AH		Ym			ation		$\Delta H_{a}$			Variation		
(in	ches H ₂ O)		- m	(dim	(uninensionless)	ation	(in	(inches H ₂ O)			(dimensionless)		
	3.00		0.960		-0.0019	PASS		1.593		0.0	07 <b>PAS</b>		
	3.00		0.961		-0.0007	PASS		1.586		0.0	00 PAS		
	3.00		0.965		0.0026	PASS		1.579		-0.0	07 PAS		
	Aver	rages:	0.962		PA	SS		1.586			PASS		
					Calcu	lations							
**Note:	Ava V conn	ot he (~	or >) 5% of t	Lo	w Tolerance			% diff	2		Pass or Fail?		
11010: 1		ot be (<	01 <i>&gt;)</i> 3 /0 01 U		0.907	ũ		1%			PASS		

Where:

 $Y_m$  is the ratio of the reading of the reference meter to that of the dry gas meter (DGM); variance limit: ±0.02.

$$\mathbf{Y}_{m} = \frac{\mathbf{Y}_{w} \, \mathbf{V}_{w} \, \mathbf{P}_{b} \, (t_{m} + 460)}{\mathbf{V}_{m} \, (\mathbf{P}_{b} + \Delta \mathrm{H} / 13.6) \, (t_{w} + 460)}$$

 $\Delta H_{@}$  is the orifice pressure differential (inches H₂O) that corresponds to 0.75 cfm of air at 68 °F and 29.92 inches of mercury; variance limit:  $\pm 0.20$ .

 $\Delta \mathbf{H}_{@} = \frac{0.0317 \ \Delta H \left( (t_{w} + 460) \ \theta \right)^{2}}{P_{b} \left( t_{m} + 460 \right) \left( \mathbf{Y}_{w} \ \mathbf{V}_{w} \right)^{2}}$ 

Environmental Supply Company, Inc.

Quality Source Sampling Systems & Accessories

#### 15 POINT SECONDARY REFERENCE METER CALIBRATION

#### Date: 8/15/2019 DGM Model: T-110 Customer: Advanced Industrial Resources DGM S/N: 27979 Reference Prover: Cert.# A-610 Tape # 26727

	1 141										
Approx.	Prover	DGM	Tempe	ature	Time	Flow Rate	Meter	Average			
Flow Rate (cfm) Q	Volume (ft ³ ) V _w	Volume (ft ³ ) V _{ds}	Prover (°F) t _w	DGM (°F) t _{ds}	(min) Φ	(cfm) Q	Coefficient Y _{ds}	Meter Coefficient Y _{ds}			
0.40	2.000	2.020	76.2	76.2	5.148	0.382	0.990				
0.40	2.000	2.019	76.1	76.1	5.117	0.384	0.991				
0.40	2.000	2.009	76.2	76.2	5.122	0.384	0.996	0.992			
0.60	2.000	2.018	76.5	76.5	3.320	0.592	0.991				
0.60	2.000	2.017	75.9	75.9	3.318	0.593	0.992				
0.60	2.000	2.017	75.9	75.9	3.308	0.595	0.992	0.991			
0.80	2.000	2.017	75.9	75.9	2.438	0.807	0.992				
0.80	2.000	2.017	76.2	76.2	2.432	0.809	0.992				
0.80	2.000	2.023	75.9	75.9	2.428	0.810	0.989	0.991			
1.00	2.000	2.022	76.3	76.3	1.943	1.012	0.989				
1.00	2.000	2.017	75.6	75.6	1.947	1.011	0.992				
1.00	2.000	2.016	76.2	76.2	1.942	1.013	0.992	0.991			
1.20	2.000	2.007	75.5	75.5	1.622	1.214	0.997				
1.20	2.000	2.016	75.5	75.5	1.623	1.213	0.992				
1.20	2.000	2.017	75.5	75.5	1.623	1.213	0.992	0.993			

Pb: 29.89 in Hg

AVERAGE Y_{ds} 0.992

$$Y_{ds} = \frac{V_w(t_{ds} + t_{std})}{V_{ds}(t_w + t_{std})} * \frac{P_{bar}}{(P_{bar} + \frac{P_m}{13.6})} \qquad Q = 17.64 \frac{P_{bar}}{(t_w + t_{std})} \frac{V_w}{\Phi}$$

Dry gas meter Serial Number 27979 was calibrated in accordance with the Code of Federal Regulations, Title 40, Part 60, Appendix A, Method 5 Section 16.1.1

0 Signature

www.environsupply.com

919-956-9688 FAX: 919-682-0333

Environmental Supply Company, Inc.

Quality Source Sampling Systems & Accessories

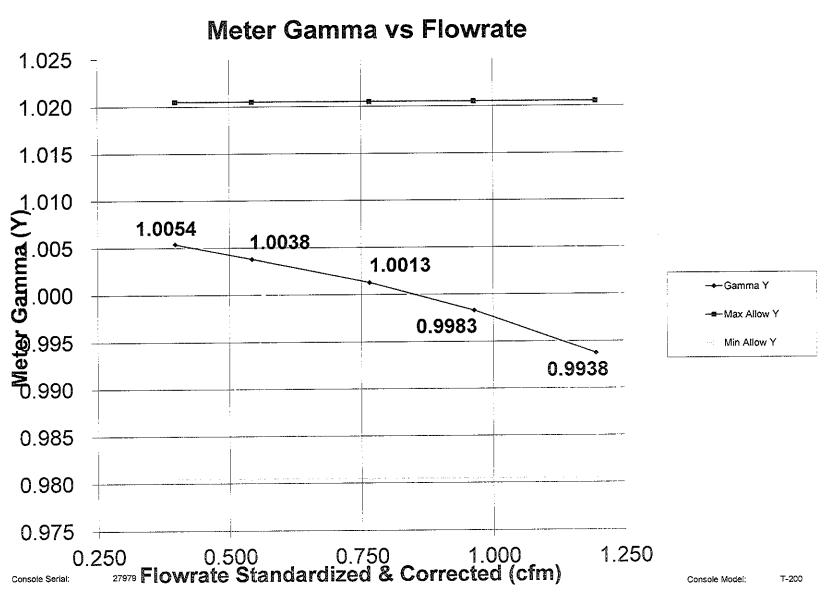
### 15 POINT SECONDARY REFERENCE METER CALIBRATION

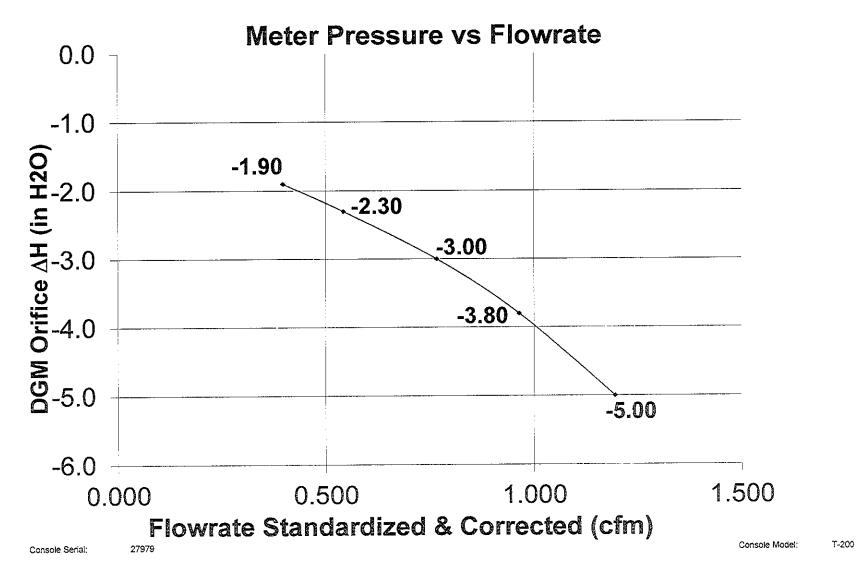
#### Date: 8/27/2019 DGM Model: T-110 Customer: Advanced Industrial Resources DGM S/N: 356333 Reference Prover: Cert.# A-610 Tape # 26727

Approx.		DGM	Temp	erature	Time	Flow Rate	Meter	Average
Flow Rate (cfm) Q	Volume (ft ³ ) V _w	Volume (ft ³ ) V _{ds}	Prover (°F) t _w	DGM (°F) t _{ds}	(min) Φ	(cfm) Q	Coefficient Y _{ds}	Meter Coefficient Y _{ds}
0.40	2.000	1.998	77.9	75.8	5.092	0.385	0.997	
0.40	2.000	1.997	77.4	75.8	5.088	0.385	0.999	
0.40	2.000	1.998	77.4	75.7	5.097	0.385	0.998	0.998
0.60	2.000	2.004	75.8	75.8	3.290	0.598	0.998	
0.60	2.000	2.003	75.8	75.8	3.288	0.598	0.999	
0.60	2.000	2.003	75.8	75.8	3.285	0.599	0.999	0.998
0.80	2.000	2.006	75.8	75.8	2.453	0.801	0.997	
0.80	2.000	2.007	75.8	75.8	2.442	0.805	0.997	
0.80	2.000	2.001	75.5	75.5	2.440	0.806	1.000	0.998
1.00	2.000	2.001	75.9	75.9	1.918	1.025	1.000	
1.00	2.000	2.006	75.9,	75.9	1.925	1.021	0.997	
1.00	2.000	2.010	75.9	75.9	1.928	1.019	0.995	0.997
1.20	2.000	2.007	75.9	75.9	1.595	1.232	0.997	
1.20	2.000	2.006	75.9	75.9	1.597	1.231	0.997	
1.20	2.000	2.006	75.9	75.9	1.588	1.238	0.997	0.997

Pb: 29.86 in Hg

AVERAGE Y_{ds} 0.998


$$Y_{ds} = \frac{V_w(t_{ds} + t_{std})}{V_{ds}(t_w + t_{std})} * \frac{P_{bar}}{(P_{bar} + \frac{P_m}{13.6})} \qquad Q = 17.64 \frac{P_{bar}}{(t_w + t_{std})} \frac{V_w}{\Phi}$$


Dry gas meter Serial Number 356333 was calibrated in accordance with the Code of Federal Regulations, Title 40, Part 60, Appendix A, Method 5 Section 16.1.1

www.environsupply.com

Calibration Date: 10-10-2017

Calibration Technician: EW





Thermo	ometer ID: R	RT-01; RT-03		Date:		04/26/21
Bias:		0		Performed By:		LS
Apparatus ID	Apparatus Description	Reference Temperature Reading		Indicated Temperature		Relative Variation
		° <b>F</b>	° <b>R</b>	° <b>F</b>	°R	%
P7-01	Stack Temp.	32	492	33	493	0.2
P7-01	Stack Temp.	210	670	211	671	0.1
B-17	Filter Temp.	32	492	32	492	0.0
B-17	Filter Temp.	210	670	210	670	0.0
B-17	Exit Imp. Temp.	32	492	32	492	0.0
B-17	Exit Imp. Temp.	210	670	211	671	0.1
C-017	Meter In Temp.	32	492	33	493	0.2
C-017	Meter In Temp.	210	670	210	670	0.0
C-017	Meter Out Temp.	32	492	33	493	0.2
C-017	Meter Out Temp.	210	670	212	672	0.3
B-17	Filter Exit Temp.	32	492	33	493	0.2
B-17	Filter Exit Temp.	210	670	211	671	0.1
P7-01	Probe Temp.	32	492	32	492	0.0
P7-01	Probe Temp.	210	670	210	670	0.0

Thermocouple Calibration Data

#### **Thermocouple Calibration Procedure**

A. References

1. Mercury-in-glass refernce thermometer, calibrated against thermometric fixed points.

2. Thermometric fixed points, including ice bath and boiling water (corrected for barometric pressure)

#### B. Measurement

1. Compare field temperature sensors against the reference thermometer. Agreement must be within  $\pm 1.5\%$  of the absolute reference temperature.

Thermometer ID: Bias:		RT-01 ; RT-03 0		Date: Performed By:		04/26/21 LS
ID		°F	°R	°F	°R	<u>variation</u> %
P7-02	Stack Temp.	32	492	33	493	0.2
P7-02	Stack Temp.	210	670	211	671	0.1
B-09	Filter Temp.	32	492	32	492	0.0
B-09	Filter Temp.	210	670	210	670	0.0
B-09	Exit Imp. Temp.	32	492	33	493	0.2
B-09	Exit Imp. Temp.	210	670	210	670	0.0
C-009	Meter In Temp.	32	492	33	493	0.2
C-009	Meter In Temp.	210	670	210	670	0.0
C-009	Meter Out Temp.	32	492	32	492	0.0
C-009	Meter Out Temp.	210	670	211	671	0.1
B-09	Filter Exit Temp.	32	492	32	492	0.0
B-09	Filter Exit Temp.	210	670	212	672	0.3
P7-02	Probe Temp.	32	492	32	492	0.0
P7-02	Probe Temp.	210	670	210	670	0.0

Thermocouple Calibration Data

#### **Thermocouple Calibration Procedure**

A. References

1. Mercury-in-glass refernce thermometer, calibrated against thermometric fixed points.

2. Thermometric fixed points, including ice bath and boiling water (corrected for barometric pressure)

#### B. Measurement

1. Compare field temperature sensors against the reference thermometer. Agreement must be within  $\pm 1.5\%$  of the absolute reference temperature.

#### VERIFICATION OF CONSTRUCTION SPECIFICATIONS FOR THE TYPE-S PITOT TUBE

Thomas R. Clark, Wade Mason, Paul Reinermann III PEDCo Environmental, Inc., Cincinnati, Ohio

Revisions to EPA Reference Method 2 - Determination of Stack Gas Velocity and Volumetric Flow Rate (Type-S Pitot Tube) promulgated August 18, 1977, exempted certain pitot tubes from calibration and included appropriate construction criteria and application quidelines.

Figure 1 summarizes procedures for determining the calibration coefficients of Type-S pitot tubes. A pitot tube may be calibrated using procedures outlined in Method 2 or assigned a baseline coefficient ( $C_p$ ) of 0.84 if it meets the following criteria:

Pitot tube meets the construction criteria of Figures 2 and 3

The external tubing diameter  $(D_t)$  is between 0.48 and 0.95 cm (3/16 and 3/8 in.)

The base-to-opening plane distances ( $\rm P_A$  and  $\rm P_B)$  are equal and range between 1.05 and 1.50  $\rm D_t$ 

The pitot tube is used separately, or in a pitot-probe assembly, mounted in accordance with the specifications in Figures 4 and 5

Pitot tubes that meet the construction criteria of Figures 2 and 3, but do not meet the specified limits for  $D_t$ ,  $P_A$ , and  $P_B$ may be used, but must be calibrated.

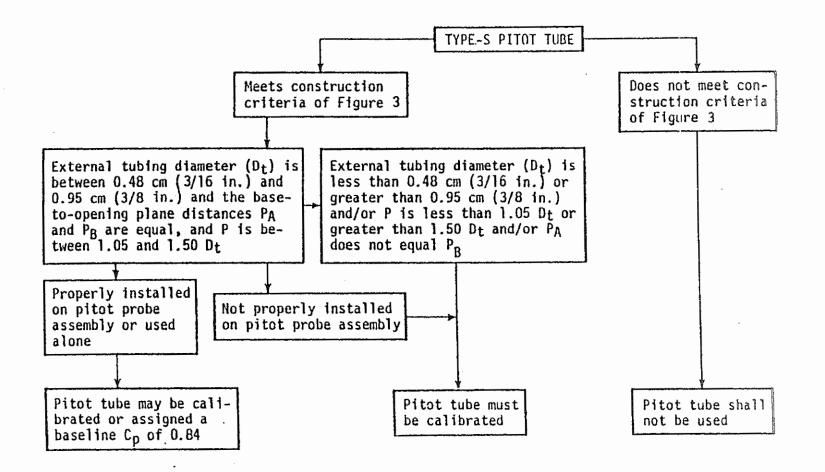
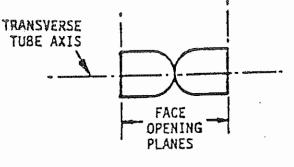
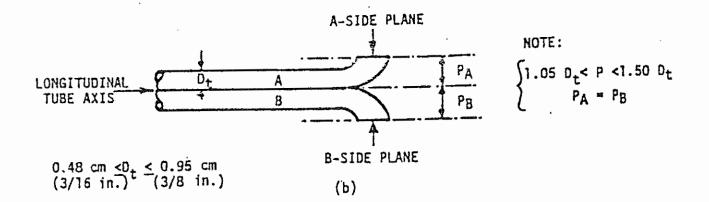





Figure 1. Procedures for determining the calibration coefficients of Type-S pitot tubes.



(a) END VIEW



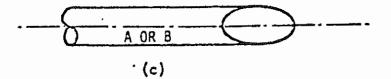
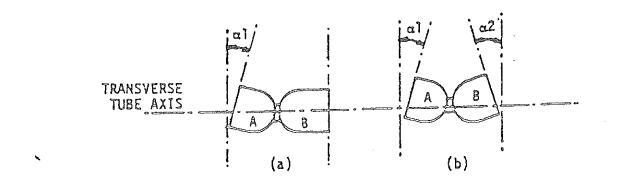
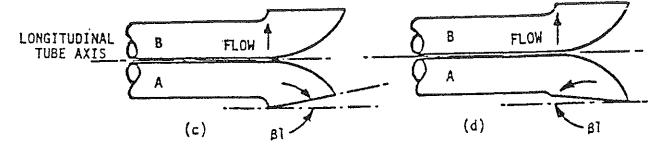
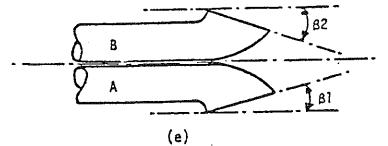
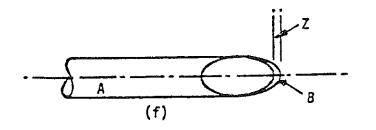







Figure 2. Properly constructed Type-S pitot tube, shown in: (a) end view; face opening planes perpendicular to transverse axis; (b) top view; face opening plans parallel to longitudinal axis; (c) side view; both legs of equal length and centerlines coincident, when viewed from both sides. Baseline coefficient values of 0.84 may be assigned to pitot tubes constructed this way.









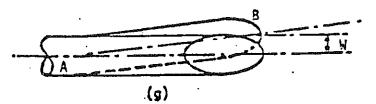
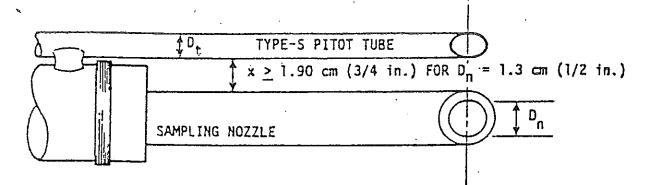
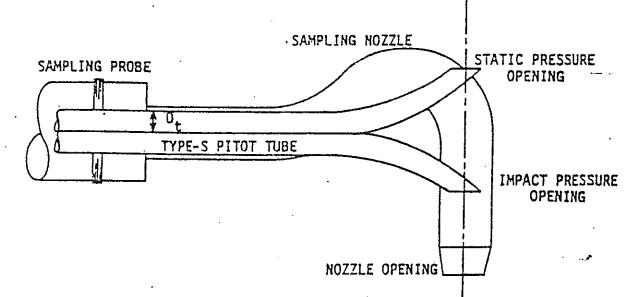
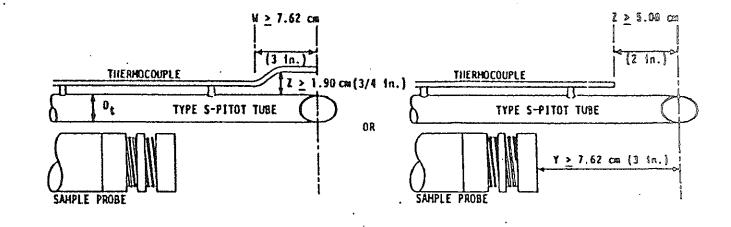





Figure 3. Types of face-opening misalignment that can result from field use or improper construction of Type S pitot tubes. These will not affect Cp as long as al and a2 <10°,  $\beta_2$  <5°, z <0.32 cm (1/8 in.) and w <0.08 cm (1/32 in.).




#### A. BOTTOM VIEW: SHOWING MINIMUM PITOT-NOZZLE SEPARATION.



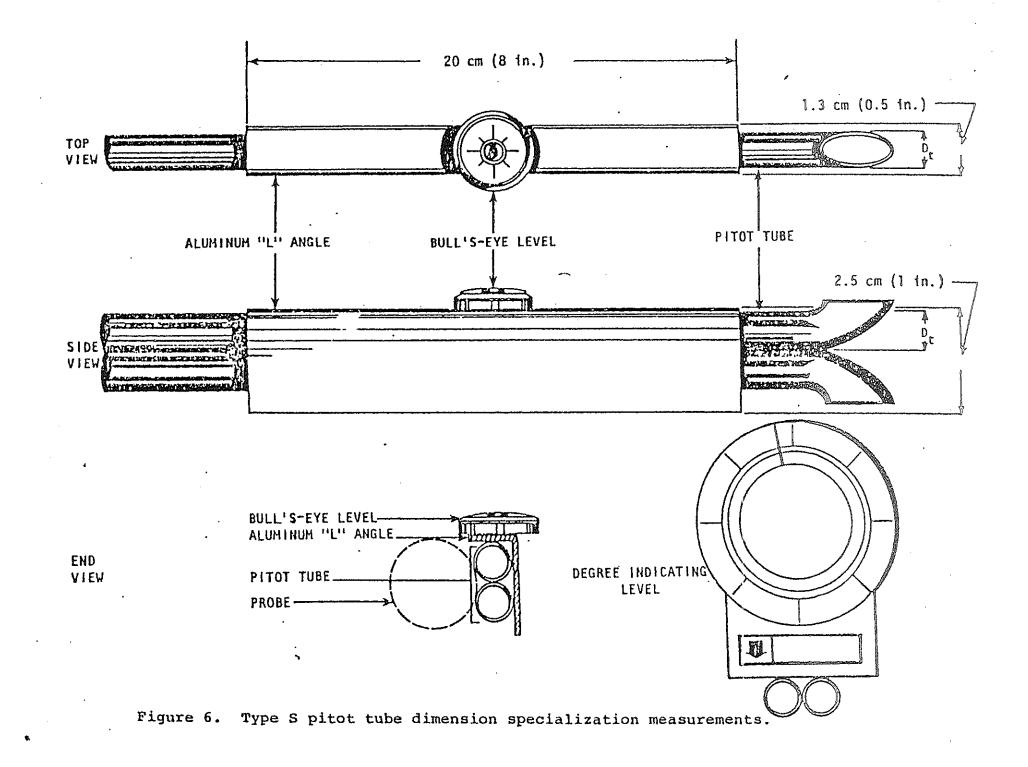
B. SIDE VIEW: TO PREVENT PITOT TUBE FROM INTERFERING WITH GAS FLOW STREAMLINES APPROACHING THE NOZZLE, THE IMPACT PRESSURE OPENING PLANE OF THE PITOT TUBE SHALL BE EVEN WITH OR ABOVE THE NOZZLE ENTRY PLANE.

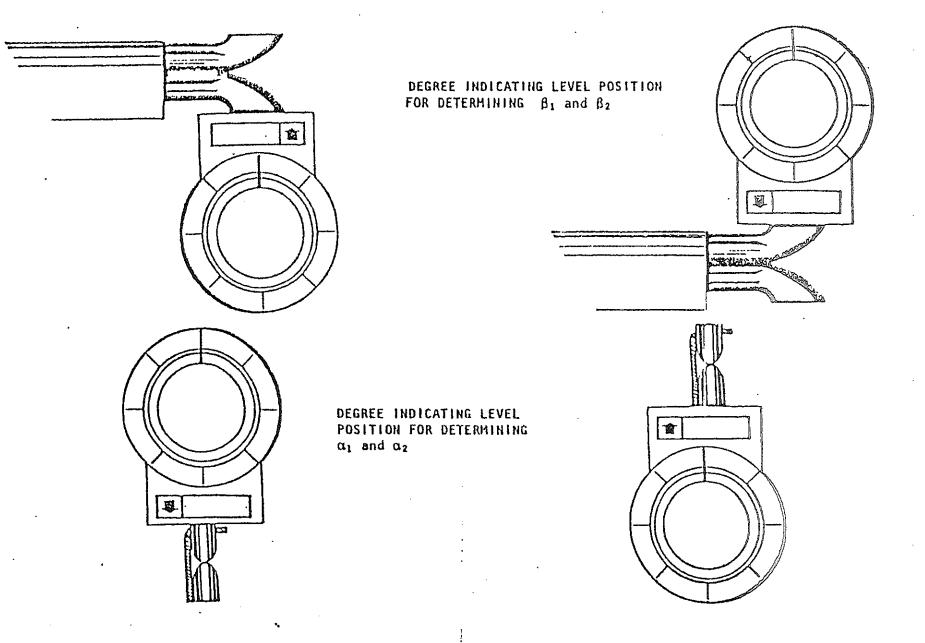
Figure 4. Required pitot tube - sampling nozzle configuration to prevent aerodynamic interference; buttonhook - type nozzle; centers of nozzle and pitot opening aligned;  $D_t$  between 0.48 and 0.95 cm (3/16 and 3/8 in.).

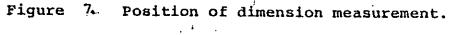


S

Figure 5. Required thermocouple and probe placement to prevent interference; D_t between 0.48 and 0.95 cm (3/16 and 3/8 in.).

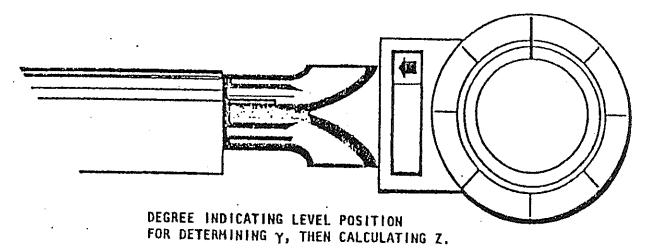

The EPA has not specified a measurement technique to verify proper construction. The following procedures provide a quick and accurate method of checking construction specifications for Type-S pitot tubes. The apparatus is inexpensive and available in most hardware stores. The method can be used in the laboratory by testers and easily adapted to field use by agency personnel while witnessing tests or performing quality assurance checks.


1. Obtain a section of angle aluminum approximately 20 cm (8 in.) by 1.3 x 2.5 cm (0.5 x 1.0 in.). Mount a bull's-eye level (with <u>+</u>1 degree accuracy) to the angle aluminum, as shown in Figure 6. After mounting the bull's-eye level to the angle aluminum, level the angle aluminum and place the degree-indicating level in the parallel and perpendicular positions. The indicating level should not read more than 1 degree in either position.

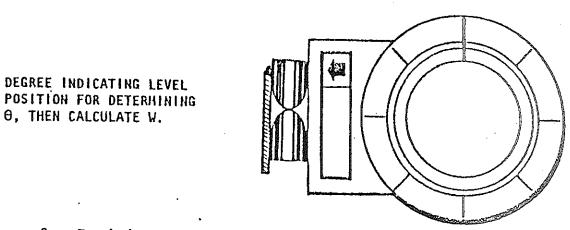

2. Place the pitot tube in the angle aluminum as shown in Figure 6, and level the pitot tube as indicated by the bull'seye level. A vise may be used to hold the angle aluminum and pitot tube in the laboratory and a C-clamp in the field. <u>Note</u>: A permanently mounted pitot tube and probe assembly may require a shorter section of angle aluminum to allow proper mounting on the assembly.

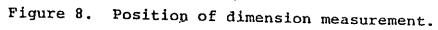
3. Place a degree-indicating level in the various positions, as illustrated in Figures 7 and 8.

4. Measure distances  $P_{a}$  and  $P_{B}$  with a micrometer.







.

ф



٠,





5. Measure the external tube diameter  $(D_t)$ . Record all data on a data sheet such as Figure 9.

6. Calculate dimensions w and z using the following equations:

 $w = A \sin \theta$ Equation 1 $z = A \sin \gamma$ Equation 2

where,

w = alignment dimension, cm (in.)

z = alignment dimension, cm (in.)

A = distance between tips,  $(P_A + P_B)$ , cm (in.)

 $\Theta$  = angle in degrees

 $\gamma$  = angle in degrees.

Note: Pitot tubes with bent or damaged tubing may be difficult to check using this procedure.

If the Type-S pitot tube meets the face alignment criteria, an identification number should be assigned and permanently marked or engraved on the body of the tube.

#### References

1. Federal Register, Vol. 42. No. 160, August 18, 1977.

### Advanced Industrial Resources, Inc. Type-S Pitot Tube Assembly Inspection Data Sheet

Date:	3/29/2021		
Pitot Tube Assembly:	P7-02	Caliper ID:	CL02
Performed by:	LS		
Pitot tube assembly level?	X yes	1	10
Pitot tube openings damaged?	yes (expla	in below) X	10
$\alpha_1 = 1 ^{o} (< 10^{o})$	$\beta_1 = 1$	°(<5°)	
$\alpha_2 = 0^{\circ} (<10^{\circ})$	$\beta_2 = 0$	°(<5°)	
$\gamma = 1$ ^o $\theta =$	1 ^o A=	<u>0.75</u> in.	
$\mathbf{z} = \mathbf{A} \sin \gamma = \underline{0.0131}$	in. <1/8 in. (0	0.125 in.)	
$\mathbf{w} = \mathbf{A}  \mathbf{sin}  \mathbf{\theta} = \underline{0.0131}$	in. <1/32 in.	(0.03125 in.)	
$P_{A} = 0.375$ in.	$P_{B} = 0.375$	in.	
$D_t = 0.25$ in.	$\mathbf{P} / \mathbf{D}_{t} = \frac{1.5}{\mathbf{P}_{a} = \mathbf{P}_{b}} =$		50)
X = 0.8  (>0.75  in.) Y = 3.55  (>3.0  in.) Z = 1.07  (>0.75  in.)	(Dist. from nozzle u		•
Does the pitot tube assembly m	neet the Method 2 requ	iremnets? X	yes

If the Method 2 requirements are met then a coefficient of **0.84** is assigned

to the pitot tube assembly being inspected.

no (explain below)

### Advanced Industrial Resources, Inc. Type-S Pitot Tube Assembly Inspection Data Sheet

Date:	3/29/2021	
Pitot Tube Assembly:	P7-01	Caliper ID: <u>CL02</u>
Performed by:	LS	
Pitot tube assembly level?	X yes	no
Pitot tube openings damaged?	yes (expla	ain below) X no
	$\beta_1 = 0$	
$\alpha_2 = 1 ^{o} (< 10^{o})$	β ₂ = 1	°(<5°)
$\gamma = 1$ ^o $\theta =$	0 [°] A=	<u>1.25</u> in.
$\mathbf{z} = \mathbf{A} \sin \gamma = 0.0218$ in	n. <1/8 in. (	0.125 in.)
$\mathbf{w} = \mathbf{A} \sin \mathbf{\theta} = 0.0000$ in	n. <1/32 in.	(0.03125 in.)
$P_{A} = 0.625$ in.	$P_{B} = 0.625$	in.
$D_t = 0.5$ in.		(1.05 = and </= 1.50)</td
	$P_a = P_b =$	P
X = <u>0.75</u> (>0.75 in.)		een pitot and nozzle)
Y = 3.5 (>3.0 in.) Z = 1 (>0.75 in.)		
Z = 1 (>0.75 in.)	(Dist. between pite	or and stack inermocouple)
Does the pitot tube assembly me	et the Method 2 requ	uiremnets? X yes

If the Method 2 requirements are met then a coefficient of **0.84** is assigned to the pitot tube assembly being inspected.

no (explain below)

### Advanced Industrial Resources, Inc. Type-S Pitot Tube Assembly Inspection Data Sheet

Date:	3/29/2021		
Pitot Tube Assembly:	P4-04	Caliper ID:	CL02
Performed by:	LS	_	
Pitot tube assembly level?	X yes		no
Pitot tube openings damaged?	yes (expl	ain below) X	no
$\alpha_1 = 2 $ °(<10°)	$\beta_1 = 0$	°(<5°)	
$\alpha_2 = 2^{\circ} (<10^{\circ})$	$\beta_2 = 0$	°(<5°)	
$\gamma = 0$ ^o $\theta = $	0 [°] A=	<u>0.91</u> in.	
$z = A \sin \gamma = 0.0000$ in	n. <1/8 in. (	0.125 in.)	
$\mathbf{w} = \mathbf{A} \sin \mathbf{\theta} = 0.0000$ in	n. <1/32 in.	(0.03125 in.)	
$P_{A} = 0.460$ in.	$P_{B} = 0.460$	in.	
$D_t = 0.33$ in.	$P / D_t = 1.39394$		.50)
	$P_a = P_b =$	Р	
X = 1.19 (>0.75 in.)		een pitot and nozzle)	
Y = 4.25 (>3.0 in.)	,		0
Z = 1.2 (>0.75 in.)	(Dist. between pit	ot and stack thermoc	ouple)
Does the pitot tube assembly me	eet the Method 2 requ	iremnets? X	
			no (explain below)

If the Method 2 requirements are met then a coefficient of **0.84** is assigned to the pitot tube assembly being inspected.

**APPENDIX C** 

LABORATORY ANALYTICAL REPORT





#### **Air Toxics**

4/6/2021 Mr. Robert DeMott Ramboll Environ 10150 Highland Manor Drive Suite 440 Tampa FL 33610

Project Name: K&S Bard Project #: Workorder #: 2103803

Dear Mr. Robert DeMott

The following report includes the data for the above referenced project for sample(s) received on 3/30/2021 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by Modified TO-15 SIM are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whittaker

Brian Whittaker Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630



**Air Toxics** 

#### WORK ORDER #: 2103803

#### Work Order Summary

CLIENT:	Mr. Robert DeMott Ramboll 10150 Highland Manor Drive Suite 440 Tampa, FL 33610	BILL TO:	Accounts Payable Ramboll 10150 Highland Manor Drive Suite 440 Tampa, FL 33610
PHONE:	813-628-4325	<b>P.O.</b> #	1690014483
FAX:	813-628-4983	PROJECT #	K&S Bard
DATE RECEIVED: DATE COMPLETED:	03/30/2021 04/06/2021	CONTACT:	Brian Whittaker

			KECEIF I	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	<b>PRESSURE</b>
01A	SYS2-STACK 20210326	Modified TO-15 SIM	7.5 "Hg	2 psi
01AA	SYS2-STACK 20210326 Lab Duplicate	Modified TO-15 SIM	7.5 "Hg	2 psi
02A	SYS2-STACK DUP 20210326	Modified TO-15 SIM	8.5 "Hg	2 psi
03A	SYS1-STACK 20210326	Modified TO-15 SIM	7.0 "Hg	2 psi
04A	SYS1-STACK DUP 20210326	Modified TO-15 SIM	10.0 "Hg	2 psi
05A	2BF-1 20210326	Modified TO-15 SIM	24.5 "Hg	2 psi
06A	2BF-2 20210326	Modified TO-15 SIM	9.5 "Hg	2 psi
07A	2BF-3 20210326	Modified TO-15 SIM	21.5 "Hg	2 psi
08A	2BF-4 20210326	Modified TO-15 SIM	8.5 "Hg	2 psi
09A	2BF-5 20210326	Modified TO-15 SIM	9.0" Hg	2 psi
10A	2BF-6 20210326	Modified TO-15 SIM	9.5 "Hg	2 psi
11A	SYS1-IN 20210326	Modified TO-15 SIM	8.5 "Hg	2 psi
12A	2BF-1R 20210326	Modified TO-15 SIM	12.0 "Hg	2 psi
13A	Lab Blank	Modified TO-15 SIM	NA	NA
13B	Lab Blank	Modified TO-15 SIM	NA	NA
14A	CCV	Modified TO-15 SIM	NA	NA
14B	CCV	Modified TO-15 SIM	NA	NA
15A	LCS	Modified TO-15 SIM	NA	NA
15AA	LCSD	Modified TO-15 SIM	NA	NA
15B	LCS	Modified TO-15 SIM	NA	NA
15BB	LCSD	Modified TO-15 SIM	NA	NA

CERTIFIED BY:

layes 110

DATE: 04/06/21

RECEIPT

FINAL

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209220, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-20-16, UT NELAP – CA009332020-12, VA NELAP - 10615, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-014, Effective date: 10/18/2020, Expiration date: 10/17/2021. Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 351-8279



**Air Toxics** 

#### LABORATORY NARRATIVE EPA TO-15 Ethylene oxide (SIM) Ramboll Environ Workorder# 2103803

Twelve 6 Liter Summa Canister (EO) samples were received on March 30, 2021. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the SIM acquisition mode for the measurement of Ethylene oxide in ambient air.

#### **Receiving Notes**

There was a difference (greater than or equal to 5.0" Hg) between the measured canister receipt vacuum and that which was reported on the Chain of Custody (COC) for sample SYS2-STACK DUP 20210326. A leak test indicated that the valve was functioning properly.

Samples 2BF-1 20210326 and 2BF-3 20210326 were received with significant vacuum remaining in the canister. The residual canister vacuum resulted in elevated reporting limits.

#### **Analytical Notes**

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. The canisters used for this project have been certified to half the Reporting Limit for Ethylene Oxide. Concentrations that are below the level at which the canister was certified may be false positives.

Dilution was performed on samples 2BF-1 20210326, 2BF-2 20210326, 2BF-3 20210326, 2BF-4 20210326, 2BF-5 20210326, 2BF-6 20210326, SYS1-IN 20210326 and 2BF-1R 20210326 due to the presence of high level target species.

#### **Definition of Data Qualifying Flags**

Nine qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J - Estimated value.

S - Saturated peak.

Q - Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

CN - See Case Narrative

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

**Air Toxics** 

### MODIFIED EPA METHOD TO-15 GC/MS SIM

K&S Bard

Client ID: Lab ID: Date/Time Collected: Media:	SYS2-STACK 20210326 2103803-01A 3/26/21 02:35 PM 6 Liter Summa Canister (EO)	Date/Time A Dilution Fac Instrument/F	tor:	3/31/21 05:44 PM 1.51 msd19.i / 19033110sim		
Compound	CA5#	MDL (ug/m3)	LOD (ug/m3	Rpt. Limit ) (ug/m3)	Amount (ug/m3)	
Compound Ethylene Oxide	CAS# 75-21-8	0.036	D	0.14	70	

#### MODIFIED EPA METHOD TO-15 GC/MS SIM

MODIFIED EPA METH K&S Bard	HOD TO-15 GC/MS SIM			Air Toxics
Client ID:	SYS2-STACK 20210326 Lab Duplicate			
Lab ID:	2103803-01AA	Date/Time Analyzed:	3/31/21 06:24 PM	
Date/Time Collected:	3/26/21 02:35 PM	Dilution Factor:	1.51	
Media:	6 Liter Summa Canister (EO)	Instrument/Filename:	msd19.i / 19033111sim	

		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
Ethylene Oxide	75-21-8	0.036	D	0.14	73

**Air Toxics** 

### MODIFIED EPA METHOD TO-15 GC/MS SIM

K&S Bard

Client ID: Lab ID: Date/Time Collected Media:	SYS2-STACK DUP 20210326 2103803-02A 1: 3/26/21 02:35 PM 6 Liter Summa Canister (EO)	Date/Time A Dilution Fac Instrument/F	tor: 1.5	31/21 03:08 PM 58 5d19.i / 19033106sim	
Compound	CAS#	MDL (ug/m3)	LOD (ug/m3)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethylene Oxide	75-21-8	0.037	D	0.14	79

# eurofins

**Air Toxics** 

### MODIFIED EPA METHOD TO-15 GC/MS SIM

K&S Bard

Client ID: Lab ID: Date/Time Collected Media:	SYS1-STACK 20210326 2103803-03A I: 3/26/21 02:35 PM 6 Liter Summa Canister (EO)	Date/Time A Dilution Fac Instrument/F	tor:	3/31/21 07:42 PM I.48 nsd19.i / 19033113sim	
Compound	CAS#	MDL (ug/m3)	LOD (ug/m3)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethylene Oxide	75-21-8	0.035	D	0.13	1.5

**Air Toxics** 

#### MODIFIED EPA METHOD TO-15 GC/MS SIM

K&S Bard

Client ID: Lab ID: Date/Time Collected Media:	SYS1-STACK DUP 20210326 2103803-04A : 3/26/21 02:35 PM 6 Liter Summa Canister (EO)	Date/Time A Dilution Fac Instrument/F	tor:	3/31/21 07:03 PM 1.70 msd19.i / 19033112sim	
Compound	CAS#	MDL (ug/m3)	LOD (ug/m3)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethylene Oxide	75-21-8	0.040	D	0.15	2.1

### MODIFIED EPA METHOD TO-15 GC/MS SIM

K&S Bard

**Air Toxics** 

Client ID:	2BF-1 20210326				
Lab ID:	2103803-05A	Date/Time A	nalyzed:	3/31/21 08:17 PM	
Date/Time Collected:	3/26/21 11:22 AM	Dilution Fact	tor:	99.1	
Media:	6 Liter Summa Canister (EO)	Instrument/F	ilename:	msd19.i / 19033114sim	
	、 <i>'</i>	MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	MDL (ug/m3)		Rpt. Limit	Amount (ug/m3)

#### MODIFIED EPA METHOD TO-15 GC/MS SIM

K&S Bard

**Air Toxics** 

Client ID: Lab ID: Date/Time Collected: Media:	2BF-2 20210326 2103803-06A 3/26/21 02:35 PM 6 Liter Summa Canister (EO)	Date/Time A Dilution Fact Instrument/F	tor:	3/31/21 08:53 PM 26.6 msd19.i / 19033115sim	
Compound	CAS#	MDL (ug/m3)	LOD (ug/m3)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethylene Oxide	75-21-8	0.63	D	2.4	3600

### MODIFIED EPA METHOD TO-15 GC/MS SIM

K&S Bard

**Air Toxics** 

Client ID: Lab ID: Date/Time Collected: Media:	2BF-3 20210326 2103803-07A 3/26/21 02:35 PM 6 Liter Summa Canister (EO)	Date/Time A Dilution Fac Instrument/F	tor:	3/31/21 09:28 PM 64.2 msd19.i / 19033116sim	
Compound	CAS#	MDL (ug/m3)	LOD (ug/m3	Rpt. Limit 3) (ug/m3)	Amount (ug/m3)
Ethylene Oxide	75-21-8	1.5	D	5.8	980

**Air Toxics** 

### MODIFIED EPA METHOD TO-15 GC/MS SIM

K&S Bard

Rae Bara					
Client ID:	2BF-4 20210326				
Lab ID:	2103803-08A	Date/Time A	nalyzed:	4/2/21 11:27 PM	
Date/Time Collected:	3/26/21 02:35 PM	Dilution Fac	tor:	45.7	
Media:	6 Liter Summa Canister (EO)	Instrument/F	ilename:	msd30.i / 30040220sim	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3	) (ug/m3)	(ug/m3)
Ethylene Oxide	75-21-8	0.85	D	4.1	6100

**Air Toxics** 

#### MODIFIED EPA METHOD TO-15 GC/MS SIM

K&S Bard

Client ID: Lab ID: Date/Time Collected: Media:	2BF-5 20210326 2103803-09A 3/26/21 02:35 PM 6 Liter Summa Canister (EO)	Date/Time A Dilution Fact Instrument/F	tor:	4/2/21 11:58 PM 46.7 msd30.i / 30040221sim	
Compound	CAS#	MDL (ug/m3)	LOD (ug/m3)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethylene Oxide	75-21-8	0.87	D	4.2	5300

### MODIFIED EPA METHOD TO-15 GC/MS SIM

K&S Bard

**Air Toxics** 

Client ID: Lab ID: Date/Time Collected: Media:	2BF-6 20210326 2103803-10A 3/26/21 02:35 PM 6 Liter Summa Canister (EO)	Date/Time A Dilution Fac Instrument/F	tor:	3/31/21 11:14 PM 26.6 msd19.i / 19033119sim	
Compound	CAS#	MDL (ug/m3)	LOD (ug/m3	Rpt. Limit	Amount (ug/m3)
Ethylene Oxide	75-21-8	0.63	D	2.4	2000

### MODIFIED EPA METHOD TO-15 GC/MS SIM

K&S Bard

Air Toxics

Client ID:	SYS1-IN 20210326				
Lab ID:	2103803-11A	Date/Time A	nalyzed:	3/31/21 11:49 PM	
Date/Time Collected	: 3/26/21 02:35 PM	Dilution Fac	tor:	25.4	
Media:	6 Liter Summa Canister (EO)	Instrument/F	Filename:	msd19.i / 19033120sim	
	( )				
		MDL	LOD		Amount
Compound	CAS#	MDL (ug/m3)	LOD (ug/m:	Rpt. Limit	Amount (ug/m3)

### MODIFIED EPA METHOD TO-15 GC/MS SIM

K&S Bard

### Air Toxics

Client ID: Lab ID: Date/Time Collected: Media:	2BF-1R 20210326 2103803-12A 3/26/21 02:35 PM 6 Liter Summa Canister (EO)	Date/Time An Dilution Fact Instrument/F	or:	4/1/21 12:25 AM 30.3 msd19.i / 19033121sim	
Compound	CAS#	MDL (ug/m3)	LOD (ug/m3)	Rpt. Limit ) (ug/m3)	Amount (ug/m3)
Ethylene Oxide	75-21-8	0.71	D	2.7	2300

### MODIFIED EPA METHOD TO-15 GC/MS SIM

K&S Bard

Air Toxics

Client ID:	Lab Blank					
Lab ID:	2103803-13A		Date/Time A	nalyzed:	3/31/21 11:44 AM	
Date/Time Collected: Media:	NA - Not Applicable NA - Not Applicable		Dilution Fact Instrument/F		1.00 msd19.i / 19033105sim	
			MDL	LOD	Rpt. Limit	Amount
Compound		CAS#	(ug/m3)	(ug/m	3) (ug/m3)	(ug/m3)
Ethylene Oxide		75-21-8	0.024	D	0.090	Not Detected

#### MODIFIED EPA METHOD TO-15 GC/MS SIM

K&S Bard

Air Toxics

Client ID:	Lab Blank				
Lab ID:	2103803-13B	Date/Time A	nalyzed: 4/2/2	21 12:58 PM	
Date/Time Collected:	NA - Not Applicable	Dilution Fac	tor: 1.00		
Media:	NA - Not Applicable	Instrument/F	Filename: msd3	30.i / 30040205sim	
	••				
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	MDL (ug/m3)	LOD (ug/m3)	Rpt. Limit (ug/m3)	Amount (ug/m3)

MODIFIED EPA METHOD TO-15 GC/MS SIM

### **Air Toxics**

Client ID:	CCV			
Lab ID:	2103803-14A	Date/Time Analyzed:	3/31/21 09:53 AM	
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00	
Media:	NA - Not Applicable	Instrument/Filename:	msd19.i / 19033102sim	

Compound	CAS#	%Recovery
Ethylene Oxide	75-21-8	105

MODIFIED EPA METHOD TO-15 GC/MS SIM

### **Air Toxics**

Client ID: Lab ID:	CCV 2103803-14B	Date/Time Analyzed:	4/2/21 11:16 AM	
		-		
Date/Time Collected:		Dilution Factor:	1.00	
Media:	NA - Not Applicable	Instrument/Filename:	msd30.i / 30040202sim	

Compound	CAS#	%Recovery
Ethylene Oxide	75-21-8	98

MODIFIED EPA METHOD TO-15 GC/MS SIM

**Air Toxics** 

Client ID:	LCS			
Lab ID:	2103803-15A	Date/Time Analyzed:	3/31/21 10:29 AM	
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00	
Media:	NA - Not Applicable	Instrument/Filename:	msd19.i / 19033103sim	

Compound	CAS#	%Recovery
Ethylene Oxide	75-21-8	105

D: Analyte not within the DoD scope of accreditation.

MODIFIED EPA METHOD TO-15 GC/MS SIM

**Air Toxics** 

Client ID:	LCSD			
Lab ID:	2103803-15AA	Date/Time Analyzed:	3/31/21 11:05 AM	
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00	
Media:	NA - Not Applicable	Instrument/Filename:	msd19.i / 19033104sim	

CAS#	%Recovery
75-21-8	100
	75 01 0

D: Analyte not within the DoD scope of accreditation.

MODIFIED EPA METHOD TO-15 GC/MS SIM

**Air Toxics** 

Client ID:	LCS			
Lab ID:	2103803-15B	Date/Time Analyzed:	4/2/21 11:50 AM	
Date/Time Collected	I: NA - Not Applicable	Dilution Factor:	1.00	
Media:	NA - Not Applicable	Instrument/Filename:	msd30.i / 30040203sim	

Compound	CAS#	%Recovery
Ethylene Oxide	75-21-8	95

D: Analyte not within the DoD scope of accreditation.

MODIFIED EPA METH K&S Bard	IOD TO-15 GC/MS SIM			Air Toxics
Client ID: Lab ID:	LCSD 2103803-15BB	Date/Time Analyzed:	4/2/21 12:23 PM	
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00	
Media:	NA - Not Applicable	Instrument/Filename:	msd30.i / 30040204sim	

Compound	CAS#	%Recovery
Ethylene Oxide	75-21-8	95

D: Analyte not within the DoD scope of accreditation.

Eurofins Air Toxics, Inc.	Title: Method/Instrument Testing			Release Date: 03/20/15	
	Form #: F2.29	Revision #: 0	Revision Date: 03/20/15	Page #: <b>1</b> of <b>2</b>	

Method: EO by TO-15 SIM – EVALUATION OF TEFLON FEP TUBING TO COLLECT EO STACK SAMPLES

Instrument ID: MSD-30

**TEST DESCRIPTION:** A 100 ppbv EO working standard (3018-1252) was prepared in a 6L canister from a NIST traceable 1.0 ppmv EO stock cylinder. The canister was analyzed in duplicate using a sampling rate of 25 ml/min on the Entech system (MSD30) for a total load volume of 400 mL on cart position 2. The 100 ppbv canister was then connected to cart position 2 with a 5ft segment of Teflon FEP tubing (1/4" OD, 3/16" ID). A pre-purge time of 1 minute was used to purge the dead volume of the tubing calculated to be ~25 mL prior to loading onto the Entech system at the 25 ml/min sampling rate. Two 400 mL runs through the tubing were analyzed.

The concentration of 100 ppbv was selected to approximate the expected concentration in the stack inlet test; the 25 ml/min sampling rate was selected to approximate the flow rate of sample collection (4 hour into a 6L canister); and the 5ft segment of tubing is the planned length to be used for collection.

Initials: HH Date:03-24-2020

Eurofins Air Toxics, Inc.	Title: Method/Instrument Testing			Release Date: 03/20/15	
	Form #: F2.29	Revision #: 0	Revision Date: 03/20/15	Page #: <b>2</b> of <b>2</b>	

#### TEST RESULTS:

Sample Description	Sample loading configuration	Run	n Data file Conc A (ppbv)		Ave Conc (ppbv)	I %RPD
100 ppbv EO Canister Standard	Direct 2 3	30032407sim	88	87	1 40/	
		2	30032408sim	86	8/	1.4%
		1	30032409sim	91	02	1 40/
	5 ft Teflon FEP tubing	2	30032410sim	92	92	1.4%
			%	Difference =	5.5%	
				%RPD =	5.3%	

- No indication of loss (permeability or adsorption) in tubing
- Minimal (~5%) difference between setups
- Repeatability (variability between replicates) robust < 1.5% RPD

Tester	Name (Please print): Diane Benton	Signature: Draine B-+-	Initials: DB	Date: 3/27/20
Reviewer	Name (Please print): Heidi Hayes	Signature:	Initials: HH	Date: 3/27/20

APPENDIX D SYSTEM 1 PROCESS LOG



### Sterilization Tracking Detail Browse - Tracking Detail Browse

JD Edwards

Open Applications	Sterilization Tracking Detail Browse - Tracking Detail Browse								Query	All Records		? X
Home	$\checkmark$ Q $\times$ $\equiv$ Row $$ Iools											
Tracking Detail Browse												
Recent Reports	-2											
Favorites	-	Records 1 8		-1								Customi
🛓 Manage Favorites		212817	1			a. × vo.					anna a sharan 160,160 ° a - a santar "Sara santa	· · · · · · · · · · · · · · · · · · ·
Sterilization Tracking Detail Browse		Tracking Number		Catalog/ iem #	Lot Serial Number	Quantity Received	Quantity Sterilized	EO Release Date	Pallet Number	Cycle Number	Sterilization Site	
Inventory	0	۲	212817 MG	C1820	REEY3835	1200.0000	1200	03/27/2021		1	7 CV	
FULL WORK ORDER	(	С	212817 MC	C1820	REEY3835	1200.0000	1200	03/27/2021		2	7 CV	
COMPLETION	- (	C	212817 MG	C1820	REEY3835	1200.0000	1200	03/27/2021		3	7 CV	
Pallet Tags - Spore Room	(	C	212817 MG	C1820	REEY3835	1200.0000	1200	03/27/2021		4	7 CV	
(CARDEX)	C	C	212817 M	C1820	REEY3835	1200.0000	1200	03/27/2021		5	7 CV	
Inventory		C	212817 MG	C1820	REEY3835	1200.0000	1200	03/27/2021		6	7 CV	
Transfer (IT) - Allow Negative		C	212817 MG	C1820	REEY3835	1200.0000	1200	03/27/2021		7	7 CV	
MANUFACTURING WORK	C	2	212817 MG	C1820	REEY3835	1035.0000	1035	03/27/2021		8	7 CV	
Sterilization Tracking Master		<										
Special Sterilization Browse PARTIAL COMPLETION Pallet Tags - MD			V	essel	5 to po Jo drum SA 3 Vent to post post door drum 3A	- = 9:0	Dar					
Movements and Disposition			C	Changed	drym SA	- 09:	35 AM					
Open Receipts Inquiry					Vent	- 1215	2					
Ledger Inquiry			V	169761	3 to posi	- Transfer	2 un	1				
Sterilization Inventory Tracking	-				ADD FT ADOF	340 11.	03 a	m				
			E	penee	postoco	1.14	~	1				
				Changed	drym 3A	- 11.4	0					

03/26/2021

TALIAN JOSEPH