

INITIAL DEMONSTRATION OF FUGITIVE EMISSIONS CONTROL SYSTEM PERFORMANCE

GLOBAL DISTRIBUTION CENTER

Becton, Dickinson and Company 14201 Lochridge Blvd. Covington, GA 30014

Ramboll US Corporation 1600 Parkwood Circle Suite 310 Atlanta, Georgia 30339

February 2021

TABLE OF CONTENTS

EXE	CUTIVE SUMMARY	1
1.	BACKGROUND	2
2.	TESTING ACTIVITES	3
3.	ANALYTICAL LABORATORY RESULTS AND PERFORMANCE ASSESMENT	4
4.	CONCLUSIONS	5

FIGURES

Figure 1: Site Location Map

TABLES

Table 1: System Airflow Rates

Table 2: System Ethylene Oxide Sample Results

Table 3: Performance Assessment

APPENDICES

Appendix A: Stack Testing Scope

Appendix B: Testing Subcontractor Final Report

Appendix C: Laboratory Analytical Report

EXECUTIVE SUMMARY

In fulfillment of obligations first set in a Consent Order with the Georgia Environmental Protection Division on October 28, 2019, amended on January 15, 2020, Becton, Dickinson and Company has installed a dry bed fugitive emission control system at its Covington, Georgia, Global Distribution Center facility for the reduction of potential emissions of ethylene oxide.

In accordance with the Test Plan, approved by EPD on December 16, 2020, the system has been tested to assess its performance and effectiveness. The testing has found that the emissions to the atmosphere of ethylene oxide from the system are consistent with the levels expected from the dry bed system outlet. The emission rate measured from the system outlet on December 31, 2020 was 123.8 pounds-per-year, if annualized over 8,760 hours.

It should be noted that this is the first known instance of applying emission controls for the reduction of potential fugitive emissions of ethylene oxide from a facility solely engaged in warehousing and distribution activities.

1. BACKGROUND

Becton, Dickinson and Company (BD) operates a medical products warehouse facility, referred to as the Global Distribution Center (GDC) at 14201 Lochridge Boulevard in Covington, Georgia (see **Figure 1**). BD uses the nearly 600,000 square foot warehouse facility to store products sterilized with ethylene oxide (EO) prior to distribution to medical facilities.

As a condition of a Consent Order with the Georgia Environmental Protection Division (EPD) dated October 28, 2019, BD has installed a system for the capture and control potential fugitive emissions of EO that may exist in the GDC. The new equipment includes three discrete systems comprised of 50 Advanced Air Technologies Model DR490 "Dry Bed Scrubbers." Details regarding the dry bed scrubber system were presented in the air permit application for its installation that was submitted to the EPD on October 31, 2019.

BD developed a test plan for the fugitive emissions control system. **Appendix A** provides the test plan methodology. The testing for the overall system was conducted on December 31, 2020. Both Ray Shen and Marcus Cureton from the EPD Stationary Source Compliance, Source Monitoring Unit were present to observe the testing activities.

2. TESTING ACTIVITES

The testing program for assessing the effectiveness of the dry bed fugitive emission control system for fugitive releases captured in the warehouse facility was based on two primary elements:

- 1. Measurement of the airflow rate at three zones of the inlet ducts (Zone 2, Zone 3, and Zone 5) to the dry bed system and the stack outlet utilizing EPA standard methods 1, 2, and 4; and,
- 2. Measurement of the concentration of EO in three zones of the inlet ducts and the outlet stack.

Measurement of the airflow rates was conducted by Advanced Industrial Resources (AIR) of Acworth, Georgia, a qualified stack testing contractor.

Ramboll personnel oversaw and coordinated the EO sample collection during the testing. Air samples were collected in 6-liter Summa canisters individually tested and certified by the analytical laboratory to be free of EO. The samples were analyzed for EO via EPA Method TO-15 modified to achieve sub-part-per-billion (ppb) detection limits for EO.

The Test Plan presented in **Appendix A** was followed for the flow measurement and sample collection. As outlined in the Test Plan, a duplicate sample was collected at the system stack outlet to allow for assessment of precision and repeatability of analyses. The original and duplicate samples were collected simultaneously over a 4-hour duration from two separate segments of tubing introduced side-by-side in the sampling port.

3. ANALYTICAL LABORATORY RESULTS AND PERFORMANCE ASSESMENT

The collected samples were transferred to Eurofins Air Toxics, LLC (Eurofins), an independent laboratory in Folsom, California, with recognized expertise with EO analytical methods, for analysis using a modified EPA Method TO-15 with gas chromatography and mass spectrophotometer (GC/MS) in the Selective Ion Monitoring (SIM) acquisition mode to obtain detection limits sufficiently low for use in testing the dry bed system performance.

A duplicate sample collected from the system stack outlet was analyzed upon receipt at the laboratory to demonstrate the repeatability and precision of the sampling and analytical method.

Table 1 presents the airflow rate and moisture results from the EPA Method 1, 2, and 4 tests performed by AIR. AIR's complete report is provided as **Appendix B. Table 2** presents the EO concentration results from Eurofins. The complete laboratory report is provided as **Appendix C,** including results from the quality control assessments described above.

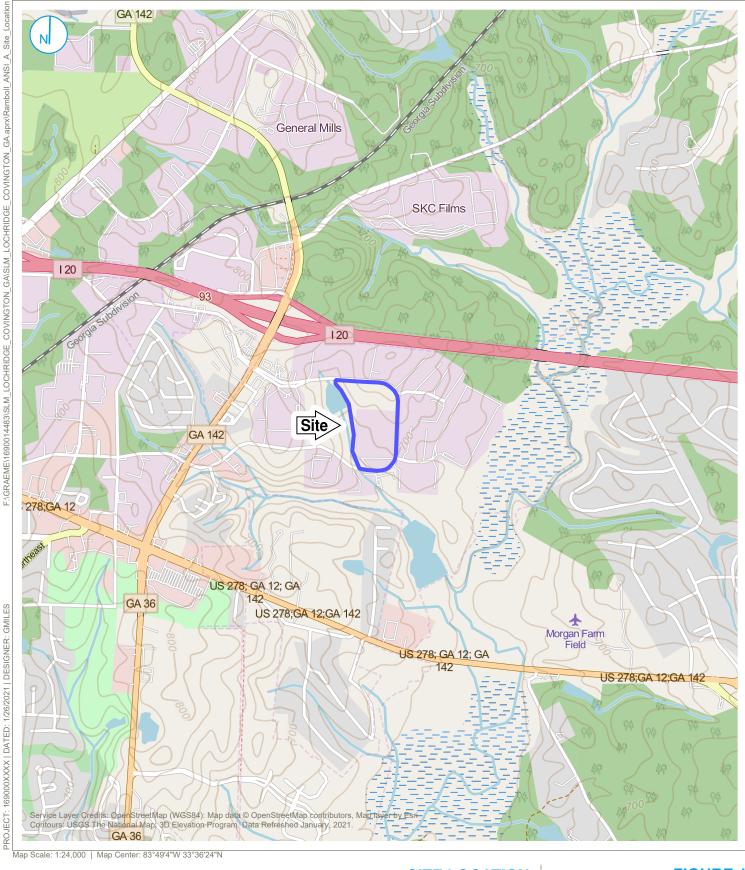
The testing and analytical work met quality assurance and quality control criteria set forth in the test plan. The measured EO concentrations in each sample were above the detection limits of the laboratory method – there were no "non-detect" results.

Table 3 combines the air flow and EO concentration data for an assessment of the performance of the dry bed fugitive emissions control system.

Performance Assessment

The dry bed fugitive emission control system at the GDC facility captures and treats fugitive EO releases from the warehouse where products sterilized with EO are stored prior to distribution to medical facilities. Total fugitive emission concentrations from three zones of the inlet ducts (Zone 2, Zone 3, and Zone 5) in the warehouse area ranged between 110 micrograms per cubic meter (μ g/m³) to 1,100 μ g/m³. The exhaust mass rate from the system stack was only 0.014 pounds per hour (lb/hour), or 123.8 pounds per year (lb/year) if annualized over 8,760 hours.

As shown in **Table 3**, the system is achieving a control device effectiveness of 92.95 percent reduction in fugitive ethylene oxide emissions from the warehouse facility.



4. **CONCLUSIONS**

The following conclusions can be drawn from this testing as an initial assessment of the performance of the dry bed fugitive emission control system at the GDC Covington facility:

- 1. Post-control-device emissions of EO from the system are 0.014 lb/hour.
- 2. The system is reducing EO emissions from the warehouse facility at a control device efficiency of 92.95 percent.
- 3. The Summa canister testing and analytical approach applied for this testing successfully allowed monitoring of EO concentrations that allowed calculation of control efficiency from the dry bed treatment systems and achieved all stability and precision objectives.

FIGURE

SITE LOCATION

FIGURE 1

1,000

_ Feet

rs

BD BARD GLOBAL DISTRIBUTION FACILITY 2,000

14201 LOCHRIDGE BOULEVARD COVINGTON, GEORGIA RAMBOLL US CONSULTING, INC.
A RAMBOLL COMPANY

TABLES

TABLE 1 System Air Flow Rates Becton, Dickinson and Company

General Distribution Center Covington, Georgia Facility

Sample ID	Pre-Test Flow Rate (dscfm) ission Control Syste	Pre-Test Average Temperature (°F) em Testing - Decem	Rate (dscfm)	Post-Test Average Temperature (°F)	Average Flow Rate (dscfm)	Average Temperature (°F)	
SYS-S2 20201231	Zone 2 Inlet	44,496	63	44,729	64	44,613	64
SYS-S3 20201231	Zone 3 Inlet	33,275	63	34,237	63	33,756	63
SYS-S5 20201231	Zone 5 Inlet	14,717	71	14,464	71	14,591	71
SYS-STACK 20201231	SYS1 Out	104,347	68	102,327	72	103,337	70

Notes: Notes In:

Pre and Post-Test average tempertures and airflow rates provided by Advanced Industrial Resources, Inc. (AIR).

dscfm - dry standard cubic feet per minute dscfm In - dry standard cubic feet per

TABLE 2 System Ethylene Oxide Sample Results Becton, Dickinson and Company General Distribution Center Covington, Georgia Facility

						Vacuum ¹		
Sample ID	Sample Location	Date	Start Time	Stop Time	Duration (hours)	Initial (In. Hg)	Final (In. Hg)	EO Concentration (μg/m³)
	Emission Control System Testing - December 31, 2020							
SYS-S2 20201231	Zone 2 Inlet	12/31/2020	9:52	13:52	4:00	28.0	8.3	210
SYS-S3 20201231	Zone 3 Inlet	12/31/2020	9:52	13:52	4:00	26.5	7.8	1100
SYS-S5 20201231	Zone 5 Inlet	12/31/2020	9:52	13:52	4:00	28.0	6.5	110
SYS-STACK 20201231 ²	SYS1 Out	12/31/2020	9:52	13:52	4:00	27.5	6.5	36.5

Notes:

In. Hg - inches of mercury

μg/m³ - micrograms per cubic meter

EO - Ethylene Oxide

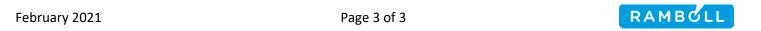
¹Vacuum readings recorded in the field from the regulator gauge.

 $^{^{2}}$ The listed EO concentration is the average of duplicate samples - SYS-STACK 20201231 (36 $\mu g/m^{3}$) & SYS-STACK DUP 20201231 (37 $\mu g/m^{3}$).

TABLE 3 Performance Assessment Becton, Dickinson and Company General Distribution Center Covington, Georgia Facility

	Sample	EO Concentration	Duct Flow	EO Rate						
Sample ID	Location (μg/m³) (dscfm)		(lb/hr)							
	Emission Control System Testing - December 31, 2020									
SYS-S2 20201231	Zone 2 Inlet	210	44,613	0.035						
SYS-S3 20201231	Zone 3 Inlet	1100	33,756	0.139						
SYS-S5 20201231	Zone 5 Inlet	110	14,591	0.006						
SYS-STACK 20201231	SYS1 Out	36.5	103,337	0.014						
	0.180									
	517.49									

Notes:


EO - Ethylene Oxide

μg/m³ - micrograms per cubic meter

dscfm - dry standard cubic feet per meter

lb/hr - pounds per hour

	System Testing
	December 31, 2020
Annual EO Input to Treatment System (lb/yr)	1579
Annual Post-Treatment Emissions (lb/yr)	123.8
Concentration-based percent removal	92.95
Mass-based percent removal	92.16

APPENDIX A STACK TESTING SCOPE

Test Plan

for the

Performance Testing of the Fugitive Emissions Control System

at

Becton, Dickinson and Company Global Distribution Center 14201 Lochridge Boulevard Covington, Georgia 30014

Proposed Test Date: 31 December 2020

Submitted By:

Becton, Dickinson and Company

Table of Contents

		Page
I.	Introduction	1
II.	Process and Control Equipment Description and Operating Conditions	1
III.	Dry Bed Validation Testing Plan	2
IV.	Plant Entry and Safety	3

I. Introduction

Becton Dickinson (BD) is providing this test plan for the fugitive emissions control system proposed in the air permit application for the BD General Distribution Center (GDC) facility. Upon completion of the system installations and placement into service, the following testing will be conducted, consistent with the outline provided in Attachment F to the air permit application submitted on February 14, 2020.

The system's control efficiency for ethylene oxide (EO) will be tested and demonstrated on a concentration basis by withdrawing exhaust air from the ductwork at the inlet and outlet side of a dry bed system into Summa canisters in accordance with EPA Method TO-15.

Testing is scheduled to be performed December 31, 2020 at the BD GDC facility in Covington, Georgia. The purpose of the testing is to determine removal efficiency of EO by the dry bed fugitive emissions control system.

The services of a reputable contractor will be obtained to conduct the required testing. Mr. John LaMontagne, of BD, and other BD personnel, will provide on-site coordination of the testing.

II. Process and Control Equipment Description and Operating Conditions

The equipment being tested is for the control of fugitive emissions of EO at an existing warehousing distribution center facility where products that have been sterilized with EO are stored.

Testing for this equipment is specific to the emission control systems being installed to capture and treat fugitive emissions of EO. The new equipment to be tested includes a system comprised of multiple Advanced Air Technologies Model DR490 "Dry Bed Scrubbers." The collection system will capture potential emissions from three main zones of the facility where sterilized products are stored.

III. <u>Dry Bed Validation Testing Plan</u>

Analytical Methods

The samples will be collected in Summa canisters and analyzed using EPA Method TO-15 with GC/MS in the Selective Ion Monitoring (SIM) acquisition mode to determine the concentration of EO. Analysis will be performed by Eurofins Air Toxics, an independent laboratory. Results will be reported in units of micrograms per cubic meter (ug/m^3).

To accommodate the conditions relating to canister placement, sampling probes will be connected using flexible tubing (Teflon FEP, 1/4" OD), with the length not to exceed 5 feet.

A duplicate sample will be collected at the discharge stack from the combined duct of the dry bed system and submitted to the laboratory to be analyzed to evaluate the precision and repeatability of sample collection.

Initial Efficiency Assessment

The initial performance testing will be performed during the commissioning phase of system installation as follows:

- Sample duration 4 hours.
- Three inlet sample locations from each of the three main ducts originating at three separate zones inside the facility.
- Outlet sample location at the discharge stack outside the facility.
- Samples will be collected at a single point within each corresponding stack or duct.
- Outlet stack airflow rate and moisture will be measured simultaneously by EPA Methods 1, 2, and 4.
- Velocity traverses of the inlet ducts will be performed periodically during the testing.

Control efficiency will be calculated based on the reduction in concentration of EO across the dry beds. Mass emission rate of EO (lb/hr) will be determined using the measured outlet concentration and airflow rate.

IV. Plant Entry and Safety

General safety rules must be adhered to when inside the GDC facility. Visitors must first sign in at the reception area at 14201 Lochridge Boulevard prior to admission to the GDC.

Entry to the GDC is restricted. John LaMontagne is responsible for this project. He can be reached at (770) 784-6186 (work) or (770) 652-2049 (cell).

APPENDIX B TESTING SUBCONTRACTOR FINAL REPORT

DRY BED SYSTEM INITIAL DEMONSTRATION AT BECTON, DICKINSON AND COMPANY GLOBAL DISTRIBUTION CENTER PROJECT ID: KR-10629

PREPARED FOR:

BECTON, DICKINSON AND COMPANY 14201 LOCHRIDGE BLVD COVINGTON, GA 30014

PREPARED BY:

ADVANCED INDUSTRIAL RESOURCES, INC. 3407 NOVIS POINTE
ACWORTH, GEORGIA 30101

TEST DATE: DECEMBER 31, 2020

TABLE OF CONTENTS

<u>1.0</u>	INTRODUCTION	1
1 1	SUMMARY OF TEST PROGRAM	1
	KEY PERSONNEL	1
		_
2.0	PLANT AND SAMPLING LOCATION DESCRIPTIONS	2
2.1	PROCESS DESCRIPTION AND OPERATION	2
	SAMPLING LOCATIONS	2
<u>3.0</u>	SUMMARY AND DISCUSSION OF TEST RESULTS	4
3.1	OBJECTIVES	4
	FIELD TEST CHANGES AND PROBLEMS	4
3.3	PRESENTATION OF RATA TEST RESULTS	4
4.0	SAMPLING AND ANALYTICAL PROCEDURES	5
	SINIA BIN (G III (B III (III I II (G C III C C	
<u>5.0</u>	QUALITY ASSURANCE ACTIVITIES	6
	INTERNAL QUALITY ASSURANCE	6
	1 SAMPLING TRAIN LEAK CHECKS	6
	2 PROBE NOZZLE DIAMETER CHECKS	7
	3 PITOT TUBE FACE PLANE ALIGNMENT CHECK	7
5.1.4		7
	5 TEMPERATURE GAUGE CALIBRATION	7
3.1.0	6 DATA REDUCTION CHECKS	8
6.0	DATA QUALITY OBJECTIVES	9

LIST OF APPENDICES

APPENDIX A TEST RESULTS

APPENDIX B EXAMPLE CALCULATIONS AND NOMENCLATURE

APPENDIX C FIELD DATA

APPENDIX D CALIBRATION DATA

Test Date: December 31, 2020 Page 1 of 9

1.0 INTRODUCTION

1.1 SUMMARY OF TEST PROGRAM

Becton, Dickinson and Company (BD) operates a medical products warehouse facility (Global Distribution Center (GDC)) located at 14201 Lochridge Blvd, Covington, GA 30014. Products already sterilized with ethylene oxide (EO) gas are shipped to this facility from various sterilization plants in preparation for distribution to medical facilities. The warehouse recently installed three (3) dry bed systems designed to control fugitive ethylene oxide emissions from the interior of the facility.

A performance test of the dry bed systems was conducted on December 31st, 2020 by Ramboll US Consulting, Inc. (Ramboll) and Advanced Industrial Resources, Inc. (AIR) in accordance with approved USEPA Methods (i.e., 40 CFR 60 Appendix A, Methods 1, 2, 4, and 18). The purpose of the performance test was to establish the newly installed control systems' ethylene oxide removal efficiencies. Testing was conducted by quantifying the inlet loading of ethylene oxide to the dry bed systems and simultaneously quantifying the emission rate of ethylene oxide at the outlet of the respective dry bed systems. U.S. EPA Methods 1, 2, 4, and 18 were used to conduct testing

1.2 KEY PERSONNEL

The key personnel who coordinated the test program and their telephone numbers are:

Keith A. Cole, P.E., Ramboll, Sr. Managing Consultant	678-388-1648
Derek Stephens, AIR, VP/QA Director	404-843-2100
Stephen Wilson, AIR, Chief Operations Officer	404-403-6079
Scott Wilson, AIR, Program Director	800-224-5007

Test Date: December 31, 2020 Page 2 of 9

2.0 PLANT AND SAMPLING LOCATION DESCRIPTIONS

2.1 PROCESS & CONTROL EQUIPMENT DESCRIPTION

BD operates a medical products warehouse facility in Covington, Georgia. Products already sterilized with ethylene oxide (EO) gas are shipped to this facility from various sterilization plants in preparation for distribution to medical facilities around the country. The warehouse recently installed three (3) dry bed systems designed to control fugitive ethylene oxide emissions from the interior of the facility.

2.2 SAMPLING LOCATION

Each sampling location has a circular cross section with at least two (2) sampling ports oriented 90 degrees from one another. The sampling locations are located at least two (2) equivalent diameters downstream from the nearest upstream flow disturbance and at least one-half (0.5) equivalent diameters upstream from the nearest downstream flow disturbance. In accordance with EPA Method 1, a minimum of sixteen (16) total traverse points (\geq 8 per port) were used to measure velocities within the respective ducts via EPA Method 2. The centroids of the respective ducts were used to collect the ethylene oxide samples. The following table summarizes the sampling location diameters, up- and down-stream flow disturbance distances, and quantity of traverse points used to conduct Method 2 velocity measurements.

Test Date: December 31, 2020

Page 3 of 9

3.0 SUMMARY AND DISCUSSION OF TEST RESULTS

3.1 OBJECTIVES

The purpose of the initial performance test was to establish the newly installed control systems' EO removal efficiencies. Testing was conducted by quantifying the inlet loading of ethylene oxide to three separate dry bed systems and simultaneously quantifying the emission rate of ethylene oxide at the collective outlet of the combined system.

3.2 FIELD TEST CHANGES AND PROBLEMS

No problems were encountered during testing that required deviation from the planned test protocol.

3.3 PRESENTATION OF TEST RESULTS

Volumetric flow rates and associated data are presented in Appendix A. Actual raw field data sheets are presented in Appendix C.

4.0 SAMPLING AND ANALYTICAL PROCEDURES

Testing was performed in accordance with 40 CFR 60 Appendix A. Specifically:

- EPA Method 1 was used for the qualification of the location of sampling ports and for the determination of the number and positions of stack traverse points, as applicable to sample traverses for EPA Method 2.

Test Date: December 31, 2020

Page 5 of 9

- EPA Method 2 was employed for the determination of the stack gas velocity and volumetric flow rate during sampling using Type "S" Pitot tubes. EPA Method 2 was conducted prior to and at the conclusion of the single ethylene oxide sample period and the average of the two (2) traverses, per sample location, were used to determine the volumetric flow rate used for calculating the mass rate (lb/hr) of ethylene oxide. The pre- and post-test velocity traverses for each sample location varied by less than 10%.
- EPA Method 3 was used for the calculation of the density and dry molecular weight of the effluent stack gas. The gas streams were assumed to be at ambient conditions (20.9% O2, 0.0% CO2).
- EPA Method 4 was employed for the determination of the stack gas moisture content of the respective system exhaust stacks. A single test run was conducted on each stack which lasted the duration of the test run (240 min.). Wet bulb/dry bulb measurements were conducted on the inlet ducts to determine moisture content.

5.0 QUALITY ASSURANCE ACTIVITIES

5.1 INTERNAL QUALITY ASSURANCE

The quality assurance/quality control (QA/QC) measures associated with the sampling and analysis procedures given in the noted EPA reference methodologies, in Subparts A of 40 *CFR* 60 and 40 *CFR* 63, and in the *EPA QA/QC Handbook*, Volume III (EPA 600/R-94/038c) were employed, as applicable. Such measures include, but are not limited to, the procedures detailed below.

Test Date: December 31, 2020

Page 6 of 9

5.1.1 SAMPLING TRAIN LEAK CHECKS

Determinations of the leakage rate of the Method 4 sampling trains were made before and after each sampling run using the procedure detailed in Section 8.13.2 of EPA Method 4. Before the sampling run, after the sampling trains had been assembled and probe and filter box temperatures had time enough to settle at their appropriate operating values, the probe inlet was plugged and the system was evacuated to a pressure of 15 inches of Hg below ambient pressure. The volumetric leakage rate was be measured by the dry gas meter over the course of one (1) minute. The leakage rate was less than 0.020 cfm for each run, thereby meeting the maximum allowable leakage rate.

After the sampling run, before the train was disassembled the probe inlet was plugged and the system depressurized to a vacuum equal to or greater than the maximum value reached during the sampling run. The dry gas meter measured the volumetric leakage rate over the course of one (1) minute. The leakage rate was determined to be less than 0.020 cfm, thereby meeting the maximum allowable leakage rate.

The Type "S" Pitot tube assemblies were also checked for leaks before and after sampling runs using the procedure in Section 8.1 of EPA Method 2. The impact opening of the Pitot tubes were blown through until a pressure of at least 3 inches of water registered on the manometer. The impact opening was quickly plugged and held for at least 15 seconds, during which time the manometer reading held. The same operation was performed on the static pressure side of the Pitot tubes, except suction was used to obtain the pressure differential.

5.1.2 PROBE NOZZLE DIAMETER CHECKS

No probe nozzles were used during this test program.

5.1.3 PITOT TUBE FACE PLANE ALIGNMENT CHECK

Before field testing, each Type S Pitot tube was examined in order to verify that the face planes of the tube were properly aligned, per Method 2 of 40 *CFR* 60, Appendix A. The external tubing diameter and base-to-face plane distances were measured in order to verify the use of 0.84 as the baseline (isolated) Pitot coefficient. At that time the entire probe assembly (i.e., the sampling probe, nozzle, thermocouple, and Pitot tube) was inspected in order to verify that its components met the interference-free alignment specifications given in EPA Method 2. Because the specifications were met, then the baseline Pitot coefficient was used for the entire probe assembly.

After field testing, the face plane alignment of each Pitot tube was checked. No damage to the tube orifices was noted.

5.1.4 METERING SYSTEM CALIBRATION

Every three months each dry gas meter (DGM) console is calibrated at five orifice settings according to Method 5 of 40 *CFR* 60, Appendix A. From the calibration data, calculations of the values of Y_m and $\Delta H_{@}$ are made, and an average of each set of values is obtained. The limit of total variation of Y_m values is ± 0.02 , and the limit for $\Delta H_{@}$ values is ± 0.20 .

After field testing, the calibration of the DGM console was checked by performing three calibration runs at a single intermediate orifice setting that is representative of the range used during field-testing. Each DGM was within the limit of acceptable relative variation from Y_m of 5.0%.

5.1.5 TEMPERATURE GAUGE CALIBRATION

After field testing, the temperature measuring instruments on each sampling train was calibrated against standardized mercury-in-glass reference thermometers. Each indicated temperature was within the limit of acceptable variation between the absolute reference temperature and the absolute indicated temperature of 1.5%.

5.1.6 DATA REDUCTION CHECKS

AIR ran an independent check (using a validated computer program) of the calculations with predetermined data before the field test, and the AIR Team Leader conducted spot checks on-site to assure that data was being recorded accurately. After the test, AIR checked the data input to assure that the raw data had been transferred to the computer accurately. Flow rates, temperatures and moisture levels were relatively constant (variation <5%) during the three test runs, which indicates that data recording and Method 2 and 4 sampling and calculation errors are not likely.

6.0 DATA QUALITY OBJECTIVES

The data quality objectives (DQOs) process is generally a seven-step iterative planning approach to ensure development of sampling designs for data collection activities that support decision making. The seven steps are as follows: (1) defining the problem; (2) stating decisions and alternative actions; (3) identifying inputs into the decision; (4) defining the study boundaries; (5) defining statistical parameters, specifying action levels, and developing action logic; (6) specifying acceptable error limits; and (7) selecting resource-effective sampling and analysis plan to meet the performance criteria. The first five steps are primarily focused on identifying qualitative criteria such as the type of data needed and defining how the data will be used. The sixth step defines quantitative criteria and the seventh step is used to develop a data collection design. In regards to emissions sampling, these steps have already been identified for typical monitoring parameters.

Test Date: December 31, 2020

Page 9 of 9

Monitoring methods presented in 40 *CFR* 60 Appendix A indicate the following regarding DQOs: Adherence to the requirements of this method will enhance the quality of the data obtained from air pollutant sampling methods. At a minimum, each method provides the following types of information: summary of method; equipment and supplies; reagents and standards; sample collection, preservation, storage, and transportation; quality control; calibration and standardization; analytical procedures, data analysis and calculations; and alternative procedures. These test methods have been designed and tested according to DQOs for emissions testing and analysis.

APPENDIX A TEST RESULTS

Advanced Industrial Resources BD Bard - Covington, Georgia Flow Summary

Dry Bed System									
Inlets							Outlet		
Source	Pre	Post	Average	Units	Source	Pre	Post	Average	Units
Zone 2 Inlet	44,496	44,729	44,612	dscfm	Outlet	104,347	102,327	103,337	dscfm
Zone 3 Inlet	33,275	34,237	33,756	dscfm	Total	104,347	102,327	103,337	dscfm
Zone 5 Inlet	14,717	14,464	14,591	dscfm					
Total	92,488	93,430	92,959	dscfm					

APPENDIX B

EXAMPLE CALCULATIONS

AND

Nomenclature

EXAMPLE CALCULATIONS

NOMENCLATURE

Symbol	Units	Description							
Abs(x)	dimensionless	Absolute value of parameter x							
An	ft ²	Area of the nozzle							
As	ft ²	Area of the stack							
Bws	dimensionless	Volume proportion of water in the stack gas stream							
Cp	dimensionless	Type S pitot tube coefficient							
Canalyte	mg/dscm	Concentration of analyte in dry stack gas, standardized							
'Canalyte	gr./dscf	Concentration of analyte in dry stack gas, standardized							
'Canalyte	ppm	Concentration of analyte in dry stack gas, standardized							
CC	dimensionless	One-tailed 2.5% error confidence coefficient							
d	ppm	Arithmetic mean of differences							
di	ppm	Difference between individual CEM and reference							
		method concentration value							
Dn	inches	Internal diameter of the nozzle at the entrance orifice							
Ds	inches	Internal diameter of the stack at sampling location							
DE	percent	Destruction efficiency							
U H	inches H ₂ O	Average pressure differential across the meter orifice							
U H @	inches H ₂ O	Orifice pressure differential that corresponds to 0.75 cfm of air at 68 °F and 29.92 inches of Hg							
U p	inches H ₂ O	Velocity head of stack gas							
Eanalyte	lb./hour	Emission rate of analyte, time basis							
I	percent	Isokinetic sampling ratio expressed as percentage							
Kı	dimensionless	K-factor, ratio of DH to DP, ideal							
Kp	ft[(lb/lb-mol)(in. Hg)] ^{1/2} $s[(^{\circ}R)(in. H_2O)]^{1/2}$	Type S pitot tube constant, = 85.49							
Lp	cfm	Measured post-test leakage rate of the sampling train							
M_d	lb./lbmole	Molecular weight of gas at the DGM							
\mathbf{M}_{s}	lb./lbmole	Molecular weight of gas at the stack							

Nomenclature

Symbol	Units	Description
$\mathbf{M}_{\mathbf{w}}$	lb./lbmole	Molecular weight of water,
		= 18.0
Manalyte	mg	Mass of analyte in the sample
n	dimensionless	Number of data points
P	MMBtu	Fuel firing rate
P _{bar}	inches Hg	Barometric pressure at measurement site
Pinput	tons/hour	Process dry mass input rate
$\mathbf{p_g}$	inches H ₂ O	Gauge (static) pressure of stack gas
Pm	inches Hg	Absolute pressure of meter gases
$\mathbf{P}_{\mathbf{s}}$	inches Hg	Absolute pressure of stack gases
Pstd	inches Hg	Standard absolute pressure
		= 29.92
Qa	cfm	Volumetric flow rate of actual stack gas
Qsd	dscfm	Volumetric flow rate of dry stack gas, standardized
R	(in. Hg)(ft ³)	Ideal gas constant,
	(lb-mole)(°R)	= 21.85
RA	percent	Relative accuracy
RE	percent	Removal efficiency
RM	ppm	Average reference method concentration
$\mathbf{r}_{\mathbf{w}}$	lb/mL	Density of water,
		= 0.002201
ra	g/mL	Density of acetone,
		= 0.7899
Sd	dimensionless	Standard deviation
Tm	°R	Absolute temperature of dry gas meter
T_s	°R	Absolute temperature of stack gas
Tstd	°R	Standard absolute temperature,
		= 528
t _{0.975}	dimensionless	2.5 percent error t-value
t _m	°F	Temperature of DGM
ts	°F	Temperature of stack gas
"1	minutes	Total sampling time

NOMENCLATURE

Symbol	Units	Description							
V _{lc}	mL	Total volume of liquid collected							
V _m	dcf	Volume of gas sample as measured by the DGM							
V _{m(std)}	dscf	Volume of gas sample as measured by the DGM, standardized							
Vw(std)	scf	Volume of water vapor in the gas sample, standardized							
Vs	ft./sec	Velocity of stack gas							
Ym	dimensionless	DGM calibration coefficient							
Yc	dimensionless	DGM calibration check value							
Yw	dimensionless	Reference (wet) gas meter calibration coefficient							
% CO ₂	percent	Percent CO ₂ by volume, dry basis							
% O ₂	percent	Percent O ₂ by volume, dry basis							
% N ₂	percent	Percent N ₂ by volume, dry basis							

APPENDIX C

FIELD DATA

Advanced Industrial Resources Moisture Measurements & Calculations

Input va	ılues:	Run Number						
		outlet	Inlet 2	Inlet 3	Inlet 5			
T_{db}	F	68	63	63	71			
T_{wb}	F	54	52	52	60			
P_{g}	in H_20	0.71	0.00	0.00	1.30			
P_{bar}	in Hg	20.9	20.9	20.9	20.9			
O_2	%	20.9	20.9	20.9	20.9			
CO_2	%	0.0	0.0	0.0	0.0			
Calculat	ted values:							
P	in Hg	20.95	20.90	20.90	21.00			
MW_{air}	lb/mol	28.84	28.84	28.84	28.84			
p_{sat}	in Hg	0.42	0.39	0.39	0.52			
p	in Hg	0.31	0.31	0.31	0.44			
Н	lb H ₂ O/lb air	0.0094	0.0093	0.0093	0.0132			
\mathbf{B}_{ws}		0.015	0.015	0.015	0.021			

 $\underline{Note:}\ \%\ O_2$ and $\%\ CO_2$ are not important variables. Use 21% and 0% if values have not been measured.

Advanced Industrial Resources BD Bard - Covington, Georgia Moisture Measurements & Calculations Outlet

Measured values:

 Test Team:
 JL, LS

 EPA Methods:
 4

 Test Date:
 December 31, 2021

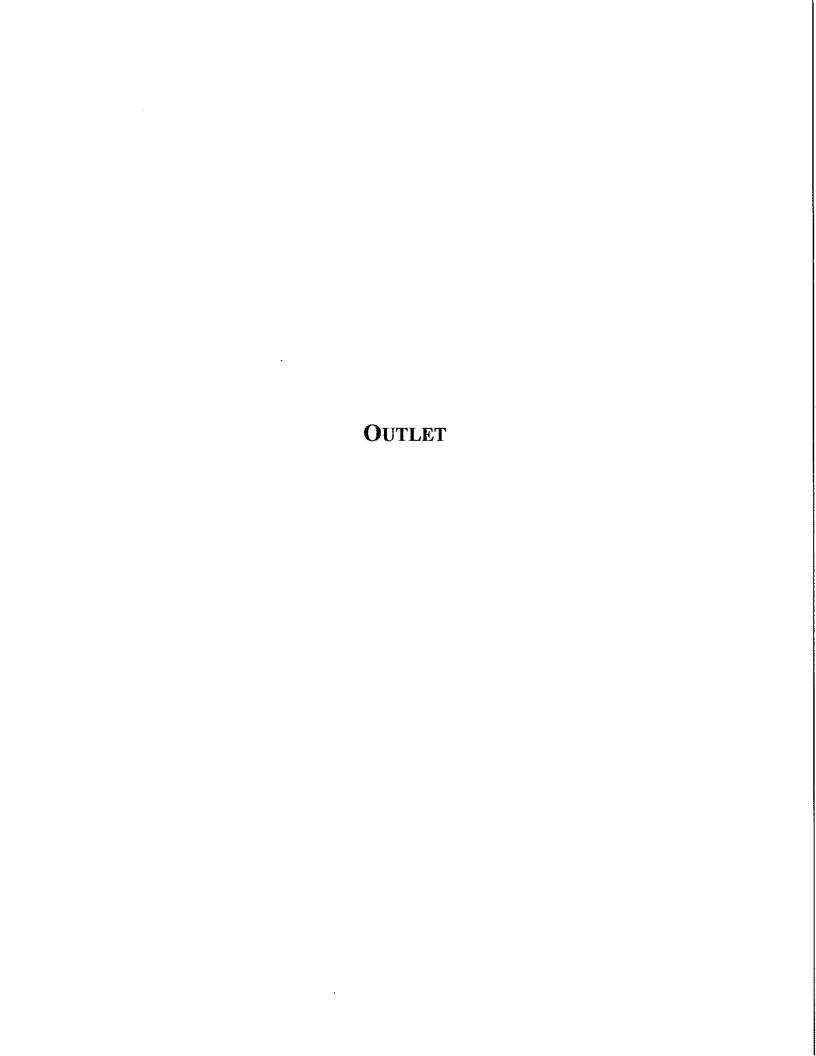
 Console ID:
 C-018

 $\begin{array}{c|c} \textbf{P}_{bar} \textbf{ (in. Hg):} & 29.45 \\ \textbf{p}_{g} \textbf{ (in. H}_{2}\textbf{O):} & 0.71 \\ \textbf{Y}_{m} & 1.029 \\ \hline \textbf{Probe Assembly ID:} \end{array}$

 Moisture Run
 Run #1

 Used for flow runs:
 1, 2 & 3

 Water recovery (ml):
 9


 Start
 0

 Stop
 172.795

 Sample volume (cf):
 172.795

 Meter temperature (F):
 63.0

Calculations:

BD Bard - Covington, Georgia Flow Measurements & Calculations

Outlet

Pre-Test

Test Team:	JL, LS
EPA Methods:	1,2
Test Date:	December 31, 2020
Console ID:	C-018
$\mathbf{Y}_{\mathbf{m}}$	1.029
Probe Assembly ID:	P7-02
Cp:	0.84

Measured values:	
D _s (in.):	75.00
P _{bar} (in. Hg):	29.95
p _g (in. H ₂ O):	0.71
O ₂ (%):	20.90
CO ₂ (%):	0.00
$B_{ws}(\%)$:	2.4
Test Time:	

Point	<mark>Др</mark> (" Н ₂ О)	$(\Delta p)^{1/2}$	t _s (°F)
1	1.50	1.225	68
2	1.55	1.245	69
3	1.40	1.183	68
4	1.40	1.183	69
5	1.20	1.095	68
6	1.10	1.049	68
7	0.88	0.938	69
8	0.86	0.927	69
9	0.84	0.917	68
10	0.84	0.917	67
11	0.82	0.906	67
12	0.81	0.900	68
13	1.40	1.183	68
14	1.55	1.245	67
15	1.45	1.204	67
16	1.20	1.095	68
17	1.00	1.000	68
18	0.90	0.949	69
19	0.87	0.933	69
20	0.85	0.922	68
21	0.86	0.927	67
22	0.84	0.917	67
23	0.83	0.911	67
24	0.80	0.894	68
Average	1.07	1.028	68

Calculations:

 $\textbf{Molar weight, M}_{s} = \qquad \textbf{28.58 lb/mol} \qquad = \{(\%O_2 \times 32) + (\%CO_2 \times 44) + (\%N_2 \times 28)\} \times (1 - B_{ws}/100) / 100 + B_{ws}/100*18$

Velocity, $\mathbf{v_s} = 57.91 \text{ ft/sec} = 85.49 C_p x (\Delta p)^{1/2} x \{ (t_s + 460)/(P_{bar} + p_g/13.6)/M_s \} \}^{1/2}$

Flow Rate, $Q_{s,ds} = 104,347 \text{ dscfm}$ = $v_s \pi D_s^2 / 4/144 \times 60 \times (t_{std} + 460) / (t_s + 460) \times (P_{bar} + p_g / 13.6) / 29.92 \times (1 - B_{ws} / 100)$

Flow Rate, $Q_{s,act} = 106,603 \text{ acfm}$ = $v_s \pi D_s^2 / 4/144 \times 60$

Flow Rate, $Q_{s,std} = 106,904 \text{ scfm}$ = $v_s \pi D_s^2 / 4/144 \times 60 \times (t_{std} + 460) / (t_s + 460) \times (P_{bar} + p_g / 13.6) / 29.92$

BD Bard - Covington, Georgia Flow Measurements & Calculations

Outlet

Post-Test

Test Team:	JL LS
EPA Methods:	1, 2, 3A & 4
Test Date:	December 31, 2020
Console ID:	C-018
$\mathbf{Y}_{\mathbf{m}}$	1.029
Probe Assembly ID:	P7-02
Cp:	0.84

Measured values:	
$\mathbf{D_{s}}$ (in.):	75.00
P _{bar} (in. Hg):	29.95
p _g (in. H ₂ O):	0.71
O ₂ (%):	20.90
CO ₂ (%):	0.00
B _{ws} (%):	2.4
Test Time:	

Point	Др (" H ₂ O)	(\Delta p) ^{1/2}	t _s (°F)
1	1.35	1.162	71
2	1.30	1.140	71
3	1.40	1.183	72
4	1.15	1.072	72
5	1.10	1.049	72
6	0.97	0.985	71
7	0.90	0.949	72
8	0.86	0.927	72
9	0.84	0.917	72
10	0.85	0.922	72
11	0.82	0.906	72
12	0.81	0.900	72
13	1.35	1.162	71
14	1.50	1.225	71
15	1.40	1.183	72
16	1.25	1.118	72
17	1.05	1.025	72
18	0.94	0.970	71
19	0.86	0.927	71
20	0.85	0.922	72
21	0.84	0.917	72
22	0.83	0.911	71
23	0.81	0.900	71
24	0.81	0.900	71
Average	1.04	1.011	72

Calculations:

 $\textbf{Molar weight, M}_{\text{s}} = \qquad \textbf{28.58 lb/mol} \qquad = \{(\%O_2 \ x \ 32) + (\%CO_2 \ x \ 44) + (\%N_2 \ x \ 28)\} \ x \ (1 - B_{ws}/100) / 100 + B_{ws}/100*18$

Velocity, v_s = 57.18 ft/sec =85.49C_p x $(\Delta p)^{1/2}$ x $\{(t_s+460)/(P_{bar}+p_g/13.6)/M_s)\}^{1/2}$

Flow Rate, $Q_{s,ds} = 102,327 \text{ dscfm}$ = $v_s \pi D_s^2 / 4/144 \times 60 \times (t_{std} + 460) / (t_s + 460) \times (P_{bar} + p_g / 13.6) / 29.92 \times (1 - B_{ws} / 100)$

Flow Rate, $Q_{s,act} = 105,257 \text{ acfm}$ = $V_s \pi D_s^2 / 4/144 \times 60$

Flow Rate, $Q_{s,std} = 104,834 \text{ scfm}$ = $v_s \pi D_s^2 / 4/144 \times 60 \times (t_{std} + 460) / (t_s + 460) \times (P_{bar} + p_g / 13.6) / 29.92$

Field Data Sheet

Point

	·		1.3	ciu Dai	a Shece					
Client:	Rambolly GDC			Test Date:		12/31/20				
Location:		nation, GA		_ (Console ID:		C-18			
Source:		tlet		- Υ _m / ΔΗ _@ :			29/1.683			
Test Team:	55			— Sampl	ing Box ID:					
EPA Methods:	1,7	<u></u>		Probe As	ssembly ID:	р	7-02		•	
D _s (in.):	75				D _n (in.):	•				
% O ₂				- As	sumed B _{ws} :	-				
% CO ₂	0				bar (in. Hg):	2	9.45			
Start Run:	09	15		_	g (in. H ₂ O):		J. 71			
End Run:	092		•		nutes/Point:			 .		
Run Number:	Pre-tes			_	K-Factor:					
Run I tumber .										-
	Inche	s H ₂ O			Temper	ature Read	ings (°F)			
Meter						Last		t _m	Filter	Vacuum
(def)	Δp	ΔН	ts	Probe	Filter Box	Impinger	· Inlet	Outlet	Exit (M5 or	(in, Hg)
(uci)						impinger	Intet	Outlet	CPM)	(m. ng)
	1.50		48							<u> </u>
	(,55		69	<u> </u>				- 		-
	1.40 1.40	<u> </u>	69		 			 		+
	1.20		69		1					+
	1.10		68					1		
	0.88		G8							
	0.86		69					-		\bot
	0,84 0,84		69 68		-					
	0.82		67	1					-	1
	0.8		68							
				Change	Ports					
	1.40		68		ļ					4
	1.55 1.45		67							+
	1.20		68	+						
	1.00		68							
	0.90		69							
	0.87		_69	<u> </u>						1
	0.88		67	+	1			 		++
	0.84		Gr		· · · · · · · · · · · · · · · · · · ·					+
	0.83		ĞΥ		· · · · · · · · · · · · · · · · · · ·					t
	0.80		68							
		Majatuwa	Callage d	·		Dua Dun I	ank Charles	(dat (2) (III.a)		
	Initial	Final	Collected (<u>g</u>)	Sam	rre-Run I Inling Line:	леак Спеска	(dcfm @ "Hg)		
Body:		THAT	1100	┪		pling Line: Pitot A:		/		
Silica Gel:						Pitot B:				
Gel Number:		Total:	<u> </u>					•		
					0	Post-Run I	Leak Checks	(dcfm @ "Hg)		
					San	ipling Line:		(a)	,	
Silica Gel De	sc. (initial):					Pitot A.		/		
Silica Gel D	esc. (final):			_					1	
Test Team Lead				_	Reagent 1:			Lot No:		
	teu Davianu		. 1		Doggont 2			Lot No.		→

Advanced Industrial Resources, Inc. Field Data Sheet

Clicut: Rambell - GDC Console ID: C-18 Co				110	nu Dai	а опесі					
Counciling Cou	Client:	Ramboll-GDC			Test Date:		12/3	12/31/20			
Source S	Location:			Console ID:							
Test Team: SS	Source:	Outlet			$Y_m / \Delta H_{@}$:	1.0	29 / 1.88	3			
D ₁ (in.):	Test Team:	59	<u> </u>			-					
% CO 2	EPA Methods:	1,2	Լ		Probe As	- •	Ь.	7-02			
Part (in. Fig. 19.5						•					
Start Run 1355					-						
End Run Post + test	% CO ₂				•						
Run Number:						~	0	.72			
Neter Ap					. Mir			-			
Meter (def)	Run Number:	Post-tes	s †			K-Factor:					
Ap		Inche	s H ₂ O			Tempera	ature Readi	ngs (°F)			
Clark Clar	Meter						Last		t _m		Vacuum
1.35	(dcf)	Δp	ΔН	t _s	Probe	Filter Box	Impinger	Inlet	Outlet	(M5 or	(in. Hg)
110		1.35									
1,15											1
1.10					 	<u> </u>			 	. 	1
O.90	V				İ						
0.86		0.97		71							
0.84					-				-		
0.85						1					
0.82						- 					1
1.35				72							
1,35		0.81		72	Ol	Dt-			<u> </u>		
1.50		1 26		T ~1	Change	Ports			<u> </u>		T = ==
						- 					
1.05		1,40									
O.94					ļ						<u> </u>
O . 85			 		 	<u> </u>					
O, 85						<u> </u>			-		†
Moisture Collected (g) Initial Final Net Sampling Line:		0.84			ļ <u>.</u>						
Moisture Collected (g) Initial Final Net Body:					1						
Moisture Collected (g) Initial Final Net Body:		0.81	 		1						-
Initial Final Net Sampling Line: @ Pitot A: Pitot B: Post-Run Leak Checks (dcfm @ "Hg) Sampling Line: @ Pitot A: Pitot A: Pitot A: Pitot A: Pitot A: Pitot B: Pitot B: Pitot			1	, ,,							
Silica Gel: 200.0 Pitot B: Gel Number: Post-Run Leak Checks (dcfm @ "Hg) Sampling Line: @ Pitot A: Pitot B: Silica Gel Desc. (initial): Pitot B:			1)	0	Pre-Run I	eak Checks	s (defm @ "Hg)		
Silica Gel: 200.0 Pitot B: Gel Number: Post-Run Leak Checks (dcfm @ "Hg) Sampling Line: @ Pitot A: Pitot B: Silica Gel Desc. (initial): Pitot B:	Dodu		Final_	Net	-	San	ipiing Line:		(a),	•	
Gel Number: Total: Post-Run Leak Checks (dcfm @ "Hg) Sampling Line: @ Pitot A: Pitot B: Silica Gel Desc. (final):					1				/	•	
Silica Gel Desc. (initial): Silica Gel Desc. (final): Silica Gel Desc. (final):			Total	:]					•	
Silica Gel Desc. (initial): Silica Gel Desc. (final):						0	Post-Run I	Leak Check	s (defm @ "Hg)		
Silica Gel Desc. (initial): Silica Gel Desc. (final):						San	ipiing Line: Pitot A		(a),		
Silica Gel Desc. (final):	Silica Gel De	esc. (initial)	•						/	•	
					_				•	•	
Data Entry Review: Reagent 2: Lot No:					-	Reagent 1:			Lot No:		
			: 12		_	_					

Point

10

12

Field Data Sheet

			X 10	na Dai	a Sheet					
Client:	Rami	ooll-GDC			Test Date:	12	1/31/20			
Location:	Covington, GA			Console ID:		C-18				
Source:	Outlet		•	$Y_m / \Delta H_{@}$:	1.0	29 / 1.88	<u></u>			
Test Team:	SS			Sampli	ing Box ID:	•				
EPA Methods:	1-4			Probe As	sembly ID:					
D _s (in.):	75			-	D, (in.):					
% O ₂				As	sumed B _{ws} :					
% CO ₂				P	_{bar} (in. Hg):	2	9.45			
Start Run:	095	3.		•	g (in. H ₂ O):		1.71			
End Run:	135				utes/Point:		0			
Run Number:	-			-	K-Factor:					
Tun I tun sort						······································			• • • • • • • • • • • • • • • • • • •	-1
	Inche	s H ₂ O			Tempera	ature Read		· · · · · · · · · · · · · · · · · · ·		
Meter						Last		t _m	Filter Exit	Vacuum
(dcf)	Δр	ΔН	t _s	Probe	Filter Box	Impinger	Inlet	Outlet	(M5 or CPM)	(in. Hg)
0.000		1.88		N/A	N/A	40	46	46	N/A	3
7.18	-	1		1 1	1	41	48	98 52	1	3
14.35						41	52	52		3
21.58						41	<u>55</u>	55		3
28.83				 		<u> ५</u>	57 59	57 59	 	3
36.04				 	+ +	43	61	61		3
50.44					 	43	GI	Gi		3
57.54						43	62	62		3
64.92						43	63	63	,	3
72.05				-	 	44	63	63		3
79.23		•		Change	Porte	<u> 44</u>	63	<u> </u>		3
86.40				L	1 0.13	५५	63	63	1	3
93.64					<u> </u>	니니	63	63		3
100.81						45	63	63		3
108.10						45	63	63	<u> </u>	3
115,23				 	+	45	GY	<u> </u>	 	3
122,41				 	- 	46 46	64 64	G4 G4	 	3
136.83				+ +	+ +	46	4	64		3
144.05				1.1		45	G4	64		3
161,24						45	GH	64		3
158.52				 	3014	45	C4	64		3
165.61		•		₩		45	GH	64	1	
172.795		Moisture	Collected (g	4		Pre-Run)	Leak Checks	(dcfm @ "Hg)	1	•
	Initial	Final	Net	Ť	San	pling Line:				
Body:	200	206	6]		Pitot A:		<u></u>	_	
Silica Gel:		203	3			Pitot B:		<u> </u>	.	
Gel Number:		Total:	9			Y 4 Y 1	t. Cl l	(1.5 G #H-)		
					San	Post-Run pling Line:		(dcfm @ "Hg)	J	
					Jan	Pitot A:		"	-	
Silica Gel De	sc. (initial):	Blue	,			Pitot B:		<u> </u>	-	
Silica Gel D	• •								-	
Test Team Lead					Reagent 1:			Lot No:		
	tru Review				Reagent 2			_ Lot No:		_

Point

End

Cyclonic Flow Absence Verification Field Data EPA Method 1

Client: _	Ramboll, GDC
Location:	Covington, GA
Source:	Outlet
Test Team:	SS
Probe ID:	P7-02
C _n :	0.84

t_m (°F):	60	
Console ID:	C-18	
Y _m :	1.029	
ΔH _@ : _	1.883	
Assumed B _{ws} :	—	
P _{bar} (in. Hg):	29,45	

Date:	12/31/20	
D _s (in.):	75	
A_s (ft ²):	30.68	
D _n (in.):		
$A_n(ft^2)$:		

Point	Δp	α
roint	(in. H ₂ O)	(degrees)
1	0.0	0
2	0.0	5
3	0.0	0
2 3 4 5 6	0.0	0 5 0 0 0 5 5 0 0
5	0.0	0
6	0.0	S
7	0.0	5
8	0.0	. 0
9	0.0	0
10	0.0	٥
11	0.0	0
12	0.0	5
C	hange Poi	rts
1	0.0	
	0.0	0 5 5 0
2 3 4 5	0.0	S
4	0.0	0
5	0.0	0
6	0.0	0
7	0.0	0
8	0.0	0
9	0.0	0 0 0 5 0
10	0.0	0
11	0.0	0
12	0.0	O

Test Team Leader Review:	
Data Entry Review:	

Source Description Sheets

Client:	Ramboll- GDC	Date:	12/31/20	
Location:	Covination, GA	Test Team:	Ss,	
Source:	Outlet			

D _n (in.):		
$A_n (ft^2)$:		
D _s (in.):	75	
$A_s(ft^2)$:	30,68	
Length A (in.):	576	
Length B (in.):	245	
•		
t _{amb} (°F):	50	
Assumed B _{ws} :	_	
P _{bar} (in. Hg):	29.45	
P _g (in. H ₂ O):	17.0	
% O ₂ :	21	
% CO ₂ :	0	
Console ID:	C-18	
Y:	1.029	
$\Delta H_{@}$:	1.883	

Assumed B _{ws} :		
P _{bar} (in. Hg):	29.45	
P _g (in. H ₂ O):	17.0	
% O ₂ :	21	
% CO ₂ :	0	
Console ID:	C-18	
Y:	1.029	
ΔH _@ :	1.883	
$\mathbf{C}_{\mathbf{p}}$:	0.84	,
K-Factor:		
	Sketch of Stac	k

 Sketch of	Stack	
	7	
 	T T	
 to to	Tr	
	R	
	li	
	1	

Test Team Leader Review:	
Data Entry Review:	

		· · · · · · · · · · · · · · · · · · ·
Point	Δр	t _s
	(in. H ₂ O)	(°F)
1	1.50	68
2	1.55	69
3	1.40	C8
4	1.40	69
5	1.20	69
6	1.10	68
7	0.88	68
8	0.86	69
9	0.84	७५
10	0,84	68
11	0.82	67
12	0.81	68
(Change Por	ts
1	1.40	68
2	1.55	67
3	1.45	67
4	1.20	68
5	1.00	68
6	0.90	69
7	0.87	69 68
8	0.85	68
9	0.80	5
10	0.84	67
11	0.83	67
12	0.80	68

ZONE 2
INLET

BD Bard - Covington, Georgia

Flow Measurements & Calculations

Zone 2 Inlet Pre-Test

Test Team:	GE/ RB	
EPA Methods:	1,2	
Test Date:	December 31, 2020	
Console ID:	C-02	
$\mathbf{Y_m}$	0.999	
Probe Assembly ID:	P7-01	
C	0.04	

Measured v	values:
$\mathbf{D}_{\mathbf{s}}$ (in.):	68.00
P _{bar} (in. Hg):	29.45
p_g (in. H_2O):	-2.60
O ₂ (%):	21.00
CO ₂ (%):	0.00
$\mathbf{B}_{\mathrm{ws}}(\%)$:	1.46
Test Time:	9:40

Point	Δp (" H ₂ O)	$(\Delta p)^{1/2}$	t _s (°F)
1	0.26	0.510	63
2	0.33	0.574	63
3	0.35	0.592	63
4	0.35	0.592	63
5	0.33	0.574	63
6	0.25	0.500	63
7	0.21	0.458	63
8	0.24	0.490	63
9	0.20	0.447	63
10	0.20	0.447	63
11	0.27	0.520	63
12	0.23	0.480	63
13	0.44	0.663	63
14	0.25	0.500	63
15	0.24	0.490	63
16	0.22	0.469	63
17	0.23	0.480	63
18	0.23	0.480	63
19	0.35	0.592	63
20	0.37	0.608	63
21	0.37	0.608	63
22	0.34	0.583	63
23	0.33	0.574	63
24	0.32	0.566	63
Average	0.29	0.533	63

Calculations:

 $= \{ (\%O_2 \times 32) + (\%CO_2 \times 44) + (\%N_2 \times 28) \} \times (1-B_{ws}/100) / 100 + B_{ws}/100*18$ $= 85.49C_p \times (\Delta p)^{1/2} \times \{ (t_s + 460) / (P_{bar} + p_g/13.6) / M_s) \}^{1/2}$ $= v_s \pi D_s^2 / 4/144 \times 60 \times (t_{std} + 460) / (t_s + 460) \times (P_{bar} + p_g/13.6) / 29.92 \times (1-B_{ws}/100)$ Molar weight, $M_s =$ 28.68 lb/mol

Velocity, $v_s =$ 30.23 ft/sec

Flow Rate, $Q_{s,ds} =$ 44,496 dscfm

Flow Rate, $Q_{s,act} =$ 45,739 acfm $=v_s\pi D_s^2/4/144 \times 60$

 $= v_s \pi D_s^2 / 4/144 \ x \ 60 \ x \ (t_{std} + 460) / (t_s + 460) \ x \ (P_{bar} + p_g / 13.6) / 29.92$ Flow Rate, $Q_{s,std} =$ 45,156 scfm

BD Bard - Covington, Georgia

Flow Measurements & Calculations

Zone 2 Inlet Post-Test

Measured values:

Test Team:	GE/ RB
EPA Methods:	1,2
Test Date:	December 31, 2020
Console ID:	C-002
$\mathbf{Y}_{\mathbf{m}}$	0.999
Probe Assembly ID:	P7-01
Ср:	0.84

	- tartaest
D_s (in.):	68.00
P_{bar} (in. Hg):	29.45
p_g (in. H_2O):	-2.60
O ₂ (%):	21.00
CO ₂ (%):	0.00
$B_{ws}(\%)$:	1.46
Test Time:	13:55

Point	Δp (" H ₂ O)	$(\Delta p)^{1/2}$	t _s (°F)
1	0.22	0.469	64
2	0.20	0.447	64
3	0.30	0.548	64
4	0.34	0.583	64
5	0.33	0.574	64
6	0.27	0.520	64
7	0.26	0.510	64
8	0.26	0.510	64
9	0.28	0.529	64
10	0.30	0.548	64
11	0.34	0.583	64
12	0.33	0.574	64
13	0.22	0.469	63
14	0.31	0.557	63
15	0.39	0.624	63
16	0.40	0.632	63
17	0.37	0.608	63
18	0.36	0.600	63
19	0.31	0.557	63
20	0.27	0.520	63
21	0.25	0.500	63
22	0.23	0.480	63
23	0.21	0.458	63
24	0.22	0.469	63
Average	0.29	0.536	64

Calculations:

 $\textbf{Molar weight, M}_{s} = \qquad \textbf{28.68 lb/mol} \qquad = \{ (\% \, O_2 \, x \, 32) + (\% \, CO_2 \, x \, 44) + (\% \, N_2 \, x \, 28) \} \, \, x \, \, (1 - B_{ws}/100) / 100 + B_{ws}/100*18$

Velocity, v_s = **30.41 ft/sec** = $85.49C_p \times (\Delta p)^{1/2} \times \{(t_s + 460)/(P_{bar} + p_g/13.6)/M_s)\}^{1/2}$

Flow Rate, $Q_{s,ds} = 44,729 \text{ dscfm}$ = $v_s \pi D_s^2 / 4/144 \times 60 \times (t_{std} + 460) / (t_s + 460) \times (P_{bar} + p_g / 13.6) / 29.92 \times (1 - B_{ws} / 100)$

Flow Rate, $Q_{s,act} = 46,022 \text{ acfm} = v_s \pi D_s^2 / 4/144 \times 60$

Flow Rate, $Q_{s,std} = 45,392 \text{ scfm}$ = $v_s \pi D_s^2 / 4 / 144 \times 60 \times (t_{std} + 460) / (t_s + 460) \times (P_{bar} + p_g / 13.6) / 29.92$

Advanced Industrial Resources Duct Velocity & Flow Calculation Sheet

		Client:	R.L		GO	<u> </u>	Measure	d values:			
		Location:	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	lation	-	. L	D _s (in.):		3		
		Source:	≲∨≲	ten	2		(in. Hg):		45		
		Test Team:	<u>GE</u>	/RB	·		in. H ₂ O):			•	
		EPA Methods:					t _{amb} (°F)	6	<u>3 </u>	•	
		Test Date:		1-202	<u>20</u>	Assumed					
		Console ID:		<u> </u>	···	_	O ₂ (%):			_	
		$Y_m / \Delta H_{@}$:		<u> 1999/</u>	<u>1.594</u>	-	CO ₂ (%):				
		Probe Assembly ID:		7-01		-	re-Time:		40	•	
		Cp:		.84		_ Po	ost-Time:	<u> 13 ! '</u>	55		
			D=	P	re	Po	st	Aver	age	a a	
			Traverse		t _s	Δр	t _s	Δр	t _s	Can	GL1220
			Point	(" H ₂ O)	(°F)	(" H ₂ O)	(°F)	(" H ₂ O)	(°F)		
			1	0.26	63	0.22	64			[]	28.5
			2	0.33	63	0.28	<u>, y </u>			10:27	76.0
			3	0.35	63	0.30	(4)			10:53	23.5
			5	0.33	63	0.34	<u> </u>			11:23	- 21.0
		. \	6	0.75	43	0.17	4			11:52.	- 10 0
ĺ	•	510	7	0.21	63	0.26	124			12:20.	- 10.0
(ast 1	8	0.24	63	0.24	67			(
		•	9	0.20	63	0.23	44			12:52	. 13.0
			10	0.20	63	0.30	44			13:21 -	1/ 0
			11	0.27	63	0.34	64			13-21	11.0
		•	12	0.23	63	0.33	103			13:52	275
			14	0.44	63	0.22	(03	 		1775	0.00
			15	0.24	63	0.39	1.7			1	
		note	16	0.22	63	0,40	63			1	
		49,1	17	6.23	63	0.37	Ų3]	
		Der .	18	0.23	63	0.34	63				
		124	19	0.35	63	0.31	<u> 43</u>				
_	Yre	1031	20	0.37	63	0.27	63]	
PATA	ok	OK	21 22	0.34	63	0.25	(3			1	
		-	23	0.33	63	0.23	(03 (03	1		-	
Bytot 12	ok	ok	24	0.32	63	0.22	63				
· ·	•	1	Average]	
								-144		_	
		Calculations									

Calculations:

Molar weight, Ms =

lb/mol

={(% $O_2 \times 32$)+(% $CO_2 \times 44$)+(% $N_2 \times 28$)} x (1- B_w /100))/100+ B_w /100*18

Velocity, $v_s =$

ft/sec

=85.49 $C_p x (\Delta p)^{1/2} x \{(t_s+460)/(P_{bat}+p_g/13.6)/M_s)\}^{1/2}$

Flow Rate, Q_{s,ds} =

 $dscfm = v_s \pi D_s^2 / 4 / 144 \times 60 \times (t_{sch} + 460) / (t_s + 460) \times (P_{bar} + p_g / 13.6) / 29.92$

Flow Rate, Q_{s,act} = acfm $=v_s\pi D_s^2/4/144 \times 60$

Test Team Leader Review: Data Entry Review: WET BUR 52

Cyclonic Flow Absence Verification Field Data EPA Method 1

Client: Lando//-	(1)VC
Location: Covingto	~ GA
Source: System 2	
Test Team: <u>'GE SU</u>	<u>J</u>
Probe ID: P1.01	
Cp: 0.84	
(c) t _m (cF):	02
Console ID:	02
Y _m :	999
ΔH _@ :	594
Assumed B _{ws} :	16/0
Ps (in. Hg): 7	9.45

Date:	12-	3/-	2020
D _s (in.):		18	
$A_s(ft^2)$:	25	22	<u> </u>
D _n (in.):			
A_n (ft ²):			

	Δр	α
Point		(degrees)
1	0.0	2
2	0.0	2
3	0.0	2
4	0.0	0
5	0.0	0
5 6 7	0.0	2 2 0 0 0 0 0 0 0
7	0.0	0
8	0.0	0
9	0.0	0
10	0.0	0
11	0.0	0
12	0.0	0
	hange Po	rts
1	0.0	0
3	0.0	0
3	0.0	0
4	0.0	0
5 6	0.0	0
	0.0	2
7	0.0	0
8	0.0	0
9	0.0	0 0 0 0 0 0 0 0 0
. 10	0.0	0
11	0.0	0
12	0.0	0

Test Team Leader Review:	
Data Entry Review:	

Client: Ramboll GDC Date:
Location: Covington GA Test Team:
Source: System 2

Date: ___ Test Team: ___

	1	
D _n (in.):	NA	
A_n (ft ²):	MA	
D _s (in.):	68	
$A_s(ft^2)$:	25. 22	
th A (in.):	48	

Lengt Length B (in.):

t _{amb} (°F):_	63	
Assumed B _{ws} :	17.	
P _{bar} (in. Hg):	29.45	
P _g (in. H ₂ O):	-2.6	
% O ₂ :	21	
% CO ₂ :	0	
Console ID:	C-02	
Y:	0.999	
ΔH _@ :	1.594	
C_p :	0.84	
K-Eactor	K/A	

Doint	Δр	t _s
Point	(in. H ₂ O)	
1	0.26	63
2		63 63 63
3	0.33	63
4	0.35	63 63 63
5	0.33	6 2
6	0.33	63
.7	0.21 0.24 0.20 0.20 0.20 0.20	63
8	0.24	63
9	0.20	63
10	0.20	63
11	0.20	63 63 63 63
12	0.27	63
(Change Por	ts
1	0.23 0.34 0.25 0.24 0.25	63
2	0.34	
3	0.25	63
4	0.24	63
5	0.25	63
6	0.24	63
7	0. 23	63
8	0.37	63
9	0.37	63 63 63
10	0.34	63
11	0.33	63

	Sk	etch of Sta	ek	
				
->		0	->	
	>		─ ⋝	
 	B	A	4	773

Test Team Leader Review: Data Entry Review: ZONE 3
INLET

BD Bard - Covington, Georgia

Flow Measurements & Calculations

Zone 3 Inlet Pre-Test

Test Team: LS KF EPA Methods: 1,2 Test Date: December 31, 2020 Console ID: C-014 Y_m 1.010 Probe Assembly ID: P5-04

Cp:

0.84

Measured valu	es:
$\mathbf{D}_{\mathbf{s}}$ (in.):	56.00
P _{bar} (in. Hg):	29.45
p _g (in. H ₂ O):	-2.00
O ₂ (%):	20.90
CO ₂ (%):	0.00
$\mathbf{B}_{\mathrm{ws}}(\%)$:	1.5
Test Time:	9:20

Point	Δp (" H ₂ O)	$(\Delta p)^{1/2}$	t _s (°F)
1	0.34	0.583	63
2	0.36	0.600	63
3	0.35	0.592	63
4	0.34	0.583	63
5	0.41	0.640	63
6	0.40	0.632	63
7	0.41	0.640	63
8	0.42	0.648	63
9	0.42	0.648	63
10	0.32	0.566	63
11	0.31	0.557	63
12	0.26	0.510	63
13	0.30	0.548	63
14	0.30	0.548	63
15	0.32	0.566	63
16	0.29	0.539	63
Average	0.35	0.587	63

Calculations:

Molar weight, M_s = **28.68 lb/mol** = $\{(\%O_2 \times 32) + (\%CO_2 \times 44) + (\%N_2 \times 28)\} \times (1-B_{ws}/100)/100 + B_{ws}/100*18$

Velocity, v_s = 33.28 ft/sec =85.49C_p x $(\Delta p)^{1/2}$ x $\{(t_s+460)/(P_{bar}+p_g/13.6)/M_s)\}^{1/2}$

Flow Rate, $Q_{s,ds} = 33,275 \text{ dscfm}$ = $v_s \pi D_s^2 / 4/144 \times 60 \times (t_{std} + 460) / (t_s + 460) \times (P_{bar} + p_g / 13.6) / 29.92 \times (1 - B_{ws} / 100)$

Flow Rate, $Q_{s,act} = 34,153 \text{ acfm} = v_s \pi D_s^2 / 4/144 \times 60$

Flow Rate, $Q_{s,std} = 33,768 \text{ scfm}$ = $v_s \pi D_s^2 / 4/144 \times 60 \times (t_{std} + 460) / (t_s + 460) \times (P_{bar} + p_g / 13.6) / 29.92$

BD Bard - Covington, Georgia

Flow Measurements & Calculations

Zone 3 Inlet Post-Test

Measured values:

Test Team:	LS KF
EPA Methods:	1,2
Test Date:	December 31, 2020
Console ID:	C-014
$\mathbf{Y}_{\mathbf{m}}$	1.01
Probe Assembly ID:	P5-04
Cp:	0.84

$\mathbf{D}_{\mathbf{s}}$ (in.):	56.00
P _{bar} (in. Hg):	29.45
p_g (in. H_2O):	-2.00
O ₂ (%):	20.90
CO ₂ (%):	0.00
$B_{ws}(\%)$:	1.5
Test Time:	14:06
113	

Point	Δp (" H ₂ O)	$(\Delta p)^{1/2}$	t _s (°F)
1	0.29	0.539	63
2	0.34	0.583	63
3	0.36	0.600	63
4	0.35	0.592	63
5	0.38	0.616	63
6	0.40	0.632	63
7	0.41	0.640	63
8	0.42	0.648	63
9	0.33	0.574	63
10	0.39	0.620	63
11	0.41	0.640	63
12	0.42	0.648	63
13	0.39	0.624	63
14	0.37	0.608	63
15	0.32	0.566	63
16	0.29	0.539	63
Average	0.37	0.604	63

Calculations:

={(% $O_2 \times 32$)+(% $CO_2 \times 44$)+(% $N_2 \times 28$)} x (1- $B_{ws}/100$))/100+ $B_{ws}/100*18$ Molar weight, $M_s =$ 28.68 lb/mol

Velocity, $v_s =$ 34.24 ft/sec

=85.49 $C_p x (\Delta p)^{1/2} x \{(t_s+460)/(P_{bar}+p_g/13.6)/M_s\}^{1/2}$ = $v_s \pi D_s^2/4/144 x 60 x (t_{std}+460)/(t_s+460) x (P_{bar}+p_g/13.6)/29.92 x (1-B_{ws}/100)$ Flow Rate, $Q_{s,ds} =$ 34,237 dscfm

35,140 acfm $=v_s\pi D_s^2/4/144 \times 60$ Flow Rate, $Q_{s,act} =$

 $=v_s\pi D_s^2/4/144 \times 60 \times (t_{std}+460)/(t_s+460) \times (P_{bar}+p_g/13.6)/29.92$ Flow Rate, $Q_{s,std} =$ 34,745 scfm

Advanced Industrial Resources Duct Velocity & Flow Calculation Sheet

Client:	Ramboll - GAC	Measured :	values:
Location:	Covington GA	D _s (in.):_	56.0
Source:	System 3 Inl	e+ Y _m /ΔH _@ :_	N/A
Test Team:	RB/ GE	C _p :_	0.84
EPA Methods:	1,2,3,4	t _{amb} (°F)	63
Test Date:	12/31/2020	Assumed B _{ws} (%):	1
Console ID:	C-14	O ₂ (%):	21
Probe Assembly ID:	P5-04	CO ₂ (%):	ပ

Start time: 9:2.	Start time: 14:06	Start time:	Start time:
Stop time:	Stop time: 14:12	Stop time:	Stop time:

Test #	Pre t	est	1055 7	257				***************************************
P _{bar} (in. Hg):								
p _g (in. H ₂ O):	- 2	٠, ۵	-2.1	D				
Traverse	Δp	t _s	Δp	t _s	Δр	t _s	Δр	t _s
Point	(" H ₂ O)	(°F)						
1	0.34	63	0.29	43				
2	0.36	63	0.34	43				
3	0.35	63	0.36	43				••
4	0.34	63	0.35	43				
5	0.41	63	0.33	43				
6	0.40	63	0.40	43				
7	0,41	63	0.41	63				
8	0.42	63	0.42	63		- 		
9	0.42	63	0.33	43				
10	0.32	63	0.38	43				
11	0.31	63	0.41	63		· .	.	
12	0.26	63	0.42	(,3				
13	0.30	63	0.39	63	78 g			
14	0.30	63	0.37	63				
15	0.32	63	0.32	\ <u>3</u>			ļ	
16	0.29	63	0.29	<u>\\ \\ 3</u>				
Average								

Wet bull = 52°F

Test Team Leader Review:

Data Entry Review:

Cyclonic Flow Absence Verification Field Data EPA Method 1

Client:	Ramboll-GIC
Location:	Covincton GA
Source:	System 3 Inlet
Test Team:	RBI GE
Probe ID:	P5-04
$\mathbf{C}_{\mathbf{p}}$:	0.94

t _m (°F):	13
Console ID:	C-14
$\mathbf{Y_m}$:	NIA
ΔH _@ : _	NIA
Assumed Bws:	
P _{har} (in. Hg):	

Date:	12/31/2020
D _s (in.):	56.3
$A_s(ft^2)$:	17.10
D _n (in.):	N/A
A_n (ft ²):	N/A

	Δр	α
Point	(in. H ₂ O)	
1	0.0	0
2	0.0	0
3	0.0	0 0 0
4	- 0.0°	0
5	0.0	0
6	0.0	0
7	0.0	0
8	0.0	0
9	0.0	***
10	0.0	
11	>%(
12	0.0	
. C	hange Po	rts
1	0.0	0
2	0.0	0
3	0.0	0
5	0.0	0_
5	0.0	0 0
6	0.0	٥
7	0.0	0
8	0.0	ු ු
9	0.0	
10	<u> </u>	1
11	0.0	
12	0.0	

Test Team Leader Review:	
Data Entry Review:	

Source Description Sheets

Client: Rambull- GAC	Date: 12/31/2020 Test Team: 12/31/6/2
Location: Coviniton GA	Test Team: RB GE
Location: Coving ton GA Source: System 3 Inlat	
,	
D_n (in.): $\rho \setminus A$	Δp t_s
$A_n (ft^2)$: N / A	Point (in. H ₂ O) (°F)
D _s (in.):	1 0.34 63
$A_s(ft^2)$: 17.13	
Length A (in.):	
Length B (in.):	3 0.35 63 4 0.34 63
Length D (III.).	5 0.41 63
t _{amb} (°F):	
Assumed B _{ws} :	
P _{bar} (in. Hg):	
W-1000	8 0.42 63
P_g (in. H_2O):	10
	11
Console ID: C-14	12 Class Parts
Y: <u>~/ A</u>	Change Ports
ΔH _@ :N/A	1 0.42 63
C _p : 0.84	2 0.32 63
K-Factor:A A	3 0.31 63
Chatab of Ctoals	4 0.26 63
Sketch of Stack	5 6.30 63
	6 0.30 63
	7 0-32 63
	8 0.29 63
	10
	11
	12
	}
- 110W 0	
7/1/100	
4 B > 16	A

Test Team Leader Review:

Data Entry Review:

ZONE 5
INLET

BD Bard - Covington, Georgia

Flow Measurements & Calculations

Zone 5 Inlet Pre-Test

Test Team:	RB GE		
EPA Methods:	1,2		
Test Date:	December 31, 2020		
Console ID:	C-003		
$\mathbf{Y}_{\mathbf{m}}$	0.938		
Probe Assembly ID:	FP-04		
Cp:	0.84		

Measured v	<u>values:</u>
$\mathbf{D}_{\mathbf{s}}$ (in.):	37.50
$P_{bar} \ (in. \ Hg)$:	29.45
$p_{\rm g}$ (in. $H_2O)\text{:}$	-1.30
O ₂ (%):	20.90
CO ₂ (%):	0.00
$\mathbf{B}_{\mathrm{ws}}(\%)$:	2.1
Test Time:	9:22

Point	Δp (" H ₂ O)	$(\Delta p)^{1/2}$	$\mathbf{t_s}$ (° F)	
1	0.32	0.566	71	
2	0.36	0.600	71	
3	0.35	0.592	71	
4	0.39	0.624	71	
5	0.34	0.583	71	
6	0.33	0.574	71	
7	0.33	0.574	71	
8	0.30	0.548	71	
9	0.26	0.510	71	
10	0.29	0.539	71	
11	0.32	0.566	71	
12	0.35	0.592	71	
13	0.41	0.640	71	
14	0.40	0.632	71	
15	0.39	0.624	71	
16	0.38	0.616	71	
Average	0.35	0.586	71	

Calculations:

Molar weight, M_s = **28.61 lb/mol** = {(%O₂ x 32)+(%CO₂ x 44)+(%N₂ x 28)} x (1-B_{ws}/100))/100+B_{ws}/100*18

Velocity, v_s = 33.48 ft/sec = $85.49C_p x (\Delta p)^{1/2} x \{(t_s+460)/(P_{bar}+p_g/13.6)/M_s)\}^{1/2}$

Flow Rate, $Q_{s,ds} = 14,717 \text{ dscfm}$ = $v_s \pi D_s^2 / 4/144 \times 60 \times (t_{std} + 460) / (t_s + 460) \times (P_{bar} + p_g / 13.6) / 29.92 \times (1 - B_{ws} / 100)$

Flow Rate, $Q_{s,act} = 15,406 \text{ acfm} = v_s \pi D_s^2 / 4/144 \text{ x } 60$

Flow Rate, $Q_{s,std} = 15,029 \text{ scfm}$ = $v_s \pi D_s^2 / 4/144 \times 60 \times (t_{std} + 460) / (t_s + 460) \times (P_{bar} + p_g / 13.6) / 29.92$

BD Bard - Covington, Georgia

Flow Measurements & Calculations

Zone 5 Inlet Post-Test

Measured values:

Test Team:	RB GE
EPA Methods:	1,2
Test Date:	December 31, 2020
Console ID:	C-003
$\mathbf{Y_m}$	0.938
Probe Assembly ID:	FP-04
Cp:	0.84

	urues.
D_s (in.):	37.50
P _{bar} (in. Hg):	29.45
p_g (in. H_2O):	-1.30
O ₂ (%):	20.90
CO ₂ (%):	0.00
$\mathbf{B}_{\mathrm{ws}}(\%)$:	2.1
Test Time:	13:24

Point	Δp (" H ₂ O)	$(\Delta p)^{1/2}$	t _s (°F)	
1	0.29	0.539	71	
2	0.37	0.608	71	
3	0.35	0.592	71	
4	0.33	0.574	71	
5	0.33	0.574	71	
6	0.31	0.557	71	
7	0.30	0.548	71	
8	0.27	0.520	71	
9	0.27	0.520	71	
10	0.31	0.557	71	
11	0.34	0.583	71	
12	0.38	0.616	71	
13	0.39	0.624	71	
14	0.39	0.624	71	
15	0.35	0.592	71	
16	0.35	0.592	71	
Average	0.33	0.576	71	

Calculations:

={(% $O_2 \times 32$)+(% $CO_2 \times 44$)+(% $N_2 \times 28$)} x (1- $B_{ws}/100$))/100+ $B_{ws}/100*18$ Molar weight, $M_s =$ 28.61 lb/mol

Velocity, $v_s =$ 32.90 ft/sec

=85.49 $C_p x (\Delta p)^{1/2} x \{(t_s+460)/(P_{bar}+p_g/13.6)/M_s\}^{1/2}$ = $v_s \pi D_s^2/4/144 x 60 x (t_{std}+460)/(t_s+460) x (P_{bar}+p_g/13.6)/29.92 x (1-B_{ws}/100)$ Flow Rate, $Q_{s,ds} =$ 14,464 dscfm

 $=v_s\pi D_s^2/4/144 \times 60$ Flow Rate, $Q_{s,act} =$ 15,141 acfm

Flow Rate, $Q_{s,std} =$ $= {v_s}\pi {D_s}^2/4/144 \ x \ 60 \ x \ (t_{std} + 460)/(t_s + 460) \ x \ (P_{bar} + p_g/13.6)/29.92$ 14,771 scfm

Advanced Industrial Resources Duct Velocity & Flow Calculation Sheet

Client:	Ramboli	600	Measured	l values:
	Covington,	GA	D _s (in.):	37.5
	5-5		$Y_{\rm m} / \Delta H_{\rm @}$:	0.938/1.801
Test Team:	LS KF		$\mathbf{C}_{\mathbf{p}}$:	0.84
EPA Methods:	142		t _{amb} (°F)	69
Test Date:	12/31/20		Assumed B _{ws} (%):	1%
Console ID:	C-03		O ₂ (%):	210/0
Probe Assembly ID:	FP-04		CO ₂ (%):	00/0

Start time: 0922 Start time: 13.24 Start time: Start time: Start time: Stop time: Stop time: Stop time: Stop time:

	Pr	e-1 حًا	Post-1; Pre-2		Post-2; Pre-3		Post-3	
P _{bar} (in. Hg):	29-2	4 29.45	29.45					
p _g (in. H ₂ O):	-1.30		1.3	0				
Traverse	Δр	t _s						
Point	(" H ₂ O)	(°F)						
1	0.32	71	0,29	71				
2	0.36	7(0.37	71				
3	0.35	71	0.35	71				
4	0.39	71	0.33	7)				
5	0.34	H	0.33	וק				
6	0.33	7(0.31	7				
7	0.33	71	0,30	١.				
8	0.30	71	0.27	ال				
9	0.20	71	0,27	7				
10	0.29	71	0.31	71				
11	0.32	71	0.34	71				
12	0.35	71	0.30	71				
13	0.41	31	0.39	71				
14	0,40	7-(0.39	٦١				
15	0.34	71	0.35	71				
16	0.33	71	0.35	71				
Average								····
		, A		error.				

					_
	wet	60	.59		
pre	Dry	71	71	A # 1	
Pirot Line of	رلا. Test Team	Leader Review:	<u> </u>	CAH No. 6L1647	-
Chrick	Dat	a Entry Review:	Jew .		
Simi=1	30				
JUNIC -					

Source Description Sheets

Client: PD Bard Ramboll	GDC		12-31-20	
Location: LOUZNGTON		Team:	LS-KF	
Source: 5-5 INLET				

D _n (in.):	N/A	
$A_n (ft^2)$:	N/A	
D _s (in.):	36 37.5	4.5
$A_s(ft^2)$:	4.83-7.67	LS
Length A (in.):	85	
Length B (in.):	>72	

t _{amb} (°F): _	45	
Assumed B _{ws} :	10/0	
P _{bar} (in. Hg):	"29.34	
Pg (in. H2O):	- 1.30	
% O ₂ :	21	
% CO ₂ :	0	
Console ID:	C-03	
Y :	0.938	
$\Delta H_{@}$:	1.807	
C_p :	0.84	
K-Factor:	N/A	

	Sk	etch of Sta	ck	
	A		6	
		1-1-		
6		0.	2	
		13	1	
			Sam	ple
			Ko	(15)

Point	Δp (in. H ₂ O)	t _s
		(°F)
1	0.32	71
2	0:36	71 71 71 71 71 71
3	C1.35	71
4	Co. 39	17
5	0.34	'71
6	0.33	71
7	0.30	71
8	0.33	71
9		
10	,	
11		
12		
(Change Por	
1	0.26	71 71
2 3 4 5	0.29	71
3	0.32	71 71 71
4	0.35	71
5	0.41	71
6	0.29 0.32 0.35 0.41	71
7	0.39	71
8	0.38	71
9		/
10		
11		
12		1

Test Team Leader Review:	
Data Entry Review:	

Cyclonic Flow Absence Verification Field Data EPA Method 1

framboll-GDC LS	•
Client: 32 Bard	Date: /2/3//20
Location: (ouing ton, (or	D _s (in.): 37.5
Source: 5-5	$A_s(ft^2)$: 7.67
Test Team: (S, C -	D_n (in.): N/A
Probe ID: FP-OU	A_n (ft ²): N/A
Cp: 0.84	
(1)	Point C H O

t_{m} (°F):	(06	
Console ID:	C-03	
$\mathbf{Y}_{\mathbf{m}}$:	-0-999-0,938 VS	2
$\Delta H_{@}$:	1.807	
Assumed B _{ws} :	10/0	
Prov (in. Hg):	29.34	ſ

Point	Δр	α
LOILL	(in. H ₂ O)	(degrees)
1	0.0	2
2	0.0	(o
3	0.0	7
4	0.0	7.
5	0.0	Ч
2 3 4 5 6 7	0.0	Σ.
7	0.0	2 2 4 2 0
8	0.0	2
9	0.0	/
10	0.0	
11	0.0	
12	0.0	
	Change Po	rts
1	0.0	7
2	0.0	2
3	0.0	U
4	0.0	4
5	0.0	2
2 3 4 5 6 7	0.0	7 4 2 0
7	0.0	7
8	0.0	7
9	0.0	/
10	0.0	
11	0.0	
12	0.0	

Test Team Leader Review:	
Data Entry Review:	

APPENDIX D CALIBRATION DATA

Dry Gas Meter Calibration Data

Dry Gas Meter			
Console ID:	C-02		
Serial Number:			

Reference Meter				
Meter ID: M5RFM1				
Calibration Factor, Y _w : 0.998				

Date: 07/24/20		Performed By:	LS
Barometric Pressure, P _b (in. Hg):	29.15	Reviewed By:	

Data								
			Temper	atures	(° F)		Time	
		Reference	Dry Gas	Reference	Dry	Gas N	1eter	Elapsed
Vacuum	ΔH	Meter Volume	Meter Volume	Meter	init.	final	avg.	θ
(in. Hg)	(in. H ₂ O)	$V_{w}(ft^{3})$	V_{m} (ft ³)	$t_{\rm w}$	$\mathbf{t_i}$	$\mathbf{t_f}$	$t_{\rm m}$	(min.)
3.0	0.50	5.205	5.276	72	66.0	76.0	71.0	11.90
3.0	1.00	5.009	5.066	73	77.0	84.0	80.5	8.40
3.0	2.00	6.468	6.537	74	85.0	89.0	87.0	7.75
3.0	3.00	5.283	5.324	74	88.0	90.0	89.0	5.10
3.0	4.00	7.217	7.365	74	90.0	92.0	91.0	6.10

	Calculations							
ΔН	$\mathbf{Y}_{\mathbf{m}}$	Varia	tion	$\Delta H_{@}$	Varia	tion		
(inches H ₂ O)	(dimensionless)			(inches H ₂ O)	(dimension	less)		
0.50	0.981	-0.018	PASS	1.521	-0.073	PASS		
1.00	0.998	-0.001	PASS	1.614	0.020	PASS		
2.00	1.006	0.007	PASS	1.634	0.040	PASS		
3.00	1.010	0.011	PASS	1.586	-0.008	PASS		
4.00	0.999	0.000	PASS	1.615	0.021	PASS		
Averages:	0.999	PA	SS	1.594	PA	SS		

Where:

 Y_m is the ratio of the reading of the reference meter to that of the dry gas meter (DGM); variance limit: ± 0.02 .

$$\mathbf{Y_m} = \frac{\mathbf{Y_w V_w P_b (t_m + 460)}}{\mathbf{V_m (P_b + \Delta H/13.6) (t_w + 460)}}$$

$$\Delta \mathbf{H}_{@} = \frac{0.0317 \,\Delta \mathrm{H} \left(\left(t_{w} + 460 \right) \,\theta \right)^{2}}{P_{b} \left(t_{m} + 460 \right) \left(Y_{w} \, V_{w} \right)^{2}}$$

Dry Gas Meter Calibration Data

Dry Gas Meter					
Console ID: C-002					
Serial Number:					

Reference Meter				
Meter ID: MSRFM #1				
Calibration Factor, Y _w :	0.9980			

Data								
		Net	Net	Temper	atures (°	F)		Time
		Reference	Dry Gas	Reference	Dry	Gas M	leter	Elapsed
Vacuum	ΔH	Meter Volume	Meter Volume	Meter init. final avg.		init. final avg.		θ
(in. Hg)	(in. H ₂ O)	$V_{w} (ft^{3})$	V_{m} (ft ³)	$t_{ m w}$	t_{i}	$\mathbf{t_f}$	t _m	(min.)
5.0	3.00	6.287	6.314	74	94	96	95.0	6.00
5.0	3.00	6.262	6.316	75	96	97	96.5	6.00
5.0	3.00	6.209	6.274	75	97	98	97.5	6.00

	Calculations							
ΔН	$\mathbf{Y}_{\mathbf{m}}$	Y_m Variation $\Delta H_{@}$ Variation						
(inches H ₂ O)		(dimensionless)		(inches H ₂ O)	(dimensionle	ess)		
3.00	1.025	0.0024	PASS	1.499	-0.017	PASS		
3.00	1.022	-0.0012	PASS	1.513	-0.003	PASS		
3.00	1.022	-0.0012	PASS	1.536	0.020	PASS		
Averages:	1.023	PA	ASS	1.516	PA	SS		

Calculations					
**Note: Avg Y _m cannot be (< or >) 5% of the	Low Tolerance	High Tolerance	% diff	Pass or Fail?	
Accepted Y _M	0.949	1.049	2%	PASS	

Where:

 Y_m is the ratio of the reading of the reference meter to that of the dry gas meter (DGM); variance limit: ± 0.02 .

$$\mathbf{Y_m} = \frac{\mathbf{Y_w V_w P_b (t_m + 460)}}{\mathbf{V_m (P_b + \Delta H/13.6) (t_w + 460)}}$$

$$\Delta \mathbf{H}_{@} = \frac{0.0317 \ \Delta \mathbf{H} \left((\mathbf{t}_{w} + 460) \ \theta \right)^{2}}{\mathbf{P}_{b} \left(\mathbf{t}_{m} + 460 \right) \left(\mathbf{Y}_{w} \ \mathbf{V}_{w} \right)^{2}}$$

Dry Gas Meter Calibration Data

Dry Gas Meter					
Console ID: C-003					
Serial Number:					

Reference Meter				
Meter ID:	M5 RFM #1			
Calibration Factor, Y _w :	0.998			

Date:	12/11/20		Performed By:	JML
Barometric Pressure,	P _b (in. Hg):	29.27	Reviewed By:	

Data									
				Temperatures (°F)				Time	
		Reference	Dry Gas	Reference Dry Gas Meter			Elapsed		
Vacuum	ΔH	Meter Volume	Meter Volume	Meter	init.	final	θ		
(in. Hg)	(in. H ₂ O)	$V_{w}(ft^{3})$	V_{m} (ft ³)	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t_i}$	$\mathbf{t_f}$	$t_{\rm m}$	(min.)	
5.0	0.50	5.949	6.130	72	61.0	59.0	60.0	14.50	
5.0	1.00	5.772	5.970	72	58.0	60.0	59.0	10.00	
5.0	2.00	6.029	6.269	72	60.0	62.0	61.0	7.50	
5.0	3.00	5.894	6.143	72	62.0	65.0	63.5	6.00	
5.0	4.00	5.637	5.878	72	65.0	67.0	66.0	5.00	

	Calculations								
ΔН	$\mathbf{Y}_{\mathbf{m}}$	Variation	$\Delta H_{@}$	Variation					
(inches H ₂ O)	(din	nensionless)	(inches H ₂ O)	(dimensionless)					
0.50	0.945	0.007	1.758	-0.049					
1.00	0.939	0.001	1.780	-0.027					
2.00	0.935	-0.003	1.828	0.021					
3.00	0.935	-0.003	1.828	0.021					
4.00	0.937	-0.001	1.841	0.034					
Averages:	0.938		1.807						

Where:

 Y_m is the ratio of the reading of the reference meter to that of the dry gas meter (DGM); variance limit: ± 0.02 .

$$\mathbf{Y}_{\mathbf{m}} = \frac{\mathbf{Y}_{\mathbf{w}} \, \mathbf{V}_{\mathbf{w}} \, \mathbf{P}_{\mathbf{b}} \, (\mathbf{t}_{\mathbf{m}} + 460)}{\mathbf{V}_{\mathbf{m}} \, (\mathbf{P}_{\mathbf{b}} + \Delta \mathbf{H} / 13.6) \, (\mathbf{t}_{\mathbf{w}} + 460)}$$

$$\Delta \mathbf{H}_{@} = \frac{0.0317 \,\Delta \mathrm{H} \left(\left(t_{w} + 460 \right) \,\theta \right)^{2}}{P_{b} \left(t_{m} + 460 \right) \left(Y_{w} \, V_{w} \right)^{2}}$$

Dry Gas Meter Calibration Data

Dry Gas Meter						
Console ID:	C-003					
Serial Number:						

Reference N	Meter
Meter ID:	M5 RFM #1
Calibration Factor, Y_w :	0.9980

	Data									
		Net	Net	Temper	ntures (°F)			Time		
		Reference	Dry Gas	Reference	Dry	Dry Gas Meter init. final avg.		Elapsed		
Vacuum	ΔH	Meter Volume	Meter Volume	Meter	init.			θ		
(in. Hg)	(in. H ₂ O)	$V_{w}(ft^{3})$	V_{m} (ft ³)	$t_{ m w}$	t _i	$\mathbf{t_f}$	t _m	(min.)		
5.0	3.00	5.895	6.164	72	64	65	64.5	6.00		
5.0	3.00	5.905	6.177	72	65	66	65.5	6.00		
5.0	3.00	5.894	6.186	72	66	68	67.0	6.00		

Calculations									
ΔΗ	$\mathbf{Y}_{\mathbf{m}}$	Vari	ation	$\Delta H_{@}$	Variation				
(inches H ₂ O)		(dimensionless)		(inches H ₂ O)	(dimensionless)				
3.00	0.934	-0.0008	PASS	1.824	0.006	PASS			
3.00	0.935	0.0006	PASS	1.814	-0.004	PASS			
3.00	0.935	0.0002	PASS	1.815	-0.002	PASS			
Averages:	0.935	PASS		1.818	PASS				

Calculations								
**Note: Avg Y _m cannot be (< or >) 5% of the	Low Tolerance	High Tolerance	% diff	Pass or Fail?				
Accepted Y _M	0.891	0.985	0%	PASS				

Where:

 Y_m is the ratio of the reading of the reference meter to that of the dry gas meter (DGM); variance limit: ± 0.02 .

$$\mathbf{Y_m} = \frac{\mathbf{Y_w \, V_w \, P_b \, (t_m + 460)}}{\mathbf{V_m \, (P_b + \Delta H/13.6) \, (t_w + 460)}}$$

$$\Delta \mathbf{H}_{@} = \frac{0.0317 \ \Delta \mathbf{H} \left((t_{w} + 460) \ \theta \right)^{2}}{P_{b} \left(t_{m} + 460 \right) \left(\mathbf{Y}_{w} \ \mathbf{V}_{w} \right)^{2}}$$

Dry Gas Meter Calibration Data

Dry Gas Meter		
Console ID:	C-14	
Serial Number:	28554	

Reference Meter			
Meter ID:	MSRFM1		
Calibration Factor, Y _w :	0.998		

Date:	01/23/20		Performed By:	LS
Barometric Pressure,	P _b (in. Hg):	29.30	Reviewed By:	

Data								
	Temperatures (°F)						Time	
		Reference	Dry Gas	Reference	Dry	Gas N	1eter	Elapsed
Vacuum	ΔH	Meter Volume	Meter Volume	Meter	init.	final	avg.	θ
(in. Hg)	(in. H ₂ O)	$V_{w}(ft^{3})$	V_{m} (ft ³)	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t_i}$	$\mathbf{t_f}$	t _m	(min.)
5.0	0.50	5.170	5.334	51	65.0	70.0	67.5	12.75
5.0	0.75	5.082	5.264	53	71.0	76.0	73.5	10.50
5.0	1.00	5.021	5.132	53	71.0	74.0	72.5	9.10
5.0	1.20	5.038	5.113	54	75.0	77.0	76.0	8.50
5.0	1.50	5.025	5.111	55	75.0	77.0	76.0	7.50

	Calculations					
ΔН	$\mathbf{Y}_{\mathbf{m}}$	Varia	tion	$\Delta H_{@}$	Varia	tion
(inches H ₂ O)	(dimensionless)			(inches H ₂ O)	(dimension	less)
0.50	0.997	-0.012	PASS	1.635	-0.113	PASS
0.75	1.000	-0.010	PASS	1.716	-0.032	PASS
1.00	1.011	0.001	PASS	1.763	0.016	PASS
1.20	1.022	0.013	PASS	1.829	0.081	PASS
1.50	1.017	0.008	PASS	1.796	0.048	PASS
Averages:	1.010	PA	SS	1.748	PA	SS

Where:

 Y_m is the ratio of the reading of the reference meter to that of the dry gas meter (DGM); variance limit: ± 0.02 .

$$\mathbf{Y_m} = \frac{\mathbf{Y_w V_w P_b (t_m + 460)}}{\mathbf{V_m (P_b + \Delta H/13.6) (t_w + 460)}}$$

 ΔH_{\odot} is the orifice pressure differential (inches H_2O) that corresponds to 0.75 cfm of air at 68 °F and 29.92 inches of mercury; variance limit: ± 0.20 .

$$\Delta \mathbf{H}_{@} = \frac{0.0317 \,\Delta \mathrm{H} \left(\left(t_{w} + 460 \right) \,\theta \right)^{2}}{P_{b} \left(t_{m} + 460 \right) \left(Y_{w} \, V_{w} \right)^{2}}$$

Dry Gas Meter Calibration Data

Dry Gas Meter			
Console ID:	C-014		
Serial Number:			

Reference N	Meter
Meter ID:	MSRFM #1
Calibration Factor, Y _w :	0.9980

Data								
		Net	Net	Temper	Time			
		Reference	Dry Gas	Reference	Dry	Gas M	leter	Elapsed
Vacuum	ΔH	Meter Volume	Meter Volume	Meter	init.	final	avg.	θ
(in. Hg)	(in. H ₂ O)	$V_{w} (ft^{3})$	V_{m} (ft ³)	$t_{ m w}$	t _i	$t_{\rm f}$	t _m	(min.)
5.0	3.00	6.035	6.098	74	88	94	91.0	6.00
5.0	3.00	6.166	6.249	74	94	100	97.0	6.17
5.0	3.00	5.986	6.091	74	100	106	103.0	6.00

	Calculations					
ΔН	$\mathbf{Y}_{\mathbf{m}}$	Y_m Variation $\Delta H_{@}$ Variation				ation
(inches H ₂ O)		(dimensionless)		(inches H ₂ O)	(dimensionle	ess)
3.00	1.011	-0.0076	PASS	1.681	0.002	PASS
3.00	1.019	0.0004	PASS	1.685	0.005	PASS
3.00	1.026	0.0072	PASS	1.673	-0.007	PASS
Averages:	1.019	PASS		1.680	PA	SS

Calculations				
**Note: Avg Y _m cannot be (< or >) 5% of the	Low Tolerance	High Tolerance	% diff	Pass or Fail?
Accepted Y _M	0.960	1.061	1%	PASS

Where:

 Y_m is the ratio of the reading of the reference meter to that of the dry gas meter (DGM); variance limit: ± 0.02 .

$$\mathbf{Y_m} = \frac{\mathbf{Y_w \, V_w \, P_b \, (t_m + 460)}}{\mathbf{V_m \, (P_b + \Delta H/13.6) \, (t_w + 460)}}$$

 $\Delta H_{@}$ is the orifice pressure differential (inches H_2O) that corresponds to 0.75 cfm of air at 68 °F and 29.92 inches of mercury; variance limit: ± 0.20 .

$$\Delta \mathbf{H}_{@} = \frac{0.0317 \ \Delta H \left((t_{w} + 460) \ \theta \right)^{2}}{P_{b} \left(t_{m} + 460 \right) \left(Y_{w} \ V_{w} \right)^{2}}$$

Dry Gas Meter Calibration Data

Dry Gas Meter			
Console ID:	C-18		
Serial Number:	1604009		

Reference Meter			
Meter ID:	M5RFM1		
Calibration Factor, Y _w :	0.998		

Date:	04/15/20		Performed By:	LS
Barometric Pressure,	P _b (in. Hg):	28.95	Reviewed By:	

	Data									
				Temper	atures	(°F)		Time		
		Reference	Dry Gas	Reference	Dry	Gas N	1eter	Elapsed		
Vacuum	ΔΗ	Meter Volume	Meter Volume	Meter	init.	final	avg.	θ		
(in. Hg)	(in. H ₂ O)	$V_{w}(ft^{3})$	$V_{m} (ft^{3})$	$\mathbf{t_w}$	$\mathbf{t_i}$	$\mathbf{t_f}$	$t_{\rm m}$	(min.)		
5.0	0.50	8.531	8.056	73	60.0	63.0	61.5	21.60		
5.0	1.00	7.771	7.485	73	64.0	67.0	65.5	14.00		
5.0	2.00	8.095	7.712	74	67.0	71.0	69.0	10.20		
5.0	3.00	5.764	5.508	74	71.0	72.0	71.5	5.90		
5.0	4.00	6.619	6.319	74	72.0	72.0	72.0	5.83		

	Calculations									
ΔН	ΔH Y_m Variation $\Delta H_{@}$ Variation									
(inches H ₂ O)	(dime	ensionless)		(inches H ₂ O)	(dimensionless)					
0.50	1.033	0.003	PASS	1.920	0.037	PASS				
1.00	1.019	-0.010	PASS	1.929	0.046	PASS				
2.00	1.033	0.003	PASS	1.882	-0.001	PASS				
3.00	1.032	0.002	PASS	1.854	-0.029	PASS				
4.00	1.031	0.002	PASS	1.829	-0.054	PASS				
Averages:	1.029	PA	SS	1.883	PA	SS				

Where:

 Y_m is the ratio of the reading of the reference meter to that of the dry gas meter (DGM); variance limit: ± 0.02 .

$$\mathbf{Y_m} = \frac{\mathbf{Y_w} \, \mathbf{V_w} \, \mathbf{P_b} \, (\mathbf{t_m} + 460)}{\mathbf{V_m} \, (\mathbf{P_b} + \Delta \mathbf{H}/13.6) \, (\mathbf{t_w} + 460)}$$

 $\Delta H_{@}$ is the orifice pressure differential (inches H_2O) that corresponds to 0.75 cfm of air at 68 °F and 29.92 inches of mercury; variance limit: ± 0.20 .

$$\Delta \mathbf{H}_{@} = \frac{0.0317 \ \Delta H \left((t_{w} + 460) \ \theta \right)^{2}}{P_{b} \left(t_{m} + 460 \right) \left(Y_{w} \ V_{w} \right)^{2}}$$

Dry Gas Meter Calibration Data

Dry Gas Meter						
Console ID: C-18						
Serial Number:	1604006					

Reference N	1 eter
Meter ID:	M5RFM1
Calibration Factor, Y_w :	0.9980

	Data								
		Net	Net	Temper	atures (°	F)		Time	
		Reference	Dry Gas	Reference	Dry	Gas M	eter	Elapsed	
Vacuum	ΔH	Meter Volume	Meter Volume	Meter	init.	final	avg.	θ	
(in. Hg)	(in. H ₂ O)	$V_{w} (ft^{3})$	$V_{m} (ft^{3})$	$t_{ m w}$	t _i	$\mathbf{t_f}$	t _m	(min.)	
4.0	1.80	5.293	5.072	74	64	64	64.0	7.25	
4.0	1.80	5.241	5.029	74	64	65	64.5	7.20	
4.0	1.80	5.271	5.061	74	65	66	65.5	7.25	

	Calculations								
ΔН	ΔH Y_m Variation $\Delta H_{@}$ Variation								
(inches H ₂ O)		(dimensionless)		(inches H ₂ O)	(dimensionless)				
1.80	1.017	-0.0002	-0.0002 PASS		-0.007	PASS			
1.80	1.017	-0.0006	PASS	2.017	0.003	PASS			
1.80	1.018	0.0007	0.0007 PASS		0.0007 PASS 2.018		0.004	PASS	
Averages:	Averages: 1.018 PASS 2.014 PASS								

Calculations							
**Note: Avg Y _m cannot be (< or >) 5% of the	Low Tolerance	High Tolerance	% diff	Pass or Fail?			
Accepted Y _M	0.978	1.080	1%	PASS			

Where:

 Y_m is the ratio of the reading of the reference meter to that of the dry gas meter (DGM); variance limit: ± 0.02 .

$$\mathbf{Y_m} = \frac{\mathbf{Y_w \, V_w \, P_b \, (t_m + 460)}}{\mathbf{V_m \, (P_b + \Delta H/13.6) \, (t_w + 460)}}$$

 $\Delta H_{@}$ is the orifice pressure differential (inches H_2O) that corresponds to 0.75 cfm of air at 68 °F and 29.92 inches of mercury; variance limit: ± 0.20 .

$$\Delta \mathbf{H}_{@} = \frac{0.0317 \ \Delta \mathbf{H} \left((t_{w} + 460) \ \theta \right)^{2}}{P_{b} \left(t_{m} + 460 \right) \left(\mathbf{Y}_{w} \ \mathbf{V}_{w} \right)^{2}}$$

Quality Source Sampling Systems & Accessories

Date: 8/15/2019

DGM Model: T-110

Customer: Advanced Industrial Resources

DGM S/N: 27979

Reference Prover: Cert.# A-610 Tape # 26727

Pb:

29.89 in Ha

			y					
Approx. Flow Rate (cfm)	Prover Volume (ft³) V _w	DGM Volume (ft³) V _{ds}	Tempe Prover (°F)	DGM (°F)	Time (min) Ф	Flow Rate (cfm) Q	Meter Coefficient Y _{ds}	Average Meter Coefficient Y _{ds}
2.42	0.000	0.000	70.0	70.0	5.440	0.000	0.000	127.13.2
0.40	2.000	2.020	76.2	76.2	5.148	0.382	0.990	
0.40	2.000	2.019	76.1	76.1	5.117	0.384	0.991	
0.40	2.000	2.009	76.2	76.2	5.122	0.384	0.996	0.992
0.60	2.000	2.018	76.5	76.5	3.320	0.592	0.991	
0.60	2.000	2.017	75.9	75.9	3.318	0.593	0.992	
0.60	2.000	2.017	75.9	75.9	3.308	0.595	0.992	0.991
0.80	2.000	2.017	75.9	75.9	2.438	0.807	0.992	
0.80	2.000	2.017	76.2	76.2	2.432	0.809	0.992	
0.80	2.000	2.023	75.9	75.9	2.428	0.810	0.989	0.991
1.00	2.000	2.022	76.3	76.3	1.943	1.012	0.989	
1.00	2.000	2.017	75.6	75.6	1.947	1.011	0.992	
1.00	2.000	2.016	76.2	76.2	1.942	1.013	0.992	0.991
1.20	2.000	2.007	75.5	75.5	1.622	1.214	0.997	
1.20	2.000	2.016	75.5	75.5	1.623	1.213	0.992	
1.20	2.000	2.017	75.5	75.5	1.623	1.213	0.992	0.993

AVERAGE Y_{ds} 0.992

$$Y_{ds} = \frac{V_w(t_{ds} + t_{std})}{V_{ds}(t_w + t_{std})} * \frac{P_{bar}}{\left(P_{bar} + P_m/13.6\right)} \qquad Q = 17.64 \frac{P_{bar}}{\left(t_w + t_{std}\right)} \frac{V_w}{\Phi}$$

$$Q = 17.64 \frac{P_{bar}}{(t_w + t_{std})} \frac{V_w}{\Phi}$$

Dry gas meter Serial Number 27979 was calibrated in accordance with the Code of Federal Regulations, Title 40, Part 60, Appendix A, Method 5 Section 16.1.1

Signature

Ouality Source Sampling Systems & Accessories

Date: 8/27/2019

DGM Model: T-110

Customer: Advanced Industrial Resources

DGM S/N: 356333

Reference Prover: Cert.# A-610 Tape # 26727

Pb:

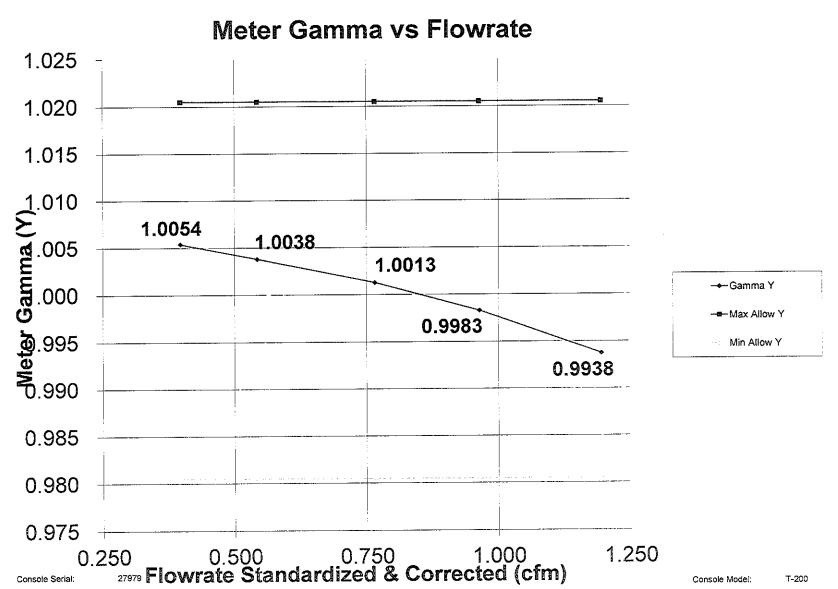
29.86 in Ha

	I D.	23.00	111119					
Approx. Flow Rate (cfm) Q	Prover Volume (ft ³) V _w	DGM Volume (ft³) V _{ds}	Tempe Prover (°F) t _w	erature DGM (°F) t _{ds}	Time (min) Φ	Flow Rate (cfm) Q	Meter Coefficient Y _{ds}	Average Meter Coefficient Y _{ds}
0.40	2.000	1.998	77.9	75.8	5.092	0.385	0.997	
0.40	2.000	1.997	77.4	75.8	5.088	0.385	0.999	
0.40	2.000	1.998	77.4	75.7	5.097	0.385	0.998	0.998
0.60	2.000	2.004	75.8	75.8	3.290	0.598	0.998	
0.60	2.000	2.003	75.8	75.8	3.288	0.598	0.999	
0.60	2.000	2.003	75.8	75.8	3.285	0.599	0.999	0.998
0.80	2.000	2.006	75.8	75.8	2.453	0.801	0.997	
0.80	2.000	2.007	75.8	75.8	2.442	0.805	0.997	
0.80	2.000	2.001	75.5	75.5	2.440	0.806	1.000	0.998
1.00	2.000	2.001	75.9	75.9	1.918	1.025	1.000	
1.00	2.000	2.006	75.9	75.9	1.925	1.021	0.997	
1.00	2.000	2.010	75.9	75.9	1.928	1.019	0.995	0.997
1.20	2.000	2.007	75.9	75.9	1.595	1.232	0.997	
1.20	2.000	2.006	75.9	75.9	1.597	1.231	0.997	
1.20	2.000	2.006	75.9	75.9	1.588	1.238	0.997	0.997

AVERAGE Y_{ds} 0.998

$$Y_{ds} = \frac{V_w(t_{ds} + t_{std})}{V_{ds}(t_w + t_{std})} * \frac{P_{bar}}{\left(P_{bar} + P_m/13.6\right)} \qquad Q = 17.64 \frac{P_{bar}}{\left(t_w + t_{std}\right)} \frac{V_w}{\Phi}$$

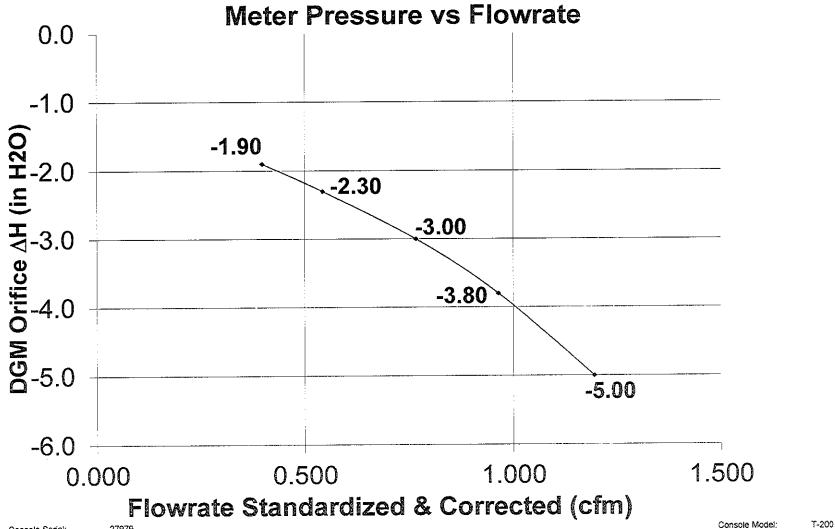
$$Q = 17.64 \frac{P_{bar}}{(t_w + t_{std})} \frac{V_w}{\Phi}$$


Dry gas meter Serial Number 356333 was calibrated in accordance with the Code of Federal Regulations, Title 40, Part 60, Appendix A, Method 5 Section 16.1.1

Calibration Date:

10-10-2017

Calibration Technician:


ΕW

Calibration Date:

10-10-2017

Calibration Technician:

Console Serial:

27979

Thermocouple Calibration Data

 Thermometer ID:
 RT-01; RT-03
 Date:
 01/04/21

 Bias:
 0
 Performed By:
 SS

Apparatus ID	Apparatus Description	_			cated erature	Relative Variation
		°F	°R	° F	°R	%
P7-02	Stack Temp.	32	492	33	493	0.2
P7-02	Stack Temp.	210	670	211	671	0.1
B-18	Filter Temp.	32	492	32	492	0.0
B-18	Filter Temp.	210	670	210	670	0.0
B-18	Exit Imp. Temp.	32	492	33	493	0.2
B-18	Exit Imp. Temp.	210	670	210	670	0.0
C-018	Meter In Temp.	32	492	33	493	0.2
C-018	Meter In Temp.	210	670	211	671	0.1
C-018	Meter Out Temp.	32	492	33	493	0.2
C-018	Meter Out Temp.	210	670	210	670	0.0
B-18	Filter Exit Temp.	32	492	33	493	0.2
B-18	Filter Exit Temp.	210	670	210	670	0.0
P7-02	Probe Temp.	32	492	33	493	0.2
P7-02	Probe Temp.	210	670	210	670	0.0

Thermocouple Calibration Procedure

A. References

- 1. Mercury-in-glass refernce thermometer, calibrated against thermometric fixed points.
- 2. Thermometric fixed points, including ice bath and boiling water (corrected for barometric pressure)

B. Measurement

Thermocouple Calibration Data

 Thermometer ID:
 RT-01; RT-03
 Date:
 01/04/21

 Bias:
 0
 Performed By:
 SS

Apparatus ID	Apparatus Description	Reference Temperature Reading			cated erature	Relative Variation
		$^{\circ}\mathbf{F}$	°R	° F	°R	%
P7-01	Stack Temp.	32	492	32	492	0.0
P7-01	Stack Temp.	210	670	211	671	0.1
B-02	Filter Temp.	32	492	33	493	0.2
B-02	Filter Temp.	210	670	211	671	0.1
B-02	Exit Imp. Temp.	32	492	33	493	0.2
B-02	Exit Imp. Temp.	210	670	211	671	0.1
C-002	Meter In Temp.	32	492	32	492	0.0
C-002	Meter In Temp.	210	670	210	670	0.0
C-002	Meter Out Temp.	32	492	32	492	0.0
C-002	Meter Out Temp.	210	670	211	671	0.1
B-02	Filter Exit Temp.	32	492	33	493	0.2
B-02	Filter Exit Temp.	210	670	210	670	0.0
P7-01	Probe Temp.	32	492	33	493	0.2
P7-01	Probe Temp.	210	670	210	670	0.0

Thermocouple Calibration Procedure

A. References

- 1. Mercury-in-glass refernce thermometer, calibrated against thermometric fixed points.
- 2. Thermometric fixed points, including ice bath and boiling water (corrected for barometric pressure)

B. Measurement

Thermocouple Calibration Data

 Thermometer ID:
 RT-01; RT-03
 Date:
 01/04/21

 Bias:
 0
 Performed By:
 SS

Apparatus ID	Apparatus Description	Reference Temperature Reading		Indicated Temperature		Relative Variation
		$^{\circ}\mathbf{F}$	°R	° F	°R	%
P5-04	Stack Temp.	32	492	33	493	0.2
P5-04	Stack Temp.	210	670	210	670	0.0
B-14	Filter Temp.	32	492	33	493	0.2
B-14	Filter Temp.	210	670	210	670	0.0
B-14	Exit Imp. Temp.	32	492	33	493	0.2
B-14	Exit Imp. Temp.	210	670	211	671	0.1
C-014	Meter In Temp.	32	492	32	492	0.0
C-014	Meter In Temp.	210	670	211	671	0.1
C-014	Meter Out Temp.	32	492	32	492	0.0
C-014	Meter Out Temp.	210	670	210	670	0.0
B-14	Filter Exit Temp.	32	492	33	493	0.2
B-14	Filter Exit Temp.	210	670	210	670	0.0
P5-04	Probe Temp.	32	492	33	493	0.2
P5-04	Probe Temp.	210	670	211	671	0.1

Thermocouple Calibration Procedure

A. References

- 1. Mercury-in-glass refernce thermometer, calibrated against thermometric fixed points.
- 2. Thermometric fixed points, including ice bath and boiling water (corrected for barometric pressure)

B. Measurement

Thermocouple Calibration Data

 Thermometer ID:
 RT-01; RT-03
 Date:
 01/04/21

 Bias:
 0
 Performed By:
 SS

Apparatus ID	Apparatus Description	Reference Temperature Reading		Indicated Temperature		Relative Variation
		$^{\circ}\mathbf{F}$	°R	° F	°R	%
P4-01	Stack Temp.	32	492	33	493	0.2
P4-01	Stack Temp.	210	670	210	670	0.0
B-14	Filter Temp.	32	492	32	492	0.0
B-14	Filter Temp.	210	670	211	671	0.1
B-14	Exit Imp. Temp.	32	492	33	493	0.2
B-14	Exit Imp. Temp.	210	670	210	670	0.0
C-003	Meter In Temp.	32	492	33	493	0.2
C-003	Meter In Temp.	210	670	210	670	0.0
C-003	Meter Out Temp.	32	492	32	492	0.0
C-003	Meter Out Temp.	210	670	210	670	0.0
B-14	Filter Exit Temp.	32	492	33	493	0.2
B-14	Filter Exit Temp.	210	670	210	670	0.0
P4-01	Probe Temp.	32	492	32	492	0.0
P4-01	Probe Temp.	210	670	210	670	0.0

Thermocouple Calibration Procedure

A. References

- 1. Mercury-in-glass refernce thermometer, calibrated against thermometric fixed points.
- 2. Thermometric fixed points, including ice bath and boiling water (corrected for barometric pressure)

B. Measurement

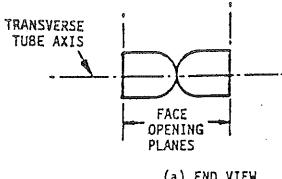
VERIFICATION OF CONSTRUCTION SPECIFICATIONS FOR THE TYPE-S PITOT TUBE

Thomas R. Clark, Wade Mason, Paul Reinermann III PEDCo Environmental, Inc., Cincinnati, Onio

Revisions to EPA Reference Method 2 - Determination of Stack Gas Velocity and Volumetric Flow Rate (Type-S Pitot Tube) - promulgated August 18, 1977, exempted certain pitot tubes from calibration and included appropriate construction criteria and application guidelines.

Figure 1 summarizes procedures for determining the calibration coefficients of Type-S pitot tubes. A pitot tube may be calibrated using procedures outlined in Method 2 or assigned a baseline coefficient (C_p) of 0.84 if it meets the following criteria:

Pitot tube meets the construction criteria of Figures 2 and 3


The external tubing diameter (D_t) is between 0.48 and 0.95 cm (3/16 and 3/8 in.)

The base-to-opening plane distances (P $_{\rm A}$ and P $_{\rm B})$ are equal and range between 1.05 and 1.50 D $_{\rm t}$

The pitot tube is used separately, or in a pitot-probe assembly, mounted in accordance with the specifications in Figures 4 and 5

Pitot tubes that meet the construction criteria of Figures 2 and 3, but do not meet the specified limits for D_{t} , P_{A} , and P_{B} may be used, but must be calibrated.

Figure 1. Procedures for determining the calibration coefficients of Type-S pitot tubes.

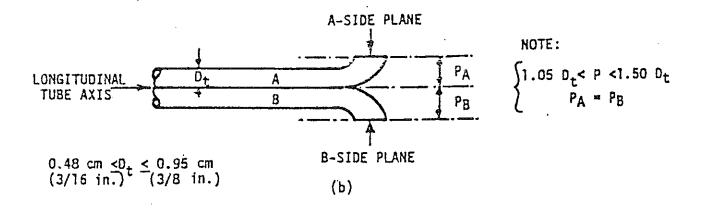


Figure 2. Properly constructed Type-S pitot tube, shown in: (a) end view; face opening planes perpendicular to transverse axis; (b) top view; face opening plans parallel to longitudinal axis; (c) side view; both legs of equal length and centerlines coincident, when viewed from both sides. Baseline coefficient values of 0.84 may be assigned to pitot tubes constructed this way.

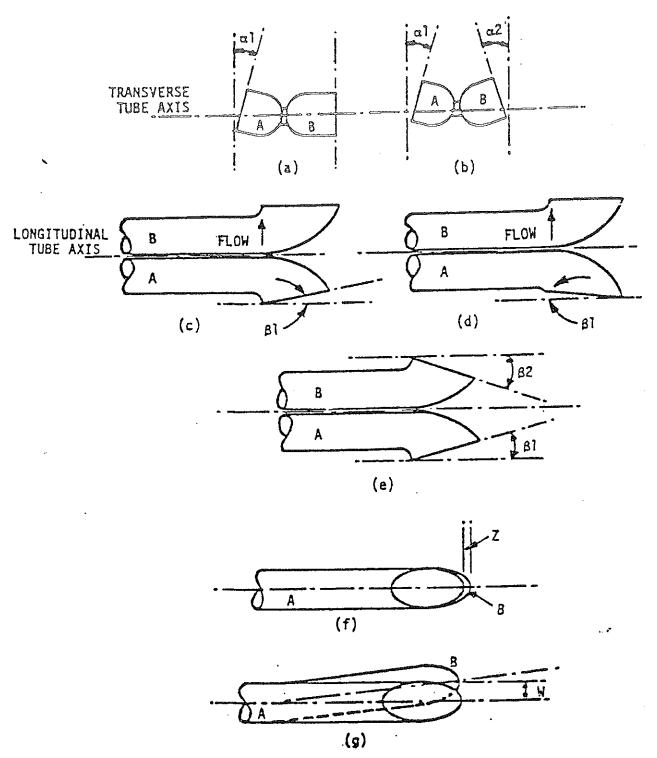
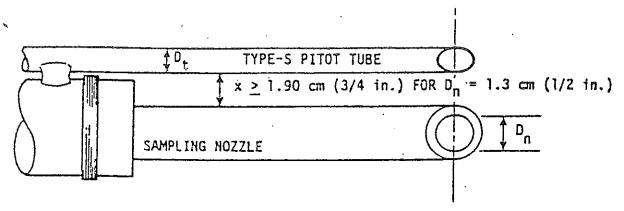
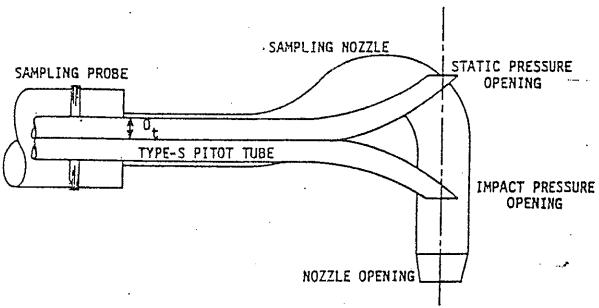




Figure 3. Types of face-opening misalignment that can result from field use or improper construction of Type S pitot tubes. These will not affect Cp as long as all and all 10°, β 2 <5°, z <0.32 cm (1/8 in.) and w <0.08 cm (1/32 in.).

A. BOTTOM VIEW: SHOWING MINIMUM PITOT-NOZZLE SEPARATION.

B. SIDE VIEW: TO PREVENT PITOT TUBE FROM INTERFERING WITH GAS FLOW STREAMLINES APPROACHING THE NOZZLE. THE IMPACT PRESSURE OPENING PLANE OF THE PITOT TUBE SHALL BE EVEN WITH OR ABOVE THE NOZZLE ENTRY PLANE.

Figure 4. Required pitot tube - sampling nozzle configuration to prevent aerodynamic interference; buttonhook - type nozzle; centers of nozzle and pitot opening aligned; D_t between 0.48 and 0.95 cm (3/16 and 3/8 in.).

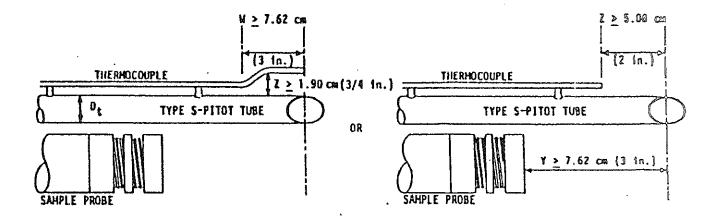


Figure 5. Required thermocouple and probe placement to prevent interference; D_t between 0.48 and 0.95 cm (3/16 and 3/8 in.).

O

The EPA has not specified a measurement technique to verify proper construction. The following procedures provide a quick and accurate method of checking construction specifications for Type-S pitot tubes. The apparatus is inexpensive and available in most hardware stores. The method can be used in the laboratory by testers and easily adapted to field use by agency personnel while witnessing tests or performing quality assurance checks.

- 1. Obtain a section of angle aluminum approximately 20 cm (8 in.) by 1.3 x 2.5 cm (0.5 x 1.0 in.). Mount a bull's-eye level (with ±1 degree accuracy) to the angle aluminum, as shown in Figure 6. After mounting the bull's-eye level to the angle aluminum, level the angle aluminum and place the degree-indicating level in the parallel and perpendicular positions. The indicating level should not read more than 1 degree in either position.
- 2. Place the pitot tube in the angle aluminum as shown in Figure 6, and level the pitot tube as indicated by the bull's-eye level. A vise may be used to hold the angle aluminum and pitot tube in the laboratory and a C-clamp in the field.

 Note: A permanently mounted pitot tube and probe assembly may require a shorter section of angle aluminum to allow proper mounting on the assembly.
- 3. Place a degree-indicating level in the various positions, as illustrated in Figures 7 and 8.
 - 4. Measure distances P, and P, with a micrometer.

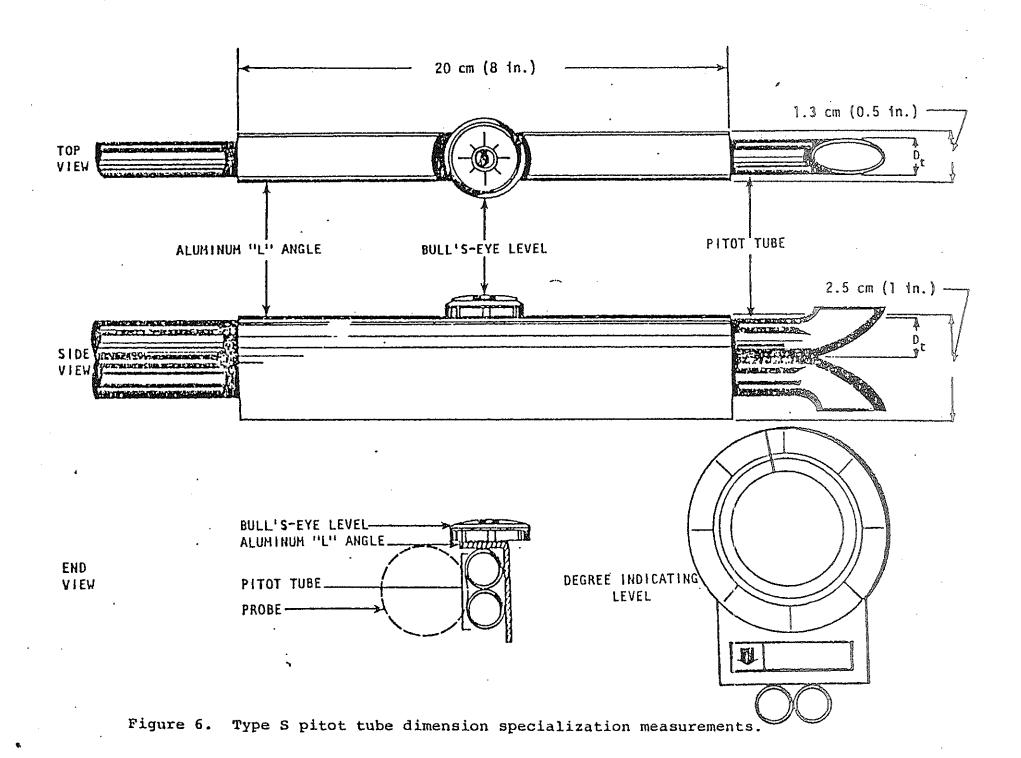
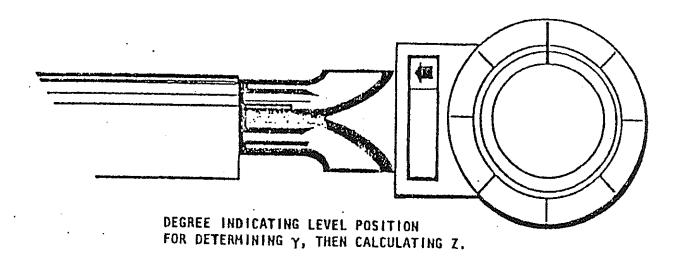



Figure 7. Position of dimension measurement.

DEGREE INDICATING LEVEL POSITION FOR DETERMINING Θ, THEN CALCULATE W.

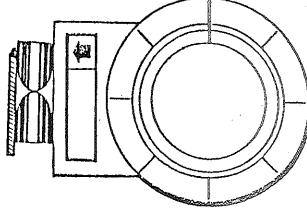


Figure 8. Position of dimension measurement.

- 5. Measure the external tube diameter (D_t) . Record all data on a data sheet such as Figure 9.
- 6. Calculate dimensions w and z using the following equations:

 $w = A \sin \theta$

Equation 1

 $r = A \sin \gamma$

Equation 2

where,

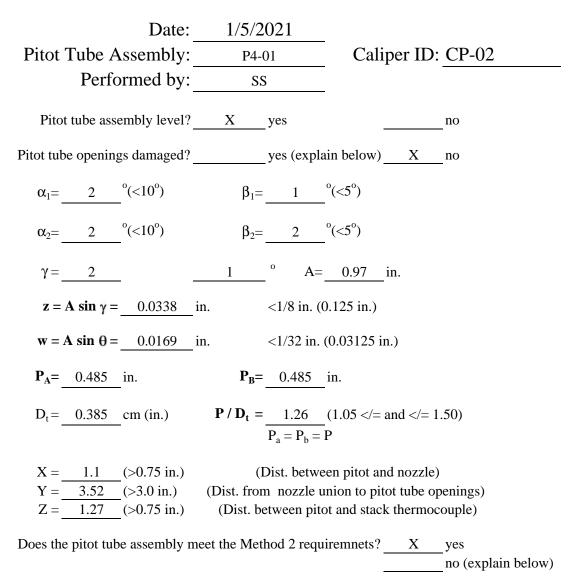
w = alignment dimension, cm (in.)

z = alignment dimension, cm (in.)

A = distance between tips, (P_A + P_B), cm (in.)

 Θ = angle in degrees

 γ = angle in degrees.


Note: Pitot tubes with bent or damaged tubing may be difficult to check using this procedure.

If the Type-S pitot tube meets the face alignment criteria, an identification number should be assigned and permanently marked or engraved on the body of the tube.

References

Federal Register, Vol. 42. No. 160, August 18, 1977.

Date: 1/5/2021 Pitot Tube Assembly: P5-04 Caliper ID: CP-02 Performed by: ss Pitot tube assembly level? x yes Pitot tube openings damaged? ______ yes (explain below) x no $\alpha_1 = \qquad 0 \qquad {}^o(<10^o) \qquad \qquad \beta_1 = \qquad 2 \qquad {}^o(<5^o)$ $\alpha_2 = 0$ $^{\circ}(<10^{\circ})$ $\beta_2 = 1$ $^{\circ}(<5^{\circ})$ $\gamma = \underline{\hspace{1cm}} \hspace{1cm} 0 \hspace{1cm} \theta = \underline{\hspace{1cm}} \hspace{1cm} 0 \hspace{1cm} A = \underline{\hspace{1cm}} 0.92 \hspace{1cm} in.$ $z = A \sin \gamma = 0.0321$ in. <1/8 in. (0.125 in.) $\mathbf{w} = \mathbf{A} \sin \theta = 0.0000$ in. <1/32 in. (0.03125 in.) P_{A} = 0.460 in. P_{B} = 0.460 in. $D_t = 0.375$ cm (in.) $P/D_t = 1.23$ (1.05 </= and </= 1.50) $X = _{\underline{}} (>0.75 in.)$ (Dist. between pitot and nozzle) Y = 3.31 (>3.0 in.) (Dist. from nozzle union to pitot tube openings) Z = 1.65 (>0.75 in.) (Dist. between pitot and stack thermocouple) Does the pitot tube assembly meet the Method 2 requiremnets? x yes no (explain below)

Date: 1/5/2021 Pitot Tube Assembly: P7-01 Caliper ID: CP-02 Performed by: ss Pitot tube assembly level? x yes Pitot tube openings damaged? ______ yes (explain below) x no $\alpha_{l} = \underbrace{\hspace{1cm} 1 \hspace{1cm}}^{\hspace{1cm} o} (<10^{o}) \hspace{1cm} \beta_{l} = \underbrace{\hspace{1cm} 0 \hspace{1cm}}^{\hspace{1cm} o} (<5^{o})$ $\alpha_2 = 0$ $^{\circ}(<10^{\circ})$ $\beta_2 = 0$ $^{\circ}(<5^{\circ})$ $\gamma = \underline{\hspace{1cm}} \hspace{1cm} 0 \hspace{1cm} \theta = \underline{\hspace{1cm}} \hspace{1cm} 0 \hspace{1cm} A = \underline{\hspace{1cm}} 0.93 \hspace{1cm} in.$ $z = A \sin \gamma = 0.0162$ in. <1/8 in. (0.125 in.) $\mathbf{w} = \mathbf{A} \sin \theta = 0.0000$ in. <1/32 in. (0.03125 in.) P_{A} = 0.465 in. P_{B} = 0.465 in. $D_t = 0.375$ cm (in.) $P/D_t = 1.24$ (1.05 </= and </= 1.50) X = 1.11 (>0.75 in.) (Dist. between pitot and nozzle) Y = 3.71 (>3.0 in.) (Dist. from nozzle union to pitot tube openings) Z = 2.03 (>0.75 in.) (Dist. between pitot and stack thermocouple) Does the pitot tube assembly meet the Method 2 requiremnets? x yes no (explain below)

Date: 1/5/2021 Pitot Tube Assembly: P7-02 Caliper ID: CP-02 Performed by: ss Pitot tube assembly level? x yes Pitot tube openings damaged? ______ yes (explain below) ___ x ___ no $\alpha_2 = 1 \quad {}^{o}(<10^{o}) \qquad \beta_2 = 0 \quad {}^{o}(<5^{o})$ $\gamma = \underline{\hspace{1cm}} \hspace{1cm} {}^{o} \hspace{1cm} \theta = \underline{\hspace{1cm}} \hspace{1cm} {}^{o} \hspace{1cm} A = \underline{\hspace{1cm}} \hspace{1cm} in.$ $z = A \sin \gamma = 0.0174$ in. <1/8 in. (0.125 in.) $\mathbf{w} = \mathbf{A} \sin \theta = 0.0174$ in. <1/32 in. (0.03125 in.) P_{A} = 0.500 in. P_{B} = 0.500 in. $D_t = 0.375$ cm (in.) $P/D_t = 1.33$ (1.05 </= and </= 1.50) X = 1.57 (>0.75 in.) (Dist. between pitot and nozzle) $Y = \overline{3.75}$ (>3.0 in.) (Dist. from nozzle union to pitot tube openings) Z = 1.2 (>0.75 in.) (Dist. between pitot and stack thermocouple) Does the pitot tube assembly meet the Method 2 requiremnets? x yes no (explain below)

APPENDIX C LABORATORY ANALYTICAL REPORT

1/11/2021 Mr. Robert DeMott Ramboll Environ 10150 Highland Manor Drive Suite 440 Tampa FL 33610

Project Name: K&S Bard Project #: 1690014483 Workorder #: 2101012

Dear Mr. Robert DeMott

The following report includes the data for the above referenced project for sample(s) received on 1/4/2021 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by Modified TO-15 SIM are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Brian Whittaker

Regards,

Brian Whittaker

Project Manager

WORK ORDER #: 2101012

Work Order Summary

CLIENT: Mr. Robert DeMott BILL TO: Accounts Payable

Ramboll Ramboll

10150 Highland Manor Drive 10150 Highland Manor Drive

Suite 440 Suite 440

Tampa, FL 33610 Tampa, FL 33610

PHONE: 813-628-4325 **P.O.** #

FAX: 813-628-4983 PROJECT # 1690014483 K&S Bard

DATE RECEIVED: 01/04/2021 **CONTACT:** Brian Whittaker

DATE COMPLETED: 01/11/2021

FRACTION #	<u>NAME</u>	TEST	RECEIPT <u>VAC./PRES.</u>	FINAL <u>PRESSURE</u>
01A	SYS-S2 20201231	Modified TO-15 SIM	8.5 "Hg	5 psi
02A	SYS-S3 20201231	Modified TO-15 SIM	7.5 "Hg	5 psi
03A	SYS-S5 20201231	Modified TO-15 SIM	7.5 "Hg	5 psi
04A	SYS-STACK 20201231	Modified TO-15 SIM	6.5 "Hg	5 psi
05A	SYS-STACK DUP 20201231	Modified TO-15 SIM	6.0 "Hg	5 psi
05AA	SYS-STACK DUP 20201231 Lab Duplicate	Modified TO-15 SIM	6.0 "Hg	5 psi
06A	Lab Blank	Modified TO-15 SIM	NA	NA
07A	CCV	Modified TO-15 SIM	NA	NA
08A	LCS	Modified TO-15 SIM	NA	NA
08AA	LCSD	Modified TO-15 SIM	NA	NA

	TI	ende flages	
CERTIFIED BY:			DATE: $\frac{01/11/21}{}$

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209220, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-20-16, UT NELAP – CA009332020-12, VA NELAP - 10615, WA NELAP - C935

Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-014, Effective date: 10/18/2020, Expiration date: 10/17/2021.

Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

LABORATORY NARRATIVE EPA TO-15 Ethylene oxide (SIM) Ramboll Environ Workorder# 2101012

Five 6 Liter Summa Canister (EO) samples were received on January 04, 2021. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the SIM acquisition mode for the measurement of Ethylene oxide in ambient air.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

Ethylene Oxide is not included on the laboratory's NELAP scope of accreditation for TO-15 SIM. However, TO-15 method and NELAP quality requirements were met.

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. The canisters used for this project have been certified to half the Reporting Limit for Ethylene Oxide. Concentrations that are below the level at which the canister was certified may be false positives.

Dilution was performed on samples SYS-S2 20201231, SYS-S3 20201231 and SYS-S5 20201231 due to the presence of high level target species.

Definition of Data Qualifying Flags

Nine qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - CN See Case Narrative

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Client ID: SYS-S2 20201231

Lab ID: 2101012-01A **Date/Time Analyzed:** 1/6/21 07:07 PM

Date/Time Collected: 12/31/20 01:52 PM Dilution Factor: 7.48

Media: 6 Liter Summa Canister (EO) Instrument/Filename: msd30.i / 30010614sim

Compound	CAS#	MDL (ug/m3)	LOD (ug/m3)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethylene Oxide	75-21-8	0.14	D	0.67	210

D: Analyte not within the DoD scope of accreditation.

Client ID: SYS-S3 20201231

Lab ID: 2101012-02A **Date/Time Analyzed:** 1/6/21 07:39 PM

Date/Time Collected: 12/31/20 01:52 PM **Dilution Factor:** 7.15

Media: 6 Liter Summa Canister (EO) Instrument/Filename: msd30.i / 30010615sim

Compound	CAS#	MDL (ug/m3)	LOD (ug/m3)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethylene Oxide	75-21-8	0.13	D	0.64	1100

D: Analyte not within the DoD scope of accreditation.

1/6/21 08:10 PM

MODIFIED EPA METHOD TO-15 GC/MS SIM K&S Bard

Client ID: SYS-S5 20201231 Lab ID: 2101012-03A

Lab ID: 2101012-03A Date/Time Analyzed:
Date/Time Collected: 12/31/20 01:52 PM Dilution Factor:

Date/Time Collected:12/31/20 01:52 PMDilution Factor:7.15Media:6 Liter Summa Canister (EO)Instrument/Filename:msd30.i / 30010616sim

Compound	CAS#	MDL (ug/m3)	LOD (ug/m3)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethylene Oxide	75-21-8	0.13	D	0.64	110

D: Analyte not within the DoD scope of accreditation.

Client ID: SYS-STACK 20201231

Lab ID: 2101012-04A **Date/Time Analyzed:** 1/6/21 06:35 PM

Date/Time Collected: 12/31/20 01:52 PM Dilution Factor: 1.71

Media: 6 Liter Summa Canister (EO) Instrument/Filename: msd30.i / 30010613sim

Compound	CAS#	MDL (ug/m3)	LOD (ug/m3)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Compound	CAO#	(5.9)	()	(***3****)	(***3** - 7
Ethylene Oxide	75-21-8	0.032	D	0.15	36

D: Analyte not within the DoD scope of accreditation.

Client ID: SYS-STACK DUP 20201231

Lab ID: 2101012-05A **Date/Time Analyzed:** 1/6/21 05:25 PM

Date/Time Collected: 12/31/20 01:52 PM Dilution Factor: 1.68

Media: 6 Liter Summa Canister (EO) Instrument/Filename: msd30.i / 30010611sim

		MDL	LOD	Rpt. Limit	Amount	
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	
Ethylene Oxide	75-21-8	0.031	D	0.15	37	

D: Analyte not within the DoD scope of accreditation.

Client ID: SYS-STACK DUP 20201231 Lab Duplicate

Lab ID: 2101012-05AA **Date/Time Analyzed:** 1/6/21 06:00 PM

Date/Time Collected: 12/31/20 01:52 PM Dilution Factor: 1.68

Media: 6 Liter Summa Canister (EO) Instrument/Filename: msd30.i / 30010612sim

Compound	CAS#	MDL (ug/m3)	LOD (ug/m3)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethylene Oxide	75-21-8	0.031	D D	0.15	37

D: Analyte not within the DoD scope of accreditation.

Client ID: Lab Blank Lab ID: 2101012-06A

Date/Time Collected: NA - Not Applicable

Media: NA - Not Applicable

Date/Time Analyzed: 1/6/21 12:08 PM

Dilution Factor: 1.00

Instrument/Filename: msd30.i / 30010605sim

Compound	CAS#	MDL (ug/m3)	LOD (ug/m3)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethylene Oxide	75-21-8	0.019	D	0.090	Not Detected

D: Analyte not within the DoD scope of accreditation.

Client ID: CCV

Lab ID: 2101012-07A **Date/Time Analyzed:** 1/6/21 10:29 AM

Date/Time Collected: NA - Not Applicable **Dilution Factor:** 1.00

Media: NA - Not Applicable Instrument/Filename: msd30.i / 30010602sim

Compound	CAS#	%Recovery
Ethylene Oxide	75-21-8	108

D: Analyte not within the DoD scope of accreditation.

Client ID: LCS

Lab ID: 2101012-08A **Date/Time Analyzed:** 1/6/21 11:01 AM

Date/Time Collected: NA - Not Applicable **Dilution Factor:** 1.00

Media: NA - Not Applicable Instrument/Filename: msd30.i / 30010603sim

Compound	CAS#	%Recovery
Ethylene Oxide	75-21-8	92

D: Analyte not within the DoD scope of accreditation.

^{* %} Recovery is calculated using unrounded analytical results.

Client ID: LCSD

Lab ID: 2101012-08AA **Date/Time Analyzed:** 1/6/21 11:33 AM

Date/Time Collected: NA - Not Applicable **Dilution Factor:** 1.00

Media: NA - Not Applicable Instrument/Filename: msd30.i / 30010604sim

Compound	CAS#	%Recovery
Ethylene Oxide	75-21-8	91

D: Analyte not within the DoD scope of accreditation.

^{* %} Recovery is calculated using unrounded analytical results.

control

Analysis Request /Canister Chain of Custody

Air Toxics

PID:

For Laboratory Use Only

Workorder #:

2101012

180 Blue Ravine Rd. Suite B, Folsom, CA 95630

Click links below to view:

<u>Canister Sampling Guide</u>

Client: Project Name: Project Manager: Sampler:		Ramboll	PID:	Special Ir	structions/Not	es:		Turnaround Time (Rush surcharges may apply)							
		K&S Bard					RUSH								
		Robert DeMott	P.O.# 1690014	1483					Cani	ister Vacuum/Pressure			Re	quested .	Analyses
		K. Cole │ K	Hildreak								Lab U	se Only	0		
Site Nam	ne:	K&S Bard									3/2/54		Oxide	Tr I	
Lab ID Sa		mple Identification	Can#	Flow Controller #		Start Sampling Information		Stop Sampling Information		Final (in Hg)	Receipt	I (psig) N ₂ / He	Ethylene O	2,5-Dimethyl Furan	
					Date	Time	Date	Time	Initial (in Hg)		Rec	Final Gas:	ü		
014		SYS-S2 20201231	<u> (Ciggo</u>	23999	12/31/2020	0952	12/31/2020	1352	92	8.25		44,275	Х		
024		SYS-S3 20201231	GL1496	23997	12/31/2020	0952	12/31/2020	1352	365	7.8	5112445		Х		
034		SYS-S5 20201231	(oL/(cH)	23991	12/31/2020	0952	12/31/2020	1352	98	6.5			X		
040	S'	YS-STACK 20201231	420559	23993	12/31/2020	095a	12/31/2020	1352	215	65'					
OSA	SYS	-STACK DUP 20201231	446979	23746	12/31/2020	0952	12/31/2020	1352	071	55		Çarente.	Х		
											3000				
77/20															
											232g	558.57			
												14000			
O. C.												37.50			
400		V										3547			
									†				 -		
424								····		-	488				
5523									†	 	Santan,	2003			
Relinquished by: (Signature/Affiliation) Date					O TO TOUR AND A				filiation)	<u> </u>		Date	Time		<u> </u>
Relinquished by: (Signature/Affiliation) Date					Time		Received by:	filiation)			Date Date		Time		
Relinquished by: (Signature/Affiliation)			Date	Time		Received by:	filiation)			Date		Time			
				L	l Lab	Jse Only	L					L		l	
Shipper N	ame:	edfo	Custody Seals Inta	ct? Yes		None		1000							

handling, of shipping of samples. D.O.T Hotline (800) 467-4922

LABSAMPID	LABCODE	MATRIX	METHOD	CLIENTSAMPID	SAMPDATETANALDATE ANALTIME	LABCTLID	DILUTION	REPLMT	UNITS	RESULTS	DATAFLAGS R	EPLMT (ug/m UN	ITS (ug/i	RESULTS (ug	/m DATAFLAGS COMPOUND NAME	CASNUM	COMMENTS
2101012-01A	ATL	AIR	TO-15	SYS-S2 20201231	12/31/2020 01/06/2021 1907	msd3006JAN21	7.48	0.67	UG/M3	210	0	.67 UG	/M3	210	Ethylene Oxide	75-21-8	
2101012-02A	ATL	AIR	TO-15	SYS-S3 20201231	12/31/2020 01/06/2021 1939	msd3006JAN21	7.15	0.64	UG/M3	1100	0	.64 UG	/M3	1100	Ethylene Oxide	75-21-8	
2101012-03A	ATL	AIR	TO-15	SYS-S5 20201231	12/31/2020 01/06/2021 2010	msd3006JAN21	7.15	0.64	UG/M3	110	0	.64 UG	/M3	110	Ethylene Oxide	75-21-8	
2101012-04A	ATL	AIR	TO-15	SYS-STACK 20201231	12/31/2020 01/06/2021 1835	msd3006JAN21	1.71	0.15	UG/M3	36	0	.15 UG	/M3	36	Ethylene Oxide	75-21-8	
2101012-05A	ATL	AIR	TO-15	SYS-STACK DUP 20201231	12/31/2020 01/06/2021 1725	msd3006JAN21	1.68	0.15	UG/M3	37	0	.15 UG	/M3	37	Ethylene Oxide	75-21-8	
2101012-05AA	ATL	AIR	TO-15	SYS-STACK DUP 20201231 La	ib 12/31/2020 01/06/2021 1800	msd3006JAN21	1.68	0.15	UG/M3	37	0	.15 UG	/M3	37	Ethylene Oxide	75-21-8	
2101012-06A	ATL	AIR	TO-15	Lab Blank	00:00 01/06/2021 1208	msd3006JAN21	1.00	0.090	UG/M3		ND 0	.090 UG	/M3		ND Ethylene Oxide	75-21-8	
2101012-07A	ATL	AIR	TO-15	CCV	00:00 01/06/2021 1029	msd3006JAN21	1.00		%R	108		%R		108	Ethylene Oxide	75-21-8	
2101012-08A	ATL	AIR	TO-15	LCS	00:00 01/06/2021 1101	msd3006JAN21	1.00		%R	92		%R		92	Ethylene Oxide	75-21-8	
2101012-08AA	ATL	AIR	TO-15	LCSD	00:00 01/06/2021 1133	msd3006JAN21	1.00		%R	91		%R		91	Ethylene Oxide	75-21-8	