Environmental Resources Management

3200 Windy Hill Road, SE Suite 1500W Atlanta, GA 30339 678.486.2700 404.745.0103 (fax)

August 5, 2013 0121022

Ms. Carolyn Daniels Response and Remediation Program Georgia Environmental Protection Division 2 Martin Luther King, Jr. Drive, SE Suite 1142, East Tower Atlanta, Georgia 30334-9000

Subject: Submittal of the Fourth Semi-Annual Progress Report

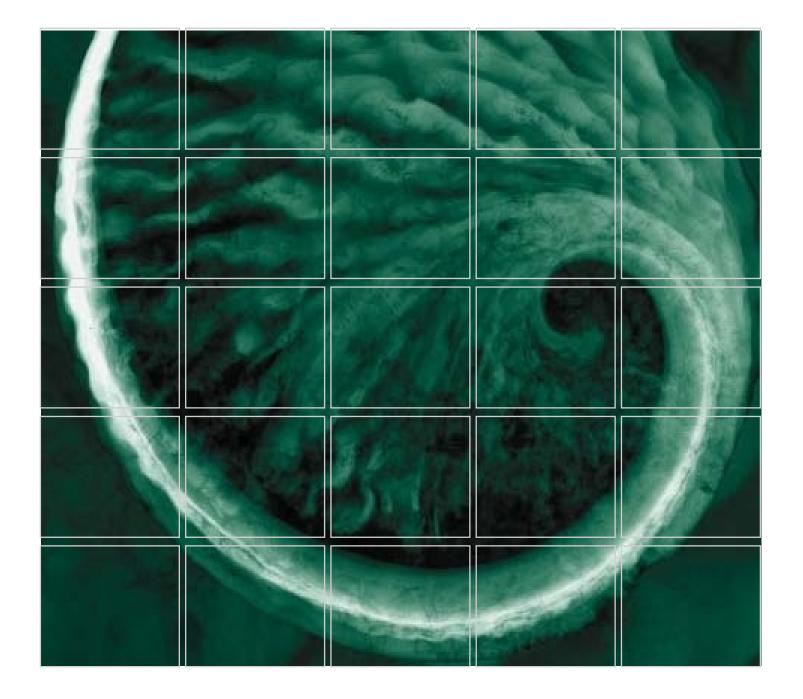
to the VRP Program for HSI Site No. 10731 BWAY Corporation - Homerville, Georgia

Dear Carolyn:

This report is being submitted on behalf of BWAY Corporation (BWAY) for the referenced property. This is the Fourth Semi-Annual Progress Report for this site since it entered the Voluntary Remediation Program (VRP). This site was accepted into the Voluntary Remediation Program by way of correspondence from the Georgia Environmental Protection Division (EPD) dated July 22, 2011. The content of this report describes the Voluntary Investigation and Remediation Plan implementation that has been performed since the last submittal to the EPD.

We look forward to your review of this report. Please contact us with any questions or comments you may have.

Sincerely,


Amy G. Hickman, E.I.T.

Project Manager

Jeffrey N. Bilkert

Principal

cc: Steve Bargeron, BWAY Corporation; Mark Miller, Cornerstone

Fourth Semi-Annual Progress Report

BWAY Corporation, Homerville, Georgia HSI Site No. 10731

Submitted Under Georgia's Voluntary Remediation Program (VRP) Act

August 5, 2013

ERM Project No. 0121022

The competitive world

The competitive world

TABLE OF CONTENTS

1.0	INTI	RODUCTION	1				
	1.1.	BACKGROUND	1				
	1.2.	SITE DESCRIPTION	2				
2.0	GROUND WATER ASSESSMENT						
	2.1.	MONITORING WELL INSTALLATION	4				
	2.2.	MONITORING WELL REDEVELOPMENT	5				
	2.3.	GROUND WATER SAMPLING AND DELINEATION	5				
		2.3.1 Potentiometric Surface	5				
		2.3.2 Ground Water Sampling Methods	6				
		2.3.3 Ground Water Analytical Results	7				
	2.4.	GROUND WATER DELINEATION	8				
3.0	CON	ICEPTUAL SITE MODEL	10				
	3.1.	SITE GEOLOGY	10				
	3.2.	GROUND WATER					
4.0	REC	OMMENDATIONS	11				
	4.1.	HORIZONTAL DELINEATION	11				
	4.2.	SAMPLING	11				
	4.3.	MODELING AND REPORTING	11				
5.0	REFI	ERENCES	13				

ERM *i* HSI #10731

LIST OF TABLES

- 1 Ground Water Monitoring Well Construction Details
- 2 Ground Water Elevation Data
- 3 Table of Site Delineation Concentrations
- 4 Ground Water VOC Monitoring Data

LIST OF FIGURES

- 1 Site Location
- 2 Site Map
- 3 Potentiometric Surface Map April 2013
- 4 Ground Water Data April and July 2013
- 5 Cross-Section Location Map
- 6 Cross-Section A- A'
- 7 Cross-Section B B'

LIST OF APPENDICES

- A Documentation of Work Performed by Professional Engineer/Geologist
- B Boring Logs and Well Construction Diagrams
- C Ground Water Sampling Logs
- D Ground Water Analytical Data Reports

GROUND WATER SCIENTIST STATEMENT

I certify that I am a qualified ground water scientist who has received a baccalaureate or post-graduate degree in the natural sciences or engineering, and have sufficient training and experience in ground water hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound professional judgments regarding ground water monitoring and contaminant fate and transport.

I further certify that this report for Hazardous Site Inventory Site No. 10731 was prepared by me and appropriate qualified subordinates working under my direction.

A summary of the hours spent by the Professional Engineer is provided in Appendix A, in order to comply with Voluntary Remediation Plan Act.

Adria Reimer, P.

Georgia License No.

Date

1.0 INTRODUCTION

This Fourth Semi-Annual Progress Report has been prepared for the BWAY Corporation Former Drum Site (the Site) located in Homerville, Georgia for submittal to Georgia's Voluntary Remediation Program (VRP) on behalf of BWAY Corporation (BWAY). This Site is listed in Georgia's Hazardous Site Inventory (HSI) as Site Number 10731. The Site was accepted into Georgia's VRP on July 22, 2011.

The purpose of this Progress Report is to document activities conducted during this reporting period (January 1, 2013 through June 30, 2013). The remainder of this report is organized into the following sections to provide information regarding investigation and assessment activities performed in the past six month period:

- Section 2 Ground Water Assessment,
- Section 3 Conceptual Site Model,
- Section 4 –Recommendations, and
- Section 5 References.

Activities completed during this reporting period were consistent with recommendations included in the Third Semi-Annual Progress Report, submitted to the EPD on January 22, 2013.

1.1. BACKGROUND

The Site is listed on Georgia's HSI as Site Number 10731. The Site is located on property that is a planted pine forest across US-84 from the main BWAY plant in Homerville. Specifically, the Site is situated northwest of the intersection of Charley Smith Road (also known as Woodlake Road) and Highway 84. A Site location map is shown on Figure 1.

The Site is located adjacent to the BWAY Homerville plant, which was constructed by the Standard Container Corporation (Standard) in 1957. Standard's operations included the manufacture of insect sprayers and pie pans. The business eventually expanded into the

ERM 1 HSI #10731

manufacturing of metal pails, cans, and ammunition boxes. Brockway, Inc. acquired Standard in the early 1980s. Standard's name was changed to Brockway Standard, Inc. in 1985. Owens-Illinois acquired Brockway Standard, Inc. in 1988. A Chicago-based investor group acquired Brockway Standard, Inc. in 1989. The company name was changed to BWAY Corporation in 2000.

A former drum disposal area was discovered on the wooded property situated northwest of the intersection of Charley Smith Road and Highway 84 in 2001. The former drum disposal area is located north of and adjacent to the BWAY Homerville plant. Drum removal was conducted following EPD notification. Drums, drum remnants, waste materials, and soil were removed from this area in July and August 2003. Under the guidance of the Georgia Hazardous Site Response Act (HSRA), a Revised Compliance Status Report (RCSR) and a Corrective Action Plan (CAP) were submitted to EPD in 2005. Both were subsequently approved by EPD in 2005.

Ground water corrective action activities were performed at the Site following the approval of the CAP in July 2005. Corrective actions included two high vacuum extraction (HVE) events, injections for enhanced bioremediation, with well installations, sampling and ground water elevation gauging to monitor progress. The work summarized above was conducted when the Site was being regulated under the EPD's HSRA Program.

Georgia introduced the VRP in 2009, which allows for a regulated party to perform voluntary investigation, remediation, and calculation of risk-based corrective action standards. A Voluntary Remediation Plan was submitted to the EPD in April 2010. The Site was approved for entry into the VRP on July 22, 2011.

This is the fourth semi-annual submittal to the EPD since acceptance into the VRP program on July 22, 2011. This submittal is in compliance with the deadlines set forth at that time.

1.2. SITE DESCRIPTION

The Site is located in the northwest quadrant of the intersection of Charley Smith Road (a.k.a. Woodlake Road) and U.S. Highway 84. The VRP qualifying tax parcel consists of approximately 29.5 acres of vacant, wooded land. The other two contiguous parcels owned by

ERM 2 HSI #10731

BWAY are developed with structures, but are not part of the VRP-regulated Site. The main BWAY plant is located at 1601 Valdosta Highway and consists of 87 acres developed with multiple buildings. The main BWAY plant is also listed on the Georgia HSI. See Figure 1 for general Site topography. Other land use in proximity to the Site includes planted pine forests managed by others, a former wood treating site known as the Union Timbers site, and some light industrial and commercial areas.

Three (3) new delineation wells (ERM-MW-24, ERM-MW-25, and ERM-MW-26) were installed at the Site during this reporting period, increasing the total number of ground water wells in the monitoring network to twenty-six (26), as shown on Figure 2.

Two wells, ERM-MW-7 and ERM-MW-14 were completed at depths of 52 feet and 35 feet below ground surface (BGS), respectively, for vertical delineation. The remaining wells have been completed to approximately 11 to 25 feet BGS to evaluate the horizontal extent of regulated substances in ground water. They are also used for ground water elevation monitoring and potentiometric surface mapping.

Soils at the Site are primarily sands ranging from fine to coarse-grained with some silt and clay content. The Site topography ranges from 175 to 180 feet above mean sea level (ft MSL). The soil conditions were found to be heterogeneous with intermittent sandy-clay and clay lenses observed at depths between 157 and 177 ft MSL. An additional sandy-clay lens (approximately 3 feet in thickness) was identified at approximately 50 feet below ground surface in monitoring well ERM-MW-7. A description of the subsurface soil is provided in Section 3.

ERM 3 HSI #10731

2.0 GROUND WATER ASSESSMENT

The following ground water assessment work has been completed at the Site since the last submittal to EPD:

- Installation and initial sampling of three (3) new monitoring wells for delineation purposes;
- Redevelopment of ERM-MW-21;
- Potentiometric surface mapping; and
- Collection of ground water samples from twelve (12) wells for analysis of volatile organic compounds (VOC).

Monitoring well locations are shown on Figure 2 and monitoring well construction details are provided in Table 1.

2.1. MONITORING WELL INSTALLATION

In February 2013, ERM-MW-24 was installed for the purpose of establishing the horizontal extent of VOCs in ground water to the north of ERM-MW-20. Borehole drilling was completed using a Geoprobe® rig with hollow-stem auger capabilities. A 2-inch diameter PVC well with 10-feet of 0.010-slot screen was installed in the borehole. A washed silica sand pack was placed in the annular space around the well screen to serve as a filter for soil particles in the ground water. Two feet of hydrated bentonite chips were placed in the annular space above the filter pack. The remainder of the annular space was filled with expansive cement grout from the top of the bentonite seal to ground surface. The well was completed with an expandable well cap and a locking stick-up casing set in a concrete well pad.

Based on results from the April 2013 sampling event (see discussion in Section 2.3.3), it was concluded that the extent of ground water impacts to the west of ERM-MW-21 had not been adequately delineated. Consequently, two additional delineation wells, ERM-MW-25 and ERM-MW-26, were installed along the western plume boundary in July 2013. The approximate locations of the new wells are shown on Figure 2.

ERM 4 HSI #10731

A preliminary investigation of ground water conditions was completed prior to establishing the final locations of ERM-MW-25 and ERM-MW-26. This included using direct-push technology to advance Geoprobe® rods at two locations west of ERM-MW-21. Ground water samples were collected through the rods and submitted to an on-Site mobile laboratory for analysis of Site-specific VOCs. Upon determination that all sample results were below reporting limits, the borings were converted to permanent monitoring wells. Well construction of ERM-MW-25 and ERM-MW-26 was consistent with ERM-MW-24, with the exception that, a 10-foot pre-packed well screen was utilized at the two locations.

Construction of the three new ground water monitoring wells was similar to other monitoring wells at the Site (i.e. with a total depth no greater than 25 feet below ground surface). Boring logs and well construction diagrams for the new wells are included in Appendix B.

2.2. MONITORING WELL REDEVELOPMENT

In accordance with recommendations made in the Third Semi-Annual Progress Report, ERM redeveloped ERM-MW-21 on February 12, 2013. The well was redeveloped using a Waterra Hydrolift pump with a surge block. Approximately 110 gallons of ground water was purged from ERM-MW-21 over a three hour time period. The goal of the redevelopment was to decrease turbidity in the well; however, the ground water from ERM-MW-21 remained visibly turbid after redevelopment. Based on the sampling results from ERM-MW-21 (discussed in Section 2.3.3) following redevelopment, it was concluded that this well could not be used to demonstrate horizontal delineation.

2.3. GROUND WATER SAMPLING AND DELINEATION

ERM collected potentiometric surface data from available wells and measured VOC concentrations in the ground water at selected wells as discussed in the following sections.

2.3.1 Potentiometric Surface

Ground water levels were measured most recently on April 15, 2013. Ground water elevation data from April 2013 are shown on Figure 3

and summarized in Table 2. These measurements were converted to elevations for the purpose of creating a potentiometric surface map, with the exception of the wells discussed below. Monitoring well ERM-MW-21 was inaccessible during gauging activities due to excessive standing water around this well; a water level could not be collected from this location. Elevation data associated with the deep wells were not contoured as they are considered to be associated with a separate aquifer system.

The direction of ground water movement at the Site has historically trended to the west with local variations to the north and northwest. The most recently mapped potentiometric surface (Figure 3) shows a westerly ground water flow direction with local variations to the southwest near ERM-MW-20 and to the northwest near ERM-MW-22. The depression in the potentiometric surface that was observed at ERM-MW-2 during the November 2012 monitoring event was not observed during the most recent monitoring event.

Historically, ERM-MW-13 has not been used in the development of the potentiometric maps for the Site due to its high ground water elevation relative to nearby wells. It was assumed the apparent high ground water elevation at this well was due to a measurement error. However, the fact that these results have been repeated during the last four monitoring events suggests that historical data for ERM-MW-13 has been accurate. The mounding of ground water observed in this area may be a result of preferential ground water recharge occurring within the area that was excavated when the drum disposal area was remediated in 2003.

2.3.2 Ground Water Sampling Methods

The nine wells that have potential for use in the calculation of the risk-based corrective action standards (ERM-MW-3, ERM-MW-9, and ERM-MW-15 through ERM-MW-21) and newly installed ERM-MW-24 were sampled for Site-specific VOCs in April 2013. Delineation wells ERM-MW-25 and ERM-MW-26 were sampled following their installation in July 2013.

Ground water samples were analyzed for the following Site compounds of concern (COCs): chloroethane, 1,1-dichloroethene, ethylbenzene, isopropylbenzene, methyl ethyl ketone (2-butanone), naphthalene, toluene, 1,1,1-trichloroethane, vinyl chloride, and

ERM 6 HSI #10731

xylenes. The delineation concentration for each of these compounds is listed in Table 3.

Ground water samples were collected utilizing low flow/low volume techniques in accordance with the SESDPROC-301-R2 sampling protocol with the exception of the sample collected from ERM-MW-21. Due to excessive standing water, ERM-MW-21 could not be accessed with low flow/low volume equipment, and a ground water sample was collected using a new disposable polyethylene bailer. During the purging period, the temperature, specific conductance, pH, and turbidity were measured in the field as the ground water samples were collected. Field parameter measurements collected during the ground water sampling event are shown on the ground water sampling log forms located in Appendix C.

The turbidity at ERM-MW-24, ERM-MW-25, and ERM-MW-26 did not decrease below 10 NTUs. ERM-MW-24 was purged until turbidity stabilized within 10% for three consecutive readings. ERM-MW-25 and ERM-MW-26 were purged until five well volumes had been removed.

The ground water samples and associated trip blanks were analyzed for selected VOCs by EPA Method 8260B.

2.3.3 Ground Water Analytical Results

Seven VOCs were detected in ground water during the April 2013 sampling event. VOC concentrations exceeded delineation criteria in eight of the ten wells sampled during the event. No VOCs were detected above laboratory detection limits in samples collected from ERM-MW-15 and delineation well ERM-MW-24 in April 2013.

No VOCs were detected above laboratory detection limits in ground water samples collected from delineation wells ERM-MW-25 and ERM-MW-26 in July 2013.

A copy of the analytical data reports are provided in Appendix D. A summary of detected VOCs is shown in Table 4. Highlighted values in Table 4 are chemical concentrations that exceed the delineation criteria.

ERM 7 HSI #10731

The seven VOCs that were detected in ground water during the April 2013 sampling event are:

- Ethylbenzene and xylene were detected in ERM-MW-3 at concentrations below the delineation criteria.
- 1,1-Dichloroethane was detected in ERM-MW-16 at a concentration below the delineation criterion.
- Chloroethane was detected above its delineation concentration in ERM-MW-18.
- Isopropylbenzene and naphthalene were detected above their delineation criteria in ERM-MW-3.
- 1,1-Dichlorethene was detected above the delineation concentration at six wells (ERM-MW-9, ERM-MW-17, ERM-MW-18, ERM-MW-19, ERM-MW-20, and ERM-MW-21).
- Vinyl Chloride was detected above its delineation concentration in five wells (ERM-MW-9, ERM-MW-16, ERM-MW-17, ERM-MW-18, and ERM-MW-20).

Ground water VOC results from April and July 2013 are shown on Figure 4. The distribution of VOC concentrations in ground water relative to the established delineation concentrations is discussed in the following section.

2.4. GROUND WATER DELINEATION

Figure 4 shows the delineation boundary for regulated compounds detected on Site.

Based on the April and July 2013 sampling data, delineation criteria are exceeded at the following monitoring wells: ERM-MW-3, ERM-MW-9, ERM-MW-16, ERM-MW-17, ERM-MW-18, ERM-MW-19, ERM-MW-20, and ERM-MW-21. Horizontal delineation has been achieved with monitoring wells ERM-MW-7, ERM-MW-10, ERM-MW-12, ERM-MW-15, ERM-MW-22, MW-23, ERM-MW-24, ERM-MW-25 and ERM-MW-26.

ERM 8 HSI #10731

The recent installation and sampling of ERM-MW-24, ERM-MW-25, and ERM-MW-26 completed delineation to the north and west. All VOC results were below detection limits in the samples collected from these new wells. These wells will be sampled again in November 2013 to evaluate any seasonal variations in VOC concentrations as described in the Recommendations section of this report (Section 4).

ERM 9 HSI #10731

3.0 CONCEPTUAL SITE MODEL

Since the last submittal to EPD, the following activities related to the conceptual Site model (CSM), have occurred:

- Monitoring well ERM-MW-24 was installed in February 2013 and sampled in April 2013;
- During the April 2013 sampling event, all existing monitoring wells at the Site were gauged to determine ground water elevations; and
- ERM-MW-25 and ERM-MW-26 were installed and sampled in July 2013.

These activities were used to update the CSM as discussed below.

3.1. SITE GEOLOGY

Boring logs for new monitoring well boreholes drilled at the Site indicate subsurface materials are generally composed of clayey sands to clean sands which are consistent with lithology previously encountered at the Site. Geologic cross-sections for the Site have been updated with the most recent water level and analytical data (see Figures 5, 6, and 7).

3.2. GROUND WATER

A potentiometric surface map estimated from data collected during the April 2013 ground water sampling event is shown on Figure 3. As shown in Figure 3, the local direction of ground water movement is generally to west, with a southwesterly component near ERM-MW-20 and a northwesterly component near ERM-MW-22.

4.0 RECOMMENDATIONS

BWAY will continue with sampling and reporting efforts to meet the objectives set in Georgia's VRP Act. Details are discussed below.

4.1. HORIZONTAL DELINEATION

Horizontal delineation has been completed at the Site based on the most recent sampling results from ERM-MW-24, ERM-MW-25, and ERM-MW-26. All VOCs were below detection limits in ground water samples collected from these wells. These three wells will be sampled again during the November 2013 sampling event to assess seasonal variations in ground water quality conditions.

4.2. SAMPLING

In November 2013, ground water sampling and analysis will be performed at ERM-MW-3, ERM-MW-9, ERM-MW-15, ERM-MW-16, ERM-MW-17, ERM-MW-18, ERM-MW-19, ERM-MW-20, ERM-MW-21, ERM-MW-24, ERM-MW-25, and ERM-MW-26. The ground water samples will be analyzed for Site-specific VOCs including chloroethane, 1,1-dichloroethene, ethylbenzene, isopropylbenzene, methyl ethyl ketone (2-butanone), naphthalene, toluene, 1,1,1-trichloroethane, vinyl chloride, and xylenes by EPA Method 8260. The appropriate duplicate samples will also be collected. A full round of ground water level measurements will be collected prior to the sampling event. Data generated during this sampling effort will be used as inputs to the forthcoming ground water fate and transport model.

4.3. MODELING AND REPORTING

BWAY will perform ground water fate and transport modeling during the next reporting periods to develop Site-specific source area cleanup standards for the Site contaminants of concern that will be protective of human health and the environment. This will include identifying the locations of Point of Exposure (POE) and Point of Demonstration (POD) wells. An objective of the modeling will be to estimate the maximum concentrations of regulated compounds at the identified POE that may be observed in the future assuming the

ERM 11 HSI #10731

current source area concentrations remain unchanged. The second objective of the modeling is to provide supporting evidence that the current ground water concentrations in the source area will not cause an exceedance of the Type 1 Risk Reduction Standards (RRS) at the POE. Future institutional controls may include Uniform Environmental Covenants if deemed necessary by delineation and modeling efforts. At the appropriate time, BWAY will submit a CSR to certify compliance with ground water standards calculated using ground water modeling and may propose the use of Uniform Environmental Covenants.

BWAY will continue with semi-annual ground water monitoring and reporting of activities, as described in the VRP acceptance letter dated July 22, 2011. The next semi-annual report will be submitted to EPD on or before January 22, 2014.

ERM 12 HSI #10731

5.0 REFERENCES

EPD, 2012, Georgia Department of Natural Resources Environmental Protection Division, "Hazardous Site Inventory" July 2, 2012.

USEPA Region 4, 2011, Science and Ecosystem Support Division, "Groundwater Sampling Operating Procedure (SESDPROC-301-R2)" October 2011.

ERM 13 HSI #10731

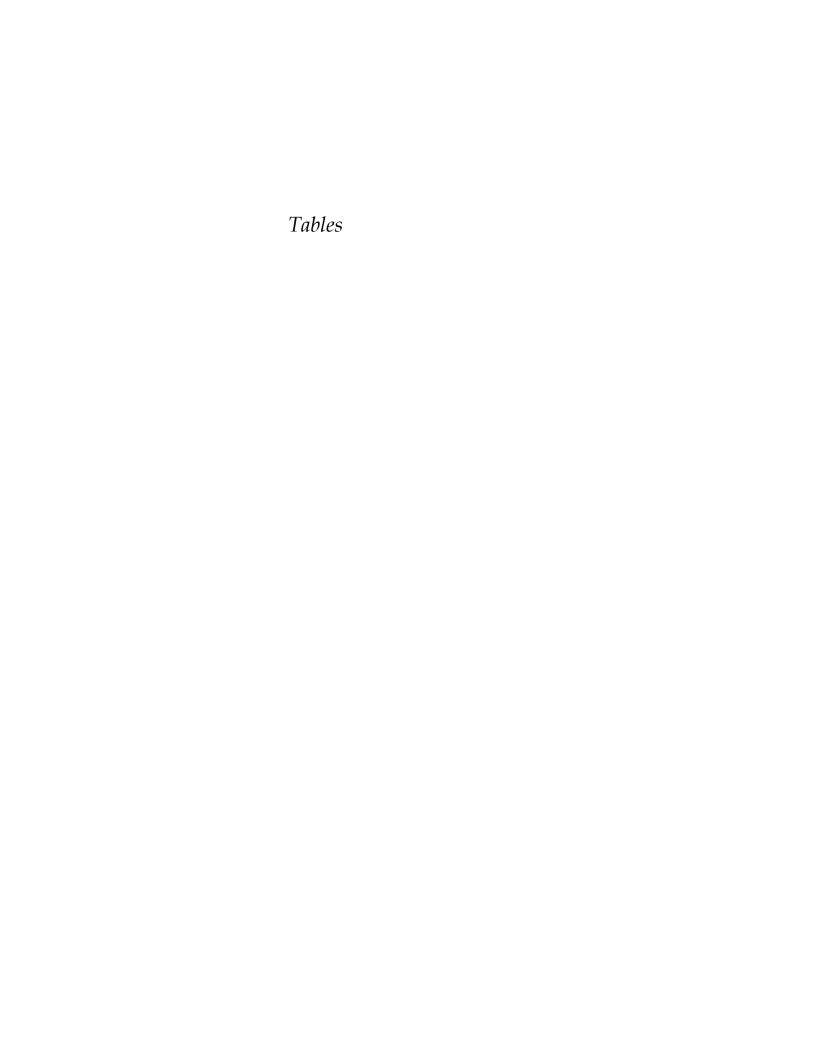


Table 1 $Ground\ Water\ Monitoring\ Well\ Construction\ Details$

BWAY, HSI Site No. 10731 Homerville, Clinch County, Georgia

Well ID	Date Installed	Well Diameter (inches)	Total Depth (feet bgs)	Screen Length (feet)	Top Screen (feet bgs)	Bottom Screen (feet bgs)	Northing	Easting	Reference Point Elevation (feet)
ERM-MW-1	09/15/03	2	22.0	10	10.0	20.0	375885.9	465916.2	182.14
ERM-MW-2	09/15/03	2	22.0	10	10.0	20.0	375790.9	465698.3	182.51
ERM-MW-3	09/15/03	2	22.0	10	10.0	20.0	376188.2	465875.9	182.98
ERM-MW-4	12/14/04	2	22.0	10	10.0	20.0	376396.7	465821.5	183.69
MW-5	04/14/93	4	17.0	15	2.0	17.0	375476.0	466115.2	179.49
MW-6R	11/08/10	2	17.0	15	1.8	16.8	375852.2	466208.8	179.91
ERM-MW-7	02/21/06	2	52.4	10	42.1	52.1	376102.8	465879.1	182.66
ERM-MW-8	06/14/07	2	21.0	10	10.0	20.0	376202.0	466063.9	182.41
ERM-MW-9	11/09/10	2	20.5	10	10.0	20.0	376152.8	465783.1	182.92
ERM-MW-10	11/09/10	2	20.5	10	9.3	19.3	376194.9	456907.9	182.85
ERM-MW-11	11/09/10	2	12.0	10	1.8	11.8	376097.4	465873.3	182.75
ERM-MW-12	11/09/10	2	20.0	10	9.8	19.8	375852.5	465670.6	182.06
ERM-MW-13	11/08/10	2	13.0	10	1.8	11.8	375882.2	465914.4	182.21
ERM-MW-14	11/08/10	2	35.0	10	24.8	34.8	375878.5	465913.0	181.87
ERM-MW-15	05/10/11	2	19.0	10	8.0	18.0	376236.7	465679.8	182.22
ERM-MW-16	05/10/11	2	20.5	10	10.0	20.0	376116.1	465630.3	182.69
ERM-MW-17	10/26/11	2	20.0	10	9.70	19.70	376107.5	465422.1	182.84
ERM-MW-18	10/26/11	2	20.0	10	9.70	19.70	375939.3	465514.0	182.91
ERM-MW-19	10/26/11	2	20.9	10	9.55	19.55	375820.2	465104.1	181.01
ERM-MW-20	03/26/12	2	22.0	10	10.0	20.0	376355.5	465074.2	181.52
ERM-MW-21	03/28/12	2	22.0	10	10.0	20.0	375723.3	464738.7	178.40
ERM-MW-22	03/27/12	2	22.0	10	10.0	20.0	375340.7	465110.8	179.63
MW-23	07/29/02	2	21.0	10	11.0	21.0	375416.1	465628.7	182.34
ERM-MW-24	02/11/13	2	22.0	10	10.0	20.0	NYS	NYS	NYS
ERM-MW-25	07/10/13	2	20.0	10	10.0	20.0	NYS	NYS	NYS
ERM-MW-26	07/10/13	2	20.0	10	10.0	20.0	NYS	NYS	NYS

NYS = Not Yet Surveyed

Table 2 Ground Water Elevation Data

Well ID	Date	Reference Point Elevation (feet)	Depth to Water Table (feet)	Water Table Elevation (feet)	
	8/17/2005	182.14	4.9	177.24	
	11/4/2005	182.14	8.51	173.63	
	8/31/2006	182.14	10.71	171.43	
	2/26/2007	182.14	6.64	175.50	
	6/14/2007	182.14	9.57	172.57	
	9/17/2007	182.14	9.86	172.28	
	12/17/2007	182.14	8.92	173.22	
	3/3/2008	182.14	5.50	176.64	
	9/29/2008	182.14	8.02	174.12	
	12/9/2008	182.14	6.39	175.75	
	3/11/2009	182.14	6.08	176.06	
ERM-MW-1	6/30/2009	182.14	7.93	174.21	
	9/28/2009	182.14	8.95	173.19	
	12/9/2009	182.14	NR	NR	
	3/15/2010	182.14	4.86	177.28	
	11/30/2010	182.14	12.20	169.94	
	5/12/2011	182.14	8.19	173.95	
	6/20/2011	182.14	11.44	170.70	
	10/25/2011	182.14	7.90	174.24	
	3/29/2012	182.14	5.96	176.18	
	5/7/2012	182.14	7.23	174.91	
	11/12/2012	182.14	10.70	171.44	
	4/15/2013	182.14	4.85	177.29	
	8/17/2005	182.51	5.71	176.80	
	11/4/2005	182.51	9.37	173.14	
	8/31/2006	182.51	11.11	171.40	
	2/26/2007	182.51	7.59	174.92	
	6/14/2007	182.51	10.52	171.99	
	9/17/2007	182.51	9.66	172.85	
	12/17/2007	182.51	9.70	172.81	
	3/3/2008	182.51	6.35	176.16	
	9/29/2008	182.51	9.02	173.49	
	12/9/2008	182.51	7.37	175.14	
	3/11/2009	182.51	7.04	175.47	
ERM-MW-2	6/30/2009	182.51	6.01	176.50	
	9/28/2009	182.51	9.62	172.89	
	12/9/2009	182.51	NR	NR	
	3/15/2010	182.51	5.73	176.78	
	11/30/2010	182.51	12.04	170.47	
ĺ	5/12/2011	182.51	9.30	173.21	
	6/20/2011	182.51	12.10	170.41	
	10/25/2011	182.51	8.62	173.89	
ĺ	3/29/2012	182.51	6.84	175.67	
	5/7/2012	182.51	8.35	174.16	
ĺ	11/12/2012	182.51	14.85	167.66	
	4/15/2013	182.51	5.72	176.79	

Table 2 Ground Water Elevation Data

Well ID	Date	Reference Point Elevation (feet)	Depth to Water Table (feet)	Water Table Elevation (feet)
	8/17/2005	182.98	6.00	176.98
	11/4/2005	182.98	9.51	173.47
	8/31/2006	182.98	12.09	170.89
	2/26/2007	182.98	7.51	175.47
	6/14/2007	182.98	10.62	172.36
	9/17/2007	182.98	9.98	173.00
	12/17/2007	182.98	9.93	173.05
	3/3/2008	182.98	6.50	176.48
	9/29/2008	182.98	9.06	173.92
	12/9/2008	182.98	7.25	175.73
	3/11/2009	182.98	6.99	175.99
ERM-MW-3	6/30/2009	182.98	9.08	173.90
	9/28/2009	182.98	9.91	173.07
	12/9/2009	182.98	7.85	175.13
	3/15/2010	182.98	6.02	176.96
	11/30/2010	182.98	13.31	169.67
	5/12/2011	182.98	9.29	173.69
	6/20/2011	182.98	12.61	170.37
	10/25/2011	182.98	8.85	174.13
	3/29/2012	182.98	6.95	176.03
	5/7/2012	182.98	8.00	174.98
	11/12/2012	182.98	11.81	171.17
	4/15/2013	182.98	5.80	177.18
	8/17/2005	183.69	7.04	176.65
	11/4/2005	183.69	10.46	173.23
	8/31/2006	183.69	13.05	170.64
	2/26/2007	183.69	8.42	175.27
	6/14/2007	183.69	11.78	171.91
	9/17/2007	183.69	10.75	172.94
	12/17/2007	183.69	10.69	173.00
	3/3/2008	183.69	7.40	176.29
	9/29/2008	183.69	10.07	173.62
	12/9/2008	183.69	8.19	175.50
	3/11/2009	183.69	7.96	175.73
ERM-MW-4	6/30/2009	183.69	10.12	173.57
	9/28/2009	183.69	10.64	173.05
	12/9/2009	183.69	8.70	174.99
	3/15/2010	183.69	7.10	176.59
	11/30/2010	183.69	14.21	169.48
	5/12/2011	183.69	10.31	173.38
	6/20/2011	183.69	13.60	170.09
	10/25/2011	183.69	9.75	173.94
	3/29/2012	183.69	8.86	174.83
	5/7/2012	183.69	9.04	174.65
	11/12/2012	183.69	12.58	171.11
	4/15/2013	183.69	6.82	176.87

Table 2 Ground Water Elevation Data

Well ID Date Reference Point Elevation (feet) Depth to Water Table (feet) Water Table Elevation (feet) 8/17/2005 179.49 2.64 176.85 11/4/2005 179.49 5.88 173.61 8/31/2006 179.49 NM - 2/26/2007 179.49 4.26 175.23 6/14/2007 179.49 NM - 12/17/2007 179.49 NM - 12/17/2007 179.49 NM - 3/3/2008 179.49 NM - 12/9/2008 179.49 5.47 174.02 12/9/2008 179.49 4.01 175.48 3/11/2009 179.49 4.92 174.57 9/28/2009 179.49 4.92 174.57 9/28/2009 179.49 NR NR 3/15/2010 179.49 9.25 176.94 11/30/2010 179.49 9.56 170.18 5/12/2011 179.49 9.56 170.18 <td< th=""></td<>
11/4/2005 179.49 5.88 173.61 8/31/2006 179.49 NM - 2/26/2007 179.49 4.26 175.23 6/14/2007 179.49 6.92 172.57 9/17/2007 179.49 NM - 12/17/2007 179.49 NM - 12/17/2007 179.49 NM - 3/3/2008 179.49 3.17 176.32 9/29/2008 179.49 4.01 175.48 3/11/2009 179.49 3.69 175.80 MW-5 6/30/2009 179.49 4.01 175.48 3/11/2009 179.49 A.92 174.57 9/28/2009 179.49 A.92 174.57 12/9/2009 179.49 NR NR 3/15/2010 179.49 2.55 176.94 11/30/2010 179.49 9.31 170.18 5/12/2011 179.49 9.31 170.18 5/12/2011 179.49 8.53 170.96 6/20/2011 179.49 8.53 170.96 10/25/2011 179.49 3.70 175.79 5/7/2012 179.49 3.70 175.79 5/7/2012 179.49 NM NM NM 4/15/2013 179.49 1.70 11/12/2012 179.49 NM NM NM 4/15/2013 179.49 1.70 11/14/2005 183.05 5.84 177.21 11/14/2005 183.05 9.43 173.62 8/31/2006 183.05 11.71 171.34 2/26/2007 183.05 9.43 173.62 8/31/2008 183.05 9.81 173.24 3/3/2008 183.05 9.81 173.24 3/3/2008 183.05 9.81 173.24 3/3/2008 183.05 9.81 173.24 3/3/2008 183.05 9.81 173.24 3/3/2008 183.05 0.7.23 175.82 3/11/2009 183.05 0.887 174.18 MW-6 6/30/2009 183.05 N.8 NR N
8/31/2006 179.49 NM - 2/26/2007 179.49 4.26 175.23 6/14/2007 179.49 6.92 172.57 9/17/2007 179.49 NM - 12/17/2007 179.49 NM - 12/17/2007 179.49 NM - 12/17/2007 179.49 NM - 3/3/2008 179.49 3.17 176.32 9/29/2008 179.49 5.47 174.02 12/9/2008 179.49 4.01 175.48 3/11/2009 179.49 3.69 175.80 MW-5 6/30/2009 179.49 4.92 174.57 9/28/2009 179.49 A.92 174.57 12/9/2009 179.49 NR NR 3/15/2010 179.49 NR NR 3/15/2010 179.49 9.31 170.18 5/12/2011 179.49 5.60 173.89 6/20/2011 179.49 5.60 173.89 6/20/2011 179.49 5.35 174.14 3/29/2012 179.49 3.70 175.79 5/7/2012 179.49 4.77 174.72 11/12/2012 179.49 1.70 11/12/2012 179.49 1.70 11/12/2012 179.49 1.70 11/12/2012 179.49 1.70 11/12/2012 179.49 1.70 11/12/2013 179.49 1.70 11/12/2013 179.49 1.70 11/12/2015 183.05 5.84 177.21 11/12/205 183.05 9.43 173.62 8/31/2006 183.05 7.54 175.51 6/14/2007 183.05 9.81 173.24 3/3/2008 183.05 9.81 173.24 3/3/2008 183.05 9.81 173.24 3/3/2008 183.05 9.81 173.24 3/3/2008 183.05 6.40 176.65 9/29/2008 183.05 7.23 175.82 3/11/2009 183.05 7.23 175.82 3/11/2009 183.05 N.8 NR NR MW-6 6/30/2009 183.05 NR NR NR 3/15/2010 183.05 NR NR NR 3/15/2010 183.05 Damaged Damaged
2/26/2007
6/14/2007 179.49 6.92 172.57 9/17/2007 179.49 NM - 12/17/2007 179.49 NM - 3/3/2008 179.49 3.17 176.32 9/29/2008 179.49 5.47 174.02 12/9/2008 179.49 3.69 175.80 MW-5 12/9/2009 179.49 3.69 175.80 6/30/2009 179.49 4.92 174.57 9/28/2009 179.49 NR NR NR 3/15/2010 179.49 NR NR NR 3/15/2010 179.49 9.31 170.18 5/12/2011 179.49 5.60 173.89 6/20/2011 179.49 5.60 173.89 6/20/2011 179.49 5.55 176.94 10/25/2011 179.49 5.35 174.14 3/29/2012 179.49 3.70 175.79 5/7/2012 179.49 3.70 175.79 5/7/2012 179.49 4.77 174.72 11/12/2012 179.49 1.77 11/12/2013 179.49 1.77 11/12/2013 179.49 1.77 11/12/2014 179.49 1.77 11/12/2015 183.05 5.84 177.21 11/4/2005 183.05 9.43 173.62 8/31/2006 183.05 10.36 172.69 9/17/2007 183.05 9.86 173.19 12/17/2007 183.05 9.86 173.19 12/17/2007 183.05 9.86 173.19 12/17/2007 183.05 9.86 173.19 12/17/2007 183.05 9.81 173.24 3/3/2008 183.05 7.23 175.82 3/11/2009 183.05 7.23 175.82 3/11/2009 183.05 7.23 175.82 3/11/2009 183.05 NR NR NR NR NR NR NR NR NR
9/17/2007 179.49 NM - 12/17/2007 179.49 NM - 3/3/2008 179.49 3.17 176.32 9/29/2008 179.49 5.47 174.02 12/9/2008 179.49 4.01 175.48 3/11/2009 179.49 3.69 175.80 6/30/2009 179.49 4.92 174.57 9/28/2009 179.49 6.42 173.07 12/9/2009 179.49 NR NR NR NR NR NR 3/15/2010 179.49 9.31 170.18 5/12/2011 179.49 5.60 173.89 6/20/2011 179.49 5.60 173.89 6/20/2011 179.49 5.35 174.14 3/29/2012 179.49 8.53 170.96 10/25/2011 179.49 3.70 175.79 5/7/2012 179.49 1.77 174.72 11/12/2012 179.49 1.77 174.72
12/17/2007
3/3/2008
9/29/2008
MW-5
MW-5 MW-5 MW-5 6/30/2009 179.49 3.69 175.80 6/30/2009 179.49 4.92 174.57 9/28/2009 179.49 6.42 173.07 12/9/2009 179.49 NR
MW-5 6/30/2009 179.49 4.92 174.57 9/28/2009 179.49 6.42 173.07 12/9/2009 179.49 NR NR 3/15/2010 179.49 9.31 170.18 5/12/2011 179.49 5.60 173.89 6/20/2011 179.49 5.35 174.14 3/29/2012 179.49 3.70 175.79 5/7/2012 179.49 4.77 174.72 11/12/2012 179.49 NM NM 4/15/2013 179.49 2.50 176.99 8/17/2005 183.05 5.84 177.21 11/4/2005 183.05 9.43 173.62 8/31/2006 183.05 7.54 175.51 6/14/2007 183.05 9.86 173.19 12/17/2007 183.05 9.86 173.19 12/17/2008 183.05 9.81 173.24 3/3/2008 183.05 9.81 173.24 3/3/2008 183.05 7.23 175.82 3/11/2009 183.05 8.87 174.18 9/28/2009 183.05 NR NR 12/9/2009 183.05 NR NR 12/9/2009 183.05 NR NR 3/15/2010 183.05 Damaged Damaged
9/28/2009
12/9/2009 179.49 NR NR 3/15/2010 179.49 2.55 176.94 11/30/2010 179.49 9.31 170.18 5/12/2011 179.49 5.60 173.89 6/20/2011 179.49 8.53 170.96 10/25/2011 179.49 5.35 174.14 3/29/2012 179.49 3.70 175.79 5/7/2012 179.49 4.77 174.72 11/12/2012 179.49 NM NM 4/15/2013 179.49 2.50 176.99 8/17/2005 183.05 5.84 177.21 11/4/2005 183.05 9.43 173.62 8/31/2006 183.05 9.43 173.62 8/31/2006 183.05 7.54 175.51 6/14/2007 183.05 10.36 172.69 9/17/2007 183.05 9.86 173.19 12/17/2007 183.05 9.81 173.24 3/3/2008 183.05 8.86
3/15/2010 179.49 2.55 176.94 11/30/2010 179.49 9.31 170.18 5/12/2011 179.49 5.60 173.89 6/20/2011 179.49 8.53 170.96 10/25/2011 179.49 5.35 174.14 3/29/2012 179.49 3.70 175.79 5/7/2012 179.49 4.77 174.72 11/12/2012 179.49 NM NM 4/15/2013 179.49 2.50 176.99 8/17/2005 183.05 5.84 177.21 11/4/2005 183.05 9.43 173.62 8/31/2006 183.05 9.43 173.62 8/31/2006 183.05 11.71 171.34 2/26/2007 183.05 7.54 175.51 6/14/2007 183.05 9.86 173.19 12/17/2007 183.05 9.81 173.24 3/3/2008 183.05 9.81 175.82 3/11/2009 183.05 6.9
11/30/2010 179.49 9.31 170.18 5/12/2011 179.49 5.60 173.89 6/20/2011 179.49 8.53 170.96 10/25/2011 179.49 5.35 174.14 3/29/2012 179.49 3.70 175.79 5/7/2012 179.49 4.77 174.72 11/12/2012 179.49 NM NM 4/15/2013 179.49 2.50 176.99 8/17/2005 183.05 5.84 177.21 11/4/2005 183.05 9.43 173.62 8/31/2006 183.05 9.43 173.62 8/31/2006 183.05 7.54 175.51 6/14/2007 183.05 10.36 172.69 9/17/2007 183.05 9.86 173.19 12/17/2007 183.05 9.81 173.24 3/3/2008 183.05 8.86 174.19 12/9/2008 183.05 8.86 174.19 12/9/2008 183.05 6.9
5/12/2011 179.49 5.60 173.89 6/20/2011 179.49 8.53 170.96 10/25/2011 179.49 5.35 174.14 3/29/2012 179.49 3.70 175.79 5/7/2012 179.49 4.77 174.72 11/12/2012 179.49 NM NM 4/15/2013 179.49 2.50 176.99 8/17/2005 183.05 5.84 177.21 11/4/2005 183.05 9.43 173.62 8/31/2006 183.05 9.43 173.62 8/31/2006 183.05 7.54 175.51 6/14/2007 183.05 7.54 175.51 6/14/2007 183.05 9.86 173.19 12/17/2007 183.05 9.81 173.24 3/3/2008 183.05 9.81 173.24 3/3/2008 183.05 8.86 174.19 12/9/2008 183.05 7.23 175.82 3/11/2009 183.05 6.91 </td
6/20/2011 179.49 8.53 170.96 10/25/2011 179.49 5.35 174.14 3/29/2012 179.49 3.70 175.79 5/7/2012 179.49 4.77 174.72 11/12/2012 179.49 NM NM 4/15/2013 179.49 2.50 176.99 8/17/2005 183.05 5.84 177.21 11/4/2005 183.05 9.43 173.62 8/31/2006 183.05 11.71 171.34 2/26/2007 183.05 11.71 171.34 2/26/2007 183.05 10.36 172.69 9/17/2007 183.05 9.86 173.19 12/17/2007 183.05 9.81 173.24 3/3/2008 183.05 9.81 173.24 3/3/2008 183.05 8.86 174.19 12/9/2008 183.05 7.23 175.82 3/11/2009 183.05 6.91 176.14 MW-6 6/30/2009 183.0
10/25/2011 179.49 5.35 174.14 3/29/2012 179.49 3.70 175.79 5/7/2012 179.49 4.77 174.72 11/12/2012 179.49 NM NM 4/15/2013 179.49 2.50 176.99 8/17/2005 183.05 5.84 177.21 11/4/2005 183.05 9.43 173.62 8/31/2006 183.05 11.71 171.34 2/26/2007 183.05 7.54 175.51 6/14/2007 183.05 10.36 172.69 9/17/2007 183.05 9.86 173.19 12/17/2007 183.05 9.81 173.24 3/3/2008 183.05 9.81 173.24 3/3/2008 183.05 8.86 174.19 12/9/2008 183.05 7.23 175.82 3/11/2009 183.05 6.91 176.14 MW-6 6/30/2009 183.05 10.03 173.02 12/9/2009 183.05 NR NR 3/15/2010 183.05 Damaged Damaged
3/29/2012 179.49 3.70 175.79 5/7/2012 179.49 4.77 174.72 11/12/2012 179.49 NIM NIM 4/15/2013 179.49 2.50 176.99 8/17/2005 183.05 5.84 177.21 11/4/2005 183.05 9.43 173.62 8/31/2006 183.05 11.71 171.34 2/26/2007 183.05 7.54 175.51 6/14/2007 183.05 7.54 175.51 6/14/2007 183.05 9.86 173.19 12/17/2007 183.05 9.81 173.24 3/3/2008 183.05 9.81 173.24 3/3/2008 183.05 6.40 176.65 9/29/2008 183.05 7.23 175.82 3/11/2009 183.05 6.91 174.18 9/28/2009 183.05 8.87 174.18 9/28/2009 183.05 NR NR 12/9/2009 183.05 NR
5/7/2012 179.49 4.77 174.72 11/12/2012 179.49 NM NM 4/15/2013 179.49 2.50 176.99 8/17/2005 183.05 5.84 177.21 11/4/2005 183.05 9.43 173.62 8/31/2006 183.05 11.71 171.34 2/26/2007 183.05 7.54 175.51 6/14/2007 183.05 10.36 172.69 9/17/2007 183.05 9.86 173.19 12/17/2007 183.05 9.81 173.24 3/3/2008 183.05 6.40 176.65 9/29/2008 183.05 8.86 174.19 12/9/2008 183.05 7.23 175.82 3/11/2009 183.05 6.91 176.14 MW-6 6/30/2009 183.05 8.87 174.18 9/28/2009 183.05 NR NR 12/9/2009 183.05 NR NR 3/15/2010 183.05
11/12/2012 179.49 NM NM 4/15/2013 179.49 2.50 176.99 8/17/2005 183.05 5.84 177.21 11/4/2005 183.05 9.43 173.62 8/31/2006 183.05 11.71 171.34 2/26/2007 183.05 7.54 175.51 6/14/2007 183.05 10.36 172.69 9/17/2007 183.05 9.86 173.19 12/17/2007 183.05 9.81 173.24 3/3/2008 183.05 6.40 176.65 9/29/2008 183.05 8.86 174.19 12/9/2008 183.05 7.23 175.82 3/11/2009 183.05 6.91 176.14 MW-6 6/30/2009 183.05 8.87 174.18 9/28/2009 183.05 NR NR 12/9/2009 183.05 NR NR 3/15/2010 183.05 Damaged Damaged
4/15/2013 179.49 2.50 176.99 8/17/2005 183.05 5.84 177.21 11/4/2005 183.05 9.43 173.62 8/31/2006 183.05 11.71 171.34 2/26/2007 183.05 7.54 175.51 6/14/2007 183.05 10.36 172.69 9/17/2007 183.05 9.86 173.19 12/17/2007 183.05 9.81 173.24 3/3/2008 183.05 6.40 176.65 9/29/2008 183.05 8.86 174.19 12/9/2008 183.05 7.23 175.82 3/11/2009 183.05 6.91 176.14 MW-6 6/30/2009 183.05 8.87 174.18 9/28/2009 183.05 NR NR 12/9/2009 183.05 NR NR 3/15/2010 183.05 Damaged Damaged
8/17/2005 183.05 5.84 177.21 11/4/2005 183.05 9.43 173.62 8/31/2006 183.05 11.71 171.34 2/26/2007 183.05 7.54 175.51 6/14/2007 183.05 10.36 172.69 9/17/2007 183.05 9.86 173.19 12/17/2007 183.05 9.81 173.24 3/3/2008 183.05 6.40 176.65 9/29/2008 183.05 8.86 174.19 12/9/2008 183.05 7.23 175.82 3/11/2009 183.05 6.91 176.14 MW-6 6/30/2009 183.05 8.87 174.18 9/28/2009 183.05 NR NR 12/9/2009 183.05 NR NR 3/15/2010 183.05 Damaged Damaged
11/4/2005 183.05 9.43 173.62 8/31/2006 183.05 11.71 171.34 2/26/2007 183.05 7.54 175.51 6/14/2007 183.05 10.36 172.69 9/17/2007 183.05 9.86 173.19 12/17/2007 183.05 9.81 173.24 3/3/2008 183.05 6.40 176.65 9/29/2008 183.05 8.86 174.19 12/9/2008 183.05 7.23 175.82 3/11/2009 183.05 6.91 176.14 MW-6 6/30/2009 183.05 8.87 174.18 9/28/2009 183.05 NR NR 12/9/2009 183.05 NR NR 3/15/2010 183.05 Damaged Damaged
8/31/2006 183.05 11.71 171.34 2/26/2007 183.05 7.54 175.51 6/14/2007 183.05 10.36 172.69 9/17/2007 183.05 9.86 173.19 12/17/2007 183.05 9.81 173.24 3/3/2008 183.05 6.40 176.65 9/29/2008 183.05 8.86 174.19 12/9/2008 183.05 7.23 175.82 3/11/2009 183.05 6.91 176.14 6/30/2009 183.05 8.87 174.18 9/28/2009 183.05 NR NR 3/15/2010 183.05 NR NR
2/26/2007 183.05 7.54 175.51 6/14/2007 183.05 10.36 172.69 9/17/2007 183.05 9.86 173.19 12/17/2007 183.05 9.81 173.24 3/3/2008 183.05 6.40 176.65 9/29/2008 183.05 8.86 174.19 12/9/2008 183.05 7.23 175.82 3/11/2009 183.05 6.91 176.14 6/30/2009 183.05 8.87 174.18 9/28/2009 183.05 10.03 173.02 12/9/2009 183.05 NR NR 3/15/2010 183.05 Damaged Damaged
6/14/2007 183.05 10.36 172.69 9/17/2007 183.05 9.86 173.19 12/17/2007 183.05 9.81 173.24 3/3/2008 183.05 6.40 176.65 9/29/2008 183.05 8.86 174.19 12/9/2008 183.05 7.23 175.82 3/11/2009 183.05 6.91 176.14 MW-6 6/30/2009 183.05 8.87 174.18 9/28/2009 183.05 10.03 173.02 12/9/2009 183.05 NR NR 3/15/2010 183.05 Damaged Damaged
9/17/2007 183.05 9.86 173.19 12/17/2007 183.05 9.81 173.24 3/3/2008 183.05 6.40 176.65 9/29/2008 183.05 8.86 174.19 12/9/2008 183.05 7.23 175.82 3/11/2009 183.05 6.91 176.14 MW-6 6/30/2009 183.05 8.87 174.18 9/28/2009 183.05 10.03 173.02 12/9/2009 183.05 NR NR 3/15/2010 183.05 Damaged Damaged
12/17/2007 183.05 9.81 173.24 3/3/2008 183.05 6.40 176.65 9/29/2008 183.05 8.86 174.19 12/9/2008 183.05 7.23 175.82 3/11/2009 183.05 6.91 176.14 MW-6 6/30/2009 183.05 8.87 174.18 9/28/2009 183.05 10.03 173.02 12/9/2009 183.05 NR NR 3/15/2010 183.05 Damaged Damaged
3/3/2008 183.05 6.40 176.65 9/29/2008 183.05 8.86 174.19 12/9/2008 183.05 7.23 175.82 3/11/2009 183.05 6.91 176.14 MW-6 6/30/2009 183.05 8.87 174.18 9/28/2009 183.05 10.03 173.02 12/9/2009 183.05 NR NR 3/15/2010 183.05 Damaged Damaged
9/29/2008 183.05 8.86 174.19 12/9/2008 183.05 7.23 175.82 3/11/2009 183.05 6.91 176.14 MW-6 6/30/2009 183.05 8.87 174.18 9/28/2009 183.05 10.03 173.02 12/9/2009 183.05 NR NR 3/15/2010 183.05 Damaged Damaged
9/29/2008 183.05 8.86 174.19 12/9/2008 183.05 7.23 175.82 3/11/2009 183.05 6.91 176.14 MW-6 6/30/2009 183.05 8.87 174.18 9/28/2009 183.05 10.03 173.02 12/9/2009 183.05 NR NR 3/15/2010 183.05 Damaged Damaged
3/11/2009 183.05 6.91 176.14 MW-6 6/30/2009 183.05 8.87 174.18 9/28/2009 183.05 10.03 173.02 12/9/2009 183.05 NR NR 3/15/2010 183.05 Damaged Damaged
MW-6 6/30/2009 183.05 8.87 174.18 9/28/2009 183.05 10.03 173.02 12/9/2009 183.05 NR NR 3/15/2010 183.05 Damaged Damaged
9/28/2009 183.05 10.03 173.02 12/9/2009 183.05 NR NR 3/15/2010 183.05 Damaged Damaged
12/9/2009 183.05 NR NR 3/15/2010 183.05 Damaged Damaged
3/15/2010 183.05 Damaged Damaged
11/30/2010 179.91 10.04 169.87
5/12/2011 179.91 5.90 174.01
6/20/2011 179.91 9.10 170.81
10/25/2011 179.91 5.67 174.24
3/29/2012 179.91 3.83 176.08
5/7/2012 179.91 4.98 174.93
11/12/2012 179.91 16.90 163.01
11/12/2012 170.01 10.00 100.01

Table 2 Ground Water Elevation Data

Well ID	Date	Reference Point Elevation (feet)	Depth to Water Table (feet)	Water Table Elevation (feet)
	8/17/2005	182.66	NM	-
	11/4/2005	182.66	NM	-
	8/31/2006	182.66	24.94	157.72
	2/26/2007	182.66	24.74	157.92
	6/14/2007	182.66	26.51	156.15
	9/17/2007	182.66	25.6	157.06
	12/17/2007	182.66	25.26	157.40
	3/3/2008	182.66	NM	-
	9/29/2008	182.66	25.99	156.67
	12/9/2008	182.66	24.86	157.80
	3/11/2009	182.66	24.28	158.38
ERM-MW-7	6/30/2009	182.66	25.07	157.59
	9/28/2009	182.66	24.48	158.18
	12/9/2009	182.66	NR	NR
	3/15/2010	182.66	23.15	159.51
	11/30/2010	182.66	25.58	157.08
	5/12/2011	182.66	25.06	157.60
	6/20/2011	182.66	25.92	156.74
	10/25/2011	182.66	25.35	157.31
	3/29/2012	182.66	24.35	158.31
	5/7/2012	182.66	24.75	157.91
	11/12/2012	182.66	25.05	157.61
	4/15/2013	182.66	24.25	158.41
	6/14/2007	NYS	10.92	-
	9/17/2007	NYS	9.24	-
	12/17/2007	182.41	9.07	173.34
	3/3/2008	182.41	5.78	176.63
	9/29/2008	182.41	8.27	174.14
	12/9/2008	182.41	6.52	175.89
	3/11/2009	182.41	6.27	176.14
	6/30/2009	182.41	7.76	174.65
	9/28/2009	182.41	8.26	174.15
ERM-MW-8	12/9/2009	182.41	NM	NM
	3/15/2010	182.41	5.41	177.00
	11/30/2010	182.41	12.70	169.71
	5/12/2011	182.41	8.50	173.91
	6/20/2011	182.41	11.80	170.61
	10/25/2011	182.41	8.18	174.23
	3/29/2012	182.41	6.32	176.09
	5/7/2012	182.41	7.39	175.02
	11/12/2012	182.41	11.12	171.29
	4/15/2013	182.41	5.12	177.29
	11/30/2010	182.92	13.50	169.42
	5/12/2011	182.92	9.42	173.50
	6/20/2011	182.92	12.69	170.23
ERM-MW-9	10/25/2011	182.92	8.90	174.02
	3/29/2012	182.92	6.96	175.96
	5/7/2012	182.92	8.17	174.75
	11/12/2012	182.92	11.85	171.07
	4/15/2013	182.92	5.83	177.09

Table 2 Ground Water Elevation Data

Well ID	Date	Reference Point Elevation (feet)	Depth to Water Table (feet)	Water Table Elevation (feet)
	11/30/2010	182.85	13.23	169.62
	5/12/2011	182.85	9.17	173.68
	6/20/2011	182.85	12.48	170.37
ERM-MW-10	10/25/2011	182.85	8.78	174.07
LIKW WWW 10	3/29/2012	182.85	6.87	175.98
	5/7/2012	182.85	7.88	174.97
	11/12/2012	182.85	11.75	171.10
	4/15/2013	182.85	5.72	177.13
	11/30/2010	182.75	13.07	169.68
	5/12/2011	182.75	9.05	173.70
	6/20/2011	182.75	12.35	170.40
ERM-MW-11	10/25/2011 3/29/2012	182.75 182.75	8.65 6.68	174.10 176.07
	5/7/2012	182.75	7.91	174.84
	11/12/2012	182.75	11.56	171.19
	4/15/2013	182.75	6.32	176.43
	11/30/2010	182.06	12.26	169.80
	5/12/2011	182.06	9.00	173.06
	6/20/2011	182.06	11.83	170.23
ERM-MW-12	10/25/2011	182.06	8.28	173.78
	3/29/2012	182.06	6.44	175.62
	5/7/2012	182.06	8.04	174.02
	11/12/2012	182.06	12.35	169.71
	4/15/2013	182.06	5.30	176.76
	11/30/2010	182.21	12.36	169.85
	5/12/2011	182.21	7.46	174.75
	6/20/2011	182.21	11.39	170.82
ERM-MW-13	10/25/2011	182.21	7.40	174.81
	3/29/2012	182.21	5.72	176.49
	5/7/2012	182.21	6.83	175.38
	11/12/2012 4/15/2013	182.21 182.21	9.68 4.72	172.53
				177.49
	11/30/2010 5/12/2011	181.87 181.87	12.16 8.19	169.71 173.68
	6/20/2011	181.87	11.38	170.49
	10/25/2011	181.87	7.85	174.02
ERM-MW-14	3/29/2012	181.87	5.95	175.92
	5/7/2012	181.87	7.30	174.57
	11/12/2012	181.87	10.65	171.22
	4/15/2013	181.87	4.85	177.02
	5/12/2011	182.22	9.12	173.10
	6/20/2011	182.22	12.30	169.92
	10/25/2011	182.22	8.35	173.87
ERM-MW-15	3/29/2012	182.22	6.37	175.85
	5/7/2012	182.22	7.97	174.25
	11/12/2012	182.22	11.22	171.00
	4/15/2013	182.22	5.22	177.00
	5/12/2011	182.69	9.61	173.08
	6/20/2011	182.69	12.68	170.01
EDM 1.04/ 42	10/25/2011	182.69	8.82	173.87
ERM-MW-16	3/29/2012	182.69	6.86	175.83
	5/7/2012	182.69	8.51	174.18
	11/12/2012 4/15/2013	182.69 182.69	11.68 5.70	171.01
	4/13/2013	102.03	3.70	176.99

Table 2 **Ground Water Elevation Data**

Well ID	Date	Reference Point Elevation (feet)	Depth to Water Table (feet)	Water Table Elevation (feet)
	10/25/2011	182.84	9.20	173.64
	3/29/2012	182.84	7.12	175.72
ERM-MW-17	5/7/2012	182.84	8.95	173.89
	11/12/2012	182.84	11.86	170.98
	4/15/2013	182.84	5.88	176.96
	10/25/2011	182.91	9.30	173.61
	3/29/2012	182.91	7.24	175.67
ERM-MW-18	5/7/2012	182.91	8.90	174.01
	11/12/2012	182.91	11.75	171.16
	4/15/2013	182.91	6.08	176.83
	10/25/2011	181.01	7.55	173.46
	3/29/2012	181.01	5.37	175.64
ERM-MW-19	5/7/2012	181.01	7.46	173.55
	11/12/2012	181.01	10.03	170.98
	4/15/2013	181.01	5.82	175.19
	3/29/2012	181.52	5.70	175.82
	5/7/2012	181.52	7.92	173.60
ERM-MW-20	11/12/2012	181.52	10.95	170.57
	4/15/2013	181.52	4.12	177.40
	3/29/2012	178.40	4.10	174.30
ED14 1 104 04	5/7/2012	178.40	5.82	172.58
ERM-MW-21	11/12/2012	178.40	8.51	169.89
	4/15/2013	178.40	NM	NM
	3/29/2012	179.63	4.81	174.82
ED14 1 414 / 00	5/7/2012	179.63	4.94	174.69
ERM-MW-22	11/12/2012	179.63	7.80	171.83
	4/15/2013	179.63	3.52	176.11
	8/17/2005	182.34	6.51	175.83
	11/4/2005	182.34	9.09	173.25
	8/31/2006	182.34	10.18	172.16
	2/26/2007	182.34	7.50	174.84
	6/14/2007	182.34	10.16	172.18
	9/17/2007	182.34	9.24	173.10
	12/17/2007	182.34	9.19	173.15
	3/3/2008	182.34	6.90	175.44
	9/29/2008	182.34	8.78	173.56
	12/9/2008	182.34	7.59	174.75
	3/11/2009	182.34	7.34	175.00
MW-23	6/30/2009	182.34	6.07	176.27
	9/28/2009	182.34	9.26	173.08
	12/9/2009	182.34	NM	NM
	3/15/2010	182.34	6.46	175.88
	11/30/2010	182.34	11.74	170.60
	5/12/2011	182.34	9.00	173.34
	6/20/2011	182.34	11.18	171.16
	10/25/2011	182.34	8.47	173.87
	3/29/2012	182.34	7.30	175.04
	5/7/2012	182.34	8.14	174.20
	11/12/2012	182.34	10.50	171.84
	4/15/2013	182.34	6.41	175.93
ERM-MW-24	4/15/2013	NYS	3.15	NYS

NM = Not Measured NYS = Not Yet Surveyed

Table 3
Table of Site Delineation Concentrations
BWAY Drum Disposal Site, HSI Site No. 10731
Homerville, Georgia

Media	Chemical	Delineation Concentration	Comments
Soil	Not Applicable	Not Applicable	Certification of compliance already occurred under HSRA program
	Chloroethane	5 ug/L	HSRA Type 1 RRS, but use detection limit per note in HSRA Type 1 table
	1,1-dichloroethene	7 ug/L	HSRA Type 1 RRS
	Ethylbenzene	700 ug/L	HSRA Type 1 RRS
	Isopropylbenzene (cumene)	5 ug/L	HSRA Type 1 RRS, but use detection limit per note in HSRA Type 1 table
Ground Water	Methyl ethyl ketone (MEK)	2000 ug/L	HSRA Type 1 RRS
Ground Water	Naphthalene	20 ug/L	HSRA Type 1 RRS
	Toluene	1000 ug/L	HSRA Type 1 RRS
	1,1,1-trichloroethane	200 ug/L	HSRA Type 1 RRS
	Vinyl chloride	2 ug/L	HSRA Type 1 RRS
	Xylenes, total	10,000 ug/L	HSRA Type 1 RRS

Table 4
Ground Water VOC Monitoring Data
BWAY Drum Disposal Site, HSI Site No. 10731
Homerville, Georgia

Well ID	Regulated Compound ¹	Delineation Criteria, noted only where	Concentrations (ug/L)								
		detected (ug/L)	Nov-10	May-11	Jun-11	Oct-11	Mar-12	May-12	Nov-12	Apr-13	Jul-13
	Chloroethane		< 5	NS	< 5	< 5	NS	< 5	NS	NS	NS
	1,1-dichloroethene		< 2	NS	< 2	< 2	NS	< 2	NS	NS	NS
	Ethylbenzene		< 2	NS	< 2	< 2	NS	< 2	NS	NS	NS
	Isopropylbenzene		< 10	NS	< 10	< 10	NS	< 10	NS	NS	NS
	Methyl Ethyl Ketone (2-Butanone)		<100	NS	<100	<100	NS	<100	NS	NS	NS
ERM-MW-1	Naphthalene		< 10	NS	< 10	< 10	NS	< 10	NS	NS	NS
	Toluene		< 2	NS	< 2	< 2	NS	< 2	NS	NS	NS
	1,1,1-trichloroethane		< 2	NS	< 2	< 2	NS	< 2	NS	NS	NS
	Vinyl chloride		< 2	NS	< 2	< 2	NS	< 2	NS	NS	NS
	Xylenes, total		< 5	NS	< 5	< 5	NS	< 5	NS	NS	NS
	Chloroethane		< 5	NS	< 5	NS	NS	< 5	NS	NS	NS
	1,1-dichloroethene		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS
	Ethylbenzene		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS
	Isopropylbenzene		< 10	NS	< 10	NS	NS	< 10	NS	NS	NS
	Methyl Ethyl Ketone (2-Butanone)		<100	NS	<100	NS	NS	<100	NS	NS	NS
MW-5	Naphthalene		< 10	NS	< 10	NS	NS	< 10	NS	NS	NS
	Toluene	1,000	< 2	NS	< 5	NS	NS	2.8	NS	NS	NS
	1,1,1-trichloroethane		< 2	NS	< 5	NS	NS	< 5	NS	NS	NS
	Vinyl chloride		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS
	Xylenes, total		< 5	NS	< 5	NS	NS	< 5	NS	NS	NS
	Chloroethane		< 5	NS	< 5	NS	NS	< 5	NS	NS	NS
	1,1-dichloroethene		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS
	Ethylbenzene		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS
	Isopropylbenzene		< 10	NS	< 10	NS	NS	< 10	NS	NS	NS
	Methyl Ethyl Ketone (2-Butanone)		<2	NS	<100	NS	NS	<100	NS	NS	NS
MW-6/	Naphthalene		< 10	NS	< 10	NS	NS	< 10	NS	NS	NS
MW-6R	Toluene		< 2	NS	< 5	NS	NS	< 5	NS	NS	NS
	1,1,1-trichloroethane		< 2	NS	< 5	NS	NS	< 5	NS	NS	NS
	Vinyl chloride		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS
	Xylenes, total		< 5	NS	< 5	NS	NS	< 5	NS	NS	NS

Table 4 Ground Water VOC Monitoring Data BWAY Drum Disposal Site, HSI Site No. 10731 Homerville, Georgia

Well ID	Regulated Compound ¹	Delineation Criteria, noted only where	Concentrations (ug/L)								
		detected (ug/L)	Nov-10	May-11	Jun-11	Oct-11	Mar-12	May-12	Nov-12	Apr-13	Jul-13
	Chloroethane		< 5	NS	< 5	NS	NS	< 5	NS	NS	NS
	1,1-dichloroethene		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS
	Ethylbenzene		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS
	Isopropylbenzene		< 10	NS	< 10	NS	NS	< 10	NS	NS	NS
	Methyl Ethyl Ketone (2-Butanone)		<100	NS	<100	NS	NS	<100	NS	NS	NS
MW-23	Naphthalene		< 10	NS	< 10	NS	NS	< 10	NS	NS	NS
	Toluene		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS
	1,1,1-trichloroethane		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS
	Vinyl chloride		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS
	Xylenes, total		< 5	NS	< 5	NS	NS	< 5	NS	NS	NS
	Chloroethane		< 5	NS	< 5	NS	NS	< 5	NS	NS	NS
	1,1-dichloroethene		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS
	Ethylbenzene		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS
	Isopropylbenzene		< 10	NS	< 10	NS	NS	< 10	NS	NS	NS
	Methyl Ethyl Ketone (2-Butanone)		<100	NS	<100	NS	NS	<100	NS	NS	NS
ERM-MW-2	Naphthalene		< 10	NS	< 10	NS	NS	< 10	NS	NS	NS
	Toluene		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS
	1,1,1-trichloroethane		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS
	Vinyl chloride		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS
	Xylenes, total		< 5	NS	< 5	NS	NS	< 5	NS	NS	NS
	Chloroethane		< 5	< 5	< 5	< 5	NS	< 5	< 5	< 5	NS
	1,1-dichloroethene		< 2	< 2	< 2	< 2	NS	< 2	< 2	< 2	NS
	Ethylbenzene	700	40	< 2	99	140	NS	20	88	43	NS
	Isopropylbenzene	10	< 10	< 10	23	33	NS	< 10	36	16	NS
	Methyl Ethyl Ketone (2-Butanone)		<100	<100	<100	<100	NS	<100	<100	<100	NS
ERM-MW-3	Naphthalene	20	45	39	92	95	NS	< 10	130	84	NS
	Toluene		< 2	< 2	< 2	< 2	NS	< 2	< 2	< 2	NS
	1,1,1-trichloroethane		< 2	< 2	< 2	< 2	NS	< 2	< 2	< 2	NS
	Vinyl chloride	40.000	< 2	< 2	< 2	< 2	NS	< 2	< 2	< 2	NS
	Xylenes, total	10,000	60	30	110	180	NS	5.5	65	25	NS

Table 4 Ground Water VOC Monitoring Data BWAY Drum Disposal Site, HSI Site No. 10731 Homerville, Georgia

Well ID	Regulated Compound ¹	Delineation Criteria, noted only where	Concentrations (ug/L)									
		detected (ug/L)	Nov-10	May-11	Jun-11	Oct-11	Mar-12	May-12	Nov-12	Apr-13	Jul-13	
	Chloroethane		< 5	< 5	< 5	NS	NS	< 5	NS	NS	NS	
	1,1-dichloroethene		< 2	< 2	< 2	NS	NS	< 2	NS	NS	NS	
	Ethylbenzene		< 2	< 2	< 2	NS	NS	< 2	NS	NS	NS	
	Isopropylbenzene		< 10	< 10	< 10	NS	NS	< 10	NS	NS	NS	
	Methyl Ethyl Ketone (2-Butanone)		<100	<100	<100	NS	NS	<100	NS	NS	NS	
ERM-MW-4	Naphthalene		< 10	< 10	< 10	NS	NS	< 10	NS	NS	NS	
	Toluene		< 5	< 5	< 5	NS	NS	< 2	NS	NS	NS	
	1,1,1-trichloroethane		< 5	< 5	< 5	NS	NS	< 2	NS	NS	NS	
	Vinyl chloride		< 2	< 2	< 2	NS	NS	< 2	NS	NS	NS	
	Xylenes		< 5	< 5	< 5	NS	NS	< 5	NS	NS	NS	
	Chloroethane		< 5	NS	< 5	NS	NS	< 5	NS	NS	NS	
	1,1-dichloroethene	7	< 2	NS	2.6	NS	NS	4.1	NS	NS	NS	
	Ethylbenzene		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS	
	Isopropylbenzene		< 10	NS	< 10	NS	NS	< 10	NS	NS	NS	
	Methyl Ethyl Ketone (2-Butanone)		<100	NS	<100	NS	NS	<100	NS	NS	NS	
ERM-MW-7	Naphthalene		< 10	NS	< 10	NS	NS	< 10	NS	NS	NS	
	Toluene		< 2	NS	< 5	NS	NS	< 2	NS	NS	NS	
	1,1,1-trichloroethane		< 2	NS	< 5	NS	NS	< 2	NS	NS	NS	
	Vinyl chloride		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS	
	Xylenes, total		< 5	NS	< 5	NS	NS	< 5	NS	NS	NS	
	Chloroethane		< 5	NS	< 5	NS	NS	< 5	NS	NS	NS	
	1,1-dichloroethene		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS	
	Ethylbenzene		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS	
	Isopropylbenzene		< 10	NS	< 10	NS	NS	< 10	NS	NS	NS	
	Methyl Ethyl Ketone (2-Butanone)		<100	NS	<100	NS	NS	<100	NS	NS	NS	
ERM-MW-8	Naphthalene		< 10	NS	< 10	NS	NS	< 10	NS	NS	NS	
	Toluene		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS	
	1,1,1-trichloroethane		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS	
	Vinyl chloride		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS	
	Xylenes, total		< 5	NS	< 5	NS	NS	< 5	NS	NS	NS	

Table 4
Ground Water VOC Monitoring Data
BWAY Drum Disposal Site, HSI Site No. 10731
Homerville, Georgia

Well ID	Regulated Compound ¹	Delineation Criteria, noted only where	Concentrations (ug/L)									
		detected (ug/L)	Nov-10	May-11	Jun-11	Oct-11	Mar-12	May-12	Nov-12	Apr-13	Jul-13	
	Chloroethane	5	13	< 5	< 5	17	NS	< 5	< 5	< 5	NS	
	1,1-dichloroethene	7	7.2	7.3	7.7	5.4	NS	4.6	7.8	7.2	NS	
	Ethylbenzene		< 2	< 2	< 2	< 2	NS	< 2	< 2	< 2	NS	
	Isopropylbenzene		< 10	< 10	< 10	< 10	NS	< 10	< 10	< 10	NS	
	Methyl Ethyl Ketone (2-Butanone)		<100	<100	<100	<100	NS	<100	<100	<100	NS	
ERM-MW-9	Naphthalene		< 10	< 10	< 10	< 10	NS	< 10	< 10	< 10	NS	
	Toluene		< 2	< 2	< 2	< 2	NS	< 2	< 2	< 2	NS	
	1,1,1-trichloroethane		< 2	< 2	< 2	< 2	NS	< 2	< 2	< 2	NS	
	Vinyl chloride	2	16	12	13	7.1	NS	7.3	12	14	NS	
	Xylenes, total		< 5	< 5	< 5	< 5	NS	< 5	< 5	< 5	NS	
	Chloroethane		< 5	NS	< 5	< 5	NS	< 5	NS	NS	NS	
	1,1-dichloroethene	7	< 2	NS	3.7	2.8	NS	3.1	NS	NS	NS	
	Ethylbenzene	700	7.4	NS	9.3	20	NS	4.5	NS	NS	NS	
	Isopropylbenzene		< 10	NS	< 10	< 10	NS	< 10	NS	NS	NS	
	Methyl Ethyl Ketone (2-Butanone)		<100	NS	<100	<100	NS	<100	NS	NS	NS	
ERM-MW-10	Naphthalene	20	< 10	NS	< 10	14	NS	< 10	NS	NS	NS	
	Toluene		< 2	NS	< 2	< 2	NS	< 2	NS	NS	NS	
	1,1,1-trichloroethane		< 2	NS	< 2	< 2	NS	< 2	NS	NS	NS	
	Vinyl chloride		< 2	NS	< 2	< 2	NS	< 2	NS	NS	NS	
	Xylenes	10,000	7.3	NS	19	32	NS	< 5	NS	NS	NS	
	Chloroethane		< 5	NS	< 5	< 5	NS	< 5	NS	NS	NS	
	1,1-dichloroethene		< 2	NS	< 2	< 2	NS	< 2	NS	NS	NS	
	Ethylbenzene		< 2	NS	< 2	< 2	NS	< 2	NS	NS	NS	
	Isopropylbenzene		< 10	NS	< 10	< 10	NS	< 10	NS	NS	NS	
	Methyl Ethyl Ketone (2-Butanone)		<100	NS	<100	<100	NS	<100	NS	NS	NS	
ERM-MW-11	Naphthalene		< 10	NS	< 10	< 10	NS	< 10	NS	NS	NS	
	Toluene		< 2	NS	< 2	< 2	NS	< 2	NS	NS	NS	
	1,1,1-trichloroethane		< 2	NS	< 2	< 2	NS	< 2	NS	NS	NS	
	Vinyl chloride		< 2	NS	< 2	< 2	NS	< 2	NS	NS	NS	
	Xylenes		< 5	NS	< 5	< 5	NS	< 5	NS	NS	NS	

Table 4 Ground Water VOC Monitoring Data BWAY Drum Disposal Site, HSI Site No. 10731 Homerville, Georgia

Well ID	Regulated Compound ¹	Delineation Criteria, noted only where	Concentrations (ug/L)										
		detected (ug/L)	Nov-10	May-11	Jun-11	Oct-11	Mar-12	May-12	Nov-12	Apr-13	Jul-13		
	Chloroethane		< 5	NS	< 5	< 5	NS	< 5	NS	NS	NS		
	1,1-dichloroethene		< 2	NS	< 2	< 2	NS	< 2	NS	NS	NS		
	Ethylbenzene		< 2	NS	< 2	< 2	NS	< 2	NS	NS	NS		
	Isopropylbenzene		< 10	NS	< 10	< 10	NS	< 10	NS	NS	NS		
	Methyl Ethyl Ketone (2-Butanone)		<100	NS	<100	<100	NS	<100	NS	NS	NS		
ERM-MW-12	Naphthalene		< 10	NS	< 10	< 10	NS	< 10	NS	NS	NS		
	Toluene		< 2	NS	< 2	< 2	NS	< 2	NS	NS	NS		
	1,1,1-trichloroethane		< 2	NS	< 2	< 2	NS	< 2	NS	NS	NS		
	Vinyl chloride		< 2	NS	< 2	< 2	NS	< 2	NS	NS	NS		
	Xylenes		< 5	NS	< 5	< 5	NS	< 5	NS	NS	NS		
	Chloroethane		< 5	< 5	< 5	NS	NS	< 5	NS	NS	NS		
	1,1-dichloroethene		< 2	< 2	< 2	NS	NS	< 2	NS	NS	NS		
	Ethylbenzene	700	5.1	< 2	88	NS	NS	< 2	NS	NS	NS		
	Isopropylbenzene	10	33	< 10	30	NS	NS	< 10	NS	NS	NS		
	Methyl Ethyl Ketone (2-Butanone)		<100	<100	<100	NS	NS	<100	NS	NS	NS		
ERM-MW-13	Naphthalene	20	< 10	< 10	25	NS	NS	< 10	NS	NS	NS		
	Toluene		< 2	< 2	< 2	NS	NS	< 2	NS	NS	NS		
	1,1,1-trichloroethane		< 2	< 2	< 2	NS	NS	< 2	NS	NS	NS		
	Vinyl chloride		< 2	< 2	< 2	NS	NS	< 2	NS	NS	NS		
	Xylenes	10,000	20	< 5	250	NS	NS	33	NS	NS	NS		
	Chloroethane		< 5	NS	< 5	NS	NS	< 5	NS	NS	NS		
	1,1-dichloroethene	7	< 2	NS	2	NS	NS	< 2	NS	NS	NS		
	Ethylbenzene		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS		
	Isopropylbenzene		< 10	NS	< 10	NS	NS	< 10	NS	NS	NS		
	Methyl Ethyl Ketone (2-Butanone)		<100	NS	<100	NS	NS	<100	NS	NS	NS		
ERM-MW-14	Naphthalene		< 10	NS	< 10	NS	NS	< 10	NS	NS	NS		
	Toluene		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS		
	1,1,1-trichloroethane		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS		
	Vinyl chloride		< 2	NS	< 2	NS	NS	< 2	NS	NS	NS		
	Xylenes		< 5	NS	< 5	NS	NS	< 5	NS	NS	NS		

Table 4
Ground Water VOC Monitoring Data
BWAY Drum Disposal Site, HSI Site No. 10731
Homerville, Georgia

Well ID	Regulated Compound ¹	Delineation Criteria, noted only where	Concentrations (ug/L)									
		detected (ug/L)	Nov-10	May-11	Jun-11	Oct-11	Mar-12	May-12	Nov-12	Apr-13	Jul-13	
	Chloroethane		NI	< 5	< 5	< 5	NS	< 5	< 5	< 5	NS	
	1,1-dichloroethene	7	NI	6.1	5	3.2	NS	3	3	< 2	NS	
	Ethylbenzene	700	NI	< 2	4.6	< 2	NS	< 2	< 2	< 2	NS	
	Isopropylbenzene		NI	< 2	< 10	< 10	NS	< 10	< 10	< 10	NS	
	Methyl Ethyl Ketone (2-Butanone)		NI	<100	<100	<100	NS	<100	<100	<100	NS	
ERM-MW-15	Naphthalene	20	NI	< 10	10	12	NS	< 10	< 10	< 10	NS	
	Toluene		NI	< 10	< 2	< 2	NS	< 2	< 2	< 2	NS	
	1,1,1-trichloroethane		NI	< 2	< 2	< 2	NS	< 2	< 2	< 2	NS	
	Vinyl chloride	2	NI	< 2	< 2	< 2	NS	< 2	< 2	< 2	NS	
	Xylenes		NI	< 2	< 5	< 5	NS	< 5	< 5	< 5	NS	
	Chloroethane		NI	< 5	< 5	< 5	NS	< 5	< 5	< 5	NS	
	1,1-dichloroethene	7	NI	5.4	7.1	< 2	NS	2.3	6	3.6	NS	
	Ethylbenzene		NI	< 2	< 2	< 2	NS	< 2	< 2	< 2	NS	
	Isopropylbenzene		NI	< 10	< 10	< 10	NS	< 10	< 10	< 10	NS	
	Methyl Ethyl Ketone (2-Butanone)		NI	<100	<100	<100	NS	<100	<100	<100	NS	
ERM-MW-16	Naphthalene		NI	< 10	< 10	< 10	NS	< 10	< 10	< 10	NS	
	Toluene		NI	< 2	< 2	< 2	NS	< 2	< 2	< 2	NS	
	1,1,1-trichloroethane		NI	< 2	< 2	< 2	NS	< 2	< 2	< 2	NS	
	Vinyl chloride	2	NI	11	10	7	NS	2.8	6.4	6.5	NS	
	Xylenes		NI	<5	< 5	< 5	NS	< 5	< 5	< 5	NS	
	Chloroethane	5	NI	NI	NI	110	NS	< 5	< 5	< 5	NS	
	1,1-dichloroethene	7	NI	NI	NI	41	NS	34	26	27	NS	
	Ethylbenzene		NI	NI	NI	< 2	NS	< 2	< 2	< 2	NS	
	Isopropylbenzene		NI	NI	NI	< 10	NS	< 10	< 10	< 10	NS	
	Methyl Ethyl Ketone (2-Butanone)		NI	NI	NI	<100	NS	< 100	< 100	< 100	NS	
ERM-MW-17	Naphthalene		NI	NI	NI	< 10	NS	< 10	< 10	< 10	NS	
	Toluene		NI	NI	NI	< 2	NS	< 2	< 2	< 2	NS	
	1,1,1-trichloroethane		NI	NI	NI	< 2	NS	< 2	< 2	< 2	NS	
	Vinyl chloride	2	NI	NI	NI	17	NS	19	15	13	NS	
	Xylenes	_	NI	NI	NI	< 5	NS	< 5	< 5	< 5	NS	

Table 4 Ground Water VOC Monitoring Data BWAY Drum Disposal Site, HSI Site No. 10731 Homerville, Georgia

Well ID	Regulated Compound ¹	Delineation Criteria, noted only where	Concentrations (ug/L)									
		detected (ug/L)	Nov-10	May-11	Jun-11	Oct-11	Mar-12	May-12	Nov-12	Apr-13	Jul-13	
	Chloroethane	5	NI	NI	NI	130	NS	11	28	6.2	NS	
	1,1-dichloroethene	7	NI	NI	NI	25	NS	18	31	21	NS	
	Ethylbenzene		NI	NI	NI	< 2	NS	< 2	< 2	< 2	NS	
	Isopropylbenzene		NI	NI	NI	< 10	NS	< 10	< 10	< 10	NS	
	Methyl Ethyl Ketone (2-Butanone)		NI	NI	NI	<100	NS	< 100	< 100	< 100	NS	
ERM-MW-18	Naphthalene		NI	NI	NI	< 10	NS	< 10	< 10	< 10	NS	
	Toluene		NI	NI	NI	< 2	NS	< 2	< 2	< 2	NS	
	1,1,1-trichloroethane		NI	NI	NI	< 2	NS	< 2	< 2	< 2	NS	
	Vinyl chloride	2	NI	NI	NI	5.3	NS	4.9	13	5.2	NS	
	Xylenes		NI	NI	NI	< 5	NS	< 5	< 5	< 5	NS	
	Chloroethane		NI	NI	NI	< 5	NS	< 5	< 5	< 5	NS	
	1,1-dichloroethene	7	NI	NI	NI	47	NS	47	47	56	NS	
	Ethylbenzene		NI	NI	NI	< 2	NS	< 2	< 2	< 2	NS	
	Isopropylbenzene		NI	NI	NI	< 10	NS	< 10	< 10	< 10	NS	
	Methyl Ethyl Ketone (2-Butanone)		NI	NI	NI	<100	NS	< 100	< 100	< 100	NS	
ERM-MW-19	Naphthalene		NI	NI	NI	< 10	NS	< 10	< 10	< 10	NS	
	Toluene		NI	NI	NI	< 2	NS	< 2	< 2	< 2	NS	
	1,1,1-trichloroethane		NI	NI	NI	< 2	NS	< 2	< 2	< 2	NS	
	Vinyl chloride		NI	NI	NI	< 2	NS	< 2	< 2	< 2	NS	
	Xylenes		NI	NI	NI	< 5	NS	< 5	< 5	< 5	NS	
	Chloroethane		NI	NI	NI	NI	< 5	< 5	< 5	< 5	NS	
	1,1-dichloroethene	7	NI	NI	NI	NI	30	41	13	35	NS	
	Ethylbenzene	700	NI	NI	NI	NI	< 2	< 2	11	< 2	NS	
	Isopropylbenzene		NI	NI	NI	NI	< 10	< 10	< 10	< 10	NS	
	Methyl Ethyl Ketone (2-Butanone)		NI	NI	NI	NI	< 100	< 100	< 100	< 100	NS	
ERM-MW-20	Naphthalene		NI	NI	NI	NI	< 10	< 10	< 10	< 10	NS	
	Toluene	1000	NI	NI	NI	NI	< 2	< 2	30	< 2	NS	
	1,1,1-trichloroethane	200	NI	NI	NI	NI	2.1	2.1	< 2	< 2	NS	
	Vinyl chloride	2	NI	NI	NI	NI	4.2	8.7	< 2	4.3	NS	
	Xylenes		NI	NI	NI	NI	< 5	< 5	< 5	< 5	NS	

Table 4 Ground Water VOC Monitoring Data BWAY Drum Disposal Site, HSI Site No. 10731 Homerville, Georgia

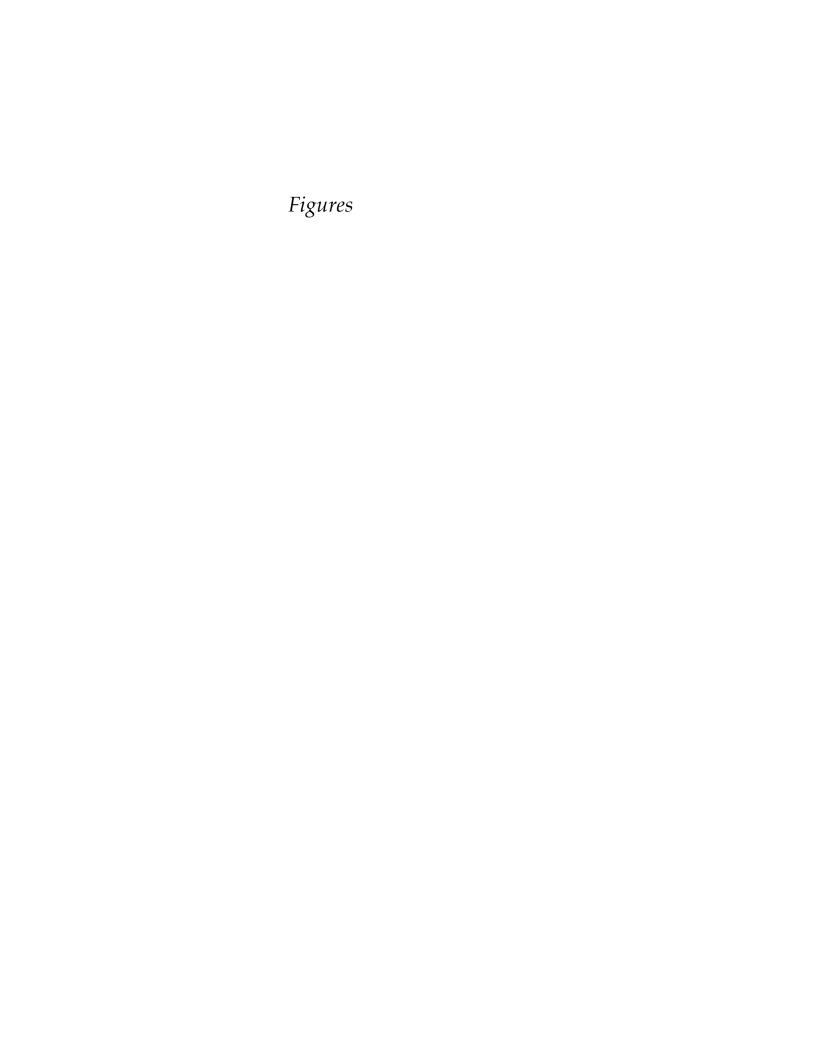
Well ID	Regulated Compound ¹	Delineation Criteria, noted only where	Concentrations (ug/L)									
		detected (ug/L)	Nov-10	May-11	Jun-11	Oct-11	Mar-12	May-12	Nov-12	Apr-13	Jul-13	
	Chloroethane		NI	NI	NI	NI	< 5	< 5	< 5	< 5	NS	
	1,1-dichloroethene	7	NI	NI	NI	NI	2.2	< 2	15	13	NS	
	Ethylbenzene		NI	NI	NI	NI	< 2	< 2	< 2	< 2	NS	
	Isopropylbenzene		NI	NI	NI	NI	< 10	< 10	< 10	< 10	NS	
ERM-MW-21	Methyl Ethyl Ketone (2-Butanone)		NI	NI	NI	NI	< 100	< 100	< 100	< 100	NS	
	Naphthalene		NI	NI	NI	NI	< 10	< 10	< 10	< 10	NS	
	Toluene		NI	NI	NI	NI	< 2	< 2	< 2	< 2	NS	
	1,1,1-trichloroethane		NI	NI	NI	NI	< 2	< 2	< 2	< 2	NS	
	Vinyl chloride		NI	NI	NI	NI	< 2	< 2	< 2	< 2	NS	
	Xylenes		NI	NI	NI	NI	< 5	< 5	< 5	< 5	NS	
	Chloroethane		NI	NI	NI	NI	< 5	< 5	NS	NS	NS	
	1,1-dichloroethene		NI	NI	NI	NI	< 2	< 2	NS	NS	NS	
	Ethylbenzene		NI	NI	NI	NI	< 2	< 2	NS	NS	NS	
	Isopropylbenzene		NI	NI	NI	NI	< 10	< 10	NS	NS	NS	
	Methyl Ethyl Ketone (2-Butanone)		NI	NI	NI	NI	< 100	< 100	NS	NS	NS	
ERM-MW-22	Naphthalene		NI	NI	NI	NI	< 10	< 10	NS	NS	NS	
	Toluene		NI	NI	NI	NI	< 2	< 2	NS	NS	NS	
	1,1,1-trichloroethane		NI	NI	NI	NI	< 2	< 2	NS	NS	NS	
	Vinyl chloride		NI	NI	NI	NI	< 2	< 2	NS	NS	NS	
	Xylenes		NI	NI	N	NI	< 5	< 5	NS	NS	NS	
	Chloroethane		NI	NI	NI	NI	NI	NI	NI	< 5	NS	
	1,1-dichloroethene		NI	NI	NI	NI	NI	NI	NI	< 2	NS	
	Ethylbenzene		NI	NI	NI	NI	NI	NI	NI	< 2	NS	
	Isopropylbenzene		NI	NI	NI	NI	NI	NI	NI	< 10	NS	
ERM-MW-24	Methyl Ethyl Ketone (2-Butanone)		NI	NI	NI	NI	NI	NI	NI	< 100	NS	
LIXIVI-IVIVV-24	Naphthalene		NI	NI	NI	NI	NI	NI	NI	< 10	NS	
	Toluene		NI	NI	NI	NI	NI	NI	NI	< 2	NS	
	1,1,1-trichloroethane		NI	NI	NI	NI	NI	NI	NI	< 2	NS	
	Vinyl chloride		NI	NI	NI	NI	NI	NI	NI	< 2	NS	
	Xylenes		NI	NI	NI	NI	NI	NI	NI	< 5	NS	

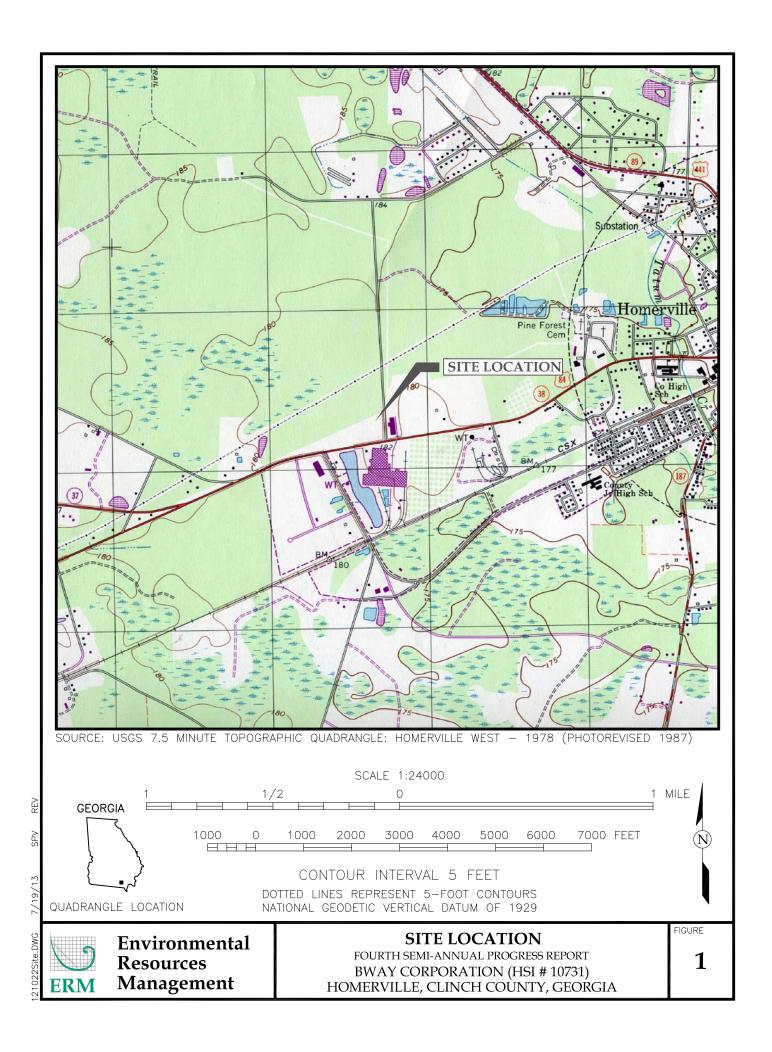
Table 4
Ground Water VOC Monitoring Data

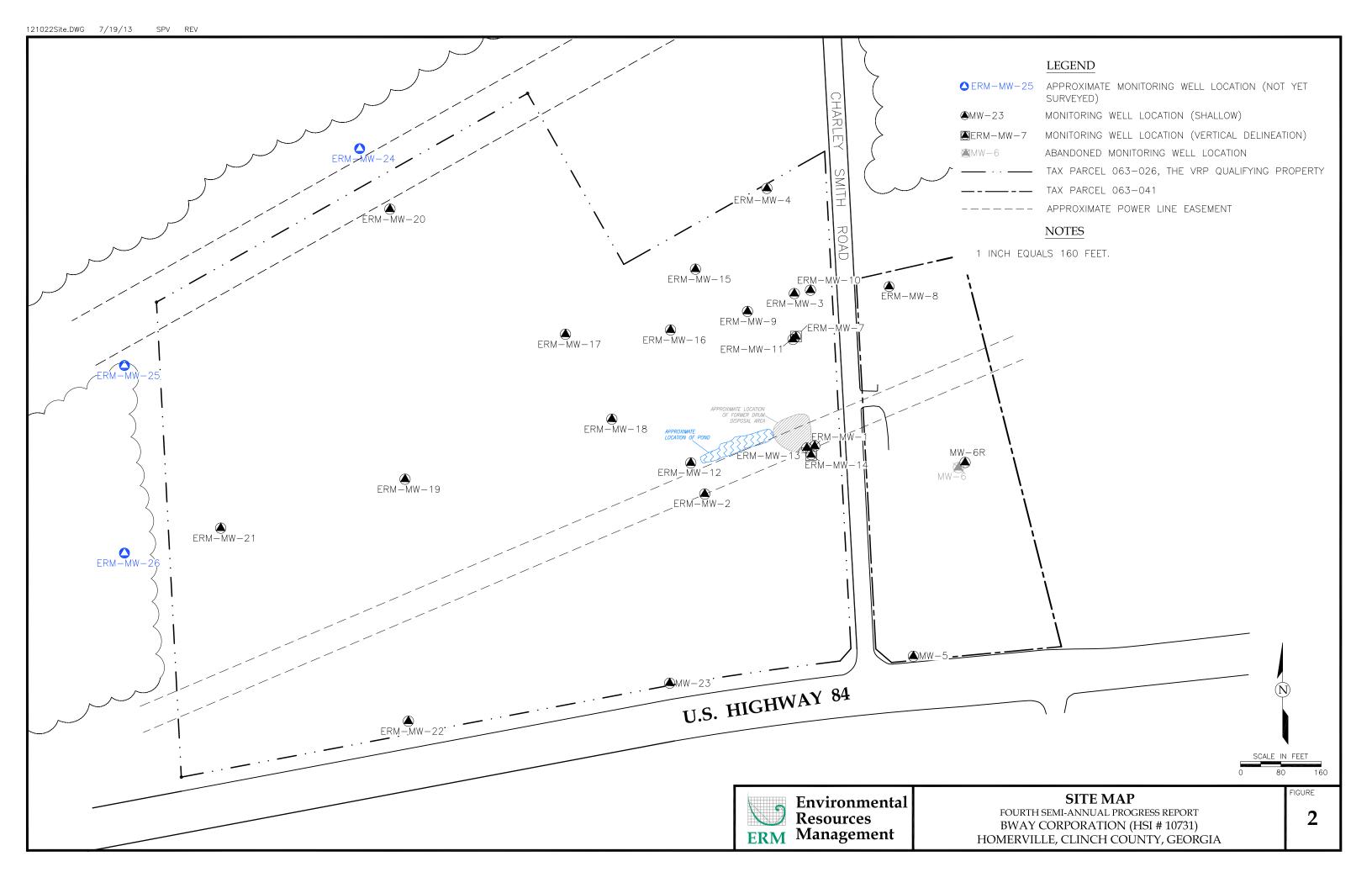
Well ID	Regulated Compound ¹	Delineation Criteria, noted only where	Concentrations (ug/L)									
		detected (ug/L)	Nov-10	May-11	Jun-11	Oct-11	Mar-12	May-12	Nov-12	Apr-13	Jul-13	
	Chloroethane		NI	NI	NI	NI	NI	NI	NI	NI	< 5	
	1,1-dichloroethene		NI	NI	NI	NI	NI	NI	NI	NI	< 2	
	Ethylbenzene		NI	NI	NI	NI	NI	NI	NI	NI	< 2	
	Isopropylbenzene		NI	NI	NI	NI	NI	NI	NI	NI	< 10	
ERM-MW-25	Methyl Ethyl Ketone (2-Butanone)		NI	NI	NI	NI	NI	NI	NI	NI	< 100	
LIXIVI-IVIVV-23	Naphthalene		NI	NI	NI	NI	NI	NI	NI	NI	< 10	
	Toluene		NI	NI	NI	NI	NI	NI	NI	NI	< 2	
	1,1,1-trichloroethane		NI	NI	NI	NI	NI	NI	NI	NI	< 2	
	Vinyl chloride		NI	NI	NI	NI	NI	NI	NI	NI	< 2	
	Xylenes		NI	NI	NI	NI	NI	NI	NI	NI	< 5	
	Chloroethane		NI	NI	NI	NI	NI	NI	NI	NI	< 5	
	1,1-dichloroethene		NI	NI	NI	NI	NI	NI	NI	NI	< 2	
	Ethylbenzene		NI	NI	NI	NI	NI	NI	NI	NI	< 2	
	Isopropylbenzene		NI	NI	NI	NI	NI	NI	NI	NI	< 10	
ERM-MW-26	Methyl Ethyl Ketone (2-Butanone)		NI	NI	NI	NI	NI	NI	NI	NI	< 100	
ERIVI-IVIVV-20	Naphthalene		NI	NI	NI	NI	NI	NI	NI	NI	< 10	
	Toluene		NI	NI	NI	NI	NI	NI	NI	NI	< 2	
	1,1,1-trichloroethane		NI	NI	NI	NI	NI	NI	NI	NI	< 2	
	Vinyl chloride		NI	NI	NI	NI	NI	NI	NI	NI	< 2	
	Xylenes		NI	NI	NI	NI	NI	NI	NI	NI	< 5	
	Chloroethane		NS	NS	NS	< 5	NS	NS	NS	NS	NS	
	1,1-dichloroethene		NS	NS	NS	< 2	NS	NS	NS	NS	NS	
	Ethylbenzene		NS	NS	NS	< 2	NS	NS	NS	NS	NS	
	Isopropylbenzene		NS	NS	NS	< 10	NS	NS	NS	NS	NS	
	Methyl Ethyl Ketone (2-Butanone)		NS	NS	NS	<100	NS	NS	NS	NS	NS	
Storm Water	Naphthalene		NS	NS	NS	< 10	NS	NS	NS	NS	NS	
	Toluene		NS	NS	NS	< 2	NS	NS	NS	NS	NS	
	1,1,1-trichloroethane		NS	NS	NS	< 2	NS	NS	NS	NS	NS	
	Vinyl chloride		NS	NS	NS	< 2	NS	NS	NS	NS	NS	
	Xylenes		NS	NS	NS	< 5	NS	NS	NS	NS	NS	

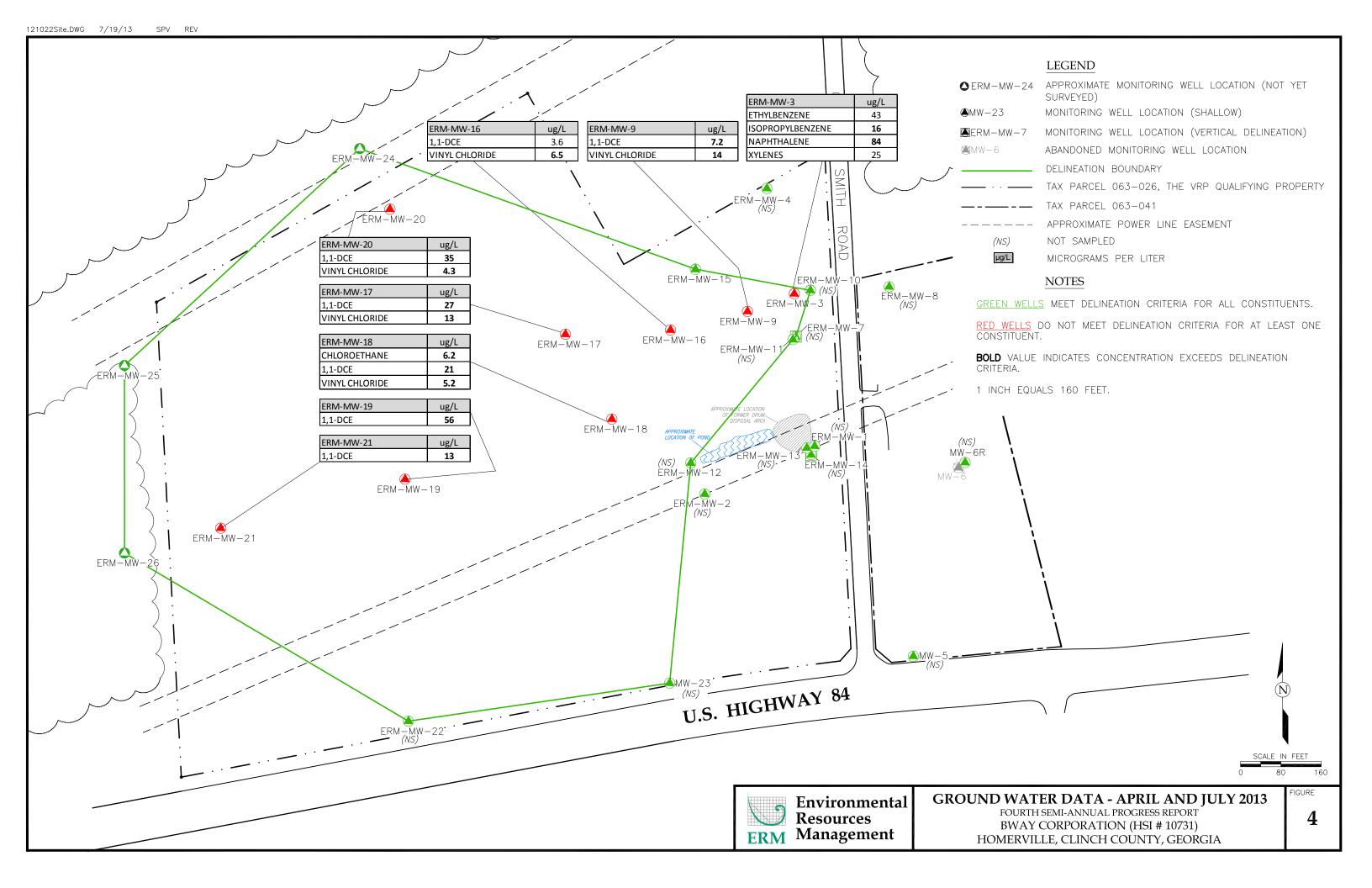
Notes:

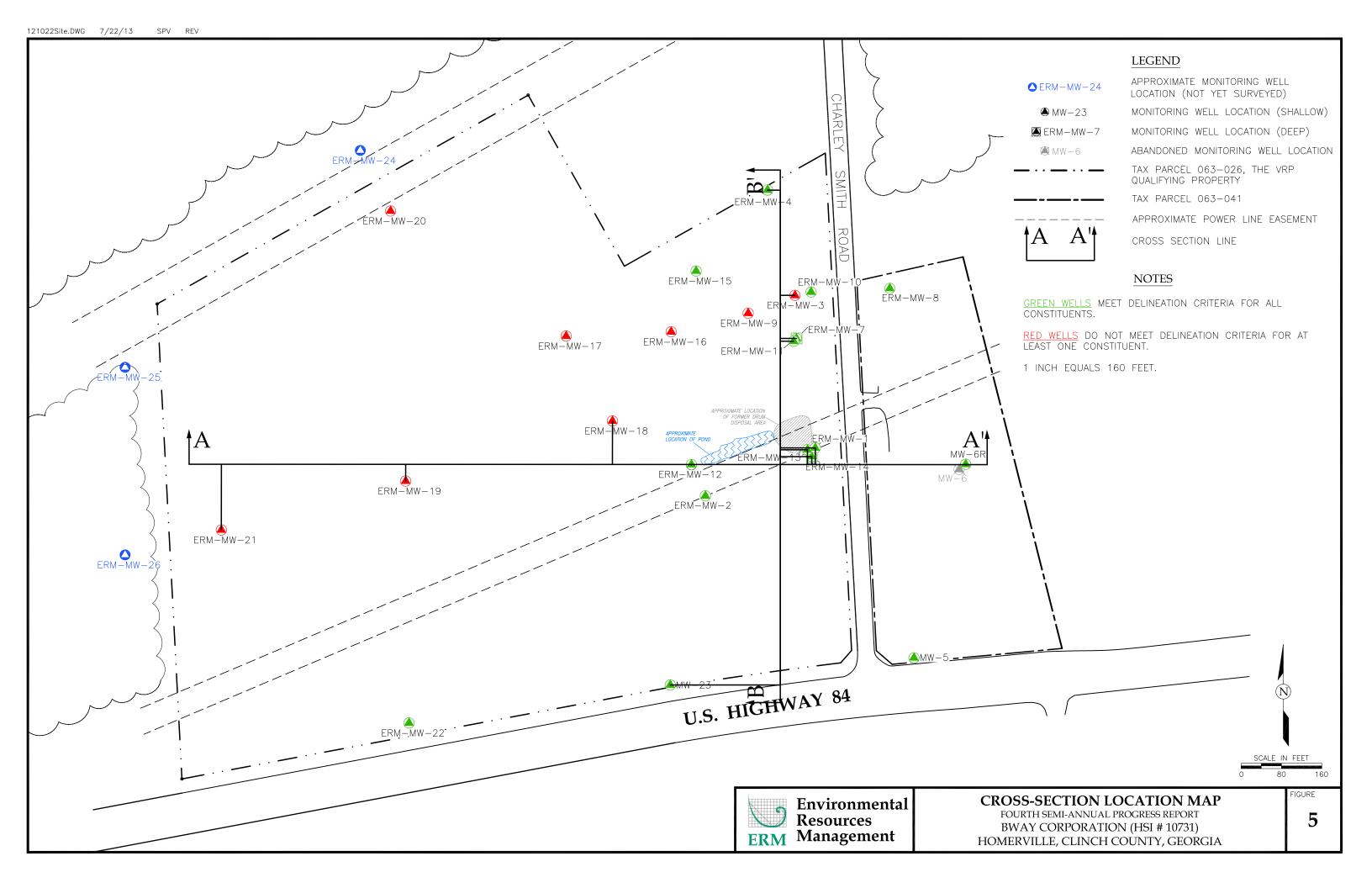
¹ Only VOCs that have been detected in ground water at the site are listed in this table.

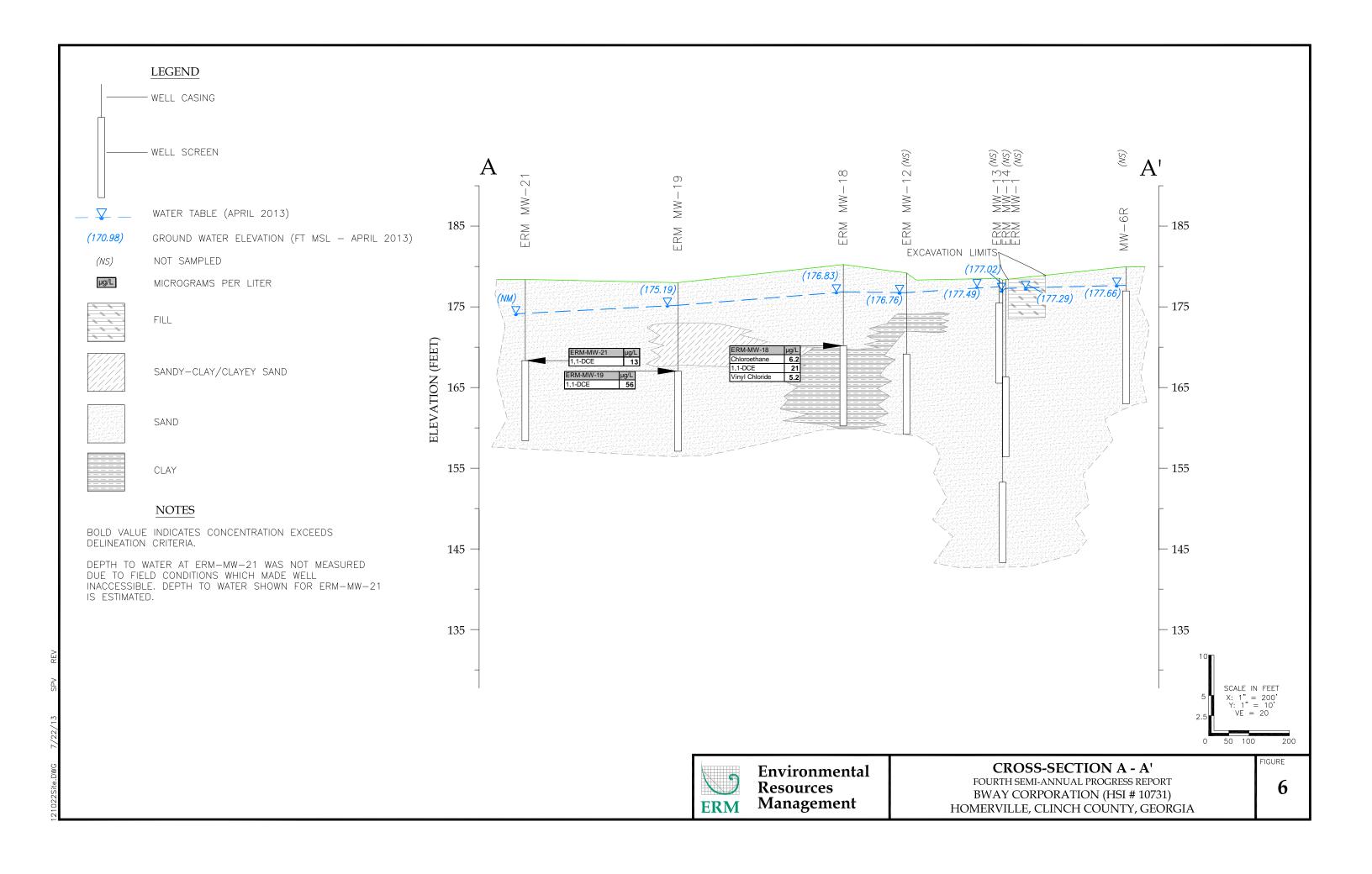

NS = Not Sampled.

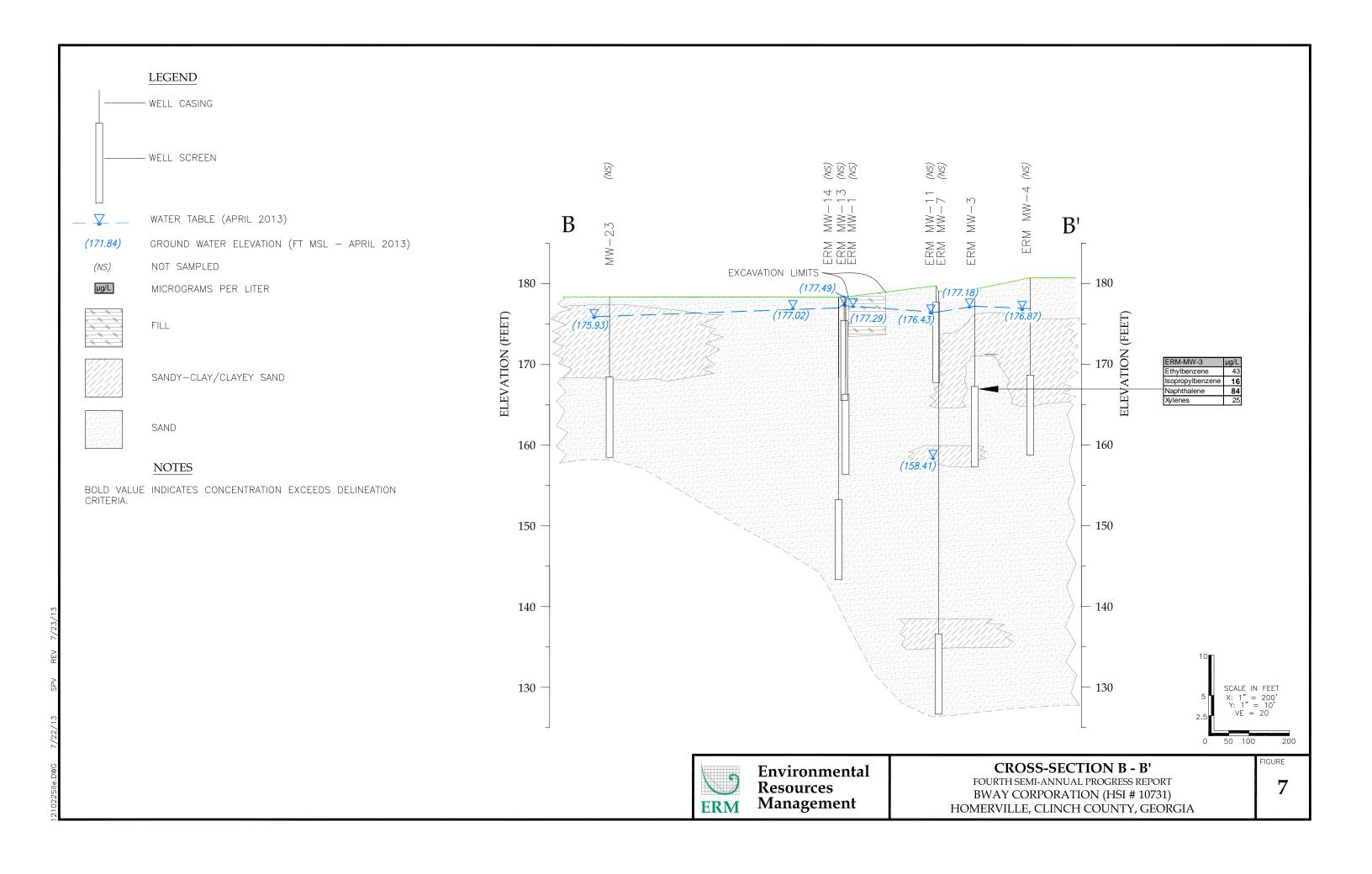

NI = Not Installed.


J = Estimated value.


BOLD = Detected above laboratory detection limit


Detected above delineation concentration





Appendix A

Documentation of Work Performed by Professional Engineer/Geologist

Appendix A Documentation of Work Performed by the Professional Engineer/Geologist BWAY Drum Site Homerville, GA

Month		ours Invoiced nompson, P.E.	Activities Performed by Shanna Thompson, P.E. Since the Previous Submittal			
Dec-12	12.5 hours		Finalize Semi-Annual Report			
Jan-13	0 hours					
Feb-13	5 hours		Planning for Delineation and Sampling Efforts			
Month		ours Invoiced eimer, P.G.	Activities Performed by Adria Reimer, P.G. Since the Previous Submittal			
Mar-13	1	hour	Professional of Record Transition / Project Briefing			
Apr-13	0 hours					
May-13	0 hours					

Appendix B

Boring Logs and Well Construction Diagrams

Environmental Resources Management

Boring Log

Project: BWAY Drum Site Pages: 1

ERM Project No.: 121022 Boring ID: **ERM-MW-24**

Drilling Equipment: Geoprobe
Drilling Method: Rotary Auger
Driller: EM Services
Field Geologist: Holly Bonci
Date of Installation: 2/11/2013

Remarks:

- 1. BGS = Below Ground Surface
- 2. Boring was terminated at 22 feet BGS.
- 3. PID = Photoionization Detector. Readings not taken (NT).
- 4. NA= Not applicable
- 5. PPM = Parts Per Million
- 6. All samples collected from acetate liner of Geoprobe

0. 11	II sai	inpic	3 0011	_	11011	acetate imer	or deoprobe							
Depth (feet BGS)	Sample I.D.	Sampling Method	Recovery (%)	PID Reading (ppm)	Blows/6 Inches		Lithological Descriptions							
5	NA	Acetate Liner	33	NT	NA	0-1.7 ft	White MEDIUM SAND, moist, poorly sorted/ well graded, loose.							
10	NA	Acetate Liner	80	NT	NA	5-9 ft	Yellow to white MEDIUM SAND, wet, poorly sorted/ well graded, loose.							
15	NA	Acetate Liner	100	NT	NA	10-12.5 ft 12.5-15 ft	White MEDIUM SAND, wet, poorly sorted/ well graded, loose. Gray to black MEDIUM SAND, wet, poorly sorted/ well graded, loose.							
20	NA	Acetate Liner	100	NT	NA	15-20 ft	Gray MEDIUM SAND, wet, poorly sorted/ well graded, loose.							
22	NA	NA	0	NT	NA	20-22 ft	Drilled with augers only (no recovery)							
25							Bottom of boring at 22 ft bgs							

Monitoring Well Schematic Project: B-Way Drum Site Well/Boring No.: ERM-MW-24 Project No.: 0121022 ERM Field Supervisor: Holly Bonci Project Location: Homerville, Georgia Date(s): 02/11/2013 Drilling Method: Geoprobe **Drilling Contractor: EM Services** Notes: bgs= below ground surface; Interval 20-22' bgs caved in on itself with surrounding natural materials durring contruction. Expandable Locking Cap NOT TO SCALE Ground Surface Top of Casing: 3'x3'x4" Concrete Pad From surface (ft.) ~3 (NYS) Steel Stickup Well Vault **Annulus:** Diameter (in.): Casing: Diameter (in.): Length (ft.): 13 Connections: Threaded Schedule 40 PVC **Grout:** Material: Portland Cement/High-Yield Bentonite Mixture Length (ft.): 6' 6' (ft) Top of Seal, bgs **Bentonite Seal:** 3/8" Chips (ft) Top of Sand/Bottom of Seal, bgs (ft) Top of Screen,bgs Screen: Slot Size (in.): 0.010" Length (ft.): 10' Diameter (in.): Material: **PVC** Sand Size: #1 Material: Silica Sand Length (ft.): **Bottom Plug** PVC Material: Connection: Threaded (ft) Bottom of Screen, bgs Measurements from (ft) Depth of Bottom Plug, bgs **Ground Surface Level** (ft) Depth of Boring, bgs

Environmental Resources Management

Rotary Auger

Boring Log

Project: BWAY Drum Site Pages: 1

ERM Project No.: 121022 Boring ID: **ERM-MW-25**Drilling Equipment: Geoprobe

Driller: EM Services
Field Geologist: Holly Bonci
Date of Installation: 7/9/2013-7/10/13

Remarks:

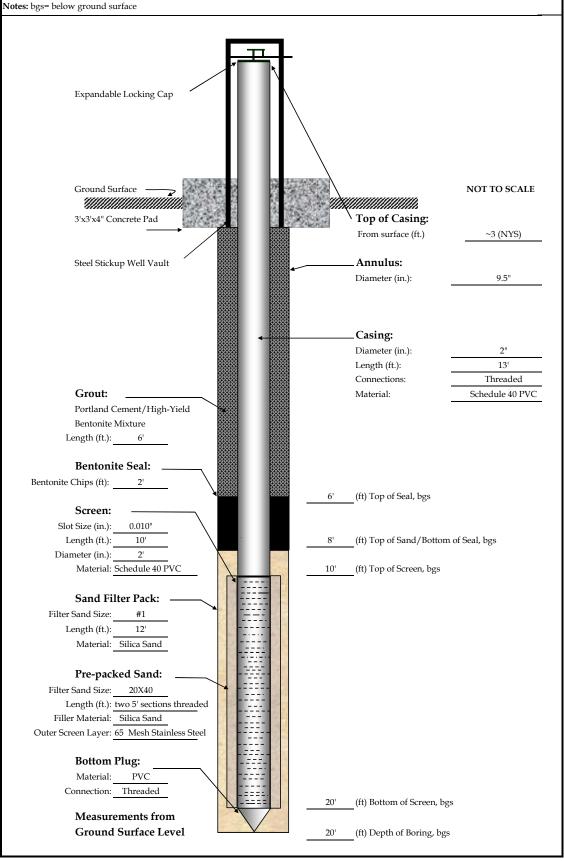
Drilling Method:

- 1. BGS = Below Ground Surface
- 2. Boring was terminated at 20 feet BGS.
- 3. PID = Photoionization Detector.
- 4. NA= Not Applicable
- 5. PPM = Parts Per Million
- 6. All samples collected from acetate liner of Geoprobe

6. A	II sai	mple	s coll	ected	from	acetate liner	of Geoprobe						
Depth (feet BGS)	Sample I.D.	Sampling Method	Recovery (%)	PID Reading (ppm)	Blows/6 Inches		Lithological Descriptions						
		Liner		61.2		0-0.5 ft 0.5-1.4 ft	Dark brown SILT, some fine sand, wet, poorly sorted/ well graded, loose, no plasticity. Tan MEDIUM SAND, wet, poorly sorted/ well graded, loose.						
5	NA	Acetate Liner	58	0.7	NA	1.4-2.91 ft	Gray CLAYEY SILT, some fine sand, wet, poorly sorted/ well graded, loose.						
		Liner	00	0.4	27.4	5-6.5 ft 6.5 ft- 9.4 ft	Gray CLAYEY SILT, some fine sand, wet, poorly sorted/ well graded, very stiff. Gray to dark brown COARSE SAND, wet, poorly sorted/ well graded, loose.						
10	NA	Acetate Liner	88	0.6	NA								
		Liner		0.4		10- 14.7 ft.	Dark brown COARSE SAND, wet, poorly sorted/ well graded, loose.						
15	NA	Acetate Liner	93	0.5	NA								
		Liner		0.7		15- 19.9 ft	Gray COARSE TO VERY COARSE SAND, wet, poorly sorted/ well graded, loose.						
20	NA	Acetate Liner	98	0.5	NA		Bottom of boring at 20 ft bgs						

Monitoring Well Schematic

Project: B-Way Drum Site Project No.: 0121022


Project Location: Homerville, Georgia
Drilling Method: Geoprobe

Well/Boring No.: ERM-MW-25
ERM Field Supervisor: Holly Bonci

Date(s): 7/10/13

Drilling Contractor: EM Services

Environmental Resources Management

Boring Log

Project: BWAY Drum Site Pages: 1

ERM Project No.: 121022 Boring ID: **ERM-MW-26**Drilling Equipment: Geoprobe

Drilling Method: Rotary Auger
Driller: EM Services
Field Geologist: Holly Bonci
Date of Installation: 7/9/2013-7/10/13

Remarks:

1. BGS = Below Ground Surface

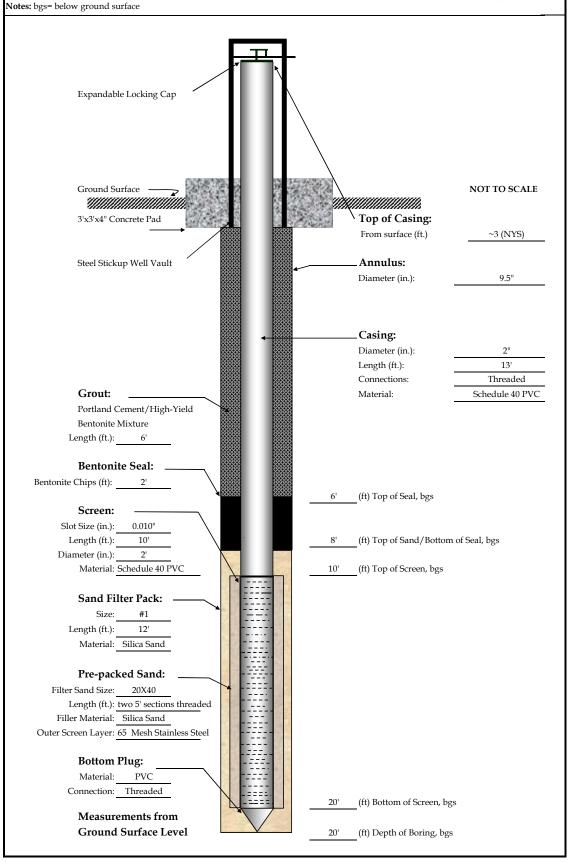
- 2. Boring was terminated at 20 feet BGS.
- 3. PID = Photoionization Detector.
- 4. NA= Not Applicable
- 5. PPM = Parts Per Million

6. All samples collected from acetate liner of Geoprobe

6. A	II sai	mple	s coll	ected	from	acetate liner	of Geoprobe							
Depth (feet BGS)	Sample I.D.	Sampling Method	Recovery (%)	PID Reading (ppm)	Blows/6 Inches		Lithological Descriptions							
	NA	Acetate Liner	70	0.9	NA	0-0.8 ft 0.8-3 ft	Dark brown SILT, some fine sand, wet, poorly sorted/ well graded, loose, no plasticity. Gray CLAYEY SILT, trace fine sand, wet, poorly sorted/ well graded, slightly stiff, moderate							
5		Aceta		1.0		3- 3.5 ft	plasticity. Light gray MEDIUM SAND, wet, poorly sorted/ well graded, loose.							
	NA	Acetate Liner	72	1.0	NA	5- 7.5 ft 7.5- 8.6 ft	Grayish tan MEDIUM SAND, wet, poorly sorted/ well graded, loose. Gray COARSE SAND, wet, poorly sorted/ well graded, loose.							
10	IVA	Acetat	72	1.2	NA									
	NA	Acetate Liner	80	0.8	NA	10- 12.1 ft. 12.1- 14 ft	Dark gray VERY COARSE SAND, wet, poorly sorted/ well graded, loose. Dark gray COARSE SAND, wet, poorly sorted/ well graded, loose.							
15	NA	Acetate	80	1.9	NA.									
		Liner		1.0		15- 17.4 ft 17.4- 18.8 ft	Same as above. Dark gray COARSE SAND, wet, poorly sorted/ well graded, loose. Gray VERY COARSE SAND, wet, poorly sorted/ well graded, loose.							
20	NA	Acetate Liner	77	0.8	NA		Bottom of hole at 20 ft bgs							

Monitoring Well Schematic

Project: B-Way Drum Site Project No.: 0121022


Project Location: Homerville, Georgia
Drilling Method: Geoprobe

Well/Boring No.: ERM-MW-26
ERM Field Supervisor: Holly Bonci

Date(s): 7/10/13

Drilling Contractor: EM Services

Appendix C

Ground Water Sampling Logs

WATER LEVEL MEASUREMENT DATA SHEET

Client:	Bway	
Site/Location:	Homerville GA	

Date: April 15th, 2013.
Sampler's Name: Don Dowling / Ryan McJilton

Well LD.	Date	Time	Well Diameter (inches)	Depth to Water (Feet BTOC)	Total Depth (Feet BTOC)	Depth to NAPL (Feet BTOC)	Notes (Odor, dedicated pump present, note i lock/cap need replacment,etc.)
22M-Mw-74	4 5 7013	1300	2"	3.15	MM	NA	
ppM-MW-70			ill payers	4.12	- Ogga neral igg	المستعددين و	
20M-MW-4	**************************************		To the second se	6.42		Participant of the Control of the Co	
72M-MW-15			200	5.22			
DBW-MM-10				5.72			
ETIM-MW-3	24 to 100			5.80		The state of the s	
EDM-MW-4	-			5.12			***************************************
9W-6R			1	225	Name of the state	Contract Contract	
MW-5			411	2.50		liceptor eggs.	and the second s
EM-AL-9			2''	5.43	Name of the state	9764	
DEM-M-16				5.70			
PM-MW-17				5.84			
EDM-MW-19				6.04			
DEM-MW-19			AN AND ANY AND AN AND AND AND AND AND AND AND AND	5.62			
50m-mw-7	POSSESSION OF THE PERSON OF TH			24.75	TOTAL STATE OF THE		1
<u> 1800-11 - 11</u>			AND	632	d day	100 m	
EBM-MW-1			and of the state o	4.45	CCA		
EDM-MW-13	<u> </u>			4.72			
EPM-MW-14			COPPERATOR PROPERTY AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF	4.85	752CC inmedia (
11-MM-M9H			ADA MESA CERCITA DE LA COMPANSION DE LA	5.30	and the same of th		
ERM-MW-Z				5.72			
E8M-MW-22		<u> </u>	NAME OF TAXABLE PARTY.	3.57	,	Entre Control	
MN-23	V	1700	V	6.41		V	

ERM	Client:	BWAY COR	RPORATIO	N		Project No.:	121022		Sampling Date:
		HOMERVIL							Sampler's Name: DON DOW LINE
						<i>*</i>	.0	11. 1	311116
		ERM-N	(m - "2	•		George	V 12/15t	MANY	
	Total Depth (ft) ¹ :	1 64		-	Tubing Material:	- 10° C 10°C	ed IAPL		Sample Purge Rate (L/min) ² : 0 1 Sample ID: ECM. M W- 3
	epth to Water (ft):	7 1.7		•	ntake Depth (ft): Stop Purge Time:		1148.		QA/QC Collected?
	/ell Diameter (in): (gal) = 0.041d ² h;	A 1	941	-	pe Rate (L/min)2:		[] []		QA/QCI,D. A.C.
		th of water column	(feet)		urge Volume (L):				Laboratory Analyses: & Z & C &
Well Condition:						Soda straw (VOCs)	uacuum jug (
	- 3		•					arge (all analytes)	
Time	Temp. (°C)	Spec. Cond. (mS/cm)	DO (mg/L)	PH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H ₂ O Depth (ft)	Notes (Water clarity, odor, purge rate, issues with pump/well/weather/etc)
1130.	19.73	0.174	2.90	5.71	-5.0	7,90	0.5	6.02	lanflow low volume
1136	19.46	0.192	0.67	5.5%	-445	2.52	1.0	6102	
1140_	19.42	0.197	0.55	5.55	- 455, 3	1.24	1.5	6.02	
1145	19.38	0.196	0.46	5,55	-55.6	0.97	2.0	6.02	parameters Stable Sampleylat 1145
						<u> </u>			
				· · · · · · · · · · · · · · · · · · ·					ii. War
			"	· · · · · ·					
		-							
	±								
				ļ					
				ļ				-	
Stabilizing	+/-	+/-	+/- 10% (see note	+/-	+/- 10 mV (see note	+/- 10% or	(see note	(see note	
Criteria ⁵ 1) - Do not measure de	1°C pth to bottom of well u	3% ntil after purging and sa	below)* impling to reduce resur	0.1 unit spending fines that ma	below)* y be resting on the we	<10 NTUs I boltom	below)4	below)°	
2) - Purge rate to be 0.5 3) - Sampling rate to be 4) - Field parameter me	0.25 ipm or less.	ded every 3 to 5 minutes	5.					•	
5) - Stabilization criteria 6) - Monitor DTW ever	a based on three most r	recent consecutive meast yn to be 0.3 ft or less. I't Groundwater sampling"	rements. rge/sampling rate to	be lowered as necessar	y to keep drawdown l	oulow 0.3 ft.			
r) - LIO is not a stabiliza 3) - ORP js not a stabilia	auon crussion for the " zation criterion for the	Groundwater sampling "Groundwater sampling	" SESD Standard Oper	ating Procedure.		•			

- 1	_					
- 1	Ų.	ŀF	Æ	П	1	H
ļ	V	Œ	Ŧ	В	Г	ì
- 1	4	Ų.	W.	4	1	ì
		2	-			ш
	F	T	3	N	J	ľ

ERM	Client:	BWAY COF	RPORATIO	N		Project No.;	121022			4-16-13
	Site/Location:	HOMERVIL	LE, GA						Sampler's Name:	DON DOWLING
	Well ID:	10.50	V = 69			Geograps tereon	Venzali La il ae	12/2	Sample Collection Time: Sample Purge Rate (L/min) ³ :	12(5
	pth to Water (ft):	1 5		-	ntake Depth (ft):	360				ERM-MW-9
	ell Diameter (in):		· · ·	•	top Purge Time:	1150~			QA/QC Collected?	
Mell Volume ($a_0 = 0.041 d^2 h$	2.4 gol/	91	-	e Rate (L/min)²:				QA/QC I.D.	ala
d = well diameter (•	urge Volume (L):	2.5			Laboratory Analyses:	82608
Well Condition:	. 1	., -, ,,,,,,,,		ing Method (ched		🗹 soda straw ((VOCs)	☐ vacuum jug ((SVOCs) \square pump head d	ischarge (Inorganics including cyanide)
	<u> </u>		•					arge (all analytes)	☐ Bailer (only u	sed if necessary)
Time	Temp. (°C)	Spec. Cond. (mS/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H₂O Depth (ft)	Notes (Water clarity, odor,	purge rate, issues with pump/well/weather/etc.)
1165	19.41	0.512	482	5.58	13.	42.1	0.5	609	1000 \$0	ow low volume
1200	19.7	0,363	0.23	5.31	44 6	17,2	1.0	605		
1205	18.74	0,362	0.22	6.31	45.0	149	1.5	6.05		
1210	18.81	0.360	0,25	5,34	44,5	11/8	2.0	6.05		
1215	8 19	0.359	0.22	5.36	45.6	946	2.5	6.05		
1,000 (.)		- W	V		, w					
		•								·
							·			
									4	
						-				144.
										·
				- /						
		•								
<u> </u>										
	******	•						·		· · · · · · · · · · · · · · · · · · ·
		····	-							
	•					·				
			F 4007		+/- 10 mV					
Stabilizing	+/-	+/-	+/- 10% (see note	+/-	(see note	+/- 10% or	(see note	(see note		

Criteria*

1°C 396 belowy*

0.1 unit belowy*

10 N not an ancasure depth to bottom of well until infer purging and sampling to reduce resuspending fines that may be restling on the well bottom.

2) - Purge rate to be 0.5 ipn or less.

3) - Sampling rate to be 0.25 ipm or less.

4) - Field parameter measurements to be accorded overy 3 to 5 minutes.

5) - Subditation criteria hased on three most recent consecutive measurements.

6) - Monitor DTW every 5 min. Well drawdown to be 0.3 ft or less. Purge/sampling rate to be lowered as necessary to keep drawdown below 0.3 ft.

7) - NO is not a stabilization criteria for the "Groundwater sampling" SISD Standard Operating Procedure.

8) - ORC is not a stabilization criterion for the "Groundwater sampling" SISD Standard Operating Procedure.

ERM	Client:	BWAY CO	RPORATIO	N		Project No.:	121022		Sampling Date: 4 4 2013
	Site/Location:	HOMERVIL	LE, GA						Sampler's Name: Don Dewe We
	NA/ 11 175-	ERW-MI	d 314			Geogram	o Produk	eri P. m. D	Sample Collection Time: 12.50
	Total Depth (ft)1:		14 - 1 - 3		Tubing Material:	$\overline{}$	red laps	14 Prof	Sample Collection Time: (,
	epth to Water (ft):			Pump Intake Depth (ft):					Sample ID: CRM:www-15
	/ell Diameter (in):	.0. 7		• '	Stop Purge Time:	1 0 1 4 3	-12:50		QA/QC Collected?
		2.2 gel	5.4L	-	ge Rate (L/min)2:				QAQCID. Mic.
d = well diameter (1000	*	-	urge Volume (L):	3 %			Laboratory Analyses: 260 B
Well Condition:	/> 1			ling Method (che	ck all that apply):	☑ soda straw ((VOCs)	□ vacuum jug	(SVOCs)
	J .							arge (all analytes)	
Time	Temp.	Spec, Cond. (m5/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H ₂ O Depth (ft)	Notes (Water clarity, odor, purge rate, issues with pump/well/weather/etc.)
235	18.74	0.065	1,50	478	116.0	8.72	0.5	5.48	lon flow low volume
1240	18:02	6.064	1.08	4.46	104.0	5,85	1.0	5.48	
1245	18.59	0.062	1.09	4.41	108.1	4,44	1.5	5.48	
1250	18,65	0,061	1.08	4.43	107,2	3.78	2.0	5,48	parameters stable sampledat 1350
									}
							·		
					i				
-									
				·					
								·	
	ļ								
Stabilizing Criteria ⁵	+/- 1°C	+/- 3%	+/- 10% (see note below) ⁷	+/- 0.1 unit	+/- 10 mV (see note below) ⁸	+/- 10% or <10 NTUs	(see note below) ⁴	(see note below) ⁶	

ERM	Client	BWAY COL	RPORATIO	N		Project No.:	121022	l r	Sampling Date: 4/14/76/3
	Site/Location:	HOMERVIL	LE, GA						Sampler's Name: _ &MC14bw
	Well ID:	EPM-ML	1-16	Р	ump Type/Model:	650-9V1	MP (PERIA	inane)	Sample Collection Time: <u>1970</u>
	Total Depth (ft)	10.5	(AD)-20		Tubing Material:	TL-LDRE	11741	Ý	Sample Purge Rate (L/min)3: 12/M/U. 500A 5764W
, 1	Depth to Water (ft):	5.45		Pump	intake Depth (ft):	15 ,			Sample ID: ERM - MW-16
	Well Diameter (in):	2"		Start/	Stop Purge Time:	0430/6	1915		QA/QC Collected? YES
Well. Volum	ne (gal) = 0.041d²h:	2.46AL	9.1LIR	¥ } Pur	ge Rate (L/min) ² :	ILLMIA	<u> </u>		QAQCID. DUP-01
d = well diamete	er (inches) h = leng	th of water column	(feet)		urge Volume (L):	28 30			Laboratory Analyses: \$7608 OF MEK
Well Condition	on: <u>400)</u>		Samp	ling Method (che	ck all that apply):	soda straw	(VOCs)	uscuum jug	(SVOCs) pump head discharge (Inorganics including cyanide)
							np = pump disch		i a company and a company
Time	Temp. (°C)	Spec. Cond. (mS/cm)	DO: (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H ₂ O Depth (ft)	Notes (Water clarity, odor, purge rate, issues with pump/well/weather/etc.)
0435	17.99	.060	2.56	4.63	16.8	216	.5	5.46	ZOW FLEW/LOW VOLUME @. 12/MIN
0840	18.01	.061	2.65	4-63	17.9	19.5	10	544	,
0445	1802	.062	2.90	4.61	10.0	17.3	1.5	5.40	a y y y y y y y y y y y y y y y y y y y
0850	18.04	,059	3.12	4.47	41.2	16.0	7.0	5.91	
0455	14.09	.059	3.19	4.41	47.3	3.4	25	5.41	
0900	18.04	,059	2.32	4.42	51.4	11.)	7.0	5.91	1./ 0.0\/
0905	18.09	.060	2.73	4.44	7 49	9.71	3.5	592	1000
0910	1910	-054	2.67	4-45	55.8	8.31	4.0	5.43	No.
0915	18.10	.060	7-61	4.45	57.1	7.47	4.6	5.43	\&C
									1000
0970	PAPAN	ETEVES_	FINBIL	1727	FAMP LE	3 (0)	LECTES	<u>}</u>	
				· ·					
			,						
	_							1	The second secon
·								<u> </u>	
								1	
********								ļ	
			1						,
								•	
						600,447,444	1030.030.00010.000		
Stabilizing	+/-	+/-	+/- 10% (see note	+/-	+/- 10 mV (see note	+/- 10% or	(see note	(see note	

Criteria 1°C 3% below 0.1 unit below 1°C 10 N

(1) - Do not recaster depth to bottom of well until after purping and sampling to reduce resuspending from that may be resting on the well bottom.

(2) - Purper state to be 0.5 but or fess.

(3) - Sampling rate to be 0.25 lpm or less.

(4) Field parameter measurements to be recorded every 3 to 5 minutes.

(5) - Stabilization criticals based on three most recent consecutive measurements.

(6) - Monitor DTW every 5 min. Well drawdown to be 0.3 ft or less. Purper/sampling rate to be lowered as necessary to keep drawdown below 0.3 ft.

(7) - DO is not a stabilization criterion for the "Groundwater sampling" SESD Standard Operating Procedure.

(8) - ORP is not a stabilization criterion for the "Groundwater sampling" SESD Standard Operating Procedure.

ERM	Client	BWAY CO	RPORATIO	N		Project No.:	121022		Sampling Date: 4/16/23/3 Sampler's Name: E.MCTILTON
	Site/Location:	HOMERVIL	LLE, GA						Sampler's Name: <u>R.M.CT/LTON</u>
		EPM-MW			ump Type/Model: Tubing Material:	<u>HEOPUMP</u>	(PERIS	142716)	Sample Collection Time: 1705 Sample Purge Rate (L/min) ³ : 11 MIV SON SON SON
		10 19	·70 - /4· 10)		Tubing Material: intake Depth (ft):		E (11/5/7)	7	Sample Purge Rate (Diffill): 100 FT Sample Purge Rate (Diffill): 1
	Depth to Water (ft):			_	intake Depth (ft): Stop Purge Time:				QA/QC Collected? NO
	Well Diameter (in):	7-3 GAL	19110		stop Purge Time: ge Rate (L/min)²:				QA/QC I.D. N/A
			•	Total E	ge isate (Enilin) : Purge Volume (L):		17263		Laboratory Analyses: \$1608 4 MEL
	r (inches) n = leng n:	th of water column			eck all that apply):		-,	☐ vacuum jug	
weii Condido	11. <u>19</u> 8017			ang moniou (one	or an and apply.	-	np = pump discha		
Time	Temp.	Spec. Cond. (mS/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H ₂ O Depth (ft)	Notes (Water clarity, odor, purge rate, issues with pump/well/weather/etc.)
1135	14.46	1053	2.23	4.55	62.2	1.46	15	6-10	10W FLOW /LOW YOUME B L/MIN
1140	14.22	.053	1.14	3.72	54.1	9.35	1.6	6.10	
1145	14.36	.053	1.06	4.30	60.3	362	1.5	6.11	
1150	19.44	.053	1.11	4.31	63.4	4.27	2.0	10-12	
1155	14.40	-05Z	1.46	4.27	60.4	7.96	25	613	
1700	11.36	.052	.97	4.26	568	7.44	3.6	6.13	:
		·							
1705	DARA M	YZ-12-5	54ABIL1	70,50	AMPLEZ	lore	CIED.		
				ļ		-			
				ļ		-			
			ļ					-	
		, ·	ļ	-				 	
				<u> </u>					
						<u> </u>			
				<u>-</u>					
			<u> </u>						

					<u> </u>				
Stabilizing Criteria ⁸	+/- 1°C	+/- 3%	+/- 10% (see note below) ⁷	+/- 0.1 unit	+/- 10 mV (see note below) ⁸	+/- 10% or <10 NTUs	(see note	(see note below) ⁶	

Criteria* 1.7 (2 3% below)* 0.1 unit below)* \$10.N (1) - Do not measure depth to bottom of well until after purging and sampling to reduce reasspending fines that may be resting on the well bottom. (2) - Purge rate to be 0.5 lpm or less. (3) - Sampling rate to be 0.25 lpm or less. (4) - Find parameter measurements to be recorded every 3 to 5 minutes. (5) - Sahibization criteria based on three most recond consocutive measurements. (6) - Monitor DTW every 5 min. Well drawdown to be 0.3 ft or less. Purge/sampling rate to be lowered as necessary to keep drawdown below 0.3 ft. (7) - DO is not a stabilization criterion for the "Groundwater sampling" SESO Sandard Operating Procedure. (8) - ORP is not a stabilization criterion for the "Groundwater sampling" SESO Sandard Operating Procedure.

ERM	Client	BWAY COI	RPORATIO	N		Project No.:	121022		Sampling Date: 4/16/2013 Sampler's Name: EMISTLYON					
	Site/Location:	HOMERVIL	LE, GA				******		_	Sampler	s Name: 🌋	MITILIE	IN	
	Well ID	ERN-	MW-14	Pi	ump Type/Model:	680fU1	no love	15146716	Sam		on Time: <u>//</u>			<u></u>
	Total Depth (ft) ¹	20 (9	,7-19.7,)	Tubing Material:	TL-LDIE			Sample F	urge Rate	(L/min)³:	1 L/MIN	5074	<u> 976</u> 4 N
D	epth to Water (ft)			Pump	Intake Depth (ft):	15.7	WT		<u>.</u>	Sa	mple 1D: £1€	M-ML-	14 .	
v	Vell Diameter (in)	: <u>Z (</u>		_ Start/s	Stop Purge Time:	0935/10	105		_		ollected? As a	·		
Well Volume	e (gal) = 0.041d²h	2.25441	13.56172	Pur Pur	ge Rate (L/min)²:	·14/MI	v		_		/QC I.D. <u>//</u>			
d = well diameter	(inches) h = leng	th of water column	(feet)	Total P	urge Volume (L):	30 L	IE03			aboratory A	nalyses: 🕏 🕏	60 STORT	4-MEIL	
Well Condition	: 600D		Samp	ling Method (che	ck all that apply):	soda straw	(VOCs)	☐ vacuum jüg	(SVOCs)	□ рип	np head disch	arge (Inorganics in	cluding cyanide)	
						· · · · · · · · · · · · · · · · · · ·		arge (all analytes			er (only used	if necessary) e rate, issues with	numntwolltwa	stborlate)
Time	Temp. (°C)	Spec. Cond. (mS/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H ₂ O Depth (ft)						
0940	14.24	.045	2.30	5.10	65.7	11.2	5	6.27	Law	FLIW	160W	VOLUME	D.12/	<u> 411 </u>
0945	18.22	1044	1.72	502	62.6	13.96	10	6.29						
0450	18.23	1044	1.64	4.86	70.Z	1157	15	6.79						<u>.</u>
0955	18.27	.044	1.50	4.43	66.2	7.68	2.0	6.29						
1000	18.31	.045	1.51	4.85	63.2	6.97	25	6-30						
1005	18.38	.045	1.44	4.86	61.4	6.21	3.0	6.31						
1010	PAKRI	NETERS	SYABIL	17ED 1	MOLE;	COL	しゃくねり	· ·						
													·	
	ļ							<u> </u>						
												-		
				<u></u>		<u> </u>								
														A
			<u> </u>	<u></u>		<u> </u>		<u> </u>					·	•
	-					<u> </u>								
			<u>-</u>					 	-		***		·	v
			<u> </u>	<u> </u>	-									
100	_		<u> </u>		1									
			 	<u> </u>				 	·					
			-	-	<u> </u>	1	-	-			.			
	 	ļ	 	 	-	<u> </u>		 						
Stabilizing	+/- 1°C	+/- 3%	+/- 10% (see note below) ⁷	+/- 0.1 unit	+/- 10 mV (see note below) ⁵	+/- 10% or <10 NTUs	(see note below) ⁴	(see note						
Criteria ⁵ (1) - Do not measure d (2) - Purge rate to be 0	lepth to bottom of well	370 until after purging and s					O Product position							
(3) - Sampling rate to b (4) - Field parameter n	be 0.25 lpm or less. neasurements to be rec	orded every 3 to 5 minut	ros.		-									
(6) - Monitor DTW eve (7) - DO is not a stabili	ery 5 mils. Well drawds Izalion criterion for the	recept consecutive meas own to be 0.3 ft or less. F "Groundwater sampling	Purge/sampling rate to "SESD Standard Oper	aung Procedure.	ary to keep drawdown	below 0.3 ft.								
(8) - ORP is not a slabi	lization criterion for th	e "Groundwater samplin	g" SFSD Slandard Ope	rating Procedure.										

Site/Location: HOMERVILLE GA Sampler's Name:	UPA GRAN
Total Depth (ft): 10-9	
Depth to Water (ft): 10 Pump Intake Depth (ft): 11 Start/Stop Purge Time: 1830 185 Sample ID: 1870 -MW - 19	
Well Volume (gal) = 0.041d²n: 2.4 642 10.52 172P³ Purge Rate (L/min)²: 112M³V QA/QC Collected? NO QA/QC I.D. N A QA/QC I.D. N A	A- 1776
Well Volume (gal) = 0.041d²h: 2.4 642 10.51 728 Purge Rate (L/min)². 11/M1V QA/QC I.D. N/1 d = well diameter (inches) h = length of water column (feet) Total Purge Volume (L); 7.5 Laboratory Analyses: 4260 6780 Yell Condition: 600 P Sampling Method (check all that apply): Sampling Method (check all that apply): Second Sampling Method (check all that apply): Bladder pump = pump discharge (all analytes) Bailer (only used if necessary) Time	A+ 1-36
Well Volume (gal) = 0.041d³h: 2.4 641 10.51 728 Purge Rate (L/min)². 11 11 128 Purge Rate (L/min)². 11 11 128 Purge Rate (L/min)². 11 11 128 Purge Rate (L/min)². 12 128 Purge Volume (L): 12 128 Purge Volume (L): 12 Purge Volume (Roccondition: 600 P	A+ 1738
Vivel Condition:	
Bladder pump = pump discharge (all analytes) Bailer (only used if necessary)	
Time Temp. Spec. Cond. DO (m5/cm) (mg/L) (SU) (mV) (NTUs) Purge Volume (H ₂ O Depth Notes (Water clarity, odor, purge rate, issues with pur (nt) (nt) (m5/cm) (m5/cm) (mg/L) (SU) (mV) (NTUs) (L) (H) (h) Notes (Water clarity, odor, purge rate, issues with pur (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	ing cyanide)
1035 1914 .042 1.55 4.33 64.1 10.85 .5 4.05 LON FRON LON VOLUME 1040 19.10 .042 1.30 4.81 56.5 10.21 1.0 4.05 1045 13.88 .042 1.24 4.77 4.77 46.4 9.27 1.5 4.05 1050 18.82 .042 1.26 4.75 43.0 8.61 2.0 4.06 1055 18.72 .042 1.21 4.74 31.1 8.73 7.5 4.07	mp/well/weather/etc.)
1035 1914 .042 1.55 4.33 64.1 10.85 .5 4.05 LON From /LON VOLUME . 1040 19.10 .042 1.30 4.31 56.5 10.21 1.0 4.05 1045 13.38 .042 1.24 4.77 464 9.27 1.5 4.05 1050 18.92 .042 1.26 4.75 43.0 8.61 2.0 4.06 1055 18.72 .042 1.21 4.74 34.1 8.73 7.5 4.07	
1040 19.10 .042 1.30 4.81 56.5 10.21 1.0 4.05 1045 18.88 .042 1.24 4.77 469 9.27 1.5 4.05 1050 18.92 .042 1.26 4.75 43.0 8.61 2.0 4.06 1055 18.72 .042 1.21 4.74 34.1 8.73 7.5 4.07	Q. ILMIN
1045 13.88 .042 1.24 4.77 464 9.27 15 4.05 1050 18.82 .042 1.26 4.75 43.0 8.61 2.0 4.06 1055 18.72 .042 1.21 4.74 31.1 8.73 2.5 4.07	, <u></u>
1050 18.92 1042 1.26 4.75 43.0 8.61 2.0 4.06 1055 18.72 1.042 1.21 4.74 34.1 8.23 7.5 4.07	
1055 18.72 .042 1.21 4.74 34.1 8.73 7.5 4.07	407
1100 PARAMATERS SVABILITED; SAMPLES COLLECTED	
+/- 10 mV +/- 10 mV	

Criteria 1.°C | below) | 0.1 unit | below) | 510 N |

(1) - Do not measure depth to bettern of well until after purging and sampling to reduce resuspending firses that may be resting on the well bottom.

(2) - Purge rate to be 0.25 ipm or less.

(3) - Sampling rate to be 0.25 ipm or less.

(4) - Field parameter measurements to be recorded every 3 to 5 minutes.

(5) - Sudditization criteria based on three most eccent consecutive measurements.

(6) - Monitor DTW every 5 min. Well drawdown to be 0.3 ft or less. Purge/sampling rate to be lowered as necessary to keep drawdown below 0.3 ft.

(7) - DO is not a stabilization criterion for the "Groundwater sampling" SEPSD Standard Operating Procedure.

(8) - ORP is not a stabilization criterion for the "Groundwater sampling" SEPSD Standard Operating Procedure.

ERM	Client:	BWAY COL	RPORATIO	N		Project No.:	121022		Sampling Date:	4-16-2013
•	Site/Location:	HOMERVIL	LE, GA						Sampler's Name:	DON DOWLENG
-							.÷	Ä		å øre E
		Er W-WA	J-20				o Verotalfi		Sample Collection Time:	<u> 104 0</u>
	Total Depth (ft)1:			-	Tubing Material:		lived Ida	<u>, t</u>	Sample Purge Rate (L/min) ³ :	
D	epth to Water (ft):	4.25		•	ntake Depth (ft):			•	•	ERV-120
٧	Vell Diameter (in):	ak A	f	•	top Purge Time:		1040		QA/QC Collected?	
	(gal) = 0.041d ² h:		approximate and the second		ge Rate (L/min)²:	11 2			QA/QC I.D.	N/a 8260B
		th of water column			urge Volume (L):		2 (00-)	☐ vacuum jug	Laboratory Analyses:	ischarge (Inorganics including cyanide)
Well Condition	: Apply		_ Sampi	ing Method (che	ok ali that apply):			arge (all analytes)		used if necessary)
Time	Temp.	Spec. Cond.	DO	pИ	ORP	Turbidity	Purge Volume	H ₂ O Depth		purge rate, issues with pump/well/weather/etc.)
	(°C)	(m5/cm)	(mg/L)	(SU)	(mV)	(NTUs)	(L)	(ft)		
1000	18.13	0.029	4.55	4.84	75.9		0,5	4.65	lowflow 1	ous volume
1005	18.19	8-030	0-51	4.56	69.	28.3	1.0	4.60		,
1010	18.18	0.020	0.72	4.58	61.9	11-4	1,5	4.60	,	
1015	18.05	0.031	6-32	4.4.3	58.0	15.8	2.0	4,60		
<u>loro</u>	18.47	0.031	0,25	4.73	47.6	28.6	2.5	4.60		
1026	18.01	0.031	0.28	4.68	47.7	24.8	3.0	4.60		
1030	18.62	0.031	0,25	4.78	40.3	9.40	3.5	460		
1035	18.43	0.032	0.22	4.80	39.3	9:04	4,0	4.60		110 1 11000
1040	18.59	0.031	0.24	4.78	39,5	8-25	4,5	4,40	perandes	stelle schipledat 1040
			-		<u></u>					
-							-	•		
	<u> </u>			.,.						1118
					-					
	 	-								
	1									
			 							
								1,33		
	-									
Stabilizing Criteria ⁵	+/- 1°C	+/- 3%	+/- 10% {see note below}?	+/- 0.1 unit	+/- 10 mV (see note below) ⁶	+/- 10% or <10 NTUs	(see note below) ⁴	(see note below) ⁶		

Criteria 1.5. 376 | Pelow 1.3. unit Delow 2.5 on the well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom.

(1) - Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom.

(3) - Sampling rate to be 0.25 pm or less.

(4) - Field praintester measurements to be recorded every 3 to 5 minutes.

(5) - Subdilization criteria based on flure most recent consecutive measurements.

(6) - Monitor 17TM every 5 min. Well drawdown to be 0.3 for less. Purge/sampling rate to be lowered as necessary to keep drawdown below 0.3 ft.

(7) - DO is not a stabilization criterion for the "Groundwater sampling" SESD Standard Operating Procedure.

(8) - ORP is not a stabilization criterion for the "Groundwater sampling" SESD Standard Operating Procedure.

ERM	ı	Cilent:	BWAY CO	RPORATIO	N		Project No.:	121022		Sampling Date: 4116 12413
		_	HOMERVIL							Sampler's Name:
	-			6		•				
		96.	F66W-W	N-121	_ Pı	ump Type/Model:	1			Sample Collection Time: 13.70
	Total Dept	h (ft) ¹ :			_	Tubing Material:				Sample Purge Rate (L/min) ³ : MA
	Depth to Wat				-	Intake Depth (ft):				Sample ID: WM - MW - 2)
	Well Diamete	_		The state of the s	-	Stop Purge Time:		· · · · · · · · · · · · · · · · · · ·		QA/QC Collected? ND
	me (gal) = 0,0				- Company	ge Rate (L/min) ² :			The state of the s	Laboratory Analyses: \$260 \$1007 \$MEV
	ter (inches) h ion: <u>し</u> りじて	_	of water column			urge Volume (L): ck all that apply):	-		☐ vacuum jug	
Well Collain	1011. 2180)	<i></i>		_				np = pump discha		
Time	Tem		Spec. Cond. (mS/cm)	DO (mg/L)	ρH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H₂O Depth (ft)	Notes (Water clarity, odor, purge rate, issues with pump/well/weather/etc.)
3112	ADE		· · · · · · · · · · · · · · · · · · ·			. A		MNOING	Programme programme.	NEL .
1116	MAZ	<i>[</i>	DIDEOS HEAVILY		PEP. VI				mpine	F
	17)	·n-		T	1.	BAILEN	7	avi		mers
	152	45		<u> </u>	1					
-										
									·	
	<u> </u>			-					<u> </u>	
		•								
									-	
		98.W		(4.400)		+/-10 mV				
Stabilizing			+/-	+/- 10% (see note	+/-	(see note	+/- 10% or	(see note	(see note	
(1) - Do not measus (2) - Purge rate to b	e depth to bottom o	of well un	3% fil after purglist and so	below) ⁷ mapling to reduce resu	0.1 unit spending fines that ma	below) ⁴ ay be resting on the wel	<10 NTUs i bottom.	below)4	below)*	
(3) - Sampling rate (4) - Field paramete	to be 0.25 lpm or le r measurements to	be record	led every 3 to 5 minute	294.				•		
(6) - Monitor DTW	every 5 mln. Well bilization criterion	drawdow for the "G	roundwater sampline!	urge/sampling rate to "SESD Standard Opera	Hing Procedure.	ry to keep drawdown b	elow 0.3 ft.	٠		
(8) - ORP is not a st	abilization criterior	of the "C	Groundweter sampling	g" SESD Standard Oper	rating Procedure.					

ERM	Client;	BWAY COI	RPORATIO	N		_ Project No.:	121022		Sampling Date: 4-16-13	
		HOMERVIL							Sampler's Name: DON DOWLL	سی ز
•		ERM-M		Pı	ımp Tvpe/Model	. Geogre	un len	talthe long	Sample Collection Time: 0920	
				-		teflonl		11	Sample Purge Rate (L/min) ³ :	
	Total Depth (ft) ¹ : Depth to Water (ft): Well Diameter (in):	3,23		•	ntake Depth (ft)	1800	- 3		Sample ID: ERM - MW - 24	
	Well Diameter (in):	24	÷	Start/S	top Purge Time	0835-	6420		QA/QC Collected?	
Welf Volu	me (gal) = 0.041d²h:		1 12.56		ge Rate (L/min)²				QA/QC I.D. NA	
	ter (inches) h = lengt		4.	•	urge Volume (L)	: 4.5	,		Laboratory Analyses: 8260 ß	
Well Condit	on: Smert		Sampl	ing Method (che	ck all that apply)	: 🗹 soda straw (VOCs)	vacuum jug (j cyanide)
	0		_			☐ Bladder pun	p = pump disch	arge (all analytes)	☐ Bailer (only used if necessary)	
Time	Temp. (°C)	Spec, Cond. (m5/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H₂O Depth (ft)	Notes (Water clarity, odor, purge rate, issues with pump	/well/weather/etc.)
C\$40	18,55	0.021	1.64	5,39	9.7	74000	0.5	3.58	less flow for volume	
UBYS	18.31	0.021	2.42	5.09	2.6	>4000	1.0	3.44		
0950	18,15	0.0021	2.49	4.94	19.0	74000	1.5	3.44		
0855	18.16	0.02	2.39	4.92	225	>4000	2.0	3.44		
0400	17.70	0.022	2.43	4.74	41.3	74000	2.5	344	-	
0405	17.69	0.071	229	4.66	44.6	74000	3.0	3.44		
0910	1267	0.022	2.24	4.65	54.8	740x	35	3.44		
0415	17.70	0.022	2.46	4.67	5516	7400	4.0	Solly		
0920	17.70	0.022	251	4.68	54.9	74000	4.5	3.44	parameters stelle siege	<u>lestato923</u>
					-					
			ļ							
						ļ				
								-	*******	Louist
						ļ				
				Divinion and the control of						
Stabilizing	+/-	+/-	+/- 10% (see note	+/-	+/- 10 mV (see note	+/- 10% or	(see note	(see note		
Criteria ⁸	1°C	3%	below) ⁷	0.1 unit	below) ^a	<10 NTUs	below)4	below) ⁶		
(2) - Purge rate to be (3) - Sampling rate to (4) - Field paramete	o be 0.25 lpm or less. r measurements to be recor	ded every 3 to 5 minute	s,	erentik tillen mar um	y on resumption the we	on section in				
(5) - Stabilization on (6) - Monlior 171W (tleria based on three most r every 5 min. Well drawdow bilization criterion for the "t	ecent consecutive measure to be 0.3 ft or less. Po	urements. urge/sampling tale to l	be lowered as necessar	y to keep drawdown	below 0.3 ft.				
(8) - ORP is not a sta	abilization criterion for the	"Groundwater sampling	"SESD Standard Open	ating Procedure.						

HEHH		GROUND
9		
RM	DIMAN	

ERM	Olient:	BWAY	1	11006	110	Project No.:	012	022.0	0.3 Sampling Date: 7/11/13
	Site/Location:	RMA	Y DY	WN 3	itte -	Hom	orvu	1410	Sampler's Name: HOOK (TTBS)
	Well ID:		NW-2:) Р	ump Type/Model:	pens	10/1	4/50	PUMP Sample Collection Time: 12:35
	Total Depth (ft)1:		7	-0	Tubing Material:	Mail	151110	<i>SK</i>)	Sample Purge Rate (L/min) ³ : 0.72 Sample ID: ERM-MW-Z 5-201307(1-0)
	epth to Water (ft):		/	•	Intake Depth (ft):	10.0	X 1 2 2 2	40	*/0
	/ell Diameter (in): $(gal) = 0.041d^2h$:		W	5	Stop Purge Time: rge Rate (L/min) ² :	0	= 0.5	Umin	QA/QC Collected? MD
d = well diameter (11	•88	Purge Volume (L):	50		71111	Laboratory Analyses: 11/05/00/00/4/84-Site
Well Condition	Dand	(new)				soda straw (VOCs)	☐ vacuum jug	TO COURT COURT I'VE
Purge Method:	pensi	6/AC.	lowell	n		☐ Bladder pum	p = pump discha	arge (all analytes)	☐ Bailer (only used if necessary)
Time	Temp.	Spec. Cond.	DO	pH	ORP	Turbidity	Purge Volume		Notes (Purge method, water clarity, odor, purge rate, issues with
10.00	(°C)	(mS/cm)	(mg/L)	(SU)	-979	3 (NTUs)	(L)	(ft)	pump/well/weather/etc.)
10:00	41.91	0.24	0.43	7.66	-1010 -1000	71000	2	5,28	TOWTHW/TOW VOILUNE / PLUMP / A CO SINCEST
10.05	2124	0,021	4.50	1041	137.0	Z1000 S1800	3	5.29	spears posible
10.15	7110	0.169	378	5.11	-125 7	21000	E	5.29	
10:20	21.73	0.180	1.88	4.55	-158.6	7990	60	5,79	
10:25	71.26	0.162	1.54	4.85	-440.0	>1000	7	5.29	
D:30	21.31	0.168	1.28	4.91	-423.	1>1000	8	5.27	turn pump up to Dural faster
10:35	21.31	0.180	0.99	4.87	-379.C	2000	10.5	5.29	1 1 0
10:40	21.35	0.182	0.94	4.91	_330.1	7/100	12.	5.29	I will volume punded
10:45	21,36	0.168	18,0	5.06	-1740	7/000	17	5.29	Swita to readings every well volume
10.50	4.30	0.100	0.87	5,04	1/5	7/000	10	2:49	2 well walling of Distaged.
11:20	71.36	0.103	0,83	3,00	1772	3///	33	2:50	3 MILL VOLUMES DURGOOD
11.55	71.70	11/07	123	487	-1233	Tione	44	519	4 well intumes named
12:20	21.18	0.167	0.80	4.84	-128.3	>1000	55	5,29	5 well volumes burded
12:25	21.18	0.166	0.79	4.85	-125.7	7/000	56	5.29	Humed pump down your soit zation+
12:30	21.13	0.166	0.74	4.87	-121.0	>1000	57	5.29	peramosers stable: sample sampling
12:3S									(@/Z:35)
12:40					1	<u> </u>		<u> </u>	Gunsditu doo high houselle who 5
									sof do oped in a woll Villena
-									tall often peromiter are table
			+/- 10%		+/- 10 mV				· Sampling
Stabilizing Criteria ⁵	+/- 1°C	+/- 3%	(see note below) ⁷	+/- 0.1 unit	(see note below) ⁸	+/- 10% or <10 NTUs	(see note below) ⁴	(see note below) ⁶	
(1) - Do not measure dep (2) - Purge rate to be 0.5 (3) - Sampling rate to be	th to bottom of well un pm or less.	til after purging and sam	pling to reduce resusp	ending fines that may	be resting on the well b	oottom.	011	Su max	29=1 well volumes 14.45=5 well volumes
(4) - Field parameter mes (5) - Stabilization criteria	surements to be record	cent consecutive measure	ements. ge/sampling rate to be	lowered as necessary	to keep drawdown bela	Ow 0.3 ft.	ON VI	straines.	5.78=2 well volumes 8.67=3 well volumes
(6) - Monitor DTW every (7) - DO is not a stabiliza (8) - ORP is not a stabiliza	tion criterion for the "G ation criterion for the "	roundwater sampling" S Groundwater sampling"	ESD Standard Operation SESD Standard Operation	ng Procedure. ing Procedure.	v can v 700 4 (e 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- L	Que)	8.67 = 3 Well volumes
									11.56 = 4 well volumes

^{(6) -} Monitor DTW every 5 min. Well drawdown to be 0.3 it or less. Purge/sampling rate to be lowered as new (7) - DO is not a stabilization criterion for the "Groundwater sampling" ISEO Standard Operating Procedure. (8) - ORP is not a stabilization criterion for the "Groundwater sampling" SESD Standard Operating Procedure.

THE PARTY OF THE P	GROUND WATER SAMPLING LOG SHEET
15	

									=1,110
ERM	Client	BWA	Y ,			Project No.:	012	1022	03 Sampling Date: 7//// 5
	Site/Location:	PINC	in dr	ums	HE-H	onlerv	ille, c	att	Sampler's Name: 4 RMO1 (ABB)
		EPM+	1111-20			nalic	HLic		Compile Collection Times (5:35
	Well ID:	20	VI 20	<i>₽</i> Р	ump Type/Model	16-11-1	70110	020	Sample Purge Rate (I/min) ³ :
_	Total Depth (ft)1:	TAF	07	-	Tubing Material	1 100 /	- C/h	20 10	Sample Purge Pate (DIIIII) . Sample ID EPAN-MUI-26 - 20B0711-01
	epth to Water (ft):	1)	3))	Intake Depth (ft)	12:20	347		QA/QC Collected? \\/\)
	Vell Diameter (in): e (gal) = 0.041d ² h:	1	and	- 07	Stop Purge Time ge Rate (L/min) ²	0	0.50	(Imin	QAQC LD.
d = well diameter		0.0	Harris	- 8	ge Rate (Diffili) Purge Volume (L)		21	7000	Laboratory Analyses: 1700S Albert 1754 Site
well Condition	MAN	NPW				soda straw (VOCs)	□ vacuum jug	1: 15-11
Purge Method	3 4	STACI		้อน				arge (all analytes)	□ Bailer (only used if necessary)
	Purpor				1 000			Luon	Notes (Purge method, water clarity, odor, purge rate, issues with
Time	Temp. (°C)	Spec. Cond. (mS/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Volume (L)	H _z O Depth (ft)	pump/well/weather/etc.)
13:30	23.01	0.301	8.73	7.05	-175.4	7/000	1	7.05	Tout pw/low volume pillage - Dumping @.
13:35	22.99	0.292	3.21	6.21	-154.2	7/000	2	7.06	Slower Sparts
13:40	22,99	0.28	12.56	5.42	-167.5	>1000	3	7.06	drawdown elasas maxasaw preside
13:45	22.97	0.273	1.85	4.85	-171.4	>1000	4	7.07	Switching to 3-5 well wo proportion
14:00	22.95	0.261	1.28	4.87	-3304	>1000	10	7.07	I well volume purgled 19785
14:20	22.96	0.232	0.95	4.91	-1799	>(000	20	7.07	2 well volume purala, method.
14:40	22.91	0.211	0.82	4.82	-1251	2/000	30	7,07	3 well volumes purged
15:00	22.86	0.203	0.11	4.87	-154.6	71000	40	7.01	4 men volumes pura eq
15:20	22.34	0.17	0.14	4.81	-142.1	21000	50	7.07	12 men volume purgea.
15:25	120 77	0.170	0.12	4.88	-141.7	2/000	31	7.07	poramoters stabile : sample
19:30	12.66	0.170	0.13	4.87	-141.7	Plate.	5/	1.07	a 15:35
				35					(6.15.5)
					8				W (A)
			4						
									A S
Philitists	+/-		+/- 10% (see note		+/- 10 mV (see note	U 10W	(see note	(see note	
Stabilizing Criteria ⁵	1°C	+/- 3%	below)7	+/- 0.1 unit	below) ⁵	+/- 10% or <10 NTUs	below)4	below)6	Collina
(1) - Do not measure de (2) - Purge rate to be 0.5	pth to bottom of well ur lpm or less.	til aller purging and sa	mpling to reduce resusp	ending tines that may	pe resting on the well i	outout.			- Hard - Gallons

(2) - Purge rate to be 0.5 pum or tess.

(4) - Field parameter measurements to be recorded every 3 to 5 minutes.

(5) - Sampling rate to be 0.25 pum or less.

(4) - Field parameter measurements to be recorded every 3 to 5 minutes.

(6) - Monitor DTW every 5 min. Well drawdown to be 0.3 for less. Purge/sampling rate to be lowered as necessary to keep drawdown below 0.3 ft.

(7) - DO is not a stabilization criterion for the "Coroundwater sampling" SISD Standard Operating Procedure.

(8) - ORP is not a stabilization criterion for the "Coroundwater sampling" SISD Standard Operating Procedure.

I well vol = 3.6 (9.34L) 4 well vol = 10.36 (39.21L) 2 well vol = 5.18(19.61L) 5 well vol = 12.95 (49.02L) 3 well vol = 7.77(29.41L)

Appendix D

Ground Water Analytical Data Reports

ASI

ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

ERM 3200 Windy Hill Road, Suite 1500W Atlanta, GA 30339

Attention: Ms. Amy Griswold

Report Number: AWD0502 April 18, 2013

Project: BWAY/GA

Project #:0121022

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Project Manager

This report may not be reproduced, except in full, without written approval from Analytical Services, Inc. Analytical Services, Inc. certifies that the following analytical results meet all requirements of the National Environmental Laboratory Accreditation Conference(NELAC).

All test results relate only to the samples analyzed.

ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ERM-MW-16	AWD0502-01	Ground Water	04/16/13 09:20	04/17/13 10:55
ERM-MW-18	AWD0502-02	Ground Water	04/16/13 10:10	04/17/13 10:55
ERM-MW-19	AWD0502-03	Ground Water	04/16/13 11:00	04/17/13 10:55
ERM-MW-17	AWD0502-04	Ground Water	04/16/13 12:05	04/17/13 10:55
ERM-MW-24	AWD0502-05	Ground Water	04/16/13 09:20	04/17/13 10:55
ERM-MW-20	AWD0502-06	Ground Water	04/16/13 10:40	04/17/13 10:55
ERM-MW-3	AWD0502-07	Ground Water	04/16/13 11:45	04/17/13 10:55
ERM-MW-9	AWD0502-08	Ground Water	04/16/13 12:15	04/17/13 10:55
ERM-MW-15	AWD0502-09	Ground Water	04/16/13 12:50	04/17/13 10:55
ERM-MW-21	AWD0502-10	Ground Water	04/16/13 13:30	04/17/13 10:55
Duplicate-01	AWD0502-11	Ground Water	04/16/13 00:00	04/17/13 10:55
Trip Blank	AWD0502-12	Water	04/16/13 09:00	04/17/13 10:55

April 18, 2013

ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

April 18, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

Report No.: AWD0502

Client ID: ERM-MW-16

Date/Time Sampled: 4/16/2013 9:20:00AM

Matrix: Ground Water

Project: BWAY/GA

Lab Number ID: AWD0502-01

Date/Time Received: 4/17/2013 10:55:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	260									
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 13:50	3040459	CJH
1,1-Dichloroethene	3.6	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 13:50	3040459	CJH
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 13:50	3040459	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 13:50	3040459	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 13:50	3040459	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 13:50	3040459	CJH
Toluene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 13:50	3040459	CJH
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 13:50	3040459	CJH
Vinyl Chloride	6.5	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 13:50	3040459	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 13:50	3040459	CJH
Surrogate: Dibromofluoromethane	92 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 13:50	3040459	
Surrogate: 1,2-Dichloroethane-d4	99 %	78-	120	EPA 8260B			4/17/13 13:00	4/17/13 13:50	3040459	
Surrogate: Toluene-d8	99 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 13:50	3040459	
Surrogate: 4-Bromofluorobenzene	101 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 13:50	3040459	

ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

April 18, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

Report No.: AWD0502

Client ID: ERM-MW-18

Date/Time Sampled: 4/16/2013 10:10:00AM

Matrix: Ground Water

Project: BWAY/GA

Lab Number ID: AWD0502-02

Date/Time Received: 4/17/2013 10:55:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 82	260									
Chloroethane	6.2	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 14:18	3040459	CJH
1,1-Dichloroethene	21	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 14:18	3040459	CJH
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 14:18	3040459	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 14:18	3040459	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 14:18	3040459	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 14:18	3040459	CJH
Toluene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 14:18	3040459	CJH
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 14:18	3040459	CJH
Vinyl Chloride	5.2	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 14:18	3040459	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 14:18	3040459	CJH
Surrogate: Dibromofluoromethane	95 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 14:18	3040459	
Surrogate: 1,2-Dichloroethane-d4	98 %	78-	120	EPA 8260B			4/17/13 13:00	4/17/13 14:18	3040459	
Surrogate: Toluene-d8	97 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 14:18	3040459	
Surrogate: 4-Bromofluorobenzene	99 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 14:18	3040459	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

April 18, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

Report No.: AWD0502

Client ID: ERM-MW-19

Date/Time Sampled: 4/16/2013 11:00:00AM

Matrix: Ground Water

Project: BWAY/GA

Lab Number ID: AWD0502-03

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	260									
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 14:46	3040459	CJH
1,1-Dichloroethene	56	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 14:46	3040459	CJH
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 14:46	3040459	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 14:46	3040459	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 14:46	3040459	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 14:46	3040459	CJH
Toluene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 14:46	3040459	CJH
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 14:46	3040459	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 14:46	3040459	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 14:46	3040459	CJH
Surrogate: Dibromofluoromethane	93 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 14:46	3040459	
Surrogate: 1,2-Dichloroethane-d4	99 %	78-	120	EPA 8260B			4/17/13 13:00	4/17/13 14:46	3040459	
Surrogate: Toluene-d8	98 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 14:46	3040459	
Surrogate: 4-Bromofluorobenzene	102 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 14:46	3040459	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

April 18, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

Report No.: AWD0502

Client ID: ERM-MW-17

Date/Time Sampled: 4/16/2013 12:05:00PM

Matrix: Ground Water

Project: BWAY/GA

Lab Number ID: AWD0502-04

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	260									
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 15:14	3040459	CJH
1,1-Dichloroethene	27	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 15:14	3040459	CJH
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 15:14	3040459	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 15:14	3040459	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 15:14	3040459	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 15:14	3040459	CJH
Toluene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 15:14	3040459	CJH
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 15:14	3040459	CJH
Vinyl Chloride	13	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 15:14	3040459	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 15:14	3040459	CJH
Surrogate: Dibromofluoromethane	93 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 15:14	3040459	
Surrogate: 1,2-Dichloroethane-d4	99 %	78-	120	EPA 8260B			4/17/13 13:00	4/17/13 15:14	3040459	
Surrogate: Toluene-d8	96 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 15:14	3040459	
Surrogate: 4-Bromofluorobenzene	102 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 15:14	3040459	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

April 18, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

Report No.: AWD0502

Client ID: ERM-MW-24

Date/Time Sampled: 4/16/2013 9:20:00AM

Matrix: Ground Water

Project: BWAY/GA

Lab Number ID: AWD0502-05

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	260									
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	4/17/13 14:00	4/17/13 14:48	3040461	GCN
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 14:00	4/17/13 14:48	3040461	GCN
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 14:00	4/17/13 14:48	3040461	GCN
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	4/17/13 14:00	4/17/13 14:48	3040461	GCN
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	4/17/13 14:00	4/17/13 14:48	3040461	GCN
Naphthalene	ND	10	ug/L	EPA 8260B		1	4/17/13 14:00	4/17/13 14:48	3040461	GCN
Toluene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 14:00	4/17/13 14:48	3040461	GCN
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	4/17/13 14:00	4/17/13 14:48	3040461	GCN
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	4/17/13 14:00	4/17/13 14:48	3040461	GCN
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	4/17/13 14:00	4/17/13 14:48	3040461	GCN
Surrogate: Dibromofluoromethane	117 %	80-	120	EPA 8260B			4/17/13 14:00	4/17/13 14:48	3040461	
Surrogate: 1,2-Dichloroethane-d4	118 %	78-	120	EPA 8260B			4/17/13 14:00	4/17/13 14:48	3040461	
Surrogate: Toluene-d8	102 %	80-	120	EPA 8260B			4/17/13 14:00	4/17/13 14:48	3040461	
Surrogate: 4-Bromofluorobenzene	114 %	80-	120	EPA 8260B			4/17/13 14:00	4/17/13 14:48	3040461	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

April 18, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

Report No.: AWD0502

Client ID: ERM-MW-20

Date/Time Sampled: 4/16/2013 10:40:00AM

Matrix: Ground Water

Project: BWAY/GA

Lab Number ID: AWD0502-06

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 82	60									
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 15:42	3040459	CJH
1,1-Dichloroethene	35	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 15:42	3040459	CJH
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 15:42	3040459	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 15:42	3040459	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 15:42	3040459	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 15:42	3040459	CJH
Toluene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 15:42	3040459	CJH
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 15:42	3040459	CJH
Vinyl Chloride	4.3	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 15:42	3040459	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 15:42	3040459	CJH
Surrogate: Dibromofluoromethane	94 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 15:42	3040459	
Surrogate: 1,2-Dichloroethane-d4	97 %	78-	120	EPA 8260B			4/17/13 13:00	4/17/13 15:42	3040459	
Surrogate: Toluene-d8	98 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 15:42	3040459	
Surrogate: 4-Bromofluorobenzene	101 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 15:42	3040459	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

April 18, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

Report No.: AWD0502

Client ID: ERM-MW-3

Date/Time Sampled: 4/16/2013 11:45:00AM

Matrix: Ground Water

Project: BWAY/GA

Lab Number ID: AWD0502-07

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA	260									
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 16:10	3040459	CJH
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 16:10	3040459	CJH
Ethylbenzene	43	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 16:10	3040459	CJH
Isopropylbenzene	16	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 16:10	3040459	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 16:10	3040459	CJH
Naphthalene	84	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 16:10	3040459	CJH
Toluene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 16:10	3040459	CJH
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 16:10	3040459	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 16:10	3040459	CJH
Xylenes, total	25	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 16:10	3040459	CJH
Surrogate: Dibromofluoromethane	92 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 16:10	3040459	
Surrogate: 1,2-Dichloroethane-d4	98 %	78- <i>-</i>	120	EPA 8260B			4/17/13 13:00	4/17/13 16:10	3040459	
Surrogate: Toluene-d8	98 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 16:10	3040459	
Surrogate: 4-Bromofluorobenzene	98 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 16:10	3040459	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

Report No.: AWD0502

Client ID: ERM-MW-9

Date/Time Sampled: 4/16/2013 12:15:00PM

Matrix: Ground Water

Project: BWAY/GA

Lab Number ID: AWD0502-08

Date/Time Received: 4/17/2013 10:55:00AM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 83	260									
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 16:38	3040459	CJH
1,1-Dichloroethene	7.2	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 16:38	3040459	CJH
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 16:38	3040459	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 16:38	3040459	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 16:38	3040459	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 16:38	3040459	CJH
Toluene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 16:38	3040459	CJH
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 16:38	3040459	CJH
Vinyl Chloride	14	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 16:38	3040459	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 16:38	3040459	CJH
Surrogate: Dibromofluoromethane	92 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 16:38	3040459	
Surrogate: 1,2-Dichloroethane-d4	98 %	78-	120	EPA 8260B			4/17/13 13:00	4/17/13 16:38	3040459	
Surrogate: Toluene-d8	98 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 16:38	3040459	
Surrogate: 4-Bromofluorobenzene	100 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 16:38	3040459	

April 18, 2013

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

April 18, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

Report No.: AWD0502

Client ID: ERM-MW-15

Date/Time Sampled: 4/16/2013 12:50:00PM

Matrix: Ground Water

Project: BWAY/GA

Lab Number ID: AWD0502-09

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	260									
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 17:06	3040459	CJH
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 17:06	3040459	CJH
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 17:06	3040459	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 17:06	3040459	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 17:06	3040459	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 17:06	3040459	CJH
Toluene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 17:06	3040459	CJH
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 17:06	3040459	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 17:06	3040459	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 17:06	3040459	CJH
Surrogate: Dibromofluoromethane	91 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 17:06	3040459	
Surrogate: 1,2-Dichloroethane-d4	97 %	78-	120	EPA 8260B			4/17/13 13:00	4/17/13 17:06	3040459	
Surrogate: Toluene-d8	98 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 17:06	3040459	
Surrogate: 4-Bromofluorobenzene	101 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 17:06	3040459	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

April 18, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

Report No.: AWD0502

Client ID: ERM-MW-21

Date/Time Sampled: 4/16/2013 1:30:00PM

Matrix: Ground Water

Project: BWAY/GA

Lab Number ID: AWD0502-10

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	260									
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 17:34	3040459	CJH
1,1-Dichloroethene	13	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 17:34	3040459	CJH
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 17:34	3040459	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 17:34	3040459	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 17:34	3040459	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 17:34	3040459	CJH
Toluene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 17:34	3040459	CJH
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 17:34	3040459	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 17:34	3040459	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 17:34	3040459	CJH
Surrogate: Dibromofluoromethane	92 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 17:34	3040459	
Surrogate: 1,2-Dichloroethane-d4	98 %	78-	120	EPA 8260B			4/17/13 13:00	4/17/13 17:34	3040459	
Surrogate: Toluene-d8	97 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 17:34	3040459	
Surrogate: 4-Bromofluorobenzene	100 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 17:34	3040459	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

April 18, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

Report No.: AWD0502

Client ID: Duplicate-01

Date/Time Sampled: 4/16/2013 12:00:00AM

Matrix: Ground Water

Project: BWAY/GA

Lab Number ID: AWD0502-11

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 83	260									
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 18:02	3040459	CJH
1,1-Dichloroethene	3.5	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 18:02	3040459	CJH
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 18:02	3040459	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 18:02	3040459	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 18:02	3040459	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 18:02	3040459	CJH
Toluene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 18:02	3040459	CJH
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 18:02	3040459	CJH
Vinyl Chloride	7.0	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 18:02	3040459	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 18:02	3040459	CJH
Surrogate: Dibromofluoromethane	91 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 18:02	3040459	
Surrogate: 1,2-Dichloroethane-d4	99 %	78-	120	EPA 8260B			4/17/13 13:00	4/17/13 18:02	3040459	
Surrogate: Toluene-d8	97 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 18:02	3040459	
Surrogate: 4-Bromofluorobenzene	99 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 18:02	3040459	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

April 18, 2013 3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

Report No.: AWD0502 Project: BWAY/GA

Client ID: Trip Blank Lab Number ID: AWD0502-12

Date/Time Sampled: 4/16/2013 9:00:00AM Date/Time Received: 4/17/2013 10:55:00AM

Matrix: Water

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	260									
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 13:22	3040459	CJH
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 13:22	3040459	CJH
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 13:22	3040459	CJH
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 13:22	3040459	CJH
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 13:22	3040459	CJH
Naphthalene	ND	10	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 13:22	3040459	CJH
Toluene	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 13:22	3040459	CJH
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 13:22	3040459	CJH
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 13:22	3040459	CJH
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	4/17/13 13:00	4/17/13 13:22	3040459	CJH
Surrogate: Dibromofluoromethane	93 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 13:22	3040459	
Surrogate: 1,2-Dichloroethane-d4	98 %	78-	120	EPA 8260B			4/17/13 13:00	4/17/13 13:22	3040459	
Surrogate: Toluene-d8	99 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 13:22	3040459	
Surrogate: 4-Bromofluorobenzene	103 %	80-	120	EPA 8260B			4/17/13 13:00	4/17/13 13:22	3040459	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

April 18, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

Report No.: AWD0502

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 3040459 - EPA 5030B										
Blank (3040459-BLK1)					Prep	oared & A	nalyzed:	04/17/13		
Chloroethane	ND	5.0	ug/L							
1,1-Dichloroethene	ND	2.0	ug/L							
Ethylbenzene	ND	2.0	ug/L							
Isopropylbenzene	ND	10	ug/L							
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L							
Naphthalene	ND	10	ug/L							
Toluene	ND	2.0	ug/L							
1,1,1-Trichloroethane	ND	2.0	ug/L							
Vinyl Chloride	ND	2.0	ug/L							
Xylenes, total	ND	5.0	ug/L							
Surrogate: Dibromofluoromethane	46		ug/L	50.000		92	80-120			
Surrogate: 1,2-Dichloroethane-d4	50		ug/L	50.000		100	78-120			
Surrogate: Toluene-d8	49		ug/L	50.000		97	80-120			
Surrogate: 4-Bromofluorobenzene	51		ug/L	50.000		102	80-120			
LCS (3040459-BS1)					Prep	oared & A	nalyzed:	04/17/13		
Benzene	45		ug/L	50.000	•	90	67-134			
Chlorobenzene	46		ug/L	50.000		92	69-122			
1,1-Dichloroethene	47		ug/L	50.000		93	58-142			
Toluene	45		ug/L	50.000		90	68-127			
Trichloroethene	46		ug/L	50.000		93	72-132			
Surrogate: Dibromofluoromethane	46		ug/L	50.000		91	80-120			
Surrogate: 1,2-Dichloroethane-d4	48		ug/L	50.000		96	78-120			
Surrogate: Toluene-d8	49		ug/L	50.000		99	80-120			
Surrogate: 4-Bromofluorobenzene	50		ug/L	50.000		101	80-120			
Matrix Spike (3040459-MS1)	Sc	ource: AWD	0502-01		Prep	oared & A	nalyzed:	04/17/13		
Benzene	44		ug/L	50.000	0.2	88	67-134			
Chlorobenzene	45		ug/L	50.000	ND	90	69-122			
1,1-Dichloroethene	49		ug/L	50.000	3.6	91	58-142			
Toluene	44		ug/L	50.000	ND	88	68-127			
Trichloroethene	46		ug/L	50.000	ND	92	72-132			
Surrogate: Dibromofluoromethane	45		ug/L	50.000		90	80-120			
Surrogate: 1,2-Dichloroethane-d4	48		ug/L	50.000		96	78-120			
Surrogate: Toluene-d8	49		ug/L	50.000		99	80-120			
Surrogate: 4-Bromofluorobenzene	49		ug/L	50.000		98	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

April 18, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

Report No.: AWD0502

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 3040459 - EPA 5030B										
Matrix Spike Dup (3040459-MSD1)	So	ource: AWD	0502-01		Prep	ared & A	nalyzed:	04/17/13	3	
Benzene	43		ug/L	50.000	0.2	86	67-134	2	9	
Chlorobenzene	44		ug/L	50.000	ND	87	69-122	3	13	
1,1-Dichloroethene	46		ug/L	50.000	3.6	85	58-142	6	9	
Toluene	42		ug/L	50.000	ND	85	68-127	4	9	
Trichloroethene	43		ug/L	50.000	ND	86	72-132	6	11	
Surrogate: Dibromofluoromethane	45		ug/L	50.000		90	80-120			
Surrogate: 1,2-Dichloroethane-d4	49		ug/L	50.000		98	78-120			
Surrogate: Toluene-d8	49		ug/L	50.000		97	80-120			
Surrogate: 4-Bromofluorobenzene	50		ug/L	50.000		100	80-120			
Batch 3040461 - EPA 5030B Blank (3040461-BLK1)					Prep	ared & A	.nalyzed:	04/17/13	}	
Chloroethane	ND	5.0	ug/L							
1,1-Dichloroethene	ND	2.0	ug/L							
Ethylbenzene	ND	2.0	ug/L							
Isopropylbenzene	ND	10	ug/L							
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L							
Naphthalene	ND	10	ug/L							
Toluene	ND	2.0	ug/L							
1,1,1-Trichloroethane	ND	2.0	ug/L							
Vinyl Chloride	ND	2.0	ug/L							
Xylenes, total	ND	5.0	ug/L							
Surrogate: Dibromofluoromethane	56		ug/L	50.000		113	80-120			
Surrogate: 1,2-Dichloroethane-d4	57		ug/L	50.000		114	78-120			
Surrogate: Toluene-d8	50		ug/L	50.000		100	80-120			
Surrogate: 4-Bromofluorobenzene	56		ug/L	50.000		112	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM 3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

April 18, 2013

Report No.: AWD0502

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 3040461 - EPA 5030B										
LCS (3040461-BS1)					Prep	ared & A	nalyzed:	04/17/13		
Benzene	51		ug/L	50.000		101	67-134			
Chlorobenzene	44		ug/L	50.000		89	69-122			
1,1-Dichloroethene	54		ug/L	50.000		108	58-142			
Toluene	48		ug/L	50.000		96	68-127			
Trichloroethene	50		ug/L	50.000		100	72-132			
Surrogate: Dibromofluoromethane	54		ug/L	50.000		108	80-120			
Surrogate: 1,2-Dichloroethane-d4	55		ug/L	50.000		110	78-120			
Surrogate: Toluene-d8	<i>4</i> 8		ug/L	50.000		96	80-120			
Surrogate: 4-Bromofluorobenzene	57		ug/L	50.000		113	80-120			
Matrix Spike (3040461-MS1)	Source: AWD0502-05				Prepared & Analyzed: 04/17/13					
Benzene	53		ug/L	50.000	ND	107	67-134			
Chlorobenzene	47		ug/L	50.000	1.7	90	69-122			
1,1-Dichloroethene	62		ug/L	50.000	0.1	125	58-142			
Toluene	49		ug/L	50.000	ND	99	68-127			
Trichloroethene	51		ug/L	50.000	ND	101	72-132			
Surrogate: Dibromofluoromethane	57		ug/L	50.000		115	80-120			
Surrogate: 1,2-Dichloroethane-d4	60		ug/L	50.000		120	78-120			
Surrogate: Toluene-d8	49		ug/L	50.000		98	80-120			
Surrogate: 4-Bromofluorobenzene	57		ug/L	50.000		114	80-120			
Matrix Spike Dup (3040461-MSD1)	Sc	ource: AWD(0502-05		Prep	ared & A	nalyzed:	04/17/13		
Benzene	49		ug/L	50.000	ND	98	67-134	9	9	
Chlorobenzene	44		ug/L	50.000	1.7	84	69-122	6	13	
1,1-Dichloroethene	59		ug/L	50.000	0.1	117	58-142	6	9	
Toluene	46		ug/L	50.000	ND	93	68-127	6	9	
Trichloroethene	47		ug/L	50.000	ND	94	72-132	7	11	
Surrogate: Dibromofluoromethane	56		ug/L	50.000		112	80-120			
Surrogate: 1,2-Dichloroethane-d4	59		ug/L	50.000		118	78-120			
Surrogate: Toluene-d8	49		ug/L	50.000		98	80-120			
Surrogate: 4-Bromofluorobenzene	58		ug/L	50.000		117	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W Atlanta GA, 30339

Attention: Ms. Amy Griswold

Laboratory Certifications

Code	Description	Number	Expires
LA	Louisiana	02069	06/30/2013
NC	North Carolina	381	12/31/2013
NELAC	FL DOH (Non-Pot. Water, Solids) Eff:: 07/01/2012	E87315	06/30/2013
SC	South Carolina	98011001	06/30/2013
TX	Texas	T104704397-08-TX	03/31/2014
VA	Virginia	1340	12/14/2013

April 18, 2013

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

April 18, 2013

3200 Windy Hill Road, Suite 1500W Atlanta GA, 30339

Attention: Ms. Amy Griswold

Legend

Definition of Laboratory Terms

- ND None Detected at the Reporting Limit
- TIC Tentatively Identified Compound
- CFU Colony Forming Units
- SOP Method run per ASI Standard Operating Procedure
 - **RL** Reporting Limit
 - **DF** Dilution Factor
 - Analyte not included in the NELAC list of certified analytes.

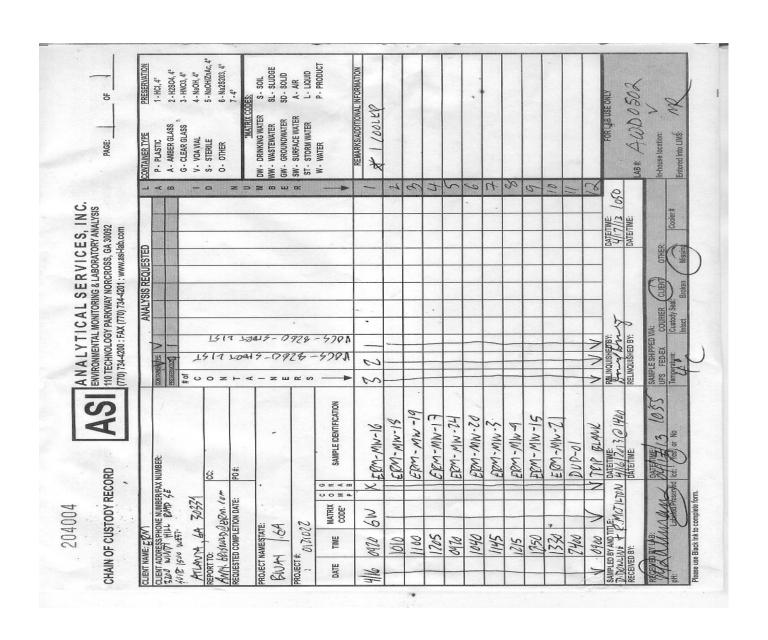
Sample Information

N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. ASI is not NELAC certified for diphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene **Definition of Qualifiers**


Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

April 18, 2013

3200 Windy Hill Road, Suite 1500W Atlanta GA, 30339

Attention: Ms. Amy Griswold

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST

Printed: 4/18/2013 3:55:32PM

Attn: Ms. Amy Griswold

Client: ERM

Project: BWAY/GA Work Order: AWD0502

Date Received: 04/17/13 10:55 **Logged In By:** Mohammad M. Rahman

OBSERVATIONS

#Samples: 12 **#Containers:** 36

Minimum Temp(C): 4.0 Maximum Temp(C): 4.0 Custody Seal(s) Used: No

CHECKLIST ITEMS

YES
YES
YES
YES
NO
YES

Comments:

ASI

ANALYTICAL SERVICES, INC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

Laboratory Report

Prepared For:

ERM 3200 Windy Hill Road, Suite 1500W Atlanta, GA 30339

Attention: Ms. Amy Griswold

Report Number: AWG0338

July 15, 2013

Project: BWAY/GA

Project #:0121022.03

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Project Manager

This report may not be reproduced, except in full, without written approval from Analytical Services, Inc. Analytical Services, Inc. certifies that the following analytical results meet all requirements of the National Environmental Laboratory Accreditation Conference(NELAC).

All test results relate only to the samples analyzed.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

July 15, 2013

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ERM-MW-25-20130711-01	AWG0338-01	Ground Water	07/11/13 12:35	07/12/13 12:20
ERM-MW-26-20130711-01	AWG0338-02	Ground Water	07/11/13 15:35	07/12/13 12:20
Trip Blank	AWG0338-03	Water	07/11/13 00:00	07/12/13 12:20

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

July 15, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

Report No.: AWG0338

Client ID: ERM-MW-25-20130711-01

Date/Time Sampled: 7/11/2013 12:35:00PM

Matrix: Ground Water

Project: BWAY/GA

Lab Number ID: AWG0338-01

Date/Time Received: 7/12/2013 12:20:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	260									
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 17:45	3070278	GCN
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 17:45	3070278	GCN
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 17:45	3070278	GCN
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 17:45	3070278	GCN
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 17:45	3070278	GCN
Naphthalene	ND	10	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 17:45	3070278	GCN
Toluene	ND	2.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 17:45	3070278	GCN
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 17:45	3070278	GCN
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 17:45	3070278	GCN
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 17:45	3070278	GCN
Surrogate: Dibromofluoromethane	105 %	80-	120	EPA 8260B			7/12/13 14:00	7/12/13 17:45	3070278	
Surrogate: 1,2-Dichloroethane-d4	92 %	78-	120	EPA 8260B			7/12/13 14:00	7/12/13 17:45	3070278	
Surrogate: Toluene-d8	103 %	80-	120	EPA 8260B			7/12/13 14:00	7/12/13 17:45	3070278	
Surrogate: 4-Bromofluorobenzene	115 %	80-	120	EPA 8260B			7/12/13 14:00	7/12/13 17:45	3070278	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

July 15, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

Report No.: AWG0338

Client ID: ERM-MW-26-20130711-01

Date/Time Sampled: 7/11/2013 3:35:00PM

Matrix: Ground Water

Project: BWAY/GA

Lab Number ID: AWG0338-02

Date/Time Received: 7/12/2013 12:20:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	260									
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 18:16	3070278	GCN
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 18:16	3070278	GCN
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 18:16	3070278	GCN
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 18:16	3070278	GCN
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 18:16	3070278	GCN
Naphthalene	ND	10	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 18:16	3070278	GCN
Toluene	ND	2.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 18:16	3070278	GCN
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 18:16	3070278	GCN
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 18:16	3070278	GCN
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 18:16	3070278	GCN
Surrogate: Dibromofluoromethane	105 %	80-	120	EPA 8260B			7/12/13 14:00	7/12/13 18:16	3070278	
Surrogate: 1,2-Dichloroethane-d4	96 %	78-	120	EPA 8260B			7/12/13 14:00	7/12/13 18:16	3070278	
Surrogate: Toluene-d8	103 %	80-	120	EPA 8260B			7/12/13 14:00	7/12/13 18:16	3070278	
Surrogate: 4-Bromofluorobenzene	110 %	80-	120	EPA 8260B			7/12/13 14:00	7/12/13 18:16	3070278	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

July 15, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

Report No.: AWG0338

Client ID: Trip Blank

Date/Time Sampled: 7/11/2013 12:00:00AM

Matrix: Water

Project: BWAY/GA

Lab Number ID: AWG0338-03

Date/Time Received: 7/12/2013 12:20:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8	260									
Chloroethane	ND	5.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 15:42	3070278	GCN
1,1-Dichloroethene	ND	2.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 15:42	3070278	GCN
Ethylbenzene	ND	2.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 15:42	3070278	GCN
Isopropylbenzene	ND	10	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 15:42	3070278	GCN
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 15:42	3070278	GCN
Naphthalene	ND	10	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 15:42	3070278	GCN
Toluene	ND	2.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 15:42	3070278	GCN
1,1,1-Trichloroethane	ND	2.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 15:42	3070278	GCN
Vinyl Chloride	ND	2.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 15:42	3070278	GCN
Xylenes, total	ND	5.0	ug/L	EPA 8260B		1	7/12/13 14:00	7/12/13 15:42	3070278	GCN
Surrogate: Dibromofluoromethane	104 %	80-	120	EPA 8260B			7/12/13 14:00	7/12/13 15:42	3070278	
Surrogate: 1,2-Dichloroethane-d4	93 %	78-	120	EPA 8260B			7/12/13 14:00	7/12/13 15:42	3070278	
Surrogate: Toluene-d8	103 %	80-	120	EPA 8260B			7/12/13 14:00	7/12/13 15:42	3070278	
Surrogate: 4-Bromofluorobenzene	109 %	80-	120	EPA 8260B			7/12/13 14:00	7/12/13 15:42	3070278	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

July 15, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

Report No.: AWG0338

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 3070278 - EPA 5030B										
Blank (3070278-BLK1)					Prep	ared & A	nalyzed:	07/12/13	ı	
Chloroethane	ND	5.0	ug/L							
1,1-Dichloroethene	ND	2.0	ug/L							
Ethylbenzene	ND	2.0	ug/L							
Isopropylbenzene	ND	10	ug/L							
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L							
Naphthalene	ND	10	ug/L							
Toluene	ND	2.0	ug/L							
1,1,1-Trichloroethane	ND	2.0	ug/L							
Vinyl Chloride	ND	2.0	ug/L							
Xylenes, total	ND	5.0	ug/L							
Surrogate: Dibromofluoromethane	56		ug/L	50.000		112	80-120			
Surrogate: 1,2-Dichloroethane-d4	57		ug/L	50.000		114	78-120			
Surrogate: Toluene-d8	52		ug/L	50.000		104	80-120			
Surrogate: 4-Bromofluorobenzene	57		ug/L	50.000		114	80-120			
Blank (3070278-BLK2)					Prep	ared & A	nalyzed:	07/15/13		
Chloroethane	ND	5.0	ug/L		•					
1,1-Dichloroethene	ND	2.0	ug/L							
Ethylbenzene	ND	2.0	ug/L							
Isopropylbenzene	ND	10	ug/L							
Methyl Ethyl Ketone (2-Butanone)	ND	100	ug/L							
Naphthalene	ND	10	ug/L							
Toluene	ND	2.0	ug/L							
1,1,1-Trichloroethane	ND	2.0	ug/L							
Vinyl Chloride	ND	2.0	ug/L							
Xylenes, total	ND	5.0	ug/L							
Surrogate: Dibromofluoromethane	54		ug/L	50.000		108	80-120			
Surrogate: 1,2-Dichloroethane-d4	54		ug/L	50.000		108	78-120			
Surrogate: Toluene-d8	51		ug/L	50.000		103	80-120			
Surrogate: 4-Bromofluorobenzene	58		ug/L	50.000		116	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

July 15, 2013

3200 Windy Hill Road, Suite 1500W

Atlanta GA, 30339

Attention: Ms. Amy Griswold

Report No.: AWG0338

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Allayte	rtesuit		Office	Level	Result	701KLO	Liiilito	IN D		Quai
Batch 3070278 - EPA 5030B										
LCS (3070278-BS1)					Prep	ared & A	nalyzed: (07/12/13		
Benzene	49		ug/L	50.000		97	67-134			
Chlorobenzene	45		ug/L	50.000		91	69-122			
1,1-Dichloroethene	44		ug/L	50.000		88	58-142			
Toluene	48		ug/L	50.000		95	68-127			
Trichloroethene	52		ug/L	50.000		104	72-132			
Surrogate: Dibromofluoromethane	57		ug/L	50.000		114	80-120			
Surrogate: 1,2-Dichloroethane-d4	55		ug/L	50.000		109	78-120			
Surrogate: Toluene-d8	51		ug/L	50.000		103	80-120			
Surrogate: 4-Bromofluorobenzene	54		ug/L	50.000		108	80-120			
Matrix Spike (3070278-MS1)	Source: AWG0261-01				Prep	ared & A	nalyzed: (07/12/13		
Benzene	56		ug/L	50.000	4.9	103	67-134			
Chlorobenzene	49		ug/L	50.000	1.4	95	69-122			
1,1-Dichloroethene	41		ug/L	50.000	ND	83	58-142			
Toluene	61		ug/L	50.000	9.6	102	68-127			
Trichloroethene	61		ug/L	50.000	ND	122	72-132			
Surrogate: Dibromofluoromethane	50		ug/L	50.000		100	80-120			
Surrogate: 1,2-Dichloroethane-d4	43		ug/L	50.000		86	78-120			
Surrogate: Toluene-d8	50		ug/L	50.000		100	80-120			
Surrogate: 4-Bromofluorobenzene	52		ug/L	50.000		103	80-120			
Matrix Spike Dup (3070278-MSD1)	Sc	ource: AWG	0261-01		Prep	ared & A	nalyzed: (07/12/13		
Benzene	57		ug/L	50.000	4.9	103	67-134	0.8	9	
Chlorobenzene	48		ug/L	50.000	1.4	94	69-122	2	13	
1,1-Dichloroethene	42		ug/L	50.000	ND	84	58-142	1	9	
Toluene	59		ug/L	50.000	9.6	98	68-127	3	9	
Trichloroethene	58		ug/L	50.000	ND	117	72-132	5	11	
Surrogate: Dibromofluoromethane	52		ug/L	50.000		103	80-120			
Surrogate: 1,2-Dichloroethane-d4	44		ug/L	50.000		88	78-120			
Surrogate: Toluene-d8	51		ug/L	50.000		102	80-120			
Surrogate: 4-Bromofluorobenzene	52		ug/L	50.000		105	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

July 15, 2013

3200 Windy Hill Road, Suite 1500W Atlanta GA, 30339

Attention: Ms. Amy Griswold

Laboratory Certifications

Code	Description	Number	Expires
LA	Louisiana	02069	06/30/2014
NC	North Carolina	381	12/31/2013
NELAC	FL DOH (Non-Pot. Water, Solids) Eff:: 07/01/2012	E87315	06/30/2014
SC	South Carolina	98011001	06/30/2014
TX	Texas	T104704397-08-TX	03/31/2014
VA	Virginia	1340	12/14/2013

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

July 15, 2013

3200 Windy Hill Road, Suite 1500W Atlanta GA, 30339

Attention: Ms. Amy Griswold

Legend

Definition of Laboratory Terms

- ND None Detected at the Reporting Limit
- TIC Tentatively Identified Compound
- CFU Colony Forming Units
- SOP Method run per ASI Standard Operating Procedure
 - **RL** Reporting Limit
 - **DF** Dilution Factor
 - Analyte not included in the NELAC list of certified analytes.

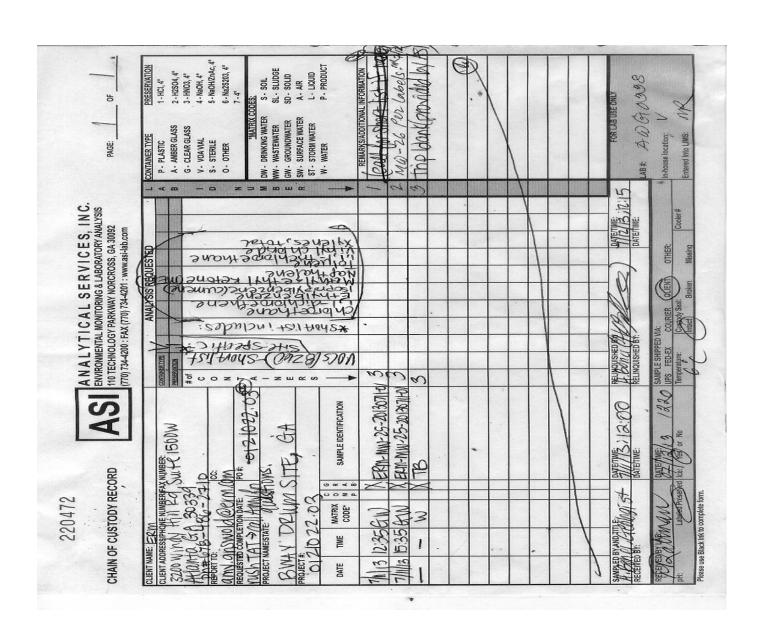
Sample Information

N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. ASI is not NELAC certified for diphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene **Definition of Qualifiers**


Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

ERM

July 15, 2013

3200 Windy Hill Road, Suite 1500W Atlanta GA, 30339

Attention: Ms. Amy Griswold

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Norcross, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST

Printed: 7/15/2013 4:09:27PM

Attn: Ms. Amy Griswold

Client: ERM

Project: BWAY/GA Work Order: AWG0338

Date Received: 07/12/13 12:20 **Logged In By:** Mohammad M. Rahman

OBSERVATIONS

#Samples: 3 **#Containers:** 9

Minimum Temp(C): 6.0 Maximum Temp(C): 6.0 Custody Seal(s) Used: Yes

CHECKLIST ITEMS

COC included with Samples	YES
Sample Container(s) Intact	YES
Chain of Custody Complete	YES
Sample Container(s) Match COC	NO
Custody seal Intact	YES
Temperature in Compliance	YES
Sufficient Sample Volume for Analysis	YES
Zero Headspace Maintained for VOA Analyses	YES
Samples labeled preserved (If Applicable)	YES
Samples received within Allowable Hold Times	YES
Samples Received on Ice	YES
Preservation Confirmed	YES

Comments:

The sample ERM-MW-25-20130711-01 collected on 07/11/2013 @15:35 was labeled ERM-MW-26-20130711-01. The container labels were used for login purposes. MMR