II. WATER MONITORING NETWORK DESIGN

Geochemical results for this site are described in the "Impact of Nutrient Management on Stream Water Quality" report published by the Georgia Water Stewardship Council (2010). The report includes detailed information on the site's nutrient management practices, including the use of fertilizers, pesticides, and other inputs.

III. GROUNDWATER MONITORING WELl SPECIFICATIONS

Groundwater monitoring wells must be installed under the supervision of a Professional Engineer. The design and construction of the groundwater monitoring wells must be in accordance with the guidelines established by the Georgia Environmental Protection Division (EPD) and the Georgia Department of Natural Resources (DNR).

IV. SAMPLING AND ANALYSIS PLAN

Following the EPA's approach of groundwater monitoring well sampling, sampling of the water monitoring network will be conducted at least once every year. The sampling will be conducted during the months of May, August, and November. The samples will be analyzed for various parameters, including pH, temperature, and dissolved oxygen.

V. SUMMARY

The Georgia Water Stewardship Council and the Georgia Environmental Protection Agency (EPD) have established guidelines for groundwater monitoring wells. These guidelines include the installation of wells, monitoring of water quality, and the analysis of samples. The council and agency have also provided a framework for the development of a groundwater monitoring network.

VI. ACKNOWLEDGMENTS

This project was supported by the Georgia Water Stewardship Council and the Georgia Environmental Protection Agency (EPD). The authors would like to thank the council and agency for their support and guidance.

VII. REFERENCES

B. Groundwater Sampling Procedures

Sampling should proceed from the closest source to the most distant location in the absence of contaminated wells until sampling proceeds from background locations and proceeds to intermediate locations before sampling downgradient locations. Prior to the sampling for the groundwater monitoring wells, the presence of non-aqueous phase liquids (NAPL) should be determined by visual inspection of the well pump site. Where NAPL is observed, sampling should proceed from the nearest source to the most distant location unless the NAPL is determined to be indigenous or is a legacy groundwater contaminant.

Groundwater sampling should proceed from the closest location to the most distant location. Prior to the sampling for the groundwater monitoring wells, the presence of non-aqueous phase liquids (NAPL) should be determined by visual inspection of the well pump site. Where NAPL is observed, sampling should proceed from the nearest source to the most distant location unless the NAPL is determined to be indigenous or is a legacy groundwater contaminant.

The Field Blank will be included in each sample collection to detect possible changes in the sample collection equipment or procedures. Any change in the sample collection equipment or procedures will result in a change in the sample collection. If the Field Blank is not included in the sample collection, the sample is considered to be affected and may not be used for analysis.

The Field Blank will be included in each sample collection to detect possible changes in the sample collection equipment or procedures. Any change in the sample collection equipment or procedures will result in a change in the sample collection. If the Field Blank is not included in the sample collection, the sample is considered to be affected and may not be used for analysis.

The Field Blank will be included in each sample collection to detect possible changes in the sample collection equipment or procedures. Any change in the sample collection equipment or procedures will result in a change in the sample collection. If the Field Blank is not included in the sample collection, the sample is considered to be affected and may not be used for analysis.

C. Laboratory Procedures

Water samples collected at this facility will be analyzed using updated methods in U.S. EPA Methods 160.1, 161.1, 162.1, 163.1, 163.2, and 164.6. The USEPA methods were updated and expanded to include additional pollutants of interest. The USEPA methods were updated and expanded to include additional pollutants of interest. The USEPA methods were updated and expanded to include additional pollutants of interest. The USEPA methods were updated and expanded to include additional pollutants of interest.

The USEPA methods were updated and expanded to include additional pollutants of interest. The USEPA methods were updated and expanded to include additional pollutants of interest. The USEPA methods were updated and expanded to include additional pollutants of interest. The USEPA methods were updated and expanded to include additional pollutants of interest.

D. Monitoring System Maintenance and Access

The facility owner is responsible for maintaining and Access to the monitoring system must be readily available. The facility owner is responsible for maintaining and Access to the monitoring system must be readily available. The facility owner is responsible for maintaining and Access to the monitoring system must be readily available. The facility owner is responsible for maintaining and Access to the monitoring system must be readily available.

In addition, all wells will be inspected by a professional engineer or professional geologist every five years, and a report will be submitted to the appropriate regulatory authorities. The professional engineer will be required to certify the accuracy of each well, and if needed, supervise any necessary repairs or replacements.