Annual CCR Management and Dust Control Report

Taylor County Landfill Waste Industries

A GFL Company 208 Southern States Road Mauk, GA 31058

Taylor County, Georgia

April 2021

Browne and Company, LLC PEF004508 Exp. 06/30/2022

ANNUAL CCR MANAGEMENT AND DUST CONTROL REPORT

In accordance with the guidance document provided by the Georgia Department of Natural Resources, Environmental Protection Division, the following information is provided for compliance with the Solid Waste Regulations 391-3-4.

- 1. CCR and Non-CCR Waste received during the previous year
 - a) CCR Monofill
 - i. List of type(s) and source(s) of CCR
 - ii. Annual amount of CCR
 - iii. Daily maximum amount of CCR

Not applicable. Taylor County Landfill (TCLF) did not take any CCR waste in a CCR monofill, or monofill in the MSW landfill facility.

- b) Comingled CCR and Non-CCR Waste
 - i. List of type(s) and source(s) of CCR, and other types of non-CCR waste, such as, municipal, industrial, or commercial solid waste

All homogenous CCR-type waste received at the facility was generated by Jacksonville Electrical Authority (JEA), Northside Generating Station. The waste product is a mix of coal combustion residuals and petroluem coke residue from power generation. The fuel ratio of coal to petcoke, as specified by EPA's requirements, does not meet the standard to define the waste product as CCR. However, for purposes of permitting and disposal at TCLF, the facility treats it as CCR. In addition, TCLF took construction and demolition debris from Georgia Power's Plant Mitchell being decommissioned. The total tonnage of this material received in 2020 was 31,970 tons, with trace CCR material in it. It is estimated approximately 2% of this waste was CCR, or 639 tons. Other non-CCR waste disposed at the facility includes all wastes acceptable at the facility based on the solid waste handling permit, including municipal solid waste, commercial waste, industrial waste, and nonhazardous sludges.

ii. Annual amount of CCR

100,183 tons

iii. Daily maximum amount of CCR

1200 tons (The average daily amount for disposal in 2020 was 384 tons, with a maximum of 1200 tons.)

iv. Annual amount of non-CCR waste

596,866 tons

v. Daily maximum amount of non CCR waste

3781 tons (The average daily amount for disposal in 2019 was 2132 tons, with a maximum of 3781 tons.)

- vi. Maximum ratio of CCR to non-CCR waste
- 1:6.0 (This ratio of CCR to non-CCR disposed of during 2020 does not exceed the maximum [33%] considered in the design calculations.)
- 2. Waste Placement, Cover, and Recoverya) Management and maximum area of the working face

CCR material not used in solidification is restricted to the working face of each cell in such a manner that it is easily incorporated into the municipal waste landfill with available equipment. Almost all of the CCR received at the facility was incorporated in the solidification process and not directly comingled with other waste at the working face. Any CCR waste included in the disposal stream did not restrict proper operations at the working face.

The working face is maintained at a size that is compatible with the facility's available equipment for spreading and compacting waste, and for suppressing dust. The typical working face area is 200 feet by 200 feet. However, occasionally the working face size is adjusted to support unusual weather activity, temporary volume adjustments to the waste stream, to safely stage different waste loads to accommodate truck traffic and allow blending of waste loads during daily operations. The working face size may increase to a maximum of 350 feet by 350 feet. This maximum size does not persist for more than a day.

b) Waste placement and compaction for CCR lifts and comingled waste

Solid waste is spread in uniform layers approximately 2 feet thick, and compacted to its smallest practical volume. Trucks that bring waste to the active area dump loads directly or using the tipper at the working face. Dozers and compactors spread, compact and blend

the waste. Most of the CCR material is used for solidification agent and then used on interior slopes as alternate daily cover. Any CCR material disposed directly at the active working face is blended in with MSW waste during the day's regular disposal activities, and compacted as described above.

c) Leachate outbreaks frequency, corrective actions taken, and if there is a need to install drainage layers such as chimney drains

Disposing and solidifying CCR did not create additional frequency of outbreaks. If leachate outbreaks are identified during daily inspections, they are repaired in accordance with the procedures outlined in the D&O plan, item 16, Sheet 46. The frequency of outbreaks is defined as occasional, depending on factors such as recent rainfall and areas of operation. Since large isolated blocks of CCR are not disposed during typical daily operations, CCR disposal does not restrict proper operations at the working face. The disposal practices are intended to not create layers of compacted coal ash, and therefore does not increase the occurrence of leachate outbreaks from a reduction in infiltration rates. In addition, when returning to a previously disposed area, the operator excavates windows into the existing layer as the new daily operations begin, using an excavator or a tipped dozer blade. This ensures any lenses are broken open to ensure infiltration through the waste to the leachate collection system at the cell floor.

d) Daily cover of comingled CCR and non-CCR waste

Alternate daily cover (ADC) generated from the solidification operations is only used on interior slopes. (If it is placed in the working face when it's located at an outside slope, it is treated the same as the other MSW disposed on exterior slopes, and covered with regular soil daily cover.) Solidified CCR used for ADC is typically blended with soil as the daily cover is placed by dumping the material on interior slopes along with cover soil, and spreading with dozers.

e) Statement verifying that daily inspection reports are kept on-site in accordance with the current D&O Plans.

The following daily logs are maintained on site:

- Operations Manager Daily Log
- Rainfall Log
- Water Truck Log & Recirculation Log

The Operations Manager Daily Log includes the checklist items to ensure compliance with regular solid waste operations, and any dust control logs maintained at the site. The Operations manager keeps these items in his office in the scalehouse or in his vehicle during normal operating hours. A sample dust suppression log is attached in Appendix A. At his discretion, the Manager may add notes in the comments section of the daily log, or if action items are identified, such as leachate outbreaks or dust control-related issues, the Manager may designate an employee to take corrective action immediately, prior to documenting the comment.

The Rainfall Log is kept on the active shelf in the scalehouse as part of the operating record.

The Water Truck Log & Recirculation Log are kept in the water truck during normal operating hours. Use of water to control dust is recorded in the log.

f) Management of solidification operation using CCR as a solidification agent, and sample records of paint filter tests, if applicable

Records for modifications and approvals for solidification are maintained in the Operating Record, and applicable paint filter tests are kept in a log in the Operations Manager's office in the scalehouse.

g) Recovery of previously disposed CCR for beneficial reuse, if applicable.

Not applicable.

- 3. Fugitive Dust Control
 - a) Actions taken to control CCR fugitive dust from CCR disposal unit, roads, conditioning areas, and solidification operation; and effectiveness of those actions

The Operator utilizes the following measures to minimize the CCR from becoming airborne:

- ensures all trucks transporting CCR are covered
- reduces or halts operations during high wind events

- operates a water spray system, to include passes with a water wagon, supplemented with impact sprinkler heads, supplied by the existing irrigation well, when additional control is needed

- applies more frequent cover as needed

Keeping the trucks covered is the most effective way to prevent the escape of dust during transport. Occasionally, trucks were not covered properly, and the Operator indicated to the driver to correct this.

Similarly, there were several days during the past year when the Operator ceased CCR disposal during high wind periods.

The water wagon proved most effective controlling dust site-wide. Impact sprinkler heads around the road system were also occasionally used, but were not a primary control. In addition a pair of water misters are available at the solidification / disposal area. This system is effective in suppressing dust through misting. However, it may be supplemented from time-to-time with hydroseeder equipment at the pit area to add additional dust suppression with spraying of water. Once the CCR material is solidified for use as ADC, its dusty characteristics are significantly reduced. Therefore, adding more frequent cover was not needed.

b) Records of Citizen Complaints specifically related to CCR Management, if applicable

No citizen complaints related to dust control have been received. Forms for recording these complaints are on site. Employees who may answer the phone are trained to record them on the appropriate form. EPD's District Office requested a demonstration that CCR dust was not leaving the disposal area and accumulating in the sediment pond. A study and subsequent report was prepared to demonstrate CCR was not present in the sediment pond. This letter report is attached in Appendix C. ("Site and Pond Inspection Report" by Golder, February 5, 2021.)

c) Recommendations to improve dust control measures in the future, if applicable to CCR Materials

Adding water has proved most effective. The Operator is pursuing ways to expand the hydroseeder-type spraying as well as adding an additional water wagon. In addition, the Operator is considering an alternate mixing method to limit dust generation.

4. Leachate Collection and Removal System (LCRS)a) Any known issues with the LCRS that are directly attributed to CCR

No known issues with the LCRS have been attributed to disposal of CCR.

- 5. Storm Water Management System
 - a) Narrative describing measures used to ensure that surface water contacting CCR and non-CCR waste has not been discharged into the stormwater management system

Since almost all the CCR disposed at the facility is kept within interior slopes, surface water contacting the material infiltrates the site and is directed to the leachate collection system. The stormwater management system is entirely directed to permitted sediment ponds. The pond outfalls are monitored semi-annually as part of the approved groundwater and surface water monitoring plan. Monitoring for appendix III (and IV) constituents is part of the plan for surface water points.

6. Waste Compatibility

a) Any incompatibility issues and corrective measures taken

No known issues with compatibility have been attributed to disposal of CCR. During a previous review meeting, EPD requested that the solidification pit be separated to allow CCR mixed with leachate in a different area than the other solidification processes. A soil berm is maintained in the middle of the solidification pit for this purpose.

- b) For a solidification process, if CCR is used as a solidification agent
 - i. List of type(s) and source(s) of CCR and types of liquid waste streams received for solidification prior to disposal

All CCR-type waste used for solidification at the facility was generated by Jacksonville Electrical Authority (JEA), Northside Generating Station. The waste product is a mix of coal combustion residuals and petroleum coke residue from power generation.

The liquid wastes include waste process paint sludge, off-spec latex paint, off-spec beverages, liquid soaps and similar materials.

ii. Sample records of compatibility analyses

Liquid wastes are categorized by the site as special waste. New special waste is reviewed by a third party consultant to ensure it meets acceptability requirements, and is compatible with other wastes. Special waste is manifested for disposal. Manifests and special waste reviews are kept on file in the facility Operating Record. (A sample is included in Appendix A.)

Employees involved with the disposal and solidification of liquid waste and CCR are trained to note any unexpected color changes, unusual odors or evidence of dangerous reactive activity. If this occurs, disposal is stopped immediately, and the Operations Manager is notified.

- 7. Groundwater Monitoring
 - a) The Environmental Monitoring Unit will assess groundwater monitoring data and will determine if the groundwater monitoring plan requires revision.

The approved groundwater monitoring plan is in place and the facility is currently in compliance.

- 8. Emergencies
 - a) Any events or circumstances that represented an operational or environmental emergency and the corrective actions taken specific to the management of CCR.

No such events or circumstances were noted during this period. The facility holds weekly safety briefings, which include discussions of the current disposal and solidification locations and any new activities. New hires receive appropriate safety training in accordance with their duties.

9. Documentation of Notification to Local Governments

The owner or operator shall notify the local governing authorities of the county, and any city within the county, in which the landfill is located upon submittal of an amended Plan to EPD. Copies of the correspondence to local governing authorities must be provided to EPD with the amended Plan submittal.

An amended plan is not being submitted at this time. (However, an updated plan with minor revisions is currently under review by EPD, as part of the 5-year permit renewal and updated D&O Plans.) The local Governments were previously notified upon the submittal of the previous plan. Copies of the notification letters are attached in Appendix B.

APPENDIX

Appendix A Sample Special Waste Review* Compatibility Review Sample Log

* Note: The names of Taylor County Landfill customers are not public information. Identifying information about the source has been redacted from the attached pages.

GENERATOR WASTE PROFILE WORKSHEET

		I	Page 1 of 3(revised 8/13)
9916-P7	-20110Apr	oroval Date:	12/17/20
132 276 610	Veronica Lee, Sa Julie Brookshire, Rhonda Poston,	les 91 Sales Sales	19-422-9057 Mobile
)53	Dan Winters/An	y-Bridges	A G
	, ,	Kon M	atta
ORMATIC	<u>NN</u>	Ć	-
e Stream	Weekly 🛛 🕅	Monthly	Other
	Phone No:	7	
	City: P		
	Fax No:		
r: F	Com		
State I.D. No:		SIC Code:	7549
I	Email Address: 1		
þ			
	Count	y: Gwinn	ett
INFORMA'	<u>FION</u>		
tact Person: J		·	<u></u>
••••	State: GA		Zip: 30315
uil Address: J			
ORMATIC	<u>DN</u>		
tact Person ·			
	State: GA	Z	Cip: 30315
uil Address: 📘			
ORMATIC	<u>DN</u>		
			· · · · · · · · · · · · · · · · · · ·
		WASTE	
Deputer D		L WASTE] OTHER	
POLLUT OWDER OTHER/exp	ION CONTROI	WASTE	
POLLUT OWDER 2 OTHER/exp Permanent Was	TION CONTROI	_ WASTE] OTHER Yes 🗌 No	
	TORMATIC TORMATIC Stream State I.D. No: I I INFORMAT tact Person: I ORMATIC tact Person: I SORMATIC tact Person: I SORMATIC	276 Julie Brookshire, 510 Rhonda Poston, 67 Jan Winters/Am 153 Dan Winters/Am FORMATION Image: Stream e Stream Weekly M Phone No: City: P Fax No: Fax No: ': Count INFORMATION tact Person: State: GA ail Address: State: GA hil Address: State: GA Ail Address: State: GA	122 Julie Brookshire, Sales 510 Rhonda Poston, Sales 510 Rhonda Poston, Sales 510 Dan Winters/Amy Bridges 53 Dan Winters/Amy Bridges FORMATION City e Stream Weekly Monthly Phone No: Image: City: Phone No: Image: City: Phone No: City: Phone No: Image: Comparison of the second

Color	Odor (describe):	Free Liquids	% Solids:	pH:	Flash Point	Phenol
Black/Brown	Sweet	Content: 100%	<u>0</u>	<u>9-11</u>	>200 Degrees F	<u>O</u> ppm
Physical Description/Characteristics of Waste: Liquid						

REPRESENTATIVE SAMPLE CERTIFICATION

Is the representative sample collected to prepare this profile and laboratory analysis, collected in accordance with U.S. EPA § 40 CFI 261 .20 © guidelines or equivalent rules?			
Sample Date:	Composite Sample Grab Sample		
Sample's Employer:	Date:		
Sampler's Name (printed):	Signature:		
Analytical testing performed and MSDS sheets submitted with this profile worksheet: (please circle)			
TCLP Paint Filter Test MSDS Sheets Other (describe):			

Attach Laboratory Analytical Report (and/or Material Safety Data Sheet) Including Required Parameters for this Profile

Does this waste or generating process contain regulated concentrations of the following Pesticides and/or Herbicides: Chlordane, Endrin, Heptachlor (and its epoxides), Lindane, Methoxychlor, Toxaphene, 2, 4-D, 2, 4, 5, -TP Silvex as defined in § 40 CFR 261.33?	🗌 Yes 🛛 No
Does this waste or the generating process cause it to exceed OSHA exposure limits from high levels of Hydrogen Sulfide Or Hydrogen Cyanide as defined in § 40 CFR 261.23?	🗌 Yes 🛛 No
Does this waste contain regulated concentrations of Polychlorinated Biphenyls (PCB's) as defined in § 40 CFR Part 761?	Yes No
Does this waste contain regulated concentrations of listed hazardous wastes defined by § 40 CFR 261.31, 261.32, 261.33, Including RCRA F-Listed Solvents?	Yes No
Does this waste contain regulated concentrations of 2, 3, 7, 8-Tetrachlorodibenzodioxin (2, 3, 7, 8-TCCD), or any other Dioxin as defined in § 40 CFR 261.31?	🗌 Yes 🖾 No
Is this a regulated Toxic Material as defined by Federal and/or State Regulations?	Yes No
Is this a regulated Radioactive Waste as defined by Federal and/or State Regulations?	Yes No
Is this a regulated Medical or Infectious Waste as defined by Federal and/or State Regulations?	🗌 Yes 🛛 No
Is this waste generated at a Federal Superfund Clean Up Site?	Yes No

GENERATORS CERTIFICATION

I hereby certify that to the best of my knowledge and belief, the information contained herein is a true and accurate description of the waste material being offered for disposal. I further certify that by utilizing this profile, neither myself nor any other employee of the company will deliver for disposal or attempt to deliver for disposal any waste which is classified as toxic waste, hazardous waste, medical or infectious waste, or any other waste material this facility is prohibited from accepting by law. Our company hereby agrees to fully indemnify this disposal facility against any damages resulting from this certification being inaccurate or untrue. I understand that Waste Industries, Inc. Sampson County Disposal can only receive Non-Hazardous Waste.

The generator will notify Waste Industries, Sampson County Disposal of any changes in character or quantity of the waste prior to delivery. An annual, updated analytical report (if applicable) will be submitted to Waste Industries, Sampson County Disposal each year for the length of time the waste is disposed of in the abovementioned disposal site.

AUTHORIZED REPRESENTATIVE NAME AND TITLE (PRINTED)

Dartne

COMPANY NAME

AUTHORIZED REPRESENTATIVE SIGNATURE

12/8/2020

The Generator is responsible for completing the Signature Authorization and/or Third Party Signature Authorization for Disposal, if applicable. Only, when Generator of the Waste is not authorizing designee(s) to sign in their behalf and will sign all documents and manifests, page 3 will not required.

Approved permanent special waste profiles are subject to the Renewal Process Knowledge Certification process to remain active for disposal of waste. Generator will be notified by the disposal facility/landfill designee 60 days prior to expiration date and all requested information for recertification must be received 10 days before expiration date for processing to prevent inactivation status.

Signature Authorization and/or Third Party Signature Authorization

The Signature Authorization and/or Third Party Signature Authorization form must be completed by the Generator of the Waste to represent Generator's Designee(s), when the Generator of the Waste Stream is *NOT* signing documents for special waste approval and Waste Industries preprinted manifest. NO EXCEPTIONS.

As generator of the waste stream, I herby certify that I am authorized to approve the names of personnel and/or authorized agents that will sign on behalf of the Generator.

Generator of Waste Stream (Company or Individual)	
Generator's Signature	
Print Signature & Title	Martin Contraction of the second seco
Generator's Address	07
Telephone Number	
Date	12/8/2020

The following individuals/broker designees are authorized to sign as a representative(s) of the generator or as an agent for the generator for the following purposes (check those that apply):

1. Complete and sign Generator Waste Profile Worksheets.

2. Sign contracts to dispose and/or transport material.

3. Sign certifications necessary to comply with landfill requirements.

4. Sign manifests to initiate shipment to disposal facility.

5. Other, _____

When applicable, the authorized designee will be responsible for all notification or information requested by the generator.

Approved List of Authorized Individuals/Broker Designees by Generator:

Name of Individual	Title	Name Of Company	Telephone No.

Roy Walton

From:	Shane Chasteen <shane.chasteen@catlinusa.com></shane.chasteen@catlinusa.com>
Sent:	Wednesday, May 16, 2018 4:50 PM
То:	Roy Walton
Cc:	Kameron Smith; Shawn McGuire
Subject:	Statement about Fly Ash
•	

Roy-

It was good to talk to you this afternoon. Per your request, below is a statement we put together about the fly ash that the TCLF uses for solidification.

Fly ash is an inert, stable material used for the solidification of waste streams containing free liquids. The use of fly ash in the solidification process would not appear to cause any reactivity or flammability concerns. Therefore, the continued use of this material in the solidification process at the TCLF appears to be a safe and efficient manner to solidify free liquids.

Just let us know if you need anything else. Thanks,

Shane

Shane A. Chasteen, P.G.

CATLIN Engineers and Scientists P.O. Box 10279 Wilmington, NC 28404-0279 (Office) 910-452-5861 (Mobile) 910-352-3564 (Fax) 910-452-7563 (E-mail) <u>shane.chasteen@catlinusa.com</u> (Web) <u>www.catlinusa.com</u>

TAYLOR COUNTY LANDFILL

DUST SUPPRESSION LOG

Month: <u>Marsh</u>

DATE	# OF LOADS	LOCATION	EMPLOYEE NAME
3.1-21	k		
3-2-21	Rain		
3 3-21	6		
3-4-21	ia.		
3-5-21	9		
3-6-21	*		
3.7-21		Sundar	
3 - 8.21	7		
3-9-21	9		
3-10-21	10		
3-11-21	10		
3-12-21	•		
3-13-21			
3-14-21		Sunday	
3. 15-21	9	-,	
3.16-21	Rain		
3-17-21	Wet-		
3 - 18-21	Rain		· · · · · · · · · · · · · · · · · · ·
3 19-21	5		
-3 - 20-21			
3. 21.21		Sunday	
3-22-21	9	P	
3-23-21	q		
3 - 24-21	Rain		
3 - 25-21			

,

Appendix B Notification Letters

www.wasteindustries.com

208 Southern States Rd | Mauk, GA 31058

Taylor County Landfill

March 23, 2017

Honorable Randall F. Nelson, Chairman Taylor County Board of Commissioners 7 Ivy Street Butler, Georgia 31006

Subject: WI - Taylor County Landfill CCR Management Plan

Dear Commissioner Nelson:

The Rules of Georgia Department of Natural Resources, Environmental Protection Division for Solid Waste Management, 391-3-4-.07 (5) state in part that "The owner or operator shall notify the local governing authorities of any city and county in which the landfill is located upon the submittal of the CCR Management Plan to EPD."

The Taylor County Landfill is located within Taylor County, so in accordance with this requirement, we are providing notice that we have submitted a CCR Management Plan to EPD for their review and approval.

Sincerely,

Roy Walton General Manager

Cc: Jeff Browne, P.E.

208 Southern States Rd | Mauk, GA 31058

Taylor County Landfill

March 23, 2017

Honorable Walter Turner, Mayor City of Reynolds P.O. Box 386 Reynolds, Georgia 31076-0386

Subject: WI - Taylor County Landfill CCR Management Plan

Dear Mayor Turner:

The Rules of Georgia Department of Natural Resources, Environmental Protection Division (EPD) for Solid Waste Management, 391-3-4-.07 (5) state in part that "The owner or operator shall notify the local governing authorities of any city and county in which the landfill is located upon the submittal of the CCR Management Plan to EPD." Furthermore, EPD has prepared a guidance document for CCR Management which states, "The owner or operator shall notify the local governing authorities of the county, and any city within the county, in which the landfill is located upon initial submittal of a CCR Management Plan to EPD."

The Taylor County Landfill is located within Taylor County, and the City of Reynolds is also in Taylor County, so in accordance with this requirement, we are providing notice that we have submitted a CCR Management Plan to EPD for their review and approval.

Sincerely,

Roy Walton General Manager

Cc: Jeff Browne, P.E.

www.wasteindustries.com

208 Southern States Rd | Mauk, GA 31058

Taylor County Landfill

March 23, 2017

Honorable William B. Whitley, Mayor City of Butler P.O. Box 476 Butler, Georgia 31006

Subject: WI - Taylor County Landfill CCR Management Plan

Dear Mayor Whitley:

The Rules of Georgia Department of Natural Resources, Environmental Protection Division (EPD) for Solid Waste Management, 391-3-4-.07 (5) state in part that "The owner or operator shall notify the local governing authorities of any city and county in which the landfill is located upon the submittal of the CCR Management Plan to EPD." Furthermore, EPD has prepared a guidance document for CCR Management which states, "The owner or operator shall notify the local governing authorities of the county, **and any city within the county**, in which the landfill is located upon initial submittal of a CCR Management Plan to EPD."

The Taylor County Landfill is located within Taylor County, and the City of Butler is also in Taylor County, so in accordance with this requirement, we are providing notice that we have submitted a CCR Management Plan to EPD for their review and approval.

Sincerely,

Roy Walton General Manager

Cc: Jeff Browne, P.E.

Appendix C Golder Report

Project No. 20137511.401

February 5, 2021

Mr. Roy Walton WI Taylor County Disposal, LLC 33 Stewart Road Mauk, Georgia 31058

RE: SITE AND POND INSPECTION REPORT - TAYLOR COUNTY LANDFILL, PERMIT NO. 133-003D (SL), TAYLOR COUNTY, GEORGIA

Dear Roy,

Golder Associates Inc. (Golder) appreciates the opportunity to visit with you and your team at the Taylor County Landfill to complete the site inspection and obtain samples. Samples were then observed under a microscope, tested for relative pH, and tested for analysis of select metals. The following summary presents Golder's observations, sample identification, and results of testing, along with our professional opinion regarding potential impacts to Pond 1 and Pond 7.

Summary of Site Visit Observations

Golder conducted site visits on December 30, 2020 and January 5, 2021 to identify if coal combustion residuals (CCR) are present within soils in and around Pond 1 and Pond 7 at the above-referenced facility. The site visit was conducted by Russell Stapp of Golder's Atlanta office. Russell's subject matter expertise is CCR developed over 28 years of testing CCR, Research & Development, new product development, coal combustion chemistry and coal fired plant operations in both Circulated Fluidized Bed (CFB) and Pulverized Coal (PC) Boiler plants.

Prior to the site visits, we initiated a general discussion with site personnel about the circumstances regarding the sample request and site observation. Golder understands that concern was raised by the Georgia (GA) Environmental Protection Division (EPD) about the potential presence of CCR in and around Pond 1 based on visual observations during the October 22, 2020, site inspection as noted in the November 10, 2020, letter from GA EPD. Pond 7 is the pond that receives runoff from the railyard. Golder's objective was to evaluate and obtain samples from the site, specifically the area of concern (Pond 1), Pond 7, background soil in future Cells 22 or 23, crushed concrete samples that are utilized in roadbeds, and CCR (CFB Ash from Jacksonville Electric Authority or JEA).

Golder inspected the accessible soils in and immediately adjacent to Pond 1 and Pond 7 with the help of WI's Tanner Dykes. A hand auger was used to obtain samples for inspection at depths up to 12 inches. Samples were observed around the inlet areas and other accessible areas of the pond. Generally, samples were relatively homogenous. No 'hardpan' zones were noted, as would be expected if significant amounts of CCR were present due to the composition of the ash (e.g., calcium oxides). There were areas of gray colored materials at Pond 7; however, these materials appeared to be consistent with the sub-base and road surface (limestone-gravel) materials.

Based on site visit observations, no evidence of CCR was identified in or around Pond 1 or Pond 7; this material was observed where CCR is off loaded within the rail spur area. *De minimus* amounts of surficial soil contamination with CCR would be expected in this area based on standard operating procedures.

The following is a summary of the sample locations and general descriptions. The locations are shown on the attached Figure 1. Each sample was labeled and reviewed for anomalies compared to expected soil. All samples obtained and logged appeared to be sand, clay or a mix, but no obvious visual signs of CCR appeared to be in the pond samples or observed locations.

Samples with Identification, location, and coordinates (where required) for additional samples for Pond 1:

- 1. Pond 1: (2 inlet pipes to pond) Sample 1A taken at inlet pipe 1 area
 - a. N 32.44545
 - b. W 084.38935
 - i. Samples were all native sand. No indication of CCR.
- 2. Pond 1: Sample 1B taken at inlet pipe 2 area
 - a. N 32.44417
 - b. W 084.38945
 - i. Samples were all native sand. No indication of CCR. Similar observations at inlet pipe 1.
- 3. Pond 1: Sample 1C Sandy soil, clay at base of sample. No indication of CCR.
 - a. N 32.44424
 - b. W 084.39002
- 4. Pond 1: Sample 1D Clay with sand mixed in. No indication of CCR.
 - a. N 32.44429
 - b. W 084.39028
- 5. Pond 1: Sample 1E Clay with minimal mixed sand. No indication of CCR.
 - a. N 32.44452
 - b. W 084. 39030
- 6. **Pond 1: Sample 1F-** Heavy clay, minimal sand. No indication of CCR.
 - a. N 32.44479
 - b. W 084.39048

Samples with Identification, location, and coordinates (where required) for Pond 7:

1. Inlet pond 7: (2 inlet pipes to pond) - Sample 7A taken at inlet pipe 1 area

- a. N 32.46241
- b. W 084.37674
 - i. Samples were almost all native sand. There appeared to be little sediments (expected) nor did one get an indication of CCR.
- 2. Inlet pond 7: Sample 7B taken at inlet pipe 2 area
 - a. N 32.46231
 - b. W 084.37673
 - i. Samples were almost all native sand. There appeared to be little sediments (expected) nor did one get an indication of CCR. Very similar to inlet pipe 1.
- 3. Inlet Pond 7: Sample 7C area had more sediment and fines as expected with some sand. Taken due north of sample A
 - a. N 32.46229
 - b. W 084.37642
- 4. Inlet Pond 7: Sample 7D area had more sediment and fines as expected, looks like clay. Area was very muddy and soft.
 - a. N 32.46172
 - b. W 084.37658
- 5. **Inlet Pond 7**: **Sample 7E** area had more sediment and fines as expected, looks like clay. Area was very soft and accessing was getting difficult due to unstable surface. Last sample obtained in the inlet pond.
 - a. N 32.46133
 - b. W 084. 37659

Samples with Identification, location, and coordinates (where required) for additional samples:

- 1. **CFB Fly Ash:** Rail load out system. 4 Pneumatic rail cars, with one transferring to transfer truck. Sample taken at pipe source under rail car.
- 2. Crushed concrete: 2 samples obtained #1 of which is fine and #2 is coarser
 - a. N 32.44904
 - b. W 084.38336
- 3. Cell 22 0 6" is native sandy soil (background sample)
 - a. N 32.45493
 - b. W 084.37964

- 4. Cell 22 Soil sample: 6" 12" is native sandy-clay soil (background sample)
 - a. N 32.45493
 - b. W 084.37964
- 5. Cell 22 Soil sample: first 6" is native sandy soil (background sample)
 - a. N 32.45547
 - b. W 084.37972

Note: Cell 22 and 23 background sampling locations were "estimated by Tanner Dykes.

Golder took photographs at each sampling location (see attached photographic log). Based on our field observations, there are no obvious indicators of ash in the soil samples collected in and around the pond.

Summary of Microscopic Study

Samples collected during the field investigation were observed under a Fisher Scientific, Micromaster, Model E light microscope using a 100X lens and select photographs are included as an attachment to this report. When an analyst reviews CCR with use of microscope, cenospheres are the typical particle shapes of PC boiler systems along with residual carbon particulate of amorphous shapes. CFB ash is typically non- spherical due to the circulation causing consistent collisions of particles forming angular shapes of all sizes. Some spherical shapes are formed but are minimal depending on the combustion temperatures.

Golder analyzed thirteen (13) samples to determine if any spheres were apparent but more importantly compare the control samples of JEA ash and background soils to Pond 1 and Pond 7 samples. The ash particles are angular – elongated, almost all non-spherical shapes with a wide range in particle size and very coarse. Due to the calcium oxide (CaO) composition of the ash, we viewed samples to determine if there were cemented particles, as this would be expected if significant amounts of ash were in contact with sand and clay (i.e., materials containing silica). We did not observe cemented particles or cenospheres in the prepared slides of upgradient samples or the Pond 1 and Pond 7 soil samples. Based on our microscopic observations, there are no obvious indicators of ash in the soil samples collected in and around Pond 1 and Pond 7.

Summary of pH Testing

Select samples collected during the field investigation were tested using a phenolphthalein solution to determine relative pH values. CCR contains significant concentrations of calcium hydroxide solution, Ca(OH)₂, which is a base. Therefore, when the phenolphthalein is added to materials containing CCR, it will turn a pink color. Several tests were run both sequentially and simultaneously, and multiple times.

The JEA ash and crushed concrete were tested with the phenolphthalein solution, and both turned bright pink. In contrast, soil samples from the pond were non-reactive and did not change color (see attached photographs). The solution was allowed to remain on the samples for one hour to allow ample time for reactions, although the reactions (i.e., color change) for the JEA ash and crushed concrete were instantaneous. Based on our reaction observations, there are no obvious indicators of ash in the soil samples collected in and around Pond 1 and Pond 7.

Summary of Chemical Analyses

Several samples were collected by site personnel and Golder on November 17, 2020 and compared to JEA ash samples collected as part of semi-annual routine testing on July 15, 2020. Samples include background/upgradient borrow area, Pond 1, haul road in close proximity to leachate sumps, and potential source samples of crushed concrete and JEA ash. Samples were analyzed for Resource Conservation and Recovery Act (RCRA) total metals plus nickel and vanadium, and toxicity characteristic leaching procedure (TCLP) for RCRA metals (see attached laboratory certificates-of-analysis). Nickel and vanadium were chosen as they are typically associated with the type of CCR that is accepted at this facility, as potential indicators of CCR impacts to Pond 1. Results are shown on the attached Table 1 and Table 2.

Based on our observations, no metals were detected in any sample including JEA ash at concentrations above applicable hazardous limits for solids or liquids. As shown on Table 1, concentrations of metals detected in samples from Pond 1 and the nearby roadbed are generally similar to or less than those detected from the upgradient borrow area and are therefore likely naturally occurring. Given that the concentrations of hallmark indicators nickel and vanadium for the JEA ash were diluted and significantly higher than those found in other soil samples, it is unlikely that a significant amount of ash is present in the Pond 1 sample. If there was a significant CCR impact at Pond 1, concentrations of those indicator metals would likely be higher than those detected rather than similar to background concentrations.

To supplement observations of analytical data, a desktop study was performed to determine the prevalence of arsenic, cadmium, chromium, lead, nickel and vanadium in soil and sediment in Taylor County, GA. Data for 10 sediment samples from Taylor County were reviewed in the United States Geological Survey (USGS) *National Geochemical Survey Database* (presented in Table 3. As shown on Table 3, arsenic concentrations range from 1.0 parts per million (ppm) to 25 ppm, cadmium concentrations were not detected, chromium concentrations range from 11 ppm to 66 ppm, lead concentrations range from 5 ppm to 40 ppm, nickel concentrations range from not detected to 10 ppm, and vanadium concentrations range from 20 ppm to 90 ppm in the sediment samples collected from Taylor County. Therefore, these constituents are likely to occur in subsurface soil in Taylor County at concentrations that would account for the concentrations in detected in onsite soil samples from Pond 1. Based on these data, there are no obvious indicators of ash in the soil samples collected in and around the pond.

Summary

Overall, field observations from our CCR expert, combined with microscopic, relative pH, and analytical testing do not support that Pond 1 has had any significant impacts from CCR. Similarly, the field observations from our CCR expert, combined with microscopic and relative pH testing do not support that Pond 7 has had any significant impacts from CCR. Based on data collected to date for Pond 7, additional testing does not appear to be necessary. The gray/white colors noted in and around Pond 1 during the October 22, 2020, inspection by GA EPD may be related to other onsite and/or natural sources. If you have any questions or require any additional information, please do not hesitate to contact us at (336) 852-4903.

Sincerely,

Golder Associates Inc.

Russell B Stopp

Russell Stapp Practice Leader

RPK/RS/

CC: Edward Hood, GFL Jeff Browne, PE – Browne and Company, LLC

Attachments: Figure 1 – Sample Locations Photographic Log – Site Visit Photographic Log – Microscopic Analysis Photographic Log – Relative pH Testing Table 1 – Summary of Solid Total Metals Results Table 2 – Summary of TCLP Metals Results Table 3 – Summary of USGS Metals Results Laboratory Certificates-of-Analysis

https://golderassociates.sharepoint.com/sites/1785144/technical work/phase 400 general consulting/soil sampling/phase 401 site inspection/final report/rev sealed report/final pond inspection - taylor county If.docx

Rachel P. Kirkman, PG Principal and Senior Consultant

SWC-4

⊕ РZ-8

SAMPLE A

SURFACE WATER MONITORING POINT IDENTIFICATION

PIEZOMETER IDENTIFICATION

SAMPLE LOCATION AND IDENTIFICATION

YYYY-MM-DD	2021-01-06
PREPARED	BPG
DESIGN	RPK
REVIEW	RPK
APPROVED	DYR

SAMPLE 7D SAMPLE 7C	PLE 7A	
PROJECT TAYLOR COUNTY LANDFILL PERMIT NO. 133-003(SL) MAUK, GEORGIA TITLE SAMPLE LOCATIONS		
PROJECT No. 20137511	Rev. FIGURE	

Table 1 Summary of Solid Total Metals Results Taylor County Landfill, Permit No 113-003D (SL) Mauk Georgia

Constituent	Type 3 RRS Surface Soil Limit	Sample Location	Date	Result	Units	Qualifier	MDL	QL
Arsenic	30	Borrow Area	11/17/2020	< 0.550	mg/Kg		0.352	0.550
	30	Crushed Concrete	11/17/2020	< 0.555	mg/Kg		0.355	0.555
	30	JEA Ash	7/15/2020	13.0	mg/Kg		0.192	1.00
	30	POND 1	11/17/2020	< 0.543	mg/Kg		0.347	0.543
	30	Road By Sumps	11/17/2020	0.904	mg/Kg		0.330	0.516
Barium	1648	Borrow Area	11/17/2020	6.35	mg/Kg		0.110	0.550
	1648	Crushed Concrete	11/17/2020	192	mg/Kg		0.111	0.555
	1648	JEA Ash	7/15/2020	14.2	mg/Kg		0.0930	1.00
	1648	POND 1	11/17/2020	1.57	mg/Kg		0.109	0.543
	1648	Road By Sumps	11/17/2020	7.20	mg/Kg		0.103	0.516
Cadmium	39	Borrow Area	11/17/2020	< 0.0550	mg/Kg		0.0106	0.0550
	39	Crushed Concrete	11/17/2020	< 0.0555	mg/Kg		0.0107	0.0555
	39	JEA Ash	7/15/2020	0.589	mg/Kg		0.0620	0.100
	39	POND 1	11/17/2020	0.0322	mg/Kg	J	0.0104	0.0543
	39	Road By Sumps	11/17/2020	0.146	mg/Kg		0.00990	0.0516
Chromium	1200	Borrow Area	11/17/2020	13.4	mg/Kg		0.110	0.550
	1200	Crushed Concrete	11/17/2020	13.5	mg/Kg		0.111	0.555
	1200	JEA Ash	7/15/2020	6.56	mg/Kg		0.0840	0.500
	1200	POND 1	11/17/2020	8.60	mg/Kg		0.109	0.543
	1200	Road By Sumps	11/17/2020	16.8	mg/Kg		0.103	0.516
Lead	400	Borrow Area	11/17/2020	2.84	mg/Kg		0.132	0.550
	400	Crushed Concrete	11/17/2020	3.23	mg/Kg		0.133	0.555
	400	JEA Ash	7/15/2020	< 0.500	mg/Kg		0.318	0.500
	400	POND 1	11/17/2020	2.02	mg/Kg		0.130	0.543
	400	Road By Sumps	11/17/2020	4.89	mg/Kg		0.124	0.516
Mercury	17	Borrow Area	11/17/2020	< 0.0679	mg/Kg		0.0506	0.0679
-	17	Crushed Concrete	11/17/2020	< 0.0685	mg/Kg		0.0510	0.0685
	17	JEA Ash	7/15/2020	< 0.0100	mg/Kg		0.00390	0.0100
	17	POND 1	11/17/2020	< 0.0670	mg/Kg		0.0500	0.0670
	17	Road By Sumps	11/17/2020	< 0.0637	mg/Kg		0.0475	0.0637
Nickel		Borrow Area	11/17/2020	1.68	mg/Kg	J	0.396	2.75
		Crushed Concrete	11/17/2020	8.81	mg/Kg		0.399	2.77
		JEA Ash	7/15/2020	586	mg/Kg		7.95	25.0
		POND 1	11/17/2020	1.88	mg/Kg	J	0.391	2.71
		Road By Sumps	11/17/2020	1.34	mg/Kg	J	0.371	2.58
Selenium	36	Borrow Area	11/17/2020	< 0.550	mg/Kg		0.451	0.550
	36	Crushed Concrete	11/17/2020	< 0.555	mg/Kg		0.455	0.555
	36	JEA Ash	7/15/2020	< 2.00	mg/Kg		0.411	2.00
	36	POND 1	11/17/2020	< 0.543	mg/Kg		0.445	0.543
	36	Road By Sumps	11/17/2020	< 0.516	mg/Kg		0.423	0.516
Silver	96.56	Borrow Area	11/17/2020	< 0.550	mg/Kg		0.110	0.550
	96.56	Crushed Concrete	11/17/2020	< 0.555	mg/Kg		0.111	0.555
	96.56	JEA Ash	7/15/2020	< 0.500	mg/Kg		0.135	0.500
	96.56	POND 1	11/17/2020	< 0.543	mg/Kg		0.109	0.543
	96.56	Road By Sumps	11/17/2020	< 0.516	mg/Kg		0.103	0.516
Vanadium		Borrow Area	11/17/2020	26.2	mg/Kg		0.110	0.550
		Crushed Concrete	11/17/2020	25.6	mg/Kg		0.111	0.555
		JEA Ash	7/15/2020	1930	mg/Kg		5.96	25.0
		POND 1	11/17/2020	19.5	mg/Kg		0.109	0.543
		Road By Sumps	11/17/2020	27.9	mg/Kg		0.103	0.516

Notes: 1) Units are in milligrams per kilogram (mg/Kg). J = estimated value below the quanitation limit. 2) Nickel and vanadium results for JEA ash were diluted 50X.

3) Type 3 RRS Surficial Soil Limts are taken from the Georgia Hazardous Sites Response Act (HRSA) riskbased limits for non-residential surficial (<1ft) soils.

Table 2 Summary of TCLP Metals Results Taylor County Landfill, Permit No 113-003D (SL) Mauk Georgia

Constituent	TCLP Limits	Sample Location	Date	Result	Units	Qualifier	MDL	QL
Arsenic	5	Borrow Area	11/17/2020	< 0.500	mg/L		0.380	0.500
	5	Crushed Concrete	11/17/2020	< 0.500	mg/L		0.380	0.500
	5	JEA Ash	7/15/2020	< 0.500	mg/L		0.380	0.500
	5	POND 1	11/17/2020	< 0.500	mg/L		0.380	0.500
	5	Road By Sumps	11/17/2020	< 0.500	mg/L		0.380	0.500
Barium	100	Borrow Area	11/17/2020	0.104	mg/L	J	0.0550	0.500
	100	Crushed Concrete	11/17/2020	1.04	mg/L		0.0550	0.500
	100	JEA Ash	7/15/2020	0.744	mg/L		0.0550	0.500
	100	POND 1	11/17/2020	0.127	mg/L	J	0.0550	0.500
	100	Road By Sumps	11/17/2020	0.160	mg/L	J	0.0550	0.500
Cadmium	1	Borrow Area	11/17/2020	< 0.0500	mg/L		0.0180	0.0500
	1	Crushed Concrete	11/17/2020	< 0.0500	mg/L		0.0180	0.0500
	1	JEA Ash	7/15/2020	< 0.0500	mg/L		0.0180	0.0500
	1	POND 1	11/17/2020	< 0.0500	mg/L		0.0180	0.0500
	1	Road By Sumps	11/17/2020	< 0.0500	mg/L		0.0180	0.0500
Chromium	5	Borrow Area	11/17/2020	< 0.500	mg/L		0.0700	0.500
	5	Crushed Concrete	11/17/2020	0.151	mg/L	J	0.0700	0.500
	5	JEA Ash	7/15/2020	0.0966	mg/L	J	0.0700	0.500
	5	POND 1	11/17/2020	< 0.500	mg/L		0.0700	0.500
	5	Road By Sumps	11/17/2020	< 0.500	mg/L		0.0700	0.500
Lead	5	Borrow Area	11/17/2020	< 0.500	mg/L		0.155	0.500
	5	Crushed Concrete	11/17/2020	< 0.500	mg/L		0.155	0.500
	5	JEA Ash	7/15/2020	< 0.500	mg/L		0.155	0.500
	5	POND 1	11/17/2020	< 0.500	mg/L		0.155	0.500
	5	Road By Sumps	11/17/2020	< 0.500	mg/L		0.155	0.500
Mercury	0.2	Borrow Area	11/17/2020	< 0.00400	mg/L		0.00300	0.00400
	0.2	Crushed Concrete	11/17/2020	< 0.00400	mg/L		0.00300	0.00400
	0.2	JEA Ash	7/15/2020	< 0.00400	mg/L		0.00300	0.00400
	0.2	POND 1	11/17/2020	< 0.00400	mg/L		0.00300	0.00400
	0.2	Road By Sumps	11/17/2020	< 0.00400	mg/L		0.00300	0.00400
Selenium	1	Borrow Area	11/17/2020	< 0.500	mg/L		0.310	0.500
	1	Crushed Concrete	11/17/2020	< 0.500	mg/L		0.310	0.500
	1	JEA Ash	7/15/2020	< 0.500	mg/L		0.310	0.500
	1	POND 1	11/17/2020	< 0.500	mg/L		0.310	0.500
	1	Road By Sumps	11/17/2020	< 0.500	mg/L		0.310	0.500
Silver	5	Borrow Area	11/17/2020	< 0.500	mg/L		0.0950	0.500
	5	Crushed Concrete	11/17/2020	< 0.500	mg/L		0.0950	0.500
	5	JEA Ash	7/15/2020	< 0.500	mg/L		0.0950	0.500
	5	POND 1	11/17/2020	< 0.500	mg/L		0.0950	0.500
	5	Road By Sumps	11/17/2020	< 0.500	mg/L		0.0950	0.500

Notes: 1) Units are in milligrams per liter (mg/L).

2) Toxicity Characteristic Leaching Procedure (TCLP) limits are from 40 CFR Part 261.

Table 3Summary of USGS Database Metals ResultsTaylor County, Georgia

Sample #	NURE ID	Lab ID	Sample Date	Туре	Datum	Latitude	Longitude	As (Max) Concentration (ppm)	Method
1	5278534	C-110236	19760607	Sediment	NAD27	32.5837	-84.1307	12	ICP40
2	5278523	C-116706	19760605	Sediment	NAD27	32.6144	-84.349	25	ICP40
3	5278541	C-116710	19760605	Sediment	NAD27	32.4619	-84.2332	1.0	INAA
4	5278528	C-116713	19760607	Sediment	NAD27	32.6546	-84.2081	0.7	INAA
5	5278532	C-148756	19760607	Sediment	NAD27	32.6328	-84.123	11	ICP40
6	5278560	C-148910	19760604	Sediment	NAD27	32.405	-84.2322	2.0	AA
7	5278546	C-149045	19760604	Sediment	NAD27	32.3944	-84.3173	5.7	AA
8	5278557	C-149376	19760605	Sediment	NAD27	32.5562	-84.1487	3.6	AA
9	5278526	C-149399	19760605	Sediment	NAD27	32.6182	-84.2848	1.7	AA
10	5278513	C-149464	19760605	Sediment	NAD27	32.7291	-84.2958	7.1	AA
							Average	7.0	1
CADMIUM (Cd)								
Sample #	NURE ID	Lab ID	Sample Date	Туре	Datum	Latitude	Longitude	Cd (Max) Concentration (ppm)	Method
1	5278534	C-110236	19760607	Sediment	NAD27	32.5837	-84.1307	ND	ICP40
2	5278523	C-116706	19760605	Sediment	NAD27	32.6144	-84.349	ND	ICP40
3	5278541	C-116710	19760605	Sediment	NAD27	32.4619	-84.2332	ND	INAA
4	5278528	C-116713	19760607	Sediment	NAD27	32.6546	-84.2081	ND	INAA
5	5278532	C-148756	19760607	Sediment	NAD27	32.6328	-84.123	ND	ICP40
6	5278560	C-148910	19760604	Sediment	NAD27	32.405	-84.2322	ND	AA
7	5278546	C-149045	19760604	Sediment	NAD27	32.3944	-84.3173	ND	AA
8	5278557	C-149376	19760605	Sediment	NAD27	32.5562	-84.1487	ND	AA
9	5278526	C-149399	19760605	Sediment	NAD27	32.6182	-84.2848	ND	AA
10	5278513	C-149464	19760605	Sediment	NAD27	32.7291	-84.2958	ND	AA
							Average	ND	
CHROMIUM	(Cr)					I			-4
Sample #	NURE ID	Lab ID	Sample Date	Туре	Datum	Latitude	Longitude	Cr (Max) Concentration (ppm)	Method
-		0.440000	1070007			00 5007	04 4007		
1	5278534	C-110236	19760607	Sediment	NAD27	32.5837	-84.1307	35	INAA

Sample #	NURE ID	Lab ID	Sample Date	Туре	Datum	Latitude	Longitude	Cr (Max) Concentration (ppm)	Method
1	5278534	C-110236	19760607	Sediment	NAD27	32.5837	-84.1307	35	INAA
2	5278523	C-116706	19760605	Sediment	NAD27	32.6144	-84.349	29	INAA
3	5278541	C-116710	19760605	Sediment	NAD27	32.4619	-84.2332	19	INAA
4	5278528	C-116713	19760607	Sediment	NAD27	32.6546	-84.2081	11	INAA
5	5278532	C-148756	19760607	Sediment	NAD27	32.6328	-84.123	66	ICP40
6	5278560	C-148910	19760604	Sediment	NAD27	32.405	-84.2322	18	ICP40
7	5278546	C-149045	19760604	Sediment	NAD27	32.3944	-84.3173	51	ICP40
8	5278557	C-149376	19760605	Sediment	NAD27	32.5562	-84.1487	25	ICP40
9	5278526	C-149399	19760605	Sediment	NAD27	32.6182	-84.2848	32	ICP40
10	5278513	C-149464	19760605	Sediment	NAD27	32.7291	-84.2958	28	ICP40
							Average	31	

Table 3 Summary of USGS Database Metals Results Taylor County, Georgia

LEAD (Pb)				Taylor Cou	unty, Geor	gia			
Sample #	NURE ID	Lab ID	Sample Date	Туре	Datum	Latitude	Longitude	Pb (Max) Concentration (ppm)	Method
1	5278534	C-110236	19760607	Sediment	NAD27	32.5837	-84.1307	17	ICP40
2	5278523	C-116706	19760605	Sediment	NAD27	32.6144	-84.349	40	ICP40
3	5278541	C-116710	19760605	Sediment	NAD27	32.4619	-84.2332	14	ICP40
4	5278528	C-116713	19760607	Sediment	NAD27	32.6546	-84.2081	18	ICP40
5	5278532	C-148756	19760607	Sediment	NAD27	32.6328	-84.123	19	ICP40
6	5278560	C-148910	19760604	Sediment	NAD27	32.405	-84.2322	5	ICP40
7	5278546	C-149045	19760604	Sediment	NAD27	32.3944	-84.3173	23	ICP40
8	5278557	C-149376	19760605	Sediment	NAD27	32.5562	-84.1487	18	ICP40
9	5278526	C-149399	19760605	Sediment	NAD27	32.6182	-84.2848	18	ICP40
10	5278513	C-149464	19760605	Sediment	NAD27	32.7291	-84.2958	8	ICP40
					-		Average	18	
NICKEI (NI) Sample #	NURE ID	Lab ID	Sample Date	Type	Datum	Latitude	Longitude	Ni (Max) Concentration (ppm)	Method
1	5278534	C-110236	19760607	Sediment	NAD27	32,5837	-84,1307	<u>6</u>	ICP40
2	5278523	C-116706	19760605	Sediment	NAD27	32.6144	-84,349	4	ICP40
3	5278541	C-116710	19760605	Sediment	NAD27	32,4619	-84,2332	ND	ICP40
4	5278528	C-116713	19760607	Sediment	NAD27	32.6546	-84.2081	8.2	INAA
5	5278532	C-148756	19760607	Sediment	NAD27	32.6328	-84.123	6	ICP40
6	5278560	C-148910	19760604	Sediment	NAD27	32.405	-84.2322	ND	ICP40
7	5278546	C-149045	19760604	Sediment	NAD27	32.3944	-84.3173	10	ICP40
8	5278557	C-149376	19760605	Sediment	NAD27	32.5562	-84.1487	4	ICP40
9	5278526	C-149399	19760605	Sediment	NAD27	32.6182	-84.2848	ND	ICP40
10	5278513	C-149464	19760605	Sediment	NAD27	32.7291	-84.2958	ND	ICP40
							Average	6.4	
Vandadium		L ah ID	Sample Date	Τνηρ	Datum	Latitudo	Longitude	V (Max) Concentration (nnm)	Method
1	5278534	C-110236	19760607	Sediment	NAD27	32 5837	_84 1307	32	ICP40
2	5278523	C-116706	19760605	Sediment	NAD27	32 6144	-84 349	60	NURF
3	5278541	C-116710	19760605	Sediment	NAD27	32 4619	-84 2332	20	NURF
4	5278528	C-116713	19760607	Sediment	NAD27	32 6546	-84 2081	21	ICP40
5	5278532	C-148756	19760607	Sediment	NAD27	32 6328	-84 123	60	NURF
6	5278560	C-148910	19760604	Sediment	NAD27	32.405	-84,2322	20	NURF
7	5278546	C-149045	19760604	Sediment	NAD27	32,3944	-84,3173	80	NURF
8	5278557	C-149376	19760605	Sediment	NAD27	32.5562	-84,1487	44	ICP40
9	5278526	C-149399	19760605	Sediment	NAD27	32.6182	-84.2848	22	ICP40
10	5278513	C-149464	19760605	Sediment	NAD27	32.7291	-84.2958	90	NURE
		1					Average	44.9	1

Note: Source of metals data is the United States Geological Survey National Geochemical Surey Database, ppm = parts per million

102-A Woodwinds Industrial Court Cary NC, 27511 Phone: 919.467.3090 FAX: 919.467.3515

Friday, July 24, 2020 GFL Environmental - Taylor Cty Landfill (WA058) Attn: Rachel Kirkman 5B Oak Branch Drive Greensboro, NC 27407

RE: Laboratory Results for Project Number: 20137511.100, Project Name/Desc: Taylor Co Ash Characterization ENCO Workorder(s): CD10175

Dear Rachel Kirkman,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Friday, July 17, 2020.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Cary. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

Sincerely,

manda h. Dains

Amanda L. Gaines Project Manager Enclosure(s)

PROJECT NARRATIVE

Date:	7/24/2020
Client:	GFL Environmental - Taylor Cty Landfill (WA058)
Project:	Taylor Co Ash Characterization
Lab ID:	CD10175

Overview

Environmental Conservation Laboratories, Inc. (ENCO) analyzed all submitted samples in accordance with the methods referenced in the laboratory report. Any particular difficulties encountered during sample handling by ENCO are discussed in the QC Remarks section below.

Quality Control Samples

No Comments

Quality Control Remarks

No Comments

Other Comments

All samples received under this work order arrived in acceptable condition. The samples were not checked for residual chlorine, as it is not required.

The analytical data presented in this report are consistent with the methods as referenced in the analytical report. Any exceptions or deviations are noted in the QC remarks section of this narrative or in the Flags/Notes and Definitions section of the report.

Released By: Environmental Conservation Laboratories, Inc.

Amanda Gaines Project Manager

SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: JEA Ash		Lab ID: CD101	175-01	Sampled: 07/15/2	20 17:03	Received: 07/17/20 13:53
<u>Parameter</u>	Preparation	Hold Date/Time(s)		Prep Date/	<u>Time(s)</u>	Analysis Date/Time(s)
EPA 6010D	EPA 3010A	01/11/21	01/18/21	07/22/20	16:41	07/23/20 11:37
EPA 7470A	EPA 7470A	08/12/20		07/22/20	10:40	07/22/20 15:36

SAMPLE DETECTION SUMMARY Client ID: JEA Ash CD10175-01 Lab ID: <u>Analyte</u> <u>Results</u> <u>Flag</u> <u>MDL</u> <u>PQL</u> <u>Units</u> <u>Method</u> Notes Barium - TCLP 0.744 0.0550 0.500 mg/L EPA 6010D 0.0966 Chromium - TCLP J 0.0700 0.500 mg/L EPA 6010D

ANALYTICAL RESULTS

Description: JEA Ash Matrix: Solid Lab Sample ID: CD10175-01 Sampled: 07/15/20 17:03

Sampled By: Travis Martinez

Received: 07/17/20 13:53 Work Order: CD10175

% Solids:

TCLP Metals by 6000/7000 Series Methods

Project: Taylor Co Ash Characterization

^ - ENCO Cary certified analyte [NELAC E87610]	1										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	<u>By</u>	<u>Notes</u>
Arsenic [7440-38-2]	0.380	U	mg/L	1	0.380	0.500	0G22046	EPA 6010D	07/23/20 11:37	JDH	
Barium [7440-39-3]	0.744		mg/L	1	0.0550	0.500	0G22046	EPA 6010D	07/23/20 11:37	JDH	
Cadmium [7440-43-9]	0.0180	U	mg/L	1	0.0180	0.0500	0G22046	EPA 6010D	07/23/20 11:37	JDH	
Chromium [7440-47-3]	0.0966	J	mg/L	1	0.0700	0.500	0G22046	EPA 6010D	07/23/20 11:37	JDH	
Lead [7439-92-1]	0.155	U	mg/L	1	0.155	0.500	0G22046	EPA 6010D	07/23/20 11:37	JDH	
Mercury [7439-97-6]^	0.00300	U	mg/L	1	0.00300	0.00400	0G22025	EPA 7470A	07/22/20 15:36	KAH	
Selenium [7782-49-2]	0.310	U	mg/L	1	0.310	0.500	0G22046	EPA 6010D	07/23/20 11:37	JDH	
Silver [7440-22-4]	0.0950	U	mg/L	1	0.0950	0.500	0G22046	EPA 6010D	07/23/20 11:37	JDH	

QUALITY CONTROL DATA

TCLP Metals by 6000/7000 Series Methods - Quality Control

Batch 0G22025 - EPA 7470A

Blank (0G22025-BLK1)					Prepar	ed: 07/22/202	0 10:40 Ana	lyzed: 07/22/	2020 15:30		
Analyte	<u>Result</u>	<u>Flaq</u>	POL	<u>Units</u>	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Mercury	0.00300	U	0.00400	mg/L							
LCS (0G22025-BS1)					Prepar	ed: 07/22/202	0 10:40 Ana	lyzed: 07/22/	2020 15:33		
					Spike	Source		%REC		RPD	
Analyte	Result	<u>Flaq</u>	POL	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
Mercury	0.00533		0.00020	mg/L	0.00500		107	80-120			
Matrix Spike (0G22025-MS1)					Prepar	ed: 07/22/202	0 10:40 Ana	yzed: 07/22/	2020 15:38		
Source: CD10175-01					Crike	Courses					
Analyte	Result	Flag	POL	Units	Level	Result	%REC	<u>Limits</u>	RPD	Limit	Notes
Mercury	0.101		0.00420	mg/L	0.100	0.00315 U	101	75-125			
Matrix Spike Dup (0G22025-MS	SD1)				Prepar	ed: 07/22/202	0 10:40 Ana	yzed: 07/22/	2020 15:42		
Source: CD10175-01											
Analyte	Result	Flag	POI	Unite	Spike	Source	% DEC	%REC	PPD	RPD	Notoc
Mercury	0 105	1104	0.00420	ma/l	0 100	0.0031511	105	75-125	3	25	Notes
Post Spike (0G22025-PS1)	0.105		0.00120		Prepar	red: 07/22/202	0 10:40 Ana	yzed: 07/22/	2020 15:44	23	
Source: CD10175-01											
Analyte	Result	Flag	POI	Units	Spike	Source	04.DEC	%REC	PDD	RPD Limit	Notor
Mercury	0.00570	nuq	0.00020	ma/l	0.00500	0.000025	114	75-125	RFD	<u></u>	Notes
Batch 0G22046 - EPA 3010A	0.0007.0		0.00020		0.00500	0.000025		,5125			
Blank (0G22046-BLK1)					Prepar	ed: 07/22/2020	0 16:41 Ana	vzed: 07/23/	2020 11:34		
Analyte	Result	Flag	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Arsenic	0.380	U	0.500	mg/L		Resurt					
Barium	0.0550	U	0.500	mg/L							
Cadmium	0.0180	U	0.0500	mg/L							
Chromium	0.0700	U	0.500	mg/L							
Lead	0.155	U	0.500	mg/L							
Selenium	0.310	U	0.500	mg/L							
Silver	0.0950	U	0.500	mg/L							
LCS (0G22046-BS1)					Prepar	ed: 07/22/202	0 16:41 Ana	yzed: 07/23/	2020 11:40		
					Snike	Source		%RFC		RPD	
Analyte	Result	Flag	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Arsenic	0.200		0.0100	mg/L	0.200		100	80-120			
Barium	0.211		0.0100	mg/L	0.200		106	80-120			
Cadmium	0.0210		0.00100	mg/L	0.0200		105	80-120			
Chromium	0.205		0.0100	mg/L	0.200		102	80-120			
Lead	0.205		0.0100	mg/L	0.200		103	80-120			
Selenium	0.202		0.0100	mg/L	0.200		101	80-120			
Silver	0.203		0.0100	mg/L	0.200		101	80-120			

QUALITY CONTROL DATA

TCLP Metals by 6000/7000 Series Methods - Quality Control

Batch 0G22046	- EPA 3010A	- Continued
---------------	-------------	-------------

Matrix Spike (0G22046-MS1)					Prepar	red: 07/22/2020	0 16:41 Anal	yzed: 07/23/	2020 11:42		
Source: CD10175-01											
Analyte	<u>Result</u>	<u>Flag</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Arsenic	10.4		0.500	mg/L	10.0	0.380 U	104	75-125			
Barium	11.5		0.500	mg/L	10.0	0.744	107	75-125			
Cadmium	1.05		0.0500	mg/L	1.00	0.0180 U	105	75-125			
Chromium	10.2		0.500	mg/L	10.0	0.0966	101	75-125			
Lead	10.3		0.500	mg/L	10.0	0.155 U	103	75-125			
Selenium	9.84		0.500	mg/L	10.0	0.310 U	98	75-125			
Silver	10.3		0.500	mg/L	10.0	0.0950 U	103	75-125			
Matrix Spike Dup (0G22046-MS	SD1)				Prepar	red: 07/22/2020	0 16:41 Anal	yzed: 07/23/	2020 11:49		
Source: CD10175-01											
Analyte	<u>Result</u>	<u>Flag</u>	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
Arsenic	9.75		0.500	mg/L	10.0	0.380 U	98	75-125	6	20	
Barium	11.2		0.500	mg/L	10.0	0.744	105	75-125	2	20	
Cadmium	1.02		0.0500	mg/L	1.00	0.0180 U	102	75-125	3	20	
Chromium	10.1		0.500	mg/L	10.0	0.0966	100	75-125	1	20	
Lead	10.0		0.500	mg/L	10.0	0.155 U	100	75-125	3	20	
Selenium	9.33		0.500	mg/L	10.0	0.310 U	93	75-125	5	20	
Silver	10.1		0.500	mg/L	10.0	0.0950 U	101	75-125	1	20	
Post Spike (0G22046-PS1)					Prepar	red: 07/22/2020	0 16:41 Anal	yzed: 07/23/	2020 11:52		
Source: CD10175-01											
Analyte	<u>Result</u>	<u>Flaq</u>	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Arsenic	0.203		0.0100	mg/L	0.200	-0.00510	102	80-120			
Barium	0.231		0.0100	mg/L	0.200	0.0149	108	80-120			
Cadmium	0.0211		0.00100	mg/L	0.0200	-0.000405	105	80-120			
Chromium	0.211		0.0100	mg/L	0.200	0.00193	104	80-120			
Lead	0.209		0.0100	mg/L	0.200	0.000520	104	80-120			
Selenium	0.196		0.0100	mg/L	0.200	-0.00936	98	80-120			
Silver	0.207		0.0100	mg/L	0.200	0.000128	103	80-120			

FLAGS/NOTES AND DEFINITIONS

- **B** The analyte was detected in the associated method blank.
- **D** The sample was analyzed at dilution.
- **J** The reported value is between the laboratory method detection limit (MDL) and the laboratory method reporting limit (MRL), adjusted for actual sample preparation data and moisture content, where applicable.
- **U** The analyte was analyzed for but not detected to the level shown, adjusted for actual sample preparation data and moisture content, where applicable.
- **E** The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an estimate.
- **MRL** Method Reporting Limit. The MRL is roughly equivalent to the practical quantitation limit (PQL) and is based on the low point of the calibration curve, when applicable, sample preparation factor, dilution factor, and, in the case of soil samples, moisture content.
- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
- **N** The analysis indicates the presence of an analyte for which there is presumptive evidence (85% or greater confidence) to make a "tentative identification".
- **P** Greater than 25% concentration difference was observed between the primary and secondary GC column. The lower concentration is reported.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.

DeterTime 7/17/20 Date/Time Date/Time	25		-	1	sipt	Semps on Rece	Cooler #'s		Amer 1-1	
Date/Time 7/17/24 Date/Time 7/17/24	Received By	Date/Time			2	ed By	Relinquish		14 report	lea
Date/Time 7/17/2/	Received By	Date/Time				ed By	Relinquish		cial Reporting Requirements	Compents/Sp
Data	1230 TJD	7/17/2020			Y	1 Start	2	620	Janen by	E
	Iners	I # of Contai	< Tota			ad By	Belinnuich	DataTime	narad Bu	Sample Kit Dro
										\$
				al 2						
						111-11				- Winnes
								1		
						in the state		1		
				23						
				14/14			1 1 1			
				-		-				
		X	×	2	SOLID	6	1703	1-15-2020	EA Ash	_
Sample Co				Total # of Containers	Matrix (see codes)	Comp / Grab	Collection	Collection Date	Sample ID (Field Identification)	Item #
as necessary)	servation (See Codes) (Combine	Pre								
Lab Workorder		TCL	1311 TC Ba,TCLF		/Est	ime Zone	Mark		An ma	Sampler(s) Sig
Due_/_		PH	LP EXT		-	Young	Laura		avis Martinez	- T
Expe		3	Metals P Cr.7			Kirkman	Rache		852-4903	(336
			TCLP CLP P			IOF	Reporting Conta		Fax	Tel
X stop			AG,TCLP 8	auon	HIGI QUEHZ	0	PO # / Billing Inf			Ċity/ST/Zip
Note : Rush reque			As,TCI			esc	Project Name/D			Address
Time			P			511.100	20137	andfill (WA058)	invironmental - Taylor Cty Li	GFL
Requested Ti	Requested Analyses		R				Project Number			Client Name

.

,

102-A Woodwinds Industrial Court Cary NC, 27511 Phone: 919.467.3090 FAX: 919.467.3515

Wednesday, December 9, 2020 GFL Environmental - Taylor Cty Landfill (WA058) Attn: Rachel Kirkman 5B Oak Branch Drive Greensboro, NC 27407

RE: Laboratory Results for Project Number: 20137511.100, Project Name/Desc: Taylor Co Ash Characterization ENCO Workorder(s): CD10175

Dear Rachel Kirkman,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Friday, July 17, 2020.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Cary. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

Sincerely,

manda h. Dains

Amanda L. Gaines Project Manager Enclosure(s)

PROJECT NARRATIVE

Date:	December 9, 2020
Client:	GFL Environmental - Taylor Cty Landfill (WA058)
Project:	Taylor Co Ash Characterization
Lab ID:	CD10175

Overview

This report is an amendment to the original report dated July 24, 2020 for this work order. This report was revised to report the analysis of Total Metals under separate cover.

Environmental Conservation Laboratories, Inc. (ENCO) analyzed all submitted samples in accordance with the methods referenced in the laboratory report. Any particular difficulties encountered during sample handling by ENCO are discussed in the QC Remarks section below.

Quality Control Samples

The Method Blank (MB) had a positive result for Cadmium; however the concentration is less than ten percent of the associated sample result, which has minimal impact on the data. The MB had a positive result for Lead; however this element was not detected in the associated sample. The MB had a positive result for Cadmium and Lead. Detections of this analyte should be considered to have a possible high bias if the concentration in the sample is not greater than ten times that of the detection in the MB.

Quality Control Remarks

The sample was received outside of the method specified hold time for the Mercury analysis.

Other Comments

The analytical data presented in this report are consistent with the methods as referenced in the analytical report. Any exceptions or deviations are noted in the QC remarks section of this narrative or in the Flags/Notes and Definitions section of the report.

Released By: Environmental Conservation Laboratories, Inc.

Amanda Gaines Project Manager

SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: JEA Ash		Lab ID: CD10175-01	Sampled: 07/15/20 17:03	Received: 07/17/20 13:53
Parameter	Preparation	Hold Date/Time(s)	Prep Date/Time(s)	<u>Analysis Date/Time(s)</u>
EPA 6010D	EPA 3050B	01/11/21	12/04/20 11:30	12/07/20 12:07
EPA 7471B	EPA 7471B	08/12/20	12/04/20 15:17	12/07/20 09:31
Client ID: JEA ASN		Lab ID: CD10175-01RE1	Sampled: 07/15/20 17:03	Received: 07/17/20 13:53
Parameter	<u>Preparation</u>	Lab ID: CD10175-01RE1 <u>Hold Date/Time(s)</u>	Sampled: 07/15/20 17:03 <u>Prep Date/Time(s)</u>	Received: 07/17/20 13:53 <u>Analysis Date/Time(s)</u>
Parameter EPA 6010D	Preparation EPA 3050B	Lab ID: CD10175-01RE1 Hold Date/Time(s) 01/11/21	Sampled: 07/15/20 17:03 <u>Prep Date/Time(s)</u> 12/04/20 11:30	Received: 07/17/20 13:53 Analysis Date/Time(s) 12/07/20 15:03

SAMPLE DETECTION SUMMARY

Client ID: JEA Ash			Lab ID: CD1	10175-01			
Analyte	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Arsenic - Total	13.0		0.192	1.00	mg/kg dry	EPA 6010D	
Cadmium - Total	0.589		0.0620	0.100	mg/kg dry	EPA 6010D	QB-01
Chromium - Total	6.56		0.0840	0.500	mg/kg dry	EPA 6010D	
Client ID: JEA Ash			Lab ID: CD1	l0175-01RE1			
Analyte	Results	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Barium - Total	14.2		0.0930	1.00	mg/kg dry	EPA 6010D	

ANALYTICAL RESULTS

Description: JEA Ash Matrix: Solid Lab Sample ID: CD10175-01 Sampled: 07/15/20 17:03

Sampled By: Travis Martinez

Received: 07/17/20 13:53 Work Order: CD10175

% Solids: 100.32

Metals by EPA 6000/7000 Series Methods

Project: Taylor Co Ash Characterization

^ - ENCO Orlando certified analyte [NELAC_E83]	3182]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	<u>PQL</u>	Batch	Method	Analyzed	By	<u>Notes</u>
Arsenic [7440-38-2]^	13.0		mg/kg dry	1	0.192	1.00	0L04017	EPA 6010D	12/07/20 12:07	JSS	
Barium [7440-39-3]^	14.2		mg/kg dry	1	0.0930	1.00	0L04017	EPA 6010D	12/07/20 15:03	JSS	
Cadmium [7440-43-9]^	0.589		mg/kg dry	1	0.0620	0.100	0L04017	EPA 6010D	12/07/20 12:07	JSS	QB-01
Chromium [7440-47-3]^	6.56		mg/kg dry	1	0.0840	0.500	0L04017	EPA 6010D	12/07/20 12:07	JSS	
Lead [7439-92-1]^	0.318	U	mg/kg dry	1	0.318	0.500	0L04017	EPA 6010D	12/08/20 10:41	JSS	QB-02
Mercury [7439-97-6]^	0.00390	U	mg/kg dry	1	0.00390	0.0100	0L04013	EPA 7471B	12/07/20 09:31	SSE	Q-02
Selenium [7782-49-2]^	0.411	U	mg/kg dry	1	0.411	2.00	0L04017	EPA 6010D	12/07/20 12:07	JSS	
Silver [7440-22-4]^	0.135	U	mg/kg dry	1	0.135	0.500	0L04017	EPA 6010D	12/07/20 12:07	JSS	

QUALITY CONTROL DATA

Metals by EPA 6000/7000 Series Methods - Quality Control

Batch 0L04013 - EPA 7471B

Namika: Result Files POL Units Source Level NoREC NAREC RPD Limits RPD Bink (0L04013-8LC2) Bink (0L04013-8LC2) Figured: 12(04/2020 15:17 Analyzed: 12(07/2020 09:94 Figured: 12(04/2020 15:17 Analyzed: 12(07/2020 09:94 Maskat: Bissk (0L04013-8LC2) Bissk (0L04013-8LC2) Figured: 12(04/2020 15:17 Analyzed: 12(07/2020 09:94 LCS (0L04013-851) 0.03230 U 0.0120 mg/kg vet Prepared: 12(04/2020 15:17 Analyzed: 12(07/2020 09:94 Intellyte Result Files POL Units Spike Source %REC MREC RPD Limits Limits RPD Limits RPD Limits Limits	Blank (0L04013-BLK1)					Prepar	red: 12/04/2020	0 15:17 Anal	yzed: 12/07/	2020 09:15		
Native Result File POL Units Splite Source Result PARE Limits RPD Limits RPD Interver 0.00300 U 0.0100 mg/kg wet Prepared: 12/04/2020 15:17 Avalued: 12/07/2020 09:57 RPD Limits RPD Limits <th>L</th> <th></th>	L											
Bank (024013-8LX2) D 0.000 mg/kg wet Peparet: 12/04/2020 15:17 Analyzet: 12/07/2020 09:54 Bank (024013-8LX2) Result File POL Units Splic Source Pegaret: 12/04/2020 15:17 Analyzet: 12/07/2020 09:57 Interview 0.00300 U 0.0000 mg/kg wet Peparet: 12/04/2020 15:17 Analyzet: 12/07/2020 09:37 RPD Limit Nature Interview 0.018 0.0082 mg/kg wet 0.529 Seite Seite Seite RPD Limit Nature Interview 0.318 0.00822 mg/kg wet 0.529 Seite Seite Seite RPD Limit Nature Mathyle Result File POL Units Spike Seite Seite Seite Mathyle RPD Limit Nature Mathyle Result File POL Units Spike Source Seite Mathyle RPD Limit Nature Mathyle Result File POL Units	Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Baint (0L-0413-BLK2) Proprest: 12/04/2020 15:17 Analyzed: 12/07/2020 09:54 Inalyte: Result Flag POL Units Spike Source %REC Yeared: 12/04/2020 09:54 LCS (0L-04013-BS1) 0.00390 0 0.0100 mg/ls yeet Proprest: 12/04/2020 15:17 Analyzed: 12/07/2020 09:27 RPD Limit Notes. Insalvice Result Flag POL Units Spike Source %REC Year RPD Limit Notes. Insalvice Result Flag POL Units Spike Source %REC Year RPD Limit Notes. Insalvice Result Elas POL Units Spike Source %REC Year RPD Limit Notes. Insalvice Result Elas POL Limits Spike Source %REC Year RPD Limit Notes. Insalvice Result Flag POL Limits Spike Source %REC	Mercury	0.00390	U	0.0100	mg/kg wet							
Namkric Result Fila POL Units Splite Source Next Splite Splite Source Next Splite RPD Maint Notes LCS (0104013-851) Program Program 12/07/2020 15:17 Analyzed: 12/07/2020 09:27 Namkrie Result Plan POL Units Source Next Splite Source Next Splite Source Next Splite Maint RPD Maint Notes CS (0104013-852) Program 0.529 96 9.120 Plan Notes Namkrike Result Plan POL Units Source Notes Notes Notes Namkrike Result Plan POL Units Source Notes	Blank (0L04013-BLK2)					Prepar	red: 12/04/2020	0 15:17 Anal	lyzed: 12/07/	2020 09:54		
Native Result File POL Units Splice Source Nates Nates terrary 0.00390 U 0.0100 mg/ng wet Prepared: 12/04/2020 15:17 Analyzed: 12/07/2020 09:27 Imits RPD Mates terrary 0.518 0.0082 mg/ng wet 0.522 98 98 91:20 Prepared: 12/04/2020 15:17 Analyzed: 12/07/2020 09:20 Prepared: 12/04/2020 15:17 Analyzed: 12/07/2020 09:30 Prepared: 12/07/2020 09:30 12/07/2020 09:30 12/07/2020 09:30 12/07/2020 09:30 12/07/2020 09:30 12/07/2020 00:30 12/07/2020 12/07/2020 12/07/2020 12/07/2020 12/07/2020												
Jercury 0.0399 U 0.0190 mg/kg wet Jercury Jercury Jercury Prepared: 12/04/2020 15:17 Analyzed: 12/04/2020 95 80-120 RPD Limits RPD <thlimits< th=""> Limits Limits<td><u>Analyte</u></td><td><u>Result</u></td><td><u>Flag</u></td><td><u>POL</u></td><td><u>Units</u></td><td>Spike Level</td><td>Source Result</td><td>%REC</td><td>%REC Limits</td><td>RPD</td><td>RPD Limit</td><td>Notes</td></thlimits<>	<u>Analyte</u>	<u>Result</u>	<u>Flag</u>	<u>POL</u>	<u>Units</u>	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS (0L04013-851) Prepared: 12/04/2020 15:17 Analyzed: 12/07/2020 09:27 Numbre Result Files POL Units Spike Level Source Result %REC RPD Limits RPD LS (0L04013-852) D.00882 mg/ng wet 0.529 98 80-120 98 80-120 Makka Result File POL Units Spike Source %REC Maints RPD Maints Notes: Makka Result File POL Units Spike Source %REC Maints RPD Maints Notes: Matrix Spike (0L04013-MSI) D.00882 mg/ng wet 0.529 95 80-120 RPD Maints Notes: Source: CD1075-01 Spike Source: Spike Source: %REC MRPD Maint Notes: Maints Result Files POL Units Spike Source: %REC MREC MRPD Maint Notes: Surce: </td <td>Mercury</td> <td>0.00390</td> <td>U</td> <td>0.0100</td> <td>mg/kg wet</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Mercury	0.00390	U	0.0100	mg/kg wet							
Name Result Fiae POL Units Spike (0.53) Source (0.53) No.REC MPD MPD Minits Notes: LES 00.04013-852) Prepared: 12/04/2020 15:17 Amilyzed: 12/07/2020 09:37 Manive Result Fiae POL Units Spike Source %REC Maintyzed: 12/07/2020 09:37 Manive Result Fiae POL Units Spike Source: %REC Maintyzed: 12/07/2020 09:37 Matrix Spike (0L04013-MS1) Prepared: 12/04/2020 15:17 Amilyzed: 12/07/2020 09:37 Manive Result Fiae POL Units Spike Source: %REC Maintyzed: 12/07/2020 09:37 Mainty Spike (0L04013-MSD1) Prepared: 12/04/2020 15:17 Amilyzed: 12/07/2020 109:37 Maintyzed: 12/07/2020 109:37 Maintyzed: 12/07/2020 109:37 Mainty Spike (0L04013-MSD1) Result Fiae POL Units Spike Source: %REC Maintyzed: 12/07/2020 11:31 Maintyzed: 12/07/2020 11:31 Maintyzed: 12/07/2020 11:31 <td>LCS (0L04013-BS1)</td> <td></td> <td></td> <td></td> <td></td> <td>Prepar</td> <td>red: 12/04/2020</td> <td>0 15:17 Anal</td> <td>lyzed: 12/07/</td> <td>2020 09:27</td> <td></td> <td></td>	LCS (0L04013-BS1)					Prepar	red: 12/04/2020	0 15:17 Anal	lyzed: 12/07/	2020 09:27		
Analytic Result Flag POL Units Spike Source % REC Limits RPD Limit Notes. Lercury 0.518 0.00882 mg/kg wet 0.529 98 89-120 Imits Notes. Lercury 0.518 0.00882 mg/kg wet 0.529 98 89-120 Prepared: 12/07/2020 09:57 Analyte Result Flag POL Units Spike Source % REC Limits RPD Limit<							_					
Itercury 0.518 0.0882 mg/kg wet 0.529 98 80-120 LCS (010-0013-852) Prepared: 12/04/2020 15:17 Analyzed: 12/07/2020 09:57 Prepared: 12/04/2020 15:17 Analyzed: 12/07/2020 09:57 Analyze Result Filas POL Units Spike Source %REC %RPD RPD Limits RPD Limits RPD Limits Notes. Matrix Spike (0L04013-M51) 0.00082 mg/kg wet 0.619 0.00390 U 101 80-120 80-120 Source: C010175-01 Spike Source: C010175-01 Spike Source: C010175-01 Notes. RPD Limits Notes. Source: C010175-01 Filas POL Units Spike Source: C010175-01 Notes. Source: C010175-01 Filas POL Units Spike Source: C010175-01 Notes. Matrix Spike Dup (0L04013-MSD1) Prepared: 12/04/2020 11:37 Analyzed: 12/07/2020 09:37 Notes. RPD Limits Notes. Isak/te Result Filas POL Units <	Analyte	Result	Flag	PQL	Units	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
LCS (0L04013-852) Prepared: 12/04/2020 15:17 Analyzed: 12/07/2020 09:57 Analyte Result Flag POL Units Spike Source %REC RPD Limits RPD Matrix Spike (0L04013-MS1) 0.501 0.00882 mg/rg wet 0.523 95 80-120 Matrix Spike (0L04013-MS1) Prepared: 12/04/2020 15:17 Analyzed: 12/07/2020 09:34 Source: CD10175-01 Spike Source: %REC RPD Limits RPD Matrix Spike 0L04013-MSD1 Prepared: 12/04/2020 15:17 Analyzed: 12/07/2020 09:37 Source: 12/04/2020 15:17 Analyzed: 12/07/2020 09:37 Matrix Spike Dup (0L04013-MSD1) Prepared: 12/04/2020 15:17 Analyzed: 12/07/2020 09:37 Source: 9%REC Limits RPD Limit Notes: Matrix Spike Dup (0L04013-MSD1) Result Flag POL Units Spike Source: 12/07/2020 09:37 Source: CD10175-01 Result Flag POL Units Spike Source: %REC Limits RPD Limit Notes: Barkh OL04017 - EPA 3050B Blank (0L04	Mercury	0.518		0.00882	mg/kg wet	0.529		98	80-120			
Analyte Result File POL Units Spike Source %REC Wints RPD Limit Nates Iterary 0.501 0.00882 mg/kg wet 0.529 95 80-120 80-	LCS (0L04013-BS2)					Prepar	red: 12/04/2020	0 15:17 Anal	lyzed: 12/07/	2020 09:57		
Analyte lercury Result 0.501 Files 0.00882 POL mg/kg wet 0.529 Source 0.529 %PREC 95 MPD 80-120 RPD Limits 80-120 RPD Limits 80-120 Notes Matrix Spike (0104013-MS1) Source: C010175-01 Spike Source 80-120 %PREC %PREC RPD Limits RPD Limits RPD Limits Notes Matrix Spike 0up (0104013-MSD1) Spike Source 80-619 %PREC %PREC RPD Limits RPD Limits Notes Matrix Spike Dup (0104013-MSD1) Frequent: 12/04/2020 101 80-120 0.077 20 Matrix Spike Dup (0104017 - MSD1) mg/kg dry 0.625 0.0100 mg/kg dry 0.619 0.00390 U 101 80-120 0.07 20 Matrix Spike Dup (0104017 - EPA 3050B mg/kg dry 0.625 0.0100 mg/kg dry 0.619 0.00390 U 101 80-120 0.07 20 Matrix Spike Out 04017 - EPA 3050B Ease Porpared: 12/04/2020 11:30 Analyzed: 12/07/2020 11:44 Notes Matrix Spike Out 04017 - BLX1) U 1.00 mg/kg wet Spike Source Result %REC R												
Name Negatu Fug FOL Junus Level Result Notes Notes Matrix Spike (0L04013-MS1) .0.00882 mg/kg wet 0.529 95 89-120	Analysis	Desult	Flore	DOI	Unite	Spike	Source		%REC		RPD	
Jackits Spike (0L04013-MS1) U.S01 U.S02 Markits Spike (0L04013-MS1) Matrix Spike (0L04013-MS1) Prepared: 12/04/2020 I5:17 Analyzed: 12/07/2020 09:34 Source: CD10175-01 Spike Source Level Result %REC RPD Limit Notes: Matrix Spike Dup (0L04013-MS1) Prepared: 12/04/2020 I5:17 Analyzed: 12/07/2020 09:37 Source: Spike Source: With the Notes: Matrix Spike Dup (0L04013-MSD1) Prepared: 12/04/2020 I5:17 Analyzed: 12/07/2020 09:37 Source: Spike Source: Markits RPD Limit Notes: Matrix Spike Dup (0L04013-MSD1) Prepared: 12/04/2020 I5:17 Analyzed: 12/07/2020 09:37 Source: Spike Source %REC Markits RPD Limit Notes: Markite Result Flag POL Units Spike Source %REC MREC RPD Limit Notes: Itervity 0.625 0.0100 mg/kg wet Spike Source %REC MREC RPD Limit Notes: Itervity 0.625		<u>Result</u>	riag	<u>PUL</u>	<u>Units</u>	Level	<u>Result</u>	%REC	Limits	RPD	Limit	<u>Notes</u>
Name Result Flag POL Units Spike Source Verpare: 1// / / / / / / / / / / / / / / / / / /		0.501		0.00882	ng/kg wei	0.529	1 12/04/2020	95	80-120	2020.00.24		
Source: USUD17-01 Analyte Result Fiao POL Units Spike Source Ware RPD Limits Notes: Itercury 0.625 0.0100 mg/kg dry 0.619 0.00390 U 101 80-120 Notes: Matrix Spike Dup (0L04013-MSD1) Prepared: 12/04/2020 15:17 Analyzed: 12/07/2020 09:37 Source: C010175-01 Spike Source: Marks Result Fiao POL Units Spike Source %REC MRPD Limits Notes: Iercury 0.625 0.0100 mg/kg dry 0.619 0.00390 U 101 80-120 0.07 20 Batch 0L04017 - EPA 3050B Prepared: 12/04/2020 11:30 Analyzed: 12/07/2020 11:44 Notes: Markte Result Elag POL Units Spike Source %REC MRPD Limit Notes: sanium 0.0920 U 1.00 mg/kg wet - - - -	Matrix Spike (0L04013-MS1)					Prepar	red: 12/04/2020	0 15:17 Anai	lyzed: 12/07/	2020 09:34		
Analytic Result Fiaq POL Units Level Result % REC Limits RPD Limit Notes lercury 0.625 0.0100 mg/kg dry 0.619 0.03390 101 80-120 Marix Spike Dup (0L04013-MSD1) Prepared: 12/04/2020 15:17 Analyzed: 12/07/2020 09:37 30000 101 80-120 90000 90000 90000 90000	Source: CD10175-01					Spike	Source		%REC		RPD	
Itercary 0.625 0.0100 mg/kg dry 0.619 0.03390 101 80-120 Matrix Spike Dup (01.04013-MSD1) Prepared: 12/04/2020 12/07/2020 09:37 Source: CD10175-01 Prepared: 12/04/2020 12/07/2020 09:37 Making Result Flaq POL Units Spike Source: Prepared: 12/07/2020 0.07 20 Batch 01.04017 - EPA 30508 Biank (01.04017 - BLK1) Prepared: 12/04/2020 11:30 Analyzed: 12/07/2020 11:30 RPD Limit Notes. Isaak Result Flag POL Units Spike Source %REC Minits RPD Limit Notes. Blank (01.04017 - BLK1) Prepared: 12/04/2020 11:30 Analyzed: 12/07/2020 11:30 RPD Limit Notes. seric 0.192 U 1.00 mg/kg wet Spike Source %GREC MRED Limits RPD Limit Notes. seric 0.132 U 0.500 mg/kg wet Spike	Analyte	<u>Result</u>	Flag	PQL	<u>Units</u>	Level	Result	%REC	Limits	RPD	<u>Limit</u>	Notes
Matrix Spike Dup (0L04013-MSD1) Prepared: 12/04/2020 15:17 Analyzed: 12/07/2020 09:37 Source: CD10175-01 Spike Source %REC RPD Analyte Result Flaq POL Units Level Result %REC Imits RPD Batch 0L04017 - EPA 3050B 0.625 0.0100 mg/kg dry 0.619 0.00390 U 101 80-120 0.07 20 Batch 0L04017 - EPA 3050B Prepared: 12/04/2020 11:30 Analyzed: 12/07/2020 11:44 Analyte Result Flaq POL Units Level Source %REC MRES RPD Limit Notes. rsenic 0.192 U 1.00 mg/kg wet Spike Source %REC Limits RPD Limit Notes. admium 0.0620 U 0.100 mg/kg wet	fercury	0.625		0.0100	mg/kg dry	0.619	0.00390 U	101	80-120			
Source: CD10175-01 Spike Source Cource Marke Result Flag POL Units Spike Source MeRC Limits RPD Limit Notes. lercury 0.625 0.0100 mg/kg dry 0.619 0.0390 U 101 80-120 0.07 20 Batch 0L04017 - EPA 3050B Prepared: 12/04/2020 11:30 Analyzet 12/07/2020 11:44 Analyte Result Flag POL Units Spike Source %REC MeRC Limits RPD Limit Notes. standyte Result Flag POL Units Level Result %REC Limits RPD Limits Notes. standyte 0.192 U 1.00 mg/kg wet Level Result %REC Limits RPD Limits Notes. admium 0.0620 U 0.100 mg/kg wet - - - - - - -	Matrix Spike Dup (0L04013-MSI	01)				Prepar	red: 12/04/2020	0 15:17 Anal	yzed: 12/07/	2020 09:37		
Nahrte Result Flaq POL Units Level Result %REC RPD Limits RPD Lercury 0.625 0.0100 mg/kg dry 0.619 0.0030 U 101 80-120 0.07 20 Batch 0L04017 - EPA 30508 Prepared: 12/04/2020 11:30 Analyzed: 12/07/2020 11:44 Spike Source Result %REC %REC RPD Limit Notes Analyte Result Flaq POL Units Level Result %REC Limits RPD Limits Notes Analyte Result Flaq POL Units Level Result %REC Limits RPD Limits Notes andute 0.0920 U 1.00 mg/kg wet 20 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0.00 0.00 <td>Source: CD10175-01</td> <td></td>	Source: CD10175-01											
Intercury 0.625 0.0100 mg/kg dry 0.619 0.00390 U 101 80-120 0.07 20 Batch 0L04017 - EPA 3050B Prepared: 12/04/2020 11:30 Analyzed: 12/07/2020 11:44 Maakte Result Flag POL Units Spike Source %REC Umits RPD Limit Notes. Analyte 0.0930 0 1.00 mg/kg wet Spike Source %REC Limits RPD Limit Notes. Analyte 0.9330 U 1.00 mg/kg wet QB-01, QB-01 Aminum 0.0620 U 0.100 mg/kg wet QB-01, QB-01 admium 0.0620 U 0.500 mg/kg wet ead 0.320 J 0.500 mg/kg wet LtCS (0L04017-BS1) 0.135 U 0.500 mg/kg wet	Analyte	Result	Flag	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0L04017 - EPA 3050B Blank (0L04017 - BLK1) Prepared: 12/04/2020 11:30 Analyzed: 12/07/2020 11:44 Analyte Result Flaq POL Units Spike Source % REC Limits RPD Limit Notes analyte 0.192 U 1.00 mg/kg wet	fercury	0.625		0.0100	mg/kg dry	0.619	0.00390 U	101	80-120	0.07	20	
Blank (0L04017-BLK1) Prepared: 12/04/2020 11:30 Analyzed: 12/07/2020 11:44 Analyte Result Flaq POL Units Spike Level Source Result %REC Limits RPD Limit Notes. srsenic 0.192 U 1.00 mg/kg wet %REC Limits RPD Limit Notes. admium 0.0930 U 1.00 mg/kg wet QB-01, QB-0 hromium 0.0840 U 0.500 mg/kg wet J-01, QB-0 ead 0.320 J 0.500 mg/kg wet J-01, QB-0 ilver 0.135 U 0.500 mg/kg wet J-01, QB-0 ilver 0.135 U 0.500 mg/kg wet J-01, QB-0 LCS (0L04017-BS1) Prepared: 12/04/2020 11:30 Analyzed: 12/07/2020 11:56 Make Result Flaq POL Units Spike Source %REC Limits RPD Limit Notes rs	Batch 0L04017 - EPA 3050B											
Analyte Result Flag POL Units Spike Level Source Result %REC MREC MREC RPD Limit Notes risenic 0.192 U 1.00 mg/kg wet Notes Notes Notes Notes Notes	Blank (0L04017-BLK1)					Prepar	red: 12/04/2020	0 11:30 Anal	yzed: 12/07/	2020 11:44		
Analyte Result Flaq POL Units Level Result % REC KPD Limits Notes. rsenic 0.192 U 1.00 mg/kg wet Level Result % REC Limits RPD Limits Notes. arium 0.0930 U 1.00 mg/kg wet V QB-01, QB-01 admium 0.0620 U 0.100 mg/kg wet V QB-01, QB-01 hromium 0.0840 U 0.500 mg/kg wet V J-01, QB-01 ead 0.320 J 0.500 mg/kg wet V J-01, QB-01 elenium 0.411 U 2.00 mg/kg wet V J-01, QB-01 LCS (0L04017-BS1) V 0.500 mg/kg wet I2/04/2020 11:30 Analyzed: 12/07/2020 11:50 J-01, QB-01 Analyte Result Flaq POL Units Spike Source YeREC Limits RPD Limit Notes. rsenic 26.1						a "						
rsenic 0.192 U 1.00 mg/kg wet arium 0.0930 U 1.00 mg/kg wet QB-01, Q	Analyte	<u>Result</u>	<u>Flag</u>	PQL	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	Limit	Notes
arium 0.0930 U 1.00 mg/kg wet QB-01,	Arsenic	0.192	U	1.00	mg/kg wet							
admium 0.0620 U 0.100 mg/kg wet QB-01, QB-01, QB-01 hromium 0.0840 U 0.500 mg/kg wet J-01, QB-01 ead 0.320 J 0.500 mg/kg wet J-01, QB-01 elenium 0.411 U 2.00 mg/kg wet J-01, QB-01 ilver 0.135 U 0.500 mg/kg wet J-01, QB-01 LCS (0L04017-BS1) Prepared: 12/04/2020 11:30 Analyzed: 12/07/2020 11:56 Prepared: 12/04/2020 11:30 Analyzed: 12/07/2020 11:56 Malyte Nalyte Result Flag POL Units Spike Source %REC Limits RPD Limit Notes rsenic 26.1 1.00 mg/kg wet 25.5 102 80-120 arium 25.6 1.00 mg/kg wet 25.6 100 80-120 admium 2.50 0.100 mg/kg wet 2.5.5 100 80-120 hromium 25.4 0.500 mg/kg wet 25.5 100 80-120	Barium	0.0930	U	1.00	mg/kg wet							
hromium 0.0840 U 0.500 mg/kg wet ead 0.320 J 0.500 mg/kg wet J-01, QB-0. elenium 0.411 U 2.00 mg/kg wet J-01, QB-0. ilver 0.135 U 0.500 mg/kg wet Prepared: 12/04/2020 11:30 Analyzed: 12/07/2020 11:56 J-01, QB-0. LCS (0L04017-BS1) Prepared: 12/04/2020 11:30 Analyzed: 12/07/2020 11:56 Prepared: 12/04/2020 11:30 Analyzed: 12/07/2020 11:56 RPD Limit Notes. senic 26.1 1.00 mg/kg wet 25.5 102 80-120 admium 2.50 0.100 mg/kg wet 2.54 98 80-120 bromium 25.4 0.500 mg/kg wet 2.55 100 80-120	Cadmium	0.0620	U	0.100	mg/kg wet							QB-01, QB-02
ead 0.320 J 0.500 mg/kg wet J-01, QB-0. elenium 0.411 U 2.00 mg/kg wet J-01, QB-0. ilver 0.135 U 0.500 mg/kg wet Prepared: 12/04/2020 11:30 Analyzed: 12/07/2020 11:56 Analyte Result Flag POL Units Spike Source %REC RPD Limit Notes. rsenic 26.1 1.00 mg/kg wet 25.5 102 80-120 Notes. arium 25.6 1.00 mg/kg wet 25.6 100 80-120 hromium 2.54 0.500 mg/kg wet 2.54 98 80-120 FINAL This ment rolates callets and to the laterates and many interaction in the laterates and many in the laterates and many interaction in the laterates and many	Chromium	0.0840	U	0.500	mg/kg wet							
elenium 0.411 U 2.00 mg/kg wet ilver 0.135 U 0.500 mg/kg wet LCS (0L04017-BS1) Prepared: 12/04/2020 11:30 Analyzed: 12/07/2020 11:56 Analyte Result Flaq POL Units Level Result %REC Limits RPD Analyte 26.1 1.00 mg/kg wet 25.5 102 80-120 arium 25.6 1.00 mg/kg wet 25.6 100 80-120 admium 2.50 0.100 mg/kg wet 25.5 100 80-120 hromium 25.4 0.500 mg/kg wet 25.5 100 80-120	ead	0.320	J	0.500	mg/kg wet							J-01, QB-01,
Inver 0.135 0 0.500 mg/kg wet LCS (0L04017-BS1) Prepared: 12/04/2020 11:30 Analyzed: 12/07/2020 11:56 Analyte Result Flaq POL Units Level Result %REC Limits RPD Analyte Spike Source %REC Limits RPD Limit Notes rsenic 26.1 1.00 mg/kg wet 25.5 102 80-120 arium 25.6 1.00 mg/kg wet 25.6 100 80-120 admium 2.50 0.100 mg/kg wet 2.5.5 100 80-120 hromium 25.4 0.500 mg/kg wet 25.5 100 80-120	Selenium	0.411	U	2.00	mg/kg wet							
Spike Source %REC RPD Analyte Result Flaq POL Units Level %REC Limits RPD Analyte 26.1 1.00 mg/kg wet 25.5 102 80-120 arium 25.6 1.00 mg/kg wet 25.6 100 80-120 admium 2.50 0.100 mg/kg wet 25.5 100 80-120	Silver	0.135	U	0.500	mg/kg wet	Droppr	rody 12/04/2020	0 11,20 Apol	wande 12/07/	2020 11-56		
AnalyteResultFlaqPOLUnitsSpike LevelSource Result%RECMRECRPDLimitsNotesrsenic26.11.00mg/kg wet25.510280-120arium25.61.00mg/kg wet25.610080-120admium2.500.100mg/kg wet2.549880-120hromium25.40.500mg/kg wet25.510080-120	LCS (0L04017-BS1)					Prepar	eu: 12/04/2020	0 11:50 Anai	yzeu: 12/07/	2020 11:56		
Instruct	Analyte	Recult	Flag	POI	Units	Spike	Source	%PFC	%REC	B BU	RPD Limit	Notes
arium 25.6 1.00 mg/rg wet 25.6 100 80-120 admium 2.50 0.100 mg/kg wet 2.54 98 80-120 hromium 25.4 0.500 mg/kg wet 25.5 100 80-120	Arsenic	26 1	<u>ay</u>	1 00	ma/ka wet	25 5	<u>kesult</u>	102	80-120	Ν٣υ		notes
Line Line <thlin< th=""> <thline< th=""> Line Li</thline<></thlin<>	Barium	20.1		1.00	ma/ka wet	25.5		102	80-120			
Intermitian 25.4 0.500 mg/rg/ret 25.5 100 80-120 ETNAL This report relates only to the same and the test of the same field in the laboration and the fill Do mg/rg/ret Do mg/rg/ret	Cadmium	2.50		0.100	mg/ka wet	2.54		98	80-120			
ETNAL This report relates only to the same a sector due to be seen due to full $P_{\rm eff} = 0.560$	Chromium	25.4		0.500	mg/kg wet	25.5		100	80-120			
	FTNIAL	This				- Island -			6 .11			an C -1 C

This report relates only to the sample as received by the laboratory, and may only be reproduced in full.

QUALITY CONTROL DATA

Metals by EPA 6000/7000 Series Methods - Quality Control

Batch 0L04017 - EPA 3050B - Continued

LCS (0L04017-BS1) Continued					Prepar	ed: 12/04/202	0 11:30 Anal	yzed: 12/07/	2020 11:56		
Analyte	<u>Result</u>	Flag	POL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Lead	24.6	В	0.500	mg/kg wet	25.5		97	80-120			
Selenium	25.2		2.00	mg/kg wet	25.5		99	80-120			
Silver	4.34		0.500	mg/kg wet	4.38		99	80-120			
Matrix Spike (0L04017-MS1)					Prepar	ed: 12/04/202	0 11:30 Anal	yzed: 12/07/	2020 12:01		
Source: AD08093-01											
Analyte	<u>Result</u>	<u>Flaq</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
Arsenic	26.3		1.05	mg/kg dry	26.0	0.768	99	75-125			
Barium	28.3		1.05	mg/kg dry	26.0	1.34	104	75-125			
Cadmium	2.56		0.105	mg/kg dry	2.58	0.0650 U	99	75-125			
Chromium	28.1		0.524	mg/kg dry	26.0	1.95	101	75-125			
Lead	26.5	В	0.524	mg/kg dry	26.0	0.934	98	75-125			
Selenium	24.3		2.10	mg/kg dry	26.0	0.431 U	94	75-125			
Silver	4.36		0.524	mg/kg dry	4.46	0.142 U	98	75-125			
Matrix Spike Dup (0L04017-MSD	91)				Prepar	ed: 12/04/202	0 11:30 Anal	yzed: 12/07/	2020 12:04		
Source: AD08093-01											
Analyte	<u>Result</u>	<u>Flaq</u>	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Arsenic	25.7		1.05	mg/kg dry	25.4	0.768	98	75-125	3	20	
Barium	27.6		1.05	mg/kg dry	25.5	1.34	103	75-125	3	20	
Cadmium	2.49		0.105	mg/kg dry	2.53	0.0650 U	98	75-125	3	20	
Chromium	27.5		0.524	mg/kg dry	25.4	1.95	100	75-125	2	20	
Lead	25.8	В	0.524	mg/kg dry	25.4	0.934	98	75-125	3	20	
Selenium	23.9		2.10	mg/kg dry	25.4	0.431 U	94	75-125	2	20	
Silver	4.22		0.524	mg/kg dry	4.37	0.142 U	97	75-125	3	20	

FLAGS/NOTES AND DEFINITIONS

- **B** The analyte was detected in the associated method blank.
- **D** The sample was analyzed at dilution.
- **J** The reported value is between the laboratory method detection limit (MDL) and the laboratory method reporting limit (MRL), adjusted for actual sample preparation data and moisture content, where applicable.
- **U** The analyte was analyzed for but not detected to the level shown, adjusted for actual sample preparation data and moisture content, where applicable.
- **E** The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an estimate.
- **MRL** Method Reporting Limit. The MRL is roughly equivalent to the practical quantitation limit (PQL) and is based on the low point of the calibration curve, when applicable, sample preparation factor, dilution factor, and, in the case of soil samples, moisture content.
- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
- **N** The analysis indicates the presence of an analyte for which there is presumptive evidence (85% or greater confidence) to make a "tentative identification".
- **P** Greater than 25% concentration difference was observed between the primary and secondary GC column. The lower concentration is reported.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.
- **J-01** Result may be biased high due to positive results in the associated method blank at a concentration above the MDL and/or greater than one-half the MRL.
- **Q-02** Sample received outside of method specified holding time.
- **QB-01** The method blank had a positive result for the analyte; however, the concentration in the method blank is less than 10% of the sample result. There is minimal impact to the data.
- **QB-02** The method blank contains analyte at a concentration above the MDL and/or greater than one-half the MRL. The analyte was not detected in the sample.

DeterTime 7/17/20 Date/Time 7/17/20 Date/Time	25			1	sipt	Semps on Rece	Cooler #'s		Amr 1-1	
Date/Time 7/17/24 Date/Time 7/17/24	Received By	Date/Time			2	ed By	Relinquish		14 report	lea
Date/Time 7/17/2/	Received By	Date/Time				ed By	Relinquish		cial Reporting Requirements	Compents/Sp
Data	1230 TJD	7/17/2020			Y	1 Start	2	620	paren by	E
	Iners	# of Contai	< Tota			ad By	Belinnuich	DataTime	nerod Bu	Sample Kit Dro
										\$
				2 -					· ·	
			0.	-		11				- Winnes
								1		
						i imi i		1		
				2						
				N N I S			1 1 1			
						-				
		X	×	2	SOLID	6	1703	1-15-2020	EA Ash	2
Sample Cor				Total # of Containers	Matrix (see codes)	Comp / Grab	Collection	Collection Date	Sample ID (Field Identification)	Item #
as necessary)	servation (See Codes) (Combine	Pre								
Lab Workorder		TCL	1311 TC Ba,TCLF		/Est	ime Zone	Mark		AN Name	Sampler(s) Sig
Due_/_		PH	LP EXT		-	Young	Laura	2	avis Martinez	- T
Expe		3	Metals P Cr.7			Kirkman	Rache		852-4903	(336
			TCLP CLP P			IOF	Reporting Conta		Fax	Tel
X stop			AG,TCLP 5,TCLP 8	auon	TIGI QUICITZ	0	PO # / Billing Inf			Ċity/ST/Zip
Note : Rush reque			As,TCI			esc	Project Name/D			Address
Time			,p			511.100	20137	andfill (WA058)	invironmental - Taylor Cty La	GFL
Requested Ti	Requested Analyses		*				Project Number			Client Name

.

,

CD10175 **ENCO** Cary

Sample Receipt Conditions

Lab Project Mgr:Amanda L. GainesProject Number:20137511.100					
Invoice To:					
GFL Environmental - Taylor Cty Landfill (WA058)					
Laura Young					
208 Southern States Road					
Mauk, GA 31058					
Phone :(478) 862-2504					
Fax:					
Date Received: 17-Jul-20 13:53					
Date Logged In: 17-Jul-20 14:42					
der Comments:					
r					

C-3 received at 2.7°C

Containers Intact Custody Seals Intact Containers Properly Preserved

Y Temperature Corrected Y

Y

Volatile Containers Preserved

Ν

Y Proper Containers Received Volatile Containers Headspace Free

All Samples in PreLog Received Y Ν

- Aqueous Samples Checked for Residual Cl
- Ν

Y

COC/Labels Agree Received On Ice

Y

Y

Page 1 of 1

102-A Woodwinds Industrial Court Cary NC, 27511 Phone: 919.467.3090 FAX: 919.467.3515

Thursday, December 3, 2020 GFL Environmental - Taylor Cty Landfill (WA058) Attn: Rachel Kirkman 5B Oak Branch Drive Greensboro, NC 27407

RE: Laboratory Results for Project Number: [none], Project Name/Desc: Taylor Co TCLP ENCO Workorder(s): CD19328

Dear Rachel Kirkman,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Thursday, November 19, 2020.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Cary. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

Sincerely,

manda h. Dains

Amanda L. Gaines Project Manager Enclosure(s)

PROJECT NARRATIVE

Date:December 3, 2020Client:GFL Environmental - Taylor Cty Landfill (WA058)Project:Taylor Co TCLPLab ID:CD19328

Overview

Environmental Conservation Laboratories, Inc. (ENCO) analyzed all submitted samples in accordance with the methods referenced in the laboratory report. Any particular difficulties encountered during sample handling by ENCO are discussed in the QC Remarks section below.

Quality Control Samples

No Comments

Quality Control Remarks

No Comments

Other Comments

All samples received under this work order arrived in acceptable conditions. The samples were not checked for chlorine, as it is not required. No aqueous volatile samples were received, negating the need to check for preservation or headspace.

The analytical data presented in this report are consistent with the methods as referenced in the analytical report. Any exceptions or deviations are noted in the QC remarks section of this narrative or in the Flags/Notes and Definitions section of the report.

Released By: Environmental Conservation Laboratories, Inc.

Amanda Gaines Project Manager

SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: POND 1		Lab ID: (CD19328-01	Sampled: 11/17/	20 08:15	Received: 11/19/20 13:20
Parameter	Preparation	Hold Date/Tim	<u>ie(s)</u>	Prep Date	/Time(s)	<u>Analysis Date/Time(s)</u>
EPA 6010D	EPA 3050B	05/16/21		11/23/20	08:04	11/24/20 13:01
EPA 6010D	EPA 3010A	05/16/21	05/29/21	11/30/20	15:45	12/01/20 10:51
EPA 7470A	EPA 7470A	12/15/20		11/30/20	09:09	12/02/20 11:19
EPA 7471B	EPA 7471B	12/15/20		12/01/20	14:42	12/03/20 13:45
Client ID: Crushed	Concrete	Lab ID: (CD19328-02	Sampled: 11/17/	20 08:30	Received: 11/19/20 13:20
Parameter .	Preparation	Hold Date/Tim	ie(s)	Prep Date	/Time(s)	Analysis Date/Time(s)
EPA 6010D	EPA 3050B	05/16/21		11/23/20	08:04	11/24/20 13:19
EPA 6010D	EPA 3010A	05/16/21	05/29/21	11/30/20	15:45	12/01/20 11:13
EPA 7470A	EPA 7470A	12/15/20		11/30/20	09:09	12/02/20 11:21
EPA 7471B	EPA 7471B	12/15/20		12/01/20	14:42	12/03/20 13:48
Client ID: Road By	Sumps	Lab ID: (CD19328-03	Sampled: 11/17/	20 09:00	Received: 11/19/20 13:20
Parameter	Preparation	Hold Date/Tim	<u>ie(s)</u>	Prep Date	/Time(s)	Analysis Date/Time(s)
EPA 6010D	EPA 3050B	05/16/21		11/23/20	08:04	11/24/20 13:22
EPA 6010D	EPA 3010A	05/16/21	05/29/21	11/30/20	15:45	12/01/20 11:16
EPA 7470A	EPA 7470A	12/15/20		11/30/20	09:09	12/02/20 11:23
EPA 7471B	EPA 7471B	12/15/20		12/01/20	14:42	12/03/20 13:50
Client ID: Borrow	Area	Lab ID: (CD19328-04	Sampled: 11/17/	20 14:30	Received: 11/19/20 13:20
<u>Parameter</u>	Preparation	Hold Date/Tim	<u>ie(s)</u>	Prep Date	/Time(s)	<u>Analysis Date/Time(s)</u>
EPA 6010D	EPA 3050B	05/16/21		11/23/20	08:04	11/24/20 13:24
EPA 6010D	EPA 3010A	05/16/21	05/29/21	11/30/20	15:45	12/01/20 11:18
	554 74704	42/45/20		11/20/20	00.00	12/02/20 11.20
EPA 7470A	EPA /4/0A	12/15/20		11/30/20	09.09	12/02/20 11:20

SAMPLE DETECTION SUMMARY

Client ID: POND 1			Lab ID: CD1	19328-01			
Analyte	<u>Results</u>	<u>Flag</u>	MDL	<u>PQL</u>	<u>Units</u>	Method	Notes
Barium - Total	1.57		0.109	0.543	mg/kg dry	EPA 6010D	
Barium - TCLP	0.127	J	0.0550	0.500	mg/L	EPA 6010D	
Cadmium - Total	0.0322	J	0.0104	0.0543	mg/kg dry	EPA 6010D	
Chromium - Total	8.60		0.109	0.543	mg/kg dry	EPA 6010D	
Lead - Total	2.02		0.130	0.543	mg/kg dry	EPA 6010D	
Client ID: Crushed Concrete			Lab ID: CD1	19328-02			
Analyte	<u>Results</u>	<u>Flag</u>	MDL	<u>PQL</u>	<u>Units</u>	Method	<u>Notes</u>
Barium - Total	192		0.111	0.555	mg/kg dry	EPA 6010D	
Barium - TCLP	1.04		0.0550	0.500	mg/L	EPA 6010D	
Chromium - Total	13.5		0.111	0.555	mg/kg dry	EPA 6010D	
Chromium - TCLP	0.151	J	0.0700	0.500	mg/L	EPA 6010D	
Lead - Total	3.23		0.133	0.555	mg/kg dry	EPA 6010D	
Client ID: Road By Sumps			Lab ID: CD1	19328-03			
Analyte	<u>Results</u>	Flag	MDL	<u>PQL</u>	<u>Units</u>	Method	Notes
Arsenic - Total	0.904		0.330	0.516	mg/kg dry	EPA 6010D	
Barium - Total	7.20		0.103	0.516	mg/kg dry	EPA 6010D	
Barium - TCLP	0.160	J	0.0550	0.500	mg/L	EPA 6010D	
Cadmium - Total	0.146		0.00990	0.0516	mg/kg dry	EPA 6010D	
Chromium - Total	16.8		0.103	0.516	mg/kg dry	EPA 6010D	
Lead - Total	4.89		0.124	0.516	mg/kg dry	EPA 6010D	
Client ID: Borrow Area			Lab ID: CD1	19328-04			
Analyte	Results	Flag	MDL	PQL	Units	Method	Notes
Barium - Total	6.35		0.110	0.550	mg/kg dry	EPA 6010D	
		-	0.0550	0 500	ma/l		
Barium - TCLP	0.104	J	0.0550	0.500	IIIg/L	EPA 6010D	
Barium - TCLP Chromium - Total	0.104 13.4	J	0.0550	0.550	mg/kg dry	EPA 6010D EPA 6010D	

			ANALYTI		RESULT	S					
Description: POND 1			Lal	b Sam	ple ID:C	D19328-0)1		Received: 11/	/19/20 1	3:20
Matrix: Soil				Sa	mpled: 1	1/17/20 0)8·15		Work Order: CD	19328	
Project: Taylor Co TCLP				Samp	led Bv: N	licolas Tei	ieda		% Solids: 92	2.09	
Metals by EPA 6000/7000 S	Series Meth	ods									
^ - ENCO Cary certified analyte [NELAC E8	7610]									_	
Analyte [CAS Number]	Results	<u>Flag</u>	Units	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	Batch	Method	Analyzed	<u>By</u>	Notes
Arsenic [/440-38-2]^	0.347	U	mg/kg dry	1	0.34/	0.543	0K23008	EPA 6010D	11/24/20 13:01	JDH	
Barium [7440-39-3]^	1.57	-	mg/kg dry	1	0.109	0.543	0K23008	EPA 6010D	11/24/20 13:01	JDH	
Cadmium [7440-43-9]^	0.0322	J	mg/kg dry	1	0.0104	0.0543	0K23008	EPA 6010D	11/24/20 13:01	JDH	
Chromium [7440-47-3]^	8.60		mg/kg dry	1	0.109	0.543	0K23008	EPA 6010D	11/24/20 13:01	JDH	
Lead [7439-92-1]^	2.02		mg/kg dry	1	0.130	0.543	0K23008	EPA 6010D	11/24/20 13:01	JDH	
Mercury [7439-97-6]*	0.0500	U	mg/kg dry	1	0.0500	0.06/0	0L01023	EPA /4/1B	12/03/20 13:45	KAH	
Selenium [7/82-49-2]^	0.445	U	mg/kg dry	1	0.445	0.543	0K23008	EPA 6010D	11/24/20 13:01	JDH	
Silver [7440-22-4]^	0.109	U	mg/kg dry	1	0.109	0.543	0K23008	EPA 6010D	11/24/20 13:01	JDH	
TCLP Metals by 6000/7000	Series Met	hods									
^ - ENCO Cary certified analyte [NELAC E8. Analyte [CAS Number]	7610] Boculto	Flag	Unite	DE	мрі	POI	Batch	Mothod	Analyzod	Bv	Notoc
Arconic [7440.29.2]	0.290		<u>onits</u>	1	0.290	0 500			<u>Allalyzeu</u>	<u>סע</u> ווסנ	Notes
Arsenic [7440-38-2]	0.380	0	mg/L	1	0.380	0.500	0K30025	EPA 6010D	12/01/20 10:51	JDH	
Barium [7440-39-3]	0.127		mg/L	1	0.0550	0.500	0K30025	EPA 6010D	12/01/20 10:51	JDH	
	0.0180	0	mg/L	1	0.0180	0.0500	0K30025	EPA 6010D	12/01/20 10:51	JDH	
Chromium [7440-47-3]	0.0700	0	mg/L	1	0.0700	0.500	0K30025	EPA 6010D	12/01/20 10:51	JDH	
Lead [/439-92-1]	0.155	0	mg/L	1	0.155	0.500	0K30025	EPA 6010D	12/01/20 10:51	JDH	
Mercury [7439-97-6]^	0.00300	0	mg/L	1	0.00300	0.00400	0K30011	EPA 7470A	12/02/20 11:19	KAH	
Selenium [7782-49-2]	0.310	0	mg/L	1	0.310	0.500	0K30025	EPA 6010D	12/01/20 10:51	JDH	
	0.0950	U	mg/L	1	0.0950	0.500	UK30025	EPA 6010D	12/01/20 10:51	JDH	
Description: Crushed Concrete			Lal	b Sam	ple ID:C	D19328-0)2		Received: 11	/19/20 1	3:20
Matrix: Soil				Sa	mpled: 1	1/17/20 0	08:30		Work Order: CD	19328	
Project: Taylor Co TCLP				Samp	led By: N	licolas Tej	jeda		% Solids: 90	.13	
Metals by EPA 6000/7000 S	Series Meth	ods									
^ - ENCO Cary certified analyte [NELAC E8.	7610]										
Analyte [CAS Number]	Results	Flag	Units	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes
 Arsenic [7440-38-2]^	0.355	U	mg/kg dry	1	0.355	0.555	0K23008	EPA 6010D	11/24/20 13:19	JDH	
Barium [7440-39-3]^	192		mg/kg dry	1	0.111	0.555	0K23008	EPA 6010D	11/24/20 13:19	JDH	
- Cadmium [7440-43-9]^	0.0107	U	mg/kg dry	1	0.0107	0.0555	0K23008	EPA 6010D	11/24/20 13:19	JDH	
Chromium [7440-47-3]^	13.5		mg/kg dry	1	0.111	0.555	0K23008	EPA 6010D	11/24/20 13:19	JDH	
Lead [7439-92-1]^	3.23		mg/kg dry	1	0.133	0.555	0K23008	EPA 6010D	11/24/20 13:19	JDH	
 Mercury [7439-97-6]^	0.0510	U	mg/kg dry	1	0.0510	0.0685	0L01023	EPA 7471B	12/03/20 13:48	KAH	
Selenium [7782-49-2]^	0.455	U	mg/kg dry	1	0.455	0.555	0K23008	EPA 6010D	11/24/20 13:19	JDH	
Silver [7440-22-4]^	0.111	U	mg/kg dry	1	0.111	0.555	0K23008	EPA 6010D	11/24/20 13:19	JDH	
TCLP Metals by 6000/7000	Series Met	hods									
^ - ENCO Cary certified analyte [NELAC E8.	7610]	liteut									
Analyte [CAS Number]	Results	Flag	Units	DF	MDL	POL	Batch	Method	Analyzed	By	Notes
Arsenic [7440-38-2]	0.380	U	mg/L	1	0.380	0.500	0K30025	EPA 6010D	12/01/20 11:13	JDH	
Barium [7440-39-3]	1.04		mg/L	1	0.0550	0.500	0K30025	EPA 6010D	12/01/20 11:13	JDH	
	0.0180	U	mg/L	1	0.0180	0.0500	0K30025	EPA 6010D	12/01/20 11:13	JDH	
Chromium [7440-47-3]	0.151	J	mg/L	1	0.0700	0.500	0K30025	EPA 6010D	12/01/20 11:13	JDH	
Lead [7439-92-1]	0.155	U	mg/L	1	0.155	0.500	0K30025	EPA 6010D	12/01/20 11:13	JDH	
Mercury [7439-97-6]^	0.00300	U	mg/L	1	0.00300	0.00400	0K30011	EPA 7470A	12/02/20 11:21	KAH	
Selenium [7782-49-2]	0.310	U	mg/L	1	0.310	0.500	0K30025	EPA 6010D	12/01/20 11:13	JDH	
Silver [7440-22-4]	0.0950	U	mg/L	1	0.0950	0.500	0K30025	EPA 6010D	12/01/20 11:13	JDH	

This report relates only to the sample as received by the laboratory, and may only be reproduced in full.

FINAL

Page 5 of 12

ANALYTICAL R	RESULTS
--------------	---------

Description:	Road	By	Sumps
--------------	------	----	-------

Project: Taylor Co TCLP

Matrix: Soil

Lab Sample ID: CD19328-03

Sampled: 11/17/20 09:00

Sampled By: Nicolas Tejeda

Received: 11/19/20 13:20 Work Order: CD19328

% Solids: 96.94

Metals by EPA 6000/7000 Series Methods

^ - ENCO Cary certified analyte [NELAC_E876.	10]										
Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	<u>Notes</u>
Arsenic [7440-38-2]^	0.904		mg/kg dry	1	0.330	0.516	0K23008	EPA 6010D	11/24/20 13:22	JDH	
Barium [7440-39-3]^	7.20		mg/kg dry	1	0.103	0.516	0K23008	EPA 6010D	11/24/20 13:22	JDH	
Cadmium [7440-43-9]^	0.146		mg/kg dry	1	0.00990	0.0516	0K23008	EPA 6010D	11/24/20 13:22	JDH	
Chromium [7440-47-3]^	16.8		mg/kg dry	1	0.103	0.516	0K23008	EPA 6010D	11/24/20 13:22	JDH	
Lead [7439-92-1]^	4.89		mg/kg dry	1	0.124	0.516	0K23008	EPA 6010D	11/24/20 13:22	JDH	
Mercury [7439-97-6]^	0.0475	U	mg/kg dry	1	0.0475	0.0637	0L01023	EPA 7471B	12/03/20 13:50	KAH	
Selenium [7782-49-2]^	0.423	U	mg/kg dry	1	0.423	0.516	0K23008	EPA 6010D	11/24/20 13:22	JDH	
Silver [7440-22-4]^	0.103	U	mg/kg dry	1	0.103	0.516	0K23008	EPA 6010D	11/24/20 13:22	JDH	

TCLP Metals by 6000/7000 Series Methods

^ - ENCO Cary certified analyte [NELAC E87610)]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	Notes
Arsenic [7440-38-2]	0.380	U	mg/L	1	0.380	0.500	0K30025	EPA 6010D	12/01/20 11:16	JDH	
Barium [7440-39-3]	0.160	J	mg/L	1	0.0550	0.500	0K30025	EPA 6010D	12/01/20 11:16	JDH	
Cadmium [7440-43-9]	0.0180	U	mg/L	1	0.0180	0.0500	0K30025	EPA 6010D	12/01/20 11:16	JDH	
Chromium [7440-47-3]	0.0700	U	mg/L	1	0.0700	0.500	0K30025	EPA 6010D	12/01/20 11:16	JDH	
Lead [7439-92-1]	0.155	U	mg/L	1	0.155	0.500	0K30025	EPA 6010D	12/01/20 11:16	JDH	
Mercury [7439-97-6]^	0.00300	U	mg/L	1	0.00300	0.00400	0K30011	EPA 7470A	12/02/20 11:23	KAH	
Selenium [7782-49-2]	0.310	U	mg/L	1	0.310	0.500	0K30025	EPA 6010D	12/01/20 11:16	JDH	
Silver [7440-22-4]	0.0950	U	mg/L	1	0.0950	0.500	0K30025	EPA 6010D	12/01/20 11:16	JDH	
Description: Borrow Area			La	ıb Sam	ple ID:C	.D19328-0	<i>J</i> 4		Received: 11/	/19/20 1	3:20
Matrix: Soil				Sa	mpled: 1	1/17/20 1	.4:30		Work Order: CD	19328	
Project: Taylor Co TCLP				Samp	led By:N	icolas Tej	eda		% Solids: 90	1.91	

Metals by EPA 6000/7000 Series Methods

Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	<u>Method</u>	Analyzed	By	Notes
0.352	U	mg/kg dry	1	0.352	0.550	0K23008	EPA 6010D	11/24/20 13:24	JDH	
6.35		mg/kg dry	1	0.110	0.550	0K23008	EPA 6010D	11/24/20 13:24	JDH	
0.0106	U	mg/kg dry	1	0.0106	0.0550	0K23008	EPA 6010D	11/24/20 13:24	JDH	
13.4		mg/kg dry	1	0.110	0.550	0K23008	EPA 6010D	11/24/20 13:24	JDH	
2.84		mg/kg dry	1	0.132	0.550	0K23008	EPA 6010D	11/24/20 13:24	JDH	
0.0506	U	mg/kg dry	1	0.0506	0.0679	0L01023	EPA 7471B	12/03/20 13:52	KAH	
0.451	U	mg/kg dry	1	0.451	0.550	0K23008	EPA 6010D	11/24/20 13:24	JDH	
0.110	U	mg/kg dry	1	0.110	0.550	0K23008	EPA 6010D	11/24/20 13:24	JDH	
	Results I 0.352 6.35 0.0106 13.4 2.84 0.0506 0.451 0.110	Results Flag 0.352 U 6.35 U 0.0106 U 13.4 U 2.84 U 0.0506 U 0.451 U	Flag Units 0.352 U mg/kg dry 6.35 mg/kg dry 0.0106 U mg/kg dry 13.4 mg/kg dry 0.0506 U mg/kg dry 0.451 U mg/kg dry 0.110 U mg/kg dry	Flag Units DF 0.352 U mg/kg dry 1 6.35 mg/kg dry 1 0.0106 U mg/kg dry 1 13.4 mg/kg dry 1 0.0506 U mg/kg dry 1 0.451 U mg/kg dry 1	Results Flag Units DF MDL 0.352 U mg/kg dry 1 0.352 6.35 mg/kg dry 1 0.110 0.0106 U mg/kg dry 1 0.0106 13.4 mg/kg dry 1 0.110 2.84 mg/kg dry 1 0.132 0.0506 U mg/kg dry 1 0.0506 0.451 U mg/kg dry 1 0.451 0.110 U mg/kg dry 1 0.110	Results Flag Units DF MDL PQL 0.352 U mg/kg dry 1 0.352 0.550 6.35 mg/kg dry 1 0.110 0.550 0.0106 U mg/kg dry 1 0.0106 0.0550 13.4 mg/kg dry 1 0.110 0.550 0.0506 U mg/kg dry 1 0.132 0.550 0.0506 U mg/kg dry 1 0.0506 0.0679 0.451 U mg/kg dry 1 0.451 0.550 0.110 U mg/kg dry 1 0.451 0.550	Results Flag Units DF MDL PQL Batch 0.352 U mg/kg dry 1 0.352 0.550 0K23008 6.35 mg/kg dry 1 0.110 0.550 0K23008 0.0106 U mg/kg dry 1 0.0106 0.0550 0K23008 13.4 mg/kg dry 1 0.110 0.550 0K23008 2.84 mg/kg dry 1 0.112 0.550 0K23008 0.0506 U mg/kg dry 1 0.132 0.550 0K23008 0.451 U mg/kg dry 1 0.0506 0K23008 0K23008 0.1500 U mg/kg dry 1 0.132 0.550 0K23008 0.451 U mg/kg dry 1 0.451 0.550 0K23008 0.1100 U mg/kg dry 1 0.451 0.550 0K23008	Results Flag Units DF MDL PQL Batch Method 0.352 U mg/kg dry 1 0.352 0.550 0K23008 EPA 6010D 6.35 mg/kg dry 1 0.110 0.550 0K23008 EPA 6010D 0.0106 U mg/kg dry 1 0.0106 0.0550 0K23008 EPA 6010D 13.4 mg/kg dry 1 0.0106 0.550 0K23008 EPA 6010D 2.84 mg/kg dry 1 0.112 0.550 0K23008 EPA 6010D 0.0506 U mg/kg dry 1 0.132 0.550 0K23008 EPA 6010D 0.0506 U mg/kg dry 1 0.0506 0.0679 0L01023 EPA 7471B 0.451 U mg/kg dry 1 0.451 0.550 0K23008 EPA 6010D 0.110 U mg/kg dry 1 0.451 0.550 0K23008 EPA 6010D	Kesults Flag Units DF MDL PQL Batch Method Analyzed 0.352 U mg/kg dry 1 0.352 0.550 0K23008 EPA 6010D 11/24/20 13:24 6.35 mg/kg dry 1 0.110 0.550 0K23008 EPA 6010D 11/24/20 13:24 0.0106 U mg/kg dry 1 0.0106 0.0550 0K23008 EPA 6010D 11/24/20 13:24 13.4 mg/kg dry 1 0.0106 0.550 0K23008 EPA 6010D 11/24/20 13:24 2.84 mg/kg dry 1 0.110 0.550 0K23008 EPA 6010D 11/24/20 13:24 0.0506 U mg/kg dry 1 0.132 0.550 0K23008 EPA 6010D 11/24/20 13:24 0.0506 U mg/kg dry 1 0.0506 0.0679 0L01023 EPA 7471B 12/03/20 13:52 0.451 U mg/kg dry 1 0.451 0.550 0K23008 EPA 6010D 11/24/	Kesults Flag Units DF MDL PQL Batch Method Analyzed By 0.352 U mg/kg dry 1 0.352 0.550 0K23008 EPA 6010D 11/24/20 13:24 JDH 6.35 mg/kg dry 1 0.110 0.550 0K23008 EPA 6010D 11/24/20 13:24 JDH 0.0106 U mg/kg dry 1 0.0106 0.0550 0K23008 EPA 6010D 11/24/20 13:24 JDH 0.0106 U mg/kg dry 1 0.0106 0.0550 0K23008 EPA 6010D 11/24/20 13:24 JDH 13.4 mg/kg dry 1 0.110 0.550 0K23008 EPA 6010D 11/24/20 13:24 JDH 2.84 mg/kg dry 1 0.132 0.550 0K23008 EPA 6010D 11/24/20 13:24 JDH 0.0506 U mg/kg dry 1 0.0506 0.0679 0L01023 EPA 7471B 12/03/20 13:52 KAH 0.451 U

TCLP Metals by 6000/7000 Series Methods

^ - ENCO Cary certified analyte [NELAC]	87610]										
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	By	<u>Notes</u>
Arsenic [7440-38-2]	0.380	U	mg/L	1	0.380	0.500	0K30025	EPA 6010D	12/01/20 11:18	JDH	
Barium [7440-39-3]	0.104	J	mg/L	1	0.0550	0.500	0K30025	EPA 6010D	12/01/20 11:18	JDH	
Cadmium [7440-43-9]	0.0180	U	mg/L	1	0.0180	0.0500	0K30025	EPA 6010D	12/01/20 11:18	JDH	
Chromium [7440-47-3]	0.0700	U	mg/L	1	0.0700	0.500	0K30025	EPA 6010D	12/01/20 11:18	JDH	
Lead [7439-92-1]	0.155	U	mg/L	1	0.155	0.500	0K30025	EPA 6010D	12/01/20 11:18	JDH	
Mercury [7439-97-6]^	0.00300	U	mg/L	1	0.00300	0.00400	0K30011	EPA 7470A	12/02/20 11:26	KAH	
Selenium [7782-49-2]	0.310	U	mg/L	1	0.310	0.500	0K30025	EPA 6010D	12/01/20 11:18	JDH	
Silver [7440-22-4]	0.0950	U	mg/L	1	0.0950	0.500	0K30025	EPA 6010D	12/01/20 11:18	JDH	
FINAL	This report relates o	nly to the s	ample as receiv	ved by the	e laboratory,	and may on	ly be reproduc	ed in full.	Pa	ade 6 d	of 12

Metals by EPA 6000/7000 Series Methods - Quality Control

Batch 0K23008 - EPA 3050B

AnalysResultFinePolUnitsSpikeSourceName <th>Blank (0K23008-BLK1)</th> <th></th> <th></th> <th></th> <th></th> <th>Prepar</th> <th>ed: 11/23/202</th> <th>0 08:04 Anal</th> <th>yzed: 11/24/</th> <th>2020 12:48</th> <th></th> <th></th>	Blank (0K23008-BLK1)					Prepar	ed: 11/23/202	0 08:04 Anal	yzed: 11/24/	2020 12:48		
Ababits Bacult File Poil Munits Lower Nerket Nerket Nerket RPD Limit Arsenic 0.203 U 0.405 mg/kg wet						Cuilco	Courses		0/ BEC		000	
Acamic0.200.00.0455 mg/kg wetmg/kg wetGamian0.09990.00.0455 mg/kg wetmg/kg wetLead0.01990.055mg/kg wetSelenian0.03730.00.455mg/kg wetSelenian0.03730.00.455mg/kg wetSher0.03730.00.455mg/kg wetSher0.03730.00.455mg/kg wetSher0.03730.00.455mg/kg wetSherCheckan0.050mg/kg wet10.311.0Aranic10.50.500mg/kg wet10.311.1Cadimian11.40.500mg/kg wet10.310.780-120Cadimian11.10.500mg/kg wet10.310.780-120Cadimian11.10.500mg/kg wet10.310.780-120Cadimian11.10.500mg/kg wet10.310.880-120SherSher1.120.500mg/kg wet10.310.780-120Cadimian11.10.500mg/kg wet10.310.880-12010.8SherSherSherSherSherSherSherSherSherSher11.10.500mg/kg wet10.310.880-12010.8SherSherSherSherSherSherSherSherSher11.50.500mg/kg wet10.310.775-125S	Analyte	Result	Flag	POL	<u>Units</u>	Level	Source <u>Result</u>	%REC	%REC Limits	RPD	Limit	Notes
Barniam0.008 0.008770.00.0455 0.0455 mg/kg wetset is the set is the	Arsenic	0.291	U	0.455	mg/kg wet							
Carmium0.00879U0.0455mg/hg wetCommum0.01990.00.455mg/hg wetCarmium0.237U0.455mg/hg wetSerie0.237U0.455mg/hg wetSilver0.0237U0.455mg/hg wetSilver0.237U0.455mg/hg wetSilver11/21/2020 16:04 Analyzes11/21/2020 12:11AnalyzeResultFilePOLUnitsSpileSource%erec%nitsRPORPDAnalyzeResultFilePOLUnitsSpileSource%erec%nitsRPORPDAnalyzeResultFilePOLUnitsSpileSource%erec%nitsRPORPDAnalyzeResultFilePOLUnitsSpileSource%erec%nitsRPORPDCommun11.11.00.900mg/hg wet10.31.0280-1201.012Chandia11.20.900mg/hg wet10.31.0280-1201.012Stere:11.20.900mg/hg wet10.31.0280-1201.012Chandia11.30.900mg/hg wet10.31.0280-1201.012Chandia11.50.900mg/hg wet10.40.42210.27.1251.01Stere:11.41.040.9400.440.4907.1251.121.01Stere:10.31mg/hg drv <td>Barium</td> <td>0.0909</td> <td>U</td> <td>0.455</td> <td>mg/kg wet</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Barium	0.0909	U	0.455	mg/kg wet							
Channam Open of Data	Cadmium	0.00873	U	0.0455	mg/kg wet							
tand 0.159 0 0.455 mg/kg wet Sdenkum 0.393 0 0.455 mg/kg wet Swer 0.0999 0 0.455 mg/kg wet LCS (0K23008-851) Prepared: IV24/2020 08:04 Analyzed: IV24/2020 12:01 89.88C 89.88C 89.88C 89.88C 89.88C 89.88C 89.88C 89.10 89.	Chromium	0.0909	U	0.455	mg/kg wet							
Salarian 0.373 (0.0) 0.455 (0.0) mg/kg wet Sther 0.000 0.000 0.000 mg/kg wet Pepared: 11/23/2020 08:04 Amilyzet: 11/24/2020 12:51 Analytic Result Filae POL Units Evel Level Splike Source 96.8EC Miles RPD RPD Arsenic 10.5 0.000 mg/kg wet 10.3 10.2 80-12.0 10.2 80-12.0 10.2 80-12.0 10.2 80-12.0 10.2 80-12.0 10.2 80-12.0 10.2 80-12.0 10.2 80-12.0 10.2 80-12.0 10.2 80-12.0 10.2 80-12.0 10.2 80-12.0 10.2 80-12.0 10.2 80-12.0 10.2 80-12.0 10.2 80-12.0 10.2 80-12.0 10.2 80-12.0 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 1	Lead	0.159	J	0.455	mg/kg wet							
Sher 0.090 U 0.450 mg/ng wet LCS (0K23208-BS1) Personal integration of the second	Selenium	0.373	U	0.455	mg/kg wet							
LCS (0K23008-851) Prepared: 11/23/2020 08:04 Analyzest: 11/24/2020 12:51 Analyte Result File POL Units Source NeefC Himits RPD Himit Analyte 10.5 0.500 mg/kg wet 10.3 10.2 60-120 Himits RPD Himit Analyte 10.3 10.3 10.2 80-120 Control Contro	Silver	0.0909	U	0.455	mg/kg wet							
Analyte Result Fia POL Units Spike level Source level Value bill Source bill Value bill Value bill PRE bill	LCS (0K23008-BS1)		-		5, 5	Prepar	ed: 11/23/202	0 08:04 Anal	vzed: 11/24/	2020 12:51		
AnalysicName FieldName Fie									-			
And realFouFouFouFouReaut	Analyta	Bogult	Flag	POL	Unito	Spike	Source		%REC		RPD	N
Arsenic 10.5 0.500 mg/kg wet 10.3 111 80-120 Cadmiun 1.05 0.0500 mg/kg wet 10.3 102 80-120 Cadmiun 1.05 0.0500 mg/kg wet 10.3 102 80-120 Cadmiun 1.1 0.500 mg/kg wet 10.3 102 80-120 Selenium 10.5 0.500 mg/kg wet 10.3 108 80-120 Selenium 10.5 0.500 mg/kg wet 10.3 109 80-120 Selenium 10.5 0.500 mg/kg wet 10.3 109 80-120 Selenium 10.2 0.500 mg/kg wet 10.3 109 80-120 11.4 Arsenic 9.85 0.543 mg/kg dry 10.4 0.347 94 75-125 11.4 Cadmiun 10.2 0.543 mg/kg dry 10.4 0.610 100 75-125 11.1 10.5 10.5 10.5 10.5 10.5 <td>Analyte</td> <td>Result</td> <td>riag</td> <td>PUL</td> <td>Units</td> <td>Level</td> <td><u>Result</u></td> <td>%REC</td> <td>Limits</td> <td>RPD</td> <td>Limit</td> <td>Notes</td>	Analyte	Result	riag	PUL	Units	Level	<u>Result</u>	%REC	Limits	RPD	Limit	Notes
Barlum 11.4 0.500 mg/kg wet 10.3 111 80-120 Cadmiun 11.1 0.500 mg/kg wet 10.3 102 80-120 Chronnium 11.1 0.500 mg/kg wet 10.3 1008 80-120 Eaded 11.1 0.500 mg/kg wet 10.3 1028 80-120 Selenium 10.2 0.500 mg/kg wet 10.3 109 80-120 Store: 11.2 0.500 mg/kg wet 10.3 109 80-120 Store: T12 0.500 mg/kg wet 10.3 109 80-120 Matrix Spike (0K23008-MS1) Tree Free Result Result<	Arsenic	10.5		0.500	mg/kg wet	10.3		102	80-120			
Cadmium1.050.0500mg/kg wet1.031.0780-120Coronnium11.10.500mg/kg wet10.31.0880-120Eden11.20.500mg/kg wet10.31.0280-120Selenium10.50.500mg/kg wet10.31.0280-120Implicit wet11.20.500mg/kg wet10.31.0280-120Matrix Spike (0K23008-MS1)11.20.500mg/kg wet10.31.0280-120Source:CD19328-01The second of the second of th	Barium	11.4		0.500	mg/kg wet	10.3		111	80-120			
Chronium 11.1 0.500 mg/kg wet 10.3 107 80-120 Lead 11.1 0.500 mg/kg wet 10.3 102 80-120 Ster 11.2 0.500 mg/kg wet 10.3 102 80-120 Matrix Spike (0K23008-MS1) 103 103 80-120 13:03 Source: C013328-01 Prepared Regul No.	Cadmium	1.05		0.0500	mg/kg wet	1.03		102	80-120			
Lead1.10.500mg/kg wet mg/kg wet 0.310.310880-120Selenium10.310280-12080-120Imatrix Spike (0K23008-MS1)Prepared: 11/23/2020 08:04 Analyzed: Source: C019328-01Prepared: 11/23/2020 08:04 Analyzed: New C11/24/2020 13:03AnalyteResultFlagPOL NGKUnits Mg/kg drySource: LevelSource: Result%ReCRPD Limits MRPDRPD Limits MRPDRPD MinitsRPD Limits MRPD <th< td=""><td>Chromium</td><td>11.1</td><td></td><td>0.500</td><td>mg/kg wet</td><td>10.3</td><td></td><td>107</td><td>80-120</td><td></td><td></td><td></td></th<>	Chromium	11.1		0.500	mg/kg wet	10.3		107	80-120			
Selenium 10.5 0.500 mg/kg wet 10.3 10.2 80-120 Matrix Spike (0K23008-MS1) 1.3 1.99 80-120 11/2 10.3 109 80-120 Source: CD19328-01 File Verta Spike Source: Nature Nature Netro Spike Source: Netro Netro <td>Lead</td> <td>11.1</td> <td></td> <td>0.500</td> <td>mg/kg wet</td> <td>10.3</td> <td></td> <td>108</td> <td>80-120</td> <td></td> <td></td> <td></td>	Lead	11.1		0.500	mg/kg wet	10.3		108	80-120			
Silver 11.2 0.500 mg/kg wet 10.3 109 80-120 Matrix Spike (0K23008-MS1) Prepared: 11/23/2020 08-04 Analyzed: 11/24/2020 13:03 Analyte Result Fila POL Units Spike Source: Cl193220-06 Vertex: 11/24/2020 13:03 RPD Limits RPD <thl< td=""><td>Selenium</td><td>10.5</td><td></td><td>0.500</td><td>mg/kg wet</td><td>10.3</td><td></td><td>102</td><td>80-120</td><td></td><td></td><td></td></thl<>	Selenium	10.5		0.500	mg/kg wet	10.3		102	80-120			
Matrix Spike (0K23008-M51) Prepared: 1/23/2020 US:04 Analyzed: 1/24/2020 13:03 Source: CD19328-01 Source: Source: Mesuit Feasult Feasult Source: Source: Mesuit Mesuit Source:	Silver	11.2		0.500	mg/kg wet	10.3		109	80-120			
Source: CD19328-01Spike ResultSpi	Matrix Spike (0K23008-MS1)					Prepar	ed: 11/23/202	0 08:04 Anal	yzed: 11/24/	2020 13:03		
AnalyteResultResultPOLUnitsSource%PRCImitsRPDImitsAnalyte9.850.543mg/kg dv0.440.3479475-125ImitsImit	Source: CD19328-01											
Arsenic 9.85 0.543 mg/kg dry 10.4 0.347 94 75-125 Barium 1.02 0.0543 mg/kg dry 1.04 0.0322 95 75-125 Cdmium 1.02 0.0543 mg/kg dry 1.04 0.0322 95 75-125 Chromium 1.64 0.543 mg/kg dry 1.04 8.60 75 75-125 Lead 1.2.6 0.543 mg/kg dry 10.4 0.019 80 75-125 Selenium 8.35 0.543 mg/kg dry 10.4 0.109 100 75-125 Silver 10.5 0.543 mg/kg dry 10.4 0.109 100 75-125 Silve Dup (0K23008-MSD-V 0.543 mg/kg dry 10.4 0.109 100 75-125 11 Silve Dup (0K23008-MSD-V Fag POL Units Kevel Result NG/kg dry 11.6 0.347 98 75-125 14 20 Arsenic 11.3 0.543 mg/kg dry 11.6 0.347 98 75-125 <td>Analyte</td> <td>Result</td> <td>Flag</td> <td>POL</td> <td><u>Units</u></td> <td>Spike Level</td> <td>Source Result</td> <td>%REC</td> <td>%REC <u>Limits</u></td> <td>RPD</td> <td>RPD <u>Limit</u></td> <td>Notes</td>	Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
And And Ang/kg dry 1.0.4 1.57 1.20 75-125 Cadmium 1.02 0.0543 mg/kg dry 1.04 0.0322 95 75-125 Chromium 16.4 0.543 mg/kg dry 10.4 8.60 75 75-125 Lead 12.6 0.543 mg/kg dry 10.4 2.02 102 75-125 Selenium 8.35 0.543 mg/kg dry 10.4 0.109 100 75-125 Selenium 8.35 0.543 mg/kg dry 10.4 0.109 100 75-125 Storce Correation 10.5 0.543 mg/kg dry 10.4 0.109 100 75-125 Matrix Spike Dup (OK23008-MSDT) Tesas Prepared: 11.23/2020 08:04 75-125 11 20 Source: CD19328-01 Tesas Result Flag POL Units Spike Source VerREC VerREC VerREC VerREC VerREC 11 20 Cadmium 11.3 0.543 mg/kg dry 11.6 0.347	Arsenic	9.85		0.543	ma/ka drv	10.4	0.347 U	94	75-125			
Cardinium 1.02 0.053 mg/kg dry 1.04 0.0322 95 75-125 Chromium 16.4 0.543 mg/kg dry 10.4 8.60 75 75-125 Lead 12.6 0.543 mg/kg dry 10.4 8.60 75 75-125 Lead 12.6 0.543 mg/kg dry 10.4 0.445 U 80 75-125 Selenium 8.35 0.543 mg/kg dry 10.4 0.109 U 100 75-125 Matrix Spike Dup (0K23008-MSD1) regult	Barium	14.1		0.543	ma/ka drv	10.4	1.57	120	75-125			
Action Action Board Marging of marging of margi	Cadmium	1 02		0.0543	ma/ka dry	1 04	0.0322	95	75-125			
Analyte 10.1 0.543 mg/kg dry 10.4 0.445 0.263 75-725 Selenium 8.35 0.543 mg/kg dry 10.4 0.445 U 80 75-125 Silver 10.5 0.543 mg/kg dry 10.4 0.109 U 100 75-125 Matrix Spike Dup (0K23008-MSD1 Prepared: 11/23/2020 08:04 Analyzed: 11/24/2020 13:05 Source: CD19328-01 Analyte Result Flag POL Units Spike Source: %REC MRPD Limit Arsenic 11.3 0.543 mg/kg dry 11.6 1.57 123 75-125 14 20 Cadmium 1.17 0.0543 mg/kg dry 11.6 0.347 U 98 75-125 11 20 Cadmium 1.17 0.0543 mg/kg dry 11.6 0.402 98 75-125 13 20 Chromium 19.9 0.543 mg/kg dry 11.6 0.450 98 75-125	Chromium	16.4		0.543	ma/ka dry	10.4	8 60	75	75-125			
Ladie Indir Ladie Indir Indir <th< td=""><td>Lead</td><td>12.6</td><td></td><td>0.543</td><td>ma/ka dry</td><td>10.1</td><td>2.02</td><td>102</td><td>75-125</td><td></td><td></td><td></td></th<>	Lead	12.6		0.543	ma/ka dry	10.1	2.02	102	75-125			
Solder of the section of the	Selenium	8 35		0.543	ma/ka dry	10.1	0 445 11	80	75-125			
Matrix Spike Dup (0K23008-MSD1) Prepared: 1.0.5 1.05 1.123 1.123 1.123 1.123 1.123 1.123 1.125 1.123 1.125 1.14 2.0 Analyte Result Flag POL Units Spike Level Result %REC MRP Limit Limit Arsenic 1.13 0.543 mg/kg dry 1.16 0.322 98 75-125 11 20 20 Lead 1.41 0.543 mg/kg dry 11.6 0.445 82 75-125 11 20	Silver	10.55		0.543	ma/ka dry	10.1	0.110.11	100	75-125			
Marking Spike Dup (0K25005-MSD.) Flag POL Units Spike Source: CD19328-01 Analyte Result Flag POL Units Level Result %REC Limits RPD Limit Arsenic 11.3 0.543 mg/kg dry 11.6 0.347 98 75-125 14 20 Barium 15.8 0.543 mg/kg dry 11.6 0.577 123 75-125 11 20 Cadmium 1.17 0.0543 mg/kg dry 11.6 0.0322 98 75-125 11 20 Cadmium 1.17 0.0543 mg/kg dry 11.6 0.0322 98 75-125 11 20 Lead 14.1 0.543 mg/kg dry 11.6 0.445 U 82 75-125 13 20 Selenium 9.49 0.543 mg/kg dry 11.6 0.109 U 104 75-125 13 20 Post Spike (0K23008-PS1 Preparediteret transpice <t< td=""><td>Matrix Spike Dup (0K22008 MS</td><td>10.5</td><td></td><td>0.545</td><td>ilig/kg uiy</td><td>Droppr</td><td>od. 11/22/2020</td><td>100</td><td>/J-12J</td><td>2020 12:05</td><td></td><td></td></t<>	Matrix Spike Dup (0K22008 MS	10.5		0.545	ilig/kg uiy	Droppr	od. 11/22/2020	100	/J-12J	2020 12:05		
Source: CD19328-01 Source: CD19328-01 Analyte Result Fia POL Units Level Rout %REC Limits RPD Limit Analyte 11.3 0.543 mg/kg dry 11.6 0.347 U 98 75-125 14 20 Barium 15.8 0.543 mg/kg dry 11.6 0.347 U 98 75-125 11 20 Cadmium 1.17 0.0543 mg/kg dry 1.16 0.0322 98 75-125 13 20 Cadmium 1.9.9 0.543 mg/kg dry 11.6 8.60 98 75-125 19 20 Lead 14.1 0.543 mg/kg dry 11.6 0.445 U 82 75-125 13 20 Selenium 9.49 0.543 mg/kg dry 11.6 0.109 U 104 75-125 13 20 Silver 12.0 0.543 mg/kg dry 11.6 0.109 U 104 75-125 <t< td=""><td></td><td>01)</td><td></td><td></td><td></td><td>Prepar</td><td>ed: 11/23/2020</td><td>0 08:04 Anai</td><td>yzeu: 11/24/.</td><td>2020 13:05</td><td></td><td></td></t<>		01)				Prepar	ed: 11/23/2020	0 08:04 Anai	yzeu: 11/24/.	2020 13:05		
AnalyteResultFlaqPOLUnitsLevelResult%RECLimitsRPDLimitArsenic11.30.543mg/kg dry11.60.347 U9875-1251420Barium15.80.543mg/kg dry11.60.3229875-1251320Cadmium1.170.0543mg/kg dry1.160.03229875-1251320Chromium19.90.543mg/kg dry11.68.609875-1251120Lead14.10.543mg/kg dry11.60.445 U8275-1251320Selenium9.490.543mg/kg dry11.60.445 U8275-1251320Silver12.00.543mg/kg dry11.60.109 U10475-1251320Silver12.00.543mg/kg dry11.60.109 U10475-1251320Silver12.00.543mg/kg dry11.60.109 U10475-1251320Silver12.00.543mg/kg dry11.60.109 U10475-1251320SilverSilverFerageMg/kg11.60.109 U10475-1251320Arsenic Ch19328-01SilverFerageMg/kgNg/kg10.000.002611080-12FinitisArsenic0.2220.0100mg/L0.2000.0026110 <td>Source: CD19328-01</td> <td></td> <td></td> <td></td> <td></td> <td>Spike</td> <td>Source</td> <td></td> <td>%REC</td> <td></td> <td>RPD</td> <td></td>	Source: CD19328-01					Spike	Source		%REC		RPD	
Arsenic 11.3 0.543 mg/kg dry 11.6 0.347 U 98 75-125 14 20 Barium 15.8 0.543 mg/kg dry 11.6 1.57 123 75-125 11 20 Cadmium 1.17 0.0543 mg/kg dry 1.16 0.0322 98 75-125 13 20 Chromium 19.9 0.543 mg/kg dry 11.6 8.60 98 75-125 11 20 Lead 14.1 0.543 mg/kg dry 11.6 2.02 105 75-125 13 20 Selenium 9.49 0.543 mg/kg dry 11.6 0.445 U 82 75-125 13 20 Silver 12.0 0.543 mg/kg dry 11.6 0.109 U 104 75-125 13 20 Silver 12.0 0.543 mg/kg dry 11.6 0.109 U 104 75-125 13 20 Silver 12.0 0.543 mg/kg dry 11.6 0.109 U 104 75-125 13 20	Analyte	Result	<u>Flag</u>	POL	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
Barium 15.8 0.543 mg/kg dry 1.6 1.57 123 75-125 11 20 Cadmium 1.17 0.0543 mg/kg dry 1.16 0.0322 98 75-125 13 20 Chromium 19.9 0.543 mg/kg dry 11.6 8.60 98 75-125 10 20 Lead 14.1 0.543 mg/kg dry 11.6 0.445 U 82 75-125 13 20 Selenium 9.49 0.543 mg/kg dry 11.6 0.445 U 82 75-125 13 20 Silver 12.0 0.543 mg/kg dry 11.6 0.109 U 104 75-125 13 20 Terest: I1/23/2020 W-4 Analyze Flag PQL Mins Flag Neg/kg dry 11.6 0.109 U 104 80-120 Einits RPD Einits Kesult Kesult Kesult Kesult<	Arsenic	11.3		0.543	mg/kg dry	11.6	0.347 U	98	75-125	14	20	
Cadmium 1.17 0.0543 mg/kg dry 1.16 0.0322 98 75-125 13 20 Chromium 19.9 0.543 mg/kg dry 11.6 8.60 98 75-125 19 20 Lead 14.1 0.543 mg/kg dry 11.6 2.02 105 75-125 11 20 Selenium 9.49 0.543 mg/kg dry 11.6 0.445 U 82 75-125 13 20 Selenium 12.0 0.543 mg/kg dry 11.6 0.109 U 104 75-125 13 20 Silver 12.0 0.543 mg/kg dry 11.6 0.109 U 104 75-125 13 20 Post Spike (0K23008-PS1) Prepert: 1/23/2020 N: VEV Analyzev: 11/24/2020 13:15 Source: CD19328-01 Spike Source Result Flag POL Units Spike Source MREC Limits RPD Limit Arsenic 0.222 0.0100 mg/L 0.200 0.0277 119 80-120	Barium	15.8		0.543	mg/kg dry	11.6	1.57	123	75-125	11	20	
Chromium 19.9 0.543 mg/kg dry 11.6 8.60 98 75-125 19 20 Lead 14.1 0.543 mg/kg dry 11.6 2.02 105 75-125 11 20 Selenium 9.49 0.543 mg/kg dry 11.6 0.445 U 82 75-125 13 20 Silver 12.0 0.543 mg/kg dry 11.6 0.445 U 82 75-125 13 20 Post Spike (0K23008-PS1) 12.0 0.543 mg/kg dry 11.6 0.109 U 104 75-125 13 20 Analyce Result Flag POL Units Freperiet: 11/23/2020 08:04 Analyzet: 11/24/2020 13:15 20 Arsenic 0.222 0.0100 mg/L 0.200 0.00226 110 80-120 Eimit Barium 0.266 0.0100 mg/L 0.200 0.00569 114 80-120 Eimit Chromium 0.376 0.0100 mg/L 0.200 0.105 112 80-120 Eimit <td>Cadmium</td> <td>1.17</td> <td></td> <td>0.0543</td> <td>mg/kg dry</td> <td>1.16</td> <td>0.0322</td> <td>98</td> <td>75-125</td> <td>13</td> <td>20</td> <td></td>	Cadmium	1.17		0.0543	mg/kg dry	1.16	0.0322	98	75-125	13	20	
Lead 14.1 0.543 mg/kg dry 11.6 2.02 105 75-125 11 20 Selenium 9.49 0.543 mg/kg dry 11.6 0.445 U 82 75-125 13 20 Silver 12.0 0.543 mg/kg dry 11.6 0.109 U 104 75-125 13 20 Post Spike (0K23008-PS1) Prepare: 11/23/2020 08:04 Analyzet: 11/24/2020 13:15 Source: CD19328-01 Spike Source % REC MRP MP Arsenic 0.222 0.0100 mg/L 0.200 0.00226 110 80-120 Eminit Cadmium 0.0233 0.00100 mg/L 0.200 0.00569 114 80-120 Eminit Chromium 0.376 0.0100 mg/L 0.200 0.00569 114 80-120 Eminit	Chromium	19.9		0.543	mg/kg dry	11.6	8.60	98	75-125	19	20	
Selenium 9.49 0.543 mg/kg dry 11.6 0.445 U 82 75-125 13 20 Silver 12.0 0.543 mg/kg dry 11.6 0.109 U 104 75-125 13 20 Post Spike (0K23008-PS1) Prepared: 11/23/2020 08:04 Analyzed: 11/24/2020 13:15 Source: CD19328-01 Silver Spike Spike Source Spike Source: CD19328-01 Analyte Result Flag POL Units Level Result %REC Limits RPD Limit Arsenic 0.222 0.0100 mg/L 0.200 0.00226 110 80-120 Limit Cadmium 0.266 0.0100 mg/L 0.200 0.00569 114 80-120 Limit Chromium 0.376 0.0100 mg/L 0.200 0.1052 112 80-120 Limit	Lead	14.1		0.543	mg/kg dry	11.6	2.02	105	75-125	11	20	
Silver 12.0 0.543 mg/kg dry 11.6 0.109 U 104 75-125 13 20 Post Spike (0K23008-PS1) Prepared: 11/23/2020 0:04 Analyzed: 11/24/2020 13:15 Source: CD19328-01 Spike Source: CD19328-01 Analyte Result Flag POL Units Source Source Source Limits RPD Limit Arsenic 0.222 0.0100 mg/L 0.200 0.00226 110 80-120 Limits Limits Limits Cadmium 0.0233 0.00100 mg/L 0.200 0.00569 114 80-120 Limits Chromium 0.376 0.0100 mg/L 0.200 0.00569 114 80-120 Limits	Selenium	9.49		0.543	mg/kg dry	11.6	0.445 U	82	75-125	13	20	
Post Spike (0K23008-PS1) Prepared: 11/23/2020 08:04 Analyzed: 11/24/2020 13:15 Source: CD19328-01 Spike Source MREC MREC RPD Limits RPD Limit Analyte Result Flaq POL Units Level Result %REC Limits RPD Limit Arsenic 0.222 0.0100 mg/L 0.200 0.00226 110 80-120 Limit Limit Cadmium 0.0233 0.00100 mg/L 0.0200 0.000569 114 80-120 Limit Chromium 0.376 0.0100 mg/L 0.200 0.152 112 80-120	Silver	12.0		0.543	mg/kg dry	11.6	0.109 U	104	75-125	13	20	
Source: CD19328-01 Spike Source: Spike Source: MREC RPD Analyte Result Flaa POL Units Level Result %REC Limits RPD Limit Arsenic 0.222 0.0100 mg/L 0.200 0.00226 110 80-120 Barium 0.266 0.0100 mg/L 0.200 0.00569 114 80-120 Cadmium 0.0376 0.0100 mg/L 0.200 0.1052 112 80-120	Post Spike (0K23008-PS1)					Prepar	ed: 11/23/202	0 08:04 Anal	yzed: 11/24/	2020 13:15		
Spike Source %REC RPD Analyte Result Flaa POL Units Level Result %REC Limits RPD Limit Arsenic 0.222 0.0100 mg/L 0.200 0.00226 110 80-120 -	Source: CD19328-01											
Arsenic 0.222 0.0100 mg/L 0.200 0.00226 110 80-120 Barium 0.266 0.0100 mg/L 0.200 0.0277 119 80-120 Cadmium 0.0233 0.00100 mg/L 0.0200 0.000569 114 80-120 Chromium 0.376 0.0100 mg/L 0.200 0.152 112 80-120	Analyte	Result	Flag	PQL	<u>Units</u>	Spike Level	Source Result	%REC	%REC <u>Limi</u> ts	RPD	RPD <u>Limit</u>	<u>No</u> tes
Barium 0.266 0.0100 mg/L 0.200 0.0277 119 80-120 Cadmium 0.0233 0.00100 mg/L 0.0200 0.000569 114 80-120 Chromium 0.376 0.0100 mg/L 0.200 0.152 112 80-120	Arsenic	0.222		0.0100	mg/L	0.200	0.00226	110	80-120			
Cadmium 0.0233 0.00100 mg/L 0.0200 0.000569 114 80-120 Chromium 0.376 0.0100 mg/L 0.200 0.152 112 80-120	Barium	0.266		0.0100	ma/L	0.200	0.0277	119	80-120			
Chromium 0.376 0.0100 mg/L 0.200 0.152 112 80-120	Cadmium	0,0233		0.00100	ma/L	0.0200	0.000569	114	80-120			
	Chromium	0.376		0.0100	ma/L	0.200	0,152	112	80-120			
FINAL This report relates only to the sample as received by the laboratory, and may only be reproduced in full Doce 7	FINAL	This report re	elates only t	o the sample	as received hv th	e laboratory	and may only be	reproduced in	full.		Par	10 7 of 11

Metals by EPA 6000/7000 Series Methods - Quality Control

Batch UK23008 - EPA 3050	B - Continuea										
Post Spike (0K23008-PS1) Co	ontinued				Prepar	ed: 11/23/202	0 08:04 Anal	yzed: 11/24/	2020 13:15		
Source: CD19328-01											
Analyte	Result	Flag	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
ead	0.259		0.0100	ma/L	0.200	0.0358	112	80-120			
Selenium	0.191		0.0100	mg/L	0.200	-0.0238	95	80-120			
liver	0.225		0.0100	mg/L	0.200	-0.000963	112	80-120			
Batch 0L01023 - EPA 7471	В										
Blank (0L01023-BLK1)					Prepar	ed: 12/01/202	0 14:42 Anal	yzed: 12/03/	2020 13:12		
Analyte	<u>Result</u>	<u>Flaq</u>	POL	<u>Units</u>	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Mercury	0.0418	U	0.0561	mg/kg wet		Result					
LCS (0L01023-BS1)					Prepar	ed: 12/01/202	0 14:42 Anal	yzed: 12/03/	2020 13:14		
Analyte	Result	Flag	POL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Mercury	0.639		0.0686	ma/ka wet	0.667	<u>itteoure</u>	96	80-120			
Matrix Spike (0L01023-MS1)	0.005		0.0000		Prepar	ed: 12/01/202	0 14:42 Anal	yzed: 12/03/	2020 13:18		
Source: CD19193-01											
Analyta	Pocult	Flag	POI	Unite	Spike	Source	0% DEC	%REC	BDD	RPD	Noto
	<u>Result</u>	riay	<u>FVL</u>	<u>units</u>		<u>Result</u>	07	<u>LIMITS</u>	RPD	Limit	Note
Matrix Spike Dup (0L01023-M	0.018		0.0633	mg/kg dry	0.037 Prenar	ed: 12/01/202	97 0 14:42 Anal	80-120 vzed: 12/03/	2020 13:20		
Source: CD19193-01						001 12,01,202	0 1 11 12 / 11 10	,2001 22,00,			
					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Note</u>
1ercury	0.665		0.0704	mg/kg dry	0.684	0.0525 U	97	80-120	7	20	
Post Spike (0L01023-PS1)					Prepar	ed: 12/01/202	0 14:42 Anal	yzed: 12/03/	2020 13:22		
Source: CD19193-01					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	Units	Level	Result	%REC	Limits	RPD	<u>Limit</u>	Note
1ercury	5.70		0.514	ug/L	5.00	-0.136	114	75-125			
CLP Metals by 6000/7000 Seri	ies Methods -	Quality	Control								
Batch 0K30011 - EPA 7470	A										
Blank (0K30011-BLK1)					Prepar	ed: 11/30/202	0 09:09 Anal	yzed: 12/02/	2020 10:13		
					Spike	Source		%REC		RPD	
	Result	Flag	PQL	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Note</u>
Analyte											
Analyte Mercury	0.00015	U	0.00020	mg/L							
Analvte Mercury Blank (0K30011-BLK2)	0.00015	U	0.00020	mg/L	Prepar	ed: 11/30/202	0 09:09 Anal	yzed: 12/02/	2020 10:16		

Result

0.00300

Flag

U

PQL

0.00400

Analyte

FINAL

Mercury

Level

%REC

<u>Result</u>

<u>Limits</u>

RPD

<u>Limit</u>

Units

mg/L

Notes

TCLP Metals by 6000/7000 Series Methods - Quality Control

Batch 0K30011 - EPA 7470A - Continued

LCS (0K30011-BS1)					Prepar	ed: 11/30/2020	0 09:09 Ana	yzed: 12/02/	2020 10:18		
Analyte	Result	Flag	POI	Units	Spike	Source	% DEC	%REC	PPD	RPD	Notoc
Mercury	0.00553	<u>i iaq</u>	0.00020	ma/l	0.00500	Result	111	80-120	RPD	<u>LIIIII(</u>	notes
Matrix Snike (0K30011-MS1)	0.00555		0.00020	iiig/L	Dronar	od: 11/30/2020	۲۲۲ ادم ۵۵۰۵۵ ۵	Wzed: 12/02/	2020 10.23		
					пера	ed. 11/30/2020	0 09.09 Ana	lyzeu. 12/02/	2020 10.23		
Source: CD18064-01					Sniko	Source		%DEC		PPD	
Analyte	Result	Flag	POL	<u>Units</u>	Level	Result	%REC	Limits	RPD	Limit	Notes
Mercury	0.00547		0.00020	mg/L	0.00500	0.00015 U	109	75-125			
Matrix Spike Dup (0K30011-M	SD1)				Prepar	ed: 11/30/2020	0 09:09 Ana	lyzed: 12/02/	2020 10:25		
Source: CD18064-01											
					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	Units	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
Mercury	0.00555		0.00020	mg/L	0.00500	0.00015 U	111	75-125	2	25	
Post Spike (0K30011-PS1)					Prepar	ed: 11/30/2020	0 09:09 Ana	yzed: 12/02/	2020 10:29		
Source: CD18064-01											
Analyte	Result	Flag	POI	Units	Spike	Source	%PEC	%REC	PPD	RPD Limit	Notes
Mercury	0.00584		0.00020	ma/l	0.00500	-0.000027	117	75-125	KI B	<u></u>	<u>Hotes</u>
Batch OK30025 - FPA 30104	0.00001		0.00020	iiig/L	0.00500	0.000027	11,	75 125			
	•										
Blank (0K30025-BLK1)					Prepar	ed: 11/30/2020	0 15:45 Ana	lyzed: 12/01/	2020 10:48		
					Spiko	Source		%PEC		חממ	
Analyte	Result	Flag	POL	Units	Level	Result	%REC	Limits	RPD	<u>Limit</u>	Notes
Arsenic	0.380	U	0.500	mg/L							
Barium	0.0938	J	0.500	mg/L							
Cadmium	0.0180	U	0.0500	mg/L							
Chromium	0.0700	U	0.500	mg/L							
Lead	0.155	U	0.500	mg/L							
Selenium	0.310	U	0.500	mg/L							
Silver	0.0950	U	0.500	mg/L							
LCS (0K30025-BS1)					Prepar	ed: 11/30/2020	0 15:45 Ana	lyzed: 12/01/	2020 10:54		
					Eniko	Fourse				BBD	
Analyte	Result	Flag	POL	<u>Units</u>	Level	Result	%REC	Limits	RPD	Limit	Notes
Arsenic	0.195		0.0100	mg/L	0.200		98	80-120			
Barium	0.201		0.0100	mg/L	0.200		100	80-120			
Cadmium	0.0190		0.00100	mg/L	0.0200		95	80-120			
Chromium	0.193		0.0100	mg/L	0.200		97	80-120			
Lead	0.193		0.0100	mg/L	0.200		97	80-120			
Selenium	0.186		0.0100	mg/L	0.200		93	80-120			
Silver	0.197		0.0100	mg/L	0.200		98	80-120			
Matrix Spike (0K30025-MS1)					Prepar	ed: 11/30/2020	0 15:45 Ana	yzed: 12/01/	2020 10:57		
Source: CD19328-01											
Analyte	<u>R</u> esult	<u>Flag</u>	POL	<u>U</u> nits	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Arsenic	9.74		0.500	ma/L	10.0	0.380 U	97	75-125			
Barium	10.4		0.500	mg/L	10.0	0.127	102	75-125			
Cadmium	0.977		0.0500	mg/L	1.00	0.0180 U	98	75-125			

TCLP Metals by 6000/7000 Series Methods - Quality Control

Batch 0K30025 - EPA 3010A - Continued

Matrix Spike (0K30025-MS1) Continued				Prepar	ed: 11/30/2020) 15:45 Anal	yzed: 12/01/	2020 10:57		
Source: CD19328-01											
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Chromium	10.0		0.500	mg/L	10.0	0.0700 U	100	75-125			
Lead	9.82		0.500	mg/L	10.0	0.155 U	98	75-125			
Selenium	9.50		0.500	mg/L	10.0	0.310 U	95	75-125			
Silver	10.1		0.500	mg/L	10.0	0.0950 U	101	75-125			
Matrix Spike Dup (0K30025-	MSD1)				Prepar	ed: 11/30/2020) 15:45 Anal	yzed: 12/01/	2020 10:59		
Source: CD19328-01											
Analyte	<u>Result</u>	Flag	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Arsenic	9.66		0.500	mg/L	10.0	0.380 U	97	75-125	0.8	20	
Barium	10.5		0.500	mg/L	10.0	0.127	104	75-125	2	20	
Cadmium	0.994		0.0500	mg/L	1.00	0.0180 U	99	75-125	2	20	
Chromium	10.1		0.500	mg/L	10.0	0.0700 U	101	75-125	1	20	
Lead	10.2		0.500	mg/L	10.0	0.155 U	102	75-125	3	20	
Selenium	9.64		0.500	mg/L	10.0	0.310 U	96	75-125	1	20	
Silver	10.3		0.500	mg/L	10.0	0.0950 U	103	75-125	2	20	
Post Spike (0K30025-PS1)					Prepar	ed: 11/30/2020) 15:45 Anal	yzed: 12/01/	2020 11:08		
Source: CD19328-01											
Analyte	<u>Result</u>	<u>Flaq</u>	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Arsenic	0.197		0.0100	mg/L	0.200	0.00161	97	80-120			
Barium	0.213		0.0100	mg/L	0.200	0.00254	105	80-120			
Cadmium	0.0200		0.00100	mg/L	0.0200	-0.000229	100	80-120			
Chromium	0.204		0.0100	mg/L	0.200	0.000381	102	80-120			
Lead	0.204		0.0100	mg/L	0.200	-0.00268	102	80-120			
Selenium	0.201		0.0100	mg/L	0.200	-0.00614	100	80-120			
Silver	0.210		0.0100	mg/L	0.200	-0.00104	105	80-120			

FLAGS/NOTES AND DEFINITIONS

- **B** The analyte was detected in the associated method blank.
- **D** The sample was analyzed at dilution.
- **J** The reported value is between the laboratory method detection limit (MDL) and the laboratory method reporting limit (MRL), adjusted for actual sample preparation data and moisture content, where applicable.
- **U** The analyte was analyzed for but not detected to the level shown, adjusted for actual sample preparation data and moisture content, where applicable.
- **E** The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an estimate.
- **MRL** Method Reporting Limit. The MRL is roughly equivalent to the practical quantitation limit (PQL) and is based on the low point of the calibration curve, when applicable, sample preparation factor, dilution factor, and, in the case of soil samples, moisture content.
- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
- **N** The analysis indicates the presence of an analyte for which there is presumptive evidence (85% or greater confidence) to make a "tentative identification".
- **P** Greater than 25% concentration difference was observed between the primary and secondary GC column. The lower concentration is reported.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.

X Sample Comments X Sample Comments Sample Comment	Da	pt	#'s & Temps on Recei	Cooler #		
X Image: Second Symplex Comments Image: Second Symplex Comments Image: Second Symplex Comments <th>Da</th> <th></th> <th>ished By</th> <th>Relinqu</th> <th>today u</th> <th>level 2 Det</th>	Da		ished By	Relinqu	today u	level 2 Det
X Sample Comments X I I I I I I I I I I I I I I I I I I I	Da	/	And Parist	neillean	•	nents/Special Heporting Hequirements
X Sample Comments	La	ley	isped by	Heingy	Date/Time	le Kit Prepared By
	< Total #	11	11			
		0	1			
				1 N		
	1					
			10			in the second
				-		
	10 10 10 10 10 10 10 10 10 10 10 10 10 1					
			1			
					1 1	
	N X X	8	6	0 (430	Watze	BORROW ARA
X X Saubre Comments	× ×	8	5	000	Winhar ?	ROAD BY SHILLS
X Saubie Comments	×	8 3	6	0 830	TE MIMZOU	CRUSHED CONCRE
Saturation and the Continuents	X	8 3	5	518 0	Whathan	POND
Commit Comments	# of iners	Matrix Total (see codes) Contai	Comp / Grab	e Collection	Collection Date	Sample ID (Felandentification)
Preservation (See Codes) (Combine as necessary)		-	1000	1 min -	P	9 mand
	8	4	Time Zone	Site Location	2	er(s) Signature
	RCF			Diming Contract	and	ULCOLAS TURA
4 me	ZA .	nan	el Kirkn	Pach		Eart- 258-9
C Standard	net		ntact	Reporting Con	22407	Signsburg NC
Page	els-	ty .	NOI COUM	PO # / Billing	NOR.	DIS OCK Branch
Note : Rush requests subject	-70		Desc	Project Name/	of the lot	
Times of 1	ŧΛ		10137511	roject Number	al -Tauloh	Pl-Finite month

102-A Woodwinds Industrial Court Cary NC, 27511 Phone: 919.467.3090 FAX: 919.467.3515

Monday, January 25, 2021 GFL Environmental - Taylor Cty Landfill (WA058) Attn: Rachel Kirkman 5B Oak Branch Drive Greensboro, NC 27407

RE: Laboratory Results for Project Number: 20137511.100, Project Name/Desc: Taylor Co Ash Characterization ENCO Workorder(s): CD10175,CD19328

Dear Rachel Kirkman,

Enclosed is a copy of your laboratory report for test samples received by our laboratory between Friday, July 17, 2020 and Thursday, November 19, 2020.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Cary. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

Sincerely,

manda h. Dains

Amanda L. Gaines Project Manager Enclosure(s)

PROJECT NARRATIVE

Date:January 25, 2021Client:GFL Environmental - Taylor Cty Landfill (WA058)Project:Taylor Co Ash CharacterizationLab ID:CD10175, CD19328

Overview

This report is an amendment to the original reports datedJuly 24, 2020, December 3, 2020, and December 9, 2020 for this work order. This report was revised to report not previously requested Nickel and Vandadium results for all samples associated with these work orders.

Environmental Conservation Laboratories, Inc. (ENCO) analyzed all submitted samples in accordance with the methods referenced in the laboratory report. Any particular difficulties encountered during sample handling by ENCO are discussed in the QC Remarks section below.

Quality Control Samples

No Comments

Quality Control Remarks

No Comments

Other Comments

The analysis of Nickel and Vanadium for sample JEA Ash was peformed outside of the recommended hold time .

All samples received under this work order arrived in acceptable conditions. The samples were not checked for chlorine, as it is not required.

The analytical data presented in this report are consistent with the methods as referenced in the analytical report. Any exceptions or deviations are noted in the QC remarks section of this narrative or in the Flags/Notes and Definitions section of the report.

Released By: Environmental Conservation Laboratories, Inc.

Amanda Gaines Project Manager

SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: JEA Ash		Lab ID: CD10175-01RE1	Sampled: 07/15/20 17:03	Received: 07/17/20 13:53
Parameter	Preparation	Hold Date/Time(s)	Prep Date/Time(s)	<u>Analysis Date/Time(s)</u>
EPA 6010D	EPA 3050B	01/11/21	12/04/20 11:30	01/22/21 16:40
Client ID: POND 1		Lab ID: CD19328-01	Sampled: 11/17/20 08:15	Received: 11/19/20 13:20
Parameter .	Preparation	Hold Date/Time(s)	Prep Date/Time(s)	<u>Analysis Date/Time(s)</u>
EPA 6010D	EPA 3050B	05/16/21	11/23/20 08:04	11/24/20 13:01
Client ID: Crushed	Concrete	Lab ID: CD19328-02	Sampled: 11/17/20 08:30	Received: 11/19/20 13:20
<u>Parameter</u>	Preparation	Hold Date/Time(s)	Prep Date/Time(s)	<u>Analysis Date/Time(s)</u>
EPA 6010D	EPA 3050B	05/16/21	11/23/20 08:04	11/24/20 13:19
Client ID: Road By	Sumps	Lab ID: CD19328-03	Sampled: 11/17/20 09:00	Received: 11/19/20 13:20
<u>Parameter</u>	Preparation	Hold Date/Time(s)	Prep Date/Time(s)	<u>Analysis Date/Time(s)</u>
EPA 6010D	EPA 3050B	05/16/21	11/23/20 08:04	11/24/20 13:22
Client ID: Borrow A	rea	Lab ID: CD19328-04	Sampled: 11/17/20 14:30	Received: 11/19/20 13:20
Parameter	Preparation	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 6010D	EPA 3050B	05/16/21	11/23/20 08:04	11/24/20 13:24

SAMPLE DETECTION SUMMARY

Client ID: JEA Ash			Lab ID:	CD10175-01RE1			
Analyte	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	Notes
Nickel - Total	586	D	7.95	25.0	mg/kg dry	EPA 6010D	Q-01
Vanadium - Total	1930	D	5.65	25.0	mg/kg dry	EPA 6010D	Q-01
Client ID: POND 1			Lab ID:	CD19328-01			
Analyte	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Nickel - Total	1.88	J	0.391	2.71	mg/kg dry	EPA 6010D	
Vanadium - Total	19.5		0.109	0.543	mg/kg dry	EPA 6010D	
Client ID: Crushed Concrete			Lab ID:	CD19328-02			
Analyte	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Nickel - Total	8.81		0.399	2.77	mg/kg dry	EPA 6010D	
Vanadium - Total	25.6		0.111	0.555	mg/kg dry	EPA 6010D	
Client ID: Road By Sumps			Lab ID:	CD19328-03			
Analyte	<u>Results</u>	Flag	MDL	<u>PQL</u>	<u>Units</u>	<u>Method</u>	Notes
Nickel - Total	1.34	J	0.371	2.58	mg/kg dry	EPA 6010D	
Vanadium - Total	27.9		0.103	0.516	mg/kg dry	EPA 6010D	
Client ID: Borrow Area			Lab ID:	CD19328-04			
Analyte	Results	Flag	MDL	PQL	Units	Method	Notes
Nickel - Total	1.68	J	0.396	2.75	mg/kg dry	EPA 6010D	
Vanadium - Total	26.2		0.110	0.550	mg/kg dry	EPA 6010D	

			ANALYTI	CAL F	RESULT	S					
Description: JEA Ash			Lal	o Sam	ple ID:C	D10175-	01		Received: 07	/17/20 1	13:53
Matrix: Solid				Sa	mpled:0	7/15/20	17:03		Work Order: CD	10175	
Project: Taylor Co Ash Characte	erization			Samp	Ied By:⊺	ravis Mai	tinez		% Solids: 10	0.32	
Motols by ERA 6000/7000	Sarias Matk	odc			-						
- ENCO Orlando certified analyte [NELAC	5ei ies meu	ious									
Analyte [CAS Number]	Results	Flag	<u>Units</u>	DF	MDL	POL	Batch	Method	Analyzed	By	Notes
Nickel [7440-02-0]^	586	D	mg/kg dry	50	7.95	25.0	0L04017	EPA 6010D	01/22/21 16:40	JSS	Q-01
Vanadium [7440-62-2]^	1930	D	mg/kg dry	50	5.65	25.0	0L04017	EPA 6010D	01/22/21 16:40	JSS	Q-01
Description: POND 1			Lai	o Sam	ple ID:C	D19328-	01		Received: 11	/19/20 1	L3:20
Matrix: Soil				Sa	mpled: 1	1/17/20	08:15		Work Order: CD	19328	
Project: Taylor Co TCLP				Samp	ed By: N	licolas Te	jeda		% Solids: 92	2.09	
Metals by EPA 6000/7000	Series Meth	nods									
^ - ENCO Cary certified analyte [NELAC E8	37610]										
Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	DF	MDL	PQL	Batch	Method	Analyzed	<u>By</u>	<u>Notes</u>
Nickel [7440-02-0]^	1.88	J	mg/kg dry	1	0.391	2.71	0K23008	EPA 6010D	11/24/20 13:01	JDH	
Vanadium [7440-62-2]^	19.5		mg/kg dry	1	0.109	0.543	0K23008	EPA 6010D	11/24/20 13:01	JDH	
Description: Crushed Concrete			Lai	o Sam	ple ID:C	D19328-	02		Received: 11	/19/20 1	13:20
Matrix: Soil				Sa	mpled: 1	1/17/20	08:30		Work Order: CD	19328	
Project: Taylor Co TCLP				Samp	ed By: N	licolas Te	ieda		% Solids: 90).13	
Metals by EPA 6000/7000	Series Meth	nods									
^ - ENCO Cary certified analyte [NELAC E8	37610]									_	
Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	DF	<u>MDL</u>	<u>PQL</u>	Batch	Method	Analyzed	<u>By</u>	<u>Notes</u>
Nickel [7440-02-0]^	8.81		mg/kg dry	1	0.399	2.//	0K23008		11/24/20 13:19	JDH	
Description: Dood Dy Cymra	23.0			1		0.555	07	EPA 0010D	Deceived: 11		2.20
Description: Road by Sumps			Lai	o sam		D19328-	03			/19/201	13:20
Matrix: Soil				Sa	mpled: 1	1/17/20	09:00		Work Order: CD	19328	
Project: Taylor Co TCLP				Samp	led By: N	licolas Te	jeda		% Solids: 96	5.94	
Metals by EPA 6000/7000	Series Meth	nods									
^ - ENCO Cary certified analyte [NELAC E8	37610]										
Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	Batch	Method	Analyzed	<u>By</u>	Notes
Nickei [7440-02-0]^	1.34	J	mg/kg dry	1	0.3/1	2.58	0K23008	EPA 6010D	11/24/20 13:22	JDH	
	27.9		mg/kg ury	1	0.105	0.510	04	EPA 6010D	11/24/20 13:22		2.20
Description: Borrow Area			Lai	o sam	pie ID:C	D19328-	04			/19/20 1	13:20
Matrix: Soil				Sa	mpled: 1	1/17/20	14:30		Work Order: CD	19328	
Project: Taylor Co TCLP				Samp	led By: N	licolas Te	jeda		% Solids: 90).91	
Metals by EPA 6000/7000	Series Meth	nods									
^ - ENCO Cary certified analyte [NELAC E8	37610]										
Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	Batch	Method	Analyzed	By	<u>Notes</u>
Nickel [7440-02-0]^	1.68	J	mg/kg dry	1	0.396	2.75	0K23008	EPA 6010D	11/24/20 13:24	JDH	
							01/22000		11/24/20 12:24	1011	

Metals by EPA 6000/7000 Series Methods - Quality Control

Batch 0K23008 - EPA 3050B

Blank (0K23008-BLK1)					Prepare	ed: 11/23/202	0 08:04 Ana	yzed: 11/24/	2020 12:48		
					Spike	Source		%REC		RPD	
Analyte	<u>Result</u>	<u>Flag</u>	POL	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
Nickel	0.327	U	2.27	mg/kg wet							
Vanadium	0.0909	U	0.455	mg/kg wet							
LCS (0K23008-BS1)					Prepare	ed: 11/23/202	0 08:04 Ana	lyzed: 11/24/	2020 12:51		
Analuto	Pocult	Flag	POI	Unito	Spike	Source	0/ DEC	%REC		RPD	Natas
Analyte	<u>Result</u>	<u>riay</u>		<u>Units</u>	Level	<u>Result</u>	%REC	LIMITS	RPD	Limit	Notes
Nickel	11.5		2.50	mg/kg wet	10.3		110	80-120			
	11.0		0.500	mg/kg wet	10.3		107	80-120			
Matrix Spike (0K23008-MS1)					Prepare	ed: 11/23/202	0 08:04 Ana	lyzed: 11/24/	2020 13:03		
Source: CD19328-01	D	F 1	DOI	11 14	Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	Units	Level	<u>Result</u>	%REC	Limits	RPD	Limit	Notes
Nickel	13.4		2.71	mg/kg dry	10.4	1.88	111	75-125			
Vanadium	31.4		0.543	mg/kg dry	10.4	19.5	114	75-125			
Matrix Spike Dup (0K23008-MSI	D1)				Prepare	ed: 11/23/202	0 08:04 Ana	yzed: 11/24/	2020 13:05		
Source: CD19328-01					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
Nickel	15.0		2.71	mg/kg dry	11.6	1.88	113	75-125	11	20	
Vanadium	33.1		0.543	mg/kg dry	11.6	19.5	118	75-125	5	20	
Post Spike (0K23008-PS1)					Prepare	ed: 11/23/202	0 08:04 Ana	yzed: 11/24/	2020 13:15		
Source: CD19328-01					Cuilco	Courses					
Analyte	<u>Result</u>	<u>Flag</u>	PQL	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	Limit	Notes
Nickel	0.271		0.0500	mg/L	0.200	0.0332	119	80-120			
Vanadium	0.566		0.0100	mg/L	0.200	0.344	111	80-120			
Metals by EPA 6000/7000 Series I	Methods - Q	uality C	Control								
Batch 0L04013 - EPA 7471B											
Blank (0L04013-BLK1)					Prepare	ed: 12/04/202	0 15:17 Ana	lyzed: 12/07/	2020 09:15		
					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	Units	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
Mercury	0.00390	U	0.0100	mg/kg wet							
Blank (0L04013-BLK2)					Prepare	ed: 12/04/202	0 15:17 Ana	lyzed: 12/07/	2020 09:54		
					Sniko	Source		%PFC		BD U	
Analyte	<u>Result</u>	Flag	POL	<u>Units</u>	Level	Result	%REC	Limits	RPD	Limit	Notes
Mercury	0.00390	U	0.0100	mg/kg wet							
LCS (0L04013-BS1)					Prepar	ed: 12/04/202	0 15:17 Ana	yzed: 12/07/	2020 09:27		
Analyte	<u>Result</u>	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Mercury	0.518		0.00882	mg/kg wet	0.529		98	80-120			

Metals by EPA 6000/7000 Series Methods - Quality Control

Batch 0L04013 - EPA 7471B - Continued

LCS (0L04013-BS2)					Prepar	red: 12/04/2020) 15:17 Anal	yzed: 12/07/	2020 09:57		
Analyte	<u>Result</u>	<u>Flag</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
Mercury	0.501		0.00882	mg/kg wet	0.529		95	80-120			
Matrix Spike (0L04013-MS1)					Prepar	red: 12/04/2020) 15:17 Anal	yzed: 12/07/	2020 09:34		
Source: CD10175-01 <u>Analyte</u>	<u>Result</u>	<u>Flaq</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
Mercury	0.625		0.0100	mg/kg dry	0.619	0.00390 U	101	80-120			
Matrix Spike Dup (0L04013-MS	D1)				Prepar	red: 12/04/2020) 15:17 Anal	yzed: 12/07/	2020 09:37		
Source: CD10175-01											
Analyte	Result	Flag	PQL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
Mercury	0.625		0.0100	mg/kg dry	0.619	0.00390 U	101	80-120	0.07	20	
Batch 0L04017 - EPA 3050B											
Blank (0L04017-BLK1)					Prepar	red: 12/04/2020) 11:30 Anal	yzed: 12/07/	2020 11:44		
Analyte	Result	Flag	POI	Units	Spike	Source	%PEC	%REC	PPD	RPD	Notos
Arsenic	0.192	U	1.00	ma/ka wet	Level	<u>kesult</u>	JUNEC	LIIIILS	RPυ		notes
Barium	0.0930	U	1.00	mg/kg wet							

0.100 mg/kg wet QB-01, QB-02 Cadmium 0.0620 U Chromium U 0.500 mg/kg wet 0.0840 Lead 0.320 J 0.500 mg/kg wet J-01, QB-01, Q 0.500 mg/kg wet Nickel 0.159 U Selenium 0.411 U 2.00 mg/kg wet Silver 0.135 U 0.500 mg/kg wet Vanadium 0.113 U 0.500 mg/kg wet LCS (0L04017-BS1)

26.5

В

0.524

Lead

FINAL

Prepared:	12/04/2020	11:30 Analyzed:	12/07/2020 11:56

75-125

98

Analyte	<u>Result</u>	<u>Flag</u>	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Arsenic	26.1		1.00	mg/kg wet	25.5		102	80-120			
Barium	25.6		1.00	mg/kg wet	25.6		100	80-120			
Cadmium	2.50		0.100	mg/kg wet	2.54		98	80-120			
Chromium	25.4		0.500	mg/kg wet	25.5		100	80-120			
Lead	24.6	В	0.500	mg/kg wet	25.5		97	80-120			
Nickel	25.3		0.500	mg/kg wet	25.5		99	80-120			
Selenium	25.2		2.00	mg/kg wet	25.5		99	80-120			
Silver	4.34		0.500	mg/kg wet	4.38		99	80-120			
Vanadium	25.3		0.500	mg/kg wet	25.4		100	80-120			
Matrix Spike (0L04017-MS1)					Prepar	ed: 12/04/2020) 11:30 Anal	yzed: 12/07/2	2020 12:01		
Source: AD08093-01											
					Spike	Source		%REC		RPD	
Analyte	Result	Flag	POL	Units	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Notes</u>
Arsenic	26.3		1.05	mg/kg dry	26.0	0.768	99	75-125			
Barium	28.3		1.05	mg/kg dry	26.0	1.34	104	75-125			
Cadmium	2.56		0.105	mg/kg dry	2.58	0.0650 U	99	75-125			
Chromium	28.1		0.524	mg/kg dry	26.0	1.95	101	75-125			

26.0

0.934

mg/kg dry

Metals by EPA 6000/7000 Series Methods - Quality Control

Batch 0L04017 - EPA 3050B - Continued

Matrix Spike (0L04017-MS1)) Continued				Prepar	ed: 12/04/2020	0 11:30 Anal	yzed: 12/07/	2020 12:01		
Source: AD08093-01											
Analyte	Result	<u>Flag</u>	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Nickel	26.6		0.524	mg/kg dry	26.0	0.422	101	75-125			
Selenium	24.3		2.10	mg/kg dry	26.0	0.431 U	94	75-125			
Silver	4.36		0.524	mg/kg dry	4.46	0.142 U	98	75-125			
Vanadium	28.8		0.524	mg/kg dry	25.8	3.12	100	75-125			
Matrix Spike Dup (0L04017-	MSD1)				Prepar	ed: 12/04/2020	0 11:30 Anal	yzed: 12/07/	2020 12:04		
Source: AD08093-01											
Analyte	Result	<u>Flag</u>	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Arsenic	25.7		1.05	mg/kg dry	25.4	0.768	98	75-125	3	20	
Barium	27.6		1.05	mg/kg dry	25.5	1.34	103	75-125	3	20	
Cadmium	2.49		0.105	mg/kg dry	2.53	0.0650 U	98	75-125	3	20	
Chromium	27.5		0.524	mg/kg dry	25.4	1.95	100	75-125	2	20	
Lead	25.8	В	0.524	mg/kg dry	25.4	0.934	98	75-125	3	20	
Nickel	25.9		0.524	mg/kg dry	25.4	0.422	100	75-125	2	20	
Selenium	23.9		2.10	mg/kg dry	25.4	0.431 U	94	75-125	2	20	
Silver	4.22		0.524	mg/kg dry	4.37	0.142 U	97	75-125	3	20	
Vanadium	28.2		0.524	mg/kg dry	25.3	3.12	99	75-125	2	20	

FLAGS/NOTES AND DEFINITIONS

- **B** The analyte was detected in the associated method blank.
- **D** The sample was analyzed at dilution.
- **J** The reported value is between the laboratory method detection limit (MDL) and the laboratory method reporting limit (MRL), adjusted for actual sample preparation data and moisture content, where applicable.
- **U** The analyte was analyzed for but not detected to the level shown, adjusted for actual sample preparation data and moisture content, where applicable.
- **E** The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an estimate.
- **MRL** Method Reporting Limit. The MRL is roughly equivalent to the practical quantitation limit (PQL) and is based on the low point of the calibration curve, when applicable, sample preparation factor, dilution factor, and, in the case of soil samples, moisture content.
- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
- **N** The analysis indicates the presence of an analyte for which there is presumptive evidence (85% or greater confidence) to make a "tentative identification".
- **P** Greater than 25% concentration difference was observed between the primary and secondary GC column. The lower concentration is reported.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.
- **J-01** Result may be biased high due to positive results in the associated method blank at a concentration above the MDL and/or greater than one-half the MRL.
- **Q-01** Analysis performed outside of method specified holding time.
- **Q-02** Sample received outside of method specified holding time.
- **QB-01** The method blank had a positive result for the analyte; however, the concentration in the method blank is less than 10% of the sample result. There is minimal impact to the data.
- **QB-02** The method blank contains analyte at a concentration above the MDL and/or greater than one-half the MRL. The analyte was not detected in the sample.

Kino Cby Landill (MA005) Project Number Tartific Co. Ash Characterization Total 100 100 201375111.000 100 100 20137511.000 100 100 2019 100 100 2019 100 100 2019 100 100 100<	Non-Chy Landelli (VMA085) Project Number Project Number Ide Taylor Co Ash Characlerization Taylor Co Ash Characlerization Ide Rachar (Kriman Rachar (Kriman Ide Rachar (Kriman
rongen Number Requested Analyses 20137511 100 Taylor Cost Taylor Cost Characterization 2019: Borning Consult Rachel Kirkman Kirkman Raceton Pine Zone Kirk	Name Name Name Name Name 20132511 100 20132511 100 20132511 100 20132511 100 20132511 100 20132511 100 20132511 100 20132511 100 20132511 100 20132511 100 Rachel Kikman Rachel Kikman 20132511 100 20132511 100 20132511 100 Rachel Kikman Name Name 20132511 100 20132511 100 Rachel Kikman Name Name 20132511 100 201325 Maurin Trans Composition Composition 20132511 100 201325 Maurin Trans Composition Composition 201325 201325 Maurin Trans Composition Composition 201325 201325 Maurin Trans Composition Composition 201325 201325 Maurin Trans Composition 20132 X X X Maurin Trans Composition 20132 X X X X Maurin Trans Composition 20132 X X X X Maurin Trans Composition 201325 X X X X Maurin Trans Composition 2017235 X X X X <tr< td=""></tr<>
Image: Constraint of the second se	Image: Construct of the construction of the construlic construction of the construction of the construction o
Bit Frequested Analyses Image: State of the state o	Bion Industrial Analysis Industrial Analysis Total # of Industrial Analysis Industrial Analysis Notal # of Industrial Analy
Analyses Introduction Introduction Interviewed By Date/Time Received By Analyses	Image: Second
Requested Analyses Image: state s	Requested Analyses Requested Analyses Requested Analyses Requested Analyses Requested Analyses Requested Analyses Requested B
	Acceptable

.

,

Date/Time	2°			eceipt	#'s & Temps on Re	Cooler			
Dato/Timo	Heceived by	Date/ lime			isfied By	Relingu	Inday.	2 Data 1	level
- 11-19-20 1:20	Am Oullong			/	V Ag Dalisi	Internation		porting Hequirements	Comments/Special He
11-19 20 11:30 Date/Time	2 Am Dyling	il infrom II:	1	and a	isped by	Heingy	Date/Time	Ŷ	Sample Kit Prepared I
Date/Time	December By	- Total # of Containers	~	11	11				
				0	0	2			
					-	2			
- The second sec									*
					+				
the second se		We want of the				F			
					1			*	
							4 4		
		×	w	8	6	(430	Watzeso	W ARA	. Burg
and the state of the second se		∧ X	U	8	5	8	Winhord	SAVER	POAC
		××	w	8	6	830	N/ m/2000	ED CONCRIE	CRUX
		×	w	8	5	518	Marian	5-	Pa
Sample Comments			Total # of Containers	Matrix (see codes)	Comp / Grab	Collection Time	Collection Date	ID (Freis Identification)	lem # Sample
5251010	(See Codes) (Combine as necessary)	Preservation		FUI	- OAL	TLAOR		and	1
Lab Workorder		8 P 3 P		A	/ Time Zone	Site Location		5	ampler(s) Signature
Due _/_/		CR,	-			billing Contac	Ins	ation (Print)	ampler(s) Name, Attil
Expedited		the		conan	el Kink	Rach		Cours	336-852
<u>C</u> Standard		hets tels			ntact	Bennrting Cor	407	work 2	Grensi
Y age		els- ,7		unty	hor co	PO # / Billing	Dr.	ak Branch Q	SB Q
Note : Rush requests subject		TCL			Desc	Project Name/	Ind to a	CITON IN MARIAN	ddress
Times of 1	Requested Analyses	P		11	このなた	Project Numbe	-Toulast	in a manage	SPI-S

WORK ORDER

CD19328 **ENCO** Cary

Sample Receipt Conditions

Client: GFL Env Project: Taylor Co PO #:	ironmental - Taylor Cty Landfill (WA058) o TCLP	Lab Project Mgr: Project Number:	Amanda L. Gaines [none]
<u>Report To:</u>		Invoice To:	
GFL Environmental	- Taylor Cty Landfill (WA058)	GFL Environmental	- Taylor Cty Landfill (WA058)
Rachel Kirkman		Laura Young	
5B Oak Branch Driv	/e	208 Southern States	Road
Greensboro, NC 274	407	Mauk, GA 31058	
Phone: (336) 852-49	003	Phone :(478) 862-25	04
Fax:		Fax:	
Received By:	Don W Derflinger	Date Received:	19-Nov-20 13:20
Logged In By:	John C King	Date Logged In:	19-Nov-20 14:40
	Work	Order Comments:	

Default Cooler received at 2.0°C

Containers Intact

Y Containers Properly Preserved Y

Custody Seals Intact Temperature Corrected Y

- Volatile Containers Preserved
- Y Proper Containers Received
- N Volatile Containers Headspace Free
- All Samples in PreLog Received Y Ν
 - Aqueous Samples Checked for Residual Cl
- Ν Received On Ice

N

COC/Labels Agree Y Y

State of Florida Department of Health, Bureau of Public Health Laboratories This is to certify that

E87610

ENVIRONMENTAL CONSERVATION LABORATORIES, INC. - CARY 102A WOODWINDS INDUSTRIAL COURT CARY, NC 27511

has complied with Florida Administrative Code 64E-1, for the examination of environmental samples in the following categories

DRINKING WATER - GROUP I UNREGULATED CONTAMINANTS, DRINKING WATER - GROUP II UNREGULATED CONTAMINANTS, DRINKING WATER - OTHER REGULATED CONTAMINANTS, DRINKING WATER - PRIMARY INORGANIC CONTAMINANTS, DRINKING WATER -RADIOCHEMISTRY, DRINKING WATER - SECONDARY INORGANIC CONTAMINANTS, DRINKING WATER - SYNTHETIC ORGANIC CONTAMINANTS, NON-POTABLE WATER - EXTRACTABLE ORGANICS, NON-POTABLE WATER - GENERAL CHEMISTRY, NON-POTABLE WATER - METALS, NON-POTABLE WATER - PESTICIDES-HERBICIDES-PCB'S, NON-POTABLE WATER - VOLATILE ORGANICS, SOLID AND CHEMICAL MATERIALS -EXTRACTABLE ORGANICS, SOLID AND CHEMICAL MATERIALS - GENERAL CHEMISTRY, SOLID AND CHEMICAL MATERIALS - METALS, CHEMICAL MATERIALS - PESTICIDES-HERBICIDES-PCB'S, SOLID AND CHEMICAL MATERIALS - VOLATILE ORGANICS

Continued certification is contingent upon successful on-going compliance with the NELAC Standards and FAC Rule 64E-1 regulations. Specific methods and analytes certified are cited on the Laboratory Scope of Accreditation for this laboratory and are on file at the Bureau of Public Health Laboratories, P. O. Box 210, Jacksonville, Florida 32231. Clients and customers are urged to verify with this agency the laboratory's certification status in Florida for particular methods and analytes.

Date Issued: July 01, 2020 Expiration Date: June 30, 2021

Patty A. Lewandowski, MBA, MT(ASCP) Chief Bureau of Public Health Laboratories DH Form 1697, 7/04 NON-TRANSFERABLE E87610-40-07/01/2020 Supersedes all previously issued certificates