bd.com

28 May 2020

Eric Cornwell Georgia Department of Natural Resources Environmental Protection Division Air Protection Branch 4244 International Parkway, Suite 120 Atlanta, Georgia 30354-3908

Dear Mr. Cornwell:

RE: Revised SIP Permit Application BD Covington Air Quality Permit 3841-211-0021-S-0-04-0

Enclosed is a revised SIP application for our 8195 Industrial Blvd. Covington GA 30014 location. This will supersede the application submitted on 31 October 2019. The application has been revised to reflect updated reduction efficiency calculations for our existing emission control equipment (RTO1) and updated product/packaging emission calculations based on recently conducted studies.

If you have any questions or comments regarding this information, please contact me at (770) 652-2049.

Sincerely, John LaMontagne

Process Technology Engineer Urology and Critical Care Division Becton, Dickinson and Company

cc: K. Hays, GA EPD R. Pasdon

With Air Dispersion Modeling files. (USB Flash Drive)

Certified: 70062150000389632725

bd.com

28 May 2020

Eric Cornwell Georgia Department of Natural Resources Environmental Protection Division Air Protection Branch 4244 International Parkway, Suite 120 Atlanta, Georgia 30354-3908

Dear Mr. Cornwell:

RE: Revised SIP Permit Application BD Covington Air Quality Permit 3841-211-0021-S-0-04-0

Enclosed is a revised SIP application for our 8195 Industrial Blvd. Covington GA 30014 location. This will supersede the application submitted on 31 October 2019. The application has been revised to reflect updated reduction efficiency calculations for our existing emission control equipment (RTO1) and updated product/packaging emission calculations based on recently conducted studies.

If you have any questions or comments regarding this information, please contact me at (770) 652-2049.

Sincerely, John LaMontagne

Process Technology Engineer Urology and Critical Care Division Becton, Dickinson and Company

cc: K. Hays, GA EPD R. Pasdon

Certified: 70062150000389632756

Advancing the world of health

State of Georgia Department of Natural Resources Environmental Protection Division Air Protection Branch

Stationary Source Permitting Program 4244 International Parkway, Suite 120 Atlanta, Georgia 30354 404/363-7000 Fax: 404/363-7100

SIP AIR PERMIT APPLICATION

EPD Use Only

Date Received:

Application No.

FORM 1.00: GENERAL INFORMATION

1.	Facility Information	n -
	Facility Name:	BD Covington
	AIRS No. (if known): 04-13-217 - 00021
	Facility Location:	Street: 8195 Industrial Blvd
		City: Covington Georgia Zip: 30014 County: Newton
	Is this facility a "sm	all business" as defined in the instructions? Yes: 🔲 No: 🛛
2.	Facility Coordinat	es
	Latitude	:: 85° 36' 42" NORTH Lonaitude: 83° 50' 17" WEST
	UTM Coordinates	EAST NORTH ZONE
3.	Facility Owner	
	Name of Owner:	Becton, Dickinson and Company
	Owner Address	Street: 1 Becton Drive
		City: Franklin Lakes State: NJ Zip: 07417
4.	Permitting Contac	and Mailing Address
	Contact Person:	John LaMontagne Title: Process Technology Engineer
	Telephone No.:	770 784 6186 Ext. Fax No.: 770 788 5519
	Email Address:	john.lamontagne@BD.com
	Mailing Address:	Same as: Facility Location: Owner Address: Other: Other:
	If Other:	Street Address:
		City: State: Zip:
_		
5.	Authorized Official	
Nar	me: Ron Pasdon	Title: Sr.Operations Mgr. Covington
Ado	dress of Official	Street: 8195 Industrial Blvd.
		City: Covington State: GA Zip: 30014
This	s application is subr	nitted in accordance with the provisions of the Georgia Rules for Air Quality Control and, to the s complete and correct
	,	

Signature:

Date: 26 May 2020

lication)	 ☑ Revision of Date of Original Submittal: 	ata Submitted ir	n an Earlier Application
lication)	Application No.: Date of Original Submittal:	: 31 Octobe	
	Date of Original Submittal:	31 October	
	Submittal:	31 October	
		01 000000	r 2019
Affected Pe	ermit No.:		
sion level p ted in a per emption A	per Georgia Rule 39 rmit? . ttachment (See Ins	1-3-103(6)(i)(been performed at th attachment download;
y part of ti ⊠ Yes, a tion:	his application? a consultant has b	een employed	or will be employed.
ultants			
F	Fax No.:		
nt Rd			
	ate: GA	Zip:	30305
Sta			
r	nt Rd	Fax No.: 	Fax No.:

9. Submitted Application Forms: Select only the necessary forms for the facility application that will be submitted.

No. of Forms	Form
1	2.00 Emission Unit List
	2.01 Boilers and Fuel Burning Equipment
	2.02 Storage Tank Physical Data
	2.03 Printing Operations
	2.04 Surface Coating Operations
	2.05 Waste Incinerators (solid/liquid waste destruction)
	2.06 Manufacturing and Operational Data
1	3.00 Air Pollution Control Devices (APCD)
	3.01 Scrubbers
	3.02 Baghouses & Other Filter Collectors
	3.03 Electrostatic Precipitators
1	4.00 Emissions Data
1	5.00 Monitoring Information
	6.00 Fugitive Emission Sources
1	7.00 Air Modeling Information

10. Construction or Modification Date

Estimated Start Date: Construction estimated to start in December 2019

11. If confidential information is being submitted in this application, were the guidelines followed in the "Procedures for Requesting that Submitted Information be treated as Confidential"?

🗌 No 🛛 🖾 Yes

12. New Facility Emissions Summary

Criteria Pollutant	New Facility								
Citteria Polititant	Potential (tpy)	Actual (tpy)							
Carbon monoxide (CO)									
Nitrogen oxides (NOx)									
Particulate Matter (PM) (filterable only)									
PM <10 microns (PM10)									
PM <2.5 microns (PM2.5)									
Sulfur dioxide (SO ₂)									
Volatile Organic Compounds (VOC)									
Greenhouse Gases (GHGs) (in CO2e)									
Total Hazardous Air Pollutants (HAPs)									
Individual HAPs Listed Below:									

13. Existing Facility Emissions Summary

Critoria Pollutant	Current I	Facility	After Modification				
Citteria Foliutant	Potential (tpy)	Actual (tpy)	Potential (tpy)	Actual (tpy)			
Carbon monoxide (CO)	27.77	2.98	27.77	2.98			
Nitrogen oxides (NOx)	54.1	5.69	54.1	5.69			
Particulate Matter (PM) (filterable only)	2.76	0.30	2.76	0.30			
PM <10 microns (PM10)	2.76	0.30	2.76	0.30			
PM <2.5 microns (PM2.5)	2.76	0.30	2.76	0.30			
Sulfur dioxide (SO ₂)	5.02	0.50	5.02	0.50			
Volatile Organic Compounds (VOC)	6.69	1.10	5.84	0.44			
Greenhouse Gases (GHGs) (in CO2e)	30956	19734	30956	19734			
Total Hazardous Air Pollutants (HAPs)	1.38	0.75	0.53	0.09			
Individual HAPs Listed Below:							
Ethylene Oxide	0.9	0.7	0.053	0.039			

14. 4-Digit Facility Identification Code:

SIC Code:	3841	SIC Description:	Surgical & Medical Instruments & Apparatus
NAICS Code:	339112	NAICS Description:	Surgical and Medical Instrument Manufacturing

15. Description of general production process and operation for which a permit is being requested. If necessary, attach additional sheets to give an adequate description. Include layout drawings, as necessary, to describe each process. References should be made to source codes used in the application.

This application is for the addition of emission controls for currently non-captured emissions of Ethylene Oxide (EO) at an existing medical device sterilization facility. The existing regulated process which includes the sterilization chamber Exhaust Vent, Chamber Vent, and Aeration Exhaust are not being modified. Information for these systems has been included in previous permit applications and will not be repeated here. This application is specific to additional emission controls being installed to capture and treat emissions not captured by current control equipment. No increase in the usage of EO will result from this proposed fugitive emission control project. The new controls will be comprised of two local exhaust ventilation systems:

System One (SYS1) will capture potential emissions from the five Sterilization Vessel Rooms (VRM1, VRM2, VRM3, VRM4, VRM5), the Vessel to Aeration Transfer Corridor (NCO1), and the EO Dispensing Room (DRM1). Reference Attachment C.

System Two (SYS2) will capture potential emissions from the Work in Progress Area (WIP1) where product is stored after Sterilization and prior to shipment. Reference Attachment D.

The captured emissions will be treated using Advanced Air Technologies Model DR490 "Dry Bed Scrubbers" designed to achieve an estimated 99% destruction efficiency.

Note: This application has been revised to update Mass Balance related calculations based on new information. The emission control system flow information has also been updated from scfm to acfm.

16. Additional information provided in attachments as listed below:

Attachment A - Floo	or Plan
---------------------	---------

- Attachment B Plot Plan with proposed new stack locations
- Attachment C System 1 Flow Diagram
- Attachment D System 2 Flow Diagram
- Attachment E Mass Balance Calculations.
- Attachment F Monitoring Recommendations
- Attachment G Advanced Air Technologies DR-490 Equipment Information
- Attachment H Air Dispersion Modeling

17. Additional Information: Unless previously submitted, include the following two items:

- Plot plan/map of facility location or date of previous submittal: Attachment B
- Flow Diagram or date of previous submittal: Attachment C & D

18. Other Environmental Permitting Needs:

Will this facility/modification trigger the need for environmental permits/approvals (other than air) such as Hazardous Waste Generation, Solid Waste Handling, Water withdrawal, water discharge, SWPPP, mining, landfill, etc.?

 \boxtimes No \square Yes, please list below:

19. List requested permit limits including synthetic minor (SM) limits.

Proposed Permit Conditions

Permittee shall initially test performance of System1 (SYS1) and System2 (SYS2) to confirm ethylene oxide removal efficiency of at least 99% on a concentration basis within 60 days of commissioning of each system and within 60 days following any replacement of dry bed media.

Removal efficiency across each system (SYS1 and SYS2) shall be demonstrated on a concentration reduction basis using simultaneous samples of inlet and outlet gases by Summa Canisters using EPA Method TO-15 with analysis by GC/MS in the Selective Ion Monitoring (SIM) acquisition mode. During sampling of the inlet and outlet concentrations across each system, the outlet stack airflows will be measured using EPA Methods 1, 2, and 4 for determination of volumetric flow rate and moisture content, and calculation of mass emission rate of ethylene oxide.

Permittee shall sample the outlet from System1 (SYS1) and System2 (SYS2) once each month by Summa Canisters using EPA Method TO-15 with analysis by GC/MS in the Selective Ion Monitoring (SIM) acquisition mode to determine concentration of ethylene oxide in the exhaust airflow stream.

Permittee shall track monthly concentration data versus baseline conditions and, in consultation with the dry bed manufacturer, determine when media replacement is warranted to maintain at least 99% removal efficiency.

20. Effective March 1, 2019, permit application fees will be assessed. The fee amount varies based on type of permit application. Application acknowledgement emails will be sent to the current registered fee contact in the GECO system. If fee contacts have changed, please list that below:

Fee Contact name: Fee Contact email address: Fee Contact phone number:

Fee invoices will be created through the GECO system shortly after the application is received. It is the applicant's responsibility to access the facility GECO account, generate the fee invoice, and submit payment within 10 days after notification.

Covington
Ы
Facility Name:

FORM 2.00 - EMISSION UNIT LIST

Decrintion	Dedicated Boom for Starijization Chamber 1	Dedicated Room for Sterilization Chamber 2	Dedicated Room for Sterilization Chamber 3	Dedicated Room for Sterilization Chamber 4	Dedicated Room for Sterilization Chamber 5	Common corridor between Vessel Rooms and Aeration Cells	Dedicated Room for Dispensing EO from supply drums to each Vessel Room	Common area where sterilized product is stored prior to shipment						
Manufacturer and Model Number	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A						
Name	Vessel Room 1	Vessel Room 2	Vessei Room 3	Vessel Room 4	Vessel Room 5	Vessel to Aeration Transfer	EO Dispensing	Work in Progress						
Emission	VRM1	VRM2	VRM3	VRM4	VRM5	NCO1	DRM1	WIP1						

Ш
Name:
acility l
ц,

BD Covington

Date of Application: 22 May 2020

Form 3.00 - AIR POLLUTION CONTROL DEVICES - PART A: GENERAL EQUIPMENT INFORMATION

Inlet Gas	Flow Rate (acfm)	4,232- 10.579	4,232- 10.579	4,232- 10.579	4,232-	4,232-	3,174	1,057	67,709					
np. °F	Outlet	20	20	20	02	02	70	70	70					
Gas Ter	Inlet	70	20	70	70	20	20	20	20					
Unit Modified from Mfg	Unit Modified from Mfg Specifications?		No	No	No	No	No	N	No					
Make & Model Number	Make & Model Number (Attach Mfg. Specifications & Literature)		Advanced Air Technologies, DR490											
Date	Installed	March 2020	March 2020	March 2020	March 2020	March 2020	March 2020	March 2020	March 2020					
APCD Type (Bachouse ESP	Scrubber etc)	Dry Beds	Dry Beds	Dry Beds	Dry Beds	Dry Beds	Dry Beds	Dry Beds	Dry Beds					
Emission	Unit ID	VRM1	VRM2	VRM3	VRM4	VRM5	NCO1	DRM1	WIP1					
APCD	Curit ID	SYS1	SYS1	SYS1	SYS1	SYS1	SYS1	SYS1	SYS2					

Facility Name: BD Covington

Date of Application: 22 May 2020

Form 3.00 – AIR POLLUTION CONTROL DEVICES – PART B: EMISSION INFORMATION

Pressure Drop	Pressure Drop Across Unit (Inches of water)		7							
eam From APCD	Method of Determination	Mass Balance	Mass Balance	² This value was calculated using the facility's maximum sterilization production rate at 8,760 hours per year (i.e., the PTE).						
Exit Str	lb/hr	0.00018	0.00502							
ream To APCD	Method of Determination	Mass Balance	Mass Balance	¹ Confirmatory testing in progress						
Inlet St	lb/hr	0.018	0.50							
Control ency	Actual	99%1	%66							
Percent Effici	Design	%66	%66							
	Follutants controlled	Ethylene Oxide	Ethylene Oxide							
APCD	Unit ID	SYS1	SYS2							

Facility Name: BD Covington

Date of Application: 23

22 May 2020

FORM 4.00 – EMISSION INFORMATION

	Method of Determination	Estimate	Estimate	Estimate	Estimate	Estimate	Mass Balance	Estimate	Mass Balance						
se	Potential Annual Emission (tpy)	0.00008	0.00008	0.0008	0.00008	0.00008	0.00029	0.0001	0.022						
Emission Ra	Actual Annual Emission (tpy)	0.00008	0.00008	0.00008	0.00008	0.00008	0.00022	0.0001	0.0165						
	Hourly Potential Emissions (Ib/hr)	0.000018	0.000018	0.000018	0.000018	0.000018	0.000066	0.000023	0.0050						
	Hourly Actual Emissions (Ib/hr)	0.000018	0.000018	0.000018	0.000018	0.000018	0.000050	0.000023	0.0038						
	Pollutant Emitted	Ethylene Oxide													
	Stack ID	STK1	STK2												
Air Bollistion	Control Device ID	SYS1	SYS2												
	Emission Unit ID	VRM1	VRM1	VRM1	VRM1	VRM1	NCO1	DMR1	WIP1						

Georgia SIP Application Form 4.00, rev. June 2011

FORM 5.00 MONITORING INFORMATION

Emission		Monitored Para	ameter	
Unit ID/ APCD ID	Emission Unit/APCD Name	Parameter	Units	Monitoring Frequency
VRM1/SYS 1	Vessel Room1/System1	EO Concentration at outlet of SYS1	ppm	Reference Attachment F
VRM2/SYS 1	Vessel Room2/System1	EO Concentration at outlet of SYS1	ppm	Reference Attachment F
VRM3/SYS 1	Vessel Room3/System1	EO Concentration at outlet of SYS1	ppm	Reference Attachment F
VRM4/SYS 1	Vessel Room4/System1	EO Concentration at outlet of SYS1	ppm	Reference Attachment F
VRM5/SYS 1	Vessel Room5/System1	EO Concentration at outlet of SYS1	ppm	Reference Attachment F
NCO1/SYS 1	Vessel to Aeration Transfer/System1	EO Concentration at outlet of SYS1	ppm	Reference Attachment F
DMR1/SYS 1	EO Dispensing/System1	EO Concentration at outlet of SYS1	ppm	Reference Attachment F
WIP1/SYS2	Work in Progress/System2	EO Concentration at outlet of SYS2	ppm	Reference Attachment F

Comments:

Monitoring detail described in attachment F

Facility Name: BD Covington

Date of Application:

22 May 2020

FORM 7.00 – AIR MODELING INFORMATION: Stack Data

	-				-	 	 	 	 	·······	
on Rate	te (acfm)	Maximum	38,087		67,709						
aximum Emissic	Flow Rat	Average	22,217		67,709						
s Conditions at M	Temperature (°F)		70		70						
Exit Ga	Velocity	(ft/sec)	52		50.8						
ns of largest Near Stack	Longest	Side (ft)	20		50						
Dimension	Height (ft)		30		30						
u	Exhaust	Direction	To the Sky		To the Sky						
ck Informatic	Inside Diameter (ft)		3.83		5.17						
Sta	Height	Height Above Grade (ft)			100						
Emiseion	Unit ID(s)		VRM1, VRM2, VRM3, VRM5,	NCO1, DMR1,	WIP1						
Stack			STK1		STK2						

NOTE: If emissions are not vented through a stack, describe point of discharge below and, if necessary, include an attachment. List the attachment in Form 1.00 General Information, Item 16. n/a

Georgia SIP Application Form 7.00, rev. June 2005

Facility Name:

FORM 7.00 AIR MODELING INFORMATION: Chemicals Data

Chemical	Potential Emission Rate (Ib/hr)	Toxicity	Reference	MSDS Attached
Ethylene Oxide CAS#: 71-25-8	0.012	PEL: 1ppm STEL: 5 ppm See Attachment H for Outside Exposures	OSHA 1910 See Attachment H for Outside Exposure Reference	

Page 1 of 1 22 May 2020

ATTACHMENT B

BD Covington SIP Application

BD Covington SIP Application

General Description

The intent of the mechanical systems design upgrade is to capture fugitive Ethylene Oxide (EO) emissions inside the facility and reduce the potential for releases of these emissions to atmosphere. An effective means of containing emissions is to capture EO at the source. The capture and treatment systems will utilize pressure differential strategies. Using negatively pressurized spaces, extraction will direct air from the lowest EO concentrations to the highest concentrations in the building and then send this exhaust air through an EO destruction process. Existing exhaust fans (WIP1) will be replaced with a dedicated EO capture and destruction systems. Further, the shipping area will be enclosed. The new systems are designed to reduce captured emissions by 99% at the outlet.

System 1 Description/Flow Diagram

System One (SYS1) will capture potential emissions from the five Sterilization Vessel Rooms (VRM1, VRM2, VRM3, VRM4, VRM5), the Vessel to Aeration Transfer Corridor (NCO1), and the EO Dispensing Room (DRM1). All SYS1 exhaust will be manifolded into a Dry Bed System with variable speed exhaust fan with a maximum capacity of 38,087 cfm. The system will maintain negative pressure, with respect to outside, in the Vessel Rooms, Vessel to Aeration Transfer Corridor, Drum Dispensing and use local ventilation exhaust to capture and destruct EO. The flow numbers listed below are initial target numbers and may be adjusted to meet operational requirements.

Normal Mode:

Vessel Rooms (VRM1-VRM5) will exhaust ~4,232 cfm each, DMR1 will exhaust ~1,057 cfm, NC01 hoods will be off. Total cfm = ~22,217. The other Vessel rooms, DMR1, and NCO1 can increase cfm, to a total of ~38,087 cfm, if monitoring equipment detects elevated EO levels.

Chamber Unloading Mode:

When a chamber is being unloaded the room exhaust will ramp to ~10,579 cfm (all other vessel rooms will be at ~4,232 cfm) the corresponding NCO1 hood will go to ~3,174 cfm exhaust (all other hoods will be off). DMR1 will remain at ~1,057 cfm. Total cfm = ~31,738. The other Vessel rooms can increase cfm, to a total of 38,087 cfm, if monitoring equipment detects elevated EO levels.

Emergency Mode:

SYS1 will also incorporate a safety feature that will serve to shut down the system in the case of a major EO leak (≥25% of LEL or 7,500ppm). The AAT Dry Beds are designed for a maximum limit of 10,000 ppm and can ignite if overfed. An EO sensor will be located in the SYS1 inlet duct and will activate a shutdown sequence based on an internal setpoint. EO emissions will not be captured in this emergency situation. This event will also trigger a sterilization process shutdown. It should be noted that BD has not experienced levels of this magnitude in its twenty-year history and this safety system is being included only to prevent an injury in the event of a catastrophic failure.

Attachment C

BD Covington SIP Application

Page 2 of 2 22 May 2020

BD Covington SIP Application

System 2 Description/Flow Diagram

System Two (SYS2) will capture potential emissions from the Work in Progress Area (WIP1) where product is stored after sterilization and prior to shipment. All SYS2 exhaust will be manifolded into a Dry Bed System with multiple variable speed exhaust fans for a maximum capacity of 67,700 cfm. The exhaust fans will be routed to a common Stack (STK2). The system will maintain negative pressure, with respect to outside, in the WIP1 area. The area pressure will be monitored with pressure sensors and fans will modulated to maintain a negative pressure in the space. Administrative controls will be implemented to ensure building integrity is preserved, doorways are managed, and air flows/pressures are maintained per design. The shipping area will be enclosed to aid in control of emissions.

covington, GA			
put data:			
allets/yr			Maximum based on full usage 24/7/356 Record on historical usage rates for 24 pallet vessel
hylene oxide usage		lb/vr	Total usage based on Mass Balance
erilizer removal efficency ¹	99.9%		Based on partial pressure calculation estimate
rO efficiency, aeration	99.7%		Based on 2019 Source Test Report Review 26 Nov 19
TO efficiency, vessels	99.9925%		Based on 2019 Source Test Report Review 26 Nov 19
oduct transfer time, sterilizer to aeration	5	min	
eration time	16	hr	
eration Unload time	5	min	
rstem 1 removal efficiency	99%		Assume 99% Based on vendor literature
stem 2 Safety Factor ⁶	39%		
scumptions:	2.70		
roduct/packaging absorption ²		1	Indicator FO in product (packaging optoring poration
Δ lbc/min (nor pallet) during transfer from Vessel to Aeration A^3		lbc/min	Decaseing for transfer from voccol to constion
removed Product/Packaging @ 16 hrs H4 ³		%	
D lbs/min (per pallet) transfer Aeration B to WIP ³		lbs/min	Degassing for transfer from aeration to WIP
FO reduction after 24 hrs in W/P^3		%	
liscellaneous fugitive loss ⁴	100	lb	captured in system 1
alculations:			
erilizer:			
D into sterilizers		lb	Total usage based on Mass Balance minus misc. fugitive loss
D absorbed by product/packaging	10,646.5	lb	
C in sternizer not absorbed by product/package		ເມ lh	
D exhausted to RTO from back vent	511 8	lb	
erilizer exhaust to RTO	511.0	lb	
erilizer exhaust removed by RTO		lb	
erilizer exhaust to atmosphere after RTO	38.4	lb	
ansfer:			
D offgas during product transfer to aeration	58.0	lb	This will be captured by system one
eration:	10500.0		
G remaining in product/package entering aeration	10588.6	a	
ffgas during unloading	19.8		
p RTO during aeration	7018.2	lb	
p RTO during aeration unload	19.8	lb	
otal aeration to RTO	7038.0	lb	
eration removed by RTO	7016.9	lb	
eration exhaust to atmosphere after RTO	21.1	lb	
Centering W/IP	3550 6		EQ in product/packaging after aeration
D offgas in WIP	1633.3		From product/packaging arter actation
vstem1:			
D into System 1	158.0	lb	
D removed by System 1	156.4	lb	
rstem 1 exhaust to atmosphere	I.b	ID lb/br	
or istem2:	0.00018	13/111	
D into System 2	4,409.8	lb	Includes System 2 Safety Factor
D removed by System 2	4,365.7	lb	
rstem 2 EO exhaust to atmosphere	44.1	lb.	
or	0.005	lb/hr	
		lh	Dess ach include Cofety Factor 5
J still in product/package @ 24 hrs in WIP	1,917.3	a	Does not include Safety Factor
hausted before Modification:			
D exhausted to atmosphere from RTO	59.5	lb	
D Exhausted to atmosphere by system 1	158.0	lb	
D Exhausted to atmosphere by System 2	1,633.3	lb	Does not include Safety Factor ⁵
otal EO exhausted to atmosphere	1,850.7	lb	Before Modifications
or	0.21	lb/hr	
or	0.9	Tons	
hausted after Modification:			
D exhausted to atmosphere from RTO	59 5	lb	
D Exhausted to atmosphere by system 1	1.6	lb	
D Exhausted by to atmosphere System 2	44.1	lb	Does include Safety Factor
otal EO exhausted to atmosphere	105.2	lb	After Modifications
or	0.012	lb/hr	
or	0.05	Ions	
oto 1 This estimatos how much EO is removed during and a		washes but doss	
ote 2 Estimates the amount of EO in the product when it star	ts the transfer t	washes but does l	to more what is in the product at the time it transfers to defation.
ote 3 An estimate based on product EO residue testing perfo	rmed by BD lah	oratory personnel	
in the based on product to residue testing perio	e nackaging flag	nge losses EO sun	oly drum changes, and non-routine losses.
ote 4 An estimate of potential EO emissions from pump/valv	e packaging, nai	BC 1000000, EO 00	
ote 4 An estimate of potential EO emissions from pump/valv ote 5 The Safety Factor is only included in the After Modification	tion calculations	as this insures the	e new emission reduction system is designed to account for variation as noted below.

	Covington, GA			
Input data:		1	1	
Pallets/yr				Based on Actual EO usage (CY 2018)
Lb/pallet				Based on historical usage rates for 24 pallet vessel
Ethylene oxide	usage		lb/yr	Total usage based on Mass Balance
Sterilizer remov	val efficency ¹	99.9%		Based on partial pressure calculation estimate
RTO efficiency,	aeration	99.7%		Based on 2019 Performance Testing. Source Test Report Review 26 Nov 19
RTO efficiency,	vessels	99.9925%		Based on 2019 Performance Testing. Source Test Report Review 26 Nov 19
Product transfe	r time, sterilizer to aeration	5	min	
Aeration time	d at a s	16	hr	
Aeration Unioa	d time	5	min	Assume 00% Deced on used on literature
System 1 remov		99%		Assume 99% Based on vendor literature
System 2 Safety	/ Factor [®]	2 70		
Assumptions:		2.70		
Product/packag	ging absorption ²			Indicates EO in product/packaging entering aeration
EO lbs/min (per	pallet) during transfer from Vessel to Aeration A ³		lbs/min	Degassing for transfer from vessel to aeration
% removed from	n pallet/packaging @ 16 hrs. Aeration ³		%	
EO lbs/min (per	pallet) transfer Aeration B to WIP ³		lbs/min	Degassing for transfer from aeration to WIP
% EO reduction	after 24 hrs in WIP ³		%	
Miscellaneous f	ugitive loss ⁴	100	lb	captured in system 1
Calculations:				
Sterilizer:		_		
EO into sterilize	rs	7.054.0	lb Ib	I otal usage based on Mass Balance minus miscellaneous fugitive loss
EO in storilizer	r product	7,954.3	lb	
EO exhausted to	o RTO from vac/air wash		lb	
EO exhausted to	o RTO from vent	382.3	lb	
Sterilizer exhau	st to RTO		lb	
Sterilizer exhau	st removed by RTO		lb	
Sterilizer exhau	st to atmosphere after RTO	28.7	lb	
Transfer:				
EO offgas durin	g product transfer to aeration	43.3	lb	This will be captured by system one
Aeration:				
EO remaining in	n product entering aeration	7911.0	lb	
Offgas during a	eration	5243.5	lb	
Offgas during u	nioading	14.8 5242 5	lb	
To RTO during a		1/ 8	lb	
Total aeration t	o BTO	5258.3	lb	
Aeration remov	red by RTO	5242.5	lb	
Aeration exhau	st to atmosphere after RTO	15.8	lb	
EO entering WI	P	2652.8		
EO offgas in WI	P	1220.3		
System1				
EO into System	1	143.3	lb	
EO removed by	System 1	141.9	lb	
System 1 exhau	ist to atmosphere	1.4	lb	
-		or 0.00016	lb/hr	
System2:	2	0.007	16	Includes Custom 2 Cofety Fonton
EU INTO System	2 System 2	3,294.7	u lb	Includes System 2 Safety Factor
System 2 exhau	system z	3,261.8	lb	
-, stern 2 exildu		or 0.0038	lb/hr	
		0.0000		
EO still in Produ	ict/Package @ 24 hrs. WIP	1,432.5	lb	Does not include Safety Factor ⁵
	-	,		
Exhausted befo	re Modification:			
EO exhausted to	o atmosphere from RTO	44.5	lb	
EO Exhausted to	o atmosphere by system 1	143.3	lb	
EO Exhausted b	y to atmosphere System 2	1,220.3	lb	Does not include Safety Factor ³
Total EO exhaus	sted to atmosphere	1,408.0	lb Ib (ba	Before Modifications
		or 0.16	ID/NF Tons	
		0.70		
Exhausted after	Modification:			
EO exhausted to	o atmosphere from RTO	44.5	lb	
EO Exhausted to	o atmosphere by system 1	1.4	lb	
	y to atmosphere System 2	32.9	lb	Does include Safety Factor
EO Exhausted b	sted to atmosphere	78.8	lb	After Modifications
EO Exhausted b Total EO exhaus		or 0.009	lb/hr	
EO Exhausted b Total EO exhaus		or 0.039	IONS	
EO Exhausted b Total EO exhaus				
EO Exhausted b Total EO exhaus	This astimator how much EQ is serviced during the		wachos but dee	act include what is in the product at the time it transfers to consting
EO Exhausted b Total EO exhaus	This estimates how much EO is removed during post	exposure vacuum	washes but does i	not include what is in the product at the time it transfers to aeration.
EO Exhausted b Total EO exhaus Note 1 Note 2 Note 3	This estimates how much EO is removed during post Estimates the amount of EO in the product when it s An estimate based on product EO residue testing per	exposure vacuum tarts the transfer t	washes but does i to aeration.	not include what is in the product at the time it transfers to aeration.
EO Exhausted b Total EO exhaus Note 1 Note 2 Note 3 Note 4	This estimates how much EO is removed during post Estimates the amount of EO in the product when it s An estimate based on product EO residue testing per An estimate of potential EO emissions from pumo/us	exposure vacuum tarts the transfer t formed by BD lab	washes but does i to aeration. pratory personnel.	not include what is in the product at the time it transfers to aeration.

Attachment F

BD Covington SIP Application

BD has not identified an US EPA- or GA EPD-approved stack test method that will measure the concentrations of fugitive emissions of ethylene oxide (EO), which are expected to be less than 0.2 ppm, that will enter the dry system inlets or the resulting, reduced concentrations of EO at the dry bed system outlets or the combined stacks.¹ For these reasons, BD proposes to demonstrate the control efficiency of the dry bed systems using the following sample collection and analysis methods, which are based EPA Method TO-15.

Based upon available information, BD anticipates that the ethylene oxide (EO) concentrations at the inlet and outlet of the proposed systems will be relatively low (i.e., typically less than 0.2 ppmv) and essentially not reliably detected by standard EPA stack testing methods (e.g., EPA Method No. 18). To overcome this limitation, the approach described below employs a gas sampling technique capable of achieving lower detection limits. BD recognizes that its proposed alternative test method may not have been widely employed in this way.

When the inlet and outlet concentrations are close to the limits of detection of the analytical equipment it becomes mathematically impossible to prove the specified destruction efficiency. We are currently investigating monitoring technologies and methods that would allow practical measurement of the relatively low levels of EO expected at the outlet of the proposed emission systems with the intent to be able to confirm a 99% reduction or an equivalent emission standard. BD welcomes any commercially accepted and reasonable alternate sample/analysis methods that GA EPD may recommend.

BD proposes that the initial compliance tests and subsequent monthly monitoring of System1 and System2 as follows:

Initial Compliance Testing:

- Demonstrate 99% ethylene oxide removal efficiency of the dry bed systems across each control System using simultaneous samples of inlet and outlet gases by Summa Canisters using EPA Method TO-15 with analysis by GC/MS in the Selective Ion Monitoring (SIM) acquisition mode.
- During this sampling of the inlet and outlet concentrations across each system, the outlet stack airflows will be measured using EPA Methods 1, 2, and 4 for determination of volumetric flow rate and moisture content.

¹ Advanced Air Technologies, Inc. (AAT), the manufacturer of the dry bed systems, has stated that emissions "of EtO will be 99% or = 1 ppmv, whichever is less stringent, when operated per AAT operations manual and other parameters of project design." BD has based its calculations of the removal of fugitive EO emissions on AAT's manufacturer's statements. To its knowledge, BD's installation of the AAT dry bed systems to control EO in the concentrations found in the fugitive emissions of the substance at the Covington plant is the first such installation anywhere. BD, nonetheless, believes that the dry bed systems will reduce the fugitive emissions of EO by 99%.

- Using the above-measured airflow and concentration data, the mass emission rate from each System will be calculated and reported.
- These data will be used to establish baseline conditions against which subsequent monitoring data (collected as described below) will be considered in determining when media replacement should be initiated.

This compliance testing procedure will be repeated after completion of any future media replacement.

Routine Monitoring:

- Sample the outlet from each dry bed system on a monthly basis by Summa Canisters using EPA Method TO-15 with analysis by GC/MS in the Selective Ion Monitoring (SIM) acquisition mode and determine concentration of ethylene oxide in the exhaust airflow stream.
- Monthly concentration data will be tracked and compared with baseline data.
- Trending of the monthly concentration data versus baseline will be used in consultation with the dry bed manufacturer to determine when media replacement is warranted to maintain at least 99% removal efficiency.

The abatement method is chemisorption (adsorption accompanied by chemical reaction) by means of Advanced Air Technology dry beds containing sulfonated polymer of styrene. Once the chemisorption process has occurred, the amount of EO is reduced by at least 99%. See table below:

AAT, INC. DR-490 ETHYLENE OXIDE ABATOR REMOVAL EFFICIENCY DECAY (BASED ON 2000 SCFM AIR FLOW RATE)

lb. EtO Treated/lb. Reactant	lb. EtO Previously Treated	EtO % Removal Efficiency
0	0	99.995
0.05	45	99.97
0.10	90	99.95
0.15	135	99.92
0.20	180	99.9
0.25	225	99.5
0.30	270	99
0.35	315	98
0.40	360	97
0.45	405	95
0.50	450	85
0.52	468	0

BD Covington SIP Application

Attachment H BD Covington SIP Application

ETHYLENE OXIDE EMISSIONS IMPACT ASSESSMENT BD Bard > Covington Facility

Prepared By:

TRINITY CONSULTANTS

May 2020

Project 201101.0137

Environmental solutions delivered uncommonly well

1. ETHYLENE OXIDE EMISSIONS IMPACT ASSESSMENT

EPD regulates the emissions of toxic air pollutants (TAPs) through a program approved under the provisions of GRAQC Rule 391-3-1-.02(2)(a)3(ii). A TAP is defined as any substance that may have an adverse effect on public health, excluding any specific substance that is covered by a State or Federal ambient air quality standard. Procedures governing the EPD's review of toxic air pollutant emissions as part of air permit reviews are contained in EPD's *Guideline for Ambient Impact Assessment of Toxic Air Pollutant Emissions* (the *Guideline*).¹

This assessment included dispersion modeling for ethylene oxide from the facility.

1.1. MODELING ASSESSMENT

Modeling conducted was done with the AERMOD (v19191) dispersion model. Meteorological data utilized for the modeling assessment was obtained from the Georgia EPD website.² Meteorological data utilized was processed using AERMET (v18081), AERSURFACE (v13016), and AERMINUTE (v15272) with the adjusted surface friction velocity option (ADJ_U*). Five consecutive years of meteorological data (2014-2018) were utilized in the modeling assessment, with surface meteorological data from the Atlanta Hartsfield Jackson airport and upper air data from Falcon Field in Peachtree City, Georgia. This assessment was performed in accordance with the *Guideline*.

Due to the proximity of the Global Distribution Center (GDC) facility to the main Covington plant, both the GDC facility and the main Covington plant have been included within the same modeling run, for conservatism as part of this modeling assessment. Therefore, source parameters listed, and reported modeling results as indicated, are reflective of both facilities where indicated.

1.1.1. Source Parameters

Ethylene oxide emissions were modeled as point sources from three specific facility stack locations. For point sources, AERMOD requires the stack height (m), inside stack exit diameter (m), temperature (K), and exit gas velocity (m/s) to be specified. Table 1-1 provides a summary of the location and stack parameters used in the dispersion model for the point sources. The modeled emission rates for the RTO (incinerator) at the main Covington plant, have been updated to account for the RTO emissions as per the most recent stack testing results from the facility at a Limit of Detection (LOD) of 0.02 ppm as directed by the Georgia EPD. Emissions from the GDC facility are per current emissions estimates for the site.

¹ Guideline for Ambient Impact Assessment of Toxic Air Pollutant Emissions. Georgia Department of Natural Resources, Environmental Protection Division, Air Protection Branch, Revised, May 2017.

 $^{^{2}\} https://epd.georgia.gov/air-protection-branch-technical-guidance-0/air-quality-modeling/georgia-aermet-meteorological-data$

Attachment H BD Covington SIP Application

5
1.1
- 27
<u>ع</u>
Ð
C
3
- E
æ
10
Ц
d)
~
~
0
cĀ.
w 4
-
-
0
ñ.
-
—
45
<u> </u>
3
3
<u> </u>
P

			Modeled	Modeled				Stack	Stack					
			Emissions	Emissions	Modeled	Stack Height	Stack Height	Temperature	Temperature	Exit Velocity	Exit Velocity	Flow	Stack Diameter	Stack
ource	Easting (meter)	Northing (meter)	(lb/yr)	(lb/hr)	Emissions (g/s)	(¥)	(W)	(E)	(8)	(ft/s)	(m/s)	(cfm)	(ij)	Diameter (m)
RTO	236,424.2	3,722,295.0	60	6.85E-03	8.63E-04	50	15.24	250	394.26	30.5	9.29	23,000	48	1.219
stem 1	236,404.2	3,722,273.3	1.6	1.83E-04	2.30E-05	100	30.48	70	294.26	55	16.76	38,087	46	1.167
stem 2	236,423.6	3,722,313.7	44.1	5.03E-03	6.34E-04	100	30.48	70	294.26	53.8	16.40	602.79	62	1.575
ЭČ	238,631.3	3,722,261.4	340.2	3.88E-02	4.89E-03	100	30.48	70	294.26	58.9	17.95	100,000	72	1.829

1.1.2. Land Use Classification

Classification of land use in the immediate area surrounding a facility is important in determining the appropriate dispersion coefficients to select for a particular modeling application. The selection of either rural or urban dispersion coefficients for a specific application should follow one of two procedures. These include a land use classification procedure or a population-based procedure to determine whether the area is primarily urban or rural.³

Of the two methods, the land use procedure is considered more definitive. The land use within the total area circumscribed by a 3-kilometer (km) radius circle around the facility was classified using the land use typing scheme proposed by Auer. If land use types I1 (Heavy Industrial), I2 (Light Industrial), C1 (Commercial), R2 (Residential; Small Lot Single Family & Duplex), and R3 (Residential; Multi-Family) account for 50% or more of the circumscribed area, urban dispersion coefficients should be used; otherwise, rural dispersion coefficients are appropriate.

AERSURFACE (v13016) was used for the extraction of the land-use values in the domain. Although a more recent version of AERSURFACE has been released (v20060) the v13016 version is consistent with the version used to create the meteorological data utilized for this assessment. The results of the land use analysis evaluation were as follows.

Each USGS NLCD92 land use class was compared to the most appropriate Auer land use category to quantify the total urban and rural area. Table 1-2 summarizes the results of this land use analysis. As approximately 86% of the area can be classified as rural, rural dispersion coefficients were used. The AERSURFACE files are enclosed in Appendix A.

³ 40 CFR Part 51, Appendix W, the Guideline on Air Quality Models (January 2017) – Section 7.2.1.1(b)(i) 22 May 2020

	USGS NLCD92		Auer Scheme	Rural/	Land Area
Land Class	Land Class Description	Land Use Type	Land Use Description		AICa
11	Open Water	A5	Water Surfaces/Rivers/Lakes	Rural	1.1%
12	Perennial Ice/Snow	A5	Water Surfaces/Rivers/Lakes	Rural	0.0%
21	Low Intensity Residential	R1	Common Residential	Rural	11.0%
22	High Intensity Residential	R2 and R3	Compact Residential (Single Family, Multi-Family & Duplex)	Urban	1.6%
23	Commercial/Industrial/ Transportation	11, 12, and C1	Heavy and Light-Moderate Industrial & Commercial	Urban	12.9%
31	Bare Rock/Sand/Clay	A3	Undeveloped	Rural	0.0%
32	Quarries/Strip Mines/Gravel	A4	Undeveloped Rural	Rural	0.0%
33	Transitional	A3	Undeveloped/Uncultivated	Rural	1.8%
41	Deciduous Forest	A4	Undeveloped Rural	Rural	25.9%
42	Evergreen Forest	A4	Undeveloped Rural	Rural	15.7%
43	Mixed Forest	A4	Undeveloped Rural	Rural	13.1%
51	Shrubland	A3	Undeveloped/Uncultivated	Rural	0.0%
61	Orchards/Vineyard/Other	A2	Agricultural Rural	Rural	0.0%
71	Grasslands/Herbaceous	A3	Undeveloped/Uncultivated	Rural	0.0%
81	Pasture/Hay	A2	Agricultural Rural	Rural	7.0%
82	Row Crops	A2	Agricultural Rural	Rural	4.1%
83	Small Grains	A2	Agricultural Rural	Rural	0.0%
84	Fallow	A2	Agricultural Rural	Rural	0.0%
85	Urban/Recreational Grasses	A1	Metropolitan Natural	Rural	3.9%
91	Woody Wetlands	A4	Undeveloped Rural	Rural	1.7%
92	Emergent Herbaceous Wetlands	A4	Undeveloped Rural	Rural	0.2%

Table 1-2. Summary of Land Use Analysis

1.1.3. Building Downwash

The effects of building downwash for each of the stack emission points were evaluated in terms of the proximity of the stack to nearby structures. The purpose of this evaluation is to determine if stack discharges might become caught in the turbulent wakes of these structures leading to downwash of the plumes. Wind blowing around a building creates zones of turbulence that are greater than if the building were absent.

For these modeling analyses, the direction-specific building dimensions used as input to the AERMOD model were calculated using the U.S. EPA's BPIP PRIME, version 04274. BPIP PRIME is designed to incorporate the

Attachment H BD Covington SIP Application

concepts and procedures expressed in the GEP Technical Support document, the Building Downwash Guidance document, and other related documents.⁴

For the BPIP analysis, the structure elevations (buildings and stacks) were estimating using the AERMAP processor (v18081). Terrain elevations from the USGS 1-arc second NED were used for AERMAP processing. In all modeling analysis data files, the location of emission points and structures were represented in the UTM coordinate system, zone 17, NAD 83. However, for the GDC facility it was noted that the base elevation of the facility structures and stack were significantly different as reported by AERMAP, possibly due to terrain features north/northeast of the main facility structure. Therefore, the base elevations of the GDC facility structures and stack were reset to values consistent with topographical survey information specific to the site (e.g. 707 ft. for the stack, as opposed to 736 ft. as provided by AERMAP).

EPA has promulgated stack height regulations that restrict the use of stack heights in excess of "Good Engineering Practice" (GEP) in air dispersion modeling analyses. Under these regulations, that portion of a stack in excess of the GEP height is generally not creditable when modeling to determine source impacts. This essentially prevents the use of excessively tall stacks to reduce ground-level pollutant concentrations.

This equation is limited to stacks located within five times the lesser dimension (5L) of a building structure. Stacks located at a distance greater than 5L from a building structure are not subject to the wake effects of the structure. The wind direction-specific downwash dimensions and the dominant downwash structures used in this analysis are determined using BPIP. In general, the lowest GEP stack height for any source is 65 meters by default.⁵ The BPIP evaluation indicates that none of the stacks included within the modeling analysis exceed GEP stack height.

Input and output files from the BPIP downwash analysis are provided in the electronic files included in Appendix A.

1.1.4. Receptor Grid Coordinate System

Modeled concentrations were calculated at ground-level receptors placed along the main Covington plant and GDC facility fenceline, and on a variable Cartesian receptor grid. Fenceline receptors were spaced no more than 25 meters apart. Beyond the fenceline, receptors were placed with 100 meters spacing on a Cartesian grid extending outward from the facility. An approximately 25 km by 25 km modeling domain with a receptor spacing of 100 meters was created.

Also, five residential receptors, as identified in a modeling memo prepared by the Georgia Environmental Protection Division (EPD) in June 2019, were also placed within the receptor grid system to provide predicted modeled impacts consistent with the results presented by the EPD in their June 2019 memo.⁶ Consistent with previous modeling for the GDC facility, an additional six residential receptors, as identified from review of aerial imagery and data reviewed regarding land use classification information (industrial/commercial) from available

⁴ U.S. EPA, Office of Air Quality Planning and Standards, Guidelines for Determination of Good Engineering Practice Stack Height (Technical Support Document for the Stack Height Regulations) (Revised), Research Triangle Park, North Carolina, EPA 450/4-80-023R, June 1985.

⁵ 40 CFR 51.100(ii)

⁶ https://epd.georgia.gov/bd-becton-dickinson-and-company-covington

Attachment H BD Covington SIP Application

online information, were also placed within the receptor grid system to provide predicted modeled impacts at nearby residential areas associated with the GDC facility.⁷

Receptor elevations and hill heights required by AERMOD were determined using the AERMAP terrain preprocessor (v18081). Terrain elevations from the USGS 1-arc second NED were used for AERMAP processing. In all modeling analysis data files, the location of receptors were represented in the UTM coordinate system, zone 17, NAD 83.

1.1.5. Modeling Results

Using the source parameters specified in Table 1-1, and additional model setup as described above, AERMOD was executed for each of the five years of meteorological data to determine the maximum predicted modeled 1-hr, 24-hr, and annual concentrations of ethylene oxide at each receptor location. Table 1-3 and Table 1-4 below summarizes the MGLC for each averaging period. Hourly concentrations were adjusted to a 15-min averaging period based on the *Guideline* (15-min MGLC = 1-hr MGLC * 1.32).

Model results are first presented for the main Covington plant, and then presented for combined impacts for both the main Covington plant and GDC facility.

Table 1-3. Maximum Predicted Modeled Impacts - Main Covington Plant

Year	Max Annual Concentration (µg/m ³)	Annual AAC (µg/m³)	Max 24-hr Concentration (µg/m ³)	24-hr AAC (µg/m ³)	Max Hourly Concentration (μg/m ³)	Max 15-min Concentration (μg/m ³)	15-minute AAC (μg/m³)
2014 2015 2016 2017 2018	2.70E-03 2.21E-03 2.51E-03 2.02E-03 2.54E-03	3.3E-04	2.69E-02 2.37E-02 2.62E-02 2.63E-02 2.46E-02	1.43	0.42 0.04 0.04 0.06 0.07	0.55 0.06 0.06 0.07 0.09	900

Table 1-4. Maximum Predicted Modeled Impacts - Main Covington Plant and GDC Facility Combined

Year	Max Annual Concentration (µg/m ³)	Annual AAC (µg/m ³)	Max 24-hr Concentration (µg/m ³)	24-hr AAC (μg/m ³)	Max Hourly Concentration (µg/m ³)	Max 15-min Concentration (µg/m ³)	15-minute AAC (μg/m³)
2014 2015 2016 2017 2018	1.67E-02 1.57E-02 1.40E-02 1.29E-02 1.51E-02	3.3E-04	1.96E-01 1.17E-01 1.02E-01 9.96E-02 9.63E-02	1.43	4.65 0.37 0.35 0.47 0.50	6.13 0.49 0.46 0.61 0.66	900

Analyses were also conducted to evaluate predicted modeled impacts at each of five identified residential receptors by the Georgia EPD for the main Covington plant, and six identified residential receptors for the GDC facility. Table 1-3 and Table 1-6 below summarizes the annual average maximum predicted modeled impacts at the residential receptor locations identified.

⁷ https://qpublic.schneidercorp.com/

Residential Area	Easting (meter)	Northing (meter)	Max Annual Concentration (µg/m ³)	Averaging Period	Annual AAC (μg/m³)	Ratio of Result to AAC
R1	236,932.5	3,722,361.2	6.90E-04	Annual	3.3E-04	2.09
R2	236,137.9	3,721,995.0	3.80E-04	Annual	3.3E-04	1.15
R3	236,163.0	3,721,885.6	2.30E-04	Annual	3.3E-04	0.70
R4	237,343.8	3,721,603.8	5.60E-04	Annual	3.3E-04	1.70
R5	235,611.0	3,722,319.2	6.70E-04	Annual	3.3E-04	2.03
R1GDC	238,515.0	3,721,512.6	1.80E-04	Annual	3.3E-04	0.55
R2GDC	238,824.1	3,721,543.4	1.60E-04	Annual	3.3E-04	0.48
R3GDC	239,700.4	3,721,684.0	1.30E-04	Annual	3.3E-04	0.39
R4GDC	239,978.8	3,722,117.1	1.30E-04	Annual	3.3E-04	0.39
R5GDC	237,566.7	3,721,698.2	3.40E-04	Annual	3.3E-04	1.03
R6GDC	237,436.2	3,722,120.5	3.60E-04	Annual	3.3E-04	1.09

Table 1-5. Maximum Predicted Modeled Impacts at Identified Residential Receptors – Main Covington Plant

Table 1-6. Maximum Predicted Modeled Impacts at Identified Residential Receptors – Main Covington Plant and GDC Facility Combined

Residential Area	Easting (meter)	Northing (meter)	Max Annual Concentration (µg/m ³)	Averaging Period	Annual AAC (μg/m ³)	Ratio of Result to AAC
R1	236,932.5	3,722,361.2	1.82E-03	Annual	3.3E-04	5.52
R2	236,137.9	3,721,995.0	1.26E-03	Annual	3.3E-04	3.82
R3	236,163.0	3,721,885.6	1.05E-03	Annual	3.3E-04	3.18
R4	237,343.8	3,721,603.8	1.14E-03	Annual	3.3E-04	3.45
R5	235,611.0	3,722,319.2	1.38E-03	Annual	3.3E-04	4.18
R1GDC	238,515.0	3,721,512.6	7.40E-04	Annual	3.3E-04	2.24
R2GDC	238,824.1	3,721,543.4	1.75E-03	Annual	3.3E-04	5.30
R3GDC	239,700.4	3,721,684.0	1.60E-03	Annual	3.3E-04	4.85
R4GDC	239,978.8	3,722,117.1	1.31E-03	Annual	3.3E-04	3.97
R5GDC	237,566.7	3,721,698.2	1.14E-03	Annual	3.3E-04	3.45
R6GDC	237,436.2	3,722,120.5	2.11E-03	Annual	3.3E-04	6.39

Predicted modeled impacts demonstrate that risk from ethylene oxide concentrations at identified residential receptors near both the main Covington plant, and the GDC facility, do not exceed 100-in-a-million for an individual if that person was exposed to that concentration continuously for a lifetime.

All air dispersion modeling files are included in Appendix A.

APPENDIX A. ELECTRONIC TOXICS MODELING FILES